Btrfs: d_type optimization
[linux-2.6-block.git] / fs / btrfs / ctree.h
... / ...
CommitLineData
1#ifndef __BTRFS__
2#define __BTRFS__
3
4#include <linux/fs.h>
5#include <linux/buffer_head.h>
6#include <linux/kobject.h>
7#include "bit-radix.h"
8
9struct btrfs_trans_handle;
10struct btrfs_transaction;
11extern struct kmem_cache *btrfs_trans_handle_cachep;
12extern struct kmem_cache *btrfs_transaction_cachep;
13extern struct kmem_cache *btrfs_bit_radix_cachep;
14extern struct kmem_cache *btrfs_path_cachep;
15
16#define BTRFS_MAGIC "_BtRfS_M"
17
18#define BTRFS_ROOT_TREE_OBJECTID 1ULL
19#define BTRFS_DEV_TREE_OBJECTID 2ULL
20#define BTRFS_EXTENT_TREE_OBJECTID 3ULL
21#define BTRFS_FS_TREE_OBJECTID 4ULL
22#define BTRFS_ROOT_TREE_DIR_OBJECTID 5ULL
23#define BTRFS_FIRST_FREE_OBJECTID 6ULL
24
25/*
26 * we can actually store much bigger names, but lets not confuse the rest
27 * of linux
28 */
29#define BTRFS_NAME_LEN 255
30
31/* 32 bytes in various csum fields */
32#define BTRFS_CSUM_SIZE 32
33/* four bytes for CRC32 */
34#define BTRFS_CRC32_SIZE 4
35#define BTRFS_EMPTY_DIR_SIZE 6
36
37#define BTRFS_FT_UNKNOWN 0
38#define BTRFS_FT_REG_FILE 1
39#define BTRFS_FT_DIR 2
40#define BTRFS_FT_CHRDEV 3
41#define BTRFS_FT_BLKDEV 4
42#define BTRFS_FT_FIFO 5
43#define BTRFS_FT_SOCK 6
44#define BTRFS_FT_SYMLINK 7
45#define BTRFS_FT_MAX 8
46
47/*
48 * the key defines the order in the tree, and so it also defines (optimal)
49 * block layout. objectid corresonds to the inode number. The flags
50 * tells us things about the object, and is a kind of stream selector.
51 * so for a given inode, keys with flags of 1 might refer to the inode
52 * data, flags of 2 may point to file data in the btree and flags == 3
53 * may point to extents.
54 *
55 * offset is the starting byte offset for this key in the stream.
56 *
57 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
58 * in cpu native order. Otherwise they are identical and their sizes
59 * should be the same (ie both packed)
60 */
61struct btrfs_disk_key {
62 __le64 objectid;
63 __le32 flags;
64 __le64 offset;
65} __attribute__ ((__packed__));
66
67struct btrfs_key {
68 u64 objectid;
69 u32 flags;
70 u64 offset;
71} __attribute__ ((__packed__));
72
73/*
74 * every tree block (leaf or node) starts with this header.
75 */
76struct btrfs_header {
77 u8 csum[BTRFS_CSUM_SIZE];
78 u8 fsid[16]; /* FS specific uuid */
79 __le64 blocknr; /* which block this node is supposed to live in */
80 __le64 generation;
81 __le64 owner;
82 __le16 nritems;
83 __le16 flags;
84 u8 level;
85} __attribute__ ((__packed__));
86
87#define BTRFS_MAX_LEVEL 8
88#define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->blocksize - \
89 sizeof(struct btrfs_header)) / \
90 (sizeof(struct btrfs_disk_key) + sizeof(u64)))
91#define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
92#define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->blocksize))
93#define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
94 sizeof(struct btrfs_item) - \
95 sizeof(struct btrfs_file_extent_item))
96
97struct buffer_head;
98/*
99 * the super block basically lists the main trees of the FS
100 * it currently lacks any block count etc etc
101 */
102struct btrfs_super_block {
103 u8 csum[BTRFS_CSUM_SIZE];
104 /* the first 3 fields must match struct btrfs_header */
105 u8 fsid[16]; /* FS specific uuid */
106 __le64 blocknr; /* this block number */
107 __le64 magic;
108 __le32 blocksize;
109 __le64 generation;
110 __le64 root;
111 __le64 total_blocks;
112 __le64 blocks_used;
113 __le64 root_dir_objectid;
114 __le64 last_device_id;
115 /* fields below here vary with the underlying disk */
116 __le64 device_block_start;
117 __le64 device_num_blocks;
118 __le64 device_root;
119 __le64 device_id;
120} __attribute__ ((__packed__));
121
122/*
123 * A leaf is full of items. offset and size tell us where to find
124 * the item in the leaf (relative to the start of the data area)
125 */
126struct btrfs_item {
127 struct btrfs_disk_key key;
128 __le32 offset;
129 __le16 size;
130} __attribute__ ((__packed__));
131
132/*
133 * leaves have an item area and a data area:
134 * [item0, item1....itemN] [free space] [dataN...data1, data0]
135 *
136 * The data is separate from the items to get the keys closer together
137 * during searches.
