Btrfs: fixup dirty_inode related deadlocks
[linux-2.6-block.git] / fs / btrfs / ctree.h
... / ...
CommitLineData
1#ifndef __BTRFS__
2#define __BTRFS__
3
4#include <linux/fs.h>
5#include <linux/buffer_head.h>
6#include <linux/kobject.h>
7#include "bit-radix.h"
8
9struct btrfs_trans_handle;
10struct btrfs_transaction;
11extern struct kmem_cache *btrfs_path_cachep;
12
13#define BTRFS_MAGIC "_BtRfS_M"
14
15#define BTRFS_ROOT_TREE_OBJECTID 1ULL
16#define BTRFS_DEV_TREE_OBJECTID 2ULL
17#define BTRFS_EXTENT_TREE_OBJECTID 3ULL
18#define BTRFS_FS_TREE_OBJECTID 4ULL
19#define BTRFS_ROOT_TREE_DIR_OBJECTID 5ULL
20#define BTRFS_FIRST_FREE_OBJECTID 6ULL
21
22/*
23 * we can actually store much bigger names, but lets not confuse the rest
24 * of linux
25 */
26#define BTRFS_NAME_LEN 255
27
28/* 32 bytes in various csum fields */
29#define BTRFS_CSUM_SIZE 32
30
31/*
32 * the key defines the order in the tree, and so it also defines (optimal)
33 * block layout. objectid corresonds to the inode number. The flags
34 * tells us things about the object, and is a kind of stream selector.
35 * so for a given inode, keys with flags of 1 might refer to the inode
36 * data, flags of 2 may point to file data in the btree and flags == 3
37 * may point to extents.
38 *
39 * offset is the starting byte offset for this key in the stream.
40 *
41 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
42 * in cpu native order. Otherwise they are identical and their sizes
43 * should be the same (ie both packed)
44 */
45struct btrfs_disk_key {
46 __le64 objectid;
47 __le32 flags;
48 __le64 offset;
49} __attribute__ ((__packed__));
50
51struct btrfs_key {
52 u64 objectid;
53 u32 flags;
54 u64 offset;
55} __attribute__ ((__packed__));
56
57/*
58 * every tree block (leaf or node) starts with this header.
59 */
60struct btrfs_header {
61 u8 csum[BTRFS_CSUM_SIZE];
62 u8 fsid[16]; /* FS specific uuid */
63 __le64 blocknr; /* which block this node is supposed to live in */
64 __le64 generation;
65 __le64 owner;
66 __le16 nritems;
67 __le16 flags;
68 u8 level;
69} __attribute__ ((__packed__));
70
71#define BTRFS_MAX_LEVEL 8
72#define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->blocksize - \
73 sizeof(struct btrfs_header)) / \
74 (sizeof(struct btrfs_disk_key) + sizeof(u64)))
75#define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
76#define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->blocksize))
77#define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
78 sizeof(struct btrfs_item) - \
79 sizeof(struct btrfs_file_extent_item))
80
81struct buffer_head;
82/*
83 * the super block basically lists the main trees of the FS
84 * it currently lacks any block count etc etc
85 */
86struct btrfs_super_block {
87 u8 csum[BTRFS_CSUM_SIZE];
88 /* the first 3 fields must match struct btrfs_header */
89 u8 fsid[16]; /* FS specific uuid */
90 __le64 blocknr; /* this block number */
91 __le64 magic;
92 __le32 blocksize;
93 __le64 generation;
94 __le64 root;
95 __le64 total_blocks;
96 __le64 blocks_used;
97 __le64 root_dir_objectid;
98 __le64 last_device_id;
99 /* fields below here vary with the underlying disk */
100 __le64 device_block_start;
101 __le64 device_num_blocks;
102 __le64 device_root;
103 __le64 device_id;
104} __attribute__ ((__packed__));
105
106/*
107 * A leaf is full of items. offset and size tell us where to find
108 * the item in the leaf (relative to the start of the data area)
109 */
110struct btrfs_item {
111 struct btrfs_disk_key key;
112 __le32 offset;
113 __le16 size;
114} __attribute__ ((__packed__));
115
116/*
117 * leaves have an item area and a data area:
118 * [item0, item1....itemN] [free space] [dataN...data1, data0]
119 *
120 * The data is separate from the items to get the keys closer together
121 * during searches.
