Merge tag 'nfs-for-6.12-1' of git://git.linux-nfs.org/projects/anna/linux-nfs
[linux-2.6-block.git] / fs / btrfs / ctree.h
... / ...
CommitLineData
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#ifndef BTRFS_CTREE_H
7#define BTRFS_CTREE_H
8
9#include "linux/cleanup.h"
10#include <linux/pagemap.h>
11#include <linux/spinlock.h>
12#include <linux/rbtree.h>
13#include <linux/mutex.h>
14#include <linux/wait.h>
15#include <linux/list.h>
16#include <linux/atomic.h>
17#include <linux/xarray.h>
18#include <linux/refcount.h>
19#include <uapi/linux/btrfs_tree.h>
20#include "locking.h"
21#include "fs.h"
22#include "accessors.h"
23#include "extent-io-tree.h"
24
25struct extent_buffer;
26struct btrfs_block_rsv;
27struct btrfs_trans_handle;
28struct btrfs_block_group;
29
30/* Read ahead values for struct btrfs_path.reada */
31enum {
32 READA_NONE,
33 READA_BACK,
34 READA_FORWARD,
35 /*
36 * Similar to READA_FORWARD but unlike it:
37 *
38 * 1) It will trigger readahead even for leaves that are not close to
39 * each other on disk;
40 * 2) It also triggers readahead for nodes;
41 * 3) During a search, even when a node or leaf is already in memory, it
42 * will still trigger readahead for other nodes and leaves that follow
43 * it.
44 *
45 * This is meant to be used only when we know we are iterating over the
46 * entire tree or a very large part of it.
47 */
48 READA_FORWARD_ALWAYS,
49};
50
51/*
52 * btrfs_paths remember the path taken from the root down to the leaf.
53 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
54 * to any other levels that are present.
55 *
56 * The slots array records the index of the item or block pointer
57 * used while walking the tree.
58 */
59struct btrfs_path {
60 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
61 int slots[BTRFS_MAX_LEVEL];
62 /* if there is real range locking, this locks field will change */
63 u8 locks[BTRFS_MAX_LEVEL];
64 u8 reada;
65 /* keep some upper locks as we walk down */
66 u8 lowest_level;
67
68 /*
69 * set by btrfs_split_item, tells search_slot to keep all locks
70 * and to force calls to keep space in the nodes
71 */
72 unsigned int search_for_split:1;
73 unsigned int keep_locks:1;
74 unsigned int skip_locking:1;
75 unsigned int search_commit_root:1;
76 unsigned int need_commit_sem:1;
77 unsigned int skip_release_on_error:1;
78 /*
79 * Indicate that new item (btrfs_search_slot) is extending already
80 * existing item and ins_len contains only the data size and not item
81 * header (ie. sizeof(struct btrfs_item) is not included).
82 */
83 unsigned int search_for_extension:1;
84 /* Stop search if any locks need to be taken (for read) */
85 unsigned int nowait:1;
86};
87
88#define BTRFS_PATH_AUTO_FREE(path_name) \
89 struct btrfs_path *path_name __free(btrfs_free_path) = NULL
90
91/*
92 * The state of btrfs root
93 */
94enum {
95 /*
96 * btrfs_record_root_in_trans is a multi-step process, and it can race
97 * with the balancing code. But the race is very small, and only the
98 * first time the root is added to each transaction. So IN_TRANS_SETUP
99 * is used to tell us when more checks are required
100 */
101 BTRFS_ROOT_IN_TRANS_SETUP,
102
103 /*
104 * Set if tree blocks of this root can be shared by other roots.
105 * Only subvolume trees and their reloc trees have this bit set.
106 * Conflicts with TRACK_DIRTY bit.
107 *
108 * This affects two things:
109 *
110 * - How balance works
111 * For shareable roots, we need to use reloc tree and do path
112 * replacement for balance, and need various pre/post hooks for
113 * snapshot creation to handle them.
114 *
115 * While for non-shareable trees, we just simply do a tree search
116 * with COW.
117 *
118 * - How dirty roots are tracked
119 * For shareable roots, btrfs_record_root_in_trans() is needed to
120 * track them, while non-subvolume roots have TRACK_DIRTY bit, they
121 * don't need to set this manually.
