btrfs: remove extra barrier before waitqueue_active
[linux-2.6-block.git] / fs / btrfs / disk-io.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/fs.h>
20#include <linux/blkdev.h>
21#include <linux/scatterlist.h>
22#include <linux/swap.h>
23#include <linux/radix-tree.h>
24#include <linux/writeback.h>
25#include <linux/buffer_head.h>
26#include <linux/workqueue.h>
27#include <linux/kthread.h>
28#include <linux/freezer.h>
29#include <linux/slab.h>
30#include <linux/migrate.h>
31#include <linux/ratelimit.h>
32#include <linux/uuid.h>
33#include <linux/semaphore.h>
34#include <asm/unaligned.h>
35#include "ctree.h"
36#include "disk-io.h"
37#include "hash.h"
38#include "transaction.h"
39#include "btrfs_inode.h"
40#include "volumes.h"
41#include "print-tree.h"
42#include "locking.h"
43#include "tree-log.h"
44#include "free-space-cache.h"
45#include "inode-map.h"
46#include "check-integrity.h"
47#include "rcu-string.h"
48#include "dev-replace.h"
49#include "raid56.h"
50#include "sysfs.h"
51#include "qgroup.h"
52
53#ifdef CONFIG_X86
54#include <asm/cpufeature.h>
55#endif
56
57static const struct extent_io_ops btree_extent_io_ops;
58static void end_workqueue_fn(struct btrfs_work *work);
59static void free_fs_root(struct btrfs_root *root);
60static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61 int read_only);
62static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 struct btrfs_root *root);
65static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
66static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 struct extent_io_tree *dirty_pages,
68 int mark);
69static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 struct extent_io_tree *pinned_extents);
71static int btrfs_cleanup_transaction(struct btrfs_root *root);
72static void btrfs_error_commit_super(struct btrfs_root *root);
73
74/*
75 * btrfs_end_io_wq structs are used to do processing in task context when an IO
76 * is complete. This is used during reads to verify checksums, and it is used
77 * by writes to insert metadata for new file extents after IO is complete.
78 */
79struct btrfs_end_io_wq {
80 struct bio *bio;
81 bio_end_io_t *end_io;
82 void *private;
83 struct btrfs_fs_info *info;
84 int error;
85 enum btrfs_wq_endio_type metadata;
86 struct list_head list;
87 struct btrfs_work work;
88};
89
90static struct kmem_cache *btrfs_end_io_wq_cache;
91
92int __init btrfs_end_io_wq_init(void)
93{
94 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
95 sizeof(struct btrfs_end_io_wq),
96 0,
97 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
98 NULL);
99 if (!btrfs_end_io_wq_cache)
100 return -ENOMEM;
101 return 0;
102}
103
104void btrfs_end_io_wq_exit(void)
105{
106 if (btrfs_end_io_wq_cache)
107 kmem_cache_destroy(btrfs_end_io_wq_cache);
108}
109
110/*
111 * async submit bios are used to offload expensive checksumming
112 * onto the worker threads. They checksum file and metadata bios
113 * just before they are sent down the IO stack.
114 */
115struct async_submit_bio {
116 struct inode *inode;
117 struct bio *bio;
118 struct list_head list;
119 extent_submit_bio_hook_t *submit_bio_start;
120 extent_submit_bio_hook_t *submit_bio_done;
121 int rw;
122 int mirror_num;
123 unsigned long bio_flags;
124 /*
125 * bio_offset is optional, can be used if the pages in the bio
126 * can't tell us where in the file the bio should go
127 */
128 u64 bio_offset;
129 struct btrfs_work work;
130 int error;
131};
132
133/*
134 * Lockdep class keys for extent_buffer->lock's in this root. For a given
135 * eb, the lockdep key is determined by the btrfs_root it belongs to and
136 * the level the eb occupies in the tree.
137 *
138 * Different roots are used for different purposes and may nest inside each
139 * other and they require separate keysets. As lockdep keys should be
140 * static, assign keysets according to the purpose of the root as indicated
141 * by btrfs_root->objectid. This ensures that all special purpose roots
142 * have separate keysets.
143 *
144 * Lock-nesting across peer nodes is always done with the immediate parent
145 * node locked thus preventing deadlock. As lockdep doesn't know this, use
146 * subclass to avoid triggering lockdep warning in such cases.
147 *
148 * The key is set by the readpage_end_io_hook after the buffer has passed
149 * csum validation but before the pages are unlocked. It is also set by
150 * btrfs_init_new_buffer on freshly allocated blocks.
151 *
152 * We also add a check to make sure the highest level of the tree is the
153 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
154 * needs update as well.
155 */
156#ifdef CONFIG_DEBUG_LOCK_ALLOC
157# if BTRFS_MAX_LEVEL != 8
158# error
159# endif
160
161static struct btrfs_lockdep_keyset {
162 u64 id; /* root objectid */
163 const char *name_stem; /* lock name stem */
164 char names[BTRFS_MAX_LEVEL + 1][20];
165 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
166} btrfs_lockdep_keysets[] = {
167 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
168 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
169 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
170 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
171 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
172 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
173 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
174 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
175 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
176 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
177 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
178 { .id = 0, .name_stem = "tree" },
179};
180
181void __init btrfs_init_lockdep(void)
182{
183 int i, j;
184
185 /* initialize lockdep class names */
186 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
187 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
188
189 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
190 snprintf(ks->names[j], sizeof(ks->names[j]),
191 "btrfs-%s-%02d", ks->name_stem, j);
192 }
193}
194
195void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
196 int level)
197{
198 struct btrfs_lockdep_keyset *ks;
199
200 BUG_ON(level >= ARRAY_SIZE(ks->keys));
201
202 /* find the matching keyset, id 0 is the default entry */
203 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
204 if (ks->id == objectid)
205 break;
206
207 lockdep_set_class_and_name(&eb->lock,
208 &ks->keys[level], ks->names[level]);
209}
210
211#endif
212
213/*
214 * extents on the btree inode are pretty simple, there's one extent
215 * that covers the entire device
216 */
217static struct extent_map *btree_get_extent(struct inode *inode,
218 struct page *page, size_t pg_offset, u64 start, u64 len,
219 int create)
220{
221 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
222 struct extent_map *em;
223 int ret;
224
225 read_lock(&em_tree->lock);
226 em = lookup_extent_mapping(em_tree, start, len);
227 if (em) {
228 em->bdev =
229 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
230 read_unlock(&em_tree->lock);
231 goto out;
232 }
233 read_unlock(&em_tree->lock);
234
235 em = alloc_extent_map();
236 if (!em) {
237 em = ERR_PTR(-ENOMEM);
238 goto out;
239 }
240 em->start = 0;
241 em->len = (u64)-1;
242 em->block_len = (u64)-1;
243 em->block_start = 0;
244 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
245
246 write_lock(&em_tree->lock);
247 ret = add_extent_mapping(em_tree, em, 0);
248 if (ret == -EEXIST) {
249 free_extent_map(em);
250 em = lookup_extent_mapping(em_tree, start, len);
251 if (!em)
252 em = ERR_PTR(-EIO);
253 } else if (ret) {
254 free_extent_map(em);
255 em = ERR_PTR(ret);
256 }
257 write_unlock(&em_tree->lock);
258
259out:
260 return em;
261}
262
263u32 btrfs_csum_data(char *data, u32 seed, size_t len)
264{
265 return btrfs_crc32c(seed, data, len);
266}
267
268void btrfs_csum_final(u32 crc, char *result)
269{
270 put_unaligned_le32(~crc, result);
271}
272
273/*
274 * compute the csum for a btree block, and either verify it or write it
275 * into the csum field of the block.
276 */
277static int csum_tree_block(struct btrfs_fs_info *fs_info,
278 struct extent_buffer *buf,
279 int verify)
280{
281 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
282 char *result = NULL;
283 unsigned long len;
284 unsigned long cur_len;
285 unsigned long offset = BTRFS_CSUM_SIZE;
286 char *kaddr;
287 unsigned long map_start;
288 unsigned long map_len;
289 int err;
290 u32 crc = ~(u32)0;
291 unsigned long inline_result;
292
293 len = buf->len - offset;
294 while (len > 0) {
295 err = map_private_extent_buffer(buf, offset, 32,
296 &kaddr, &map_start, &map_len);
297 if (err)
298 return 1;
299 cur_len = min(len, map_len - (offset - map_start));
300 crc = btrfs_csum_data(kaddr + offset - map_start,
301 crc, cur_len);
302 len -= cur_len;
303 offset += cur_len;
304 }
305 if (csum_size > sizeof(inline_result)) {
306 result = kzalloc(csum_size, GFP_NOFS);
307 if (!result)
308 return 1;
309 } else {
310 result = (char *)&inline_result;
311 }
312
313 btrfs_csum_final(crc, result);
314
315 if (verify) {
316 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
317 u32 val;
318 u32 found = 0;
319 memcpy(&found, result, csum_size);
320
321 read_extent_buffer(buf, &val, 0, csum_size);
322 printk_ratelimited(KERN_WARNING
323 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
324 "level %d\n",
325 fs_info->sb->s_id, buf->start,
326 val, found, btrfs_header_level(buf));
327 if (result != (char *)&inline_result)
328 kfree(result);
329 return 1;
330 }
331 } else {
332 write_extent_buffer(buf, result, 0, csum_size);
333 }
334 if (result != (char *)&inline_result)
335 kfree(result);
336 return 0;
337}
338
339/*
340 * we can't consider a given block up to date unless the transid of the
341 * block matches the transid in the parent node's pointer. This is how we
342 * detect blocks that either didn't get written at all or got written
343 * in the wrong place.
344 */
345static int verify_parent_transid(struct extent_io_tree *io_tree,
346 struct extent_buffer *eb, u64 parent_transid,
347 int atomic)
348{
349 struct extent_state *cached_state = NULL;
350 int ret;
351 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
352
353 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
354 return 0;
355
356 if (atomic)
357 return -EAGAIN;
358
359 if (need_lock) {
360 btrfs_tree_read_lock(eb);
361 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
362 }
363
364 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
365 0, &cached_state);
366 if (extent_buffer_uptodate(eb) &&
367 btrfs_header_generation(eb) == parent_transid) {
368 ret = 0;
369 goto out;
370 }
371 printk_ratelimited(KERN_ERR
372 "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
373 eb->fs_info->sb->s_id, eb->start,
374 parent_transid, btrfs_header_generation(eb));
375 ret = 1;
376
377 /*
378 * Things reading via commit roots that don't have normal protection,
379 * like send, can have a really old block in cache that may point at a
380 * block that has been free'd and re-allocated. So don't clear uptodate
381 * if we find an eb that is under IO (dirty/writeback) because we could
382 * end up reading in the stale data and then writing it back out and
383 * making everybody very sad.
384 */
385 if (!extent_buffer_under_io(eb))
386 clear_extent_buffer_uptodate(eb);
387out:
388 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
389 &cached_state, GFP_NOFS);
390 if (need_lock)
391 btrfs_tree_read_unlock_blocking(eb);
392 return ret;
393}
394
395/*
396 * Return 0 if the superblock checksum type matches the checksum value of that
397 * algorithm. Pass the raw disk superblock data.
398 */
399static int btrfs_check_super_csum(char *raw_disk_sb)
400{
401 struct btrfs_super_block *disk_sb =
402 (struct btrfs_super_block *)raw_disk_sb;
403 u16 csum_type = btrfs_super_csum_type(disk_sb);
404 int ret = 0;
405
406 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
407 u32 crc = ~(u32)0;
408 const int csum_size = sizeof(crc);
409 char result[csum_size];
410
411 /*
412 * The super_block structure does not span the whole
413 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
414 * is filled with zeros and is included in the checkum.
415 */
416 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
417 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
418 btrfs_csum_final(crc, result);
419
420 if (memcmp(raw_disk_sb, result, csum_size))
421 ret = 1;
422 }
423
424 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
425 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
426 csum_type);
427 ret = 1;
428 }
429
430 return ret;
431}
432
433/*
434 * helper to read a given tree block, doing retries as required when
435 * the checksums don't match and we have alternate mirrors to try.
436 */
437static int btree_read_extent_buffer_pages(struct btrfs_root *root,
438 struct extent_buffer *eb,
439 u64 start, u64 parent_transid)
440{
441 struct extent_io_tree *io_tree;
442 int failed = 0;
443 int ret;
444 int num_copies = 0;
445 int mirror_num = 0;
446 int failed_mirror = 0;
447
448 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
449 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
450 while (1) {
451 ret = read_extent_buffer_pages(io_tree, eb, start,
452 WAIT_COMPLETE,
453 btree_get_extent, mirror_num);
454 if (!ret) {
455 if (!verify_parent_transid(io_tree, eb,
456 parent_transid, 0))
457 break;
458 else
459 ret = -EIO;
460 }
461
462 /*
463 * This buffer's crc is fine, but its contents are corrupted, so
464 * there is no reason to read the other copies, they won't be
465 * any less wrong.
466 */
467 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
468 break;
469
470 num_copies = btrfs_num_copies(root->fs_info,
471 eb->start, eb->len);
472 if (num_copies == 1)
473 break;
474
475 if (!failed_mirror) {
476 failed = 1;
477 failed_mirror = eb->read_mirror;
478 }
479
480 mirror_num++;
481 if (mirror_num == failed_mirror)
482 mirror_num++;
483
484 if (mirror_num > num_copies)
485 break;
486 }
487
488 if (failed && !ret && failed_mirror)
489 repair_eb_io_failure(root, eb, failed_mirror);
490
491 return ret;
492}
493
494/*
495 * checksum a dirty tree block before IO. This has extra checks to make sure
496 * we only fill in the checksum field in the first page of a multi-page block
497 */
498
499static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
500{
501 u64 start = page_offset(page);
502 u64 found_start;
503 struct extent_buffer *eb;
504
505 eb = (struct extent_buffer *)page->private;
506 if (page != eb->pages[0])
507 return 0;
508 found_start = btrfs_header_bytenr(eb);
509 if (WARN_ON(found_start != start || !PageUptodate(page)))
510 return 0;
511 csum_tree_block(fs_info, eb, 0);
512 return 0;
513}
514
515static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
516 struct extent_buffer *eb)
517{
518 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
519 u8 fsid[BTRFS_UUID_SIZE];
520 int ret = 1;
521
522 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
523 while (fs_devices) {
524 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
525 ret = 0;
526 break;
527 }
528 fs_devices = fs_devices->seed;
529 }
530 return ret;
531}
532
533#define CORRUPT(reason, eb, root, slot) \
534 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
535 "root=%llu, slot=%d", reason, \
536 btrfs_header_bytenr(eb), root->objectid, slot)
537
538static noinline int check_leaf(struct btrfs_root *root,
539 struct extent_buffer *leaf)
540{
541 struct btrfs_key key;
542 struct btrfs_key leaf_key;
543 u32 nritems = btrfs_header_nritems(leaf);
544 int slot;
545
546 if (nritems == 0)
547 return 0;
548
549 /* Check the 0 item */
550 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
551 BTRFS_LEAF_DATA_SIZE(root)) {
552 CORRUPT("invalid item offset size pair", leaf, root, 0);
553 return -EIO;
554 }
555
556 /*
557 * Check to make sure each items keys are in the correct order and their
558 * offsets make sense. We only have to loop through nritems-1 because
559 * we check the current slot against the next slot, which verifies the
560 * next slot's offset+size makes sense and that the current's slot
561 * offset is correct.
562 */
563 for (slot = 0; slot < nritems - 1; slot++) {
564 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
565 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
566
567 /* Make sure the keys are in the right order */
568 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
569 CORRUPT("bad key order", leaf, root, slot);
570 return -EIO;
571 }
572
573 /*
574 * Make sure the offset and ends are right, remember that the
575 * item data starts at the end of the leaf and grows towards the
576 * front.
577 */
578 if (btrfs_item_offset_nr(leaf, slot) !=
579 btrfs_item_end_nr(leaf, slot + 1)) {
580 CORRUPT("slot offset bad", leaf, root, slot);
581 return -EIO;
582 }
583
584 /*
585 * Check to make sure that we don't point outside of the leaf,
586 * just incase all the items are consistent to eachother, but
587 * all point outside of the leaf.
