Btrfs: fix em leak in find_first_block_group
[linux-2.6-block.git] / fs / btrfs / disk-io.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/fs.h>
20#include <linux/blkdev.h>
21#include <linux/scatterlist.h>
22#include <linux/swap.h>
23#include <linux/radix-tree.h>
24#include <linux/writeback.h>
25#include <linux/buffer_head.h>
26#include <linux/workqueue.h>
27#include <linux/kthread.h>
28#include <linux/slab.h>
29#include <linux/migrate.h>
30#include <linux/ratelimit.h>
31#include <linux/uuid.h>
32#include <linux/semaphore.h>
33#include <asm/unaligned.h>
34#include "ctree.h"
35#include "disk-io.h"
36#include "hash.h"
37#include "transaction.h"
38#include "btrfs_inode.h"
39#include "volumes.h"
40#include "print-tree.h"
41#include "locking.h"
42#include "tree-log.h"
43#include "free-space-cache.h"
44#include "free-space-tree.h"
45#include "inode-map.h"
46#include "check-integrity.h"
47#include "rcu-string.h"
48#include "dev-replace.h"
49#include "raid56.h"
50#include "sysfs.h"
51#include "qgroup.h"
52#include "compression.h"
53
54#ifdef CONFIG_X86
55#include <asm/cpufeature.h>
56#endif
57
58#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
59 BTRFS_HEADER_FLAG_RELOC |\
60 BTRFS_SUPER_FLAG_ERROR |\
61 BTRFS_SUPER_FLAG_SEEDING |\
62 BTRFS_SUPER_FLAG_METADUMP)
63
64static const struct extent_io_ops btree_extent_io_ops;
65static void end_workqueue_fn(struct btrfs_work *work);
66static void free_fs_root(struct btrfs_root *root);
67static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
68 int read_only);
69static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
70static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71 struct btrfs_root *root);
72static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
73static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74 struct extent_io_tree *dirty_pages,
75 int mark);
76static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77 struct extent_io_tree *pinned_extents);
78static int btrfs_cleanup_transaction(struct btrfs_root *root);
79static void btrfs_error_commit_super(struct btrfs_root *root);
80
81/*
82 * btrfs_end_io_wq structs are used to do processing in task context when an IO
83 * is complete. This is used during reads to verify checksums, and it is used
84 * by writes to insert metadata for new file extents after IO is complete.
85 */
86struct btrfs_end_io_wq {
87 struct bio *bio;
88 bio_end_io_t *end_io;
89 void *private;
90 struct btrfs_fs_info *info;
91 int error;
92 enum btrfs_wq_endio_type metadata;
93 struct list_head list;
94 struct btrfs_work work;
95};
96
97static struct kmem_cache *btrfs_end_io_wq_cache;
98
99int __init btrfs_end_io_wq_init(void)
100{
101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 sizeof(struct btrfs_end_io_wq),
103 0,
104 SLAB_MEM_SPREAD,
105 NULL);
106 if (!btrfs_end_io_wq_cache)
107 return -ENOMEM;
108 return 0;
109}
110
111void btrfs_end_io_wq_exit(void)
112{
113 kmem_cache_destroy(btrfs_end_io_wq_cache);
114}
115
116/*
117 * async submit bios are used to offload expensive checksumming
118 * onto the worker threads. They checksum file and metadata bios
119 * just before they are sent down the IO stack.
120 */
121struct async_submit_bio {
122 struct inode *inode;
123 struct bio *bio;
124 struct list_head list;
125 extent_submit_bio_hook_t *submit_bio_start;
126 extent_submit_bio_hook_t *submit_bio_done;
127 int rw;
128 int mirror_num;
129 unsigned long bio_flags;
130 /*
131 * bio_offset is optional, can be used if the pages in the bio
132 * can't tell us where in the file the bio should go
133 */
134 u64 bio_offset;
135 struct btrfs_work work;
136 int error;
137};
138
139/*
140 * Lockdep class keys for extent_buffer->lock's in this root. For a given
141 * eb, the lockdep key is determined by the btrfs_root it belongs to and
142 * the level the eb occupies in the tree.
143 *
144 * Different roots are used for different purposes and may nest inside each
145 * other and they require separate keysets. As lockdep keys should be
146 * static, assign keysets according to the purpose of the root as indicated
147 * by btrfs_root->objectid. This ensures that all special purpose roots
148 * have separate keysets.
149 *
150 * Lock-nesting across peer nodes is always done with the immediate parent
151 * node locked thus preventing deadlock. As lockdep doesn't know this, use
152 * subclass to avoid triggering lockdep warning in such cases.
153 *
154 * The key is set by the readpage_end_io_hook after the buffer has passed
155 * csum validation but before the pages are unlocked. It is also set by
156 * btrfs_init_new_buffer on freshly allocated blocks.
157 *
158 * We also add a check to make sure the highest level of the tree is the
159 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
160 * needs update as well.
161 */
162#ifdef CONFIG_DEBUG_LOCK_ALLOC
163# if BTRFS_MAX_LEVEL != 8
164# error
165# endif
166
167static struct btrfs_lockdep_keyset {
168 u64 id; /* root objectid */
169 const char *name_stem; /* lock name stem */
170 char names[BTRFS_MAX_LEVEL + 1][20];
171 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
172} btrfs_lockdep_keysets[] = {
173 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
174 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
175 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
176 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
177 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
178 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
179 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
180 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
181 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
182 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
183 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
184 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
185 { .id = 0, .name_stem = "tree" },
186};
187
188void __init btrfs_init_lockdep(void)
189{
190 int i, j;
191
192 /* initialize lockdep class names */
193 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
194 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
195
196 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
197 snprintf(ks->names[j], sizeof(ks->names[j]),
198 "btrfs-%s-%02d", ks->name_stem, j);
199 }
200}
201
202void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
203 int level)
204{
205 struct btrfs_lockdep_keyset *ks;
206
207 BUG_ON(level >= ARRAY_SIZE(ks->keys));
208
209 /* find the matching keyset, id 0 is the default entry */
210 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
211 if (ks->id == objectid)
212 break;
213
214 lockdep_set_class_and_name(&eb->lock,
215 &ks->keys[level], ks->names[level]);
216}
217
218#endif
219
220/*
221 * extents on the btree inode are pretty simple, there's one extent
222 * that covers the entire device
223 */
224static struct extent_map *btree_get_extent(struct inode *inode,
225 struct page *page, size_t pg_offset, u64 start, u64 len,
226 int create)
227{
228 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
229 struct extent_map *em;
230 int ret;
231
232 read_lock(&em_tree->lock);
233 em = lookup_extent_mapping(em_tree, start, len);
234 if (em) {
235 em->bdev =
236 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
237 read_unlock(&em_tree->lock);
238 goto out;
239 }
240 read_unlock(&em_tree->lock);
241
242 em = alloc_extent_map();
243 if (!em) {
244 em = ERR_PTR(-ENOMEM);
245 goto out;
246 }
247 em->start = 0;
248 em->len = (u64)-1;
249 em->block_len = (u64)-1;
250 em->block_start = 0;
251 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
252
253 write_lock(&em_tree->lock);
254 ret = add_extent_mapping(em_tree, em, 0);
255 if (ret == -EEXIST) {
256 free_extent_map(em);
257 em = lookup_extent_mapping(em_tree, start, len);
258 if (!em)
259 em = ERR_PTR(-EIO);
260 } else if (ret) {
261 free_extent_map(em);
262 em = ERR_PTR(ret);
263 }
264 write_unlock(&em_tree->lock);
265
266out:
267 return em;
268}
269
270u32 btrfs_csum_data(char *data, u32 seed, size_t len)
271{
272 return btrfs_crc32c(seed, data, len);
273}
274
275void btrfs_csum_final(u32 crc, char *result)
276{
277 put_unaligned_le32(~crc, result);
278}
279
280/*
281 * compute the csum for a btree block, and either verify it or write it
282 * into the csum field of the block.
283 */
284static int csum_tree_block(struct btrfs_fs_info *fs_info,
285 struct extent_buffer *buf,
286 int verify)
287{
288 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
289 char *result = NULL;
290 unsigned long len;
291 unsigned long cur_len;
292 unsigned long offset = BTRFS_CSUM_SIZE;
293 char *kaddr;
294 unsigned long map_start;
295 unsigned long map_len;
296 int err;
297 u32 crc = ~(u32)0;
298 unsigned long inline_result;
299
300 len = buf->len - offset;
301 while (len > 0) {
302 err = map_private_extent_buffer(buf, offset, 32,
303 &kaddr, &map_start, &map_len);
304 if (err)
305 return err;
306 cur_len = min(len, map_len - (offset - map_start));
307 crc = btrfs_csum_data(kaddr + offset - map_start,
308 crc, cur_len);
309 len -= cur_len;
310 offset += cur_len;
311 }
312 if (csum_size > sizeof(inline_result)) {
313 result = kzalloc(csum_size, GFP_NOFS);
314 if (!result)
315 return -ENOMEM;
316 } else {
317 result = (char *)&inline_result;
318 }
319
320 btrfs_csum_final(crc, result);
321
322 if (verify) {
323 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
324 u32 val;
325 u32 found = 0;
326 memcpy(&found, result, csum_size);
327
328 read_extent_buffer(buf, &val, 0, csum_size);
329 btrfs_warn_rl(fs_info,
330 "%s checksum verify failed on %llu wanted %X found %X "
331 "level %d",
332 fs_info->sb->s_id, buf->start,
333 val, found, btrfs_header_level(buf));
334 if (result != (char *)&inline_result)
335 kfree(result);
336 return -EUCLEAN;
337 }
338 } else {
339 write_extent_buffer(buf, result, 0, csum_size);
340 }
341 if (result != (char *)&inline_result)
342 kfree(result);
343 return 0;
344}
345
346/*
347 * we can't consider a given block up to date unless the transid of the
348 * block matches the transid in the parent node's pointer. This is how we
349 * detect blocks that either didn't get written at all or got written
350 * in the wrong place.
351 */
352static int verify_parent_transid(struct extent_io_tree *io_tree,
353 struct extent_buffer *eb, u64 parent_transid,
354 int atomic)
355{
356 struct extent_state *cached_state = NULL;
357 int ret;
358 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
359
360 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
361 return 0;
362
363 if (atomic)
364 return -EAGAIN;
365
366 if (need_lock) {
367 btrfs_tree_read_lock(eb);
368 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
369 }
370
371 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
372 &cached_state);
373 if (extent_buffer_uptodate(eb) &&
374 btrfs_header_generation(eb) == parent_transid) {
375 ret = 0;
376 goto out;
377 }
378 btrfs_err_rl(eb->fs_info,
379 "parent transid verify failed on %llu wanted %llu found %llu",
380 eb->start,
381 parent_transid, btrfs_header_generation(eb));
382 ret = 1;
383
384 /*
385 * Things reading via commit roots that don't have normal protection,
386 * like send, can have a really old block in cache that may point at a
387 * block that has been freed and re-allocated. So don't clear uptodate
388 * if we find an eb that is under IO (dirty/writeback) because we could
389 * end up reading in the stale data and then writing it back out and
390 * making everybody very sad.
391 */
392 if (!extent_buffer_under_io(eb))
393 clear_extent_buffer_uptodate(eb);
394out:
395 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
396 &cached_state, GFP_NOFS);
397 if (need_lock)
398 btrfs_tree_read_unlock_blocking(eb);
399 return ret;
400}
401
402/*
403 * Return 0 if the superblock checksum type matches the checksum value of that
404 * algorithm. Pass the raw disk superblock data.
405 */
406static int btrfs_check_super_csum(char *raw_disk_sb)
407{
408 struct btrfs_super_block *disk_sb =
409 (struct btrfs_super_block *)raw_disk_sb;
410 u16 csum_type = btrfs_super_csum_type(disk_sb);
411 int ret = 0;
412
413 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
414 u32 crc = ~(u32)0;
415 const int csum_size = sizeof(crc);
416 char result[csum_size];
417
418 /*
419 * The super_block structure does not span the whole
420 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
421 * is filled with zeros and is included in the checksum.
422 */
423 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
424 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
425 btrfs_csum_final(crc, result);
426
427 if (memcmp(raw_disk_sb, result, csum_size))
428 ret = 1;
429 }
430
431 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
432 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
433 csum_type);
434 ret = 1;
435 }
436
437 return ret;
438}
439
440/*
441 * helper to read a given tree block, doing retries as required when
442 * the checksums don't match and we have alternate mirrors to try.
443 */
444static int btree_read_extent_buffer_pages(struct btrfs_root *root,
445 struct extent_buffer *eb,
446 u64 start, u64 parent_transid)
447{
448 struct extent_io_tree *io_tree;
449 int failed = 0;
450 int ret;
451 int num_copies = 0;
452 int mirror_num = 0;
453 int failed_mirror = 0;
454
455 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
456 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
457 while (1) {
458 ret = read_extent_buffer_pages(io_tree, eb, start,
459 WAIT_COMPLETE,
460 btree_get_extent, mirror_num);
461 if (!ret) {
462 if (!verify_parent_transid(io_tree, eb,
463 parent_transid, 0))
464 break;
465 else
466 ret = -EIO;
467 }
468
469 /*
470 * This buffer's crc is fine, but its contents are corrupted, so
471 * there is no reason to read the other copies, they won't be
472 * any less wrong.
473 */
474 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
475 break;
476
477 num_copies = btrfs_num_copies(root->fs_info,
478 eb->start, eb->len);
479 if (num_copies == 1)
480 break;
481
482 if (!failed_mirror) {
483 failed = 1;
484 failed_mirror = eb->read_mirror;
485 }
486
487 mirror_num++;
488 if (mirror_num == failed_mirror)
489 mirror_num++;
490
491 if (mirror_num > num_copies)
492 break;
493 }
494
495 if (failed && !ret && failed_mirror)
496 repair_eb_io_failure(root, eb, failed_mirror);
497
498 return ret;
499}
500
501/*
502 * checksum a dirty tree block before IO. This has extra checks to make sure
503 * we only fill in the checksum field in the first page of a multi-page block
504 */
505
506static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
507{
508 u64 start = page_offset(page);
509 u64 found_start;
510 struct extent_buffer *eb;
511
512 eb = (struct extent_buffer *)page->private;
513 if (page != eb->pages[0])
514 return 0;
515
516 found_start = btrfs_header_bytenr(eb);
517 /*
518 * Please do not consolidate these warnings into a single if.
519 * It is useful to know what went wrong.
520 */
521 if (WARN_ON(found_start != start))
522 return -EUCLEAN;
523 if (WARN_ON(!PageUptodate(page)))
524 return -EUCLEAN;
525
526 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
527 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
528
529 return csum_tree_block(fs_info, eb, 0);
530}
531
532static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
533 struct extent_buffer *eb)
534{
535 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
536 u8 fsid[BTRFS_UUID_SIZE];
537 int ret = 1;
538
539 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
540 while (fs_devices) {
541 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
542 ret = 0;
543 break;
544 }
545 fs_devices = fs_devices->seed;
546 }
547 return ret;
548}
549
550#define CORRUPT(reason, eb, root, slot) \
551 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
552 "root=%llu, slot=%d", reason, \
553 btrfs_header_bytenr(eb), root->objectid, slot)
554
555static noinline int check_leaf(struct btrfs_root *root,
556 struct extent_buffer *leaf)
557{
558 struct btrfs_key key;
559 struct btrfs_key leaf_key;
560 u32 nritems = btrfs_header_nritems(leaf);
561 int slot;
562
563 if (nritems == 0)
564 return 0;
565
566 /* Check the 0 item */
567 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
568 BTRFS_LEAF_DATA_SIZE(root)) {
569 CORRUPT("invalid item offset size pair", leaf, root, 0);
570 return -EIO;
571 }
572
573 /*
574 * Check to make sure each items keys are in the correct order and their
575 * offsets make sense. We only have to loop through nritems-1 because
576 * we check the current slot against the next slot, which verifies the
577 * next slot's offset+size makes sense and that the current's slot
578 * offset is correct.
579 */
580 for (slot = 0; slot < nritems - 1; slot++) {
581 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
582 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
583
584 /* Make sure the keys are in the right order */
585 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
586 CORRUPT("bad key order", leaf, root, slot);
587 return -EIO;
588 }
589
590 /*
591 * Make sure the offset and ends are right, remember that the
592 * item data starts at the end of the leaf and grows towards the
593 * front.
594 */
595 if (btrfs_item_offset_nr(leaf, slot) !=
596 btrfs_item_end_nr(leaf, slot + 1)) {
597 CORRUPT("slot offset bad", leaf, root, slot);
598 return -EIO;
599 }
600
601 /*
602 * Check to make sure that we don't point outside of the leaf,
603 * just in case all the items are consistent to each other, but
604 * all point outside of the leaf.
