| 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | /* |
| 3 | * Copyright (C) 2007 Oracle. All rights reserved. |
| 4 | */ |
| 5 | |
| 6 | #ifndef BTRFS_CTREE_H |
| 7 | #define BTRFS_CTREE_H |
| 8 | |
| 9 | #include <linux/cleanup.h> |
| 10 | #include <linux/spinlock.h> |
| 11 | #include <linux/rbtree.h> |
| 12 | #include <linux/mutex.h> |
| 13 | #include <linux/wait.h> |
| 14 | #include <linux/list.h> |
| 15 | #include <linux/atomic.h> |
| 16 | #include <linux/xarray.h> |
| 17 | #include <linux/refcount.h> |
| 18 | #include <uapi/linux/btrfs_tree.h> |
| 19 | #include "locking.h" |
| 20 | #include "fs.h" |
| 21 | #include "accessors.h" |
| 22 | #include "extent-io-tree.h" |
| 23 | |
| 24 | struct extent_buffer; |
| 25 | struct btrfs_block_rsv; |
| 26 | struct btrfs_trans_handle; |
| 27 | struct btrfs_block_group; |
| 28 | |
| 29 | /* Read ahead values for struct btrfs_path.reada */ |
| 30 | enum { |
| 31 | READA_NONE, |
| 32 | READA_BACK, |
| 33 | READA_FORWARD, |
| 34 | /* |
| 35 | * Similar to READA_FORWARD but unlike it: |
| 36 | * |
| 37 | * 1) It will trigger readahead even for leaves that are not close to |
| 38 | * each other on disk; |
| 39 | * 2) It also triggers readahead for nodes; |
| 40 | * 3) During a search, even when a node or leaf is already in memory, it |
| 41 | * will still trigger readahead for other nodes and leaves that follow |
| 42 | * it. |
| 43 | * |
| 44 | * This is meant to be used only when we know we are iterating over the |
| 45 | * entire tree or a very large part of it. |
| 46 | */ |
| 47 | READA_FORWARD_ALWAYS, |
| 48 | }; |
| 49 | |
| 50 | /* |
| 51 | * btrfs_paths remember the path taken from the root down to the leaf. |
| 52 | * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point |
| 53 | * to any other levels that are present. |
| 54 | * |
| 55 | * The slots array records the index of the item or block pointer |
| 56 | * used while walking the tree. |
| 57 | */ |
| 58 | struct btrfs_path { |
| 59 | struct extent_buffer *nodes[BTRFS_MAX_LEVEL]; |
| 60 | int slots[BTRFS_MAX_LEVEL]; |
| 61 | /* if there is real range locking, this locks field will change */ |
| 62 | u8 locks[BTRFS_MAX_LEVEL]; |
| 63 | u8 reada; |
| 64 | u8 lowest_level; |
| 65 | |
| 66 | /* |
| 67 | * set by btrfs_split_item, tells search_slot to keep all locks |
| 68 | * and to force calls to keep space in the nodes |
| 69 | */ |
| 70 | unsigned int search_for_split:1; |
| 71 | /* Keep some upper locks as we walk down. */ |
| 72 | unsigned int keep_locks:1; |
| 73 | unsigned int skip_locking:1; |
| 74 | unsigned int search_commit_root:1; |
| 75 | unsigned int need_commit_sem:1; |
| 76 | unsigned int skip_release_on_error:1; |
| 77 | /* |
| 78 | * Indicate that new item (btrfs_search_slot) is extending already |
| 79 | * existing item and ins_len contains only the data size and not item |
| 80 | * header (ie. sizeof(struct btrfs_item) is not included). |
| 81 | */ |
| 82 | unsigned int search_for_extension:1; |
| 83 | /* Stop search if any locks need to be taken (for read) */ |
| 84 | unsigned int nowait:1; |
| 85 | }; |
| 86 | |
| 87 | #define BTRFS_PATH_AUTO_FREE(path_name) \ |
| 88 | struct btrfs_path *path_name __free(btrfs_free_path) = NULL |
| 89 | |
| 90 | /* |
| 91 | * The state of btrfs root |
| 92 | */ |
| 93 | enum { |
| 94 | /* |
| 95 | * btrfs_record_root_in_trans is a multi-step process, and it can race |
| 96 | * with the balancing code. But the race is very small, and only the |
| 97 | * first time the root is added to each transaction. So IN_TRANS_SETUP |
| 98 | * is used to tell us when more checks are required |
| 99 | */ |
| 100 | BTRFS_ROOT_IN_TRANS_SETUP, |
| 101 | |
| 102 | /* |