138 */
139struct btrfs_leaf {
140 struct btrfs_header header;
141 struct btrfs_item items[];
142} __attribute__ ((__packed__));
143
144/*
145 * all non-leaf blocks are nodes, they hold only keys and pointers to
146 * other blocks
147 */
148struct btrfs_key_ptr {
149 struct btrfs_disk_key key;
150 __le64 blockptr;
151} __attribute__ ((__packed__));
152
153struct btrfs_node {
154 struct btrfs_header header;
155 struct btrfs_key_ptr ptrs[];
156} __attribute__ ((__packed__));
157
158/*
159 * btrfs_paths remember the path taken from the root down to the leaf.
160 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
161 * to any other levels that are present.
162 *
163 * The slots array records the index of the item or block pointer
164 * used while walking the tree.
165 */
166struct btrfs_path {
167 struct buffer_head *nodes[BTRFS_MAX_LEVEL];
168 int slots[BTRFS_MAX_LEVEL];
169};
170
171/*
172 * items in the extent btree are used to record the objectid of the
173 * owner of the block and the number of references
174 */
175struct btrfs_extent_item {
176 __le32 refs;
177 __le64 owner;
178} __attribute__ ((__packed__));
179
180struct btrfs_inode_timespec {
181 __le64 sec;
182 __le32 nsec;
183} __attribute__ ((__packed__));
184
185/*
186 * there is no padding here on purpose. If you want to extent the inode,
187 * make a new item type
188 */
189struct btrfs_inode_item {
190 __le64 generation;
191 __le64 size;
192 __le64 nblocks;
193 __le64 block_group;
194 __le32 nlink;
195 __le32 uid;
196 __le32 gid;
197 __le32 mode;
198 __le32 rdev;
199 __le16 flags;
200 __le16 compat_flags;
201 struct btrfs_inode_timespec atime;
202 struct btrfs_inode_timespec ctime;
203 struct btrfs_inode_timespec mtime;
204 struct btrfs_inode_timespec otime;
205} __attribute__ ((__packed__));
206
207struct btrfs_dir_item {
208 struct btrfs_disk_key location;
209 __le16 flags;
210 __le16 name_len;
211 u8 type;
212} __attribute__ ((__packed__));
213
214struct btrfs_root_item {
215 struct btrfs_inode_item inode;
216 __le64 root_dirid;
217 __le64 blocknr;
218 __le32 flags;
219 __le64 block_limit;
220 __le64 blocks_used;
221 __le32 refs;
222} __attribute__ ((__packed__));
223
224#define BTRFS_FILE_EXTENT_REG 0
225#define BTRFS_FILE_EXTENT_INLINE 1
226
227struct btrfs_file_extent_item {
228 __le64 generation;
229 u8 type;
230 /*
231 * disk space consumed by the extent, checksum blocks are included
232 * in these numbers
233 */
234 __le64 disk_blocknr;
235 __le64 disk_num_blocks;
236 /*
237 * the logical offset in file blocks (no csums)
238 * this extent record is for. This allows a file extent to point
239 * into the middle of an existing extent on disk, sharing it
240 * between two snapshots (useful if some bytes in the middle of the
241 * extent have changed
242 */
243 __le64 offset;
244 /*
245 * the logical number of file blocks (no csums included)
246 */
247 __le64 num_blocks;
248} __attribute__ ((__packed__));
249
250struct btrfs_csum_item {
251 u8 csum;
252} __attribute__ ((__packed__));
253
254struct btrfs_device_item {
255 __le16 pathlen;
256 __le64 device_id;
257} __attribute__ ((__packed__));
258
259/* tag for the radix tree of block groups in ram */
260#define BTRFS_BLOCK_GROUP_DIRTY 0
261#define BTRFS_BLOCK_GROUP_AVAIL 1
262#define BTRFS_BLOCK_GROUP_SIZE (256 * 1024 * 1024)
263
264
265#define BTRFS_BLOCK_GROUP_DATA 1
266struct btrfs_block_group_item {
267 __le64 used;
268 u8 flags;
269} __attribute__ ((__packed__));
270
271struct btrfs_block_group_cache {
272 struct btrfs_key key;
273 struct btrfs_block_group_item item;
274 struct radix_tree_root *radix;
275 u64 first_free;
276 u64 last_alloc;
277 u64 pinned;
278 u64 last_prealloc;
279 int data;
280 int cached;
281};
282
283struct crypto_hash;
284struct btrfs_fs_info {
285 struct btrfs_root *extent_root;
286 struct btrfs_root *tree_root;
287 struct btrfs_root *dev_root;
288 struct radix_tree_root fs_roots_radix;
289 struct radix_tree_root pending_del_radix;
290 struct radix_tree_root pinned_radix;
291 struct radix_tree_root dev_radix;
292 struct radix_tree_root block_group_radix;
293 struct radix_tree_root block_group_data_radix;
294 struct radix_tree_root extent_map_radix;
295
296 u64 extent_tree_insert[BTRFS_MAX_LEVEL * 3];
297 int extent_tree_insert_nr;
298 u64 extent_tree_prealloc[BTRFS_MAX_LEVEL * 3];
299 int extent_tree_prealloc_nr;
300
301 u64 generation;
302 struct btrfs_transaction *running_transaction;
303 struct btrfs_super_block *disk_super;
304 struct buffer_head *sb_buffer;
305 struct super_block *sb;
306 struct inode *btree_inode;
307 struct mutex trans_mutex;
308 struct mutex fs_mutex;
309 struct list_head trans_list;
310 struct crypto_hash *hash_tfm;
311 spinlock_t hash_lock;
312 int do_barriers;
313 struct kobject kobj;
314};
315
316/*
317 * in ram representation of the tree. extent_root is used for all allocations
318 * and for the extent tree extent_root root.