605 */
606 if (btrfs_item_end_nr(leaf, slot) >
607 BTRFS_LEAF_DATA_SIZE(root)) {
608 CORRUPT("slot end outside of leaf", leaf, root, slot);
609 return -EIO;
610 }
611 }
612
613 return 0;
614}
615
616static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
617 u64 phy_offset, struct page *page,
618 u64 start, u64 end, int mirror)
619{
620 u64 found_start;
621 int found_level;
622 struct extent_buffer *eb;
623 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
624 struct btrfs_fs_info *fs_info = root->fs_info;
625 int ret = 0;
626 int reads_done;
627
628 if (!page->private)
629 goto out;
630
631 eb = (struct extent_buffer *)page->private;
632
633 /* the pending IO might have been the only thing that kept this buffer
634 * in memory. Make sure we have a ref for all this other checks
635 */
636 extent_buffer_get(eb);
637
638 reads_done = atomic_dec_and_test(&eb->io_pages);
639 if (!reads_done)
640 goto err;
641
642 eb->read_mirror = mirror;
643 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
644 ret = -EIO;
645 goto err;
646 }
647
648 found_start = btrfs_header_bytenr(eb);
649 if (found_start != eb->start) {
650 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
651 found_start, eb->start);
652 ret = -EIO;
653 goto err;
654 }
655 if (check_tree_block_fsid(fs_info, eb)) {
656 btrfs_err_rl(fs_info, "bad fsid on block %llu",
657 eb->start);
658 ret = -EIO;
659 goto err;
660 }
661 found_level = btrfs_header_level(eb);
662 if (found_level >= BTRFS_MAX_LEVEL) {
663 btrfs_err(fs_info, "bad tree block level %d",
664 (int)btrfs_header_level(eb));
665 ret = -EIO;
666 goto err;
667 }
668
669 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
670 eb, found_level);
671
672 ret = csum_tree_block(fs_info, eb, 1);
673 if (ret)
674 goto err;
675
676 /*
677 * If this is a leaf block and it is corrupt, set the corrupt bit so
678 * that we don't try and read the other copies of this block, just
679 * return -EIO.
680 */
681 if (found_level == 0 && check_leaf(root, eb)) {
682 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
683 ret = -EIO;
684 }
685
686 if (!ret)
687 set_extent_buffer_uptodate(eb);
688err:
689 if (reads_done &&
690 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
691 btree_readahead_hook(fs_info, eb, eb->start, ret);
692
693 if (ret) {
694 /*
695 * our io error hook is going to dec the io pages
696 * again, we have to make sure it has something
697 * to decrement
698 */
699 atomic_inc(&eb->io_pages);
700 clear_extent_buffer_uptodate(eb);
701 }
702 free_extent_buffer(eb);
703out:
704 return ret;
705}
706
707static int btree_io_failed_hook(struct page *page, int failed_mirror)
708{
709 struct extent_buffer *eb;
710
711 eb = (struct extent_buffer *)page->private;
712 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
713 eb->read_mirror = failed_mirror;
714 atomic_dec(&eb->io_pages);
715 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
716 btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
717 return -EIO; /* we fixed nothing */
718}
719
720static void end_workqueue_bio(struct bio *bio)
721{
722 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
723 struct btrfs_fs_info *fs_info;
724 struct btrfs_workqueue *wq;
725 btrfs_work_func_t func;
726
727 fs_info = end_io_wq->info;
728 end_io_wq->error = bio->bi_error;
729
730 if (bio->bi_rw & REQ_WRITE) {
731 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
732 wq = fs_info->endio_meta_write_workers;
733 func = btrfs_endio_meta_write_helper;
734 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
735 wq = fs_info->endio_freespace_worker;
736 func = btrfs_freespace_write_helper;
737 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
738 wq = fs_info->endio_raid56_workers;
739 func = btrfs_endio_raid56_helper;
740 } else {
741 wq = fs_info->endio_write_workers;
742 func = btrfs_endio_write_helper;
743 }
744 } else {
745 if (unlikely(end_io_wq->metadata ==
746 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
747 wq = fs_info->endio_repair_workers;
748 func = btrfs_endio_repair_helper;
749 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
750 wq = fs_info->endio_raid56_workers;
751 func = btrfs_endio_raid56_helper;
752 } else if (end_io_wq->metadata) {
753 wq = fs_info->endio_meta_workers;
754 func = btrfs_endio_meta_helper;
755 } else {
756 wq = fs_info->endio_workers;
757 func = btrfs_endio_helper;
758 }
759 }
760
761 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
762 btrfs_queue_work(wq, &end_io_wq->work);
763}
764
765int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
766 enum btrfs_wq_endio_type metadata)
767{
768 struct btrfs_end_io_wq *end_io_wq;
769
770 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
771 if (!end_io_wq)
772 return -ENOMEM;
773
774 end_io_wq->private = bio->bi_private;
775 end_io_wq->end_io = bio->bi_end_io;
776 end_io_wq->info = info;
777 end_io_wq->error = 0;
778 end_io_wq->bio = bio;
779 end_io_wq->metadata = metadata;
780
781 bio->bi_private = end_io_wq;
782 bio->bi_end_io = end_workqueue_bio;
783 return 0;
784}
785
786unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
787{
788 unsigned long limit = min_t(unsigned long,
789 info->thread_pool_size,
790 info->fs_devices->open_devices);
791 return 256 * limit;
792}
793
794static void run_one_async_start(struct btrfs_work *work)
795{
796 struct async_submit_bio *async;
797 int ret;
798
799 async = container_of(work, struct async_submit_bio, work);
800 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
801 async->mirror_num, async->bio_flags,
802 async->bio_offset);
803 if (ret)
804 async->error = ret;
805}
806
807static void run_one_async_done(struct btrfs_work *work)
808{
809 struct btrfs_fs_info *fs_info;
810 struct async_submit_bio *async;
811 int limit;
812
813 async = container_of(work, struct async_submit_bio, work);
814 fs_info = BTRFS_I(async->inode)->root->fs_info;
815
816 limit = btrfs_async_submit_limit(fs_info);
817 limit = limit * 2 / 3;
818
819 /*
820 * atomic_dec_return implies a barrier for waitqueue_active
821 */
822 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
823 waitqueue_active(&fs_info->async_submit_wait))
824 wake_up(&fs_info->async_submit_wait);
825
826 /* If an error occurred we just want to clean up the bio and move on */
827 if (async->error) {
828 async->bio->bi_error = async->error;
829 bio_endio(async->bio);
830 return;
831 }
832
833 async->submit_bio_done(async->inode, async->rw, async->bio,
834 async->mirror_num, async->bio_flags,
835 async->bio_offset);
836}
837
838static void run_one_async_free(struct btrfs_work *work)
839{
840 struct async_submit_bio *async;
841
842 async = container_of(work, struct async_submit_bio, work);
843 kfree(async);
844}
845
846int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
847 int rw, struct bio *bio, int mirror_num,
848 unsigned long bio_flags,
849 u64 bio_offset,
850 extent_submit_bio_hook_t *submit_bio_start,
851 extent_submit_bio_hook_t *submit_bio_done)
852{
853 struct async_submit_bio *async;
854
855 async = kmalloc(sizeof(*async), GFP_NOFS);
856 if (!async)
857 return -ENOMEM;
858
859 async->inode = inode;
860 async->rw = rw;
861 async->bio = bio;
862 async->mirror_num = mirror_num;
863 async->submit_bio_start = submit_bio_start;
864 async->submit_bio_done = submit_bio_done;
865
866 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
867 run_one_async_done, run_one_async_free);
868
869 async->bio_flags = bio_flags;
870 async->bio_offset = bio_offset;
871
872 async->error = 0;
873
874 atomic_inc(&fs_info->nr_async_submits);
875
876 if (rw & REQ_SYNC)
877 btrfs_set_work_high_priority(&async->work);
878
879 btrfs_queue_work(fs_info->workers, &async->work);
880
881 while (atomic_read(&fs_info->async_submit_draining) &&
882 atomic_read(&fs_info->nr_async_submits)) {
883 wait_event(fs_info->async_submit_wait,
884 (atomic_read(&fs_info->nr_async_submits) == 0));
885 }
886
887 return 0;
888}
889
890static int btree_csum_one_bio(struct bio *bio)
891{
892 struct bio_vec *bvec;
893 struct btrfs_root *root;
894 int i, ret = 0;
895
896 bio_for_each_segment_all(bvec, bio, i) {
897 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
898 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
899 if (ret)
900 break;
901 }
902
903 return ret;
904}
905
906static int __btree_submit_bio_start(struct inode *inode, int rw,
907 struct bio *bio, int mirror_num,
908 unsigned long bio_flags,
909 u64 bio_offset)
910{
911 /*
912 * when we're called for a write, we're already in the async
913 * submission context. Just jump into btrfs_map_bio
914 */
915 return btree_csum_one_bio(bio);
916}
917
918static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
919 int mirror_num, unsigned long bio_flags,
920 u64 bio_offset)
921{
922 int ret;
923
924 /*
925 * when we're called for a write, we're already in the async
926 * submission context. Just jump into btrfs_map_bio
927 */
928 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
929 if (ret) {
930 bio->bi_error = ret;
931 bio_endio(bio);
932 }
933 return ret;
934}
935
936static int check_async_write(struct inode *inode, unsigned long bio_flags)
937{
938 if (bio_flags & EXTENT_BIO_TREE_LOG)
939 return 0;
940#ifdef CONFIG_X86
941 if (static_cpu_has(X86_FEATURE_XMM4_2))
942 return 0;
943#endif
944 return 1;
945}
946
947static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
948 int mirror_num, unsigned long bio_flags,
949 u64 bio_offset)
950{
951 int async = check_async_write(inode, bio_flags);
952 int ret;
953
954 if (!(rw & REQ_WRITE)) {
955 /*
956 * called for a read, do the setup so that checksum validation
957 * can happen in the async kernel threads
958 */
959 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
960 bio, BTRFS_WQ_ENDIO_METADATA);
961 if (ret)
962 goto out_w_error;
963 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
964 mirror_num, 0);
965 } else if (!async) {
966 ret = btree_csum_one_bio(bio);
967 if (ret)
968 goto out_w_error;
969 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
970 mirror_num, 0);
971 } else {
972 /*
973 * kthread helpers are used to submit writes so that
974 * checksumming can happen in parallel across all CPUs
975 */
976 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
977 inode, rw, bio, mirror_num, 0,
978 bio_offset,
979 __btree_submit_bio_start,
980 __btree_submit_bio_done);
981 }
982
983 if (ret)
984 goto out_w_error;
985 return 0;
986
987out_w_error:
988 bio->bi_error = ret;
989 bio_endio(bio);
990 return ret;
991}
992
993#ifdef CONFIG_MIGRATION
994static int btree_migratepage(struct address_space *mapping,
995 struct page *newpage, struct page *page,
996 enum migrate_mode mode)
997{
998 /*
999 * we can't safely write a btree page from here,
1000 * we haven't done the locking hook
1001 */
1002 if (PageDirty(page))
1003 return -EAGAIN;
1004 /*
1005 * Buffers may be managed in a filesystem specific way.
1006 * We must have no buffers or drop them.
1007 */
1008 if (page_has_private(page) &&
1009 !try_to_release_page(page, GFP_KERNEL))
1010 return -EAGAIN;
1011 return migrate_page(mapping, newpage, page, mode);
1012}
1013#endif
1014
1015
1016static int btree_writepages(struct address_space *mapping,
1017 struct writeback_control *wbc)
1018{
1019 struct btrfs_fs_info *fs_info;
1020 int ret;
1021
1022 if (wbc->sync_mode == WB_SYNC_NONE) {
1023
1024 if (wbc->for_kupdate)
1025 return 0;
1026
1027 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1028 /* this is a bit racy, but that's ok */
1029 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1030 BTRFS_DIRTY_METADATA_THRESH);
1031 if (ret < 0)
1032 return 0;
1033 }
1034 return btree_write_cache_pages(mapping, wbc);
1035}
1036
1037static int btree_readpage(struct file *file, struct page *page)
1038{
1039 struct extent_io_tree *tree;
1040 tree = &BTRFS_I(page->mapping->host)->io_tree;
1041 return extent_read_full_page(tree, page, btree_get_extent, 0);
1042}
1043
1044static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1045{
1046 if (PageWriteback(page) || PageDirty(page))
1047 return 0;
1048
1049 return try_release_extent_buffer(page);
1050}
1051
1052static void btree_invalidatepage(struct page *page, unsigned int offset,
1053 unsigned int length)
1054{
1055 struct extent_io_tree *tree;
1056 tree = &BTRFS_I(page->mapping->host)->io_tree;
1057 extent_invalidatepage(tree, page, offset);
1058 btree_releasepage(page, GFP_NOFS);
1059 if (PagePrivate(page)) {
1060 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1061 "page private not zero on page %llu",
1062 (unsigned long long)page_offset(page));
1063 ClearPagePrivate(page);
1064 set_page_private(page, 0);
1065 put_page(page);
1066 }
1067}
1068
1069static int btree_set_page_dirty(struct page *page)
1070{
1071#ifdef DEBUG
1072 struct extent_buffer *eb;
1073
1074 BUG_ON(!PagePrivate(page));
1075 eb = (struct extent_buffer *)page->private;
1076 BUG_ON(!eb);
1077 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1078 BUG_ON(!atomic_read(&eb->refs));
1079 btrfs_assert_tree_locked(eb);
1080#endif
1081 return __set_page_dirty_nobuffers(page);
1082}
1083
1084static const struct address_space_operations btree_aops = {
1085 .readpage = btree_readpage,
1086 .writepages = btree_writepages,
1087 .releasepage = btree_releasepage,
1088 .invalidatepage = btree_invalidatepage,
1089#ifdef CONFIG_MIGRATION
1090 .migratepage = btree_migratepage,
1091#endif
1092 .set_page_dirty = btree_set_page_dirty,
1093};
1094
1095void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1096{
1097 struct extent_buffer *buf = NULL;
1098 struct inode *btree_inode = root->fs_info->btree_inode;
1099
1100 buf = btrfs_find_create_tree_block(root, bytenr);
1101 if (IS_ERR(buf))
1102 return;
1103 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1104 buf, 0, WAIT_NONE, btree_get_extent, 0);
1105 free_extent_buffer(buf);
1106}
1107
1108int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1109 int mirror_num, struct extent_buffer **eb)
1110{
1111 struct extent_buffer *buf = NULL;
1112 struct inode *btree_inode = root->fs_info->btree_inode;
1113 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1114 int ret;
1115
1116 buf = btrfs_find_create_tree_block(root, bytenr);
1117 if (IS_ERR(buf))
1118 return 0;
1119
1120 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1121
1122 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1123 btree_get_extent, mirror_num);
1124 if (ret) {
1125 free_extent_buffer(buf);
1126 return ret;
1127 }
1128
1129 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1130 free_extent_buffer(buf);
1131 return -EIO;
1132 } else if (extent_buffer_uptodate(buf)) {
1133 *eb = buf;
1134 } else {
1135 free_extent_buffer(buf);
1136 }
1137 return 0;
1138}
1139
1140struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1141 u64 bytenr)
1142{
1143 return find_extent_buffer(fs_info, bytenr);
1144}
1145
1146struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1147 u64 bytenr)
1148{
1149 if (btrfs_is_testing(root->fs_info))
1150 return alloc_test_extent_buffer(root->fs_info, bytenr,
1151 root->nodesize);
1152 return alloc_extent_buffer(root->fs_info, bytenr);
1153}
1154
1155
1156int btrfs_write_tree_block(struct extent_buffer *buf)
1157{
1158 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1159 buf->start + buf->len - 1);
1160}
1161
1162int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1163{
1164 return filemap_fdatawait_range(buf->pages[0]->mapping,
1165 buf->start, buf->start + buf->len - 1);
1166}
1167
1168struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1169 u64 parent_transid)
1170{
1171 struct extent_buffer *buf = NULL;
1172 int ret;
1173
1174 buf = btrfs_find_create_tree_block(root, bytenr);
1175 if (IS_ERR(buf))
1176 return buf;
1177
1178 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1179 if (ret) {
1180 free_extent_buffer(buf);
1181 return ERR_PTR(ret);
1182 }
1183 return buf;
1184
1185}
1186
1187void clean_tree_block(struct btrfs_trans_handle *trans,
1188 struct btrfs_fs_info *fs_info,
1189 struct extent_buffer *buf)
1190{
1191 if (btrfs_header_generation(buf) ==
1192 fs_info->running_transaction->transid) {
1193 btrfs_assert_tree_locked(buf);
1194
1195 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1196 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1197 -buf->len,
1198 fs_info->dirty_metadata_batch);
1199 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1200 btrfs_set_lock_blocking(buf);
1201 clear_extent_buffer_dirty(buf);
1202 }
1203 }
1204}
1205
1206static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1207{
1208 struct btrfs_subvolume_writers *writers;
1209 int ret;
1210
1211 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1212 if (!writers)
1213 return ERR_PTR(-ENOMEM);
1214
1215 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1216 if (ret < 0) {
1217 kfree(writers);
1218 return ERR_PTR(ret);
1219 }
1220
1221 init_waitqueue_head(&writers->wait);
1222 return writers;
1223}
1224
1225static void
1226btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1227{
1228 percpu_counter_destroy(&writers->counter);
1229 kfree(writers);
1230}
1231