| 103 | * Set if tree blocks of this root can be shared by other roots. |
| 104 | * Only subvolume trees and their reloc trees have this bit set. |
| 105 | * Conflicts with TRACK_DIRTY bit. |
| 106 | * |
| 107 | * This affects two things: |
| 108 | * |
| 109 | * - How balance works |
| 110 | * For shareable roots, we need to use reloc tree and do path |
| 111 | * replacement for balance, and need various pre/post hooks for |
| 112 | * snapshot creation to handle them. |
| 113 | * |
| 114 | * While for non-shareable trees, we just simply do a tree search |
| 115 | * with COW. |
| 116 | * |
| 117 | * - How dirty roots are tracked |
| 118 | * For shareable roots, btrfs_record_root_in_trans() is needed to |
| 119 | * track them, while non-subvolume roots have TRACK_DIRTY bit, they |
| 120 | * don't need to set this manually. |
| 121 | */ |
| 122 | BTRFS_ROOT_SHAREABLE, |
| 123 | BTRFS_ROOT_TRACK_DIRTY, |
| 124 | BTRFS_ROOT_IN_RADIX, |
| 125 | BTRFS_ROOT_ORPHAN_ITEM_INSERTED, |
| 126 | BTRFS_ROOT_DEFRAG_RUNNING, |
| 127 | BTRFS_ROOT_FORCE_COW, |
| 128 | BTRFS_ROOT_MULTI_LOG_TASKS, |
| 129 | BTRFS_ROOT_DIRTY, |
| 130 | BTRFS_ROOT_DELETING, |
| 131 | |
| 132 | /* |
| 133 | * Reloc tree is orphan, only kept here for qgroup delayed subtree scan |
| 134 | * |
| 135 | * Set for the subvolume tree owning the reloc tree. |
| 136 | */ |
| 137 | BTRFS_ROOT_DEAD_RELOC_TREE, |
| 138 | /* Mark dead root stored on device whose cleanup needs to be resumed */ |
| 139 | BTRFS_ROOT_DEAD_TREE, |
| 140 | /* The root has a log tree. Used for subvolume roots and the tree root. */ |
| 141 | BTRFS_ROOT_HAS_LOG_TREE, |
| 142 | /* Qgroup flushing is in progress */ |
| 143 | BTRFS_ROOT_QGROUP_FLUSHING, |
| 144 | /* We started the orphan cleanup for this root. */ |
| 145 | BTRFS_ROOT_ORPHAN_CLEANUP, |
| 146 | /* This root has a drop operation that was started previously. */ |
| 147 | BTRFS_ROOT_UNFINISHED_DROP, |
| 148 | /* This reloc root needs to have its buffers lockdep class reset. */ |
| 149 | BTRFS_ROOT_RESET_LOCKDEP_CLASS, |
| 150 | }; |
| 151 | |
| 152 | /* |
| 153 | * Record swapped tree blocks of a subvolume tree for delayed subtree trace |
| 154 | * code. For detail check comment in fs/btrfs/qgroup.c. |
| 155 | */ |
| 156 | struct btrfs_qgroup_swapped_blocks { |
| 157 | spinlock_t lock; |
| 158 | /* RM_EMPTY_ROOT() of above blocks[] */ |
| 159 | bool swapped; |
| 160 | struct rb_root blocks[BTRFS_MAX_LEVEL]; |
| 161 | }; |
| 162 | |
| 163 | /* |
| 164 | * in ram representation of the tree. extent_root is used for all allocations |
| 165 | * and for the extent tree extent_root root. |
| 166 | */ |
| 167 | struct btrfs_root { |
| 168 | struct rb_node rb_node; |
| 169 | |
| 170 | struct extent_buffer *node; |
| 171 | |
| 172 | struct extent_buffer *commit_root; |
| 173 | struct btrfs_root *log_root; |
| 174 | struct btrfs_root *reloc_root; |
| 175 | |
| 176 | unsigned long state; |
| 177 | struct btrfs_root_item root_item; |
| 178 | struct btrfs_key root_key; |
| 179 | struct btrfs_fs_info *fs_info; |
| 180 | struct extent_io_tree dirty_log_pages; |
| 181 | |
| 182 | struct mutex objectid_mutex; |
| 183 | |
| 184 | spinlock_t accounting_lock; |
| 185 | struct btrfs_block_rsv *block_rsv; |
| 186 | |
| 187 | struct mutex log_mutex; |
| 188 | wait_queue_head_t log_writer_wait; |
| 189 | wait_queue_head_t log_commit_wait[2]; |
| 190 | struct list_head log_ctxs[2]; |
| 191 | /* Used only for log trees of subvolumes, not for the log root tree */ |
| 192 | atomic_t log_writers; |
| 193 | atomic_t log_commit[2]; |
| 194 | /* Used only for log trees of subvolumes, not for the log root tree */ |
| 195 | atomic_t log_batch; |
| 196 | /* |