588 */
589 if (btrfs_item_end_nr(leaf, slot) >
590 BTRFS_LEAF_DATA_SIZE(root)) {
591 CORRUPT("slot end outside of leaf", leaf, root, slot);
592 return -EIO;
593 }
594 }
595
596 return 0;
597}
598
599static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
600 u64 phy_offset, struct page *page,
601 u64 start, u64 end, int mirror)
602{
603 u64 found_start;
604 int found_level;
605 struct extent_buffer *eb;
606 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
607 int ret = 0;
608 int reads_done;
609
610 if (!page->private)
611 goto out;
612
613 eb = (struct extent_buffer *)page->private;
614
615 /* the pending IO might have been the only thing that kept this buffer
616 * in memory. Make sure we have a ref for all this other checks
617 */
618 extent_buffer_get(eb);
619
620 reads_done = atomic_dec_and_test(&eb->io_pages);
621 if (!reads_done)
622 goto err;
623
624 eb->read_mirror = mirror;
625 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
626 ret = -EIO;
627 goto err;
628 }
629
630 found_start = btrfs_header_bytenr(eb);
631 if (found_start != eb->start) {
632 printk_ratelimited(KERN_ERR "BTRFS (device %s): bad tree block start "
633 "%llu %llu\n",
634 eb->fs_info->sb->s_id, found_start, eb->start);
635 ret = -EIO;
636 goto err;
637 }
638 if (check_tree_block_fsid(root->fs_info, eb)) {
639 printk_ratelimited(KERN_ERR "BTRFS (device %s): bad fsid on block %llu\n",
640 eb->fs_info->sb->s_id, eb->start);
641 ret = -EIO;
642 goto err;
643 }
644 found_level = btrfs_header_level(eb);
645 if (found_level >= BTRFS_MAX_LEVEL) {
646 btrfs_err(root->fs_info, "bad tree block level %d",
647 (int)btrfs_header_level(eb));
648 ret = -EIO;
649 goto err;
650 }
651
652 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
653 eb, found_level);
654
655 ret = csum_tree_block(root->fs_info, eb, 1);
656 if (ret) {
657 ret = -EIO;
658 goto err;
659 }
660
661 /*
662 * If this is a leaf block and it is corrupt, set the corrupt bit so
663 * that we don't try and read the other copies of this block, just
664 * return -EIO.
665 */
666 if (found_level == 0 && check_leaf(root, eb)) {
667 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
668 ret = -EIO;
669 }
670
671 if (!ret)
672 set_extent_buffer_uptodate(eb);
673err:
674 if (reads_done &&
675 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
676 btree_readahead_hook(root, eb, eb->start, ret);
677
678 if (ret) {
679 /*
680 * our io error hook is going to dec the io pages
681 * again, we have to make sure it has something
682 * to decrement
683 */
684 atomic_inc(&eb->io_pages);
685 clear_extent_buffer_uptodate(eb);
686 }
687 free_extent_buffer(eb);
688out:
689 return ret;
690}
691
692static int btree_io_failed_hook(struct page *page, int failed_mirror)
693{
694 struct extent_buffer *eb;
695 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
696
697 eb = (struct extent_buffer *)page->private;
698 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
699 eb->read_mirror = failed_mirror;
700 atomic_dec(&eb->io_pages);
701 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
702 btree_readahead_hook(root, eb, eb->start, -EIO);
703 return -EIO; /* we fixed nothing */
704}
705
706static void end_workqueue_bio(struct bio *bio)
707{
708 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
709 struct btrfs_fs_info *fs_info;
710 struct btrfs_workqueue *wq;
711 btrfs_work_func_t func;
712
713 fs_info = end_io_wq->info;
714 end_io_wq->error = bio->bi_error;
715
716 if (bio->bi_rw & REQ_WRITE) {
717 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
718 wq = fs_info->endio_meta_write_workers;
719 func = btrfs_endio_meta_write_helper;
720 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
721 wq = fs_info->endio_freespace_worker;
722 func = btrfs_freespace_write_helper;
723 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
724 wq = fs_info->endio_raid56_workers;
725 func = btrfs_endio_raid56_helper;
726 } else {
727 wq = fs_info->endio_write_workers;
728 func = btrfs_endio_write_helper;
729 }
730 } else {
731 if (unlikely(end_io_wq->metadata ==
732 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
733 wq = fs_info->endio_repair_workers;
734 func = btrfs_endio_repair_helper;
735 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
736 wq = fs_info->endio_raid56_workers;
737 func = btrfs_endio_raid56_helper;
738 } else if (end_io_wq->metadata) {
739 wq = fs_info->endio_meta_workers;
740 func = btrfs_endio_meta_helper;
741 } else {
742 wq = fs_info->endio_workers;
743 func = btrfs_endio_helper;
744 }
745 }
746
747 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
748 btrfs_queue_work(wq, &end_io_wq->work);
749}
750
751int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
752 enum btrfs_wq_endio_type metadata)
753{
754 struct btrfs_end_io_wq *end_io_wq;
755
756 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
757 if (!end_io_wq)
758 return -ENOMEM;
759
760 end_io_wq->private = bio->bi_private;
761 end_io_wq->end_io = bio->bi_end_io;
762 end_io_wq->info = info;
763 end_io_wq->error = 0;
764 end_io_wq->bio = bio;
765 end_io_wq->metadata = metadata;
766
767 bio->bi_private = end_io_wq;
768 bio->bi_end_io = end_workqueue_bio;
769 return 0;
770}
771
772unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
773{
774 unsigned long limit = min_t(unsigned long,
775 info->thread_pool_size,
776 info->fs_devices->open_devices);
777 return 256 * limit;
778}
779
780static void run_one_async_start(struct btrfs_work *work)
781{
782 struct async_submit_bio *async;
783 int ret;
784
785 async = container_of(work, struct async_submit_bio, work);
786 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
787 async->mirror_num, async->bio_flags,
788 async->bio_offset);
789 if (ret)
790 async->error = ret;
791}
792
793static void run_one_async_done(struct btrfs_work *work)
794{
795 struct btrfs_fs_info *fs_info;
796 struct async_submit_bio *async;
797 int limit;
798
799 async = container_of(work, struct async_submit_bio, work);
800 fs_info = BTRFS_I(async->inode)->root->fs_info;
801
802 limit = btrfs_async_submit_limit(fs_info);
803 limit = limit * 2 / 3;
804
805 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
806 waitqueue_active(&fs_info->async_submit_wait))
807 wake_up(&fs_info->async_submit_wait);
808
809 /* If an error occured we just want to clean up the bio and move on */
810 if (async->error) {
811 async->bio->bi_error = async->error;
812 bio_endio(async->bio);
813 return;
814 }
815
816 async->submit_bio_done(async->inode, async->rw, async->bio,
817 async->mirror_num, async->bio_flags,
818 async->bio_offset);
819}
820
821static void run_one_async_free(struct btrfs_work *work)
822{
823 struct async_submit_bio *async;
824
825 async = container_of(work, struct async_submit_bio, work);
826 kfree(async);
827}
828
829int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
830 int rw, struct bio *bio, int mirror_num,
831 unsigned long bio_flags,
832 u64 bio_offset,
833 extent_submit_bio_hook_t *submit_bio_start,
834 extent_submit_bio_hook_t *submit_bio_done)
835{
836 struct async_submit_bio *async;
837
838 async = kmalloc(sizeof(*async), GFP_NOFS);
839 if (!async)
840 return -ENOMEM;
841
842 async->inode = inode;
843 async->rw = rw;
844 async->bio = bio;
845 async->mirror_num = mirror_num;
846 async->submit_bio_start = submit_bio_start;
847 async->submit_bio_done = submit_bio_done;
848
849 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
850 run_one_async_done, run_one_async_free);
851
852 async->bio_flags = bio_flags;
853 async->bio_offset = bio_offset;
854
855 async->error = 0;
856
857 atomic_inc(&fs_info->nr_async_submits);
858
859 if (rw & REQ_SYNC)
860 btrfs_set_work_high_priority(&async->work);
861
862 btrfs_queue_work(fs_info->workers, &async->work);
863
864 while (atomic_read(&fs_info->async_submit_draining) &&
865 atomic_read(&fs_info->nr_async_submits)) {
866 wait_event(fs_info->async_submit_wait,
867 (atomic_read(&fs_info->nr_async_submits) == 0));
868 }
869
870 return 0;
871}
872
873static int btree_csum_one_bio(struct bio *bio)
874{
875 struct bio_vec *bvec;
876 struct btrfs_root *root;
877 int i, ret = 0;
878
879 bio_for_each_segment_all(bvec, bio, i) {
880 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
881 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
882 if (ret)
883 break;
884 }
885
886 return ret;
887}
888
889static int __btree_submit_bio_start(struct inode *inode, int rw,
890 struct bio *bio, int mirror_num,
891 unsigned long bio_flags,
892 u64 bio_offset)
893{
894 /*
895 * when we're called for a write, we're already in the async
896 * submission context. Just jump into btrfs_map_bio
897 */
898 return btree_csum_one_bio(bio);
899}
900
901static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
902 int mirror_num, unsigned long bio_flags,
903 u64 bio_offset)
904{
905 int ret;
906
907 /*
908 * when we're called for a write, we're already in the async
909 * submission context. Just jump into btrfs_map_bio
910 */
911 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
912 if (ret) {
913 bio->bi_error = ret;
914 bio_endio(bio);
915 }
916 return ret;
917}
918
919static int check_async_write(struct inode *inode, unsigned long bio_flags)
920{
921 if (bio_flags & EXTENT_BIO_TREE_LOG)
922 return 0;
923#ifdef CONFIG_X86
924 if (cpu_has_xmm4_2)
925 return 0;
926#endif
927 return 1;
928}
929
930static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
931 int mirror_num, unsigned long bio_flags,
932 u64 bio_offset)
933{
934 int async = check_async_write(inode, bio_flags);
935 int ret;
936
937 if (!(rw & REQ_WRITE)) {
938 /*
939 * called for a read, do the setup so that checksum validation
940 * can happen in the async kernel threads
941 */
942 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
943 bio, BTRFS_WQ_ENDIO_METADATA);
944 if (ret)
945 goto out_w_error;
946 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
947 mirror_num, 0);
948 } else if (!async) {
949 ret = btree_csum_one_bio(bio);
950 if (ret)
951 goto out_w_error;
952 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
953 mirror_num, 0);
954 } else {
955 /*
956 * kthread helpers are used to submit writes so that
957 * checksumming can happen in parallel across all CPUs
958 */
959 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
960 inode, rw, bio, mirror_num, 0,
961 bio_offset,
962 __btree_submit_bio_start,
963 __btree_submit_bio_done);
964 }
965
966 if (ret)
967 goto out_w_error;
968 return 0;
969
970out_w_error:
971 bio->bi_error = ret;
972 bio_endio(bio);
973 return ret;
974}
975
976#ifdef CONFIG_MIGRATION
977static int btree_migratepage(struct address_space *mapping,
978 struct page *newpage, struct page *page,
979 enum migrate_mode mode)
980{
981 /*
982 * we can't safely write a btree page from here,
983 * we haven't done the locking hook
984 */
985 if (PageDirty(page))
986 return -EAGAIN;
987 /*
988 * Buffers may be managed in a filesystem specific way.
989 * We must have no buffers or drop them.
990 */
991 if (page_has_private(page) &&
992 !try_to_release_page(page, GFP_KERNEL))
993 return -EAGAIN;
994 return migrate_page(mapping, newpage, page, mode);
995}
996#endif
997
998
999static int btree_writepages(struct address_space *mapping,
1000 struct writeback_control *wbc)
1001{
1002 struct btrfs_fs_info *fs_info;
1003 int ret;
1004
1005 if (wbc->sync_mode == WB_SYNC_NONE) {
1006
1007 if (wbc->for_kupdate)
1008 return 0;
1009
1010 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1011 /* this is a bit racy, but that's ok */
1012 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1013 BTRFS_DIRTY_METADATA_THRESH);
1014 if (ret < 0)
1015 return 0;
1016 }
1017 return btree_write_cache_pages(mapping, wbc);
1018}
1019
1020static int btree_readpage(struct file *file, struct page *page)
1021{
1022 struct extent_io_tree *tree;
1023 tree = &BTRFS_I(page->mapping->host)->io_tree;
1024 return extent_read_full_page(tree, page, btree_get_extent, 0);
1025}
1026
1027static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1028{
1029 if (PageWriteback(page) || PageDirty(page))
1030 return 0;
1031
1032 return try_release_extent_buffer(page);
1033}
1034
1035static void btree_invalidatepage(struct page *page, unsigned int offset,
1036 unsigned int length)
1037{
1038 struct extent_io_tree *tree;
1039 tree = &BTRFS_I(page->mapping->host)->io_tree;
1040 extent_invalidatepage(tree, page, offset);
1041 btree_releasepage(page, GFP_NOFS);
1042 if (PagePrivate(page)) {
1043 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1044 "page private not zero on page %llu",
1045 (unsigned long long)page_offset(page));
1046 ClearPagePrivate(page);
1047 set_page_private(page, 0);
1048 page_cache_release(page);
1049 }
1050}
1051
1052static int btree_set_page_dirty(struct page *page)
1053{
1054#ifdef DEBUG
1055 struct extent_buffer *eb;
1056
1057 BUG_ON(!PagePrivate(page));
1058 eb = (struct extent_buffer *)page->private;
1059 BUG_ON(!eb);
1060 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1061 BUG_ON(!atomic_read(&eb->refs));
1062 btrfs_assert_tree_locked(eb);
1063#endif
1064 return __set_page_dirty_nobuffers(page);
1065}
1066
1067static const struct address_space_operations btree_aops = {
1068 .readpage = btree_readpage,
1069 .writepages = btree_writepages,
1070 .releasepage = btree_releasepage,
1071 .invalidatepage = btree_invalidatepage,
1072#ifdef CONFIG_MIGRATION
1073 .migratepage = btree_migratepage,
1074#endif
1075 .set_page_dirty = btree_set_page_dirty,
1076};
1077
1078void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1079{
1080 struct extent_buffer *buf = NULL;
1081 struct inode *btree_inode = root->fs_info->btree_inode;
1082
1083 buf = btrfs_find_create_tree_block(root, bytenr);
1084 if (!buf)
1085 return;
1086 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1087 buf, 0, WAIT_NONE, btree_get_extent, 0);
1088 free_extent_buffer(buf);
1089}
1090
1091int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1092 int mirror_num, struct extent_buffer **eb)
1093{
1094 struct extent_buffer *buf = NULL;
1095 struct inode *btree_inode = root->fs_info->btree_inode;
1096 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1097 int ret;
1098
1099 buf = btrfs_find_create_tree_block(root, bytenr);
1100 if (!buf)
1101 return 0;
1102
1103 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1104
1105 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1106 btree_get_extent, mirror_num);
1107 if (ret) {
1108 free_extent_buffer(buf);
1109 return ret;
1110 }
1111
1112 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1113 free_extent_buffer(buf);
1114 return -EIO;
1115 } else if (extent_buffer_uptodate(buf)) {
1116 *eb = buf;
1117 } else {
1118 free_extent_buffer(buf);
1119 }
1120 return 0;
1121}
1122
1123struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1124 u64 bytenr)
1125{
1126 return find_extent_buffer(fs_info, bytenr);
1127}
1128
1129struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1130 u64 bytenr)
1131{
1132 if (btrfs_test_is_dummy_root(root))
1133 return alloc_test_extent_buffer(root->fs_info, bytenr);
1134 return alloc_extent_buffer(root->fs_info, bytenr);
1135}
1136
1137
1138int btrfs_write_tree_block(struct extent_buffer *buf)
1139{
1140 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1141 buf->start + buf->len - 1);
1142}
1143
1144int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1145{
1146 return filemap_fdatawait_range(buf->pages[0]->mapping,
1147 buf->start, buf->start + buf->len - 1);
1148}
1149
1150struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1151 u64 parent_transid)
1152{
1153 struct extent_buffer *buf = NULL;
1154 int ret;
1155
1156 buf = btrfs_find_create_tree_block(root, bytenr);
1157 if (!buf)
1158 return ERR_PTR(-ENOMEM);
1159
1160 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1161 if (ret) {
1162 free_extent_buffer(buf);
1163 return ERR_PTR(ret);
1164 }
1165 return buf;
1166
1167}
1168
1169void clean_tree_block(struct btrfs_trans_handle *trans,
1170 struct btrfs_fs_info *fs_info,
1171 struct extent_buffer *buf)
1172{
1173 if (btrfs_header_generation(buf) ==
1174 fs_info->running_transaction->transid) {
1175 btrfs_assert_tree_locked(buf);
1176
1177 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1178 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1179 -buf->len,
1180 fs_info->dirty_metadata_batch);
1181 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1182 btrfs_set_lock_blocking(buf);
1183 clear_extent_buffer_dirty(buf);
1184 }
1185 }
1186}
1187
1188static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1189{
1190 struct btrfs_subvolume_writers *writers;
1191 int ret;
1192
1193 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1194 if (!writers)
1195 return ERR_PTR(-ENOMEM);
1196
1197 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1198 if (ret < 0) {