1232static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1233 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1234 u64 objectid)
1235{
1236 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1237 root->node = NULL;
1238 root->commit_root = NULL;
1239 root->sectorsize = sectorsize;
1240 root->nodesize = nodesize;
1241 root->stripesize = stripesize;
1242 root->state = 0;
1243 root->orphan_cleanup_state = 0;
1244
1245 root->objectid = objectid;
1246 root->last_trans = 0;
1247 root->highest_objectid = 0;
1248 root->nr_delalloc_inodes = 0;
1249 root->nr_ordered_extents = 0;
1250 root->name = NULL;
1251 root->inode_tree = RB_ROOT;
1252 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1253 root->block_rsv = NULL;
1254 root->orphan_block_rsv = NULL;
1255
1256 INIT_LIST_HEAD(&root->dirty_list);
1257 INIT_LIST_HEAD(&root->root_list);
1258 INIT_LIST_HEAD(&root->delalloc_inodes);
1259 INIT_LIST_HEAD(&root->delalloc_root);
1260 INIT_LIST_HEAD(&root->ordered_extents);
1261 INIT_LIST_HEAD(&root->ordered_root);
1262 INIT_LIST_HEAD(&root->logged_list[0]);
1263 INIT_LIST_HEAD(&root->logged_list[1]);
1264 spin_lock_init(&root->orphan_lock);
1265 spin_lock_init(&root->inode_lock);
1266 spin_lock_init(&root->delalloc_lock);
1267 spin_lock_init(&root->ordered_extent_lock);
1268 spin_lock_init(&root->accounting_lock);
1269 spin_lock_init(&root->log_extents_lock[0]);
1270 spin_lock_init(&root->log_extents_lock[1]);
1271 mutex_init(&root->objectid_mutex);
1272 mutex_init(&root->log_mutex);
1273 mutex_init(&root->ordered_extent_mutex);
1274 mutex_init(&root->delalloc_mutex);
1275 init_waitqueue_head(&root->log_writer_wait);
1276 init_waitqueue_head(&root->log_commit_wait[0]);
1277 init_waitqueue_head(&root->log_commit_wait[1]);
1278 INIT_LIST_HEAD(&root->log_ctxs[0]);
1279 INIT_LIST_HEAD(&root->log_ctxs[1]);
1280 atomic_set(&root->log_commit[0], 0);
1281 atomic_set(&root->log_commit[1], 0);
1282 atomic_set(&root->log_writers, 0);
1283 atomic_set(&root->log_batch, 0);
1284 atomic_set(&root->orphan_inodes, 0);
1285 atomic_set(&root->refs, 1);
1286 atomic_set(&root->will_be_snapshoted, 0);
1287 atomic_set(&root->qgroup_meta_rsv, 0);
1288 root->log_transid = 0;
1289 root->log_transid_committed = -1;
1290 root->last_log_commit = 0;
1291 if (!dummy)
1292 extent_io_tree_init(&root->dirty_log_pages,
1293 fs_info->btree_inode->i_mapping);
1294
1295 memset(&root->root_key, 0, sizeof(root->root_key));
1296 memset(&root->root_item, 0, sizeof(root->root_item));
1297 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1298 if (!dummy)
1299 root->defrag_trans_start = fs_info->generation;
1300 else
1301 root->defrag_trans_start = 0;
1302 root->root_key.objectid = objectid;
1303 root->anon_dev = 0;
1304
1305 spin_lock_init(&root->root_item_lock);
1306}
1307
1308static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1309 gfp_t flags)
1310{
1311 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1312 if (root)
1313 root->fs_info = fs_info;
1314 return root;
1315}
1316
1317#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1318/* Should only be used by the testing infrastructure */
1319struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info,
1320 u32 sectorsize, u32 nodesize)
1321{
1322 struct btrfs_root *root;
1323
1324 if (!fs_info)
1325 return ERR_PTR(-EINVAL);
1326
1327 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1328 if (!root)
1329 return ERR_PTR(-ENOMEM);
1330 /* We don't use the stripesize in selftest, set it as sectorsize */
1331 __setup_root(nodesize, sectorsize, sectorsize, root, fs_info,
1332 BTRFS_ROOT_TREE_OBJECTID);
1333 root->alloc_bytenr = 0;
1334
1335 return root;
1336}
1337#endif
1338
1339struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1340 struct btrfs_fs_info *fs_info,
1341 u64 objectid)
1342{
1343 struct extent_buffer *leaf;
1344 struct btrfs_root *tree_root = fs_info->tree_root;
1345 struct btrfs_root *root;
1346 struct btrfs_key key;
1347 int ret = 0;
1348 uuid_le uuid;
1349
1350 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1351 if (!root)
1352 return ERR_PTR(-ENOMEM);
1353
1354 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1355 tree_root->stripesize, root, fs_info, objectid);
1356 root->root_key.objectid = objectid;
1357 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1358 root->root_key.offset = 0;
1359
1360 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1361 if (IS_ERR(leaf)) {
1362 ret = PTR_ERR(leaf);
1363 leaf = NULL;
1364 goto fail;
1365 }
1366
1367 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1368 btrfs_set_header_bytenr(leaf, leaf->start);
1369 btrfs_set_header_generation(leaf, trans->transid);
1370 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1371 btrfs_set_header_owner(leaf, objectid);
1372 root->node = leaf;
1373
1374 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1375 BTRFS_FSID_SIZE);
1376 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1377 btrfs_header_chunk_tree_uuid(leaf),
1378 BTRFS_UUID_SIZE);
1379 btrfs_mark_buffer_dirty(leaf);
1380
1381 root->commit_root = btrfs_root_node(root);
1382 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1383
1384 root->root_item.flags = 0;
1385 root->root_item.byte_limit = 0;
1386 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1387 btrfs_set_root_generation(&root->root_item, trans->transid);
1388 btrfs_set_root_level(&root->root_item, 0);
1389 btrfs_set_root_refs(&root->root_item, 1);
1390 btrfs_set_root_used(&root->root_item, leaf->len);
1391 btrfs_set_root_last_snapshot(&root->root_item, 0);
1392 btrfs_set_root_dirid(&root->root_item, 0);
1393 uuid_le_gen(&uuid);
1394 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1395 root->root_item.drop_level = 0;
1396
1397 key.objectid = objectid;
1398 key.type = BTRFS_ROOT_ITEM_KEY;
1399 key.offset = 0;
1400 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1401 if (ret)
1402 goto fail;
1403
1404 btrfs_tree_unlock(leaf);
1405
1406 return root;
1407
1408fail:
1409 if (leaf) {
1410 btrfs_tree_unlock(leaf);
1411 free_extent_buffer(root->commit_root);
1412 free_extent_buffer(leaf);
1413 }
1414 kfree(root);
1415
1416 return ERR_PTR(ret);
1417}
1418
1419static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1420 struct btrfs_fs_info *fs_info)
1421{
1422 struct btrfs_root *root;
1423 struct btrfs_root *tree_root = fs_info->tree_root;
1424 struct extent_buffer *leaf;
1425
1426 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1427 if (!root)
1428 return ERR_PTR(-ENOMEM);
1429
1430 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1431 tree_root->stripesize, root, fs_info,
1432 BTRFS_TREE_LOG_OBJECTID);
1433
1434 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1435 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1436 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1437
1438 /*
1439 * DON'T set REF_COWS for log trees
1440 *
1441 * log trees do not get reference counted because they go away
1442 * before a real commit is actually done. They do store pointers
1443 * to file data extents, and those reference counts still get
1444 * updated (along with back refs to the log tree).
1445 */
1446
1447 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1448 NULL, 0, 0, 0);
1449 if (IS_ERR(leaf)) {
1450 kfree(root);
1451 return ERR_CAST(leaf);
1452 }
1453
1454 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1455 btrfs_set_header_bytenr(leaf, leaf->start);
1456 btrfs_set_header_generation(leaf, trans->transid);
1457 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1458 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1459 root->node = leaf;
1460
1461 write_extent_buffer(root->node, root->fs_info->fsid,
1462 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1463 btrfs_mark_buffer_dirty(root->node);
1464 btrfs_tree_unlock(root->node);
1465 return root;
1466}
1467
1468int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1469 struct btrfs_fs_info *fs_info)
1470{
1471 struct btrfs_root *log_root;
1472
1473 log_root = alloc_log_tree(trans, fs_info);
1474 if (IS_ERR(log_root))
1475 return PTR_ERR(log_root);
1476 WARN_ON(fs_info->log_root_tree);
1477 fs_info->log_root_tree = log_root;
1478 return 0;
1479}
1480
1481int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1482 struct btrfs_root *root)
1483{
1484 struct btrfs_root *log_root;
1485 struct btrfs_inode_item *inode_item;
1486
1487 log_root = alloc_log_tree(trans, root->fs_info);
1488 if (IS_ERR(log_root))
1489 return PTR_ERR(log_root);
1490
1491 log_root->last_trans = trans->transid;
1492 log_root->root_key.offset = root->root_key.objectid;
1493
1494 inode_item = &log_root->root_item.inode;
1495 btrfs_set_stack_inode_generation(inode_item, 1);
1496 btrfs_set_stack_inode_size(inode_item, 3);
1497 btrfs_set_stack_inode_nlink(inode_item, 1);
1498 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1499 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1500
1501 btrfs_set_root_node(&log_root->root_item, log_root->node);
1502
1503 WARN_ON(root->log_root);
1504 root->log_root = log_root;
1505 root->log_transid = 0;
1506 root->log_transid_committed = -1;
1507 root->last_log_commit = 0;
1508 return 0;
1509}
1510
1511static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1512 struct btrfs_key *key)
1513{
1514 struct btrfs_root *root;
1515 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1516 struct btrfs_path *path;
1517 u64 generation;
1518 int ret;
1519
1520 path = btrfs_alloc_path();
1521 if (!path)
1522 return ERR_PTR(-ENOMEM);
1523
1524 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1525 if (!root) {
1526 ret = -ENOMEM;
1527 goto alloc_fail;
1528 }
1529
1530 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1531 tree_root->stripesize, root, fs_info, key->objectid);
1532
1533 ret = btrfs_find_root(tree_root, key, path,
1534 &root->root_item, &root->root_key);
1535 if (ret) {
1536 if (ret > 0)
1537 ret = -ENOENT;
1538 goto find_fail;
1539 }
1540
1541 generation = btrfs_root_generation(&root->root_item);
1542 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1543 generation);
1544 if (IS_ERR(root->node)) {
1545 ret = PTR_ERR(root->node);
1546 goto find_fail;
1547 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1548 ret = -EIO;
1549 free_extent_buffer(root->node);
1550 goto find_fail;
1551 }
1552 root->commit_root = btrfs_root_node(root);
1553out:
1554 btrfs_free_path(path);
1555 return root;
1556
1557find_fail:
1558 kfree(root);
1559alloc_fail:
1560 root = ERR_PTR(ret);
1561 goto out;
1562}
1563
1564struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1565 struct btrfs_key *location)
1566{
1567 struct btrfs_root *root;
1568
1569 root = btrfs_read_tree_root(tree_root, location);
1570 if (IS_ERR(root))
1571 return root;
1572
1573 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1574 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1575 btrfs_check_and_init_root_item(&root->root_item);
1576 }
1577
1578 return root;
1579}
1580
1581int btrfs_init_fs_root(struct btrfs_root *root)
1582{
1583 int ret;
1584 struct btrfs_subvolume_writers *writers;
1585
1586 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1587 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1588 GFP_NOFS);
1589 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1590 ret = -ENOMEM;
1591 goto fail;
1592 }
1593
1594 writers = btrfs_alloc_subvolume_writers();
1595 if (IS_ERR(writers)) {
1596 ret = PTR_ERR(writers);
1597 goto fail;
1598 }
1599 root->subv_writers = writers;
1600
1601 btrfs_init_free_ino_ctl(root);
1602 spin_lock_init(&root->ino_cache_lock);
1603 init_waitqueue_head(&root->ino_cache_wait);
1604
1605 ret = get_anon_bdev(&root->anon_dev);
1606 if (ret)
1607 goto fail;
1608
1609 mutex_lock(&root->objectid_mutex);
1610 ret = btrfs_find_highest_objectid(root,
1611 &root->highest_objectid);
1612 if (ret) {
1613 mutex_unlock(&root->objectid_mutex);
1614 goto fail;
1615 }
1616
1617 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1618
1619 mutex_unlock(&root->objectid_mutex);
1620
1621 return 0;
1622fail:
1623 /* the caller is responsible to call free_fs_root */
1624 return ret;
1625}
1626
1627static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1628 u64 root_id)
1629{
1630 struct btrfs_root *root;
1631
1632 spin_lock(&fs_info->fs_roots_radix_lock);
1633 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1634 (unsigned long)root_id);
1635 spin_unlock(&fs_info->fs_roots_radix_lock);
1636 return root;
1637}
1638
1639int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1640 struct btrfs_root *root)
1641{
1642 int ret;
1643
1644 ret = radix_tree_preload(GFP_NOFS);
1645 if (ret)
1646 return ret;
1647
1648 spin_lock(&fs_info->fs_roots_radix_lock);
1649 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1650 (unsigned long)root->root_key.objectid,
1651 root);
1652 if (ret == 0)
1653 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1654 spin_unlock(&fs_info->fs_roots_radix_lock);
1655 radix_tree_preload_end();
1656
1657 return ret;
1658}
1659
1660struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1661 struct btrfs_key *location,
1662 bool check_ref)
1663{
1664 struct btrfs_root *root;
1665 struct btrfs_path *path;
1666 struct btrfs_key key;
1667 int ret;
1668
1669 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1670 return fs_info->tree_root;
1671 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1672 return fs_info->extent_root;
1673 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1674 return fs_info->chunk_root;
1675 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1676 return fs_info->dev_root;
1677 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1678 return fs_info->csum_root;
1679 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1680 return fs_info->quota_root ? fs_info->quota_root :
1681 ERR_PTR(-ENOENT);
1682 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1683 return fs_info->uuid_root ? fs_info->uuid_root :
1684 ERR_PTR(-ENOENT);
1685 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1686 return fs_info->free_space_root ? fs_info->free_space_root :
1687 ERR_PTR(-ENOENT);
1688again:
1689 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1690 if (root) {
1691 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1692 return ERR_PTR(-ENOENT);
1693 return root;
1694 }
1695
1696 root = btrfs_read_fs_root(fs_info->tree_root, location);
1697 if (IS_ERR(root))
1698 return root;
1699
1700 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1701 ret = -ENOENT;
1702 goto fail;
1703 }
1704
1705 ret = btrfs_init_fs_root(root);
1706 if (ret)
1707 goto fail;
1708
1709 path = btrfs_alloc_path();
1710 if (!path) {
1711 ret = -ENOMEM;
1712 goto fail;
1713 }
1714 key.objectid = BTRFS_ORPHAN_OBJECTID;
1715 key.type = BTRFS_ORPHAN_ITEM_KEY;
1716 key.offset = location->objectid;
1717
1718 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1719 btrfs_free_path(path);
1720 if (ret < 0)
1721 goto fail;
1722 if (ret == 0)
1723 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1724
1725 ret = btrfs_insert_fs_root(fs_info, root);
1726 if (ret) {
1727 if (ret == -EEXIST) {
1728 free_fs_root(root);
1729 goto again;
1730 }
1731 goto fail;
1732 }
1733 return root;
1734fail:
1735 free_fs_root(root);
1736 return ERR_PTR(ret);
1737}
1738
1739static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1740{
1741 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1742 int ret = 0;
1743 struct btrfs_device *device;
1744 struct backing_dev_info *bdi;
1745
1746 rcu_read_lock();
1747 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1748 if (!device->bdev)
1749 continue;
1750 bdi = blk_get_backing_dev_info(device->bdev);
1751 if (bdi_congested(bdi, bdi_bits)) {
1752 ret = 1;
1753 break;
1754 }
1755 }
1756 rcu_read_unlock();
1757 return ret;
1758}
1759
1760static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1761{
1762 int err;
1763
1764 err = bdi_setup_and_register(bdi, "btrfs");
1765 if (err)
1766 return err;
1767
1768 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1769 bdi->congested_fn = btrfs_congested_fn;
1770 bdi->congested_data = info;
1771 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1772 return 0;
1773}
1774
1775/*
1776 * called by the kthread helper functions to finally call the bio end_io
1777 * functions. This is where read checksum verification actually happens
1778 */
1779static void end_workqueue_fn(struct btrfs_work *work)
1780{
1781 struct bio *bio;
1782 struct btrfs_end_io_wq *end_io_wq;
1783
1784 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1785 bio = end_io_wq->bio;
1786
1787 bio->bi_error = end_io_wq->error;
1788 bio->bi_private = end_io_wq->private;
1789 bio->bi_end_io = end_io_wq->end_io;
1790 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1791 bio_endio(bio);
1792}
1793
1794static int cleaner_kthread(void *arg)
1795{
1796 struct btrfs_root *root = arg;
1797 int again;
1798 struct btrfs_trans_handle *trans;
1799
1800 do {
1801 again = 0;
1802
1803 /* Make the cleaner go to sleep early. */
1804 if (btrfs_need_cleaner_sleep(root))
1805 goto sleep;
1806
1807 /*
1808 * Do not do anything if we might cause open_ctree() to block
1809 * before we have finished mounting the filesystem.