| 197 | * Protected by the 'log_mutex' lock but can be read without holding |
| 198 | * that lock to avoid unnecessary lock contention, in which case it |
| 199 | * should be read using btrfs_get_root_log_transid() except if it's a |
| 200 | * log tree in which case it can be directly accessed. Updates to this |
| 201 | * field should always use btrfs_set_root_log_transid(), except for log |
| 202 | * trees where the field can be updated directly. |
| 203 | */ |
| 204 | int log_transid; |
| 205 | /* No matter the commit succeeds or not*/ |
| 206 | int log_transid_committed; |
| 207 | /* |
| 208 | * Just be updated when the commit succeeds. Use |
| 209 | * btrfs_get_root_last_log_commit() and btrfs_set_root_last_log_commit() |
| 210 | * to access this field. |
| 211 | */ |
| 212 | int last_log_commit; |
| 213 | pid_t log_start_pid; |
| 214 | |
| 215 | u64 last_trans; |
| 216 | |
| 217 | u64 free_objectid; |
| 218 | |
| 219 | struct btrfs_key defrag_progress; |
| 220 | struct btrfs_key defrag_max; |
| 221 | |
| 222 | /* The dirty list is only used by non-shareable roots */ |
| 223 | struct list_head dirty_list; |
| 224 | |
| 225 | struct list_head root_list; |
| 226 | |
| 227 | /* |
| 228 | * Xarray that keeps track of in-memory inodes, protected by the lock |
| 229 | * @inode_lock. |
| 230 | */ |
| 231 | struct xarray inodes; |
| 232 | |
| 233 | /* |
| 234 | * Xarray that keeps track of delayed nodes of every inode, protected |
| 235 | * by @inode_lock. |
| 236 | */ |
| 237 | struct xarray delayed_nodes; |
| 238 | /* |
| 239 | * right now this just gets used so that a root has its own devid |
| 240 | * for stat. It may be used for more later |
| 241 | */ |
| 242 | dev_t anon_dev; |
| 243 | |
| 244 | spinlock_t root_item_lock; |
| 245 | refcount_t refs; |
| 246 | |
| 247 | struct mutex delalloc_mutex; |
| 248 | spinlock_t delalloc_lock; |
| 249 | /* |
| 250 | * all of the inodes that have delalloc bytes. It is possible for |
| 251 | * this list to be empty even when there is still dirty data=ordered |
| 252 | * extents waiting to finish IO. |
| 253 | */ |
| 254 | struct list_head delalloc_inodes; |
| 255 | struct list_head delalloc_root; |
| 256 | u64 nr_delalloc_inodes; |
| 257 | |
| 258 | struct mutex ordered_extent_mutex; |
| 259 | /* |
| 260 | * this is used by the balancing code to wait for all the pending |
| 261 | * ordered extents |
| 262 | */ |
| 263 | spinlock_t ordered_extent_lock; |
| 264 | |
| 265 | /* |
| 266 | * all of the data=ordered extents pending writeback |
| 267 | * these can span multiple transactions and basically include |
| 268 | * every dirty data page that isn't from nodatacow |
| 269 | */ |
| 270 | struct list_head ordered_extents; |
| 271 | struct list_head ordered_root; |
| 272 | u64 nr_ordered_extents; |
| 273 | |
| 274 | /* |
| 275 | * Not empty if this subvolume root has gone through tree block swap |
| 276 | * (relocation) |
| 277 | * |
| 278 | * Will be used by reloc_control::dirty_subvol_roots. |
| 279 | */ |
| 280 | struct list_head reloc_dirty_list; |
| 281 | |
| 282 | /* |
| 283 | * Number of currently running SEND ioctls to prevent |
| 284 | * manipulation with the read-only status via SUBVOL_SETFLAGS |
| 285 | */ |
| 286 | int send_in_progress; |
| 287 | /* |
| 288 | * Number of currently running deduplication operations that have a |
| 289 | * destination inode belonging to this root. Protected by the lock |
| 290 | * root_item_lock. |
| 291 | */ |
| 292 | int dedupe_in_progress; |
| 293 | /* For exclusion of snapshot creation and nocow writes */ |
| 294 | struct btrfs_drew_lock snapshot_lock; |
| 295 | |
| 296 | atomic_t snapshot_force_cow; |
| 297 | |
| 298 | /* For qgroup metadata reserved space */ |