122 */
123 BTRFS_ROOT_SHAREABLE,
124 BTRFS_ROOT_TRACK_DIRTY,
125 BTRFS_ROOT_IN_RADIX,
126 BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
127 BTRFS_ROOT_DEFRAG_RUNNING,
128 BTRFS_ROOT_FORCE_COW,
129 BTRFS_ROOT_MULTI_LOG_TASKS,
130 BTRFS_ROOT_DIRTY,
131 BTRFS_ROOT_DELETING,
132
133 /*
134 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
135 *
136 * Set for the subvolume tree owning the reloc tree.
137 */
138 BTRFS_ROOT_DEAD_RELOC_TREE,
139 /* Mark dead root stored on device whose cleanup needs to be resumed */
140 BTRFS_ROOT_DEAD_TREE,
141 /* The root has a log tree. Used for subvolume roots and the tree root. */
142 BTRFS_ROOT_HAS_LOG_TREE,
143 /* Qgroup flushing is in progress */
144 BTRFS_ROOT_QGROUP_FLUSHING,
145 /* We started the orphan cleanup for this root. */
146 BTRFS_ROOT_ORPHAN_CLEANUP,
147 /* This root has a drop operation that was started previously. */
148 BTRFS_ROOT_UNFINISHED_DROP,
149 /* This reloc root needs to have its buffers lockdep class reset. */
150 BTRFS_ROOT_RESET_LOCKDEP_CLASS,
151};
152
153/*
154 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
155 * code. For detail check comment in fs/btrfs/qgroup.c.
156 */
157struct btrfs_qgroup_swapped_blocks {
158 spinlock_t lock;
159 /* RM_EMPTY_ROOT() of above blocks[] */
160 bool swapped;
161 struct rb_root blocks[BTRFS_MAX_LEVEL];
162};
163
164/*
165 * in ram representation of the tree. extent_root is used for all allocations
166 * and for the extent tree extent_root root.
167 */
168struct btrfs_root {
169 struct rb_node rb_node;
170
171 struct extent_buffer *node;
172
173 struct extent_buffer *commit_root;
174 struct btrfs_root *log_root;
175 struct btrfs_root *reloc_root;
176
177 unsigned long state;
178 struct btrfs_root_item root_item;
179 struct btrfs_key root_key;
180 struct btrfs_fs_info *fs_info;
181 struct extent_io_tree dirty_log_pages;
182
183 struct mutex objectid_mutex;
184
185 spinlock_t accounting_lock;
186 struct btrfs_block_rsv *block_rsv;
187
188 struct mutex log_mutex;
189 wait_queue_head_t log_writer_wait;
190 wait_queue_head_t log_commit_wait[2];
191 struct list_head log_ctxs[2];
192 /* Used only for log trees of subvolumes, not for the log root tree */
193 atomic_t log_writers;
194 atomic_t log_commit[2];
195 /* Used only for log trees of subvolumes, not for the log root tree */
196 atomic_t log_batch;
197 /*
198 * Protected by the 'log_mutex' lock but can be read without holding
199 * that lock to avoid unnecessary lock contention, in which case it
200 * should be read using btrfs_get_root_log_transid() except if it's a
201 * log tree in which case it can be directly accessed. Updates to this
202 * field should always use btrfs_set_root_log_transid(), except for log
203 * trees where the field can be updated directly.
204 */
205 int log_transid;
206 /* No matter the commit succeeds or not*/
207 int log_transid_committed;
208 /*
209 * Just be updated when the commit succeeds. Use
210 * btrfs_get_root_last_log_commit() and btrfs_set_root_last_log_commit()
211 * to access this field.
212 */
213 int last_log_commit;
214 pid_t log_start_pid;
215
216 u64 last_trans;
217
218 u64 free_objectid;
219
220 struct btrfs_key defrag_progress;
221 struct btrfs_key defrag_max;
222
223 /* The dirty list is only used by non-shareable roots */
224 struct list_head dirty_list;
225
226 struct list_head root_list;
227
228 /*
229 * Xarray that keeps track of in-memory inodes, protected by the lock
230 * @inode_lock.