1810 */
1811 if (!root->fs_info->open)
1812 goto sleep;
1813
1814 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1815 goto sleep;
1816
1817 /*
1818 * Avoid the problem that we change the status of the fs
1819 * during the above check and trylock.
1820 */
1821 if (btrfs_need_cleaner_sleep(root)) {
1822 mutex_unlock(&root->fs_info->cleaner_mutex);
1823 goto sleep;
1824 }
1825
1826 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1827 btrfs_run_delayed_iputs(root);
1828 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1829
1830 again = btrfs_clean_one_deleted_snapshot(root);
1831 mutex_unlock(&root->fs_info->cleaner_mutex);
1832
1833 /*
1834 * The defragger has dealt with the R/O remount and umount,
1835 * needn't do anything special here.
1836 */
1837 btrfs_run_defrag_inodes(root->fs_info);
1838
1839 /*
1840 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1841 * with relocation (btrfs_relocate_chunk) and relocation
1842 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1843 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1844 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1845 * unused block groups.
1846 */
1847 btrfs_delete_unused_bgs(root->fs_info);
1848sleep:
1849 if (!again) {
1850 set_current_state(TASK_INTERRUPTIBLE);
1851 if (!kthread_should_stop())
1852 schedule();
1853 __set_current_state(TASK_RUNNING);
1854 }
1855 } while (!kthread_should_stop());
1856
1857 /*
1858 * Transaction kthread is stopped before us and wakes us up.
1859 * However we might have started a new transaction and COWed some
1860 * tree blocks when deleting unused block groups for example. So
1861 * make sure we commit the transaction we started to have a clean
1862 * shutdown when evicting the btree inode - if it has dirty pages
1863 * when we do the final iput() on it, eviction will trigger a
1864 * writeback for it which will fail with null pointer dereferences
1865 * since work queues and other resources were already released and
1866 * destroyed by the time the iput/eviction/writeback is made.
1867 */
1868 trans = btrfs_attach_transaction(root);
1869 if (IS_ERR(trans)) {
1870 if (PTR_ERR(trans) != -ENOENT)
1871 btrfs_err(root->fs_info,
1872 "cleaner transaction attach returned %ld",
1873 PTR_ERR(trans));
1874 } else {
1875 int ret;
1876
1877 ret = btrfs_commit_transaction(trans, root);
1878 if (ret)
1879 btrfs_err(root->fs_info,
1880 "cleaner open transaction commit returned %d",
1881 ret);
1882 }
1883
1884 return 0;
1885}
1886
1887static int transaction_kthread(void *arg)
1888{
1889 struct btrfs_root *root = arg;
1890 struct btrfs_trans_handle *trans;
1891 struct btrfs_transaction *cur;
1892 u64 transid;
1893 unsigned long now;
1894 unsigned long delay;
1895 bool cannot_commit;
1896
1897 do {
1898 cannot_commit = false;
1899 delay = HZ * root->fs_info->commit_interval;
1900 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1901
1902 spin_lock(&root->fs_info->trans_lock);
1903 cur = root->fs_info->running_transaction;
1904 if (!cur) {
1905 spin_unlock(&root->fs_info->trans_lock);
1906 goto sleep;
1907 }
1908
1909 now = get_seconds();
1910 if (cur->state < TRANS_STATE_BLOCKED &&
1911 (now < cur->start_time ||
1912 now - cur->start_time < root->fs_info->commit_interval)) {
1913 spin_unlock(&root->fs_info->trans_lock);
1914 delay = HZ * 5;
1915 goto sleep;
1916 }
1917 transid = cur->transid;
1918 spin_unlock(&root->fs_info->trans_lock);
1919
1920 /* If the file system is aborted, this will always fail. */
1921 trans = btrfs_attach_transaction(root);
1922 if (IS_ERR(trans)) {
1923 if (PTR_ERR(trans) != -ENOENT)
1924 cannot_commit = true;
1925 goto sleep;
1926 }
1927 if (transid == trans->transid) {
1928 btrfs_commit_transaction(trans, root);
1929 } else {
1930 btrfs_end_transaction(trans, root);
1931 }
1932sleep:
1933 wake_up_process(root->fs_info->cleaner_kthread);
1934 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1935
1936 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1937 &root->fs_info->fs_state)))
1938 btrfs_cleanup_transaction(root);
1939 set_current_state(TASK_INTERRUPTIBLE);
1940 if (!kthread_should_stop() &&
1941 (!btrfs_transaction_blocked(root->fs_info) ||
1942 cannot_commit))
1943 schedule_timeout(delay);
1944 __set_current_state(TASK_RUNNING);
1945 } while (!kthread_should_stop());
1946 return 0;
1947}
1948
1949/*
1950 * this will find the highest generation in the array of
1951 * root backups. The index of the highest array is returned,
1952 * or -1 if we can't find anything.
1953 *
1954 * We check to make sure the array is valid by comparing the
1955 * generation of the latest root in the array with the generation
1956 * in the super block. If they don't match we pitch it.
1957 */
1958static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1959{
1960 u64 cur;
1961 int newest_index = -1;
1962 struct btrfs_root_backup *root_backup;
1963 int i;
1964
1965 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1966 root_backup = info->super_copy->super_roots + i;
1967 cur = btrfs_backup_tree_root_gen(root_backup);
1968 if (cur == newest_gen)
1969 newest_index = i;
1970 }
1971
1972 /* check to see if we actually wrapped around */
1973 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1974 root_backup = info->super_copy->super_roots;
1975 cur = btrfs_backup_tree_root_gen(root_backup);
1976 if (cur == newest_gen)
1977 newest_index = 0;
1978 }
1979 return newest_index;
1980}
1981
1982
1983/*
1984 * find the oldest backup so we know where to store new entries
1985 * in the backup array. This will set the backup_root_index
1986 * field in the fs_info struct
1987 */
1988static void find_oldest_super_backup(struct btrfs_fs_info *info,
1989 u64 newest_gen)
1990{
1991 int newest_index = -1;
1992
1993 newest_index = find_newest_super_backup(info, newest_gen);
1994 /* if there was garbage in there, just move along */
1995 if (newest_index == -1) {
1996 info->backup_root_index = 0;
1997 } else {
1998 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1999 }
2000}
2001
2002/*
2003 * copy all the root pointers into the super backup array.
2004 * this will bump the backup pointer by one when it is
2005 * done
2006 */
2007static void backup_super_roots(struct btrfs_fs_info *info)
2008{
2009 int next_backup;
2010 struct btrfs_root_backup *root_backup;
2011 int last_backup;
2012
2013 next_backup = info->backup_root_index;
2014 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2015 BTRFS_NUM_BACKUP_ROOTS;
2016
2017 /*
2018 * just overwrite the last backup if we're at the same generation
2019 * this happens only at umount
2020 */
2021 root_backup = info->super_for_commit->super_roots + last_backup;
2022 if (btrfs_backup_tree_root_gen(root_backup) ==
2023 btrfs_header_generation(info->tree_root->node))
2024 next_backup = last_backup;
2025
2026 root_backup = info->super_for_commit->super_roots + next_backup;
2027
2028 /*
2029 * make sure all of our padding and empty slots get zero filled
2030 * regardless of which ones we use today
2031 */
2032 memset(root_backup, 0, sizeof(*root_backup));
2033
2034 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2035
2036 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2037 btrfs_set_backup_tree_root_gen(root_backup,
2038 btrfs_header_generation(info->tree_root->node));
2039
2040 btrfs_set_backup_tree_root_level(root_backup,
2041 btrfs_header_level(info->tree_root->node));
2042
2043 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2044 btrfs_set_backup_chunk_root_gen(root_backup,
2045 btrfs_header_generation(info->chunk_root->node));
2046 btrfs_set_backup_chunk_root_level(root_backup,
2047 btrfs_header_level(info->chunk_root->node));
2048
2049 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2050 btrfs_set_backup_extent_root_gen(root_backup,
2051 btrfs_header_generation(info->extent_root->node));
2052 btrfs_set_backup_extent_root_level(root_backup,
2053 btrfs_header_level(info->extent_root->node));
2054
2055 /*
2056 * we might commit during log recovery, which happens before we set
2057 * the fs_root. Make sure it is valid before we fill it in.
2058 */
2059 if (info->fs_root && info->fs_root->node) {
2060 btrfs_set_backup_fs_root(root_backup,
2061 info->fs_root->node->start);
2062 btrfs_set_backup_fs_root_gen(root_backup,
2063 btrfs_header_generation(info->fs_root->node));
2064 btrfs_set_backup_fs_root_level(root_backup,
2065 btrfs_header_level(info->fs_root->node));
2066 }
2067
2068 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2069 btrfs_set_backup_dev_root_gen(root_backup,
2070 btrfs_header_generation(info->dev_root->node));
2071 btrfs_set_backup_dev_root_level(root_backup,
2072 btrfs_header_level(info->dev_root->node));
2073
2074 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2075 btrfs_set_backup_csum_root_gen(root_backup,
2076 btrfs_header_generation(info->csum_root->node));
2077 btrfs_set_backup_csum_root_level(root_backup,
2078 btrfs_header_level(info->csum_root->node));
2079
2080 btrfs_set_backup_total_bytes(root_backup,
2081 btrfs_super_total_bytes(info->super_copy));
2082 btrfs_set_backup_bytes_used(root_backup,
2083 btrfs_super_bytes_used(info->super_copy));
2084 btrfs_set_backup_num_devices(root_backup,
2085 btrfs_super_num_devices(info->super_copy));
2086
2087 /*
2088 * if we don't copy this out to the super_copy, it won't get remembered
2089 * for the next commit
2090 */
2091 memcpy(&info->super_copy->super_roots,
2092 &info->super_for_commit->super_roots,
2093 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2094}
2095
2096/*
2097 * this copies info out of the root backup array and back into
2098 * the in-memory super block. It is meant to help iterate through
2099 * the array, so you send it the number of backups you've already
2100 * tried and the last backup index you used.
2101 *
2102 * this returns -1 when it has tried all the backups
2103 */
2104static noinline int next_root_backup(struct btrfs_fs_info *info,
2105 struct btrfs_super_block *super,
2106 int *num_backups_tried, int *backup_index)
2107{
2108 struct btrfs_root_backup *root_backup;
2109 int newest = *backup_index;
2110
2111 if (*num_backups_tried == 0) {
2112 u64 gen = btrfs_super_generation(super);
2113
2114 newest = find_newest_super_backup(info, gen);
2115 if (newest == -1)
2116 return -1;
2117
2118 *backup_index = newest;
2119 *num_backups_tried = 1;
2120 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2121 /* we've tried all the backups, all done */
2122 return -1;
2123 } else {
2124 /* jump to the next oldest backup */
2125 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2126 BTRFS_NUM_BACKUP_ROOTS;
2127 *backup_index = newest;
2128 *num_backups_tried += 1;
2129 }
2130 root_backup = super->super_roots + newest;
2131
2132 btrfs_set_super_generation(super,
2133 btrfs_backup_tree_root_gen(root_backup));
2134 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2135 btrfs_set_super_root_level(super,
2136 btrfs_backup_tree_root_level(root_backup));
2137 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2138
2139 /*
2140 * fixme: the total bytes and num_devices need to match or we should
2141 * need a fsck
2142 */
2143 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2144 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2145 return 0;
2146}
2147
2148/* helper to cleanup workers */
2149static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2150{
2151 btrfs_destroy_workqueue(fs_info->fixup_workers);
2152 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2153 btrfs_destroy_workqueue(fs_info->workers);
2154 btrfs_destroy_workqueue(fs_info->endio_workers);
2155 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2156 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2157 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2158 btrfs_destroy_workqueue(fs_info->rmw_workers);
2159 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2160 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2161 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2162 btrfs_destroy_workqueue(fs_info->submit_workers);
2163 btrfs_destroy_workqueue(fs_info->delayed_workers);
2164 btrfs_destroy_workqueue(fs_info->caching_workers);
2165 btrfs_destroy_workqueue(fs_info->readahead_workers);
2166 btrfs_destroy_workqueue(fs_info->flush_workers);
2167 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2168 btrfs_destroy_workqueue(fs_info->extent_workers);
2169}
2170
2171static void free_root_extent_buffers(struct btrfs_root *root)
2172{
2173 if (root) {
2174 free_extent_buffer(root->node);
2175 free_extent_buffer(root->commit_root);
2176 root->node = NULL;
2177 root->commit_root = NULL;
2178 }
2179}
2180
2181/* helper to cleanup tree roots */
2182static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2183{
2184 free_root_extent_buffers(info->tree_root);
2185
2186 free_root_extent_buffers(info->dev_root);
2187 free_root_extent_buffers(info->extent_root);
2188 free_root_extent_buffers(info->csum_root);
2189 free_root_extent_buffers(info->quota_root);
2190 free_root_extent_buffers(info->uuid_root);
2191 if (chunk_root)
2192 free_root_extent_buffers(info->chunk_root);
2193 free_root_extent_buffers(info->free_space_root);
2194}
2195
2196void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2197{
2198 int ret;
2199 struct btrfs_root *gang[8];
2200 int i;
2201
2202 while (!list_empty(&fs_info->dead_roots)) {
2203 gang[0] = list_entry(fs_info->dead_roots.next,
2204 struct btrfs_root, root_list);
2205 list_del(&gang[0]->root_list);
2206
2207 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2208 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2209 } else {
2210 free_extent_buffer(gang[0]->node);
2211 free_extent_buffer(gang[0]->commit_root);
2212 btrfs_put_fs_root(gang[0]);
2213 }
2214 }
2215
2216 while (1) {
2217 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2218 (void **)gang, 0,
2219 ARRAY_SIZE(gang));
2220 if (!ret)
2221 break;
2222 for (i = 0; i < ret; i++)
2223 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2224 }
2225
2226 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2227 btrfs_free_log_root_tree(NULL, fs_info);
2228 btrfs_destroy_pinned_extent(fs_info->tree_root,
2229 fs_info->pinned_extents);
2230 }
2231}
2232
2233static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2234{
2235 mutex_init(&fs_info->scrub_lock);
2236 atomic_set(&fs_info->scrubs_running, 0);
2237 atomic_set(&fs_info->scrub_pause_req, 0);
2238 atomic_set(&fs_info->scrubs_paused, 0);
2239 atomic_set(&fs_info->scrub_cancel_req, 0);
2240 init_waitqueue_head(&fs_info->scrub_pause_wait);
2241 fs_info->scrub_workers_refcnt = 0;
2242}
2243
2244static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2245{
2246 spin_lock_init(&fs_info->balance_lock);
2247 mutex_init(&fs_info->balance_mutex);
2248 atomic_set(&fs_info->balance_running, 0);
2249 atomic_set(&fs_info->balance_pause_req, 0);
2250 atomic_set(&fs_info->balance_cancel_req, 0);
2251 fs_info->balance_ctl = NULL;
2252 init_waitqueue_head(&fs_info->balance_wait_q);
2253}
2254
2255static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2256 struct btrfs_root *tree_root)
2257{
2258 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2259 set_nlink(fs_info->btree_inode, 1);
2260 /*
2261 * we set the i_size on the btree inode to the max possible int.