| 299 | spinlock_t qgroup_meta_rsv_lock; |
| 300 | u64 qgroup_meta_rsv_pertrans; |
| 301 | u64 qgroup_meta_rsv_prealloc; |
| 302 | wait_queue_head_t qgroup_flush_wait; |
| 303 | |
| 304 | /* Number of active swapfiles */ |
| 305 | atomic_t nr_swapfiles; |
| 306 | |
| 307 | /* Record pairs of swapped blocks for qgroup */ |
| 308 | struct btrfs_qgroup_swapped_blocks swapped_blocks; |
| 309 | |
| 310 | /* Used only by log trees, when logging csum items */ |
| 311 | struct extent_io_tree log_csum_range; |
| 312 | |
| 313 | /* Used in simple quotas, track root during relocation. */ |
| 314 | u64 relocation_src_root; |
| 315 | |
| 316 | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS |
| 317 | u64 alloc_bytenr; |
| 318 | #endif |
| 319 | |
| 320 | #ifdef CONFIG_BTRFS_DEBUG |
| 321 | struct list_head leak_list; |
| 322 | #endif |
| 323 | }; |
| 324 | |
| 325 | static inline bool btrfs_root_readonly(const struct btrfs_root *root) |
| 326 | { |
| 327 | /* Byte-swap the constant at compile time, root_item::flags is LE */ |
| 328 | return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0; |
| 329 | } |
| 330 | |
| 331 | static inline bool btrfs_root_dead(const struct btrfs_root *root) |
| 332 | { |
| 333 | /* Byte-swap the constant at compile time, root_item::flags is LE */ |
| 334 | return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0; |
| 335 | } |
| 336 | |
| 337 | static inline u64 btrfs_root_id(const struct btrfs_root *root) |
| 338 | { |
| 339 | return root->root_key.objectid; |
| 340 | } |
| 341 | |
| 342 | static inline int btrfs_get_root_log_transid(const struct btrfs_root *root) |
| 343 | { |
| 344 | return READ_ONCE(root->log_transid); |
| 345 | } |
| 346 | |
| 347 | static inline void btrfs_set_root_log_transid(struct btrfs_root *root, int log_transid) |
| 348 | { |
| 349 | WRITE_ONCE(root->log_transid, log_transid); |
| 350 | } |
| 351 | |
| 352 | static inline int btrfs_get_root_last_log_commit(const struct btrfs_root *root) |
| 353 | { |
| 354 | return READ_ONCE(root->last_log_commit); |
| 355 | } |
| 356 | |
| 357 | static inline void btrfs_set_root_last_log_commit(struct btrfs_root *root, int commit_id) |
| 358 | { |
| 359 | WRITE_ONCE(root->last_log_commit, commit_id); |
| 360 | } |
| 361 | |
| 362 | static inline u64 btrfs_get_root_last_trans(const struct btrfs_root *root) |
| 363 | { |
| 364 | return READ_ONCE(root->last_trans); |
| 365 | } |
| 366 | |
| 367 | static inline void btrfs_set_root_last_trans(struct btrfs_root *root, u64 transid) |
| 368 | { |
| 369 | WRITE_ONCE(root->last_trans, transid); |
| 370 | } |
| 371 | |
| 372 | /* |
| 373 | * Return the generation this root started with. |
| 374 | * |
| 375 | * Every normal root that is created with root->root_key.offset set to it's |
| 376 | * originating generation. If it is a snapshot it is the generation when the |
| 377 | * snapshot was created. |
| 378 | * |
| 379 | * However for TREE_RELOC roots root_key.offset is the objectid of the owning |
| 380 | * tree root. Thankfully we copy the root item of the owning tree root, which |
| 381 | * has it's last_snapshot set to what we would have root_key.offset set to, so |
| 382 | * return that if this is a TREE_RELOC root. |
| 383 | */ |
| 384 | static inline u64 btrfs_root_origin_generation(const struct btrfs_root *root) |
| 385 | { |
| 386 | if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) |
| 387 | return btrfs_root_last_snapshot(&root->root_item); |
| 388 | return root->root_key.offset; |
| 389 | } |
| 390 | |
| 391 | /* |
| 392 | * Structure that conveys information about an extent that is going to replace |
| 393 | * all the extents in a file range. |