231 */
232 struct xarray inodes;
233
234 /*
235 * Xarray that keeps track of delayed nodes of every inode, protected
236 * by @inode_lock.
237 */
238 struct xarray delayed_nodes;
239 /*
240 * right now this just gets used so that a root has its own devid
241 * for stat. It may be used for more later
242 */
243 dev_t anon_dev;
244
245 spinlock_t root_item_lock;
246 refcount_t refs;
247
248 struct mutex delalloc_mutex;
249 spinlock_t delalloc_lock;
250 /*
251 * all of the inodes that have delalloc bytes. It is possible for
252 * this list to be empty even when there is still dirty data=ordered
253 * extents waiting to finish IO.
254 */
255 struct list_head delalloc_inodes;
256 struct list_head delalloc_root;
257 u64 nr_delalloc_inodes;
258
259 struct mutex ordered_extent_mutex;
260 /*
261 * this is used by the balancing code to wait for all the pending
262 * ordered extents
263 */
264 spinlock_t ordered_extent_lock;
265
266 /*
267 * all of the data=ordered extents pending writeback
268 * these can span multiple transactions and basically include
269 * every dirty data page that isn't from nodatacow
270 */
271 struct list_head ordered_extents;
272 struct list_head ordered_root;
273 u64 nr_ordered_extents;
274
275 /*
276 * Not empty if this subvolume root has gone through tree block swap
277 * (relocation)
278 *
279 * Will be used by reloc_control::dirty_subvol_roots.
280 */
281 struct list_head reloc_dirty_list;
282
283 /*
284 * Number of currently running SEND ioctls to prevent
285 * manipulation with the read-only status via SUBVOL_SETFLAGS
286 */
287 int send_in_progress;
288 /*
289 * Number of currently running deduplication operations that have a
290 * destination inode belonging to this root. Protected by the lock
291 * root_item_lock.
292 */
293 int dedupe_in_progress;
294 /* For exclusion of snapshot creation and nocow writes */
295 struct btrfs_drew_lock snapshot_lock;
296
297 atomic_t snapshot_force_cow;
298
299 /* For qgroup metadata reserved space */
300 spinlock_t qgroup_meta_rsv_lock;
301 u64 qgroup_meta_rsv_pertrans;
302 u64 qgroup_meta_rsv_prealloc;
303 wait_queue_head_t qgroup_flush_wait;
304
305 /* Number of active swapfiles */
306 atomic_t nr_swapfiles;
307
308 /* Record pairs of swapped blocks for qgroup */
309 struct btrfs_qgroup_swapped_blocks swapped_blocks;
310
311 /* Used only by log trees, when logging csum items */
312 struct extent_io_tree log_csum_range;
313
314 /* Used in simple quotas, track root during relocation. */
315 u64 relocation_src_root;
316
317#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
318 u64 alloc_bytenr;
319#endif
320
321#ifdef CONFIG_BTRFS_DEBUG
322 struct list_head leak_list;
323#endif
324};
325
326static inline bool btrfs_root_readonly(const struct btrfs_root *root)
327{
328 /* Byte-swap the constant at compile time, root_item::flags is LE */
329 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
330}
331
332static inline bool btrfs_root_dead(const struct btrfs_root *root)
333{
334 /* Byte-swap the constant at compile time, root_item::flags is LE */
335 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
336}
337
338static inline u64 btrfs_root_id(const struct btrfs_root *root)
339{
340 return root->root_key.objectid;
341}
342
343static inline int btrfs_get_root_log_transid(const struct btrfs_root *root)
344{
345 return READ_ONCE(root->log_transid);
346}
347
348static inline void btrfs_set_root_log_transid(struct btrfs_root *root, int log_transid)
349{
350 WRITE_ONCE(root->log_transid, log_transid);
351}
352
353static inline int btrfs_get_root_last_log_commit(const struct btrfs_root *root)
354{
355 return READ_ONCE(root->last_log_commit);
356}
357
358static inline void btrfs_set_root_last_log_commit(struct btrfs_root *root, int commit_id)
359{
360 WRITE_ONCE(root->last_log_commit, commit_id);
361}
362
363static inline u64 btrfs_get_root_last_trans(const struct btrfs_root *root)
364{
365 return READ_ONCE(root->last_trans);
366}
367
368static inline void btrfs_set_root_last_trans(struct btrfs_root *root, u64 transid)
369{
370 WRITE_ONCE(root->last_trans, transid);
371}
372
373/*
374 * Structure that conveys information about an extent that is going to replace
375 * all the extents in a file range.