2262 * the real end of the address space is determined by all of
2263 * the devices in the system
2264 */
2265 fs_info->btree_inode->i_size = OFFSET_MAX;
2266 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2267
2268 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2269 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2270 fs_info->btree_inode->i_mapping);
2271 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2272 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2273
2274 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2275
2276 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2277 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2278 sizeof(struct btrfs_key));
2279 set_bit(BTRFS_INODE_DUMMY,
2280 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2281 btrfs_insert_inode_hash(fs_info->btree_inode);
2282}
2283
2284static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2285{
2286 fs_info->dev_replace.lock_owner = 0;
2287 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2288 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2289 rwlock_init(&fs_info->dev_replace.lock);
2290 atomic_set(&fs_info->dev_replace.read_locks, 0);
2291 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2292 init_waitqueue_head(&fs_info->replace_wait);
2293 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2294}
2295
2296static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2297{
2298 spin_lock_init(&fs_info->qgroup_lock);
2299 mutex_init(&fs_info->qgroup_ioctl_lock);
2300 fs_info->qgroup_tree = RB_ROOT;
2301 fs_info->qgroup_op_tree = RB_ROOT;
2302 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2303 fs_info->qgroup_seq = 1;
2304 fs_info->quota_enabled = 0;
2305 fs_info->pending_quota_state = 0;
2306 fs_info->qgroup_ulist = NULL;
2307 fs_info->qgroup_rescan_running = false;
2308 mutex_init(&fs_info->qgroup_rescan_lock);
2309}
2310
2311static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2312 struct btrfs_fs_devices *fs_devices)
2313{
2314 int max_active = fs_info->thread_pool_size;
2315 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2316
2317 fs_info->workers =
2318 btrfs_alloc_workqueue(fs_info, "worker",
2319 flags | WQ_HIGHPRI, max_active, 16);
2320
2321 fs_info->delalloc_workers =
2322 btrfs_alloc_workqueue(fs_info, "delalloc",
2323 flags, max_active, 2);
2324
2325 fs_info->flush_workers =
2326 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2327 flags, max_active, 0);
2328
2329 fs_info->caching_workers =
2330 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2331
2332 /*
2333 * a higher idle thresh on the submit workers makes it much more
2334 * likely that bios will be send down in a sane order to the
2335 * devices
2336 */
2337 fs_info->submit_workers =
2338 btrfs_alloc_workqueue(fs_info, "submit", flags,
2339 min_t(u64, fs_devices->num_devices,
2340 max_active), 64);
2341
2342 fs_info->fixup_workers =
2343 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2344
2345 /*
2346 * endios are largely parallel and should have a very
2347 * low idle thresh
2348 */
2349 fs_info->endio_workers =
2350 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2351 fs_info->endio_meta_workers =
2352 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2353 max_active, 4);
2354 fs_info->endio_meta_write_workers =
2355 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2356 max_active, 2);
2357 fs_info->endio_raid56_workers =
2358 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2359 max_active, 4);
2360 fs_info->endio_repair_workers =
2361 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2362 fs_info->rmw_workers =
2363 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2364 fs_info->endio_write_workers =
2365 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2366 max_active, 2);
2367 fs_info->endio_freespace_worker =
2368 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2369 max_active, 0);
2370 fs_info->delayed_workers =
2371 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2372 max_active, 0);
2373 fs_info->readahead_workers =
2374 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2375 max_active, 2);
2376 fs_info->qgroup_rescan_workers =
2377 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2378 fs_info->extent_workers =
2379 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2380 min_t(u64, fs_devices->num_devices,
2381 max_active), 8);
2382
2383 if (!(fs_info->workers && fs_info->delalloc_workers &&
2384 fs_info->submit_workers && fs_info->flush_workers &&
2385 fs_info->endio_workers && fs_info->endio_meta_workers &&
2386 fs_info->endio_meta_write_workers &&
2387 fs_info->endio_repair_workers &&
2388 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2389 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2390 fs_info->caching_workers && fs_info->readahead_workers &&
2391 fs_info->fixup_workers && fs_info->delayed_workers &&
2392 fs_info->extent_workers &&
2393 fs_info->qgroup_rescan_workers)) {
2394 return -ENOMEM;
2395 }
2396
2397 return 0;
2398}
2399
2400static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2401 struct btrfs_fs_devices *fs_devices)
2402{
2403 int ret;
2404 struct btrfs_root *tree_root = fs_info->tree_root;
2405 struct btrfs_root *log_tree_root;
2406 struct btrfs_super_block *disk_super = fs_info->super_copy;
2407 u64 bytenr = btrfs_super_log_root(disk_super);
2408
2409 if (fs_devices->rw_devices == 0) {
2410 btrfs_warn(fs_info, "log replay required on RO media");
2411 return -EIO;
2412 }
2413
2414 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2415 if (!log_tree_root)
2416 return -ENOMEM;
2417
2418 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2419 tree_root->stripesize, log_tree_root, fs_info,
2420 BTRFS_TREE_LOG_OBJECTID);
2421
2422 log_tree_root->node = read_tree_block(tree_root, bytenr,
2423 fs_info->generation + 1);
2424 if (IS_ERR(log_tree_root->node)) {
2425 btrfs_warn(fs_info, "failed to read log tree");
2426 ret = PTR_ERR(log_tree_root->node);
2427 kfree(log_tree_root);
2428 return ret;
2429 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2430 btrfs_err(fs_info, "failed to read log tree");
2431 free_extent_buffer(log_tree_root->node);
2432 kfree(log_tree_root);
2433 return -EIO;
2434 }
2435 /* returns with log_tree_root freed on success */
2436 ret = btrfs_recover_log_trees(log_tree_root);
2437 if (ret) {
2438 btrfs_handle_fs_error(tree_root->fs_info, ret,
2439 "Failed to recover log tree");
2440 free_extent_buffer(log_tree_root->node);
2441 kfree(log_tree_root);
2442 return ret;
2443 }
2444
2445 if (fs_info->sb->s_flags & MS_RDONLY) {
2446 ret = btrfs_commit_super(tree_root);
2447 if (ret)
2448 return ret;
2449 }
2450
2451 return 0;
2452}
2453
2454static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2455 struct btrfs_root *tree_root)
2456{
2457 struct btrfs_root *root;
2458 struct btrfs_key location;
2459 int ret;
2460
2461 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2462 location.type = BTRFS_ROOT_ITEM_KEY;
2463 location.offset = 0;
2464
2465 root = btrfs_read_tree_root(tree_root, &location);
2466 if (IS_ERR(root))
2467 return PTR_ERR(root);
2468 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2469 fs_info->extent_root = root;
2470
2471 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2472 root = btrfs_read_tree_root(tree_root, &location);
2473 if (IS_ERR(root))
2474 return PTR_ERR(root);
2475 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2476 fs_info->dev_root = root;
2477 btrfs_init_devices_late(fs_info);
2478
2479 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2480 root = btrfs_read_tree_root(tree_root, &location);
2481 if (IS_ERR(root))
2482 return PTR_ERR(root);
2483 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2484 fs_info->csum_root = root;
2485
2486 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2487 root = btrfs_read_tree_root(tree_root, &location);
2488 if (!IS_ERR(root)) {
2489 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2490 fs_info->quota_enabled = 1;
2491 fs_info->pending_quota_state = 1;
2492 fs_info->quota_root = root;
2493 }
2494
2495 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2496 root = btrfs_read_tree_root(tree_root, &location);
2497 if (IS_ERR(root)) {
2498 ret = PTR_ERR(root);
2499 if (ret != -ENOENT)
2500 return ret;
2501 } else {
2502 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2503 fs_info->uuid_root = root;
2504 }
2505
2506 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2507 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2508 root = btrfs_read_tree_root(tree_root, &location);
2509 if (IS_ERR(root))
2510 return PTR_ERR(root);
2511 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2512 fs_info->free_space_root = root;
2513 }
2514
2515 return 0;
2516}
2517
2518int open_ctree(struct super_block *sb,
2519 struct btrfs_fs_devices *fs_devices,
2520 char *options)
2521{
2522 u32 sectorsize;
2523 u32 nodesize;
2524 u32 stripesize;
2525 u64 generation;
2526 u64 features;
2527 struct btrfs_key location;
2528 struct buffer_head *bh;
2529 struct btrfs_super_block *disk_super;
2530 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2531 struct btrfs_root *tree_root;
2532 struct btrfs_root *chunk_root;
2533 int ret;
2534 int err = -EINVAL;
2535 int num_backups_tried = 0;
2536 int backup_index = 0;
2537 int max_active;
2538
2539 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2540 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2541 if (!tree_root || !chunk_root) {
2542 err = -ENOMEM;
2543 goto fail;
2544 }
2545
2546 ret = init_srcu_struct(&fs_info->subvol_srcu);
2547 if (ret) {
2548 err = ret;
2549 goto fail;
2550 }
2551
2552 ret = setup_bdi(fs_info, &fs_info->bdi);
2553 if (ret) {
2554 err = ret;
2555 goto fail_srcu;
2556 }
2557
2558 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2559 if (ret) {
2560 err = ret;
2561 goto fail_bdi;
2562 }
2563 fs_info->dirty_metadata_batch = PAGE_SIZE *
2564 (1 + ilog2(nr_cpu_ids));
2565
2566 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2567 if (ret) {
2568 err = ret;
2569 goto fail_dirty_metadata_bytes;
2570 }
2571
2572 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2573 if (ret) {
2574 err = ret;
2575 goto fail_delalloc_bytes;
2576 }
2577
2578 fs_info->btree_inode = new_inode(sb);
2579 if (!fs_info->btree_inode) {
2580 err = -ENOMEM;
2581 goto fail_bio_counter;
2582 }
2583
2584 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2585
2586 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2587 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2588 INIT_LIST_HEAD(&fs_info->trans_list);
2589 INIT_LIST_HEAD(&fs_info->dead_roots);
2590 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2591 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2592 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2593 spin_lock_init(&fs_info->delalloc_root_lock);
2594 spin_lock_init(&fs_info->trans_lock);
2595 spin_lock_init(&fs_info->fs_roots_radix_lock);
2596 spin_lock_init(&fs_info->delayed_iput_lock);
2597 spin_lock_init(&fs_info->defrag_inodes_lock);
2598 spin_lock_init(&fs_info->free_chunk_lock);
2599 spin_lock_init(&fs_info->tree_mod_seq_lock);
2600 spin_lock_init(&fs_info->super_lock);
2601 spin_lock_init(&fs_info->qgroup_op_lock);
2602 spin_lock_init(&fs_info->buffer_lock);
2603 spin_lock_init(&fs_info->unused_bgs_lock);
2604 rwlock_init(&fs_info->tree_mod_log_lock);
2605 mutex_init(&fs_info->unused_bg_unpin_mutex);
2606 mutex_init(&fs_info->delete_unused_bgs_mutex);
2607 mutex_init(&fs_info->reloc_mutex);
2608 mutex_init(&fs_info->delalloc_root_mutex);
2609 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2610 seqlock_init(&fs_info->profiles_lock);
2611
2612 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2613 INIT_LIST_HEAD(&fs_info->space_info);
2614 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2615 INIT_LIST_HEAD(&fs_info->unused_bgs);
2616 btrfs_mapping_init(&fs_info->mapping_tree);
2617 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2618 BTRFS_BLOCK_RSV_GLOBAL);
2619 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2620 BTRFS_BLOCK_RSV_DELALLOC);
2621 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2622 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2623 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2624 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2625 BTRFS_BLOCK_RSV_DELOPS);
2626 atomic_set(&fs_info->nr_async_submits, 0);
2627 atomic_set(&fs_info->async_delalloc_pages, 0);
2628 atomic_set(&fs_info->async_submit_draining, 0);
2629 atomic_set(&fs_info->nr_async_bios, 0);
2630 atomic_set(&fs_info->defrag_running, 0);
2631 atomic_set(&fs_info->qgroup_op_seq, 0);
2632 atomic_set(&fs_info->reada_works_cnt, 0);
2633 atomic64_set(&fs_info->tree_mod_seq, 0);
2634 fs_info->fs_frozen = 0;
2635 fs_info->sb = sb;
2636 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2637 fs_info->metadata_ratio = 0;
2638 fs_info->defrag_inodes = RB_ROOT;
2639 fs_info->free_chunk_space = 0;
2640 fs_info->tree_mod_log = RB_ROOT;
2641 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2642 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2643 /* readahead state */
2644 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2645 spin_lock_init(&fs_info->reada_lock);
2646
2647 fs_info->thread_pool_size = min_t(unsigned long,
2648 num_online_cpus() + 2, 8);
2649
2650 INIT_LIST_HEAD(&fs_info->ordered_roots);
2651 spin_lock_init(&fs_info->ordered_root_lock);
2652 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2653 GFP_KERNEL);
2654 if (!fs_info->delayed_root) {
2655 err = -ENOMEM;
2656 goto fail_iput;
2657 }
2658 btrfs_init_delayed_root(fs_info->delayed_root);
2659
2660 btrfs_init_scrub(fs_info);
2661#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2662 fs_info->check_integrity_print_mask = 0;
2663#endif
2664 btrfs_init_balance(fs_info);
2665 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2666
2667 sb->s_blocksize = 4096;
2668 sb->s_blocksize_bits = blksize_bits(4096);
2669 sb->s_bdi = &fs_info->bdi;
2670
2671 btrfs_init_btree_inode(fs_info, tree_root);
2672
2673 spin_lock_init(&fs_info->block_group_cache_lock);
2674 fs_info->block_group_cache_tree = RB_ROOT;
2675 fs_info->first_logical_byte = (u64)-1;
2676
2677 extent_io_tree_init(&fs_info->freed_extents[0],
2678 fs_info->btree_inode->i_mapping);
2679 extent_io_tree_init(&fs_info->freed_extents[1],
2680 fs_info->btree_inode->i_mapping);
2681 fs_info->pinned_extents = &fs_info->freed_extents[0];
2682 fs_info->do_barriers = 1;
2683
2684
2685 mutex_init(&fs_info->ordered_operations_mutex);
2686 mutex_init(&fs_info->tree_log_mutex);
2687 mutex_init(&fs_info->chunk_mutex);
2688 mutex_init(&fs_info->transaction_kthread_mutex);
2689 mutex_init(&fs_info->cleaner_mutex);
2690 mutex_init(&fs_info->volume_mutex);
2691 mutex_init(&fs_info->ro_block_group_mutex);
2692 init_rwsem(&fs_info->commit_root_sem);
2693 init_rwsem(&fs_info->cleanup_work_sem);
2694 init_rwsem(&fs_info->subvol_sem);
2695 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2696
2697 btrfs_init_dev_replace_locks(fs_info);
2698 btrfs_init_qgroup(fs_info);
2699
2700 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2701 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2702
2703 init_waitqueue_head(&fs_info->transaction_throttle);
2704 init_waitqueue_head(&fs_info->transaction_wait);
2705 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2706 init_waitqueue_head(&fs_info->async_submit_wait);
2707
2708 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2709
2710 ret = btrfs_alloc_stripe_hash_table(fs_info);
2711 if (ret) {
2712 err = ret;
2713 goto fail_alloc;
2714 }
2715
2716 __setup_root(4096, 4096, 4096, tree_root,
2717 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2718
2719 invalidate_bdev(fs_devices->latest_bdev);
2720
2721 /*
2722 * Read super block and check the signature bytes only
2723 */
2724 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2725 if (IS_ERR(bh)) {
2726 err = PTR_ERR(bh);
2727 goto fail_alloc;
2728 }
2729
2730 /*
2731 * We want to check superblock checksum, the type is stored inside.
2732 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2733 */
2734 if (btrfs_check_super_csum(bh->b_data)) {
2735 btrfs_err(fs_info, "superblock checksum mismatch");
2736 err = -EINVAL;
2737 brelse(bh);
2738 goto fail_alloc;
2739 }
2740
2741 /*
2742 * super_copy is zeroed at allocation time and we never touch the
2743 * following bytes up to INFO_SIZE, the checksum is calculated from
2744 * the whole block of INFO_SIZE
2745 */
2746 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2747 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2748 sizeof(*fs_info->super_for_commit));
2749 brelse(bh);
2750
2751 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2752
2753 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2754 if (ret) {
2755 btrfs_err(fs_info, "superblock contains fatal errors");
2756 err = -EINVAL;
2757 goto fail_alloc;
2758 }
2759
2760 disk_super = fs_info->super_copy;
2761 if (!btrfs_super_root(disk_super))
2762 goto fail_alloc;
2763
2764 /* check FS state, whether FS is broken. */
2765 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2766 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2767
2768 /*
2769 * run through our array of backup supers and setup
2770 * our ring pointer to the oldest one
2771 */
2772 generation = btrfs_super_generation(disk_super);
2773 find_oldest_super_backup(fs_info, generation);
2774
2775 /*
2776 * In the long term, we'll store the compression type in the super
2777 * block, and it'll be used for per file compression control.
2778 */
2779 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2780
2781 ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2782 if (ret) {
2783 err = ret;
2784 goto fail_alloc;
2785 }
2786
2787 features = btrfs_super_incompat_flags(disk_super) &
2788 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2789 if (features) {
2790 btrfs_err(fs_info,
2791 "cannot mount because of unsupported optional features (%llx)",
2792 features);
2793 err = -EINVAL;
2794 goto fail_alloc;
2795 }
2796
2797 features = btrfs_super_incompat_flags(disk_super);
2798 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2799 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2800 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2801
2802 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2803 btrfs_info(fs_info, "has skinny extents");
2804
2805 /*
2806 * flag our filesystem as having big metadata blocks if
2807 * they are bigger than the page size
2808 */
2809 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2810 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2811 btrfs_info(fs_info,
2812 "flagging fs with big metadata feature");
2813 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2814 }
2815
2816 nodesize = btrfs_super_nodesize(disk_super);
2817 sectorsize = btrfs_super_sectorsize(disk_super);
2818 stripesize = sectorsize;
2819 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2820 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2821
2822 /*
2823 * mixed block groups end up with duplicate but slightly offset
2824 * extent buffers for the same range. It leads to corruptions
2825 */
2826 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2827 (sectorsize != nodesize)) {
2828 btrfs_err(fs_info,
2829"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2830 nodesize, sectorsize);
2831 goto fail_alloc;
2832 }
2833
2834 /*
2835 * Needn't use the lock because there is no other task which will
2836 * update the flag.