| 394 | */ |
| 395 | struct btrfs_replace_extent_info { |
| 396 | u64 disk_offset; |
| 397 | u64 disk_len; |
| 398 | u64 data_offset; |
| 399 | u64 data_len; |
| 400 | u64 file_offset; |
| 401 | /* Pointer to a file extent item of type regular or prealloc. */ |
| 402 | char *extent_buf; |
| 403 | /* |
| 404 | * Set to true when attempting to replace a file range with a new extent |
| 405 | * described by this structure, set to false when attempting to clone an |
| 406 | * existing extent into a file range. |
| 407 | */ |
| 408 | bool is_new_extent; |
| 409 | /* Indicate if we should update the inode's mtime and ctime. */ |
| 410 | bool update_times; |
| 411 | /* Meaningful only if is_new_extent is true. */ |
| 412 | int qgroup_reserved; |
| 413 | /* |
| 414 | * Meaningful only if is_new_extent is true. |
| 415 | * Used to track how many extent items we have already inserted in a |
| 416 | * subvolume tree that refer to the extent described by this structure, |
| 417 | * so that we know when to create a new delayed ref or update an existing |
| 418 | * one. |
| 419 | */ |
| 420 | int insertions; |
| 421 | }; |
| 422 | |
| 423 | /* Arguments for btrfs_drop_extents() */ |
| 424 | struct btrfs_drop_extents_args { |
| 425 | /* Input parameters */ |
| 426 | |
| 427 | /* |
| 428 | * If NULL, btrfs_drop_extents() will allocate and free its own path. |
| 429 | * If 'replace_extent' is true, this must not be NULL. Also the path |
| 430 | * is always released except if 'replace_extent' is true and |
| 431 | * btrfs_drop_extents() sets 'extent_inserted' to true, in which case |
| 432 | * the path is kept locked. |
| 433 | */ |
| 434 | struct btrfs_path *path; |
| 435 | /* Start offset of the range to drop extents from */ |
| 436 | u64 start; |
| 437 | /* End (exclusive, last byte + 1) of the range to drop extents from */ |
| 438 | u64 end; |
| 439 | /* If true drop all the extent maps in the range */ |
| 440 | bool drop_cache; |
| 441 | /* |
| 442 | * If true it means we want to insert a new extent after dropping all |
| 443 | * the extents in the range. If this is true, the 'extent_item_size' |
| 444 | * parameter must be set as well and the 'extent_inserted' field will |
| 445 | * be set to true by btrfs_drop_extents() if it could insert the new |
| 446 | * extent. |
| 447 | * Note: when this is set to true the path must not be NULL. |
| 448 | */ |
| 449 | bool replace_extent; |
| 450 | /* |
| 451 | * Used if 'replace_extent' is true. Size of the file extent item to |
| 452 | * insert after dropping all existing extents in the range |
| 453 | */ |
| 454 | u32 extent_item_size; |
| 455 | |
| 456 | /* Output parameters */ |
| 457 | |
| 458 | /* |
| 459 | * Set to the minimum between the input parameter 'end' and the end |
| 460 | * (exclusive, last byte + 1) of the last dropped extent. This is always |
| 461 | * set even if btrfs_drop_extents() returns an error. |
| 462 | */ |
| 463 | u64 drop_end; |
| 464 | /* |
| 465 | * The number of allocated bytes found in the range. This can be smaller |
| 466 | * than the range's length when there are holes in the range. |
| 467 | */ |
| 468 | u64 bytes_found; |
| 469 | /* |
| 470 | * Only set if 'replace_extent' is true. Set to true if we were able |
| 471 | * to insert a replacement extent after dropping all extents in the |
| 472 | * range, otherwise set to false by btrfs_drop_extents(). |
| 473 | * Also, if btrfs_drop_extents() has set this to true it means it |
| 474 | * returned with the path locked, otherwise if it has set this to |
| 475 | * false it has returned with the path released. |
| 476 | */ |
| 477 | bool extent_inserted; |
| 478 | }; |
| 479 | |
| 480 | struct btrfs_file_private { |