1199 kfree(writers);
1200 return ERR_PTR(ret);
1201 }
1202
1203 init_waitqueue_head(&writers->wait);
1204 return writers;
1205}
1206
1207static void
1208btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1209{
1210 percpu_counter_destroy(&writers->counter);
1211 kfree(writers);
1212}
1213
1214static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1215 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1216 u64 objectid)
1217{
1218 root->node = NULL;
1219 root->commit_root = NULL;
1220 root->sectorsize = sectorsize;
1221 root->nodesize = nodesize;
1222 root->stripesize = stripesize;
1223 root->state = 0;
1224 root->orphan_cleanup_state = 0;
1225
1226 root->objectid = objectid;
1227 root->last_trans = 0;
1228 root->highest_objectid = 0;
1229 root->nr_delalloc_inodes = 0;
1230 root->nr_ordered_extents = 0;
1231 root->name = NULL;
1232 root->inode_tree = RB_ROOT;
1233 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1234 root->block_rsv = NULL;
1235 root->orphan_block_rsv = NULL;
1236
1237 INIT_LIST_HEAD(&root->dirty_list);
1238 INIT_LIST_HEAD(&root->root_list);
1239 INIT_LIST_HEAD(&root->delalloc_inodes);
1240 INIT_LIST_HEAD(&root->delalloc_root);
1241 INIT_LIST_HEAD(&root->ordered_extents);
1242 INIT_LIST_HEAD(&root->ordered_root);
1243 INIT_LIST_HEAD(&root->logged_list[0]);
1244 INIT_LIST_HEAD(&root->logged_list[1]);
1245 spin_lock_init(&root->orphan_lock);
1246 spin_lock_init(&root->inode_lock);
1247 spin_lock_init(&root->delalloc_lock);
1248 spin_lock_init(&root->ordered_extent_lock);
1249 spin_lock_init(&root->accounting_lock);
1250 spin_lock_init(&root->log_extents_lock[0]);
1251 spin_lock_init(&root->log_extents_lock[1]);
1252 mutex_init(&root->objectid_mutex);
1253 mutex_init(&root->log_mutex);
1254 mutex_init(&root->ordered_extent_mutex);
1255 mutex_init(&root->delalloc_mutex);
1256 init_waitqueue_head(&root->log_writer_wait);
1257 init_waitqueue_head(&root->log_commit_wait[0]);
1258 init_waitqueue_head(&root->log_commit_wait[1]);
1259 INIT_LIST_HEAD(&root->log_ctxs[0]);
1260 INIT_LIST_HEAD(&root->log_ctxs[1]);
1261 atomic_set(&root->log_commit[0], 0);
1262 atomic_set(&root->log_commit[1], 0);
1263 atomic_set(&root->log_writers, 0);
1264 atomic_set(&root->log_batch, 0);
1265 atomic_set(&root->orphan_inodes, 0);
1266 atomic_set(&root->refs, 1);
1267 atomic_set(&root->will_be_snapshoted, 0);
1268 root->log_transid = 0;
1269 root->log_transid_committed = -1;
1270 root->last_log_commit = 0;
1271 if (fs_info)
1272 extent_io_tree_init(&root->dirty_log_pages,
1273 fs_info->btree_inode->i_mapping);
1274
1275 memset(&root->root_key, 0, sizeof(root->root_key));
1276 memset(&root->root_item, 0, sizeof(root->root_item));
1277 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1278 if (fs_info)
1279 root->defrag_trans_start = fs_info->generation;
1280 else
1281 root->defrag_trans_start = 0;
1282 root->root_key.objectid = objectid;
1283 root->anon_dev = 0;
1284
1285 spin_lock_init(&root->root_item_lock);
1286}
1287
1288static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1289{
1290 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1291 if (root)
1292 root->fs_info = fs_info;
1293 return root;
1294}
1295
1296#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1297/* Should only be used by the testing infrastructure */
1298struct btrfs_root *btrfs_alloc_dummy_root(void)
1299{
1300 struct btrfs_root *root;
1301
1302 root = btrfs_alloc_root(NULL);
1303 if (!root)
1304 return ERR_PTR(-ENOMEM);
1305 __setup_root(4096, 4096, 4096, root, NULL, 1);
1306 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1307 root->alloc_bytenr = 0;
1308
1309 return root;
1310}
1311#endif
1312
1313struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1314 struct btrfs_fs_info *fs_info,
1315 u64 objectid)
1316{
1317 struct extent_buffer *leaf;
1318 struct btrfs_root *tree_root = fs_info->tree_root;
1319 struct btrfs_root *root;
1320 struct btrfs_key key;
1321 int ret = 0;
1322 uuid_le uuid;
1323
1324 root = btrfs_alloc_root(fs_info);
1325 if (!root)
1326 return ERR_PTR(-ENOMEM);
1327
1328 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1329 tree_root->stripesize, root, fs_info, objectid);
1330 root->root_key.objectid = objectid;
1331 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1332 root->root_key.offset = 0;
1333
1334 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1335 if (IS_ERR(leaf)) {
1336 ret = PTR_ERR(leaf);
1337 leaf = NULL;
1338 goto fail;
1339 }
1340
1341 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1342 btrfs_set_header_bytenr(leaf, leaf->start);
1343 btrfs_set_header_generation(leaf, trans->transid);
1344 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1345 btrfs_set_header_owner(leaf, objectid);
1346 root->node = leaf;
1347
1348 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1349 BTRFS_FSID_SIZE);
1350 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1351 btrfs_header_chunk_tree_uuid(leaf),
1352 BTRFS_UUID_SIZE);
1353 btrfs_mark_buffer_dirty(leaf);
1354
1355 root->commit_root = btrfs_root_node(root);
1356 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1357
1358 root->root_item.flags = 0;
1359 root->root_item.byte_limit = 0;
1360 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1361 btrfs_set_root_generation(&root->root_item, trans->transid);
1362 btrfs_set_root_level(&root->root_item, 0);
1363 btrfs_set_root_refs(&root->root_item, 1);
1364 btrfs_set_root_used(&root->root_item, leaf->len);
1365 btrfs_set_root_last_snapshot(&root->root_item, 0);
1366 btrfs_set_root_dirid(&root->root_item, 0);
1367 uuid_le_gen(&uuid);
1368 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1369 root->root_item.drop_level = 0;
1370
1371 key.objectid = objectid;
1372 key.type = BTRFS_ROOT_ITEM_KEY;
1373 key.offset = 0;
1374 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1375 if (ret)
1376 goto fail;
1377
1378 btrfs_tree_unlock(leaf);
1379
1380 return root;
1381
1382fail:
1383 if (leaf) {
1384 btrfs_tree_unlock(leaf);
1385 free_extent_buffer(root->commit_root);
1386 free_extent_buffer(leaf);
1387 }
1388 kfree(root);
1389
1390 return ERR_PTR(ret);
1391}
1392
1393static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1394 struct btrfs_fs_info *fs_info)
1395{
1396 struct btrfs_root *root;
1397 struct btrfs_root *tree_root = fs_info->tree_root;
1398 struct extent_buffer *leaf;
1399
1400 root = btrfs_alloc_root(fs_info);
1401 if (!root)
1402 return ERR_PTR(-ENOMEM);
1403
1404 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1405 tree_root->stripesize, root, fs_info,
1406 BTRFS_TREE_LOG_OBJECTID);
1407
1408 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1409 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1410 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1411
1412 /*
1413 * DON'T set REF_COWS for log trees
1414 *
1415 * log trees do not get reference counted because they go away
1416 * before a real commit is actually done. They do store pointers
1417 * to file data extents, and those reference counts still get
1418 * updated (along with back refs to the log tree).
1419 */
1420
1421 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1422 NULL, 0, 0, 0);
1423 if (IS_ERR(leaf)) {
1424 kfree(root);
1425 return ERR_CAST(leaf);
1426 }
1427
1428 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1429 btrfs_set_header_bytenr(leaf, leaf->start);
1430 btrfs_set_header_generation(leaf, trans->transid);
1431 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1432 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1433 root->node = leaf;
1434
1435 write_extent_buffer(root->node, root->fs_info->fsid,
1436 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1437 btrfs_mark_buffer_dirty(root->node);
1438 btrfs_tree_unlock(root->node);
1439 return root;
1440}
1441
1442int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1443 struct btrfs_fs_info *fs_info)
1444{
1445 struct btrfs_root *log_root;
1446
1447 log_root = alloc_log_tree(trans, fs_info);
1448 if (IS_ERR(log_root))
1449 return PTR_ERR(log_root);
1450 WARN_ON(fs_info->log_root_tree);
1451 fs_info->log_root_tree = log_root;
1452 return 0;
1453}
1454
1455int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1456 struct btrfs_root *root)
1457{
1458 struct btrfs_root *log_root;
1459 struct btrfs_inode_item *inode_item;
1460
1461 log_root = alloc_log_tree(trans, root->fs_info);
1462 if (IS_ERR(log_root))
1463 return PTR_ERR(log_root);
1464
1465 log_root->last_trans = trans->transid;
1466 log_root->root_key.offset = root->root_key.objectid;
1467
1468 inode_item = &log_root->root_item.inode;
1469 btrfs_set_stack_inode_generation(inode_item, 1);
1470 btrfs_set_stack_inode_size(inode_item, 3);
1471 btrfs_set_stack_inode_nlink(inode_item, 1);
1472 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1473 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1474
1475 btrfs_set_root_node(&log_root->root_item, log_root->node);
1476
1477 WARN_ON(root->log_root);
1478 root->log_root = log_root;
1479 root->log_transid = 0;
1480 root->log_transid_committed = -1;
1481 root->last_log_commit = 0;
1482 return 0;
1483}
1484
1485static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1486 struct btrfs_key *key)
1487{
1488 struct btrfs_root *root;
1489 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1490 struct btrfs_path *path;
1491 u64 generation;
1492 int ret;
1493
1494 path = btrfs_alloc_path();
1495 if (!path)
1496 return ERR_PTR(-ENOMEM);
1497
1498 root = btrfs_alloc_root(fs_info);
1499 if (!root) {
1500 ret = -ENOMEM;
1501 goto alloc_fail;
1502 }
1503
1504 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1505 tree_root->stripesize, root, fs_info, key->objectid);
1506
1507 ret = btrfs_find_root(tree_root, key, path,
1508 &root->root_item, &root->root_key);
1509 if (ret) {
1510 if (ret > 0)
1511 ret = -ENOENT;
1512 goto find_fail;
1513 }
1514
1515 generation = btrfs_root_generation(&root->root_item);
1516 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1517 generation);
1518 if (IS_ERR(root->node)) {
1519 ret = PTR_ERR(root->node);
1520 goto find_fail;
1521 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1522 ret = -EIO;
1523 free_extent_buffer(root->node);
1524 goto find_fail;
1525 }
1526 root->commit_root = btrfs_root_node(root);
1527out:
1528 btrfs_free_path(path);
1529 return root;
1530
1531find_fail:
1532 kfree(root);
1533alloc_fail:
1534 root = ERR_PTR(ret);
1535 goto out;
1536}
1537
1538struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1539 struct btrfs_key *location)
1540{
1541 struct btrfs_root *root;
1542
1543 root = btrfs_read_tree_root(tree_root, location);
1544 if (IS_ERR(root))
1545 return root;
1546
1547 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1548 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1549 btrfs_check_and_init_root_item(&root->root_item);
1550 }
1551
1552 return root;
1553}
1554
1555int btrfs_init_fs_root(struct btrfs_root *root)
1556{
1557 int ret;
1558 struct btrfs_subvolume_writers *writers;
1559
1560 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1561 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1562 GFP_NOFS);
1563 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1564 ret = -ENOMEM;
1565 goto fail;
1566 }
1567
1568 writers = btrfs_alloc_subvolume_writers();
1569 if (IS_ERR(writers)) {
1570 ret = PTR_ERR(writers);
1571 goto fail;
1572 }
1573 root->subv_writers = writers;
1574
1575 btrfs_init_free_ino_ctl(root);
1576 spin_lock_init(&root->ino_cache_lock);
1577 init_waitqueue_head(&root->ino_cache_wait);
1578
1579 ret = get_anon_bdev(&root->anon_dev);
1580 if (ret)
1581 goto free_writers;
1582 return 0;
1583
1584free_writers:
1585 btrfs_free_subvolume_writers(root->subv_writers);
1586fail:
1587 kfree(root->free_ino_ctl);
1588 kfree(root->free_ino_pinned);
1589 return ret;
1590}
1591
1592static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1593 u64 root_id)
1594{
1595 struct btrfs_root *root;
1596
1597 spin_lock(&fs_info->fs_roots_radix_lock);
1598 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1599 (unsigned long)root_id);
1600 spin_unlock(&fs_info->fs_roots_radix_lock);
1601 return root;
1602}
1603
1604int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1605 struct btrfs_root *root)
1606{
1607 int ret;
1608
1609 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1610 if (ret)
1611 return ret;
1612
1613 spin_lock(&fs_info->fs_roots_radix_lock);
1614 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1615 (unsigned long)root->root_key.objectid,
1616 root);
1617 if (ret == 0)
1618 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1619 spin_unlock(&fs_info->fs_roots_radix_lock);
1620 radix_tree_preload_end();
1621
1622 return ret;
1623}
1624
1625struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1626 struct btrfs_key *location,
1627 bool check_ref)
1628{
1629 struct btrfs_root *root;
1630 struct btrfs_path *path;
1631 struct btrfs_key key;
1632 int ret;
1633
1634 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1635 return fs_info->tree_root;
1636 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1637 return fs_info->extent_root;
1638 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1639 return fs_info->chunk_root;
1640 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1641 return fs_info->dev_root;
1642 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1643 return fs_info->csum_root;
1644 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1645 return fs_info->quota_root ? fs_info->quota_root :
1646 ERR_PTR(-ENOENT);
1647 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1648 return fs_info->uuid_root ? fs_info->uuid_root :
1649 ERR_PTR(-ENOENT);
1650again:
1651 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1652 if (root) {
1653 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1654 return ERR_PTR(-ENOENT);
1655 return root;
1656 }
1657
1658 root = btrfs_read_fs_root(fs_info->tree_root, location);
1659 if (IS_ERR(root))
1660 return root;
1661
1662 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1663 ret = -ENOENT;
1664 goto fail;
1665 }
1666
1667 ret = btrfs_init_fs_root(root);
1668 if (ret)
1669 goto fail;
1670
1671 path = btrfs_alloc_path();
1672 if (!path) {
1673 ret = -ENOMEM;
1674 goto fail;
1675 }
1676 key.objectid = BTRFS_ORPHAN_OBJECTID;
1677 key.type = BTRFS_ORPHAN_ITEM_KEY;
1678 key.offset = location->objectid;
1679
1680 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1681 btrfs_free_path(path);
1682 if (ret < 0)
1683 goto fail;
1684 if (ret == 0)
1685 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1686
1687 ret = btrfs_insert_fs_root(fs_info, root);
1688 if (ret) {
1689 if (ret == -EEXIST) {
1690 free_fs_root(root);
1691 goto again;
1692 }
1693 goto fail;
1694 }
1695 return root;
1696fail:
1697 free_fs_root(root);
1698 return ERR_PTR(ret);
1699}
1700
1701static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1702{
1703 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1704 int ret = 0;
1705 struct btrfs_device *device;
1706 struct backing_dev_info *bdi;
1707
1708 rcu_read_lock();
1709 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1710 if (!device->bdev)
1711 continue;
1712 bdi = blk_get_backing_dev_info(device->bdev);
1713 if (bdi_congested(bdi, bdi_bits)) {
1714 ret = 1;
1715 break;
1716 }
1717 }
1718 rcu_read_unlock();
1719 return ret;
1720}
1721
1722static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1723{
1724 int err;
1725
1726 err = bdi_setup_and_register(bdi, "btrfs");
1727 if (err)
1728 return err;
1729
1730 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
1731 bdi->congested_fn = btrfs_congested_fn;
1732 bdi->congested_data = info;
1733 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1734 return 0;
1735}
1736
1737/*
1738 * called by the kthread helper functions to finally call the bio end_io
1739 * functions. This is where read checksum verification actually happens
1740 */
1741static void end_workqueue_fn(struct btrfs_work *work)
1742{
1743 struct bio *bio;
1744 struct btrfs_end_io_wq *end_io_wq;
1745
1746 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1747 bio = end_io_wq->bio;
1748
1749 bio->bi_error = end_io_wq->error;
1750 bio->bi_private = end_io_wq->private;
1751 bio->bi_end_io = end_io_wq->end_io;
1752 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1753 bio_endio(bio);
1754}
1755
1756static int cleaner_kthread(void *arg)
1757{
1758 struct btrfs_root *root = arg;
1759 int again;
1760 struct btrfs_trans_handle *trans;
1761
1762 do {
1763 again = 0;
1764
1765 /* Make the cleaner go to sleep early. */
1766 if (btrfs_need_cleaner_sleep(root))
1767 goto sleep;
1768
1769 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1770 goto sleep;
1771
1772 /*
1773 * Avoid the problem that we change the status of the fs
1774 * during the above check and trylock.
