Btrfs: fix enospc when there is plenty of space
[linux-2.6-block.git] / fs / btrfs / disk-io.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/version.h>
20#include <linux/fs.h>
21#include <linux/blkdev.h>
22#include <linux/scatterlist.h>
23#include <linux/swap.h>
24#include <linux/radix-tree.h>
25#include <linux/writeback.h>
26#include <linux/buffer_head.h> // for block_sync_page
27#include <linux/workqueue.h>
28#include <linux/kthread.h>
29# include <linux/freezer.h>
30#include "crc32c.h"
31#include "ctree.h"
32#include "disk-io.h"
33#include "transaction.h"
34#include "btrfs_inode.h"
35#include "volumes.h"
36#include "print-tree.h"
37#include "async-thread.h"
38#include "locking.h"
39#include "ref-cache.h"
40#include "tree-log.h"
41
42#if 0
43static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
44{
45 if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
46 printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
47 (unsigned long long)extent_buffer_blocknr(buf),
48 (unsigned long long)btrfs_header_blocknr(buf));
49 return 1;
50 }
51 return 0;
52}
53#endif
54
55static struct extent_io_ops btree_extent_io_ops;
56static void end_workqueue_fn(struct btrfs_work *work);
57
58/*
59 * end_io_wq structs are used to do processing in task context when an IO is
60 * complete. This is used during reads to verify checksums, and it is used
61 * by writes to insert metadata for new file extents after IO is complete.
62 */
63struct end_io_wq {
64 struct bio *bio;
65 bio_end_io_t *end_io;
66 void *private;
67 struct btrfs_fs_info *info;
68 int error;
69 int metadata;
70 struct list_head list;
71 struct btrfs_work work;
72};
73
74/*
75 * async submit bios are used to offload expensive checksumming
76 * onto the worker threads. They checksum file and metadata bios
77 * just before they are sent down the IO stack.
78 */
79struct async_submit_bio {
80 struct inode *inode;
81 struct bio *bio;
82 struct list_head list;
83 extent_submit_bio_hook_t *submit_bio_hook;
84 int rw;
85 int mirror_num;
86 unsigned long bio_flags;
87 struct btrfs_work work;
88};
89
90/*
91 * extents on the btree inode are pretty simple, there's one extent
92 * that covers the entire device
93 */
94struct extent_map *btree_get_extent(struct inode *inode, struct page *page,
95 size_t page_offset, u64 start, u64 len,
96 int create)
97{
98 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
99 struct extent_map *em;
100 int ret;
101
102 spin_lock(&em_tree->lock);
103 em = lookup_extent_mapping(em_tree, start, len);
104 if (em) {
105 em->bdev =
106 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
107 spin_unlock(&em_tree->lock);
108 goto out;
109 }
110 spin_unlock(&em_tree->lock);
111
112 em = alloc_extent_map(GFP_NOFS);
113 if (!em) {
114 em = ERR_PTR(-ENOMEM);
115 goto out;
116 }
117 em->start = 0;
118 em->len = (u64)-1;
119 em->block_len = (u64)-1;
120 em->block_start = 0;
121 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
122
123 spin_lock(&em_tree->lock);
124 ret = add_extent_mapping(em_tree, em);
125 if (ret == -EEXIST) {
126 u64 failed_start = em->start;
127 u64 failed_len = em->len;
128
129 printk("failed to insert %Lu %Lu -> %Lu into tree\n",
130 em->start, em->len, em->block_start);
131 free_extent_map(em);
132 em = lookup_extent_mapping(em_tree, start, len);
133 if (em) {
134 printk("after failing, found %Lu %Lu %Lu\n",
135 em->start, em->len, em->block_start);
136 ret = 0;
137 } else {
138 em = lookup_extent_mapping(em_tree, failed_start,
139 failed_len);
140 if (em) {
141 printk("double failure lookup gives us "
142 "%Lu %Lu -> %Lu\n", em->start,
143 em->len, em->block_start);
144 free_extent_map(em);
145 }
146 ret = -EIO;
147 }
148 } else if (ret) {
149 free_extent_map(em);
150 em = NULL;
151 }
152 spin_unlock(&em_tree->lock);
153
154 if (ret)
155 em = ERR_PTR(ret);
156out:
157 return em;
158}
159
160u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
161{
162 return btrfs_crc32c(seed, data, len);
163}
164
165void btrfs_csum_final(u32 crc, char *result)
166{
167 *(__le32 *)result = ~cpu_to_le32(crc);
168}
169
170/*
171 * compute the csum for a btree block, and either verify it or write it
172 * into the csum field of the block.
173 */
174static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
175 int verify)
176{
177 char result[BTRFS_CRC32_SIZE];
178 unsigned long len;
179 unsigned long cur_len;
180 unsigned long offset = BTRFS_CSUM_SIZE;
181 char *map_token = NULL;
182 char *kaddr;
183 unsigned long map_start;
184 unsigned long map_len;
185 int err;
186 u32 crc = ~(u32)0;
187
188 len = buf->len - offset;
189 while(len > 0) {
190 err = map_private_extent_buffer(buf, offset, 32,
191 &map_token, &kaddr,
192 &map_start, &map_len, KM_USER0);
193 if (err) {
194 printk("failed to map extent buffer! %lu\n",
195 offset);
196 return 1;
197 }
198 cur_len = min(len, map_len - (offset - map_start));
199 crc = btrfs_csum_data(root, kaddr + offset - map_start,
200 crc, cur_len);
201 len -= cur_len;
202 offset += cur_len;
203 unmap_extent_buffer(buf, map_token, KM_USER0);
204 }
205 btrfs_csum_final(crc, result);
206
207 if (verify) {
208 /* FIXME, this is not good */
209 if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
210 u32 val;
211 u32 found = 0;
212 memcpy(&found, result, BTRFS_CRC32_SIZE);
213
214 read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
215 printk("btrfs: %s checksum verify failed on %llu "
216 "wanted %X found %X level %d\n",
217 root->fs_info->sb->s_id,
218 buf->start, val, found, btrfs_header_level(buf));
219 return 1;
220 }
221 } else {
222 write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
223 }
224 return 0;
225}
226
227/*
228 * we can't consider a given block up to date unless the transid of the
229 * block matches the transid in the parent node's pointer. This is how we
230 * detect blocks that either didn't get written at all or got written
231 * in the wrong place.
232 */
233static int verify_parent_transid(struct extent_io_tree *io_tree,
234 struct extent_buffer *eb, u64 parent_transid)
235{
236 int ret;
237
238 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
239 return 0;
240
241 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
242 if (extent_buffer_uptodate(io_tree, eb) &&
243 btrfs_header_generation(eb) == parent_transid) {
244 ret = 0;
245 goto out;
246 }
247 printk("parent transid verify failed on %llu wanted %llu found %llu\n",
248 (unsigned long long)eb->start,
249 (unsigned long long)parent_transid,
250 (unsigned long long)btrfs_header_generation(eb));
251 ret = 1;
252 clear_extent_buffer_uptodate(io_tree, eb);
253out:
254 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
255 GFP_NOFS);
256 return ret;
257}
258
259/*
260 * helper to read a given tree block, doing retries as required when
261 * the checksums don't match and we have alternate mirrors to try.