| 481 | void *filldir_buf; |
| 482 | u64 last_index; |
| 483 | struct extent_state *llseek_cached_state; |
| 484 | /* Task that allocated this structure. */ |
| 485 | struct task_struct *owner_task; |
| 486 | }; |
| 487 | |
| 488 | static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info) |
| 489 | { |
| 490 | return info->nodesize - sizeof(struct btrfs_header); |
| 491 | } |
| 492 | |
| 493 | static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info) |
| 494 | { |
| 495 | return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item); |
| 496 | } |
| 497 | |
| 498 | static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info) |
| 499 | { |
| 500 | return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr); |
| 501 | } |
| 502 | |
| 503 | static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info) |
| 504 | { |
| 505 | return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item); |
| 506 | } |
| 507 | |
| 508 | int __init btrfs_ctree_init(void); |
| 509 | void __cold btrfs_ctree_exit(void); |
| 510 | |
| 511 | int btrfs_bin_search(struct extent_buffer *eb, int first_slot, |
| 512 | const struct btrfs_key *key, int *slot); |
| 513 | |
| 514 | int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2); |
| 515 | |
| 516 | #ifdef __LITTLE_ENDIAN |
| 517 | |
| 518 | /* |
| 519 | * Compare two keys, on little-endian the disk order is same as CPU order and |
| 520 | * we can avoid the conversion. |
| 521 | */ |
| 522 | static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk_key, |
| 523 | const struct btrfs_key *k2) |
| 524 | { |
| 525 | const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key; |
| 526 | |
| 527 | return btrfs_comp_cpu_keys(k1, k2); |
| 528 | } |
| 529 | |
| 530 | #else |
| 531 | |
| 532 | /* Compare two keys in a memcmp fashion. */ |
| 533 | static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk, |
| 534 | const struct btrfs_key *k2) |
| 535 | { |
| 536 | struct btrfs_key k1; |
| 537 | |
| 538 | btrfs_disk_key_to_cpu(&k1, disk); |
| 539 | |
| 540 | return btrfs_comp_cpu_keys(&k1, k2); |
| 541 | } |
| 542 | |
| 543 | #endif |
| 544 | |
| 545 | int btrfs_previous_item(struct btrfs_root *root, |
| 546 | struct btrfs_path *path, u64 min_objectid, |
| 547 | int type); |
| 548 | int btrfs_previous_extent_item(struct btrfs_root *root, |
| 549 | struct btrfs_path *path, u64 min_objectid); |
| 550 | void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, |
| 551 | const struct btrfs_path *path, |
| 552 | const struct btrfs_key *new_key); |
| 553 | struct extent_buffer *btrfs_root_node(struct btrfs_root *root); |
| 554 | int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, |
| 555 | struct btrfs_key *key, int lowest_level, |
| 556 | u64 min_trans); |
| 557 | int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, |
| 558 | struct btrfs_path *path, |
| 559 | u64 min_trans); |
| 560 | struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, |
| 561 | int slot); |
| 562 | |
| 563 | int btrfs_cow_block(struct btrfs_trans_handle *trans, |
| 564 | struct btrfs_root *root, struct extent_buffer *buf, |
| 565 | struct extent_buffer *parent, int parent_slot, |
| 566 | struct extent_buffer **cow_ret, |
| 567 | enum btrfs_lock_nesting nest); |
| 568 | int btrfs_force_cow_block(struct btrfs_trans_handle *trans, |
| 569 | struct btrfs_root *root, |
| 570 | struct extent_buffer *buf, |
| 571 | struct extent_buffer *parent, int parent_slot, |
| 572 | struct extent_buffer **cow_ret, |
| 573 | u64 search_start, u64 empty_size, |
| 574 | enum btrfs_lock_nesting nest); |
| 575 | int btrfs_copy_root(struct btrfs_trans_handle *trans, |
| 576 | struct btrfs_root *root, |