319 */
320struct btrfs_root {
321 struct buffer_head *node;
322 struct buffer_head *commit_root;
323 struct btrfs_root_item root_item;
324 struct btrfs_key root_key;
325 struct btrfs_fs_info *fs_info;
326 struct inode *inode;
327 u64 objectid;
328 u64 last_trans;
329 u32 blocksize;
330 int ref_cows;
331 u32 type;
332 u64 highest_inode;
333 u64 last_inode_alloc;
334};
335
336/* the lower bits in the key flags defines the item type */
337#define BTRFS_KEY_TYPE_MAX 256
338#define BTRFS_KEY_TYPE_SHIFT 24
339#define BTRFS_KEY_TYPE_MASK (((u32)BTRFS_KEY_TYPE_MAX - 1) << \
340 BTRFS_KEY_TYPE_SHIFT)
341
342/*
343 * inode items have the data typically returned from stat and store other
344 * info about object characteristics. There is one for every file and dir in
345 * the FS
346 */
347#define BTRFS_INODE_ITEM_KEY 1
348
349/* reserve 2-15 close to the inode for later flexibility */
350
351/*
352 * dir items are the name -> inode pointers in a directory. There is one
353 * for every name in a directory.
354 */
355#define BTRFS_DIR_ITEM_KEY 16
356#define BTRFS_DIR_INDEX_KEY 17
357/*
358 * extent data is for file data
359 */
360#define BTRFS_EXTENT_DATA_KEY 18
361/*
362 * csum items have the checksums for data in the extents
363 */
364#define BTRFS_CSUM_ITEM_KEY 19
365
366/* reserve 20-31 for other file stuff */
367
368/*
369 * root items point to tree roots. There are typically in the root
370 * tree used by the super block to find all the other trees
371 */
372#define BTRFS_ROOT_ITEM_KEY 32
373/*
374 * extent items are in the extent map tree. These record which blocks
375 * are used, and how many references there are to each block
376 */
377#define BTRFS_EXTENT_ITEM_KEY 33
378
379/*
380 * block groups give us hints into the extent allocation trees. Which
381 * blocks are free etc etc
382 */
383#define BTRFS_BLOCK_GROUP_ITEM_KEY 34
384
385/*
386 * dev items list the devices that make up the FS
387 */
388#define BTRFS_DEV_ITEM_KEY 35
389
390/*
391 * string items are for debugging. They just store a short string of
392 * data in the FS
393 */
394#define BTRFS_STRING_ITEM_KEY 253
395
396
397static inline u64 btrfs_block_group_used(struct btrfs_block_group_item *bi)
398{
399 return le64_to_cpu(bi->used);
400}
401
402static inline void btrfs_set_block_group_used(struct
403 btrfs_block_group_item *bi,
404 u64 val)
405{
406 bi->used = cpu_to_le64(val);
407}
408
409static inline u64 btrfs_inode_generation(struct btrfs_inode_item *i)
410{
411 return le64_to_cpu(i->generation);
412}
413
414static inline void btrfs_set_inode_generation(struct btrfs_inode_item *i,
415 u64 val)
416{
417 i->generation = cpu_to_le64(val);
418}
419
420static inline u64 btrfs_inode_size(struct btrfs_inode_item *i)
421{
422 return le64_to_cpu(i->size);
423}
424
425static inline void btrfs_set_inode_size(struct btrfs_inode_item *i, u64 val)
426{
427 i->size = cpu_to_le64(val);
428}
429
430static inline u64 btrfs_inode_nblocks(struct btrfs_inode_item *i)
431{
432 return le64_to_cpu(i->nblocks);
433}
434
435static inline void btrfs_set_inode_nblocks(struct btrfs_inode_item *i, u64 val)
436{
437 i->nblocks = cpu_to_le64(val);
438}
439
440static inline u64 btrfs_inode_block_group(struct btrfs_inode_item *i)
441{
442 return le64_to_cpu(i->block_group);
443}
444
445static inline void btrfs_set_inode_block_group(struct btrfs_inode_item *i,
446 u64 val)
447{
448 i->block_group = cpu_to_le64(val);
449}
450
451static inline u32 btrfs_inode_nlink(struct btrfs_inode_item *i)
452{
453 return le32_to_cpu(i->nlink);
454}
455
456static inline void btrfs_set_inode_nlink(struct btrfs_inode_item *i, u32 val)
457{
458 i->nlink = cpu_to_le32(val);
459}
460
461static inline u32 btrfs_inode_uid(struct btrfs_inode_item *i)
462{
463 return le32_to_cpu(i->uid);
464}
465
466static inline void btrfs_set_inode_uid(struct btrfs_inode_item *i, u32 val)
467{
468 i->uid = cpu_to_le32(val);
469}
470
471static inline u32 btrfs_inode_gid(struct btrfs_inode_item *i)
472{
473 return le32_to_cpu(i->gid);
474}
475
476static inline void btrfs_set_inode_gid(struct btrfs_inode_item *i, u32 val)
477{
478 i->gid = cpu_to_le32(val);
479}
480
481static inline u32 btrfs_inode_mode(struct btrfs_inode_item *i)