2837 */
2838 btrfs_set_super_incompat_flags(disk_super, features);
2839
2840 features = btrfs_super_compat_ro_flags(disk_super) &
2841 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2842 if (!(sb->s_flags & MS_RDONLY) && features) {
2843 btrfs_err(fs_info,
2844 "cannot mount read-write because of unsupported optional features (%llx)",
2845 features);
2846 err = -EINVAL;
2847 goto fail_alloc;
2848 }
2849
2850 max_active = fs_info->thread_pool_size;
2851
2852 ret = btrfs_init_workqueues(fs_info, fs_devices);
2853 if (ret) {
2854 err = ret;
2855 goto fail_sb_buffer;
2856 }
2857
2858 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2859 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2860 SZ_4M / PAGE_SIZE);
2861
2862 tree_root->nodesize = nodesize;
2863 tree_root->sectorsize = sectorsize;
2864 tree_root->stripesize = stripesize;
2865
2866 sb->s_blocksize = sectorsize;
2867 sb->s_blocksize_bits = blksize_bits(sectorsize);
2868
2869 mutex_lock(&fs_info->chunk_mutex);
2870 ret = btrfs_read_sys_array(tree_root);
2871 mutex_unlock(&fs_info->chunk_mutex);
2872 if (ret) {
2873 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2874 goto fail_sb_buffer;
2875 }
2876
2877 generation = btrfs_super_chunk_root_generation(disk_super);
2878
2879 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2880 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2881
2882 chunk_root->node = read_tree_block(chunk_root,
2883 btrfs_super_chunk_root(disk_super),
2884 generation);
2885 if (IS_ERR(chunk_root->node) ||
2886 !extent_buffer_uptodate(chunk_root->node)) {
2887 btrfs_err(fs_info, "failed to read chunk root");
2888 if (!IS_ERR(chunk_root->node))
2889 free_extent_buffer(chunk_root->node);
2890 chunk_root->node = NULL;
2891 goto fail_tree_roots;
2892 }
2893 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2894 chunk_root->commit_root = btrfs_root_node(chunk_root);
2895
2896 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2897 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2898
2899 ret = btrfs_read_chunk_tree(chunk_root);
2900 if (ret) {
2901 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2902 goto fail_tree_roots;
2903 }
2904
2905 /*
2906 * keep the device that is marked to be the target device for the
2907 * dev_replace procedure
2908 */
2909 btrfs_close_extra_devices(fs_devices, 0);
2910
2911 if (!fs_devices->latest_bdev) {
2912 btrfs_err(fs_info, "failed to read devices");
2913 goto fail_tree_roots;
2914 }
2915
2916retry_root_backup:
2917 generation = btrfs_super_generation(disk_super);
2918
2919 tree_root->node = read_tree_block(tree_root,
2920 btrfs_super_root(disk_super),
2921 generation);
2922 if (IS_ERR(tree_root->node) ||
2923 !extent_buffer_uptodate(tree_root->node)) {
2924 btrfs_warn(fs_info, "failed to read tree root");
2925 if (!IS_ERR(tree_root->node))
2926 free_extent_buffer(tree_root->node);
2927 tree_root->node = NULL;
2928 goto recovery_tree_root;
2929 }
2930
2931 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2932 tree_root->commit_root = btrfs_root_node(tree_root);
2933 btrfs_set_root_refs(&tree_root->root_item, 1);
2934
2935 mutex_lock(&tree_root->objectid_mutex);
2936 ret = btrfs_find_highest_objectid(tree_root,
2937 &tree_root->highest_objectid);
2938 if (ret) {
2939 mutex_unlock(&tree_root->objectid_mutex);
2940 goto recovery_tree_root;
2941 }
2942
2943 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2944
2945 mutex_unlock(&tree_root->objectid_mutex);
2946
2947 ret = btrfs_read_roots(fs_info, tree_root);
2948 if (ret)
2949 goto recovery_tree_root;
2950
2951 fs_info->generation = generation;
2952 fs_info->last_trans_committed = generation;
2953
2954 ret = btrfs_recover_balance(fs_info);
2955 if (ret) {
2956 btrfs_err(fs_info, "failed to recover balance: %d", ret);
2957 goto fail_block_groups;
2958 }
2959
2960 ret = btrfs_init_dev_stats(fs_info);
2961 if (ret) {
2962 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2963 goto fail_block_groups;
2964 }
2965
2966 ret = btrfs_init_dev_replace(fs_info);
2967 if (ret) {
2968 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
2969 goto fail_block_groups;
2970 }
2971
2972 btrfs_close_extra_devices(fs_devices, 1);
2973
2974 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2975 if (ret) {
2976 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2977 ret);
2978 goto fail_block_groups;
2979 }
2980
2981 ret = btrfs_sysfs_add_device(fs_devices);
2982 if (ret) {
2983 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2984 ret);
2985 goto fail_fsdev_sysfs;
2986 }
2987
2988 ret = btrfs_sysfs_add_mounted(fs_info);
2989 if (ret) {
2990 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
2991 goto fail_fsdev_sysfs;
2992 }
2993
2994 ret = btrfs_init_space_info(fs_info);
2995 if (ret) {
2996 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2997 goto fail_sysfs;
2998 }
2999
3000 ret = btrfs_read_block_groups(fs_info->extent_root);
3001 if (ret) {
3002 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3003 goto fail_sysfs;
3004 }
3005 fs_info->num_tolerated_disk_barrier_failures =
3006 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3007 if (fs_info->fs_devices->missing_devices >
3008 fs_info->num_tolerated_disk_barrier_failures &&
3009 !(sb->s_flags & MS_RDONLY)) {
3010 btrfs_warn(fs_info,
3011"missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3012 fs_info->fs_devices->missing_devices,
3013 fs_info->num_tolerated_disk_barrier_failures);
3014 goto fail_sysfs;
3015 }
3016
3017 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3018 "btrfs-cleaner");
3019 if (IS_ERR(fs_info->cleaner_kthread))
3020 goto fail_sysfs;
3021
3022 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3023 tree_root,
3024 "btrfs-transaction");
3025 if (IS_ERR(fs_info->transaction_kthread))
3026 goto fail_cleaner;
3027
3028 if (!btrfs_test_opt(tree_root->fs_info, SSD) &&
3029 !btrfs_test_opt(tree_root->fs_info, NOSSD) &&
3030 !fs_info->fs_devices->rotating) {
3031 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3032 btrfs_set_opt(fs_info->mount_opt, SSD);
3033 }
3034
3035 /*
3036 * Mount does not set all options immediately, we can do it now and do
3037 * not have to wait for transaction commit
3038 */
3039 btrfs_apply_pending_changes(fs_info);
3040
3041#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3042 if (btrfs_test_opt(tree_root->fs_info, CHECK_INTEGRITY)) {
3043 ret = btrfsic_mount(tree_root, fs_devices,
3044 btrfs_test_opt(tree_root->fs_info,
3045 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3046 1 : 0,
3047 fs_info->check_integrity_print_mask);
3048 if (ret)
3049 btrfs_warn(fs_info,
3050 "failed to initialize integrity check module: %d",
3051 ret);
3052 }
3053#endif
3054 ret = btrfs_read_qgroup_config(fs_info);
3055 if (ret)
3056 goto fail_trans_kthread;
3057
3058 /* do not make disk changes in broken FS or nologreplay is given */
3059 if (btrfs_super_log_root(disk_super) != 0 &&
3060 !btrfs_test_opt(tree_root->fs_info, NOLOGREPLAY)) {
3061 ret = btrfs_replay_log(fs_info, fs_devices);
3062 if (ret) {
3063 err = ret;
3064 goto fail_qgroup;
3065 }
3066 }
3067
3068 ret = btrfs_find_orphan_roots(tree_root);
3069 if (ret)
3070 goto fail_qgroup;
3071
3072 if (!(sb->s_flags & MS_RDONLY)) {
3073 ret = btrfs_cleanup_fs_roots(fs_info);
3074 if (ret)
3075 goto fail_qgroup;
3076
3077 mutex_lock(&fs_info->cleaner_mutex);
3078 ret = btrfs_recover_relocation(tree_root);
3079 mutex_unlock(&fs_info->cleaner_mutex);
3080 if (ret < 0) {
3081 btrfs_warn(fs_info, "failed to recover relocation: %d",
3082 ret);
3083 err = -EINVAL;
3084 goto fail_qgroup;
3085 }
3086 }
3087
3088 location.objectid = BTRFS_FS_TREE_OBJECTID;
3089 location.type = BTRFS_ROOT_ITEM_KEY;
3090 location.offset = 0;
3091
3092 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3093 if (IS_ERR(fs_info->fs_root)) {
3094 err = PTR_ERR(fs_info->fs_root);
3095 goto fail_qgroup;
3096 }
3097
3098 if (sb->s_flags & MS_RDONLY)
3099 return 0;
3100
3101 if (btrfs_test_opt(tree_root->fs_info, FREE_SPACE_TREE) &&
3102 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3103 btrfs_info(fs_info, "creating free space tree");
3104 ret = btrfs_create_free_space_tree(fs_info);
3105 if (ret) {
3106 btrfs_warn(fs_info,
3107 "failed to create free space tree: %d", ret);
3108 close_ctree(tree_root);
3109 return ret;
3110 }
3111 }
3112
3113 down_read(&fs_info->cleanup_work_sem);
3114 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3115 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3116 up_read(&fs_info->cleanup_work_sem);
3117 close_ctree(tree_root);
3118 return ret;
3119 }
3120 up_read(&fs_info->cleanup_work_sem);
3121
3122 ret = btrfs_resume_balance_async(fs_info);
3123 if (ret) {
3124 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3125 close_ctree(tree_root);
3126 return ret;
3127 }
3128
3129 ret = btrfs_resume_dev_replace_async(fs_info);
3130 if (ret) {
3131 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3132 close_ctree(tree_root);
3133 return ret;
3134 }
3135
3136 btrfs_qgroup_rescan_resume(fs_info);
3137
3138 if (btrfs_test_opt(tree_root->fs_info, CLEAR_CACHE) &&
3139 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3140 btrfs_info(fs_info, "clearing free space tree");
3141 ret = btrfs_clear_free_space_tree(fs_info);
3142 if (ret) {
3143 btrfs_warn(fs_info,
3144 "failed to clear free space tree: %d", ret);
3145 close_ctree(tree_root);
3146 return ret;
3147 }
3148 }
3149
3150 if (!fs_info->uuid_root) {
3151 btrfs_info(fs_info, "creating UUID tree");
3152 ret = btrfs_create_uuid_tree(fs_info);
3153 if (ret) {
3154 btrfs_warn(fs_info,
3155 "failed to create the UUID tree: %d", ret);
3156 close_ctree(tree_root);
3157 return ret;
3158 }
3159 } else if (btrfs_test_opt(tree_root->fs_info, RESCAN_UUID_TREE) ||
3160 fs_info->generation !=
3161 btrfs_super_uuid_tree_generation(disk_super)) {
3162 btrfs_info(fs_info, "checking UUID tree");
3163 ret = btrfs_check_uuid_tree(fs_info);
3164 if (ret) {
3165 btrfs_warn(fs_info,
3166 "failed to check the UUID tree: %d", ret);
3167 close_ctree(tree_root);
3168 return ret;
3169 }
3170 } else {
3171 fs_info->update_uuid_tree_gen = 1;
3172 }
3173
3174 fs_info->open = 1;
3175
3176 /*
3177 * backuproot only affect mount behavior, and if open_ctree succeeded,
3178 * no need to keep the flag
3179 */
3180 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3181
3182 return 0;
3183
3184fail_qgroup:
3185 btrfs_free_qgroup_config(fs_info);
3186fail_trans_kthread:
3187 kthread_stop(fs_info->transaction_kthread);
3188 btrfs_cleanup_transaction(fs_info->tree_root);
3189 btrfs_free_fs_roots(fs_info);
3190fail_cleaner:
3191 kthread_stop(fs_info->cleaner_kthread);
3192
3193 /*
3194 * make sure we're done with the btree inode before we stop our
3195 * kthreads
3196 */
3197 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3198
3199fail_sysfs:
3200 btrfs_sysfs_remove_mounted(fs_info);
3201
3202fail_fsdev_sysfs:
3203 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3204
3205fail_block_groups:
3206 btrfs_put_block_group_cache(fs_info);
3207 btrfs_free_block_groups(fs_info);
3208
3209fail_tree_roots:
3210 free_root_pointers(fs_info, 1);
3211 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3212
3213fail_sb_buffer:
3214 btrfs_stop_all_workers(fs_info);
3215fail_alloc:
3216fail_iput:
3217 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3218
3219 iput(fs_info->btree_inode);
3220fail_bio_counter:
3221 percpu_counter_destroy(&fs_info->bio_counter);
3222fail_delalloc_bytes:
3223 percpu_counter_destroy(&fs_info->delalloc_bytes);
3224fail_dirty_metadata_bytes:
3225 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3226fail_bdi:
3227 bdi_destroy(&fs_info->bdi);
3228fail_srcu:
3229 cleanup_srcu_struct(&fs_info->subvol_srcu);
3230fail:
3231 btrfs_free_stripe_hash_table(fs_info);
3232 btrfs_close_devices(fs_info->fs_devices);
3233 return err;
3234
3235recovery_tree_root:
3236 if (!btrfs_test_opt(tree_root->fs_info, USEBACKUPROOT))
3237 goto fail_tree_roots;
3238
3239 free_root_pointers(fs_info, 0);
3240
3241 /* don't use the log in recovery mode, it won't be valid */
3242 btrfs_set_super_log_root(disk_super, 0);
3243
3244 /* we can't trust the free space cache either */
3245 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3246
3247 ret = next_root_backup(fs_info, fs_info->super_copy,
3248 &num_backups_tried, &backup_index);
3249 if (ret == -1)
3250 goto fail_block_groups;
3251 goto retry_root_backup;
3252}
3253
3254static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3255{
3256 if (uptodate) {
3257 set_buffer_uptodate(bh);
3258 } else {
3259 struct btrfs_device *device = (struct btrfs_device *)
3260 bh->b_private;
3261
3262 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3263 "lost page write due to IO error on %s",
3264 rcu_str_deref(device->name));
3265 /* note, we don't set_buffer_write_io_error because we have
3266 * our own ways of dealing with the IO errors
3267 */
3268 clear_buffer_uptodate(bh);
3269 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3270 }
3271 unlock_buffer(bh);
3272 put_bh(bh);
3273}
3274
3275int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3276 struct buffer_head **bh_ret)
3277{
3278 struct buffer_head *bh;
3279 struct btrfs_super_block *super;
3280 u64 bytenr;
3281
3282 bytenr = btrfs_sb_offset(copy_num);
3283 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3284 return -EINVAL;
3285
3286 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3287 /*
3288 * If we fail to read from the underlying devices, as of now
3289 * the best option we have is to mark it EIO.
3290 */
3291 if (!bh)
3292 return -EIO;
3293
3294 super = (struct btrfs_super_block *)bh->b_data;
3295 if (btrfs_super_bytenr(super) != bytenr ||
3296 btrfs_super_magic(super) != BTRFS_MAGIC) {
3297 brelse(bh);
3298 return -EINVAL;
3299 }
3300
3301 *bh_ret = bh;
3302 return 0;
3303}
3304
3305
3306struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3307{
3308 struct buffer_head *bh;
3309 struct buffer_head *latest = NULL;
3310 struct btrfs_super_block *super;
3311 int i;
3312 u64 transid = 0;
3313 int ret = -EINVAL;
3314
3315 /* we would like to check all the supers, but that would make
3316 * a btrfs mount succeed after a mkfs from a different FS.
3317 * So, we need to add a special mount option to scan for
3318 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3319 */
3320 for (i = 0; i < 1; i++) {
3321 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3322 if (ret)
3323 continue;
3324
3325 super = (struct btrfs_super_block *)bh->b_data;
3326
3327 if (!latest || btrfs_super_generation(super) > transid) {
3328 brelse(latest);
3329 latest = bh;
3330 transid = btrfs_super_generation(super);
3331 } else {
3332 brelse(bh);
3333 }
3334 }
3335
3336 if (!latest)
3337 return ERR_PTR(ret);
3338
3339 return latest;
3340}
3341
3342/*
3343 * this should be called twice, once with wait == 0 and
3344 * once with wait == 1. When wait == 0 is done, all the buffer heads
3345 * we write are pinned.
3346 *
3347 * They are released when wait == 1 is done.
3348 * max_mirrors must be the same for both runs, and it indicates how
3349 * many supers on this one device should be written.
3350 *
3351 * max_mirrors == 0 means to write them all.
3352 */
3353static int write_dev_supers(struct btrfs_device *device,
3354 struct btrfs_super_block *sb,
3355 int do_barriers, int wait, int max_mirrors)
3356{
3357 struct buffer_head *bh;
3358 int i;
3359 int ret;
3360 int errors = 0;
3361 u32 crc;
3362 u64 bytenr;
3363
3364 if (max_mirrors == 0)
3365 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3366
3367 for (i = 0; i < max_mirrors; i++) {
3368 bytenr = btrfs_sb_offset(i);
3369 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3370 device->commit_total_bytes)
3371 break;
3372
3373 if (wait) {
3374 bh = __find_get_block(device->bdev, bytenr / 4096,
3375 BTRFS_SUPER_INFO_SIZE);
3376 if (!bh) {
3377 errors++;
3378 continue;
3379 }
3380 wait_on_buffer(bh);
3381 if (!buffer_uptodate(bh))
3382 errors++;
3383
3384 /* drop our reference */
3385 brelse(bh);
3386
3387 /* drop the reference from the wait == 0 run */
3388 brelse(bh);
3389 continue;
3390 } else {
3391 btrfs_set_super_bytenr(sb, bytenr);
3392
3393 crc = ~(u32)0;
3394 crc = btrfs_csum_data((char *)sb +
3395 BTRFS_CSUM_SIZE, crc,
3396 BTRFS_SUPER_INFO_SIZE -
3397 BTRFS_CSUM_SIZE);
3398 btrfs_csum_final(crc, sb->csum);
3399
3400 /*
3401 * one reference for us, and we leave it for the
3402 * caller
3403 */
3404 bh = __getblk(device->bdev, bytenr / 4096,
3405 BTRFS_SUPER_INFO_SIZE);
3406 if (!bh) {
3407 btrfs_err(device->dev_root->fs_info,
3408 "couldn't get super buffer head for bytenr %llu",
3409 bytenr);
3410 errors++;
3411 continue;
3412 }
3413
3414 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3415
3416 /* one reference for submit_bh */
3417 get_bh(bh);
3418
3419 set_buffer_uptodate(bh);
3420 lock_buffer(bh);
3421 bh->b_end_io = btrfs_end_buffer_write_sync;
3422 bh->b_private = device;
3423 }
3424
3425 /*
3426 * we fua the first super. The others we allow
3427 * to go down lazy.