1775 */
1776 if (btrfs_need_cleaner_sleep(root)) {
1777 mutex_unlock(&root->fs_info->cleaner_mutex);
1778 goto sleep;
1779 }
1780
1781 btrfs_run_delayed_iputs(root);
1782 again = btrfs_clean_one_deleted_snapshot(root);
1783 mutex_unlock(&root->fs_info->cleaner_mutex);
1784
1785 /*
1786 * The defragger has dealt with the R/O remount and umount,
1787 * needn't do anything special here.
1788 */
1789 btrfs_run_defrag_inodes(root->fs_info);
1790
1791 /*
1792 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1793 * with relocation (btrfs_relocate_chunk) and relocation
1794 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1795 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1796 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1797 * unused block groups.
1798 */
1799 btrfs_delete_unused_bgs(root->fs_info);
1800sleep:
1801 if (!try_to_freeze() && !again) {
1802 set_current_state(TASK_INTERRUPTIBLE);
1803 if (!kthread_should_stop())
1804 schedule();
1805 __set_current_state(TASK_RUNNING);
1806 }
1807 } while (!kthread_should_stop());
1808
1809 /*
1810 * Transaction kthread is stopped before us and wakes us up.
1811 * However we might have started a new transaction and COWed some
1812 * tree blocks when deleting unused block groups for example. So
1813 * make sure we commit the transaction we started to have a clean
1814 * shutdown when evicting the btree inode - if it has dirty pages
1815 * when we do the final iput() on it, eviction will trigger a
1816 * writeback for it which will fail with null pointer dereferences
1817 * since work queues and other resources were already released and
1818 * destroyed by the time the iput/eviction/writeback is made.
1819 */
1820 trans = btrfs_attach_transaction(root);
1821 if (IS_ERR(trans)) {
1822 if (PTR_ERR(trans) != -ENOENT)
1823 btrfs_err(root->fs_info,
1824 "cleaner transaction attach returned %ld",
1825 PTR_ERR(trans));
1826 } else {
1827 int ret;
1828
1829 ret = btrfs_commit_transaction(trans, root);
1830 if (ret)
1831 btrfs_err(root->fs_info,
1832 "cleaner open transaction commit returned %d",
1833 ret);
1834 }
1835
1836 return 0;
1837}
1838
1839static int transaction_kthread(void *arg)
1840{
1841 struct btrfs_root *root = arg;
1842 struct btrfs_trans_handle *trans;
1843 struct btrfs_transaction *cur;
1844 u64 transid;
1845 unsigned long now;
1846 unsigned long delay;
1847 bool cannot_commit;
1848
1849 do {
1850 cannot_commit = false;
1851 delay = HZ * root->fs_info->commit_interval;
1852 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1853
1854 spin_lock(&root->fs_info->trans_lock);
1855 cur = root->fs_info->running_transaction;
1856 if (!cur) {
1857 spin_unlock(&root->fs_info->trans_lock);
1858 goto sleep;
1859 }
1860
1861 now = get_seconds();
1862 if (cur->state < TRANS_STATE_BLOCKED &&
1863 (now < cur->start_time ||
1864 now - cur->start_time < root->fs_info->commit_interval)) {
1865 spin_unlock(&root->fs_info->trans_lock);
1866 delay = HZ * 5;
1867 goto sleep;
1868 }
1869 transid = cur->transid;
1870 spin_unlock(&root->fs_info->trans_lock);
1871
1872 /* If the file system is aborted, this will always fail. */
1873 trans = btrfs_attach_transaction(root);
1874 if (IS_ERR(trans)) {
1875 if (PTR_ERR(trans) != -ENOENT)
1876 cannot_commit = true;
1877 goto sleep;
1878 }
1879 if (transid == trans->transid) {
1880 btrfs_commit_transaction(trans, root);
1881 } else {
1882 btrfs_end_transaction(trans, root);
1883 }
1884sleep:
1885 wake_up_process(root->fs_info->cleaner_kthread);
1886 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1887
1888 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1889 &root->fs_info->fs_state)))
1890 btrfs_cleanup_transaction(root);
1891 if (!try_to_freeze()) {
1892 set_current_state(TASK_INTERRUPTIBLE);
1893 if (!kthread_should_stop() &&
1894 (!btrfs_transaction_blocked(root->fs_info) ||
1895 cannot_commit))
1896 schedule_timeout(delay);
1897 __set_current_state(TASK_RUNNING);
1898 }
1899 } while (!kthread_should_stop());
1900 return 0;
1901}
1902
1903/*
1904 * this will find the highest generation in the array of
1905 * root backups. The index of the highest array is returned,
1906 * or -1 if we can't find anything.
1907 *
1908 * We check to make sure the array is valid by comparing the
1909 * generation of the latest root in the array with the generation
1910 * in the super block. If they don't match we pitch it.
1911 */
1912static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1913{
1914 u64 cur;
1915 int newest_index = -1;
1916 struct btrfs_root_backup *root_backup;
1917 int i;
1918
1919 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1920 root_backup = info->super_copy->super_roots + i;
1921 cur = btrfs_backup_tree_root_gen(root_backup);
1922 if (cur == newest_gen)
1923 newest_index = i;
1924 }
1925
1926 /* check to see if we actually wrapped around */
1927 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1928 root_backup = info->super_copy->super_roots;
1929 cur = btrfs_backup_tree_root_gen(root_backup);
1930 if (cur == newest_gen)
1931 newest_index = 0;
1932 }
1933 return newest_index;
1934}
1935
1936
1937/*
1938 * find the oldest backup so we know where to store new entries
1939 * in the backup array. This will set the backup_root_index
1940 * field in the fs_info struct
1941 */
1942static void find_oldest_super_backup(struct btrfs_fs_info *info,
1943 u64 newest_gen)
1944{
1945 int newest_index = -1;
1946
1947 newest_index = find_newest_super_backup(info, newest_gen);
1948 /* if there was garbage in there, just move along */
1949 if (newest_index == -1) {
1950 info->backup_root_index = 0;
1951 } else {
1952 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1953 }
1954}
1955
1956/*
1957 * copy all the root pointers into the super backup array.
1958 * this will bump the backup pointer by one when it is
1959 * done
1960 */
1961static void backup_super_roots(struct btrfs_fs_info *info)
1962{
1963 int next_backup;
1964 struct btrfs_root_backup *root_backup;
1965 int last_backup;
1966
1967 next_backup = info->backup_root_index;
1968 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1969 BTRFS_NUM_BACKUP_ROOTS;
1970
1971 /*
1972 * just overwrite the last backup if we're at the same generation
1973 * this happens only at umount
1974 */
1975 root_backup = info->super_for_commit->super_roots + last_backup;
1976 if (btrfs_backup_tree_root_gen(root_backup) ==
1977 btrfs_header_generation(info->tree_root->node))
1978 next_backup = last_backup;
1979
1980 root_backup = info->super_for_commit->super_roots + next_backup;
1981
1982 /*
1983 * make sure all of our padding and empty slots get zero filled
1984 * regardless of which ones we use today
1985 */
1986 memset(root_backup, 0, sizeof(*root_backup));
1987
1988 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1989
1990 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1991 btrfs_set_backup_tree_root_gen(root_backup,
1992 btrfs_header_generation(info->tree_root->node));
1993
1994 btrfs_set_backup_tree_root_level(root_backup,
1995 btrfs_header_level(info->tree_root->node));
1996
1997 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1998 btrfs_set_backup_chunk_root_gen(root_backup,
1999 btrfs_header_generation(info->chunk_root->node));
2000 btrfs_set_backup_chunk_root_level(root_backup,
2001 btrfs_header_level(info->chunk_root->node));
2002
2003 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2004 btrfs_set_backup_extent_root_gen(root_backup,
2005 btrfs_header_generation(info->extent_root->node));
2006 btrfs_set_backup_extent_root_level(root_backup,
2007 btrfs_header_level(info->extent_root->node));
2008
2009 /*
2010 * we might commit during log recovery, which happens before we set
2011 * the fs_root. Make sure it is valid before we fill it in.
2012 */
2013 if (info->fs_root && info->fs_root->node) {
2014 btrfs_set_backup_fs_root(root_backup,
2015 info->fs_root->node->start);
2016 btrfs_set_backup_fs_root_gen(root_backup,
2017 btrfs_header_generation(info->fs_root->node));
2018 btrfs_set_backup_fs_root_level(root_backup,
2019 btrfs_header_level(info->fs_root->node));
2020 }
2021
2022 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2023 btrfs_set_backup_dev_root_gen(root_backup,
2024 btrfs_header_generation(info->dev_root->node));
2025 btrfs_set_backup_dev_root_level(root_backup,
2026 btrfs_header_level(info->dev_root->node));
2027
2028 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2029 btrfs_set_backup_csum_root_gen(root_backup,
2030 btrfs_header_generation(info->csum_root->node));
2031 btrfs_set_backup_csum_root_level(root_backup,
2032 btrfs_header_level(info->csum_root->node));
2033
2034 btrfs_set_backup_total_bytes(root_backup,
2035 btrfs_super_total_bytes(info->super_copy));
2036 btrfs_set_backup_bytes_used(root_backup,
2037 btrfs_super_bytes_used(info->super_copy));
2038 btrfs_set_backup_num_devices(root_backup,
2039 btrfs_super_num_devices(info->super_copy));
2040
2041 /*
2042 * if we don't copy this out to the super_copy, it won't get remembered
2043 * for the next commit
2044 */
2045 memcpy(&info->super_copy->super_roots,
2046 &info->super_for_commit->super_roots,
2047 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2048}
2049
2050/*
2051 * this copies info out of the root backup array and back into
2052 * the in-memory super block. It is meant to help iterate through
2053 * the array, so you send it the number of backups you've already
2054 * tried and the last backup index you used.
2055 *
2056 * this returns -1 when it has tried all the backups
2057 */
2058static noinline int next_root_backup(struct btrfs_fs_info *info,
2059 struct btrfs_super_block *super,
2060 int *num_backups_tried, int *backup_index)
2061{
2062 struct btrfs_root_backup *root_backup;
2063 int newest = *backup_index;
2064
2065 if (*num_backups_tried == 0) {
2066 u64 gen = btrfs_super_generation(super);
2067
2068 newest = find_newest_super_backup(info, gen);
2069 if (newest == -1)
2070 return -1;
2071
2072 *backup_index = newest;
2073 *num_backups_tried = 1;
2074 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2075 /* we've tried all the backups, all done */
2076 return -1;
2077 } else {
2078 /* jump to the next oldest backup */
2079 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2080 BTRFS_NUM_BACKUP_ROOTS;
2081 *backup_index = newest;
2082 *num_backups_tried += 1;
2083 }
2084 root_backup = super->super_roots + newest;
2085
2086 btrfs_set_super_generation(super,
2087 btrfs_backup_tree_root_gen(root_backup));
2088 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2089 btrfs_set_super_root_level(super,
2090 btrfs_backup_tree_root_level(root_backup));
2091 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2092
2093 /*
2094 * fixme: the total bytes and num_devices need to match or we should
2095 * need a fsck
2096 */
2097 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2098 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2099 return 0;
2100}
2101
2102/* helper to cleanup workers */
2103static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2104{
2105 btrfs_destroy_workqueue(fs_info->fixup_workers);
2106 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2107 btrfs_destroy_workqueue(fs_info->workers);
2108 btrfs_destroy_workqueue(fs_info->endio_workers);
2109 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2110 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2111 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2112 btrfs_destroy_workqueue(fs_info->rmw_workers);
2113 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2114 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2115 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2116 btrfs_destroy_workqueue(fs_info->submit_workers);
2117 btrfs_destroy_workqueue(fs_info->delayed_workers);
2118 btrfs_destroy_workqueue(fs_info->caching_workers);
2119 btrfs_destroy_workqueue(fs_info->readahead_workers);
2120 btrfs_destroy_workqueue(fs_info->flush_workers);
2121 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2122 btrfs_destroy_workqueue(fs_info->extent_workers);
2123}
2124
2125static void free_root_extent_buffers(struct btrfs_root *root)
2126{
2127 if (root) {
2128 free_extent_buffer(root->node);
2129 free_extent_buffer(root->commit_root);
2130 root->node = NULL;
2131 root->commit_root = NULL;
2132 }
2133}
2134
2135/* helper to cleanup tree roots */
2136static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2137{
2138 free_root_extent_buffers(info->tree_root);
2139
2140 free_root_extent_buffers(info->dev_root);
2141 free_root_extent_buffers(info->extent_root);
2142 free_root_extent_buffers(info->csum_root);
2143 free_root_extent_buffers(info->quota_root);
2144 free_root_extent_buffers(info->uuid_root);
2145 if (chunk_root)
2146 free_root_extent_buffers(info->chunk_root);
2147}
2148
2149void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2150{
2151 int ret;
2152 struct btrfs_root *gang[8];
2153 int i;
2154
2155 while (!list_empty(&fs_info->dead_roots)) {
2156 gang[0] = list_entry(fs_info->dead_roots.next,
2157 struct btrfs_root, root_list);
2158 list_del(&gang[0]->root_list);
2159
2160 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2161 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2162 } else {
2163 free_extent_buffer(gang[0]->node);
2164 free_extent_buffer(gang[0]->commit_root);
2165 btrfs_put_fs_root(gang[0]);
2166 }
2167 }
2168
2169 while (1) {
2170 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2171 (void **)gang, 0,
2172 ARRAY_SIZE(gang));
2173 if (!ret)
2174 break;
2175 for (i = 0; i < ret; i++)
2176 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2177 }
2178
2179 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2180 btrfs_free_log_root_tree(NULL, fs_info);
2181 btrfs_destroy_pinned_extent(fs_info->tree_root,
2182 fs_info->pinned_extents);
2183 }
2184}
2185
2186static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2187{
2188 mutex_init(&fs_info->scrub_lock);
2189 atomic_set(&fs_info->scrubs_running, 0);
2190 atomic_set(&fs_info->scrub_pause_req, 0);
2191 atomic_set(&fs_info->scrubs_paused, 0);
2192 atomic_set(&fs_info->scrub_cancel_req, 0);
2193 init_waitqueue_head(&fs_info->scrub_pause_wait);
2194 fs_info->scrub_workers_refcnt = 0;
2195}
2196
2197static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2198{
2199 spin_lock_init(&fs_info->balance_lock);
2200 mutex_init(&fs_info->balance_mutex);
2201 atomic_set(&fs_info->balance_running, 0);
2202 atomic_set(&fs_info->balance_pause_req, 0);
2203 atomic_set(&fs_info->balance_cancel_req, 0);
2204 fs_info->balance_ctl = NULL;
2205 init_waitqueue_head(&fs_info->balance_wait_q);
2206}
2207
2208static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2209 struct btrfs_root *tree_root)
2210{
2211 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2212 set_nlink(fs_info->btree_inode, 1);
2213 /*
2214 * we set the i_size on the btree inode to the max possible int.