262 */
263static int btree_read_extent_buffer_pages(struct btrfs_root *root,
264 struct extent_buffer *eb,
265 u64 start, u64 parent_transid)
266{
267 struct extent_io_tree *io_tree;
268 int ret;
269 int num_copies = 0;
270 int mirror_num = 0;
271
272 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
273 while (1) {
274 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
275 btree_get_extent, mirror_num);
276 if (!ret &&
277 !verify_parent_transid(io_tree, eb, parent_transid))
278 return ret;
279printk("read extent buffer pages failed with ret %d mirror no %d\n", ret, mirror_num);
280 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
281 eb->start, eb->len);
282 if (num_copies == 1)
283 return ret;
284
285 mirror_num++;
286 if (mirror_num > num_copies)
287 return ret;
288 }
289 return -EIO;
290}
291
292/*
293 * checksum a dirty tree block before IO. This has extra checks to make
294 * sure we only fill in the checksum field in the first page of a multi-page block
295 */
296int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
297{
298 struct extent_io_tree *tree;
299 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
300 u64 found_start;
301 int found_level;
302 unsigned long len;
303 struct extent_buffer *eb;
304 int ret;
305
306 tree = &BTRFS_I(page->mapping->host)->io_tree;
307
308 if (page->private == EXTENT_PAGE_PRIVATE)
309 goto out;
310 if (!page->private)
311 goto out;
312 len = page->private >> 2;
313 if (len == 0) {
314 WARN_ON(1);
315 }
316 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
317 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
318 btrfs_header_generation(eb));
319 BUG_ON(ret);
320 found_start = btrfs_header_bytenr(eb);
321 if (found_start != start) {
322 printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
323 start, found_start, len);
324 WARN_ON(1);
325 goto err;
326 }
327 if (eb->first_page != page) {
328 printk("bad first page %lu %lu\n", eb->first_page->index,
329 page->index);
330 WARN_ON(1);
331 goto err;
332 }
333 if (!PageUptodate(page)) {
334 printk("csum not up to date page %lu\n", page->index);
335 WARN_ON(1);
336 goto err;
337 }
338 found_level = btrfs_header_level(eb);
339
340 csum_tree_block(root, eb, 0);
341err:
342 free_extent_buffer(eb);
343out:
344 return 0;
345}
346
347int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
348 struct extent_state *state)
349{
350 struct extent_io_tree *tree;
351 u64 found_start;
352 int found_level;
353 unsigned long len;
354 struct extent_buffer *eb;
355 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
356 int ret = 0;
357
358 tree = &BTRFS_I(page->mapping->host)->io_tree;
359 if (page->private == EXTENT_PAGE_PRIVATE)
360 goto out;
361 if (!page->private)
362 goto out;
363 len = page->private >> 2;
364 if (len == 0) {
365 WARN_ON(1);
366 }
367 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
368
369 found_start = btrfs_header_bytenr(eb);
370 if (found_start != start) {
371 printk("bad tree block start %llu %llu\n",
372 (unsigned long long)found_start,
373 (unsigned long long)eb->start);
374 ret = -EIO;
375 goto err;
376 }
377 if (eb->first_page != page) {
378 printk("bad first page %lu %lu\n", eb->first_page->index,
379 page->index);
380 WARN_ON(1);
381 ret = -EIO;
382 goto err;
383 }
384 if (memcmp_extent_buffer(eb, root->fs_info->fsid,
385 (unsigned long)btrfs_header_fsid(eb),
386 BTRFS_FSID_SIZE)) {
387 printk("bad fsid on block %Lu\n", eb->start);
388 ret = -EIO;
389 goto err;
390 }
391 found_level = btrfs_header_level(eb);
392
393 ret = csum_tree_block(root, eb, 1);
394 if (ret)
395 ret = -EIO;
396
397 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
398 end = eb->start + end - 1;
399err:
400 free_extent_buffer(eb);
401out:
402 return ret;
403}
404
405static void end_workqueue_bio(struct bio *bio, int err)
406{
407 struct end_io_wq *end_io_wq = bio->bi_private;
408 struct btrfs_fs_info *fs_info;
409
410 fs_info = end_io_wq->info;
411 end_io_wq->error = err;
412 end_io_wq->work.func = end_workqueue_fn;
413 end_io_wq->work.flags = 0;
414 if (bio->bi_rw & (1 << BIO_RW))
415 btrfs_queue_worker(&fs_info->endio_write_workers,
416 &end_io_wq->work);
417 else
418 btrfs_queue_worker(&fs_info->endio_workers, &end_io_wq->work);
419}
420
421int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
422 int metadata)
423{
424 struct end_io_wq *end_io_wq;
425 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
426 if (!end_io_wq)
427 return -ENOMEM;
428
429 end_io_wq->private = bio->bi_private;
430 end_io_wq->end_io = bio->bi_end_io;
431 end_io_wq->info = info;
432 end_io_wq->error = 0;
433 end_io_wq->bio = bio;
434 end_io_wq->metadata = metadata;
435
436 bio->bi_private = end_io_wq;
437 bio->bi_end_io = end_workqueue_bio;
438 return 0;
439}
440
441unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
442{
443 unsigned long limit = min_t(unsigned long,
444 info->workers.max_workers,
445 info->fs_devices->open_devices);
446 return 256 * limit;
447}
448
449int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
450{
451 return atomic_read(&info->nr_async_bios) >
452 btrfs_async_submit_limit(info);
453}
454
455static void run_one_async_submit(struct btrfs_work *work)
456{
457 struct btrfs_fs_info *fs_info;
458 struct async_submit_bio *async;
459 int limit;
460
461 async = container_of(work, struct async_submit_bio, work);
462 fs_info = BTRFS_I(async->inode)->root->fs_info;
463
464 limit = btrfs_async_submit_limit(fs_info);
465 limit = limit * 2 / 3;
466
467 atomic_dec(&fs_info->nr_async_submits);
468
469 if (atomic_read(&fs_info->nr_async_submits) < limit &&
470 waitqueue_active(&fs_info->async_submit_wait))
471 wake_up(&fs_info->async_submit_wait);
472
473 async->submit_bio_hook(async->inode, async->rw, async->bio,
474 async->mirror_num, async->bio_flags);
475 kfree(async);
476}
477
478int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
479 int rw, struct bio *bio, int mirror_num,
480 unsigned long bio_flags,
481 extent_submit_bio_hook_t *submit_bio_hook)
482{
483 struct async_submit_bio *async;
484 int limit = btrfs_async_submit_limit(fs_info);
485
486 async = kmalloc(sizeof(*async), GFP_NOFS);
487 if (!async)
488 return -ENOMEM;
489
490 async->inode = inode;
491 async->rw = rw;
492 async->bio = bio;
493 async->mirror_num = mirror_num;
494 async->submit_bio_hook = submit_bio_hook;
495 async->work.func = run_one_async_submit;
496 async->work.flags = 0;
497 async->bio_flags = bio_flags;
498
499 while(atomic_read(&fs_info->async_submit_draining) &&
500 atomic_read(&fs_info->nr_async_submits)) {
501 wait_event(fs_info->async_submit_wait,
502 (atomic_read(&fs_info->nr_async_submits) == 0));
503 }
504
505 atomic_inc(&fs_info->nr_async_submits);
506 btrfs_queue_worker(&fs_info->workers, &async->work);
507
508 if (atomic_read(&fs_info->nr_async_submits) > limit) {
509 wait_event_timeout(fs_info->async_submit_wait,
510 (atomic_read(&fs_info->nr_async_submits) < limit),
511 HZ/10);
512
513 wait_event_timeout(fs_info->async_submit_wait,
514 (atomic_read(&fs_info->nr_async_bios) < limit),
515 HZ/10);
516 }
517 return 0;
518}
519
520static int btree_csum_one_bio(struct bio *bio)
521{
522 struct bio_vec *bvec = bio->bi_io_vec;
523 int bio_index = 0;
524 struct btrfs_root *root;
525
526 WARN_ON(bio->bi_vcnt <= 0);
527 while(bio_index < bio->bi_vcnt) {
528 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
529 csum_dirty_buffer(root, bvec->bv_page);
530 bio_index++;
531 bvec++;
532 }
533 return 0;
534}
535
536static int __btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
537 int mirror_num, unsigned long bio_flags)
538{
539 struct btrfs_root *root = BTRFS_I(inode)->root;
540 int ret;
541
542 /*
543 * when we're called for a write, we're already in the async
544 * submission context. Just jump into btrfs_map_bio
545 */
546 if (rw & (1 << BIO_RW)) {
547 btree_csum_one_bio(bio);
548 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
549 mirror_num, 1);
550 }
551
552 /*
553 * called for a read, do the setup so that checksum validation
554 * can happen in the async kernel threads
555 */
556 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 1);
557 BUG_ON(ret);
558
559 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