482{
483 return le32_to_cpu(i->mode);
484}
485
486static inline void btrfs_set_inode_mode(struct btrfs_inode_item *i, u32 val)
487{
488 i->mode = cpu_to_le32(val);
489}
490
491static inline u32 btrfs_inode_rdev(struct btrfs_inode_item *i)
492{
493 return le32_to_cpu(i->rdev);
494}
495
496static inline void btrfs_set_inode_rdev(struct btrfs_inode_item *i, u32 val)
497{
498 i->rdev = cpu_to_le32(val);
499}
500
501static inline u16 btrfs_inode_flags(struct btrfs_inode_item *i)
502{
503 return le16_to_cpu(i->flags);
504}
505
506static inline void btrfs_set_inode_flags(struct btrfs_inode_item *i, u16 val)
507{
508 i->flags = cpu_to_le16(val);
509}
510
511static inline u16 btrfs_inode_compat_flags(struct btrfs_inode_item *i)
512{
513 return le16_to_cpu(i->compat_flags);
514}
515
516static inline void btrfs_set_inode_compat_flags(struct btrfs_inode_item *i,
517 u16 val)
518{
519 i->compat_flags = cpu_to_le16(val);
520}
521
522static inline u64 btrfs_timespec_sec(struct btrfs_inode_timespec *ts)
523{
524 return le64_to_cpu(ts->sec);
525}
526
527static inline void btrfs_set_timespec_sec(struct btrfs_inode_timespec *ts,
528 u64 val)
529{
530 ts->sec = cpu_to_le64(val);
531}
532
533static inline u32 btrfs_timespec_nsec(struct btrfs_inode_timespec *ts)
534{
535 return le32_to_cpu(ts->nsec);
536}
537
538static inline void btrfs_set_timespec_nsec(struct btrfs_inode_timespec *ts,
539 u32 val)
540{
541 ts->nsec = cpu_to_le32(val);
542}
543
544static inline u32 btrfs_extent_refs(struct btrfs_extent_item *ei)
545{
546 return le32_to_cpu(ei->refs);
547}
548
549static inline void btrfs_set_extent_refs(struct btrfs_extent_item *ei, u32 val)
550{
551 ei->refs = cpu_to_le32(val);
552}
553
554static inline u64 btrfs_extent_owner(struct btrfs_extent_item *ei)
555{
556 return le64_to_cpu(ei->owner);
557}
558
559static inline void btrfs_set_extent_owner(struct btrfs_extent_item *ei, u64 val)
560{
561 ei->owner = cpu_to_le64(val);
562}
563
564static inline u64 btrfs_node_blockptr(struct btrfs_node *n, int nr)
565{
566 return le64_to_cpu(n->ptrs[nr].blockptr);
567}
568
569
570static inline void btrfs_set_node_blockptr(struct btrfs_node *n, int nr,
571 u64 val)
572{
573 n->ptrs[nr].blockptr = cpu_to_le64(val);
574}
575
576static inline u32 btrfs_item_offset(struct btrfs_item *item)
577{
578 return le32_to_cpu(item->offset);
579}
580
581static inline void btrfs_set_item_offset(struct btrfs_item *item, u32 val)
582{
583 item->offset = cpu_to_le32(val);
584}
585
586static inline u32 btrfs_item_end(struct btrfs_item *item)
587{
588 return le32_to_cpu(item->offset) + le16_to_cpu(item->size);
589}
590
591static inline u16 btrfs_item_size(struct btrfs_item *item)
592{
593 return le16_to_cpu(item->size);
594}
595
596static inline void btrfs_set_item_size(struct btrfs_item *item, u16 val)
597{
598 item->size = cpu_to_le16(val);
599}
600
601static inline u16 btrfs_dir_flags(struct btrfs_dir_item *d)
602{
603 return le16_to_cpu(d->flags);
604}
605
606static inline void btrfs_set_dir_flags(struct btrfs_dir_item *d, u16 val)
607{
608 d->flags = cpu_to_le16(val);
609}
610
611static inline u8 btrfs_dir_type(struct btrfs_dir_item *d)
612{
613 return d->type;
614}
615
616static inline void btrfs_set_dir_type(struct btrfs_dir_item *d, u8 val)
617{
618 d->type = val;
619}
620
621static inline u16 btrfs_dir_name_len(struct btrfs_dir_item *d)
622{
623 return le16_to_cpu(d->name_len);
624}
625
626static inline void btrfs_set_dir_name_len(struct btrfs_dir_item *d, u16 val)
627{
628 d->name_len = cpu_to_le16(val);
629}
630
631static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
632 struct btrfs_disk_key *disk)
633{
634 cpu->offset = le64_to_cpu(disk->offset);
635 cpu->flags = le32_to_cpu(disk->flags);
636 cpu->objectid = le64_to_cpu(disk->objectid);
637}
638
639static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
640 struct btrfs_key *cpu)
641{
642 disk->offset = cpu_to_le64(cpu->offset);
643 disk->flags = cpu_to_le32(cpu->flags);
644 disk->objectid = cpu_to_le64(cpu->objectid);
645}
646
647static inline u64 btrfs_disk_key_objectid(struct btrfs_disk_key *disk)
648{
649 return le64_to_cpu(disk->objectid);