3428 */
3429 if (i == 0)
3430 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3431 else
3432 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3433 if (ret)
3434 errors++;
3435 }
3436 return errors < i ? 0 : -1;
3437}
3438
3439/*
3440 * endio for the write_dev_flush, this will wake anyone waiting
3441 * for the barrier when it is done
3442 */
3443static void btrfs_end_empty_barrier(struct bio *bio)
3444{
3445 if (bio->bi_private)
3446 complete(bio->bi_private);
3447 bio_put(bio);
3448}
3449
3450/*
3451 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3452 * sent down. With wait == 1, it waits for the previous flush.
3453 *
3454 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3455 * capable
3456 */
3457static int write_dev_flush(struct btrfs_device *device, int wait)
3458{
3459 struct bio *bio;
3460 int ret = 0;
3461
3462 if (device->nobarriers)
3463 return 0;
3464
3465 if (wait) {
3466 bio = device->flush_bio;
3467 if (!bio)
3468 return 0;
3469
3470 wait_for_completion(&device->flush_wait);
3471
3472 if (bio->bi_error) {
3473 ret = bio->bi_error;
3474 btrfs_dev_stat_inc_and_print(device,
3475 BTRFS_DEV_STAT_FLUSH_ERRS);
3476 }
3477
3478 /* drop the reference from the wait == 0 run */
3479 bio_put(bio);
3480 device->flush_bio = NULL;
3481
3482 return ret;
3483 }
3484
3485 /*
3486 * one reference for us, and we leave it for the
3487 * caller
3488 */
3489 device->flush_bio = NULL;
3490 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3491 if (!bio)
3492 return -ENOMEM;
3493
3494 bio->bi_end_io = btrfs_end_empty_barrier;
3495 bio->bi_bdev = device->bdev;
3496 init_completion(&device->flush_wait);
3497 bio->bi_private = &device->flush_wait;
3498 device->flush_bio = bio;
3499
3500 bio_get(bio);
3501 btrfsic_submit_bio(WRITE_FLUSH, bio);
3502
3503 return 0;
3504}
3505
3506/*
3507 * send an empty flush down to each device in parallel,
3508 * then wait for them
3509 */
3510static int barrier_all_devices(struct btrfs_fs_info *info)
3511{
3512 struct list_head *head;
3513 struct btrfs_device *dev;
3514 int errors_send = 0;
3515 int errors_wait = 0;
3516 int ret;
3517
3518 /* send down all the barriers */
3519 head = &info->fs_devices->devices;
3520 list_for_each_entry_rcu(dev, head, dev_list) {
3521 if (dev->missing)
3522 continue;
3523 if (!dev->bdev) {
3524 errors_send++;
3525 continue;
3526 }
3527 if (!dev->in_fs_metadata || !dev->writeable)
3528 continue;
3529
3530 ret = write_dev_flush(dev, 0);
3531 if (ret)
3532 errors_send++;
3533 }
3534
3535 /* wait for all the barriers */
3536 list_for_each_entry_rcu(dev, head, dev_list) {
3537 if (dev->missing)
3538 continue;
3539 if (!dev->bdev) {
3540 errors_wait++;
3541 continue;
3542 }
3543 if (!dev->in_fs_metadata || !dev->writeable)
3544 continue;
3545
3546 ret = write_dev_flush(dev, 1);
3547 if (ret)
3548 errors_wait++;
3549 }
3550 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3551 errors_wait > info->num_tolerated_disk_barrier_failures)
3552 return -EIO;
3553 return 0;
3554}
3555
3556int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3557{
3558 int raid_type;
3559 int min_tolerated = INT_MAX;
3560
3561 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3562 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3563 min_tolerated = min(min_tolerated,
3564 btrfs_raid_array[BTRFS_RAID_SINGLE].
3565 tolerated_failures);
3566
3567 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3568 if (raid_type == BTRFS_RAID_SINGLE)
3569 continue;
3570 if (!(flags & btrfs_raid_group[raid_type]))
3571 continue;
3572 min_tolerated = min(min_tolerated,
3573 btrfs_raid_array[raid_type].
3574 tolerated_failures);
3575 }
3576
3577 if (min_tolerated == INT_MAX) {
3578 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3579 min_tolerated = 0;
3580 }
3581
3582 return min_tolerated;
3583}
3584
3585int btrfs_calc_num_tolerated_disk_barrier_failures(
3586 struct btrfs_fs_info *fs_info)
3587{
3588 struct btrfs_ioctl_space_info space;
3589 struct btrfs_space_info *sinfo;
3590 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3591 BTRFS_BLOCK_GROUP_SYSTEM,
3592 BTRFS_BLOCK_GROUP_METADATA,
3593 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3594 int i;
3595 int c;
3596 int num_tolerated_disk_barrier_failures =
3597 (int)fs_info->fs_devices->num_devices;
3598
3599 for (i = 0; i < ARRAY_SIZE(types); i++) {
3600 struct btrfs_space_info *tmp;
3601
3602 sinfo = NULL;
3603 rcu_read_lock();
3604 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3605 if (tmp->flags == types[i]) {
3606 sinfo = tmp;
3607 break;
3608 }
3609 }
3610 rcu_read_unlock();
3611
3612 if (!sinfo)
3613 continue;
3614
3615 down_read(&sinfo->groups_sem);
3616 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3617 u64 flags;
3618
3619 if (list_empty(&sinfo->block_groups[c]))
3620 continue;
3621
3622 btrfs_get_block_group_info(&sinfo->block_groups[c],
3623 &space);
3624 if (space.total_bytes == 0 || space.used_bytes == 0)
3625 continue;
3626 flags = space.flags;
3627
3628 num_tolerated_disk_barrier_failures = min(
3629 num_tolerated_disk_barrier_failures,
3630 btrfs_get_num_tolerated_disk_barrier_failures(
3631 flags));
3632 }
3633 up_read(&sinfo->groups_sem);
3634 }
3635
3636 return num_tolerated_disk_barrier_failures;
3637}
3638
3639static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3640{
3641 struct list_head *head;
3642 struct btrfs_device *dev;
3643 struct btrfs_super_block *sb;
3644 struct btrfs_dev_item *dev_item;
3645 int ret;
3646 int do_barriers;
3647 int max_errors;
3648 int total_errors = 0;
3649 u64 flags;
3650
3651 do_barriers = !btrfs_test_opt(root->fs_info, NOBARRIER);
3652 backup_super_roots(root->fs_info);
3653
3654 sb = root->fs_info->super_for_commit;
3655 dev_item = &sb->dev_item;
3656
3657 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3658 head = &root->fs_info->fs_devices->devices;
3659 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3660
3661 if (do_barriers) {
3662 ret = barrier_all_devices(root->fs_info);
3663 if (ret) {
3664 mutex_unlock(
3665 &root->fs_info->fs_devices->device_list_mutex);
3666 btrfs_handle_fs_error(root->fs_info, ret,
3667 "errors while submitting device barriers.");
3668 return ret;
3669 }
3670 }
3671
3672 list_for_each_entry_rcu(dev, head, dev_list) {
3673 if (!dev->bdev) {
3674 total_errors++;
3675 continue;
3676 }
3677 if (!dev->in_fs_metadata || !dev->writeable)
3678 continue;
3679
3680 btrfs_set_stack_device_generation(dev_item, 0);
3681 btrfs_set_stack_device_type(dev_item, dev->type);
3682 btrfs_set_stack_device_id(dev_item, dev->devid);
3683 btrfs_set_stack_device_total_bytes(dev_item,
3684 dev->commit_total_bytes);
3685 btrfs_set_stack_device_bytes_used(dev_item,
3686 dev->commit_bytes_used);
3687 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3688 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3689 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3690 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3691 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3692
3693 flags = btrfs_super_flags(sb);
3694 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3695
3696 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3697 if (ret)
3698 total_errors++;
3699 }
3700 if (total_errors > max_errors) {
3701 btrfs_err(root->fs_info, "%d errors while writing supers",
3702 total_errors);
3703 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3704
3705 /* FUA is masked off if unsupported and can't be the reason */
3706 btrfs_handle_fs_error(root->fs_info, -EIO,
3707 "%d errors while writing supers", total_errors);
3708 return -EIO;
3709 }
3710
3711 total_errors = 0;
3712 list_for_each_entry_rcu(dev, head, dev_list) {
3713 if (!dev->bdev)
3714 continue;
3715 if (!dev->in_fs_metadata || !dev->writeable)
3716 continue;
3717
3718 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3719 if (ret)
3720 total_errors++;
3721 }
3722 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3723 if (total_errors > max_errors) {
3724 btrfs_handle_fs_error(root->fs_info, -EIO,
3725 "%d errors while writing supers", total_errors);
3726 return -EIO;
3727 }
3728 return 0;
3729}
3730
3731int write_ctree_super(struct btrfs_trans_handle *trans,
3732 struct btrfs_root *root, int max_mirrors)
3733{
3734 return write_all_supers(root, max_mirrors);
3735}
3736
3737/* Drop a fs root from the radix tree and free it. */
3738void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3739 struct btrfs_root *root)
3740{
3741 spin_lock(&fs_info->fs_roots_radix_lock);
3742 radix_tree_delete(&fs_info->fs_roots_radix,
3743 (unsigned long)root->root_key.objectid);
3744 spin_unlock(&fs_info->fs_roots_radix_lock);
3745
3746 if (btrfs_root_refs(&root->root_item) == 0)
3747 synchronize_srcu(&fs_info->subvol_srcu);
3748
3749 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3750 btrfs_free_log(NULL, root);
3751 if (root->reloc_root) {
3752 free_extent_buffer(root->reloc_root->node);
3753 free_extent_buffer(root->reloc_root->commit_root);
3754 btrfs_put_fs_root(root->reloc_root);
3755 root->reloc_root = NULL;
3756 }
3757 }
3758
3759 if (root->free_ino_pinned)
3760 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3761 if (root->free_ino_ctl)
3762 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3763 free_fs_root(root);
3764}
3765
3766static void free_fs_root(struct btrfs_root *root)
3767{
3768 iput(root->ino_cache_inode);
3769 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3770 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3771 root->orphan_block_rsv = NULL;
3772 if (root->anon_dev)
3773 free_anon_bdev(root->anon_dev);
3774 if (root->subv_writers)
3775 btrfs_free_subvolume_writers(root->subv_writers);
3776 free_extent_buffer(root->node);
3777 free_extent_buffer(root->commit_root);
3778 kfree(root->free_ino_ctl);
3779 kfree(root->free_ino_pinned);
3780 kfree(root->name);
3781 btrfs_put_fs_root(root);
3782}
3783
3784void btrfs_free_fs_root(struct btrfs_root *root)
3785{
3786 free_fs_root(root);
3787}
3788
3789int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3790{
3791 u64 root_objectid = 0;
3792 struct btrfs_root *gang[8];
3793 int i = 0;
3794 int err = 0;
3795 unsigned int ret = 0;
3796 int index;
3797
3798 while (1) {
3799 index = srcu_read_lock(&fs_info->subvol_srcu);
3800 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3801 (void **)gang, root_objectid,
3802 ARRAY_SIZE(gang));
3803 if (!ret) {
3804 srcu_read_unlock(&fs_info->subvol_srcu, index);
3805 break;
3806 }
3807 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3808
3809 for (i = 0; i < ret; i++) {
3810 /* Avoid to grab roots in dead_roots */
3811 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3812 gang[i] = NULL;
3813 continue;
3814 }
3815 /* grab all the search result for later use */
3816 gang[i] = btrfs_grab_fs_root(gang[i]);
3817 }
3818 srcu_read_unlock(&fs_info->subvol_srcu, index);
3819
3820 for (i = 0; i < ret; i++) {
3821 if (!gang[i])
3822 continue;
3823 root_objectid = gang[i]->root_key.objectid;
3824 err = btrfs_orphan_cleanup(gang[i]);
3825 if (err)
3826 break;
3827 btrfs_put_fs_root(gang[i]);
3828 }
3829 root_objectid++;
3830 }
3831
3832 /* release the uncleaned roots due to error */
3833 for (; i < ret; i++) {
3834 if (gang[i])
3835 btrfs_put_fs_root(gang[i]);
3836 }
3837 return err;
3838}
3839
3840int btrfs_commit_super(struct btrfs_root *root)
3841{
3842 struct btrfs_trans_handle *trans;
3843
3844 mutex_lock(&root->fs_info->cleaner_mutex);
3845 btrfs_run_delayed_iputs(root);
3846 mutex_unlock(&root->fs_info->cleaner_mutex);
3847 wake_up_process(root->fs_info->cleaner_kthread);
3848
3849 /* wait until ongoing cleanup work done */
3850 down_write(&root->fs_info->cleanup_work_sem);
3851 up_write(&root->fs_info->cleanup_work_sem);
3852
3853 trans = btrfs_join_transaction(root);
3854 if (IS_ERR(trans))
3855 return PTR_ERR(trans);
3856 return btrfs_commit_transaction(trans, root);
3857}
3858
3859void close_ctree(struct btrfs_root *root)
3860{
3861 struct btrfs_fs_info *fs_info = root->fs_info;
3862 int ret;
3863
3864 fs_info->closing = 1;
3865 smp_mb();
3866
3867 /* wait for the qgroup rescan worker to stop */
3868 btrfs_qgroup_wait_for_completion(fs_info, false);
3869
3870 /* wait for the uuid_scan task to finish */
3871 down(&fs_info->uuid_tree_rescan_sem);
3872 /* avoid complains from lockdep et al., set sem back to initial state */
3873 up(&fs_info->uuid_tree_rescan_sem);
3874
3875 /* pause restriper - we want to resume on mount */
3876 btrfs_pause_balance(fs_info);
3877
3878 btrfs_dev_replace_suspend_for_unmount(fs_info);
3879
3880 btrfs_scrub_cancel(fs_info);
3881
3882 /* wait for any defraggers to finish */
3883 wait_event(fs_info->transaction_wait,
3884 (atomic_read(&fs_info->defrag_running) == 0));
3885
3886 /* clear out the rbtree of defraggable inodes */
3887 btrfs_cleanup_defrag_inodes(fs_info);
3888
3889 cancel_work_sync(&fs_info->async_reclaim_work);
3890
3891 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3892 /*
3893 * If the cleaner thread is stopped and there are
3894 * block groups queued for removal, the deletion will be
3895 * skipped when we quit the cleaner thread.
3896 */
3897 btrfs_delete_unused_bgs(root->fs_info);
3898
3899 ret = btrfs_commit_super(root);
3900 if (ret)
3901 btrfs_err(fs_info, "commit super ret %d", ret);
3902 }
3903
3904 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3905 btrfs_error_commit_super(root);
3906
3907 kthread_stop(fs_info->transaction_kthread);
3908 kthread_stop(fs_info->cleaner_kthread);
3909
3910 fs_info->closing = 2;
3911 smp_mb();
3912
3913 btrfs_free_qgroup_config(fs_info);
3914
3915 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3916 btrfs_info(fs_info, "at unmount delalloc count %lld",
3917 percpu_counter_sum(&fs_info->delalloc_bytes));
3918 }
3919
3920 btrfs_sysfs_remove_mounted(fs_info);
3921 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3922
3923 btrfs_free_fs_roots(fs_info);
3924
3925 btrfs_put_block_group_cache(fs_info);
3926
3927 btrfs_free_block_groups(fs_info);
3928
3929 /*
3930 * we must make sure there is not any read request to
3931 * submit after we stopping all workers.