560}
561
562static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
563 int mirror_num, unsigned long bio_flags)
564{
565 /*
566 * kthread helpers are used to submit writes so that checksumming
567 * can happen in parallel across all CPUs
568 */
569 if (!(rw & (1 << BIO_RW))) {
570 return __btree_submit_bio_hook(inode, rw, bio, mirror_num, 0);
571 }
572 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
573 inode, rw, bio, mirror_num, 0,
574 __btree_submit_bio_hook);
575}
576
577static int btree_writepage(struct page *page, struct writeback_control *wbc)
578{
579 struct extent_io_tree *tree;
580 tree = &BTRFS_I(page->mapping->host)->io_tree;
581
582 if (current->flags & PF_MEMALLOC) {
583 redirty_page_for_writepage(wbc, page);
584 unlock_page(page);
585 return 0;
586 }
587 return extent_write_full_page(tree, page, btree_get_extent, wbc);
588}
589
590static int btree_writepages(struct address_space *mapping,
591 struct writeback_control *wbc)
592{
593 struct extent_io_tree *tree;
594 tree = &BTRFS_I(mapping->host)->io_tree;
595 if (wbc->sync_mode == WB_SYNC_NONE) {
596 u64 num_dirty;
597 u64 start = 0;
598 unsigned long thresh = 32 * 1024 * 1024;
599
600 if (wbc->for_kupdate)
601 return 0;
602
603 num_dirty = count_range_bits(tree, &start, (u64)-1,
604 thresh, EXTENT_DIRTY);
605 if (num_dirty < thresh) {
606 return 0;
607 }
608 }
609 return extent_writepages(tree, mapping, btree_get_extent, wbc);
610}
611
612int btree_readpage(struct file *file, struct page *page)
613{
614 struct extent_io_tree *tree;
615 tree = &BTRFS_I(page->mapping->host)->io_tree;
616 return extent_read_full_page(tree, page, btree_get_extent);
617}
618
619static int btree_releasepage(struct page *page, gfp_t gfp_flags)
620{
621 struct extent_io_tree *tree;
622 struct extent_map_tree *map;
623 int ret;
624
625 if (PageWriteback(page) || PageDirty(page))
626 return 0;
627
628 tree = &BTRFS_I(page->mapping->host)->io_tree;
629 map = &BTRFS_I(page->mapping->host)->extent_tree;
630
631 ret = try_release_extent_state(map, tree, page, gfp_flags);
632 if (!ret) {
633 return 0;
634 }
635
636 ret = try_release_extent_buffer(tree, page);
637 if (ret == 1) {
638 ClearPagePrivate(page);
639 set_page_private(page, 0);
640 page_cache_release(page);
641 }
642
643 return ret;
644}
645
646static void btree_invalidatepage(struct page *page, unsigned long offset)
647{
648 struct extent_io_tree *tree;
649 tree = &BTRFS_I(page->mapping->host)->io_tree;
650 extent_invalidatepage(tree, page, offset);
651 btree_releasepage(page, GFP_NOFS);
652 if (PagePrivate(page)) {
653 printk("warning page private not zero on page %Lu\n",
654 page_offset(page));
655 ClearPagePrivate(page);
656 set_page_private(page, 0);
657 page_cache_release(page);
658 }
659}
660
661#if 0
662static int btree_writepage(struct page *page, struct writeback_control *wbc)
663{
664 struct buffer_head *bh;
665 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
666 struct buffer_head *head;
667 if (!page_has_buffers(page)) {
668 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
669 (1 << BH_Dirty)|(1 << BH_Uptodate));
670 }
671 head = page_buffers(page);
672 bh = head;
673 do {
674 if (buffer_dirty(bh))
675 csum_tree_block(root, bh, 0);
676 bh = bh->b_this_page;
677 } while (bh != head);
678 return block_write_full_page(page, btree_get_block, wbc);
679}
680#endif
681
682static struct address_space_operations btree_aops = {
683 .readpage = btree_readpage,
684 .writepage = btree_writepage,
685 .writepages = btree_writepages,
686 .releasepage = btree_releasepage,
687 .invalidatepage = btree_invalidatepage,
688 .sync_page = block_sync_page,
689};
690
691int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
692 u64 parent_transid)
693{
694 struct extent_buffer *buf = NULL;
695 struct inode *btree_inode = root->fs_info->btree_inode;
696 int ret = 0;
697
698 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
699 if (!buf)
700 return 0;
701 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
702 buf, 0, 0, btree_get_extent, 0);
703 free_extent_buffer(buf);
704 return ret;
705}
706
707struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
708 u64 bytenr, u32 blocksize)
709{
710 struct inode *btree_inode = root->fs_info->btree_inode;
711 struct extent_buffer *eb;
712 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
713 bytenr, blocksize, GFP_NOFS);
714 return eb;
715}
716
717struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
718 u64 bytenr, u32 blocksize)
719{
720 struct inode *btree_inode = root->fs_info->btree_inode;
721 struct extent_buffer *eb;
722
723 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
724 bytenr, blocksize, NULL, GFP_NOFS);
725 return eb;
726}
727
728
729int btrfs_write_tree_block(struct extent_buffer *buf)
730{
731 return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
732 buf->start + buf->len - 1, WB_SYNC_ALL);
733}
734
735int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
736{
737 return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
738 buf->start, buf->start + buf->len -1);
739}
740
741struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
742 u32 blocksize, u64 parent_transid)
743{
744 struct extent_buffer *buf = NULL;
745 struct inode *btree_inode = root->fs_info->btree_inode;
746 struct extent_io_tree *io_tree;
747 int ret;
748
749 io_tree = &BTRFS_I(btree_inode)->io_tree;
750
751 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
752 if (!buf)
753 return NULL;
754
755 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
756
757 if (ret == 0) {
758 buf->flags |= EXTENT_UPTODATE;
759 } else {
760 WARN_ON(1);
761 }
762 return buf;
763
764}
765
766int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
767 struct extent_buffer *buf)
768{
769 struct inode *btree_inode = root->fs_info->btree_inode;
770 if (btrfs_header_generation(buf) ==
771 root->fs_info->running_transaction->transid) {
772 WARN_ON(!btrfs_tree_locked(buf));
773 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
774 buf);
775 }
776 return 0;
777}
778
779static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
780 u32 stripesize, struct btrfs_root *root,
781 struct btrfs_fs_info *fs_info,
782 u64 objectid)
783{
784 root->node = NULL;
785 root->inode = NULL;
786 root->commit_root = NULL;
787 root->ref_tree = NULL;
788 root->sectorsize = sectorsize;
789 root->nodesize = nodesize;
790 root->leafsize = leafsize;
791 root->stripesize = stripesize;
792 root->ref_cows = 0;
793 root->track_dirty = 0;
794
795 root->fs_info = fs_info;
796 root->objectid = objectid;
797 root->last_trans = 0;
798 root->highest_inode = 0;
799 root->last_inode_alloc = 0;
800 root->name = NULL;
801 root->in_sysfs = 0;
802
803 INIT_LIST_HEAD(&root->dirty_list);
804 INIT_LIST_HEAD(&root->orphan_list);
805 INIT_LIST_HEAD(&root->dead_list);
806 spin_lock_init(&root->node_lock);
807 spin_lock_init(&root->list_lock);
808 mutex_init(&root->objectid_mutex);
809 mutex_init(&root->log_mutex);
810 extent_io_tree_init(&root->dirty_log_pages,
811 fs_info->btree_inode->i_mapping, GFP_NOFS);
812
813 btrfs_leaf_ref_tree_init(&root->ref_tree_struct);
814 root->ref_tree = &root->ref_tree_struct;
815
816 memset(&root->root_key, 0, sizeof(root->root_key));
817 memset(&root->root_item, 0, sizeof(root->root_item));
818 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
819 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
820 root->defrag_trans_start = fs_info->generation;
821 init_completion(&root->kobj_unregister);
822 root->defrag_running = 0;
823 root->defrag_level = 0;
824 root->root_key.objectid = objectid;
825 return 0;
826}
827
828static int find_and_setup_root(struct btrfs_root *tree_root,
829 struct btrfs_fs_info *fs_info,
830 u64 objectid,
831 struct btrfs_root *root)
832{
833 int ret;
834 u32 blocksize;
835
836 __setup_root(tree_root->nodesize, tree_root->leafsize,
837 tree_root->sectorsize, tree_root->stripesize,
838 root, fs_info, objectid);
839 ret = btrfs_find_last_root(tree_root, objectid,
840 &root->root_item, &root->root_key);
841 BUG_ON(ret);
842
843 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
844 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
845 blocksize, 0);
846 BUG_ON(!root->node);