650}
651
652static inline void btrfs_set_disk_key_objectid(struct btrfs_disk_key *disk,
653 u64 val)
654{
655 disk->objectid = cpu_to_le64(val);
656}
657
658static inline u64 btrfs_disk_key_offset(struct btrfs_disk_key *disk)
659{
660 return le64_to_cpu(disk->offset);
661}
662
663static inline void btrfs_set_disk_key_offset(struct btrfs_disk_key *disk,
664 u64 val)
665{
666 disk->offset = cpu_to_le64(val);
667}
668
669static inline u32 btrfs_disk_key_flags(struct btrfs_disk_key *disk)
670{
671 return le32_to_cpu(disk->flags);
672}
673
674static inline void btrfs_set_disk_key_flags(struct btrfs_disk_key *disk,
675 u32 val)
676{
677 disk->flags = cpu_to_le32(val);
678}
679
680static inline u32 btrfs_disk_key_type(struct btrfs_disk_key *key)
681{
682 return le32_to_cpu(key->flags) >> BTRFS_KEY_TYPE_SHIFT;
683}
684
685static inline void btrfs_set_disk_key_type(struct btrfs_disk_key *key,
686 u32 val)
687{
688 u32 flags = btrfs_disk_key_flags(key);
689 BUG_ON(val >= BTRFS_KEY_TYPE_MAX);
690 val = val << BTRFS_KEY_TYPE_SHIFT;
691 flags = (flags & ~BTRFS_KEY_TYPE_MASK) | val;
692 btrfs_set_disk_key_flags(key, flags);
693}
694
695static inline u32 btrfs_key_type(struct btrfs_key *key)
696{
697 return key->flags >> BTRFS_KEY_TYPE_SHIFT;
698}
699
700static inline void btrfs_set_key_type(struct btrfs_key *key, u32 val)
701{
702 BUG_ON(val >= BTRFS_KEY_TYPE_MAX);
703 val = val << BTRFS_KEY_TYPE_SHIFT;
704 key->flags = (key->flags & ~(BTRFS_KEY_TYPE_MASK)) | val;
705}
706
707static inline u64 btrfs_header_blocknr(struct btrfs_header *h)
708{
709 return le64_to_cpu(h->blocknr);
710}
711
712static inline void btrfs_set_header_blocknr(struct btrfs_header *h, u64 blocknr)
713{
714 h->blocknr = cpu_to_le64(blocknr);
715}
716
717static inline u64 btrfs_header_generation(struct btrfs_header *h)
718{
719 return le64_to_cpu(h->generation);
720}
721
722static inline void btrfs_set_header_generation(struct btrfs_header *h,
723 u64 val)
724{
725 h->generation = cpu_to_le64(val);
726}
727
728static inline u64 btrfs_header_owner(struct btrfs_header *h)
729{
730 return le64_to_cpu(h->owner);
731}
732
733static inline void btrfs_set_header_owner(struct btrfs_header *h,
734 u64 val)
735{
736 h->owner = cpu_to_le64(val);
737}
738
739static inline u16 btrfs_header_nritems(struct btrfs_header *h)
740{
741 return le16_to_cpu(h->nritems);
742}
743
744static inline void btrfs_set_header_nritems(struct btrfs_header *h, u16 val)
745{
746 h->nritems = cpu_to_le16(val);
747}
748
749static inline u16 btrfs_header_flags(struct btrfs_header *h)
750{
751 return le16_to_cpu(h->flags);
752}
753
754static inline void btrfs_set_header_flags(struct btrfs_header *h, u16 val)
755{
756 h->flags = cpu_to_le16(val);
757}
758
759static inline int btrfs_header_level(struct btrfs_header *h)
760{
761 return h->level;
762}
763
764static inline void btrfs_set_header_level(struct btrfs_header *h, int level)
765{
766 BUG_ON(level > BTRFS_MAX_LEVEL);
767 h->level = level;
768}
769
770static inline int btrfs_is_leaf(struct btrfs_node *n)
771{
772 return (btrfs_header_level(&n->header) == 0);
773}
774
775static inline u64 btrfs_root_blocknr(struct btrfs_root_item *item)
776{
777 return le64_to_cpu(item->blocknr);
778}
779
780static inline void btrfs_set_root_blocknr(struct btrfs_root_item *item, u64 val)
781{
782 item->blocknr = cpu_to_le64(val);
783}
784
785static inline u64 btrfs_root_dirid(struct btrfs_root_item *item)
786{
787 return le64_to_cpu(item->root_dirid);
788}
789
790static inline void btrfs_set_root_dirid(struct btrfs_root_item *item, u64 val)
791{
792 item->root_dirid = cpu_to_le64(val);
793}
794
795static inline u32 btrfs_root_refs(struct btrfs_root_item *item)
796{
797 return le32_to_cpu(item->refs);
798}
799
800static inline void btrfs_set_root_refs(struct btrfs_root_item *item, u32 val)
801{
802 item->refs = cpu_to_le32(val);
803}
804
805static inline u64 btrfs_super_blocknr(struct btrfs_super_block *s)
806{
807 return le64_to_cpu(s->blocknr);
808}
809
810static inline void btrfs_set_super_blocknr(struct btrfs_super_block *s, u64 val)
811{
812 s->blocknr = cpu_to_le64(val);
813}
814
815static inline u64 btrfs_super_generation(struct btrfs_super_block *s)