376 */
377struct btrfs_replace_extent_info {
378 u64 disk_offset;
379 u64 disk_len;
380 u64 data_offset;
381 u64 data_len;
382 u64 file_offset;
383 /* Pointer to a file extent item of type regular or prealloc. */
384 char *extent_buf;
385 /*
386 * Set to true when attempting to replace a file range with a new extent
387 * described by this structure, set to false when attempting to clone an
388 * existing extent into a file range.
389 */
390 bool is_new_extent;
391 /* Indicate if we should update the inode's mtime and ctime. */
392 bool update_times;
393 /* Meaningful only if is_new_extent is true. */
394 int qgroup_reserved;
395 /*
396 * Meaningful only if is_new_extent is true.
397 * Used to track how many extent items we have already inserted in a
398 * subvolume tree that refer to the extent described by this structure,
399 * so that we know when to create a new delayed ref or update an existing
400 * one.
401 */
402 int insertions;
403};
404
405/* Arguments for btrfs_drop_extents() */
406struct btrfs_drop_extents_args {
407 /* Input parameters */
408
409 /*
410 * If NULL, btrfs_drop_extents() will allocate and free its own path.
411 * If 'replace_extent' is true, this must not be NULL. Also the path
412 * is always released except if 'replace_extent' is true and
413 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
414 * the path is kept locked.
415 */
416 struct btrfs_path *path;
417 /* Start offset of the range to drop extents from */
418 u64 start;
419 /* End (exclusive, last byte + 1) of the range to drop extents from */
420 u64 end;
421 /* If true drop all the extent maps in the range */
422 bool drop_cache;
423 /*
424 * If true it means we want to insert a new extent after dropping all
425 * the extents in the range. If this is true, the 'extent_item_size'
426 * parameter must be set as well and the 'extent_inserted' field will
427 * be set to true by btrfs_drop_extents() if it could insert the new
428 * extent.
429 * Note: when this is set to true the path must not be NULL.
430 */
431 bool replace_extent;
432 /*
433 * Used if 'replace_extent' is true. Size of the file extent item to
434 * insert after dropping all existing extents in the range
435 */
436 u32 extent_item_size;
437
438 /* Output parameters */
439
440 /*
441 * Set to the minimum between the input parameter 'end' and the end
442 * (exclusive, last byte + 1) of the last dropped extent. This is always
443 * set even if btrfs_drop_extents() returns an error.
444 */
445 u64 drop_end;
446 /*
447 * The number of allocated bytes found in the range. This can be smaller
448 * than the range's length when there are holes in the range.
449 */
450 u64 bytes_found;
451 /*
452 * Only set if 'replace_extent' is true. Set to true if we were able
453 * to insert a replacement extent after dropping all extents in the
454 * range, otherwise set to false by btrfs_drop_extents().
455 * Also, if btrfs_drop_extents() has set this to true it means it
456 * returned with the path locked, otherwise if it has set this to
457 * false it has returned with the path released.
458 */
459 bool extent_inserted;
460};
461
462struct btrfs_file_private {
463 void *filldir_buf;
464 u64 last_index;
465 struct extent_state *llseek_cached_state;
466 /* Task that allocated this structure. */
467 struct task_struct *owner_task;
468};
469
470static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
471{
472 return info->nodesize - sizeof(struct btrfs_header);
473}
474
475static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
476{
477 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
478}
479
480static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
481{
482 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
483}
484
485static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
486{
487 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
488}
489
490#define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
491 ((bytes) >> (fs_info)->sectorsize_bits)
492
493static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
494{
495 return mapping_gfp_constraint(mapping, ~__GFP_FS);
496}
497
498void btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end);
499int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
500 u64 num_bytes, u64 *actual_bytes);
501int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
502
503/* ctree.c */
504int __init btrfs_ctree_init(void);
505void __cold btrfs_ctree_exit(void);
506
507int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
508 const struct btrfs_key *key, int *slot);
509
510int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
511
512#ifdef __LITTLE_ENDIAN
513
514/*
515 * Compare two keys, on little-endian the disk order is same as CPU order and
516 * we can avoid the conversion.