847 return 0;
848}
849
850int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
851 struct btrfs_fs_info *fs_info)
852{
853 struct extent_buffer *eb;
854 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
855 u64 start = 0;
856 u64 end = 0;
857 int ret;
858
859 if (!log_root_tree)
860 return 0;
861
862 while(1) {
863 ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
864 0, &start, &end, EXTENT_DIRTY);
865 if (ret)
866 break;
867
868 clear_extent_dirty(&log_root_tree->dirty_log_pages,
869 start, end, GFP_NOFS);
870 }
871 eb = fs_info->log_root_tree->node;
872
873 WARN_ON(btrfs_header_level(eb) != 0);
874 WARN_ON(btrfs_header_nritems(eb) != 0);
875
876 ret = btrfs_free_reserved_extent(fs_info->tree_root,
877 eb->start, eb->len);
878 BUG_ON(ret);
879
880 free_extent_buffer(eb);
881 kfree(fs_info->log_root_tree);
882 fs_info->log_root_tree = NULL;
883 return 0;
884}
885
886int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
887 struct btrfs_fs_info *fs_info)
888{
889 struct btrfs_root *root;
890 struct btrfs_root *tree_root = fs_info->tree_root;
891
892 root = kzalloc(sizeof(*root), GFP_NOFS);
893 if (!root)
894 return -ENOMEM;
895
896 __setup_root(tree_root->nodesize, tree_root->leafsize,
897 tree_root->sectorsize, tree_root->stripesize,
898 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
899
900 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
901 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
902 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
903 root->ref_cows = 0;
904
905 root->node = btrfs_alloc_free_block(trans, root, root->leafsize,
906 0, BTRFS_TREE_LOG_OBJECTID,
907 trans->transid, 0, 0, 0);
908
909 btrfs_set_header_nritems(root->node, 0);
910 btrfs_set_header_level(root->node, 0);
911 btrfs_set_header_bytenr(root->node, root->node->start);
912 btrfs_set_header_generation(root->node, trans->transid);
913 btrfs_set_header_owner(root->node, BTRFS_TREE_LOG_OBJECTID);
914
915 write_extent_buffer(root->node, root->fs_info->fsid,
916 (unsigned long)btrfs_header_fsid(root->node),
917 BTRFS_FSID_SIZE);
918 btrfs_mark_buffer_dirty(root->node);
919 btrfs_tree_unlock(root->node);
920 fs_info->log_root_tree = root;
921 return 0;
922}
923
924struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
925 struct btrfs_key *location)
926{
927 struct btrfs_root *root;
928 struct btrfs_fs_info *fs_info = tree_root->fs_info;
929 struct btrfs_path *path;
930 struct extent_buffer *l;
931 u64 highest_inode;
932 u32 blocksize;
933 int ret = 0;
934
935 root = kzalloc(sizeof(*root), GFP_NOFS);
936 if (!root)
937 return ERR_PTR(-ENOMEM);
938 if (location->offset == (u64)-1) {
939 ret = find_and_setup_root(tree_root, fs_info,
940 location->objectid, root);
941 if (ret) {
942 kfree(root);
943 return ERR_PTR(ret);
944 }
945 goto insert;
946 }
947
948 __setup_root(tree_root->nodesize, tree_root->leafsize,
949 tree_root->sectorsize, tree_root->stripesize,
950 root, fs_info, location->objectid);
951
952 path = btrfs_alloc_path();
953 BUG_ON(!path);
954 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
955 if (ret != 0) {
956 if (ret > 0)
957 ret = -ENOENT;
958 goto out;
959 }
960 l = path->nodes[0];
961 read_extent_buffer(l, &root->root_item,
962 btrfs_item_ptr_offset(l, path->slots[0]),
963 sizeof(root->root_item));
964 memcpy(&root->root_key, location, sizeof(*location));
965 ret = 0;
966out:
967 btrfs_release_path(root, path);
968 btrfs_free_path(path);
969 if (ret) {
970 kfree(root);
971 return ERR_PTR(ret);
972 }
973 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
974 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
975 blocksize, 0);
976 BUG_ON(!root->node);
977insert:
978 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
979 root->ref_cows = 1;
980 ret = btrfs_find_highest_inode(root, &highest_inode);
981 if (ret == 0) {
982 root->highest_inode = highest_inode;
983 root->last_inode_alloc = highest_inode;
984 }
985 }
986 return root;
987}
988
989struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
990 u64 root_objectid)
991{
992 struct btrfs_root *root;
993
994 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
995 return fs_info->tree_root;
996 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
997 return fs_info->extent_root;
998
999 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1000 (unsigned long)root_objectid);
1001 return root;
1002}
1003
1004struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1005 struct btrfs_key *location)
1006{
1007 struct btrfs_root *root;
1008 int ret;
1009
1010 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1011 return fs_info->tree_root;
1012 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1013 return fs_info->extent_root;
1014 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1015 return fs_info->chunk_root;
1016 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1017 return fs_info->dev_root;
1018
1019 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1020 (unsigned long)location->objectid);
1021 if (root)
1022 return root;
1023
1024 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1025 if (IS_ERR(root))
1026 return root;
1027 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1028 (unsigned long)root->root_key.objectid,
1029 root);
1030 if (ret) {
1031 free_extent_buffer(root->node);
1032 kfree(root);
1033 return ERR_PTR(ret);
1034 }
1035 ret = btrfs_find_dead_roots(fs_info->tree_root,
1036 root->root_key.objectid, root);
1037 BUG_ON(ret);
1038
1039 return root;
1040}
1041
1042struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1043 struct btrfs_key *location,
1044 const char *name, int namelen)
1045{
1046 struct btrfs_root *root;
1047 int ret;
1048
1049 root = btrfs_read_fs_root_no_name(fs_info, location);
1050 if (!root)
1051 return NULL;
1052
1053 if (root->in_sysfs)
1054 return root;
1055
1056 ret = btrfs_set_root_name(root, name, namelen);
1057 if (ret) {
1058 free_extent_buffer(root->node);
1059 kfree(root);
1060 return ERR_PTR(ret);
1061 }
1062
1063 ret = btrfs_sysfs_add_root(root);
1064 if (ret) {
1065 free_extent_buffer(root->node);
1066 kfree(root->name);
1067 kfree(root);
1068 return ERR_PTR(ret);
1069 }
1070 root->in_sysfs = 1;
1071 return root;
1072}
1073#if 0
1074static int add_hasher(struct btrfs_fs_info *info, char *type) {
1075 struct btrfs_hasher *hasher;
1076
1077 hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
1078 if (!hasher)
1079 return -ENOMEM;
1080 hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
1081 if (!hasher->hash_tfm) {
1082 kfree(hasher);
1083 return -EINVAL;
1084 }
1085 spin_lock(&info->hash_lock);
1086 list_add(&hasher->list, &info->hashers);
1087 spin_unlock(&info->hash_lock);
1088 return 0;
1089}
1090#endif
1091
1092static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1093{
1094 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1095 int ret = 0;
1096 struct list_head *cur;
1097 struct btrfs_device *device;
1098 struct backing_dev_info *bdi;
1099
1100 if ((bdi_bits & (1 << BDI_write_congested)) &&
1101 btrfs_congested_async(info, 0))
1102 return 1;
1103
1104 list_for_each(cur, &info->fs_devices->devices) {
1105 device = list_entry(cur, struct btrfs_device, dev_list);
1106 if (!device->bdev)
1107 continue;
1108 bdi = blk_get_backing_dev_info(device->bdev);
1109 if (bdi && bdi_congested(bdi, bdi_bits)) {
1110 ret = 1;
1111 break;
1112 }
1113 }
1114 return ret;
1115}
1116
1117/*
1118 * this unplugs every device on the box, and it is only used when page
1119 * is null
1120 */
1121static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1122{
1123 struct list_head *cur;
1124 struct btrfs_device *device;
1125 struct btrfs_fs_info *info;
1126
1127 info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1128 list_for_each(cur, &info->fs_devices->devices) {
1129 device = list_entry(cur, struct btrfs_device, dev_list);
1130 bdi = blk_get_backing_dev_info(device->bdev);
1131 if (bdi->unplug_io_fn) {
1132 bdi->unplug_io_fn(bdi, page);
1133 }
1134 }
1135}
1136
1137void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1138{
1139 struct inode *inode;
1140 struct extent_map_tree *em_tree;
1141 struct extent_map *em;
1142 struct address_space *mapping;
1143 u64 offset;
1144