122 */
123struct btrfs_leaf {
124 struct btrfs_header header;
125 struct btrfs_item items[];
126} __attribute__ ((__packed__));
127
128/*
129 * all non-leaf blocks are nodes, they hold only keys and pointers to
130 * other blocks
131 */
132struct btrfs_key_ptr {
133 struct btrfs_disk_key key;
134 __le64 blockptr;
135} __attribute__ ((__packed__));
136
137struct btrfs_node {
138 struct btrfs_header header;
139 struct btrfs_key_ptr ptrs[];
140} __attribute__ ((__packed__));
141
142/*
143 * btrfs_paths remember the path taken from the root down to the leaf.
144 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
145 * to any other levels that are present.
146 *
147 * The slots array records the index of the item or block pointer
148 * used while walking the tree.
149 */
150struct btrfs_path {
151 struct buffer_head *nodes[BTRFS_MAX_LEVEL];
152 int slots[BTRFS_MAX_LEVEL];
153};
154
155/*
156 * items in the extent btree are used to record the objectid of the
157 * owner of the block and the number of references
158 */
159struct btrfs_extent_item {
160 __le32 refs;
161 __le64 owner;
162} __attribute__ ((__packed__));
163
164struct btrfs_inode_timespec {
165 __le64 sec;
166 __le32 nsec;
167} __attribute__ ((__packed__));
168
169/*
170 * there is no padding here on purpose. If you want to extent the inode,
171 * make a new item type
172 */
173struct btrfs_inode_item {
174 __le64 generation;
175 __le64 size;
176 __le64 nblocks;
177 __le32 nlink;
178 __le32 uid;
179 __le32 gid;
180 __le32 mode;
181 __le32 rdev;
182 __le16 flags;
183 __le16 compat_flags;
184 struct btrfs_inode_timespec atime;
185 struct btrfs_inode_timespec ctime;
186 struct btrfs_inode_timespec mtime;
187 struct btrfs_inode_timespec otime;
188} __attribute__ ((__packed__));
189
190struct btrfs_dir_item {
191 struct btrfs_disk_key location;
192 __le16 flags;
193 __le16 name_len;
194 u8 type;
195} __attribute__ ((__packed__));
196
197struct btrfs_root_item {
198 struct btrfs_inode_item inode;
199 __le64 root_dirid;
200 __le64 blocknr;
201 __le32 flags;
202 __le64 block_limit;
203 __le64 blocks_used;
204 __le32 refs;
205} __attribute__ ((__packed__));
206
207#define BTRFS_FILE_EXTENT_REG 0
208#define BTRFS_FILE_EXTENT_INLINE 1
209
210struct btrfs_file_extent_item {
211 __le64 generation;
212 u8 type;
213 /*
214 * disk space consumed by the extent, checksum blocks are included
215 * in these numbers
216 */
217 __le64 disk_blocknr;
218 __le64 disk_num_blocks;
219 /*
220 * the logical offset in file blocks (no csums)
221 * this extent record is for. This allows a file extent to point
222 * into the middle of an existing extent on disk, sharing it
223 * between two snapshots (useful if some bytes in the middle of the
224 * extent have changed
225 */
226 __le64 offset;
227 /*
228 * the logical number of file blocks (no csums included)
229 */
230 __le64 num_blocks;
231} __attribute__ ((__packed__));
232
233struct btrfs_csum_item {
234 u8 csum[BTRFS_CSUM_SIZE];
235} __attribute__ ((__packed__));
236
237struct btrfs_device_item {
238 __le16 pathlen;
239 __le64 device_id;
240} __attribute__ ((__packed__));
241
242struct crypto_hash;
243struct btrfs_fs_info {
244 struct btrfs_root *extent_root;
245 struct btrfs_root *tree_root;
246 struct btrfs_root *dev_root;
247 struct btrfs_key current_insert;
248 struct btrfs_key last_insert;
249 struct radix_tree_root fs_roots_radix;
250 struct radix_tree_root pending_del_radix;
251 struct radix_tree_root pinned_radix;
252 struct radix_tree_root dev_radix;
253 u64 generation;
254 struct btrfs_transaction *running_transaction;
255 struct btrfs_super_block *disk_super;
256 struct buffer_head *sb_buffer;
257 struct super_block *sb;
258 struct inode *btree_inode;
259 struct mutex trans_mutex;
260 struct mutex fs_mutex;
261 struct list_head trans_list;
262 struct crypto_hash *hash_tfm;
263 spinlock_t hash_lock;
264 int do_barriers;
265 struct kobject kobj;
266};
267
268/*
269 * in ram representation of the tree. extent_root is used for all allocations
270 * and for the extent tree extent_root root. current_insert is used
271 * only for the extent tree.