517 */
518static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk_key,
519 const struct btrfs_key *k2)
520{
521 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
522
523 return btrfs_comp_cpu_keys(k1, k2);
524}
525
526#else
527
528/* Compare two keys in a memcmp fashion. */
529static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk,
530 const struct btrfs_key *k2)
531{
532 struct btrfs_key k1;
533
534 btrfs_disk_key_to_cpu(&k1, disk);
535
536 return btrfs_comp_cpu_keys(&k1, k2);
537}
538
539#endif
540
541int btrfs_previous_item(struct btrfs_root *root,
542 struct btrfs_path *path, u64 min_objectid,
543 int type);
544int btrfs_previous_extent_item(struct btrfs_root *root,
545 struct btrfs_path *path, u64 min_objectid);
546void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
547 const struct btrfs_path *path,
548 const struct btrfs_key *new_key);
549struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
550int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
551 struct btrfs_key *key, int lowest_level,
552 u64 min_trans);
553int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
554 struct btrfs_path *path,
555 u64 min_trans);
556struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
557 int slot);
558
559int btrfs_cow_block(struct btrfs_trans_handle *trans,
560 struct btrfs_root *root, struct extent_buffer *buf,
561 struct extent_buffer *parent, int parent_slot,
562 struct extent_buffer **cow_ret,
563 enum btrfs_lock_nesting nest);
564int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
565 struct btrfs_root *root,
566 struct extent_buffer *buf,
567 struct extent_buffer *parent, int parent_slot,
568 struct extent_buffer **cow_ret,
569 u64 search_start, u64 empty_size,
570 enum btrfs_lock_nesting nest);
571int btrfs_copy_root(struct btrfs_trans_handle *trans,
572 struct btrfs_root *root,
573 struct extent_buffer *buf,
574 struct extent_buffer **cow_ret, u64 new_root_objectid);
575bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
576 struct btrfs_root *root,
577 struct extent_buffer *buf);
578int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
579 struct btrfs_path *path, int level, int slot);
580void btrfs_extend_item(struct btrfs_trans_handle *trans,
581 const struct btrfs_path *path, u32 data_size);
582void btrfs_truncate_item(struct btrfs_trans_handle *trans,
583 const struct btrfs_path *path, u32 new_size, int from_end);
584int btrfs_split_item(struct btrfs_trans_handle *trans,
585 struct btrfs_root *root,
586 struct btrfs_path *path,
587 const struct btrfs_key *new_key,
588 unsigned long split_offset);
589int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
590 struct btrfs_root *root,
591 struct btrfs_path *path,
592 const struct btrfs_key *new_key);
593int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
594 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
595int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
596 const struct btrfs_key *key, struct btrfs_path *p,
597 int ins_len, int cow);
598int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
599 struct btrfs_path *p, u64 time_seq);
600int btrfs_search_slot_for_read(struct btrfs_root *root,
601 const struct btrfs_key *key,
602 struct btrfs_path *p, int find_higher,
603 int return_any);
604void btrfs_release_path(struct btrfs_path *p);
605struct btrfs_path *btrfs_alloc_path(void);
606void btrfs_free_path(struct btrfs_path *p);
607DEFINE_FREE(btrfs_free_path, struct btrfs_path *, btrfs_free_path(_T))
608
609int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
610 struct btrfs_path *path, int slot, int nr);
611static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
612 struct btrfs_root *root,
613 struct btrfs_path *path)
614{
615 return btrfs_del_items(trans, root, path, path->slots[0], 1);
616}
617
618/*
619 * Describes a batch of items to insert in a btree. This is used by
620 * btrfs_insert_empty_items().
621 */
622struct btrfs_item_batch {
623 /*
624 * Pointer to an array containing the keys of the items to insert (in
625 * sorted order).