1145 /* the generic O_DIRECT read code does this */
1146 if (!page) {
1147 __unplug_io_fn(bdi, page);
1148 return;
1149 }
1150
1151 /*
1152 * page->mapping may change at any time. Get a consistent copy
1153 * and use that for everything below
1154 */
1155 smp_mb();
1156 mapping = page->mapping;
1157 if (!mapping)
1158 return;
1159
1160 inode = mapping->host;
1161 offset = page_offset(page);
1162
1163 em_tree = &BTRFS_I(inode)->extent_tree;
1164 spin_lock(&em_tree->lock);
1165 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1166 spin_unlock(&em_tree->lock);
1167 if (!em) {
1168 __unplug_io_fn(bdi, page);
1169 return;
1170 }
1171
1172 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1173 free_extent_map(em);
1174 __unplug_io_fn(bdi, page);
1175 return;
1176 }
1177 offset = offset - em->start;
1178 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1179 em->block_start + offset, page);
1180 free_extent_map(em);
1181}
1182
1183static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1184{
1185 bdi_init(bdi);
1186 bdi->ra_pages = default_backing_dev_info.ra_pages;
1187 bdi->state = 0;
1188 bdi->capabilities = default_backing_dev_info.capabilities;
1189 bdi->unplug_io_fn = btrfs_unplug_io_fn;
1190 bdi->unplug_io_data = info;
1191 bdi->congested_fn = btrfs_congested_fn;
1192 bdi->congested_data = info;
1193 return 0;
1194}
1195
1196static int bio_ready_for_csum(struct bio *bio)
1197{
1198 u64 length = 0;
1199 u64 buf_len = 0;
1200 u64 start = 0;
1201 struct page *page;
1202 struct extent_io_tree *io_tree = NULL;
1203 struct btrfs_fs_info *info = NULL;
1204 struct bio_vec *bvec;
1205 int i;
1206 int ret;
1207
1208 bio_for_each_segment(bvec, bio, i) {
1209 page = bvec->bv_page;
1210 if (page->private == EXTENT_PAGE_PRIVATE) {
1211 length += bvec->bv_len;
1212 continue;
1213 }
1214 if (!page->private) {
1215 length += bvec->bv_len;
1216 continue;
1217 }
1218 length = bvec->bv_len;
1219 buf_len = page->private >> 2;
1220 start = page_offset(page) + bvec->bv_offset;
1221 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1222 info = BTRFS_I(page->mapping->host)->root->fs_info;
1223 }
1224 /* are we fully contained in this bio? */
1225 if (buf_len <= length)
1226 return 1;
1227
1228 ret = extent_range_uptodate(io_tree, start + length,
1229 start + buf_len - 1);
1230 if (ret == 1)
1231 return ret;
1232 return ret;
1233}
1234
1235/*
1236 * called by the kthread helper functions to finally call the bio end_io
1237 * functions. This is where read checksum verification actually happens
1238 */
1239static void end_workqueue_fn(struct btrfs_work *work)
1240{
1241 struct bio *bio;
1242 struct end_io_wq *end_io_wq;
1243 struct btrfs_fs_info *fs_info;
1244 int error;
1245
1246 end_io_wq = container_of(work, struct end_io_wq, work);
1247 bio = end_io_wq->bio;
1248 fs_info = end_io_wq->info;
1249
1250 /* metadata bios are special because the whole tree block must
1251 * be checksummed at once. This makes sure the entire block is in
1252 * ram and up to date before trying to verify things. For
1253 * blocksize <= pagesize, it is basically a noop
1254 */
1255 if (end_io_wq->metadata && !bio_ready_for_csum(bio)) {
1256 btrfs_queue_worker(&fs_info->endio_workers,
1257 &end_io_wq->work);
1258 return;
1259 }
1260 error = end_io_wq->error;
1261 bio->bi_private = end_io_wq->private;
1262 bio->bi_end_io = end_io_wq->end_io;
1263 kfree(end_io_wq);
1264 bio_endio(bio, error);
1265}
1266
1267static int cleaner_kthread(void *arg)
1268{
1269 struct btrfs_root *root = arg;
1270
1271 do {
1272 smp_mb();
1273 if (root->fs_info->closing)
1274 break;
1275
1276 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1277 mutex_lock(&root->fs_info->cleaner_mutex);
1278 btrfs_clean_old_snapshots(root);
1279 mutex_unlock(&root->fs_info->cleaner_mutex);
1280
1281 if (freezing(current)) {
1282 refrigerator();
1283 } else {
1284 smp_mb();
1285 if (root->fs_info->closing)
1286 break;
1287 set_current_state(TASK_INTERRUPTIBLE);
1288 schedule();
1289 __set_current_state(TASK_RUNNING);
1290 }
1291 } while (!kthread_should_stop());
1292 return 0;
1293}
1294
1295static int transaction_kthread(void *arg)
1296{
1297 struct btrfs_root *root = arg;
1298 struct btrfs_trans_handle *trans;
1299 struct btrfs_transaction *cur;
1300 unsigned long now;
1301 unsigned long delay;
1302 int ret;
1303
1304 do {
1305 smp_mb();
1306 if (root->fs_info->closing)
1307 break;
1308
1309 delay = HZ * 30;
1310 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1311 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1312
1313 if (root->fs_info->total_ref_cache_size > 20 * 1024 * 1024) {
1314 printk("btrfs: total reference cache size %Lu\n",
1315 root->fs_info->total_ref_cache_size);
1316 }
1317
1318 mutex_lock(&root->fs_info->trans_mutex);
1319 cur = root->fs_info->running_transaction;
1320 if (!cur) {
1321 mutex_unlock(&root->fs_info->trans_mutex);
1322 goto sleep;
1323 }
1324
1325 now = get_seconds();
1326 if (now < cur->start_time || now - cur->start_time < 30) {
1327 mutex_unlock(&root->fs_info->trans_mutex);
1328 delay = HZ * 5;
1329 goto sleep;
1330 }
1331 mutex_unlock(&root->fs_info->trans_mutex);
1332 trans = btrfs_start_transaction(root, 1);
1333 ret = btrfs_commit_transaction(trans, root);
1334sleep:
1335 wake_up_process(root->fs_info->cleaner_kthread);
1336 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1337
1338 if (freezing(current)) {
1339 refrigerator();
1340 } else {
1341 if (root->fs_info->closing)
1342 break;
1343 set_current_state(TASK_INTERRUPTIBLE);
1344 schedule_timeout(delay);
1345 __set_current_state(TASK_RUNNING);
1346 }
1347 } while (!kthread_should_stop());
1348 return 0;
1349}
1350
1351struct btrfs_root *open_ctree(struct super_block *sb,
1352 struct btrfs_fs_devices *fs_devices,
1353 char *options)
1354{
1355 u32 sectorsize;
1356 u32 nodesize;
1357 u32 leafsize;
1358 u32 blocksize;
1359 u32 stripesize;
1360 struct buffer_head *bh;
1361 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1362 GFP_NOFS);
1363 struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1364 GFP_NOFS);
1365 struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1366 GFP_NOFS);
1367 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1368 GFP_NOFS);
1369 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1370 GFP_NOFS);
1371 struct btrfs_root *log_tree_root;
1372
1373 int ret;
1374 int err = -EINVAL;
1375
1376 struct btrfs_super_block *disk_super;
1377
1378 if (!extent_root || !tree_root || !fs_info ||
1379 !chunk_root || !dev_root) {
1380 err = -ENOMEM;
1381 goto fail;
1382 }
1383 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1384 INIT_LIST_HEAD(&fs_info->trans_list);
1385 INIT_LIST_HEAD(&fs_info->dead_roots);
1386 INIT_LIST_HEAD(&fs_info->hashers);
1387 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1388 spin_lock_init(&fs_info->hash_lock);
1389 spin_lock_init(&fs_info->delalloc_lock);
1390 spin_lock_init(&fs_info->new_trans_lock);
1391 spin_lock_init(&fs_info->ref_cache_lock);
1392
1393 init_completion(&fs_info->kobj_unregister);
1394 fs_info->tree_root = tree_root;
1395 fs_info->extent_root = extent_root;
1396 fs_info->chunk_root = chunk_root;
1397 fs_info->dev_root = dev_root;
1398 fs_info->fs_devices = fs_devices;
1399 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1400 INIT_LIST_HEAD(&fs_info->space_info);
1401 btrfs_mapping_init(&fs_info->mapping_tree);
1402 atomic_set(&fs_info->nr_async_submits, 0);
1403 atomic_set(&fs_info->async_submit_draining, 0);
1404 atomic_set(&fs_info->nr_async_bios, 0);
1405 atomic_set(&fs_info->throttles, 0);
1406 atomic_set(&fs_info->throttle_gen, 0);
1407 fs_info->sb = sb;
1408 fs_info->max_extent = (u64)-1;
1409 fs_info->max_inline = 8192 * 1024;
1410 setup_bdi(fs_info, &fs_info->bdi);
1411 fs_info->btree_inode = new_inode(sb);
1412 fs_info->btree_inode->i_ino = 1;
1413 fs_info->btree_inode->i_nlink = 1;
1414
1415 fs_info->thread_pool_size = min(num_online_cpus() + 2, 8);
1416
1417 INIT_LIST_HEAD(&fs_info->ordered_extents);
1418 spin_lock_init(&fs_info->ordered_extent_lock);
1419
1420 sb->s_blocksize = 4096;
1421 sb->s_blocksize_bits = blksize_bits(4096);
1422
1423 /*
1424 * we set the i_size on the btree inode to the max possible int.