2215 * the real end of the address space is determined by all of
2216 * the devices in the system
2217 */
2218 fs_info->btree_inode->i_size = OFFSET_MAX;
2219 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2220
2221 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2222 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2223 fs_info->btree_inode->i_mapping);
2224 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2225 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2226
2227 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2228
2229 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2230 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2231 sizeof(struct btrfs_key));
2232 set_bit(BTRFS_INODE_DUMMY,
2233 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2234 btrfs_insert_inode_hash(fs_info->btree_inode);
2235}
2236
2237static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2238{
2239 fs_info->dev_replace.lock_owner = 0;
2240 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2241 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2242 mutex_init(&fs_info->dev_replace.lock_management_lock);
2243 mutex_init(&fs_info->dev_replace.lock);
2244 init_waitqueue_head(&fs_info->replace_wait);
2245}
2246
2247static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2248{
2249 spin_lock_init(&fs_info->qgroup_lock);
2250 mutex_init(&fs_info->qgroup_ioctl_lock);
2251 fs_info->qgroup_tree = RB_ROOT;
2252 fs_info->qgroup_op_tree = RB_ROOT;
2253 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2254 fs_info->qgroup_seq = 1;
2255 fs_info->quota_enabled = 0;
2256 fs_info->pending_quota_state = 0;
2257 fs_info->qgroup_ulist = NULL;
2258 mutex_init(&fs_info->qgroup_rescan_lock);
2259}
2260
2261static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2262 struct btrfs_fs_devices *fs_devices)
2263{
2264 int max_active = fs_info->thread_pool_size;
2265 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2266
2267 fs_info->workers =
2268 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2269 max_active, 16);
2270
2271 fs_info->delalloc_workers =
2272 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2273
2274 fs_info->flush_workers =
2275 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2276
2277 fs_info->caching_workers =
2278 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2279
2280 /*
2281 * a higher idle thresh on the submit workers makes it much more
2282 * likely that bios will be send down in a sane order to the
2283 * devices
2284 */
2285 fs_info->submit_workers =
2286 btrfs_alloc_workqueue("submit", flags,
2287 min_t(u64, fs_devices->num_devices,
2288 max_active), 64);
2289
2290 fs_info->fixup_workers =
2291 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2292
2293 /*
2294 * endios are largely parallel and should have a very
2295 * low idle thresh
2296 */
2297 fs_info->endio_workers =
2298 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2299 fs_info->endio_meta_workers =
2300 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2301 fs_info->endio_meta_write_workers =
2302 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2303 fs_info->endio_raid56_workers =
2304 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2305 fs_info->endio_repair_workers =
2306 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2307 fs_info->rmw_workers =
2308 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2309 fs_info->endio_write_workers =
2310 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2311 fs_info->endio_freespace_worker =
2312 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2313 fs_info->delayed_workers =
2314 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2315 fs_info->readahead_workers =
2316 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2317 fs_info->qgroup_rescan_workers =
2318 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2319 fs_info->extent_workers =
2320 btrfs_alloc_workqueue("extent-refs", flags,
2321 min_t(u64, fs_devices->num_devices,
2322 max_active), 8);
2323
2324 if (!(fs_info->workers && fs_info->delalloc_workers &&
2325 fs_info->submit_workers && fs_info->flush_workers &&
2326 fs_info->endio_workers && fs_info->endio_meta_workers &&
2327 fs_info->endio_meta_write_workers &&
2328 fs_info->endio_repair_workers &&
2329 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2330 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2331 fs_info->caching_workers && fs_info->readahead_workers &&
2332 fs_info->fixup_workers && fs_info->delayed_workers &&
2333 fs_info->extent_workers &&
2334 fs_info->qgroup_rescan_workers)) {
2335 return -ENOMEM;
2336 }
2337
2338 return 0;
2339}
2340
2341static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2342 struct btrfs_fs_devices *fs_devices)
2343{
2344 int ret;
2345 struct btrfs_root *tree_root = fs_info->tree_root;
2346 struct btrfs_root *log_tree_root;
2347 struct btrfs_super_block *disk_super = fs_info->super_copy;
2348 u64 bytenr = btrfs_super_log_root(disk_super);
2349
2350 if (fs_devices->rw_devices == 0) {
2351 printk(KERN_WARNING "BTRFS: log replay required "
2352 "on RO media\n");
2353 return -EIO;
2354 }
2355
2356 log_tree_root = btrfs_alloc_root(fs_info);
2357 if (!log_tree_root)
2358 return -ENOMEM;
2359
2360 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2361 tree_root->stripesize, log_tree_root, fs_info,
2362 BTRFS_TREE_LOG_OBJECTID);
2363
2364 log_tree_root->node = read_tree_block(tree_root, bytenr,
2365 fs_info->generation + 1);
2366 if (IS_ERR(log_tree_root->node)) {
2367 printk(KERN_ERR "BTRFS: failed to read log tree\n");
2368 ret = PTR_ERR(log_tree_root->node);
2369 kfree(log_tree_root);
2370 return ret;
2371 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2372 printk(KERN_ERR "BTRFS: failed to read log tree\n");
2373 free_extent_buffer(log_tree_root->node);
2374 kfree(log_tree_root);
2375 return -EIO;
2376 }
2377 /* returns with log_tree_root freed on success */
2378 ret = btrfs_recover_log_trees(log_tree_root);
2379 if (ret) {
2380 btrfs_error(tree_root->fs_info, ret,
2381 "Failed to recover log tree");
2382 free_extent_buffer(log_tree_root->node);
2383 kfree(log_tree_root);
2384 return ret;
2385 }
2386
2387 if (fs_info->sb->s_flags & MS_RDONLY) {
2388 ret = btrfs_commit_super(tree_root);
2389 if (ret)
2390 return ret;
2391 }
2392
2393 return 0;
2394}
2395
2396static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2397 struct btrfs_root *tree_root)
2398{
2399 struct btrfs_root *root;
2400 struct btrfs_key location;
2401 int ret;
2402
2403 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2404 location.type = BTRFS_ROOT_ITEM_KEY;
2405 location.offset = 0;
2406
2407 root = btrfs_read_tree_root(tree_root, &location);
2408 if (IS_ERR(root))
2409 return PTR_ERR(root);
2410 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2411 fs_info->extent_root = root;
2412
2413 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2414 root = btrfs_read_tree_root(tree_root, &location);
2415 if (IS_ERR(root))
2416 return PTR_ERR(root);
2417 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2418 fs_info->dev_root = root;
2419 btrfs_init_devices_late(fs_info);
2420
2421 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2422 root = btrfs_read_tree_root(tree_root, &location);
2423 if (IS_ERR(root))
2424 return PTR_ERR(root);
2425 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2426 fs_info->csum_root = root;
2427
2428 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2429 root = btrfs_read_tree_root(tree_root, &location);
2430 if (!IS_ERR(root)) {
2431 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2432 fs_info->quota_enabled = 1;
2433 fs_info->pending_quota_state = 1;
2434 fs_info->quota_root = root;
2435 }
2436
2437 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2438 root = btrfs_read_tree_root(tree_root, &location);
2439 if (IS_ERR(root)) {
2440 ret = PTR_ERR(root);
2441 if (ret != -ENOENT)
2442 return ret;
2443 } else {
2444 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2445 fs_info->uuid_root = root;
2446 }
2447
2448 return 0;
2449}
2450
2451int open_ctree(struct super_block *sb,
2452 struct btrfs_fs_devices *fs_devices,
2453 char *options)
2454{
2455 u32 sectorsize;
2456 u32 nodesize;
2457 u32 stripesize;
2458 u64 generation;
2459 u64 features;
2460 struct btrfs_key location;
2461 struct buffer_head *bh;
2462 struct btrfs_super_block *disk_super;
2463 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2464 struct btrfs_root *tree_root;
2465 struct btrfs_root *chunk_root;
2466 int ret;
2467 int err = -EINVAL;
2468 int num_backups_tried = 0;
2469 int backup_index = 0;
2470 int max_active;
2471
2472 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2473 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2474 if (!tree_root || !chunk_root) {
2475 err = -ENOMEM;
2476 goto fail;
2477 }
2478
2479 ret = init_srcu_struct(&fs_info->subvol_srcu);
2480 if (ret) {
2481 err = ret;
2482 goto fail;
2483 }
2484
2485 ret = setup_bdi(fs_info, &fs_info->bdi);
2486 if (ret) {
2487 err = ret;
2488 goto fail_srcu;
2489 }
2490
2491 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2492 if (ret) {
2493 err = ret;
2494 goto fail_bdi;
2495 }
2496 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2497 (1 + ilog2(nr_cpu_ids));
2498
2499 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2500 if (ret) {
2501 err = ret;
2502 goto fail_dirty_metadata_bytes;
2503 }
2504
2505 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2506 if (ret) {
2507 err = ret;
2508 goto fail_delalloc_bytes;
2509 }
2510
2511 fs_info->btree_inode = new_inode(sb);
2512 if (!fs_info->btree_inode) {
2513 err = -ENOMEM;
2514 goto fail_bio_counter;
2515 }
2516
2517 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2518
2519 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2520 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2521 INIT_LIST_HEAD(&fs_info->trans_list);
2522 INIT_LIST_HEAD(&fs_info->dead_roots);
2523 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2524 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2525 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2526 spin_lock_init(&fs_info->delalloc_root_lock);
2527 spin_lock_init(&fs_info->trans_lock);
2528 spin_lock_init(&fs_info->fs_roots_radix_lock);
2529 spin_lock_init(&fs_info->delayed_iput_lock);
2530 spin_lock_init(&fs_info->defrag_inodes_lock);
2531 spin_lock_init(&fs_info->free_chunk_lock);
2532 spin_lock_init(&fs_info->tree_mod_seq_lock);
2533 spin_lock_init(&fs_info->super_lock);
2534 spin_lock_init(&fs_info->qgroup_op_lock);
2535 spin_lock_init(&fs_info->buffer_lock);
2536 spin_lock_init(&fs_info->unused_bgs_lock);
2537 rwlock_init(&fs_info->tree_mod_log_lock);
2538 mutex_init(&fs_info->unused_bg_unpin_mutex);
2539 mutex_init(&fs_info->delete_unused_bgs_mutex);
2540 mutex_init(&fs_info->reloc_mutex);
2541 mutex_init(&fs_info->delalloc_root_mutex);
2542 seqlock_init(&fs_info->profiles_lock);
2543 init_rwsem(&fs_info->delayed_iput_sem);
2544
2545 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2546 INIT_LIST_HEAD(&fs_info->space_info);
2547 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2548 INIT_LIST_HEAD(&fs_info->unused_bgs);
2549 btrfs_mapping_init(&fs_info->mapping_tree);
2550 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2551 BTRFS_BLOCK_RSV_GLOBAL);
2552 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2553 BTRFS_BLOCK_RSV_DELALLOC);
2554 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2555 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2556 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2557 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2558 BTRFS_BLOCK_RSV_DELOPS);
2559 atomic_set(&fs_info->nr_async_submits, 0);
2560 atomic_set(&fs_info->async_delalloc_pages, 0);
2561 atomic_set(&fs_info->async_submit_draining, 0);
2562 atomic_set(&fs_info->nr_async_bios, 0);
2563 atomic_set(&fs_info->defrag_running, 0);
2564 atomic_set(&fs_info->qgroup_op_seq, 0);
2565 atomic64_set(&fs_info->tree_mod_seq, 0);
2566 fs_info->sb = sb;
2567 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2568 fs_info->metadata_ratio = 0;
2569 fs_info->defrag_inodes = RB_ROOT;
2570 fs_info->free_chunk_space = 0;
2571 fs_info->tree_mod_log = RB_ROOT;
2572 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2573 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2574 /* readahead state */
2575 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2576 spin_lock_init(&fs_info->reada_lock);
2577
2578 fs_info->thread_pool_size = min_t(unsigned long,
2579 num_online_cpus() + 2, 8);
2580
2581 INIT_LIST_HEAD(&fs_info->ordered_roots);
2582 spin_lock_init(&fs_info->ordered_root_lock);
2583 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2584 GFP_NOFS);
2585 if (!fs_info->delayed_root) {
2586 err = -ENOMEM;
2587 goto fail_iput;
2588 }
2589 btrfs_init_delayed_root(fs_info->delayed_root);
2590
2591 btrfs_init_scrub(fs_info);
2592#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2593 fs_info->check_integrity_print_mask = 0;
2594#endif
2595 btrfs_init_balance(fs_info);
2596 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2597
2598 sb->s_blocksize = 4096;
2599 sb->s_blocksize_bits = blksize_bits(4096);
2600 sb->s_bdi = &fs_info->bdi;
2601
2602 btrfs_init_btree_inode(fs_info, tree_root);
2603
2604 spin_lock_init(&fs_info->block_group_cache_lock);
2605 fs_info->block_group_cache_tree = RB_ROOT;
2606 fs_info->first_logical_byte = (u64)-1;
2607
2608 extent_io_tree_init(&fs_info->freed_extents[0],
2609 fs_info->btree_inode->i_mapping);
2610 extent_io_tree_init(&fs_info->freed_extents[1],
2611 fs_info->btree_inode->i_mapping);
2612 fs_info->pinned_extents = &fs_info->freed_extents[0];
2613 fs_info->do_barriers = 1;
2614
2615
2616 mutex_init(&fs_info->ordered_operations_mutex);
2617 mutex_init(&fs_info->tree_log_mutex);
2618 mutex_init(&fs_info->chunk_mutex);
2619 mutex_init(&fs_info->transaction_kthread_mutex);
2620 mutex_init(&fs_info->cleaner_mutex);
2621 mutex_init(&fs_info->volume_mutex);
2622 mutex_init(&fs_info->ro_block_group_mutex);
2623 init_rwsem(&fs_info->commit_root_sem);
2624 init_rwsem(&fs_info->cleanup_work_sem);
2625 init_rwsem(&fs_info->subvol_sem);
2626 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2627
2628 btrfs_init_dev_replace_locks(fs_info);
2629 btrfs_init_qgroup(fs_info);
2630
2631 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2632 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2633
2634 init_waitqueue_head(&fs_info->transaction_throttle);
2635 init_waitqueue_head(&fs_info->transaction_wait);
2636 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2637 init_waitqueue_head(&fs_info->async_submit_wait);
2638
2639 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2640
2641 ret = btrfs_alloc_stripe_hash_table(fs_info);
2642 if (ret) {
2643 err = ret;
2644 goto fail_alloc;
2645 }
2646
2647 __setup_root(4096, 4096, 4096, tree_root,
2648 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2649
2650 invalidate_bdev(fs_devices->latest_bdev);
2651
2652 /*
2653 * Read super block and check the signature bytes only
2654 */
2655 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2656 if (!bh) {
2657 err = -EINVAL;
2658 goto fail_alloc;
2659 }
2660
2661 /*
2662 * We want to check superblock checksum, the type is stored inside.
2663 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2664 */
2665 if (btrfs_check_super_csum(bh->b_data)) {
2666 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2667 err = -EINVAL;
2668 goto fail_alloc;
2669 }
2670
2671 /*
2672 * super_copy is zeroed at allocation time and we never touch the
2673 * following bytes up to INFO_SIZE, the checksum is calculated from
2674 * the whole block of INFO_SIZE
2675 */
2676 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2677 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2678 sizeof(*fs_info->super_for_commit));
2679 brelse(bh);
2680
2681 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2682
2683 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2684 if (ret) {
2685 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2686 err = -EINVAL;
2687 goto fail_alloc;
2688 }
2689
2690 disk_super = fs_info->super_copy;
2691 if (!btrfs_super_root(disk_super))
2692 goto fail_alloc;
2693
2694 /* check FS state, whether FS is broken. */
2695 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2696 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2697
2698 /*
2699 * run through our array of backup supers and setup
2700 * our ring pointer to the oldest one
2701 */
2702 generation = btrfs_super_generation(disk_super);
2703 find_oldest_super_backup(fs_info, generation);
2704
2705 /*
2706 * In the long term, we'll store the compression type in the super
2707 * block, and it'll be used for per file compression control.
2708 */
2709 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2710
2711 ret = btrfs_parse_options(tree_root, options);
2712 if (ret) {
2713 err = ret;
2714 goto fail_alloc;
2715 }
2716
2717 features = btrfs_super_incompat_flags(disk_super) &
2718 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2719 if (features) {
2720 printk(KERN_ERR "BTRFS: couldn't mount because of "
2721 "unsupported optional features (%Lx).\n",
2722 features);
2723 err = -EINVAL;
2724 goto fail_alloc;
2725 }
2726
2727 /*
2728 * Leafsize and nodesize were always equal, this is only a sanity check.
2729 */
2730 if (le32_to_cpu(disk_super->__unused_leafsize) !=
2731 btrfs_super_nodesize(disk_super)) {
2732 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2733 "blocksizes don't match. node %d leaf %d\n",
2734 btrfs_super_nodesize(disk_super),
2735 le32_to_cpu(disk_super->__unused_leafsize));
2736 err = -EINVAL;
2737 goto fail_alloc;
2738 }
2739 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2740 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2741 "blocksize (%d) was too large\n",
2742 btrfs_super_nodesize(disk_super));
2743 err = -EINVAL;
2744 goto fail_alloc;
2745 }
2746
2747 features = btrfs_super_incompat_flags(disk_super);
2748 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2749 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2750 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2751
2752 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2753 printk(KERN_INFO "BTRFS: has skinny extents\n");
2754
2755 /*
2756 * flag our filesystem as having big metadata blocks if
2757 * they are bigger than the page size
2758 */
2759 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2760 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2761 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2762 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2763 }
2764
2765 nodesize = btrfs_super_nodesize(disk_super);
2766 sectorsize = btrfs_super_sectorsize(disk_super);
2767 stripesize = btrfs_super_stripesize(disk_super);
2768 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2769 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2770
2771 /*
2772 * mixed block groups end up with duplicate but slightly offset
2773 * extent buffers for the same range. It leads to corruptions
2774 */
2775 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2776 (sectorsize != nodesize)) {
2777 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2778 "are not allowed for mixed block groups on %s\n",
2779 sb->s_id);
2780 goto fail_alloc;
2781 }
2782
2783 /*
2784 * Needn't use the lock because there is no other task which will
2785 * update the flag.