816{
817 return le64_to_cpu(s->generation);
818}
819
820static inline void btrfs_set_super_generation(struct btrfs_super_block *s,
821 u64 val)
822{
823 s->generation = cpu_to_le64(val);
824}
825
826static inline u64 btrfs_super_root(struct btrfs_super_block *s)
827{
828 return le64_to_cpu(s->root);
829}
830
831static inline void btrfs_set_super_root(struct btrfs_super_block *s, u64 val)
832{
833 s->root = cpu_to_le64(val);
834}
835
836static inline u64 btrfs_super_total_blocks(struct btrfs_super_block *s)
837{
838 return le64_to_cpu(s->total_blocks);
839}
840
841static inline void btrfs_set_super_total_blocks(struct btrfs_super_block *s,
842 u64 val)
843{
844 s->total_blocks = cpu_to_le64(val);
845}
846
847static inline u64 btrfs_super_blocks_used(struct btrfs_super_block *s)
848{
849 return le64_to_cpu(s->blocks_used);
850}
851
852static inline void btrfs_set_super_blocks_used(struct btrfs_super_block *s,
853 u64 val)
854{
855 s->blocks_used = cpu_to_le64(val);
856}
857
858static inline u32 btrfs_super_blocksize(struct btrfs_super_block *s)
859{
860 return le32_to_cpu(s->blocksize);
861}
862
863static inline void btrfs_set_super_blocksize(struct btrfs_super_block *s,
864 u32 val)
865{
866 s->blocksize = cpu_to_le32(val);
867}
868
869static inline u64 btrfs_super_root_dir(struct btrfs_super_block *s)
870{
871 return le64_to_cpu(s->root_dir_objectid);
872}
873
874static inline void btrfs_set_super_root_dir(struct btrfs_super_block *s, u64
875 val)
876{
877 s->root_dir_objectid = cpu_to_le64(val);
878}
879
880static inline u64 btrfs_super_last_device_id(struct btrfs_super_block *s)
881{
882 return le64_to_cpu(s->last_device_id);
883}
884
885static inline void btrfs_set_super_last_device_id(struct btrfs_super_block *s,
886 u64 val)
887{
888 s->last_device_id = cpu_to_le64(val);
889}
890
891static inline u64 btrfs_super_device_id(struct btrfs_super_block *s)
892{
893 return le64_to_cpu(s->device_id);
894}
895
896static inline void btrfs_set_super_device_id(struct btrfs_super_block *s,
897 u64 val)
898{
899 s->device_id = cpu_to_le64(val);
900}
901
902static inline u64 btrfs_super_device_block_start(struct btrfs_super_block *s)
903{
904 return le64_to_cpu(s->device_block_start);
905}
906
907static inline void btrfs_set_super_device_block_start(struct btrfs_super_block
908 *s, u64 val)
909{
910 s->device_block_start = cpu_to_le64(val);
911}
912
913static inline u64 btrfs_super_device_num_blocks(struct btrfs_super_block *s)
914{
915 return le64_to_cpu(s->device_num_blocks);
916}
917
918static inline void btrfs_set_super_device_num_blocks(struct btrfs_super_block
919 *s, u64 val)
920{
921 s->device_num_blocks = cpu_to_le64(val);
922}
923
924static inline u64 btrfs_super_device_root(struct btrfs_super_block *s)
925{
926 return le64_to_cpu(s->device_root);
927}
928
929static inline void btrfs_set_super_device_root(struct btrfs_super_block
930 *s, u64 val)
931{
932 s->device_root = cpu_to_le64(val);
933}
934
935
936static inline u8 *btrfs_leaf_data(struct btrfs_leaf *l)
937{
938 return (u8 *)l->items;
939}
940
941static inline int btrfs_file_extent_type(struct btrfs_file_extent_item *e)
942{
943 return e->type;
944}
945static inline void btrfs_set_file_extent_type(struct btrfs_file_extent_item *e,
946 u8 val)
947{
948 e->type = val;
949}
950
951static inline char *btrfs_file_extent_inline_start(struct
952 btrfs_file_extent_item *e)
953{
954 return (char *)(&e->disk_blocknr);
955}
956
957static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
958{
959 return (unsigned long)(&((struct
960 btrfs_file_extent_item *)NULL)->disk_blocknr) + datasize;
961}
962
963static inline u32 btrfs_file_extent_inline_len(struct btrfs_item *e)
964{
965 struct btrfs_file_extent_item *fe = NULL;
966 return btrfs_item_size(e) - (unsigned long)(&fe->disk_blocknr);
967}
968
969static inline u64 btrfs_file_extent_disk_blocknr(struct btrfs_file_extent_item
970 *e)
971{
972 return le64_to_cpu(e->disk_blocknr);
973}
974
975static inline void btrfs_set_file_extent_disk_blocknr(struct
976 btrfs_file_extent_item
977 *e, u64 val)
978{
979 e->disk_blocknr = cpu_to_le64(val);
980}
981