1425 * the real end of the address space is determined by all of
1426 * the devices in the system
1427 */
1428 fs_info->btree_inode->i_size = OFFSET_MAX;
1429 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1430 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1431
1432 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1433 fs_info->btree_inode->i_mapping,
1434 GFP_NOFS);
1435 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1436 GFP_NOFS);
1437
1438 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1439
1440 spin_lock_init(&fs_info->block_group_cache_lock);
1441 fs_info->block_group_cache_tree.rb_node = NULL;
1442
1443 extent_io_tree_init(&fs_info->pinned_extents,
1444 fs_info->btree_inode->i_mapping, GFP_NOFS);
1445 extent_io_tree_init(&fs_info->pending_del,
1446 fs_info->btree_inode->i_mapping, GFP_NOFS);
1447 extent_io_tree_init(&fs_info->extent_ins,
1448 fs_info->btree_inode->i_mapping, GFP_NOFS);
1449 fs_info->do_barriers = 1;
1450
1451 INIT_LIST_HEAD(&fs_info->dead_reloc_roots);
1452 btrfs_leaf_ref_tree_init(&fs_info->reloc_ref_tree);
1453 btrfs_leaf_ref_tree_init(&fs_info->shared_ref_tree);
1454
1455 BTRFS_I(fs_info->btree_inode)->root = tree_root;
1456 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1457 sizeof(struct btrfs_key));
1458 insert_inode_hash(fs_info->btree_inode);
1459
1460 mutex_init(&fs_info->trans_mutex);
1461 mutex_init(&fs_info->tree_log_mutex);
1462 mutex_init(&fs_info->drop_mutex);
1463 mutex_init(&fs_info->alloc_mutex);
1464 mutex_init(&fs_info->chunk_mutex);
1465 mutex_init(&fs_info->transaction_kthread_mutex);
1466 mutex_init(&fs_info->cleaner_mutex);
1467 mutex_init(&fs_info->volume_mutex);
1468 mutex_init(&fs_info->tree_reloc_mutex);
1469 init_waitqueue_head(&fs_info->transaction_throttle);
1470 init_waitqueue_head(&fs_info->transaction_wait);
1471 init_waitqueue_head(&fs_info->async_submit_wait);
1472 init_waitqueue_head(&fs_info->tree_log_wait);
1473 atomic_set(&fs_info->tree_log_commit, 0);
1474 atomic_set(&fs_info->tree_log_writers, 0);
1475 fs_info->tree_log_transid = 0;
1476
1477#if 0
1478 ret = add_hasher(fs_info, "crc32c");
1479 if (ret) {
1480 printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
1481 err = -ENOMEM;
1482 goto fail_iput;
1483 }
1484#endif
1485 __setup_root(4096, 4096, 4096, 4096, tree_root,
1486 fs_info, BTRFS_ROOT_TREE_OBJECTID);
1487
1488
1489 bh = __bread(fs_devices->latest_bdev,
1490 BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
1491 if (!bh)
1492 goto fail_iput;
1493
1494 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1495 brelse(bh);
1496
1497 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1498
1499 disk_super = &fs_info->super_copy;
1500 if (!btrfs_super_root(disk_super))
1501 goto fail_sb_buffer;
1502
1503 err = btrfs_parse_options(tree_root, options);
1504 if (err)
1505 goto fail_sb_buffer;
1506
1507 /*
1508 * we need to start all the end_io workers up front because the
1509 * queue work function gets called at interrupt time, and so it
1510 * cannot dynamically grow.
1511 */
1512 btrfs_init_workers(&fs_info->workers, "worker",
1513 fs_info->thread_pool_size);
1514
1515 btrfs_init_workers(&fs_info->submit_workers, "submit",
1516 min_t(u64, fs_devices->num_devices,
1517 fs_info->thread_pool_size));
1518
1519 /* a higher idle thresh on the submit workers makes it much more
1520 * likely that bios will be send down in a sane order to the
1521 * devices
1522 */
1523 fs_info->submit_workers.idle_thresh = 64;
1524
1525 /* fs_info->workers is responsible for checksumming file data
1526 * blocks and metadata. Using a larger idle thresh allows each
1527 * worker thread to operate on things in roughly the order they
1528 * were sent by the writeback daemons, improving overall locality
1529 * of the IO going down the pipe.