272 */
273struct btrfs_root {
274 struct buffer_head *node;
275 struct buffer_head *commit_root;
276 struct btrfs_root_item root_item;
277 struct btrfs_key root_key;
278 struct btrfs_fs_info *fs_info;
279 struct inode *inode;
280 u64 objectid;
281 u64 last_trans;
282 u32 blocksize;
283 int ref_cows;
284 u32 type;
285 u64 highest_inode;
286 u64 last_inode_alloc;
287};
288
289/* the lower bits in the key flags defines the item type */
290#define BTRFS_KEY_TYPE_MAX 256
291#define BTRFS_KEY_TYPE_SHIFT 24
292#define BTRFS_KEY_TYPE_MASK (((u32)BTRFS_KEY_TYPE_MAX - 1) << \
293 BTRFS_KEY_TYPE_SHIFT)
294
295/*
296 * inode items have the data typically returned from stat and store other
297 * info about object characteristics. There is one for every file and dir in
298 * the FS
299 */
300#define BTRFS_INODE_ITEM_KEY 1
301
302/*
303 * dir items are the name -> inode pointers in a directory. There is one
304 * for every name in a directory.
305 */
306#define BTRFS_DIR_ITEM_KEY 2
307#define BTRFS_DIR_INDEX_KEY 3
308/*
309 * inline data is file data that fits in the btree.
310 */
311#define BTRFS_INLINE_DATA_KEY 4
312/*
313 * extent data is for data that can't fit in the btree. It points to
314 * a (hopefully) huge chunk of disk
315 */
316#define BTRFS_EXTENT_DATA_KEY 5
317/*
318 * csum items have the checksums for data in the extents
319 */
320#define BTRFS_CSUM_ITEM_KEY 6
321
322/*
323 * root items point to tree roots. There are typically in the root
324 * tree used by the super block to find all the other trees
325 */
326#define BTRFS_ROOT_ITEM_KEY 7
327/*
328 * extent items are in the extent map tree. These record which blocks
329 * are used, and how many references there are to each block
330 */
331#define BTRFS_EXTENT_ITEM_KEY 8
332
333/*
334 * dev items list the devices that make up the FS
335 */
336#define BTRFS_DEV_ITEM_KEY 9
337
338/*
339 * string items are for debugging. They just store a short string of
340 * data in the FS
341 */
342#define BTRFS_STRING_ITEM_KEY 10
343
344static inline u64 btrfs_inode_generation(struct btrfs_inode_item *i)
345{
346 return le64_to_cpu(i->generation);
347}
348
349static inline void btrfs_set_inode_generation(struct btrfs_inode_item *i,
350 u64 val)
351{
352 i->generation = cpu_to_le64(val);
353}
354
355static inline u64 btrfs_inode_size(struct btrfs_inode_item *i)
356{
357 return le64_to_cpu(i->size);
358}
359
360static inline void btrfs_set_inode_size(struct btrfs_inode_item *i, u64 val)
361{
362 i->size = cpu_to_le64(val);
363}
364
365static inline u64 btrfs_inode_nblocks(struct btrfs_inode_item *i)
366{
367 return le64_to_cpu(i->nblocks);
368}
369
370static inline void btrfs_set_inode_nblocks(struct btrfs_inode_item *i, u64 val)
371{
372 i->nblocks = cpu_to_le64(val);
373}
374
375static inline u32 btrfs_inode_nlink(struct btrfs_inode_item *i)
376{
377 return le32_to_cpu(i->nlink);
378}
379
380static inline void btrfs_set_inode_nlink(struct btrfs_inode_item *i, u32 val)
381{
382 i->nlink = cpu_to_le32(val);
383}
384
385static inline u32 btrfs_inode_uid(struct btrfs_inode_item *i)
386{
387 return le32_to_cpu(i->uid);
388}
389
390static inline void btrfs_set_inode_uid(struct btrfs_inode_item *i, u32 val)