982static inline u64 btrfs_file_extent_generation(struct btrfs_file_extent_item *e)
983{
984 return le64_to_cpu(e->generation);
985}
986
987static inline void btrfs_set_file_extent_generation(struct
988 btrfs_file_extent_item *e,
989 u64 val)
990{
991 e->generation = cpu_to_le64(val);
992}
993
994static inline u64 btrfs_file_extent_disk_num_blocks(struct
995 btrfs_file_extent_item *e)
996{
997 return le64_to_cpu(e->disk_num_blocks);
998}
999
1000static inline void btrfs_set_file_extent_disk_num_blocks(struct
1001 btrfs_file_extent_item
1002 *e, u64 val)
1003{
1004 e->disk_num_blocks = cpu_to_le64(val);
1005}
1006
1007static inline u64 btrfs_file_extent_offset(struct btrfs_file_extent_item *e)
1008{
1009 return le64_to_cpu(e->offset);
1010}
1011
1012static inline void btrfs_set_file_extent_offset(struct btrfs_file_extent_item
1013 *e, u64 val)
1014{
1015 e->offset = cpu_to_le64(val);
1016}
1017
1018static inline u64 btrfs_file_extent_num_blocks(struct btrfs_file_extent_item
1019 *e)
1020{
1021 return le64_to_cpu(e->num_blocks);
1022}
1023
1024static inline void btrfs_set_file_extent_num_blocks(struct
1025 btrfs_file_extent_item *e,
1026 u64 val)
1027{
1028 e->num_blocks = cpu_to_le64(val);
1029}
1030
1031static inline u16 btrfs_device_pathlen(struct btrfs_device_item *d)
1032{
1033 return le16_to_cpu(d->pathlen);
1034}
1035
1036static inline void btrfs_set_device_pathlen(struct btrfs_device_item *d,
1037 u16 val)
1038{
1039 d->pathlen = cpu_to_le16(val);
1040}
1041
1042static inline u64 btrfs_device_id(struct btrfs_device_item *d)
1043{
1044 return le64_to_cpu(d->device_id);
1045}
1046
1047static inline void btrfs_set_device_id(struct btrfs_device_item *d,
1048 u64 val)
1049{
1050 d->device_id = cpu_to_le64(val);
1051}
1052
1053static inline struct btrfs_root *btrfs_sb(struct super_block *sb)
1054{
1055 return sb->s_fs_info;
1056}
1057
1058static inline void btrfs_check_bounds(void *vptr, size_t len,
1059 void *vcontainer, size_t container_len)
1060{
1061 char *ptr = vptr;
1062 char *container = vcontainer;
1063 WARN_ON(ptr < container);
1064 WARN_ON(ptr + len > container + container_len);
1065}
1066
1067static inline void btrfs_memcpy(struct btrfs_root *root,
1068 void *dst_block,
1069 void *dst, const void *src, size_t nr)
1070{
1071 btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize);
1072 memcpy(dst, src, nr);
1073}
1074
1075static inline void btrfs_memmove(struct btrfs_root *root,
1076 void *dst_block,
1077 void *dst, void *src, size_t nr)
1078{
1079 btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize);
1080 memmove(dst, src, nr);
1081}
1082
1083static inline void btrfs_mark_buffer_dirty(struct buffer_head *bh)
1084{
1085 WARN_ON(!atomic_read(&bh->b_count));
1086 mark_buffer_dirty(bh);
1087}
1088
1089/* helper function to cast into the data area of the leaf. */
1090#define btrfs_item_ptr(leaf, slot, type) \
1091 ((type *)(btrfs_leaf_data(leaf) + \
1092 btrfs_item_offset((leaf)->items + (slot))))
1093
1094/* extent-tree.c */
1095struct btrfs_block_group_cache *btrfs_find_block_group(struct btrfs_root *root,
1096 struct btrfs_block_group_cache
1097 *hint, u64 search_start,
1098 int data, int owner);
1099int btrfs_inc_root_ref(struct btrfs_trans_handle *trans,
1100 struct btrfs_root *root);
1101struct buffer_head *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
1102 struct btrfs_root *root, u64 hint);
1103int btrfs_alloc_extent(struct btrfs_trans_handle *trans,
1104 struct btrfs_root *root, u64 owner,
1105 u64 num_blocks, u64 search_start,
1106 u64 search_end, struct btrfs_key *ins, int data);
1107int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1108 struct buffer_head *buf);
1109int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
1110 *root, u64 blocknr, u64 num_blocks, int pin);
1111int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct
1112 btrfs_root *root);
1113int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1114 struct btrfs_root *root,
1115 u64 blocknr, u64 num_blocks);
1116int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
1117 struct btrfs_root *root);
1118int btrfs_free_block_groups(struct btrfs_fs_info *info);
1119int btrfs_read_block_groups(struct btrfs_root *root);