1530 */
1531 fs_info->workers.idle_thresh = 128;
1532
1533 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
1534 btrfs_init_workers(&fs_info->endio_workers, "endio",
1535 fs_info->thread_pool_size);
1536 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1537 fs_info->thread_pool_size);
1538
1539 /*
1540 * endios are largely parallel and should have a very
1541 * low idle thresh
1542 */
1543 fs_info->endio_workers.idle_thresh = 4;
1544 fs_info->endio_write_workers.idle_thresh = 64;
1545
1546 btrfs_start_workers(&fs_info->workers, 1);
1547 btrfs_start_workers(&fs_info->submit_workers, 1);
1548 btrfs_start_workers(&fs_info->fixup_workers, 1);
1549 btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1550 btrfs_start_workers(&fs_info->endio_write_workers,
1551 fs_info->thread_pool_size);
1552
1553 err = -EINVAL;
1554 if (btrfs_super_num_devices(disk_super) > fs_devices->open_devices) {
1555 printk("Btrfs: wanted %llu devices, but found %llu\n",
1556 (unsigned long long)btrfs_super_num_devices(disk_super),
1557 (unsigned long long)fs_devices->open_devices);
1558 if (btrfs_test_opt(tree_root, DEGRADED))
1559 printk("continuing in degraded mode\n");
1560 else {
1561 goto fail_sb_buffer;
1562 }
1563 }
1564
1565 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1566 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1567 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1568
1569 nodesize = btrfs_super_nodesize(disk_super);
1570 leafsize = btrfs_super_leafsize(disk_super);
1571 sectorsize = btrfs_super_sectorsize(disk_super);
1572 stripesize = btrfs_super_stripesize(disk_super);
1573 tree_root->nodesize = nodesize;
1574 tree_root->leafsize = leafsize;
1575 tree_root->sectorsize = sectorsize;
1576 tree_root->stripesize = stripesize;
1577
1578 sb->s_blocksize = sectorsize;
1579 sb->s_blocksize_bits = blksize_bits(sectorsize);
1580
1581 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1582 sizeof(disk_super->magic))) {
1583 printk("btrfs: valid FS not found on %s\n", sb->s_id);
1584 goto fail_sb_buffer;
1585 }
1586
1587 mutex_lock(&fs_info->chunk_mutex);
1588 ret = btrfs_read_sys_array(tree_root);
1589 mutex_unlock(&fs_info->chunk_mutex);
1590 if (ret) {
1591 printk("btrfs: failed to read the system array on %s\n",
1592 sb->s_id);
1593 goto fail_sys_array;
1594 }
1595
1596 blocksize = btrfs_level_size(tree_root,
1597 btrfs_super_chunk_root_level(disk_super));
1598
1599 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1600 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1601
1602 chunk_root->node = read_tree_block(chunk_root,
1603 btrfs_super_chunk_root(disk_super),
1604 blocksize, 0);
1605 BUG_ON(!chunk_root->node);
1606
1607 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1608 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1609 BTRFS_UUID_SIZE);
1610
1611 mutex_lock(&fs_info->chunk_mutex);
1612 ret = btrfs_read_chunk_tree(chunk_root);
1613 mutex_unlock(&fs_info->chunk_mutex);
1614 BUG_ON(ret);
1615
1616 btrfs_close_extra_devices(fs_devices);
1617
1618 blocksize = btrfs_level_size(tree_root,
1619 btrfs_super_root_level(disk_super));
1620
1621
1622 tree_root->node = read_tree_block(tree_root,
1623 btrfs_super_root(disk_super),
1624 blocksize, 0);
1625 if (!tree_root->node)
1626 goto fail_sb_buffer;
1627
1628
1629 ret = find_and_setup_root(tree_root, fs_info,
1630 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1631 if (ret)
1632 goto fail_tree_root;
1633 extent_root->track_dirty = 1;
1634
1635 ret = find_and_setup_root(tree_root, fs_info,
1636 BTRFS_DEV_TREE_OBJECTID, dev_root);
1637 dev_root->track_dirty = 1;
1638
1639 if (ret)
1640 goto fail_extent_root;
1641
1642 btrfs_read_block_groups(extent_root);
1643
1644 fs_info->generation = btrfs_super_generation(disk_super) + 1;
1645 fs_info->data_alloc_profile = (u64)-1;
1646 fs_info->metadata_alloc_profile = (u64)-1;
1647 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1648 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1649 "btrfs-cleaner");
1650 if (!fs_info->cleaner_kthread)
1651 goto fail_extent_root;
1652
1653 fs_info->transaction_kthread = kthread_run(transaction_kthread,
1654 tree_root,
1655 "btrfs-transaction");
1656 if (!fs_info->transaction_kthread)
1657 goto fail_cleaner;
1658
1659 if (btrfs_super_log_root(disk_super) != 0) {
1660 u32 blocksize;
1661 u64 bytenr = btrfs_super_log_root(disk_super);
1662
1663 blocksize =
1664 btrfs_level_size(tree_root,
1665 btrfs_super_log_root_level(disk_super));
1666
1667 log_tree_root = kzalloc(sizeof(struct btrfs_root),
1668 GFP_NOFS);
1669
1670 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1671 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1672
1673 log_tree_root->node = read_tree_block(tree_root, bytenr,
1674 blocksize, 0);
1675 ret = btrfs_recover_log_trees(log_tree_root);
1676 BUG_ON(ret);
1677 }
1678
1679 ret = btrfs_cleanup_reloc_trees(tree_root);
1680 BUG_ON(ret);
1681
1682 fs_info->last_trans_committed = btrfs_super_generation(disk_super);
1683 return tree_root;
1684
1685fail_cleaner:
1686 kthread_stop(fs_info->cleaner_kthread);
1687fail_extent_root:
1688 free_extent_buffer(extent_root->node);
1689fail_tree_root:
1690 free_extent_buffer(tree_root->node);
1691fail_sys_array:
1692fail_sb_buffer:
1693 btrfs_stop_workers(&fs_info->fixup_workers);
1694 btrfs_stop_workers(&fs_info->workers);
1695 btrfs_stop_workers(&fs_info->endio_workers);
1696 btrfs_stop_workers(&fs_info->endio_write_workers);
1697 btrfs_stop_workers(&fs_info->submit_workers);
1698fail_iput:
1699 iput(fs_info->btree_inode);
1700fail:
1701 btrfs_close_devices(fs_info->fs_devices);
1702 btrfs_mapping_tree_free(&fs_info->mapping_tree);
1703
1704 kfree(extent_root);
1705 kfree(tree_root);
1706 bdi_destroy(&fs_info->bdi);
1707 kfree(fs_info);
1708 kfree(chunk_root);
1709 kfree(dev_root);
1710 return ERR_PTR(err);
1711}
1712
1713static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1714{
1715 char b[BDEVNAME_SIZE];
1716
1717 if (uptodate) {
1718 set_buffer_uptodate(bh);
1719 } else {
1720 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1721 printk(KERN_WARNING "lost page write due to "
1722 "I/O error on %s\n",
1723 bdevname(bh->b_bdev, b));
1724 }
1725 /* note, we dont' set_buffer_write_io_error because we have
1726 * our own ways of dealing with the IO errors
1727 */
1728 clear_buffer_uptodate(bh);
1729 }
1730 unlock_buffer(bh);
1731 put_bh(bh);
1732}
1733
1734int write_all_supers(struct btrfs_root *root)
1735{
1736 struct list_head *cur;
1737 struct list_head *head = &root->fs_info->fs_devices->devices;
1738 struct btrfs_device *dev;
1739 struct btrfs_super_block *sb;
1740 struct btrfs_dev_item *dev_item;
1741 struct buffer_head *bh;
1742 int ret;
1743 int do_barriers;
1744 int max_errors;
1745 int total_errors = 0;
1746 u32 crc;
1747 u64 flags;
1748
1749 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1750 do_barriers = !btrfs_test_opt(root, NOBARRIER);
1751
1752 sb = &root->fs_info->super_for_commit;
1753 dev_item = &sb->dev_item;
1754 list_for_each(cur, head) {
1755 dev = list_entry(cur, struct btrfs_device, dev_list);
1756 if (!dev->bdev) {
1757 total_errors++;
1758 continue;
1759 }
1760 if (!dev->in_fs_metadata)
1761 continue;
1762
1763 btrfs_set_stack_device_type(dev_item, dev->type);
1764 btrfs_set_stack_device_id(dev_item, dev->devid);
1765 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
1766 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
1767 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
1768 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
1769 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
1770 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
1771 flags = btrfs_super_flags(sb);
1772 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
1773
1774
1775 crc = ~(u32)0;
1776 crc = btrfs_csum_data(root, (char *)sb + BTRFS_CSUM_SIZE, crc,
1777 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
1778 btrfs_csum_final(crc, sb->csum);
1779
1780 bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET / 4096,
1781 BTRFS_SUPER_INFO_SIZE);
1782
1783 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
1784 dev->pending_io = bh;
1785
1786 get_bh(bh);
1787 set_buffer_uptodate(bh);
1788 lock_buffer(bh);
1789 bh->b_end_io = btrfs_end_buffer_write_sync;