391{
392 i->uid = cpu_to_le32(val);
393}
394
395static inline u32 btrfs_inode_gid(struct btrfs_inode_item *i)
396{
397 return le32_to_cpu(i->gid);
398}
399
400static inline void btrfs_set_inode_gid(struct btrfs_inode_item *i, u32 val)
401{
402 i->gid = cpu_to_le32(val);
403}
404
405static inline u32 btrfs_inode_mode(struct btrfs_inode_item *i)
406{
407 return le32_to_cpu(i->mode);
408}
409
410static inline void btrfs_set_inode_mode(struct btrfs_inode_item *i, u32 val)
411{
412 i->mode = cpu_to_le32(val);
413}
414
415static inline u32 btrfs_inode_rdev(struct btrfs_inode_item *i)
416{
417 return le32_to_cpu(i->rdev);
418}
419
420static inline void btrfs_set_inode_rdev(struct btrfs_inode_item *i, u32 val)
421{
422 i->rdev = cpu_to_le32(val);
423}
424
425static inline u16 btrfs_inode_flags(struct btrfs_inode_item *i)
426{
427 return le16_to_cpu(i->flags);
428}
429
430static inline void btrfs_set_inode_flags(struct btrfs_inode_item *i, u16 val)
431{
432 i->flags = cpu_to_le16(val);
433}
434
435static inline u16 btrfs_inode_compat_flags(struct btrfs_inode_item *i)
436{
437 return le16_to_cpu(i->compat_flags);
438}
439
440static inline void btrfs_set_inode_compat_flags(struct btrfs_inode_item *i,
441 u16 val)
442{
443 i->compat_flags = cpu_to_le16(val);
444}
445
446static inline u64 btrfs_timespec_sec(struct btrfs_inode_timespec *ts)
447{
448 return le64_to_cpu(ts->sec);
449}
450
451static inline void btrfs_set_timespec_sec(struct btrfs_inode_timespec *ts,
452 u64 val)
453{
454 ts->sec = cpu_to_le64(val);
455}
456
457static inline u32 btrfs_timespec_nsec(struct btrfs_inode_timespec *ts)
458{
459 return le32_to_cpu(ts->nsec);
460}
461
462static inline void btrfs_set_timespec_nsec(struct btrfs_inode_timespec *ts,
463 u32 val)
464{
465 ts->nsec = cpu_to_le32(val);
466}
467
468static inline u32 btrfs_extent_refs(struct btrfs_extent_item *ei)
469{
470 return le32_to_cpu(ei->refs);
471}
472
473static inline void btrfs_set_extent_refs(struct btrfs_extent_item *ei, u32 val)
474{
475 ei->refs = cpu_to_le32(val);
476}
477
478static inline u64 btrfs_extent_owner(struct btrfs_extent_item *ei)
479{
480 return le64_to_cpu(ei->owner);
481}
482
483static inline void btrfs_set_extent_owner(struct btrfs_extent_item *ei, u64 val)
484{
485 ei->owner = cpu_to_le64(val);
486}
487
488static inline u64 btrfs_node_blockptr(struct btrfs_node *n, int nr)
489{
490 return le64_to_cpu(n->ptrs[nr].blockptr);
491}
492
493
494static inline void btrfs_set_node_blockptr(struct btrfs_node *n, int nr,
495 u64 val)
496{
497 n->ptrs[nr].blockptr = cpu_to_le64(val);
498}
499
500static inline u32 btrfs_item_offset(struct btrfs_item *item)
501{
502 return le32_to_cpu(item->offset);
503}
504
505static inline void btrfs_set_item_offset(struct btrfs_item *item, u32 val)
506{
507 item->offset = cpu_to_le32(val);
508}
509
510static inline u32 btrfs_item_end(struct btrfs_item *item)
511{
512 return le32_to_cpu(item->offset) + le16_to_cpu(item->size);
513}
514
515static inline u16 btrfs_item_size(struct btrfs_item *item)
516{
517 return le16_to_cpu(item->size);
518}
519
520static inline void btrfs_set_item_size(struct btrfs_item *item, u16 val)
521{
522 item->size = cpu_to_le16(val);