2786 */
2787 btrfs_set_super_incompat_flags(disk_super, features);
2788
2789 features = btrfs_super_compat_ro_flags(disk_super) &
2790 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2791 if (!(sb->s_flags & MS_RDONLY) && features) {
2792 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2793 "unsupported option features (%Lx).\n",
2794 features);
2795 err = -EINVAL;
2796 goto fail_alloc;
2797 }
2798
2799 max_active = fs_info->thread_pool_size;
2800
2801 ret = btrfs_init_workqueues(fs_info, fs_devices);
2802 if (ret) {
2803 err = ret;
2804 goto fail_sb_buffer;
2805 }
2806
2807 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2808 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2809 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2810
2811 tree_root->nodesize = nodesize;
2812 tree_root->sectorsize = sectorsize;
2813 tree_root->stripesize = stripesize;
2814
2815 sb->s_blocksize = sectorsize;
2816 sb->s_blocksize_bits = blksize_bits(sectorsize);
2817
2818 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2819 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
2820 goto fail_sb_buffer;
2821 }
2822
2823 if (sectorsize != PAGE_SIZE) {
2824 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
2825 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2826 goto fail_sb_buffer;
2827 }
2828
2829 mutex_lock(&fs_info->chunk_mutex);
2830 ret = btrfs_read_sys_array(tree_root);
2831 mutex_unlock(&fs_info->chunk_mutex);
2832 if (ret) {
2833 printk(KERN_ERR "BTRFS: failed to read the system "
2834 "array on %s\n", sb->s_id);
2835 goto fail_sb_buffer;
2836 }
2837
2838 generation = btrfs_super_chunk_root_generation(disk_super);
2839
2840 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2841 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2842
2843 chunk_root->node = read_tree_block(chunk_root,
2844 btrfs_super_chunk_root(disk_super),
2845 generation);
2846 if (IS_ERR(chunk_root->node) ||
2847 !extent_buffer_uptodate(chunk_root->node)) {
2848 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2849 sb->s_id);
2850 chunk_root->node = NULL;
2851 goto fail_tree_roots;
2852 }
2853 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2854 chunk_root->commit_root = btrfs_root_node(chunk_root);
2855
2856 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2857 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2858
2859 ret = btrfs_read_chunk_tree(chunk_root);
2860 if (ret) {
2861 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2862 sb->s_id);
2863 goto fail_tree_roots;
2864 }
2865
2866 /*
2867 * keep the device that is marked to be the target device for the
2868 * dev_replace procedure
2869 */
2870 btrfs_close_extra_devices(fs_devices, 0);
2871
2872 if (!fs_devices->latest_bdev) {
2873 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2874 sb->s_id);
2875 goto fail_tree_roots;
2876 }
2877
2878retry_root_backup:
2879 generation = btrfs_super_generation(disk_super);
2880
2881 tree_root->node = read_tree_block(tree_root,
2882 btrfs_super_root(disk_super),
2883 generation);
2884 if (IS_ERR(tree_root->node) ||
2885 !extent_buffer_uptodate(tree_root->node)) {
2886 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2887 sb->s_id);
2888 tree_root->node = NULL;
2889 goto recovery_tree_root;
2890 }
2891
2892 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2893 tree_root->commit_root = btrfs_root_node(tree_root);
2894 btrfs_set_root_refs(&tree_root->root_item, 1);
2895
2896 ret = btrfs_read_roots(fs_info, tree_root);
2897 if (ret)
2898 goto recovery_tree_root;
2899
2900 fs_info->generation = generation;
2901 fs_info->last_trans_committed = generation;
2902
2903 ret = btrfs_recover_balance(fs_info);
2904 if (ret) {
2905 printk(KERN_ERR "BTRFS: failed to recover balance\n");
2906 goto fail_block_groups;
2907 }
2908
2909 ret = btrfs_init_dev_stats(fs_info);
2910 if (ret) {
2911 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2912 ret);
2913 goto fail_block_groups;
2914 }
2915
2916 ret = btrfs_init_dev_replace(fs_info);
2917 if (ret) {
2918 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2919 goto fail_block_groups;
2920 }
2921
2922 btrfs_close_extra_devices(fs_devices, 1);
2923
2924 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2925 if (ret) {
2926 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2927 goto fail_block_groups;
2928 }
2929
2930 ret = btrfs_sysfs_add_device(fs_devices);
2931 if (ret) {
2932 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2933 goto fail_fsdev_sysfs;
2934 }
2935
2936 ret = btrfs_sysfs_add_one(fs_info);
2937 if (ret) {
2938 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2939 goto fail_fsdev_sysfs;
2940 }
2941
2942 ret = btrfs_init_space_info(fs_info);
2943 if (ret) {
2944 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2945 goto fail_sysfs;
2946 }
2947
2948 ret = btrfs_read_block_groups(fs_info->extent_root);
2949 if (ret) {
2950 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2951 goto fail_sysfs;
2952 }
2953 fs_info->num_tolerated_disk_barrier_failures =
2954 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2955 if (fs_info->fs_devices->missing_devices >
2956 fs_info->num_tolerated_disk_barrier_failures &&
2957 !(sb->s_flags & MS_RDONLY)) {
2958 pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
2959 fs_info->fs_devices->missing_devices,
2960 fs_info->num_tolerated_disk_barrier_failures);
2961 goto fail_sysfs;
2962 }
2963
2964 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2965 "btrfs-cleaner");
2966 if (IS_ERR(fs_info->cleaner_kthread))
2967 goto fail_sysfs;
2968
2969 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2970 tree_root,
2971 "btrfs-transaction");
2972 if (IS_ERR(fs_info->transaction_kthread))
2973 goto fail_cleaner;
2974
2975 if (!btrfs_test_opt(tree_root, SSD) &&
2976 !btrfs_test_opt(tree_root, NOSSD) &&
2977 !fs_info->fs_devices->rotating) {
2978 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2979 "mode\n");
2980 btrfs_set_opt(fs_info->mount_opt, SSD);
2981 }
2982
2983 /*
2984 * Mount does not set all options immediatelly, we can do it now and do
2985 * not have to wait for transaction commit
2986 */
2987 btrfs_apply_pending_changes(fs_info);
2988
2989#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2990 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2991 ret = btrfsic_mount(tree_root, fs_devices,
2992 btrfs_test_opt(tree_root,
2993 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2994 1 : 0,
2995 fs_info->check_integrity_print_mask);
2996 if (ret)
2997 printk(KERN_WARNING "BTRFS: failed to initialize"
2998 " integrity check module %s\n", sb->s_id);
2999 }
3000#endif
3001 ret = btrfs_read_qgroup_config(fs_info);
3002 if (ret)
3003 goto fail_trans_kthread;
3004
3005 /* do not make disk changes in broken FS */
3006 if (btrfs_super_log_root(disk_super) != 0) {
3007 ret = btrfs_replay_log(fs_info, fs_devices);
3008 if (ret) {
3009 err = ret;
3010 goto fail_qgroup;
3011 }
3012 }
3013
3014 ret = btrfs_find_orphan_roots(tree_root);
3015 if (ret)
3016 goto fail_qgroup;
3017
3018 if (!(sb->s_flags & MS_RDONLY)) {
3019 ret = btrfs_cleanup_fs_roots(fs_info);
3020 if (ret)
3021 goto fail_qgroup;
3022
3023 mutex_lock(&fs_info->cleaner_mutex);
3024 ret = btrfs_recover_relocation(tree_root);
3025 mutex_unlock(&fs_info->cleaner_mutex);
3026 if (ret < 0) {
3027 printk(KERN_WARNING
3028 "BTRFS: failed to recover relocation\n");
3029 err = -EINVAL;
3030 goto fail_qgroup;
3031 }
3032 }
3033
3034 location.objectid = BTRFS_FS_TREE_OBJECTID;
3035 location.type = BTRFS_ROOT_ITEM_KEY;
3036 location.offset = 0;
3037
3038 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3039 if (IS_ERR(fs_info->fs_root)) {
3040 err = PTR_ERR(fs_info->fs_root);
3041 goto fail_qgroup;
3042 }
3043
3044 if (sb->s_flags & MS_RDONLY)
3045 return 0;
3046
3047 down_read(&fs_info->cleanup_work_sem);
3048 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3049 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3050 up_read(&fs_info->cleanup_work_sem);
3051 close_ctree(tree_root);
3052 return ret;
3053 }
3054 up_read(&fs_info->cleanup_work_sem);
3055
3056 ret = btrfs_resume_balance_async(fs_info);
3057 if (ret) {
3058 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
3059 close_ctree(tree_root);
3060 return ret;
3061 }
3062
3063 ret = btrfs_resume_dev_replace_async(fs_info);
3064 if (ret) {
3065 pr_warn("BTRFS: failed to resume dev_replace\n");
3066 close_ctree(tree_root);
3067 return ret;
3068 }
3069
3070 btrfs_qgroup_rescan_resume(fs_info);
3071
3072 if (!fs_info->uuid_root) {
3073 pr_info("BTRFS: creating UUID tree\n");
3074 ret = btrfs_create_uuid_tree(fs_info);
3075 if (ret) {
3076 pr_warn("BTRFS: failed to create the UUID tree %d\n",
3077 ret);
3078 close_ctree(tree_root);
3079 return ret;
3080 }
3081 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3082 fs_info->generation !=
3083 btrfs_super_uuid_tree_generation(disk_super)) {
3084 pr_info("BTRFS: checking UUID tree\n");
3085 ret = btrfs_check_uuid_tree(fs_info);
3086 if (ret) {
3087 pr_warn("BTRFS: failed to check the UUID tree %d\n",
3088 ret);
3089 close_ctree(tree_root);
3090 return ret;
3091 }
3092 } else {
3093 fs_info->update_uuid_tree_gen = 1;
3094 }
3095
3096 fs_info->open = 1;
3097
3098 return 0;
3099
3100fail_qgroup:
3101 btrfs_free_qgroup_config(fs_info);
3102fail_trans_kthread:
3103 kthread_stop(fs_info->transaction_kthread);
3104 btrfs_cleanup_transaction(fs_info->tree_root);
3105 btrfs_free_fs_roots(fs_info);
3106fail_cleaner:
3107 kthread_stop(fs_info->cleaner_kthread);
3108
3109 /*
3110 * make sure we're done with the btree inode before we stop our
3111 * kthreads
3112 */
3113 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3114
3115fail_sysfs:
3116 btrfs_sysfs_remove_one(fs_info);
3117
3118fail_fsdev_sysfs:
3119 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3120
3121fail_block_groups:
3122 btrfs_put_block_group_cache(fs_info);
3123 btrfs_free_block_groups(fs_info);
3124
3125fail_tree_roots:
3126 free_root_pointers(fs_info, 1);
3127 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3128
3129fail_sb_buffer:
3130 btrfs_stop_all_workers(fs_info);
3131fail_alloc:
3132fail_iput:
3133 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3134
3135 iput(fs_info->btree_inode);
3136fail_bio_counter:
3137 percpu_counter_destroy(&fs_info->bio_counter);
3138fail_delalloc_bytes:
3139 percpu_counter_destroy(&fs_info->delalloc_bytes);
3140fail_dirty_metadata_bytes:
3141 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3142fail_bdi:
3143 bdi_destroy(&fs_info->bdi);
3144fail_srcu:
3145 cleanup_srcu_struct(&fs_info->subvol_srcu);
3146fail:
3147 btrfs_free_stripe_hash_table(fs_info);
3148 btrfs_close_devices(fs_info->fs_devices);
3149 return err;
3150
3151recovery_tree_root:
3152 if (!btrfs_test_opt(tree_root, RECOVERY))
3153 goto fail_tree_roots;
3154
3155 free_root_pointers(fs_info, 0);
3156
3157 /* don't use the log in recovery mode, it won't be valid */
3158 btrfs_set_super_log_root(disk_super, 0);
3159
3160 /* we can't trust the free space cache either */
3161 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3162
3163 ret = next_root_backup(fs_info, fs_info->super_copy,
3164 &num_backups_tried, &backup_index);
3165 if (ret == -1)
3166 goto fail_block_groups;
3167 goto retry_root_backup;
3168}
3169
3170static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3171{
3172 if (uptodate) {
3173 set_buffer_uptodate(bh);
3174 } else {
3175 struct btrfs_device *device = (struct btrfs_device *)
3176 bh->b_private;
3177
3178 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3179 "I/O error on %s\n",
3180 rcu_str_deref(device->name));
3181 /* note, we dont' set_buffer_write_io_error because we have
3182 * our own ways of dealing with the IO errors
3183 */
3184 clear_buffer_uptodate(bh);
3185 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3186 }
3187 unlock_buffer(bh);
3188 put_bh(bh);
3189}
3190
3191struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3192{
3193 struct buffer_head *bh;
3194 struct buffer_head *latest = NULL;
3195 struct btrfs_super_block *super;
3196 int i;
3197 u64 transid = 0;
3198 u64 bytenr;
3199
3200 /* we would like to check all the supers, but that would make
3201 * a btrfs mount succeed after a mkfs from a different FS.
3202 * So, we need to add a special mount option to scan for
3203 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3204 */
3205 for (i = 0; i < 1; i++) {
3206 bytenr = btrfs_sb_offset(i);
3207 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3208 i_size_read(bdev->bd_inode))
3209 break;
3210 bh = __bread(bdev, bytenr / 4096,
3211 BTRFS_SUPER_INFO_SIZE);
3212 if (!bh)
3213 continue;
3214
3215 super = (struct btrfs_super_block *)bh->b_data;
3216 if (btrfs_super_bytenr(super) != bytenr ||
3217 btrfs_super_magic(super) != BTRFS_MAGIC) {
3218 brelse(bh);
3219 continue;
3220 }
3221
3222 if (!latest || btrfs_super_generation(super) > transid) {
3223 brelse(latest);
3224 latest = bh;
3225 transid = btrfs_super_generation(super);
3226 } else {
3227 brelse(bh);
3228 }
3229 }
3230 return latest;
3231}
3232
3233/*
3234 * this should be called twice, once with wait == 0 and
3235 * once with wait == 1. When wait == 0 is done, all the buffer heads
3236 * we write are pinned.
3237 *
3238 * They are released when wait == 1 is done.
3239 * max_mirrors must be the same for both runs, and it indicates how
3240 * many supers on this one device should be written.
3241 *
3242 * max_mirrors == 0 means to write them all.
3243 */
3244static int write_dev_supers(struct btrfs_device *device,
3245 struct btrfs_super_block *sb,
3246 int do_barriers, int wait, int max_mirrors)
3247{
3248 struct buffer_head *bh;
3249 int i;
3250 int ret;
3251 int errors = 0;
3252 u32 crc;
3253 u64 bytenr;
3254
3255 if (max_mirrors == 0)
3256 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3257
3258 for (i = 0; i < max_mirrors; i++) {
3259 bytenr = btrfs_sb_offset(i);
3260 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3261 device->commit_total_bytes)
3262 break;
3263
3264 if (wait) {
3265 bh = __find_get_block(device->bdev, bytenr / 4096,
3266 BTRFS_SUPER_INFO_SIZE);
3267 if (!bh) {
3268 errors++;
3269 continue;
3270 }
3271 wait_on_buffer(bh);
3272 if (!buffer_uptodate(bh))
3273 errors++;
3274
3275 /* drop our reference */
3276 brelse(bh);
3277
3278 /* drop the reference from the wait == 0 run */
3279 brelse(bh);
3280 continue;
3281 } else {
3282 btrfs_set_super_bytenr(sb, bytenr);
3283
3284 crc = ~(u32)0;
3285 crc = btrfs_csum_data((char *)sb +
3286 BTRFS_CSUM_SIZE, crc,
3287 BTRFS_SUPER_INFO_SIZE -
3288 BTRFS_CSUM_SIZE);
3289 btrfs_csum_final(crc, sb->csum);
3290
3291 /*
3292 * one reference for us, and we leave it for the
3293 * caller
3294 */
3295 bh = __getblk(device->bdev, bytenr / 4096,
3296 BTRFS_SUPER_INFO_SIZE);
3297 if (!bh) {
3298 printk(KERN_ERR "BTRFS: couldn't get super "
3299 "buffer head for bytenr %Lu\n", bytenr);
3300 errors++;
3301 continue;
3302 }
3303
3304 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3305
3306 /* one reference for submit_bh */
3307 get_bh(bh);
3308
3309 set_buffer_uptodate(bh);
3310 lock_buffer(bh);
3311 bh->b_end_io = btrfs_end_buffer_write_sync;
3312 bh->b_private = device;
3313 }
3314
3315 /*
3316 * we fua the first super. The others we allow
3317 * to go down lazy.