| 577 | struct extent_buffer *buf, |
| 578 | struct extent_buffer **cow_ret, u64 new_root_objectid); |
| 579 | bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans, |
| 580 | struct btrfs_root *root, |
| 581 | struct extent_buffer *buf); |
| 582 | int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, |
| 583 | struct btrfs_path *path, int level, int slot); |
| 584 | void btrfs_extend_item(struct btrfs_trans_handle *trans, |
| 585 | const struct btrfs_path *path, u32 data_size); |
| 586 | void btrfs_truncate_item(struct btrfs_trans_handle *trans, |
| 587 | const struct btrfs_path *path, u32 new_size, int from_end); |
| 588 | int btrfs_split_item(struct btrfs_trans_handle *trans, |
| 589 | struct btrfs_root *root, |
| 590 | struct btrfs_path *path, |
| 591 | const struct btrfs_key *new_key, |
| 592 | unsigned long split_offset); |
| 593 | int btrfs_duplicate_item(struct btrfs_trans_handle *trans, |
| 594 | struct btrfs_root *root, |
| 595 | struct btrfs_path *path, |
| 596 | const struct btrfs_key *new_key); |
| 597 | int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, |
| 598 | u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key); |
| 599 | int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, |
| 600 | const struct btrfs_key *key, struct btrfs_path *p, |
| 601 | int ins_len, int cow); |
| 602 | int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, |
| 603 | struct btrfs_path *p, u64 time_seq); |
| 604 | int btrfs_search_slot_for_read(struct btrfs_root *root, |
| 605 | const struct btrfs_key *key, |
| 606 | struct btrfs_path *p, int find_higher, |
| 607 | int return_any); |
| 608 | void btrfs_release_path(struct btrfs_path *p); |
| 609 | struct btrfs_path *btrfs_alloc_path(void); |
| 610 | void btrfs_free_path(struct btrfs_path *p); |
| 611 | DEFINE_FREE(btrfs_free_path, struct btrfs_path *, btrfs_free_path(_T)) |
| 612 | |
| 613 | int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, |
| 614 | struct btrfs_path *path, int slot, int nr); |
| 615 | static inline int btrfs_del_item(struct btrfs_trans_handle *trans, |
| 616 | struct btrfs_root *root, |
| 617 | struct btrfs_path *path) |
| 618 | { |
| 619 | return btrfs_del_items(trans, root, path, path->slots[0], 1); |
| 620 | } |
| 621 | |
| 622 | /* |
| 623 | * Describes a batch of items to insert in a btree. This is used by |
| 624 | * btrfs_insert_empty_items(). |
| 625 | */ |
| 626 | struct btrfs_item_batch { |
| 627 | /* |
| 628 | * Pointer to an array containing the keys of the items to insert (in |
| 629 | * sorted order). |
| 630 | */ |
| 631 | const struct btrfs_key *keys; |
| 632 | /* Pointer to an array containing the data size for each item to insert. */ |
| 633 | const u32 *data_sizes; |
| 634 | /* |
| 635 | * The sum of data sizes for all items. The caller can compute this while |
| 636 | * setting up the data_sizes array, so it ends up being more efficient |
| 637 | * than having btrfs_insert_empty_items() or setup_item_for_insert() |
| 638 | * doing it, as it would avoid an extra loop over a potentially large |
| 639 | * array, and in the case of setup_item_for_insert(), we would be doing |
| 640 | * it while holding a write lock on a leaf and often on upper level nodes |
| 641 | * too, unnecessarily increasing the size of a critical section. |
| 642 | */ |
| 643 | u32 total_data_size; |
| 644 | /* Size of the keys and data_sizes arrays (number of items in the batch). */ |
| 645 | int nr; |
| 646 | }; |
| 647 | |
| 648 | void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans, |
| 649 | struct btrfs_root *root, |
| 650 | struct btrfs_path *path, |
| 651 | const struct btrfs_key *key, |
| 652 | u32 data_size); |