626 */
627 const struct btrfs_key *keys;
628 /* Pointer to an array containing the data size for each item to insert. */
629 const u32 *data_sizes;
630 /*
631 * The sum of data sizes for all items. The caller can compute this while
632 * setting up the data_sizes array, so it ends up being more efficient
633 * than having btrfs_insert_empty_items() or setup_item_for_insert()
634 * doing it, as it would avoid an extra loop over a potentially large
635 * array, and in the case of setup_item_for_insert(), we would be doing
636 * it while holding a write lock on a leaf and often on upper level nodes
637 * too, unnecessarily increasing the size of a critical section.
638 */
639 u32 total_data_size;
640 /* Size of the keys and data_sizes arrays (number of items in the batch). */
641 int nr;
642};
643
644void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
645 struct btrfs_root *root,
646 struct btrfs_path *path,
647 const struct btrfs_key *key,
648 u32 data_size);
649int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
650 const struct btrfs_key *key, void *data, u32 data_size);
651int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
652 struct btrfs_root *root,
653 struct btrfs_path *path,
654 const struct btrfs_item_batch *batch);
655
656static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
657 struct btrfs_root *root,
658 struct btrfs_path *path,
659 const struct btrfs_key *key,
660 u32 data_size)
661{
662 struct btrfs_item_batch batch;
663
664 batch.keys = key;
665 batch.data_sizes = &data_size;
666 batch.total_data_size = data_size;
667 batch.nr = 1;
668
669 return btrfs_insert_empty_items(trans, root, path, &batch);
670}
671
672int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
673 u64 time_seq);
674
675int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
676 struct btrfs_path *path);
677
678int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
679 struct btrfs_path *path);
680
681/*
682 * Search in @root for a given @key, and store the slot found in @found_key.
683 *
684 * @root: The root node of the tree.
685 * @key: The key we are looking for.
686 * @found_key: Will hold the found item.
687 * @path: Holds the current slot/leaf.
688 * @iter_ret: Contains the value returned from btrfs_search_slot or
689 * btrfs_get_next_valid_item, whichever was executed last.
690 *
691 * The @iter_ret is an output variable that will contain the return value of
692 * btrfs_search_slot, if it encountered an error, or the value returned from
693 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
694 * slot was found, 1 if there were no more leaves, and <0 if there was an error.
695 *
696 * It's recommended to use a separate variable for iter_ret and then use it to
697 * set the function return value so there's no confusion of the 0/1/errno
698 * values stemming from btrfs_search_slot.
699 */
700#define btrfs_for_each_slot(root, key, found_key, path, iter_ret) \
701 for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0); \
702 (iter_ret) >= 0 && \
703 (iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
704 (path)->slots[0]++ \
705 )
706
707int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq);
708
709/*
710 * Search the tree again to find a leaf with greater keys.
711 *
712 * Returns 0 if it found something or 1 if there are no greater leaves.
713 * Returns < 0 on error.
714 */
715static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
716{
717 return btrfs_next_old_leaf(root, path, 0);
718}
719
720static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
721{
722 return btrfs_next_old_item(root, p, 0);
723}
724int btrfs_leaf_free_space(const struct extent_buffer *leaf);
725
726static inline int is_fstree(u64 rootid)
727{
728 if (rootid == BTRFS_FS_TREE_OBJECTID ||
729 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
730 !btrfs_qgroup_level(rootid)))
731 return 1;
732 return 0;
733}
734
735static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
736{
737 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
738}
739
740u16 btrfs_csum_type_size(u16 type);
741int btrfs_super_csum_size(const struct btrfs_super_block *s);
742const char *btrfs_super_csum_name(u16 csum_type);
743const char *btrfs_super_csum_driver(u16 csum_type);
744size_t __attribute_const__ btrfs_get_num_csums(void);
745
746/*
747 * We use page status Private2 to indicate there is an ordered extent with
748 * unfinished IO.
749 *
750 * Rename the Private2 accessors to Ordered, to improve readability.
751 */
752#define PageOrdered(page) PagePrivate2(page)
753#define SetPageOrdered(page) SetPagePrivate2(page)
754#define ClearPageOrdered(page) ClearPagePrivate2(page)
755#define folio_test_ordered(folio) folio_test_private_2(folio)
756#define folio_set_ordered(folio) folio_set_private_2(folio)
757#define folio_clear_ordered(folio) folio_clear_private_2(folio)
758
759#endif