523}
524
525static inline u16 btrfs_dir_flags(struct btrfs_dir_item *d)
526{
527 return le16_to_cpu(d->flags);
528}
529
530static inline void btrfs_set_dir_flags(struct btrfs_dir_item *d, u16 val)
531{
532 d->flags = cpu_to_le16(val);
533}
534
535static inline u8 btrfs_dir_type(struct btrfs_dir_item *d)
536{
537 return d->type;
538}
539
540static inline void btrfs_set_dir_type(struct btrfs_dir_item *d, u8 val)
541{
542 d->type = val;
543}
544
545static inline u16 btrfs_dir_name_len(struct btrfs_dir_item *d)
546{
547 return le16_to_cpu(d->name_len);
548}
549
550static inline void btrfs_set_dir_name_len(struct btrfs_dir_item *d, u16 val)
551{
552 d->name_len = cpu_to_le16(val);
553}
554
555static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
556 struct btrfs_disk_key *disk)
557{
558 cpu->offset = le64_to_cpu(disk->offset);
559 cpu->flags = le32_to_cpu(disk->flags);
560 cpu->objectid = le64_to_cpu(disk->objectid);
561}
562
563static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
564 struct btrfs_key *cpu)
565{
566 disk->offset = cpu_to_le64(cpu->offset);
567 disk->flags = cpu_to_le32(cpu->flags);
568 disk->objectid = cpu_to_le64(cpu->objectid);
569}
570
571static inline u64 btrfs_disk_key_objectid(struct btrfs_disk_key *disk)
572{
573 return le64_to_cpu(disk->objectid);
574}
575
576static inline void btrfs_set_disk_key_objectid(struct btrfs_disk_key *disk,
577 u64 val)
578{
579 disk->objectid = cpu_to_le64(val);
580}
581
582static inline u64 btrfs_disk_key_offset(struct btrfs_disk_key *disk)
583{
584 return le64_to_cpu(disk->offset);
585}
586
587static inline void btrfs_set_disk_key_offset(struct btrfs_disk_key *disk,
588 u64 val)
589{
590 disk->offset = cpu_to_le64(val);
591}
592
593static inline u32 btrfs_disk_key_flags(struct btrfs_disk_key *disk)
594{
595 return le32_to_cpu(disk->flags);
596}
597
598static inline void btrfs_set_disk_key_flags(struct btrfs_disk_key *disk,
599 u32 val)
600{
601 disk->flags = cpu_to_le32(val);
602}
603
604static inline u32 btrfs_disk_key_type(struct btrfs_disk_key *key)
605{
606 return le32_to_cpu(key->flags) >> BTRFS_KEY_TYPE_SHIFT;
607}
608
609static inline void btrfs_set_disk_key_type(struct btrfs_disk_key *key,
610 u32 val)
611{
612 u32 flags = btrfs_disk_key_flags(key);
613 BUG_ON(val >= BTRFS_KEY_TYPE_MAX);
614 val = val << BTRFS_KEY_TYPE_SHIFT;
615 flags = (flags & ~BTRFS_KEY_TYPE_MASK) | val;
616 btrfs_set_disk_key_flags(key, flags);
617}
618
619static inline u32 btrfs_key_type(struct btrfs_key *key)
620{
621 return key->flags >> BTRFS_KEY_TYPE_SHIFT;
622}
623
624static inline void btrfs_set_key_type(struct btrfs_key *key, u32 val)
625{
626 BUG_ON(val >= BTRFS_KEY_TYPE_MAX);
627 val = val << BTRFS_KEY_TYPE_SHIFT;
628 key->flags = (key->flags & ~(BTRFS_KEY_TYPE_MASK)) | val;
629}
630
631static inline u64 btrfs_header_blocknr(struct btrfs_header *h)
632{
633 return le64_to_cpu(h->blocknr);
634}
635
636static inline void btrfs_set_header_blocknr(struct btrfs_header *h, u64 blocknr)
637{
638 h->blocknr = cpu_to_le64(blocknr);
639}
640
641static inline u64 btrfs_header_generation(struct btrfs_header *h)
642{
643 return le64_to_cpu(h->generation);
644}
645