| 653 | int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, |
| 654 | const struct btrfs_key *key, void *data, u32 data_size); |
| 655 | int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, |
| 656 | struct btrfs_root *root, |
| 657 | struct btrfs_path *path, |
| 658 | const struct btrfs_item_batch *batch); |
| 659 | |
| 660 | static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, |
| 661 | struct btrfs_root *root, |
| 662 | struct btrfs_path *path, |
| 663 | const struct btrfs_key *key, |
| 664 | u32 data_size) |
| 665 | { |
| 666 | struct btrfs_item_batch batch; |
| 667 | |
| 668 | batch.keys = key; |
| 669 | batch.data_sizes = &data_size; |
| 670 | batch.total_data_size = data_size; |
| 671 | batch.nr = 1; |
| 672 | |
| 673 | return btrfs_insert_empty_items(trans, root, path, &batch); |
| 674 | } |
| 675 | |
| 676 | int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, |
| 677 | u64 time_seq); |
| 678 | |
| 679 | int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key, |
| 680 | struct btrfs_path *path); |
| 681 | |
| 682 | int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key, |
| 683 | struct btrfs_path *path); |
| 684 | |
| 685 | /* |
| 686 | * Search in @root for a given @key, and store the slot found in @found_key. |
| 687 | * |
| 688 | * @root: The root node of the tree. |
| 689 | * @key: The key we are looking for. |
| 690 | * @found_key: Will hold the found item. |
| 691 | * @path: Holds the current slot/leaf. |
| 692 | * @iter_ret: Contains the value returned from btrfs_search_slot or |
| 693 | * btrfs_get_next_valid_item, whichever was executed last. |
| 694 | * |
| 695 | * The @iter_ret is an output variable that will contain the return value of |
| 696 | * btrfs_search_slot, if it encountered an error, or the value returned from |
| 697 | * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid |
| 698 | * slot was found, 1 if there were no more leaves, and <0 if there was an error. |
| 699 | * |
| 700 | * It's recommended to use a separate variable for iter_ret and then use it to |
| 701 | * set the function return value so there's no confusion of the 0/1/errno |
| 702 | * values stemming from btrfs_search_slot. |
| 703 | */ |
| 704 | #define btrfs_for_each_slot(root, key, found_key, path, iter_ret) \ |
| 705 | for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0); \ |
| 706 | (iter_ret) >= 0 && \ |
| 707 | (iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \ |
| 708 | (path)->slots[0]++ \ |
| 709 | ) |
| 710 | |
| 711 | int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq); |
| 712 | |
| 713 | /* |
| 714 | * Search the tree again to find a leaf with greater keys. |
| 715 | * |
| 716 | * Returns 0 if it found something or 1 if there are no greater leaves. |
| 717 | * Returns < 0 on error. |
| 718 | */ |
| 719 | static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) |
| 720 | { |
| 721 | return btrfs_next_old_leaf(root, path, 0); |
| 722 | } |
| 723 | |
| 724 | static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p) |
| 725 | { |
| 726 | return btrfs_next_old_item(root, p, 0); |
| 727 | } |
| 728 | int btrfs_leaf_free_space(const struct extent_buffer *leaf); |
| 729 | |
| 730 | static inline int is_fstree(u64 rootid) |
| 731 | { |
| 732 | if (rootid == BTRFS_FS_TREE_OBJECTID || |
| 733 | ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID && |
| 734 | !btrfs_qgroup_level(rootid))) |
| 735 | return 1; |
| 736 | return 0; |
| 737 | } |
| 738 | |
| 739 | static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root) |
| 740 | { |
| 741 | return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID; |
| 742 | } |
| 743 | |
| 744 | #endif |