3318 */
3319 if (i == 0)
3320 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3321 else
3322 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3323 if (ret)
3324 errors++;
3325 }
3326 return errors < i ? 0 : -1;
3327}
3328
3329/*
3330 * endio for the write_dev_flush, this will wake anyone waiting
3331 * for the barrier when it is done
3332 */
3333static void btrfs_end_empty_barrier(struct bio *bio)
3334{
3335 if (bio->bi_private)
3336 complete(bio->bi_private);
3337 bio_put(bio);
3338}
3339
3340/*
3341 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3342 * sent down. With wait == 1, it waits for the previous flush.
3343 *
3344 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3345 * capable
3346 */
3347static int write_dev_flush(struct btrfs_device *device, int wait)
3348{
3349 struct bio *bio;
3350 int ret = 0;
3351
3352 if (device->nobarriers)
3353 return 0;
3354
3355 if (wait) {
3356 bio = device->flush_bio;
3357 if (!bio)
3358 return 0;
3359
3360 wait_for_completion(&device->flush_wait);
3361
3362 if (bio->bi_error) {
3363 ret = bio->bi_error;
3364 btrfs_dev_stat_inc_and_print(device,
3365 BTRFS_DEV_STAT_FLUSH_ERRS);
3366 }
3367
3368 /* drop the reference from the wait == 0 run */
3369 bio_put(bio);
3370 device->flush_bio = NULL;
3371
3372 return ret;
3373 }
3374
3375 /*
3376 * one reference for us, and we leave it for the
3377 * caller
3378 */
3379 device->flush_bio = NULL;
3380 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3381 if (!bio)
3382 return -ENOMEM;
3383
3384 bio->bi_end_io = btrfs_end_empty_barrier;
3385 bio->bi_bdev = device->bdev;
3386 init_completion(&device->flush_wait);
3387 bio->bi_private = &device->flush_wait;
3388 device->flush_bio = bio;
3389
3390 bio_get(bio);
3391 btrfsic_submit_bio(WRITE_FLUSH, bio);
3392
3393 return 0;
3394}
3395
3396/*
3397 * send an empty flush down to each device in parallel,
3398 * then wait for them
3399 */
3400static int barrier_all_devices(struct btrfs_fs_info *info)
3401{
3402 struct list_head *head;
3403 struct btrfs_device *dev;
3404 int errors_send = 0;
3405 int errors_wait = 0;
3406 int ret;
3407
3408 /* send down all the barriers */
3409 head = &info->fs_devices->devices;
3410 list_for_each_entry_rcu(dev, head, dev_list) {
3411 if (dev->missing)
3412 continue;
3413 if (!dev->bdev) {
3414 errors_send++;
3415 continue;
3416 }
3417 if (!dev->in_fs_metadata || !dev->writeable)
3418 continue;
3419
3420 ret = write_dev_flush(dev, 0);
3421 if (ret)
3422 errors_send++;
3423 }
3424
3425 /* wait for all the barriers */
3426 list_for_each_entry_rcu(dev, head, dev_list) {
3427 if (dev->missing)
3428 continue;
3429 if (!dev->bdev) {
3430 errors_wait++;
3431 continue;
3432 }
3433 if (!dev->in_fs_metadata || !dev->writeable)
3434 continue;
3435
3436 ret = write_dev_flush(dev, 1);
3437 if (ret)
3438 errors_wait++;
3439 }
3440 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3441 errors_wait > info->num_tolerated_disk_barrier_failures)
3442 return -EIO;
3443 return 0;
3444}
3445
3446int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3447{
3448 if ((flags & (BTRFS_BLOCK_GROUP_DUP |
3449 BTRFS_BLOCK_GROUP_RAID0 |
3450 BTRFS_AVAIL_ALLOC_BIT_SINGLE)) ||
3451 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0))
3452 return 0;
3453
3454 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3455 BTRFS_BLOCK_GROUP_RAID5 |
3456 BTRFS_BLOCK_GROUP_RAID10))
3457 return 1;
3458
3459 if (flags & BTRFS_BLOCK_GROUP_RAID6)
3460 return 2;
3461
3462 pr_warn("BTRFS: unknown raid type: %llu\n", flags);
3463 return 0;
3464}
3465
3466int btrfs_calc_num_tolerated_disk_barrier_failures(
3467 struct btrfs_fs_info *fs_info)
3468{
3469 struct btrfs_ioctl_space_info space;
3470 struct btrfs_space_info *sinfo;
3471 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3472 BTRFS_BLOCK_GROUP_SYSTEM,
3473 BTRFS_BLOCK_GROUP_METADATA,
3474 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3475 int i;
3476 int c;
3477 int num_tolerated_disk_barrier_failures =
3478 (int)fs_info->fs_devices->num_devices;
3479
3480 for (i = 0; i < ARRAY_SIZE(types); i++) {
3481 struct btrfs_space_info *tmp;
3482
3483 sinfo = NULL;
3484 rcu_read_lock();
3485 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3486 if (tmp->flags == types[i]) {
3487 sinfo = tmp;
3488 break;
3489 }
3490 }
3491 rcu_read_unlock();
3492
3493 if (!sinfo)
3494 continue;
3495
3496 down_read(&sinfo->groups_sem);
3497 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3498 u64 flags;
3499
3500 if (list_empty(&sinfo->block_groups[c]))
3501 continue;
3502
3503 btrfs_get_block_group_info(&sinfo->block_groups[c],
3504 &space);
3505 if (space.total_bytes == 0 || space.used_bytes == 0)
3506 continue;
3507 flags = space.flags;
3508
3509 num_tolerated_disk_barrier_failures = min(
3510 num_tolerated_disk_barrier_failures,
3511 btrfs_get_num_tolerated_disk_barrier_failures(
3512 flags));
3513 }
3514 up_read(&sinfo->groups_sem);
3515 }
3516
3517 return num_tolerated_disk_barrier_failures;
3518}
3519
3520static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3521{
3522 struct list_head *head;
3523 struct btrfs_device *dev;
3524 struct btrfs_super_block *sb;
3525 struct btrfs_dev_item *dev_item;
3526 int ret;
3527 int do_barriers;
3528 int max_errors;
3529 int total_errors = 0;
3530 u64 flags;
3531
3532 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3533 backup_super_roots(root->fs_info);
3534
3535 sb = root->fs_info->super_for_commit;
3536 dev_item = &sb->dev_item;
3537
3538 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3539 head = &root->fs_info->fs_devices->devices;
3540 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3541
3542 if (do_barriers) {
3543 ret = barrier_all_devices(root->fs_info);
3544 if (ret) {
3545 mutex_unlock(
3546 &root->fs_info->fs_devices->device_list_mutex);
3547 btrfs_error(root->fs_info, ret,
3548 "errors while submitting device barriers.");
3549 return ret;
3550 }
3551 }
3552
3553 list_for_each_entry_rcu(dev, head, dev_list) {
3554 if (!dev->bdev) {
3555 total_errors++;
3556 continue;
3557 }
3558 if (!dev->in_fs_metadata || !dev->writeable)
3559 continue;
3560
3561 btrfs_set_stack_device_generation(dev_item, 0);
3562 btrfs_set_stack_device_type(dev_item, dev->type);
3563 btrfs_set_stack_device_id(dev_item, dev->devid);
3564 btrfs_set_stack_device_total_bytes(dev_item,
3565 dev->commit_total_bytes);
3566 btrfs_set_stack_device_bytes_used(dev_item,
3567 dev->commit_bytes_used);
3568 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3569 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3570 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3571 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3572 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3573
3574 flags = btrfs_super_flags(sb);
3575 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3576
3577 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3578 if (ret)
3579 total_errors++;
3580 }
3581 if (total_errors > max_errors) {
3582 btrfs_err(root->fs_info, "%d errors while writing supers",
3583 total_errors);
3584 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3585
3586 /* FUA is masked off if unsupported and can't be the reason */
3587 btrfs_error(root->fs_info, -EIO,
3588 "%d errors while writing supers", total_errors);
3589 return -EIO;
3590 }
3591
3592 total_errors = 0;
3593 list_for_each_entry_rcu(dev, head, dev_list) {
3594 if (!dev->bdev)
3595 continue;
3596 if (!dev->in_fs_metadata || !dev->writeable)
3597 continue;
3598
3599 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3600 if (ret)
3601 total_errors++;
3602 }
3603 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3604 if (total_errors > max_errors) {
3605 btrfs_error(root->fs_info, -EIO,
3606 "%d errors while writing supers", total_errors);
3607 return -EIO;
3608 }
3609 return 0;
3610}
3611
3612int write_ctree_super(struct btrfs_trans_handle *trans,
3613 struct btrfs_root *root, int max_mirrors)
3614{
3615 return write_all_supers(root, max_mirrors);
3616}
3617
3618/* Drop a fs root from the radix tree and free it. */
3619void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3620 struct btrfs_root *root)
3621{
3622 spin_lock(&fs_info->fs_roots_radix_lock);
3623 radix_tree_delete(&fs_info->fs_roots_radix,
3624 (unsigned long)root->root_key.objectid);
3625 spin_unlock(&fs_info->fs_roots_radix_lock);
3626
3627 if (btrfs_root_refs(&root->root_item) == 0)
3628 synchronize_srcu(&fs_info->subvol_srcu);
3629
3630 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3631 btrfs_free_log(NULL, root);
3632
3633 if (root->free_ino_pinned)
3634 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3635 if (root->free_ino_ctl)
3636 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3637 free_fs_root(root);
3638}
3639
3640static void free_fs_root(struct btrfs_root *root)
3641{
3642 iput(root->ino_cache_inode);
3643 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3644 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3645 root->orphan_block_rsv = NULL;
3646 if (root->anon_dev)
3647 free_anon_bdev(root->anon_dev);
3648 if (root->subv_writers)
3649 btrfs_free_subvolume_writers(root->subv_writers);
3650 free_extent_buffer(root->node);
3651 free_extent_buffer(root->commit_root);
3652 kfree(root->free_ino_ctl);
3653 kfree(root->free_ino_pinned);
3654 kfree(root->name);
3655 btrfs_put_fs_root(root);
3656}
3657
3658void btrfs_free_fs_root(struct btrfs_root *root)
3659{
3660 free_fs_root(root);
3661}
3662
3663int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3664{
3665 u64 root_objectid = 0;
3666 struct btrfs_root *gang[8];
3667 int i = 0;
3668 int err = 0;
3669 unsigned int ret = 0;
3670 int index;
3671
3672 while (1) {
3673 index = srcu_read_lock(&fs_info->subvol_srcu);
3674 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3675 (void **)gang, root_objectid,
3676 ARRAY_SIZE(gang));
3677 if (!ret) {
3678 srcu_read_unlock(&fs_info->subvol_srcu, index);
3679 break;
3680 }
3681 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3682
3683 for (i = 0; i < ret; i++) {
3684 /* Avoid to grab roots in dead_roots */
3685 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3686 gang[i] = NULL;
3687 continue;
3688 }
3689 /* grab all the search result for later use */
3690 gang[i] = btrfs_grab_fs_root(gang[i]);
3691 }
3692 srcu_read_unlock(&fs_info->subvol_srcu, index);
3693
3694 for (i = 0; i < ret; i++) {
3695 if (!gang[i])
3696 continue;
3697 root_objectid = gang[i]->root_key.objectid;
3698 err = btrfs_orphan_cleanup(gang[i]);
3699 if (err)
3700 break;
3701 btrfs_put_fs_root(gang[i]);
3702 }
3703 root_objectid++;
3704 }
3705
3706 /* release the uncleaned roots due to error */
3707 for (; i < ret; i++) {
3708 if (gang[i])
3709 btrfs_put_fs_root(gang[i]);
3710 }
3711 return err;
3712}
3713
3714int btrfs_commit_super(struct btrfs_root *root)
3715{
3716 struct btrfs_trans_handle *trans;
3717
3718 mutex_lock(&root->fs_info->cleaner_mutex);
3719 btrfs_run_delayed_iputs(root);
3720 mutex_unlock(&root->fs_info->cleaner_mutex);
3721 wake_up_process(root->fs_info->cleaner_kthread);
3722
3723 /* wait until ongoing cleanup work done */
3724 down_write(&root->fs_info->cleanup_work_sem);
3725 up_write(&root->fs_info->cleanup_work_sem);
3726
3727 trans = btrfs_join_transaction(root);
3728 if (IS_ERR(trans))
3729 return PTR_ERR(trans);
3730 return btrfs_commit_transaction(trans, root);
3731}
3732
3733void close_ctree(struct btrfs_root *root)
3734{
3735 struct btrfs_fs_info *fs_info = root->fs_info;
3736 int ret;
3737
3738 fs_info->closing = 1;
3739 smp_mb();
3740
3741 /* wait for the uuid_scan task to finish */
3742 down(&fs_info->uuid_tree_rescan_sem);
3743 /* avoid complains from lockdep et al., set sem back to initial state */
3744 up(&fs_info->uuid_tree_rescan_sem);
3745
3746 /* pause restriper - we want to resume on mount */
3747 btrfs_pause_balance(fs_info);
3748
3749 btrfs_dev_replace_suspend_for_unmount(fs_info);
3750
3751 btrfs_scrub_cancel(fs_info);
3752
3753 /* wait for any defraggers to finish */
3754 wait_event(fs_info->transaction_wait,
3755 (atomic_read(&fs_info->defrag_running) == 0));
3756
3757 /* clear out the rbtree of defraggable inodes */
3758 btrfs_cleanup_defrag_inodes(fs_info);
3759
3760 cancel_work_sync(&fs_info->async_reclaim_work);
3761
3762 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3763 /*
3764 * If the cleaner thread is stopped and there are
3765 * block groups queued for removal, the deletion will be
3766 * skipped when we quit the cleaner thread.
3767 */
3768 btrfs_delete_unused_bgs(root->fs_info);
3769
3770 ret = btrfs_commit_super(root);
3771 if (ret)
3772 btrfs_err(fs_info, "commit super ret %d", ret);
3773 }
3774
3775 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3776 btrfs_error_commit_super(root);
3777
3778 kthread_stop(fs_info->transaction_kthread);
3779 kthread_stop(fs_info->cleaner_kthread);
3780
3781 fs_info->closing = 2;
3782 smp_mb();
3783
3784 btrfs_free_qgroup_config(fs_info);
3785
3786 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3787 btrfs_info(fs_info, "at unmount delalloc count %lld",
3788 percpu_counter_sum(&fs_info->delalloc_bytes));
3789 }
3790
3791 btrfs_sysfs_remove_one(fs_info);
3792 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3793
3794 btrfs_free_fs_roots(fs_info);
3795
3796 btrfs_put_block_group_cache(fs_info);
3797
3798 btrfs_free_block_groups(fs_info);
3799
3800 /*
3801 * we must make sure there is not any read request to
3802 * submit after we stopping all workers.
3803 */
3804 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3805 btrfs_stop_all_workers(fs_info);
3806
3807 fs_info->open = 0;
3808 free_root_pointers(fs_info, 1);
3809
3810 iput(fs_info->btree_inode);
3811
3812#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3813 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3814 btrfsic_unmount(root, fs_info->fs_devices);
3815#endif
3816
3817 btrfs_close_devices(fs_info->fs_devices);
3818 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3819
3820 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3821 percpu_counter_destroy(&fs_info->delalloc_bytes);
3822 percpu_counter_destroy(&fs_info->bio_counter);
3823 bdi_destroy(&fs_info->bdi);
3824 cleanup_srcu_struct(&fs_info->subvol_srcu);
3825
3826 btrfs_free_stripe_hash_table(fs_info);
3827
3828 __btrfs_free_block_rsv(root->orphan_block_rsv);
3829 root->orphan_block_rsv = NULL;
3830
3831 lock_chunks(root);
3832 while (!list_empty(&fs_info->pinned_chunks)) {
3833 struct extent_map *em;
3834
3835 em = list_first_entry(&fs_info->pinned_chunks,
3836 struct extent_map, list);
3837 list_del_init(&em->list);
3838 free_extent_map(em);
3839 }
3840 unlock_chunks(root);
3841}
3842
3843int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3844 int atomic)
3845{
3846 int ret;
3847 struct inode *btree_inode = buf->pages[0]->mapping->host;
3848
3849 ret = extent_buffer_uptodate(buf);
3850 if (!ret)
3851 return ret;
3852
3853 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3854 parent_transid, atomic);
3855 if (ret == -EAGAIN)
3856 return ret;
3857 return !ret;
3858}
3859
3860int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3861{
3862 return set_extent_buffer_uptodate(buf);
3863}
3864
3865void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3866{
3867 struct btrfs_root *root;
3868 u64 transid = btrfs_header_generation(buf);
3869 int was_dirty;
3870
3871#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3872 /*
3873 * This is a fast path so only do this check if we have sanity tests
3874 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3875 * outside of the sanity tests.