1120/* ctree.c */
1121int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
1122 *root, struct btrfs_path *path, u32 data_size);
1123int btrfs_truncate_item(struct btrfs_trans_handle *trans,
1124 struct btrfs_root *root,
1125 struct btrfs_path *path,
1126 u32 new_size);
1127int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1128 *root, struct btrfs_key *key, struct btrfs_path *p, int
1129 ins_len, int cow);
1130void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p);
1131struct btrfs_path *btrfs_alloc_path(void);
1132void btrfs_free_path(struct btrfs_path *p);
1133void btrfs_init_path(struct btrfs_path *p);
1134int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1135 struct btrfs_path *path);
1136int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
1137 *root, struct btrfs_key *key, void *data, u32 data_size);
1138int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
1139 *root, struct btrfs_path *path, struct btrfs_key
1140 *cpu_key, u32 data_size);
1141int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
1142int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf);
1143int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root
1144 *root, struct buffer_head *snap);
1145/* root-item.c */
1146int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1147 struct btrfs_key *key);
1148int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
1149 *root, struct btrfs_key *key, struct btrfs_root_item
1150 *item);
1151int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
1152 *root, struct btrfs_key *key, struct btrfs_root_item
1153 *item);
1154int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, struct
1155 btrfs_root_item *item, struct btrfs_key *key);
1156/* dir-item.c */
1157int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
1158 *root, const char *name, int name_len, u64 dir,
1159 struct btrfs_key *location, u8 type);
1160struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
1161 struct btrfs_root *root,
1162 struct btrfs_path *path, u64 dir,
1163 const char *name, int name_len,
1164 int mod);
1165struct btrfs_dir_item *
1166btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
1167 struct btrfs_root *root,
1168 struct btrfs_path *path, u64 dir,
1169 u64 objectid, const char *name, int name_len,
1170 int mod);
1171struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_root *root,
1172 struct btrfs_path *path,
1173 const char *name, int name_len);
1174int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
1175 struct btrfs_root *root,
1176 struct btrfs_path *path,
1177 struct btrfs_dir_item *di);
1178/* inode-map.c */
1179int btrfs_find_free_objectid(struct btrfs_trans_handle *trans,
1180 struct btrfs_root *fs_root,
1181 u64 dirid, u64 *objectid);
1182int btrfs_find_highest_inode(struct btrfs_root *fs_root, u64 *objectid);
1183
1184/* inode-item.c */
1185int btrfs_insert_inode(struct btrfs_trans_handle *trans, struct btrfs_root
1186 *root, u64 objectid, struct btrfs_inode_item
1187 *inode_item);
1188int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
1189 *root, struct btrfs_path *path,
1190 struct btrfs_key *location, int mod);
1191
1192/* file-item.c */
1193int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
1194 struct btrfs_root *root,
1195 u64 objectid, u64 pos, u64 offset,
1196 u64 disk_num_blocks,
1197 u64 num_blocks);
1198int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
1199 struct btrfs_root *root,
1200 struct btrfs_path *path, u64 objectid,
1201 u64 blocknr, int mod);
1202int btrfs_csum_file_block(struct btrfs_trans_handle *trans,
1203 struct btrfs_root *root,
1204 u64 objectid, u64 offset,
1205 char *data, size_t len);
1206int btrfs_csum_verify_file_block(struct btrfs_root *root,
1207 u64 objectid, u64 offset,
1208 char *data, size_t len);
1209struct btrfs_csum_item *btrfs_lookup_csum(struct btrfs_trans_handle *trans,
1210 struct btrfs_root *root,
1211 struct btrfs_path *path,
1212 u64 objectid, u64 offset,
1213 int cow);
1214int btrfs_csum_truncate(struct btrfs_trans_handle *trans,
1215 struct btrfs_root *root, struct btrfs_path *path,
1216 u64 isize);
1217/* super.c */
1218#endif