1790
1791 if (do_barriers && dev->barriers) {
1792 ret = submit_bh(WRITE_BARRIER, bh);
1793 if (ret == -EOPNOTSUPP) {
1794 printk("btrfs: disabling barriers on dev %s\n",
1795 dev->name);
1796 set_buffer_uptodate(bh);
1797 dev->barriers = 0;
1798 get_bh(bh);
1799 lock_buffer(bh);
1800 ret = submit_bh(WRITE, bh);
1801 }
1802 } else {
1803 ret = submit_bh(WRITE, bh);
1804 }
1805 if (ret)
1806 total_errors++;
1807 }
1808 if (total_errors > max_errors) {
1809 printk("btrfs: %d errors while writing supers\n", total_errors);
1810 BUG();
1811 }
1812 total_errors = 0;
1813
1814 list_for_each(cur, head) {
1815 dev = list_entry(cur, struct btrfs_device, dev_list);
1816 if (!dev->bdev)
1817 continue;
1818 if (!dev->in_fs_metadata)
1819 continue;
1820
1821 BUG_ON(!dev->pending_io);
1822 bh = dev->pending_io;
1823 wait_on_buffer(bh);
1824 if (!buffer_uptodate(dev->pending_io)) {
1825 if (do_barriers && dev->barriers) {
1826 printk("btrfs: disabling barriers on dev %s\n",
1827 dev->name);
1828 set_buffer_uptodate(bh);
1829 get_bh(bh);
1830 lock_buffer(bh);
1831 dev->barriers = 0;
1832 ret = submit_bh(WRITE, bh);
1833 BUG_ON(ret);
1834 wait_on_buffer(bh);
1835 if (!buffer_uptodate(bh))
1836 total_errors++;
1837 } else {
1838 total_errors++;
1839 }
1840
1841 }
1842 dev->pending_io = NULL;
1843 brelse(bh);
1844 }
1845 if (total_errors > max_errors) {
1846 printk("btrfs: %d errors while writing supers\n", total_errors);
1847 BUG();
1848 }
1849 return 0;
1850}
1851
1852int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
1853 *root)
1854{
1855 int ret;
1856
1857 ret = write_all_supers(root);
1858 return ret;
1859}
1860
1861int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
1862{
1863 radix_tree_delete(&fs_info->fs_roots_radix,
1864 (unsigned long)root->root_key.objectid);
1865 if (root->in_sysfs)
1866 btrfs_sysfs_del_root(root);
1867 if (root->inode)
1868 iput(root->inode);
1869 if (root->node)
1870 free_extent_buffer(root->node);
1871 if (root->commit_root)
1872 free_extent_buffer(root->commit_root);
1873 if (root->name)
1874 kfree(root->name);
1875 kfree(root);
1876 return 0;
1877}
1878
1879static int del_fs_roots(struct btrfs_fs_info *fs_info)
1880{
1881 int ret;
1882 struct btrfs_root *gang[8];
1883 int i;
1884
1885 while(1) {
1886 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1887 (void **)gang, 0,
1888 ARRAY_SIZE(gang));
1889 if (!ret)
1890 break;
1891 for (i = 0; i < ret; i++)
1892 btrfs_free_fs_root(fs_info, gang[i]);
1893 }
1894 return 0;
1895}
1896
1897int close_ctree(struct btrfs_root *root)
1898{
1899 int ret;
1900 struct btrfs_trans_handle *trans;
1901 struct btrfs_fs_info *fs_info = root->fs_info;
1902
1903 fs_info->closing = 1;
1904 smp_mb();
1905
1906 kthread_stop(root->fs_info->transaction_kthread);
1907 kthread_stop(root->fs_info->cleaner_kthread);
1908
1909 btrfs_clean_old_snapshots(root);
1910 trans = btrfs_start_transaction(root, 1);
1911 ret = btrfs_commit_transaction(trans, root);
1912 /* run commit again to drop the original snapshot */
1913 trans = btrfs_start_transaction(root, 1);
1914 btrfs_commit_transaction(trans, root);
1915 ret = btrfs_write_and_wait_transaction(NULL, root);
1916 BUG_ON(ret);
1917
1918 write_ctree_super(NULL, root);
1919
1920 if (fs_info->delalloc_bytes) {
1921 printk("btrfs: at unmount delalloc count %Lu\n",
1922 fs_info->delalloc_bytes);
1923 }
1924 if (fs_info->total_ref_cache_size) {
1925 printk("btrfs: at umount reference cache size %Lu\n",
1926 fs_info->total_ref_cache_size);
1927 }
1928
1929 if (fs_info->extent_root->node)
1930 free_extent_buffer(fs_info->extent_root->node);
1931
1932 if (fs_info->tree_root->node)
1933 free_extent_buffer(fs_info->tree_root->node);
1934
1935 if (root->fs_info->chunk_root->node);
1936 free_extent_buffer(root->fs_info->chunk_root->node);
1937
1938 if (root->fs_info->dev_root->node);
1939 free_extent_buffer(root->fs_info->dev_root->node);
1940
1941 btrfs_free_block_groups(root->fs_info);
1942 fs_info->closing = 2;
1943 del_fs_roots(fs_info);
1944
1945 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1946
1947 truncate_inode_pages(fs_info->btree_inode->i_mapping, 0);
1948
1949 btrfs_stop_workers(&fs_info->fixup_workers);
1950 btrfs_stop_workers(&fs_info->workers);
1951 btrfs_stop_workers(&fs_info->endio_workers);
1952 btrfs_stop_workers(&fs_info->endio_write_workers);
1953 btrfs_stop_workers(&fs_info->submit_workers);
1954
1955 iput(fs_info->btree_inode);
1956#if 0
1957 while(!list_empty(&fs_info->hashers)) {
1958 struct btrfs_hasher *hasher;
1959 hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
1960 hashers);
1961 list_del(&hasher->hashers);
1962 crypto_free_hash(&fs_info->hash_tfm);
1963 kfree(hasher);
1964 }
1965#endif
1966 btrfs_close_devices(fs_info->fs_devices);
1967 btrfs_mapping_tree_free(&fs_info->mapping_tree);
1968
1969 bdi_destroy(&fs_info->bdi);
1970
1971 kfree(fs_info->extent_root);
1972 kfree(fs_info->tree_root);
1973 kfree(fs_info->chunk_root);
1974 kfree(fs_info->dev_root);
1975 return 0;
1976}
1977
1978int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
1979{
1980 int ret;
1981 struct inode *btree_inode = buf->first_page->mapping->host;
1982
1983 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
1984 if (!ret)
1985 return ret;
1986
1987 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
1988 parent_transid);
1989 return !ret;
1990}
1991
1992int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
1993{
1994 struct inode *btree_inode = buf->first_page->mapping->host;
1995 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
1996 buf);
1997}
1998
1999void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2000{
2001 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2002 u64 transid = btrfs_header_generation(buf);
2003 struct inode *btree_inode = root->fs_info->btree_inode;
2004
2005 WARN_ON(!btrfs_tree_locked(buf));
2006 if (transid != root->fs_info->generation) {
2007 printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
2008 (unsigned long long)buf->start,
2009 transid, root->fs_info->generation);
2010 WARN_ON(1);
2011 }
2012 set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
2013}
2014
2015void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2016{
2017 /*
2018 * looks as though older kernels can get into trouble with
2019 * this code, they end up stuck in balance_dirty_pages forever
2020 */
2021 struct extent_io_tree *tree;
2022 u64 num_dirty;
2023 u64 start = 0;
2024 unsigned long thresh = 96 * 1024 * 1024;
2025 tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
2026
2027 if (current_is_pdflush() || current->flags & PF_MEMALLOC)
2028 return;
2029
2030 num_dirty = count_range_bits(tree, &start, (u64)-1,
2031 thresh, EXTENT_DIRTY);
2032 if (num_dirty > thresh) {
2033 balance_dirty_pages_ratelimited_nr(
2034 root->fs_info->btree_inode->i_mapping, 1);
2035 }
2036 return;
2037}
2038
2039int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2040{
2041 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2042 int ret;
2043 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2044 if (ret == 0) {
2045 buf->flags |= EXTENT_UPTODATE;
2046 }
2047 return ret;
2048}
2049
2050int btree_lock_page_hook(struct page *page)
2051{
2052 struct inode *inode = page->mapping->host;
2053 struct btrfs_root *root = BTRFS_I(inode)->root;
2054 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2055 struct extent_buffer *eb;
2056 unsigned long len;
2057 u64 bytenr = page_offset(page);
2058
2059 if (page->private == EXTENT_PAGE_PRIVATE)
2060 goto out;
2061
2062 len = page->private >> 2;
2063 eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2064 if (!eb)
2065 goto out;
2066
2067 btrfs_tree_lock(eb);
2068 spin_lock(&root->fs_info->hash_lock);
2069 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2070 spin_unlock(&root->fs_info->hash_lock);
2071 btrfs_tree_unlock(eb);
2072 free_extent_buffer(eb);
2073out:
2074 lock_page(page);
2075 return 0;
2076}
2077
2078static struct extent_io_ops btree_extent_io_ops = {
2079 .write_cache_pages_lock_hook = btree_lock_page_hook,
2080 .readpage_end_io_hook = btree_readpage_end_io_hook,
2081 .submit_bio_hook = btree_submit_bio_hook,
2082 /* note we're sharing with inode.c for the merge bio hook */
2083 .merge_bio_hook = btrfs_merge_bio_hook,
2084};