3932 */
3933 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3934 btrfs_stop_all_workers(fs_info);
3935
3936 fs_info->open = 0;
3937 free_root_pointers(fs_info, 1);
3938
3939 iput(fs_info->btree_inode);
3940
3941#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3942 if (btrfs_test_opt(root->fs_info, CHECK_INTEGRITY))
3943 btrfsic_unmount(root, fs_info->fs_devices);
3944#endif
3945
3946 btrfs_close_devices(fs_info->fs_devices);
3947 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3948
3949 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3950 percpu_counter_destroy(&fs_info->delalloc_bytes);
3951 percpu_counter_destroy(&fs_info->bio_counter);
3952 bdi_destroy(&fs_info->bdi);
3953 cleanup_srcu_struct(&fs_info->subvol_srcu);
3954
3955 btrfs_free_stripe_hash_table(fs_info);
3956
3957 __btrfs_free_block_rsv(root->orphan_block_rsv);
3958 root->orphan_block_rsv = NULL;
3959
3960 lock_chunks(root);
3961 while (!list_empty(&fs_info->pinned_chunks)) {
3962 struct extent_map *em;
3963
3964 em = list_first_entry(&fs_info->pinned_chunks,
3965 struct extent_map, list);
3966 list_del_init(&em->list);
3967 free_extent_map(em);
3968 }
3969 unlock_chunks(root);
3970}
3971
3972int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3973 int atomic)
3974{
3975 int ret;
3976 struct inode *btree_inode = buf->pages[0]->mapping->host;
3977
3978 ret = extent_buffer_uptodate(buf);
3979 if (!ret)
3980 return ret;
3981
3982 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3983 parent_transid, atomic);
3984 if (ret == -EAGAIN)
3985 return ret;
3986 return !ret;
3987}
3988
3989void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3990{
3991 struct btrfs_root *root;
3992 u64 transid = btrfs_header_generation(buf);
3993 int was_dirty;
3994
3995#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3996 /*
3997 * This is a fast path so only do this check if we have sanity tests
3998 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3999 * outside of the sanity tests.
4000 */
4001 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4002 return;
4003#endif
4004 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4005 btrfs_assert_tree_locked(buf);
4006 if (transid != root->fs_info->generation)
4007 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
4008 "found %llu running %llu\n",
4009 buf->start, transid, root->fs_info->generation);
4010 was_dirty = set_extent_buffer_dirty(buf);
4011 if (!was_dirty)
4012 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
4013 buf->len,
4014 root->fs_info->dirty_metadata_batch);
4015#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4016 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4017 btrfs_print_leaf(root, buf);
4018 ASSERT(0);
4019 }
4020#endif
4021}
4022
4023static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4024 int flush_delayed)
4025{
4026 /*
4027 * looks as though older kernels can get into trouble with
4028 * this code, they end up stuck in balance_dirty_pages forever
4029 */
4030 int ret;
4031
4032 if (current->flags & PF_MEMALLOC)
4033 return;
4034
4035 if (flush_delayed)
4036 btrfs_balance_delayed_items(root);
4037
4038 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4039 BTRFS_DIRTY_METADATA_THRESH);
4040 if (ret > 0) {
4041 balance_dirty_pages_ratelimited(
4042 root->fs_info->btree_inode->i_mapping);
4043 }
4044}
4045
4046void btrfs_btree_balance_dirty(struct btrfs_root *root)
4047{
4048 __btrfs_btree_balance_dirty(root, 1);
4049}
4050
4051void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4052{
4053 __btrfs_btree_balance_dirty(root, 0);
4054}
4055
4056int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4057{
4058 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4059 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4060}
4061
4062static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4063 int read_only)
4064{
4065 struct btrfs_super_block *sb = fs_info->super_copy;
4066 u64 nodesize = btrfs_super_nodesize(sb);
4067 u64 sectorsize = btrfs_super_sectorsize(sb);
4068 int ret = 0;
4069
4070 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4071 printk(KERN_ERR "BTRFS: no valid FS found\n");
4072 ret = -EINVAL;
4073 }
4074 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4075 printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
4076 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4077 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4078 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4079 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4080 ret = -EINVAL;
4081 }
4082 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4083 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4084 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4085 ret = -EINVAL;
4086 }
4087 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4088 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4089 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4090 ret = -EINVAL;
4091 }
4092
4093 /*
4094 * Check sectorsize and nodesize first, other check will need it.
4095 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4096 */
4097 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4098 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4099 printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
4100 ret = -EINVAL;
4101 }
4102 /* Only PAGE SIZE is supported yet */
4103 if (sectorsize != PAGE_SIZE) {
4104 printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
4105 sectorsize, PAGE_SIZE);
4106 ret = -EINVAL;
4107 }
4108 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4109 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4110 printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
4111 ret = -EINVAL;
4112 }
4113 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4114 printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
4115 le32_to_cpu(sb->__unused_leafsize),
4116 nodesize);
4117 ret = -EINVAL;
4118 }
4119
4120 /* Root alignment check */
4121 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4122 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4123 btrfs_super_root(sb));
4124 ret = -EINVAL;
4125 }
4126 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4127 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4128 btrfs_super_chunk_root(sb));
4129 ret = -EINVAL;
4130 }
4131 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4132 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4133 btrfs_super_log_root(sb));
4134 ret = -EINVAL;
4135 }
4136
4137 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4138 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4139 fs_info->fsid, sb->dev_item.fsid);
4140 ret = -EINVAL;
4141 }
4142
4143 /*
4144 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4145 * done later
4146 */
4147 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4148 btrfs_err(fs_info, "bytes_used is too small %llu",
4149 btrfs_super_bytes_used(sb));
4150 ret = -EINVAL;
4151 }
4152 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4153 btrfs_err(fs_info, "invalid stripesize %u",
4154 btrfs_super_stripesize(sb));
4155 ret = -EINVAL;
4156 }
4157 if (btrfs_super_num_devices(sb) > (1UL << 31))
4158 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4159 btrfs_super_num_devices(sb));
4160 if (btrfs_super_num_devices(sb) == 0) {
4161 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4162 ret = -EINVAL;
4163 }
4164
4165 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4166 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4167 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4168 ret = -EINVAL;
4169 }
4170
4171 /*
4172 * Obvious sys_chunk_array corruptions, it must hold at least one key
4173 * and one chunk
4174 */
4175 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4176 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4177 btrfs_super_sys_array_size(sb),
4178 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4179 ret = -EINVAL;
4180 }
4181 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4182 + sizeof(struct btrfs_chunk)) {
4183 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4184 btrfs_super_sys_array_size(sb),
4185 sizeof(struct btrfs_disk_key)
4186 + sizeof(struct btrfs_chunk));
4187 ret = -EINVAL;
4188 }
4189
4190 /*
4191 * The generation is a global counter, we'll trust it more than the others
4192 * but it's still possible that it's the one that's wrong.
4193 */
4194 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4195 printk(KERN_WARNING
4196 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4197 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4198 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4199 && btrfs_super_cache_generation(sb) != (u64)-1)
4200 printk(KERN_WARNING
4201 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4202 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4203
4204 return ret;
4205}
4206
4207static void btrfs_error_commit_super(struct btrfs_root *root)
4208{
4209 mutex_lock(&root->fs_info->cleaner_mutex);
4210 btrfs_run_delayed_iputs(root);
4211 mutex_unlock(&root->fs_info->cleaner_mutex);
4212
4213 down_write(&root->fs_info->cleanup_work_sem);
4214 up_write(&root->fs_info->cleanup_work_sem);
4215
4216 /* cleanup FS via transaction */
4217 btrfs_cleanup_transaction(root);
4218}
4219
4220static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4221{
4222 struct btrfs_ordered_extent *ordered;
4223
4224 spin_lock(&root->ordered_extent_lock);
4225 /*
4226 * This will just short circuit the ordered completion stuff which will
4227 * make sure the ordered extent gets properly cleaned up.
4228 */
4229 list_for_each_entry(ordered, &root->ordered_extents,
4230 root_extent_list)
4231 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4232 spin_unlock(&root->ordered_extent_lock);
4233}
4234
4235static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4236{
4237 struct btrfs_root *root;
4238 struct list_head splice;
4239
4240 INIT_LIST_HEAD(&splice);
4241
4242 spin_lock(&fs_info->ordered_root_lock);
4243 list_splice_init(&fs_info->ordered_roots, &splice);
4244 while (!list_empty(&splice)) {
4245 root = list_first_entry(&splice, struct btrfs_root,
4246 ordered_root);
4247 list_move_tail(&root->ordered_root,
4248 &fs_info->ordered_roots);
4249
4250 spin_unlock(&fs_info->ordered_root_lock);
4251 btrfs_destroy_ordered_extents(root);
4252
4253 cond_resched();
4254 spin_lock(&fs_info->ordered_root_lock);
4255 }
4256 spin_unlock(&fs_info->ordered_root_lock);
4257}
4258
4259static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4260 struct btrfs_root *root)
4261{
4262 struct rb_node *node;
4263 struct btrfs_delayed_ref_root *delayed_refs;
4264 struct btrfs_delayed_ref_node *ref;
4265 int ret = 0;
4266
4267 delayed_refs = &trans->delayed_refs;
4268
4269 spin_lock(&delayed_refs->lock);
4270 if (atomic_read(&delayed_refs->num_entries) == 0) {
4271 spin_unlock(&delayed_refs->lock);
4272 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4273 return ret;
4274 }
4275
4276 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4277 struct btrfs_delayed_ref_head *head;
4278 struct btrfs_delayed_ref_node *tmp;
4279 bool pin_bytes = false;
4280
4281 head = rb_entry(node, struct btrfs_delayed_ref_head,
4282 href_node);
4283 if (!mutex_trylock(&head->mutex)) {
4284 atomic_inc(&head->node.refs);
4285 spin_unlock(&delayed_refs->lock);
4286
4287 mutex_lock(&head->mutex);
4288 mutex_unlock(&head->mutex);
4289 btrfs_put_delayed_ref(&head->node);
4290 spin_lock(&delayed_refs->lock);
4291 continue;
4292 }
4293 spin_lock(&head->lock);
4294 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4295 list) {
4296 ref->in_tree = 0;
4297 list_del(&ref->list);
4298 atomic_dec(&delayed_refs->num_entries);
4299 btrfs_put_delayed_ref(ref);
4300 }
4301 if (head->must_insert_reserved)
4302 pin_bytes = true;
4303 btrfs_free_delayed_extent_op(head->extent_op);
4304 delayed_refs->num_heads--;
4305 if (head->processing == 0)
4306 delayed_refs->num_heads_ready--;
4307 atomic_dec(&delayed_refs->num_entries);
4308 head->node.in_tree = 0;
4309 rb_erase(&head->href_node, &delayed_refs->href_root);
4310 spin_unlock(&head->lock);
4311 spin_unlock(&delayed_refs->lock);
4312 mutex_unlock(&head->mutex);
4313
4314 if (pin_bytes)
4315 btrfs_pin_extent(root, head->node.bytenr,
4316 head->node.num_bytes, 1);
4317 btrfs_put_delayed_ref(&head->node);
4318 cond_resched();
4319 spin_lock(&delayed_refs->lock);
4320 }
4321
4322 spin_unlock(&delayed_refs->lock);
4323
4324 return ret;
4325}
4326
4327static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4328{
4329 struct btrfs_inode *btrfs_inode;
4330 struct list_head splice;
4331
4332 INIT_LIST_HEAD(&splice);
4333
4334 spin_lock(&root->delalloc_lock);
4335 list_splice_init(&root->delalloc_inodes, &splice);
4336
4337 while (!list_empty(&splice)) {
4338 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4339 delalloc_inodes);
4340
4341 list_del_init(&btrfs_inode->delalloc_inodes);
4342 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4343 &btrfs_inode->runtime_flags);
4344 spin_unlock(&root->delalloc_lock);
4345
4346 btrfs_invalidate_inodes(btrfs_inode->root);
4347
4348 spin_lock(&root->delalloc_lock);
4349 }
4350
4351 spin_unlock(&root->delalloc_lock);
4352}
4353
4354static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4355{
4356 struct btrfs_root *root;
4357 struct list_head splice;
4358
4359 INIT_LIST_HEAD(&splice);
4360
4361 spin_lock(&fs_info->delalloc_root_lock);
4362 list_splice_init(&fs_info->delalloc_roots, &splice);
4363 while (!list_empty(&splice)) {
4364 root = list_first_entry(&splice, struct btrfs_root,
4365 delalloc_root);
4366 list_del_init(&root->delalloc_root);
4367 root = btrfs_grab_fs_root(root);
4368 BUG_ON(!root);
4369 spin_unlock(&fs_info->delalloc_root_lock);
4370
4371 btrfs_destroy_delalloc_inodes(root);
4372 btrfs_put_fs_root(root);
4373
4374 spin_lock(&fs_info->delalloc_root_lock);
4375 }
4376 spin_unlock(&fs_info->delalloc_root_lock);
4377}
4378
4379static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4380 struct extent_io_tree *dirty_pages,
4381 int mark)
4382{
4383 int ret;
4384 struct extent_buffer *eb;
4385 u64 start = 0;
4386 u64 end;
4387
4388 while (1) {
4389 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4390 mark, NULL);
4391 if (ret)
4392 break;
4393
4394 clear_extent_bits(dirty_pages, start, end, mark);
4395 while (start <= end) {
4396 eb = btrfs_find_tree_block(root->fs_info, start);
4397 start += root->nodesize;
4398 if (!eb)
4399 continue;
4400 wait_on_extent_buffer_writeback(eb);
4401
4402 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4403 &eb->bflags))
4404 clear_extent_buffer_dirty(eb);
4405 free_extent_buffer_stale(eb);
4406 }
4407 }
4408
4409 return ret;
4410}
4411
4412static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4413 struct extent_io_tree *pinned_extents)
4414{
4415 struct extent_io_tree *unpin;
4416 u64 start;
4417 u64 end;
4418 int ret;
4419 bool loop = true;
4420
4421 unpin = pinned_extents;
4422again:
4423 while (1) {
4424 ret = find_first_extent_bit(unpin, 0, &start, &end,
4425 EXTENT_DIRTY, NULL);
4426 if (ret)
4427 break;
4428
4429 clear_extent_dirty(unpin, start, end);
4430 btrfs_error_unpin_extent_range(root, start, end);
4431 cond_resched();
4432 }
4433
4434 if (loop) {
4435 if (unpin == &root->fs_info->freed_extents[0])
4436 unpin = &root->fs_info->freed_extents[1];
4437 else
4438 unpin = &root->fs_info->freed_extents[0];
4439 loop = false;
4440 goto again;
4441 }
4442
4443 return 0;
4444}
4445
4446void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4447 struct btrfs_root *root)
4448{
4449 btrfs_destroy_delayed_refs(cur_trans, root);
4450
4451 cur_trans->state = TRANS_STATE_COMMIT_START;
4452 wake_up(&root->fs_info->transaction_blocked_wait);
4453
4454 cur_trans->state = TRANS_STATE_UNBLOCKED;
4455 wake_up(&root->fs_info->transaction_wait);
4456
4457 btrfs_destroy_delayed_inodes(root);
4458 btrfs_assert_delayed_root_empty(root);
4459
4460 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4461 EXTENT_DIRTY);
4462 btrfs_destroy_pinned_extent(root,
4463 root->fs_info->pinned_extents);
4464
4465 cur_trans->state =TRANS_STATE_COMPLETED;
4466 wake_up(&cur_trans->commit_wait);
4467
4468 /*
4469 memset(cur_trans, 0, sizeof(*cur_trans));
4470 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4471 */
4472}
4473
4474static int btrfs_cleanup_transaction(struct btrfs_root *root)
4475{
4476 struct btrfs_transaction *t;
4477
4478 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4479
4480 spin_lock(&root->fs_info->trans_lock);
4481 while (!list_empty(&root->fs_info->trans_list)) {
4482 t = list_first_entry(&root->fs_info->trans_list,
4483 struct btrfs_transaction, list);
4484 if (t->state >= TRANS_STATE_COMMIT_START) {
4485 atomic_inc(&t->use_count);
4486 spin_unlock(&root->fs_info->trans_lock);
4487 btrfs_wait_for_commit(root, t->transid);
4488 btrfs_put_transaction(t);
4489 spin_lock(&root->fs_info->trans_lock);
4490 continue;
4491 }
4492 if (t == root->fs_info->running_transaction) {
4493 t->state = TRANS_STATE_COMMIT_DOING;
4494 spin_unlock(&root->fs_info->trans_lock);
4495 /*
4496 * We wait for 0 num_writers since we don't hold a trans
4497 * handle open currently for this transaction.
4498 */
4499 wait_event(t->writer_wait,
4500 atomic_read(&t->num_writers) == 0);
4501 } else {
4502 spin_unlock(&root->fs_info->trans_lock);
4503 }
4504 btrfs_cleanup_one_transaction(t, root);
4505
4506 spin_lock(&root->fs_info->trans_lock);
4507 if (t == root->fs_info->running_transaction)
4508 root->fs_info->running_transaction = NULL;
4509 list_del_init(&t->list);
4510 spin_unlock(&root->fs_info->trans_lock);
4511
4512 btrfs_put_transaction(t);
4513 trace_btrfs_transaction_commit(root);
4514 spin_lock(&root->fs_info->trans_lock);
4515 }
4516 spin_unlock(&root->fs_info->trans_lock);
4517 btrfs_destroy_all_ordered_extents(root->fs_info);
4518 btrfs_destroy_delayed_inodes(root);
4519 btrfs_assert_delayed_root_empty(root);
4520 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4521 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4522 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4523
4524 return 0;
4525}
4526
4527static const struct extent_io_ops btree_extent_io_ops = {
4528 .readpage_end_io_hook = btree_readpage_end_io_hook,
4529 .readpage_io_failed_hook = btree_io_failed_hook,
4530 .submit_bio_hook = btree_submit_bio_hook,
4531 /* note we're sharing with inode.c for the merge bio hook */
4532 .merge_bio_hook = btrfs_merge_bio_hook,
4533};