3876 */
3877 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3878 return;
3879#endif
3880 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3881 btrfs_assert_tree_locked(buf);
3882 if (transid != root->fs_info->generation)
3883 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3884 "found %llu running %llu\n",
3885 buf->start, transid, root->fs_info->generation);
3886 was_dirty = set_extent_buffer_dirty(buf);
3887 if (!was_dirty)
3888 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3889 buf->len,
3890 root->fs_info->dirty_metadata_batch);
3891#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3892 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3893 btrfs_print_leaf(root, buf);
3894 ASSERT(0);
3895 }
3896#endif
3897}
3898
3899static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3900 int flush_delayed)
3901{
3902 /*
3903 * looks as though older kernels can get into trouble with
3904 * this code, they end up stuck in balance_dirty_pages forever
3905 */
3906 int ret;
3907
3908 if (current->flags & PF_MEMALLOC)
3909 return;
3910
3911 if (flush_delayed)
3912 btrfs_balance_delayed_items(root);
3913
3914 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3915 BTRFS_DIRTY_METADATA_THRESH);
3916 if (ret > 0) {
3917 balance_dirty_pages_ratelimited(
3918 root->fs_info->btree_inode->i_mapping);
3919 }
3920 return;
3921}
3922
3923void btrfs_btree_balance_dirty(struct btrfs_root *root)
3924{
3925 __btrfs_btree_balance_dirty(root, 1);
3926}
3927
3928void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3929{
3930 __btrfs_btree_balance_dirty(root, 0);
3931}
3932
3933int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3934{
3935 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3936 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3937}
3938
3939static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3940 int read_only)
3941{
3942 struct btrfs_super_block *sb = fs_info->super_copy;
3943 int ret = 0;
3944
3945 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3946 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
3947 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3948 ret = -EINVAL;
3949 }
3950 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3951 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
3952 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
3953 ret = -EINVAL;
3954 }
3955 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3956 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
3957 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
3958 ret = -EINVAL;
3959 }
3960
3961 /*
3962 * The common minimum, we don't know if we can trust the nodesize/sectorsize
3963 * items yet, they'll be verified later. Issue just a warning.
3964 */
3965 if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
3966 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
3967 btrfs_super_root(sb));
3968 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
3969 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
3970 btrfs_super_chunk_root(sb));
3971 if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
3972 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
3973 btrfs_super_log_root(sb));
3974
3975 /*
3976 * Check the lower bound, the alignment and other constraints are
3977 * checked later.
3978 */
3979 if (btrfs_super_nodesize(sb) < 4096) {
3980 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
3981 btrfs_super_nodesize(sb));
3982 ret = -EINVAL;
3983 }
3984 if (btrfs_super_sectorsize(sb) < 4096) {
3985 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
3986 btrfs_super_sectorsize(sb));
3987 ret = -EINVAL;
3988 }
3989
3990 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
3991 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
3992 fs_info->fsid, sb->dev_item.fsid);
3993 ret = -EINVAL;
3994 }
3995
3996 /*
3997 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
3998 * done later
3999 */
4000 if (btrfs_super_num_devices(sb) > (1UL << 31))
4001 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4002 btrfs_super_num_devices(sb));
4003 if (btrfs_super_num_devices(sb) == 0) {
4004 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4005 ret = -EINVAL;
4006 }
4007
4008 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4009 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4010 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4011 ret = -EINVAL;
4012 }
4013
4014 /*
4015 * Obvious sys_chunk_array corruptions, it must hold at least one key
4016 * and one chunk
4017 */
4018 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4019 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4020 btrfs_super_sys_array_size(sb),
4021 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4022 ret = -EINVAL;
4023 }
4024 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4025 + sizeof(struct btrfs_chunk)) {
4026 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4027 btrfs_super_sys_array_size(sb),
4028 sizeof(struct btrfs_disk_key)
4029 + sizeof(struct btrfs_chunk));
4030 ret = -EINVAL;
4031 }
4032
4033 /*
4034 * The generation is a global counter, we'll trust it more than the others
4035 * but it's still possible that it's the one that's wrong.
4036 */
4037 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4038 printk(KERN_WARNING
4039 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4040 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4041 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4042 && btrfs_super_cache_generation(sb) != (u64)-1)
4043 printk(KERN_WARNING
4044 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4045 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4046
4047 return ret;
4048}
4049
4050static void btrfs_error_commit_super(struct btrfs_root *root)
4051{
4052 mutex_lock(&root->fs_info->cleaner_mutex);
4053 btrfs_run_delayed_iputs(root);
4054 mutex_unlock(&root->fs_info->cleaner_mutex);
4055
4056 down_write(&root->fs_info->cleanup_work_sem);
4057 up_write(&root->fs_info->cleanup_work_sem);
4058
4059 /* cleanup FS via transaction */
4060 btrfs_cleanup_transaction(root);
4061}
4062
4063static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4064{
4065 struct btrfs_ordered_extent *ordered;
4066
4067 spin_lock(&root->ordered_extent_lock);
4068 /*
4069 * This will just short circuit the ordered completion stuff which will
4070 * make sure the ordered extent gets properly cleaned up.
4071 */
4072 list_for_each_entry(ordered, &root->ordered_extents,
4073 root_extent_list)
4074 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4075 spin_unlock(&root->ordered_extent_lock);
4076}
4077
4078static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4079{
4080 struct btrfs_root *root;
4081 struct list_head splice;
4082
4083 INIT_LIST_HEAD(&splice);
4084
4085 spin_lock(&fs_info->ordered_root_lock);
4086 list_splice_init(&fs_info->ordered_roots, &splice);
4087 while (!list_empty(&splice)) {
4088 root = list_first_entry(&splice, struct btrfs_root,
4089 ordered_root);
4090 list_move_tail(&root->ordered_root,
4091 &fs_info->ordered_roots);
4092
4093 spin_unlock(&fs_info->ordered_root_lock);
4094 btrfs_destroy_ordered_extents(root);
4095
4096 cond_resched();
4097 spin_lock(&fs_info->ordered_root_lock);
4098 }
4099 spin_unlock(&fs_info->ordered_root_lock);
4100}
4101
4102static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4103 struct btrfs_root *root)
4104{
4105 struct rb_node *node;
4106 struct btrfs_delayed_ref_root *delayed_refs;
4107 struct btrfs_delayed_ref_node *ref;
4108 int ret = 0;
4109
4110 delayed_refs = &trans->delayed_refs;
4111
4112 spin_lock(&delayed_refs->lock);
4113 if (atomic_read(&delayed_refs->num_entries) == 0) {
4114 spin_unlock(&delayed_refs->lock);
4115 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4116 return ret;
4117 }
4118
4119 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4120 struct btrfs_delayed_ref_head *head;
4121 struct btrfs_delayed_ref_node *tmp;
4122 bool pin_bytes = false;
4123
4124 head = rb_entry(node, struct btrfs_delayed_ref_head,
4125 href_node);
4126 if (!mutex_trylock(&head->mutex)) {
4127 atomic_inc(&head->node.refs);
4128 spin_unlock(&delayed_refs->lock);
4129
4130 mutex_lock(&head->mutex);
4131 mutex_unlock(&head->mutex);
4132 btrfs_put_delayed_ref(&head->node);
4133 spin_lock(&delayed_refs->lock);
4134 continue;
4135 }
4136 spin_lock(&head->lock);
4137 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4138 list) {
4139 ref->in_tree = 0;
4140 list_del(&ref->list);
4141 atomic_dec(&delayed_refs->num_entries);
4142 btrfs_put_delayed_ref(ref);
4143 }
4144 if (head->must_insert_reserved)
4145 pin_bytes = true;
4146 btrfs_free_delayed_extent_op(head->extent_op);
4147 delayed_refs->num_heads--;
4148 if (head->processing == 0)
4149 delayed_refs->num_heads_ready--;
4150 atomic_dec(&delayed_refs->num_entries);
4151 head->node.in_tree = 0;
4152 rb_erase(&head->href_node, &delayed_refs->href_root);
4153 spin_unlock(&head->lock);
4154 spin_unlock(&delayed_refs->lock);
4155 mutex_unlock(&head->mutex);
4156
4157 if (pin_bytes)
4158 btrfs_pin_extent(root, head->node.bytenr,
4159 head->node.num_bytes, 1);
4160 btrfs_put_delayed_ref(&head->node);
4161 cond_resched();
4162 spin_lock(&delayed_refs->lock);
4163 }
4164
4165 spin_unlock(&delayed_refs->lock);
4166
4167 return ret;
4168}
4169
4170static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4171{
4172 struct btrfs_inode *btrfs_inode;
4173 struct list_head splice;
4174
4175 INIT_LIST_HEAD(&splice);
4176
4177 spin_lock(&root->delalloc_lock);
4178 list_splice_init(&root->delalloc_inodes, &splice);
4179
4180 while (!list_empty(&splice)) {
4181 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4182 delalloc_inodes);
4183
4184 list_del_init(&btrfs_inode->delalloc_inodes);
4185 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4186 &btrfs_inode->runtime_flags);
4187 spin_unlock(&root->delalloc_lock);
4188
4189 btrfs_invalidate_inodes(btrfs_inode->root);
4190
4191 spin_lock(&root->delalloc_lock);
4192 }
4193
4194 spin_unlock(&root->delalloc_lock);
4195}
4196
4197static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4198{
4199 struct btrfs_root *root;
4200 struct list_head splice;
4201
4202 INIT_LIST_HEAD(&splice);
4203
4204 spin_lock(&fs_info->delalloc_root_lock);
4205 list_splice_init(&fs_info->delalloc_roots, &splice);
4206 while (!list_empty(&splice)) {
4207 root = list_first_entry(&splice, struct btrfs_root,
4208 delalloc_root);
4209 list_del_init(&root->delalloc_root);
4210 root = btrfs_grab_fs_root(root);
4211 BUG_ON(!root);
4212 spin_unlock(&fs_info->delalloc_root_lock);
4213
4214 btrfs_destroy_delalloc_inodes(root);
4215 btrfs_put_fs_root(root);
4216
4217 spin_lock(&fs_info->delalloc_root_lock);
4218 }
4219 spin_unlock(&fs_info->delalloc_root_lock);
4220}
4221
4222static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4223 struct extent_io_tree *dirty_pages,
4224 int mark)
4225{
4226 int ret;
4227 struct extent_buffer *eb;
4228 u64 start = 0;
4229 u64 end;
4230
4231 while (1) {
4232 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4233 mark, NULL);
4234 if (ret)
4235 break;
4236
4237 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4238 while (start <= end) {
4239 eb = btrfs_find_tree_block(root->fs_info, start);
4240 start += root->nodesize;
4241 if (!eb)
4242 continue;
4243 wait_on_extent_buffer_writeback(eb);
4244
4245 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4246 &eb->bflags))
4247 clear_extent_buffer_dirty(eb);
4248 free_extent_buffer_stale(eb);
4249 }
4250 }
4251
4252 return ret;
4253}
4254
4255static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4256 struct extent_io_tree *pinned_extents)
4257{
4258 struct extent_io_tree *unpin;
4259 u64 start;
4260 u64 end;
4261 int ret;
4262 bool loop = true;
4263
4264 unpin = pinned_extents;
4265again:
4266 while (1) {
4267 ret = find_first_extent_bit(unpin, 0, &start, &end,
4268 EXTENT_DIRTY, NULL);
4269 if (ret)
4270 break;
4271
4272 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4273 btrfs_error_unpin_extent_range(root, start, end);
4274 cond_resched();
4275 }
4276
4277 if (loop) {
4278 if (unpin == &root->fs_info->freed_extents[0])
4279 unpin = &root->fs_info->freed_extents[1];
4280 else
4281 unpin = &root->fs_info->freed_extents[0];
4282 loop = false;
4283 goto again;
4284 }
4285
4286 return 0;
4287}
4288
4289static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans,
4290 struct btrfs_fs_info *fs_info)
4291{
4292 struct btrfs_ordered_extent *ordered;
4293
4294 spin_lock(&fs_info->trans_lock);
4295 while (!list_empty(&cur_trans->pending_ordered)) {
4296 ordered = list_first_entry(&cur_trans->pending_ordered,
4297 struct btrfs_ordered_extent,
4298 trans_list);
4299 list_del_init(&ordered->trans_list);
4300 spin_unlock(&fs_info->trans_lock);
4301
4302 btrfs_put_ordered_extent(ordered);
4303 spin_lock(&fs_info->trans_lock);
4304 }
4305 spin_unlock(&fs_info->trans_lock);
4306}
4307
4308void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4309 struct btrfs_root *root)
4310{
4311 btrfs_destroy_delayed_refs(cur_trans, root);
4312
4313 cur_trans->state = TRANS_STATE_COMMIT_START;
4314 wake_up(&root->fs_info->transaction_blocked_wait);
4315
4316 cur_trans->state = TRANS_STATE_UNBLOCKED;
4317 wake_up(&root->fs_info->transaction_wait);
4318
4319 btrfs_free_pending_ordered(cur_trans, root->fs_info);
4320 btrfs_destroy_delayed_inodes(root);
4321 btrfs_assert_delayed_root_empty(root);
4322
4323 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4324 EXTENT_DIRTY);
4325 btrfs_destroy_pinned_extent(root,
4326 root->fs_info->pinned_extents);
4327
4328 cur_trans->state =TRANS_STATE_COMPLETED;
4329 wake_up(&cur_trans->commit_wait);
4330
4331 /*
4332 memset(cur_trans, 0, sizeof(*cur_trans));
4333 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4334 */
4335}
4336
4337static int btrfs_cleanup_transaction(struct btrfs_root *root)
4338{
4339 struct btrfs_transaction *t;
4340
4341 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4342
4343 spin_lock(&root->fs_info->trans_lock);
4344 while (!list_empty(&root->fs_info->trans_list)) {
4345 t = list_first_entry(&root->fs_info->trans_list,
4346 struct btrfs_transaction, list);
4347 if (t->state >= TRANS_STATE_COMMIT_START) {
4348 atomic_inc(&t->use_count);
4349 spin_unlock(&root->fs_info->trans_lock);
4350 btrfs_wait_for_commit(root, t->transid);
4351 btrfs_put_transaction(t);
4352 spin_lock(&root->fs_info->trans_lock);
4353 continue;
4354 }
4355 if (t == root->fs_info->running_transaction) {
4356 t->state = TRANS_STATE_COMMIT_DOING;
4357 spin_unlock(&root->fs_info->trans_lock);
4358 /*
4359 * We wait for 0 num_writers since we don't hold a trans
4360 * handle open currently for this transaction.
4361 */
4362 wait_event(t->writer_wait,
4363 atomic_read(&t->num_writers) == 0);
4364 } else {
4365 spin_unlock(&root->fs_info->trans_lock);
4366 }
4367 btrfs_cleanup_one_transaction(t, root);
4368
4369 spin_lock(&root->fs_info->trans_lock);
4370 if (t == root->fs_info->running_transaction)
4371 root->fs_info->running_transaction = NULL;
4372 list_del_init(&t->list);
4373 spin_unlock(&root->fs_info->trans_lock);
4374
4375 btrfs_put_transaction(t);
4376 trace_btrfs_transaction_commit(root);
4377 spin_lock(&root->fs_info->trans_lock);
4378 }
4379 spin_unlock(&root->fs_info->trans_lock);
4380 btrfs_destroy_all_ordered_extents(root->fs_info);
4381 btrfs_destroy_delayed_inodes(root);
4382 btrfs_assert_delayed_root_empty(root);
4383 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4384 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4385 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4386
4387 return 0;
4388}
4389
4390static const struct extent_io_ops btree_extent_io_ops = {
4391 .readpage_end_io_hook = btree_readpage_end_io_hook,
4392 .readpage_io_failed_hook = btree_io_failed_hook,
4393 .submit_bio_hook = btree_submit_bio_hook,
4394 /* note we're sharing with inode.c for the merge bio hook */
4395 .merge_bio_hook = btrfs_merge_bio_hook,
4396};