646static inline void btrfs_set_header_generation(struct btrfs_header *h,
647 u64 val)
648{
649 h->generation = cpu_to_le64(val);
650}
651
652static inline u64 btrfs_header_owner(struct btrfs_header *h)
653{
654 return le64_to_cpu(h->owner);
655}
656
657static inline void btrfs_set_header_owner(struct btrfs_header *h,
658 u64 val)
659{
660 h->owner = cpu_to_le64(val);
661}
662
663static inline u16 btrfs_header_nritems(struct btrfs_header *h)
664{
665 return le16_to_cpu(h->nritems);
666}
667
668static inline void btrfs_set_header_nritems(struct btrfs_header *h, u16 val)
669{
670 h->nritems = cpu_to_le16(val);
671}
672
673static inline u16 btrfs_header_flags(struct btrfs_header *h)
674{
675 return le16_to_cpu(h->flags);
676}
677
678static inline void btrfs_set_header_flags(struct btrfs_header *h, u16 val)
679{
680 h->flags = cpu_to_le16(val);
681}
682
683static inline int btrfs_header_level(struct btrfs_header *h)
684{
685 return h->level;
686}
687
688static inline void btrfs_set_header_level(struct btrfs_header *h, int level)
689{
690 BUG_ON(level > BTRFS_MAX_LEVEL);
691 h->level = level;
692}
693
694static inline int btrfs_is_leaf(struct btrfs_node *n)
695{
696 return (btrfs_header_level(&n->header) == 0);
697}
698
699static inline u64 btrfs_root_blocknr(struct btrfs_root_item *item)
700{
701 return le64_to_cpu(item->blocknr);
702}
703
704static inline void btrfs_set_root_blocknr(struct btrfs_root_item *item, u64 val)
705{
706 item->blocknr = cpu_to_le64(val);
707}
708
709static inline u64 btrfs_root_dirid(struct btrfs_root_item *item)
710{
711 return le64_to_cpu(item->root_dirid);
712}
713
714static inline void btrfs_set_root_dirid(struct btrfs_root_item *item, u64 val)
715{
716 item->root_dirid = cpu_to_le64(val);
717}
718
719static inline u32 btrfs_root_refs(struct btrfs_root_item *item)
720{
721 return le32_to_cpu(item->refs);
722}
723
724static inline void btrfs_set_root_refs(struct btrfs_root_item *item, u32 val)
725{
726 item->refs = cpu_to_le32(val);
727}
728
729static inline u64 btrfs_super_blocknr(struct btrfs_super_block *s)
730{
731 return le64_to_cpu(s->blocknr);
732}
733
734static inline void btrfs_set_super_blocknr(struct btrfs_super_block *s, u64 val)
735{
736 s->blocknr = cpu_to_le64(val);
737}
738
739static inline u64 btrfs_super_generation(struct btrfs_super_block *s)
740{
741 return le64_to_cpu(s->generation);
742}
743
744static inline void btrfs_set_super_generation(struct btrfs_super_block *s,
745 u64 val)
746{
747 s->generation = cpu_to_le64(val);
748}
749
750static inline u64 btrfs_super_root(struct btrfs_super_block *s)
751{
752 return le64_to_cpu(s->root);
753}
754
755static inline void btrfs_set_super_root(struct btrfs_super_block *s, u64 val)
756{
757 s->root = cpu_to_le64(val);
758}
759
760static inline u64 btrfs_super_total_blocks(struct btrfs_super_block *s)
761{
762 return le64_to_cpu(s->total_blocks);
763}
764
765static inline void btrfs_set_super_total_blocks(struct btrfs_super_block *s,
766 u64 val)
767{
768 s->total_blocks = cpu_to_le64(val);
769}
770
771static inline u64 btrfs_super_blocks_used(struct btrfs_super_block *s)
772{
773 return le64_to_cpu(s->blocks_used);
774}
775
776static inline void btrfs_set_super_blocks_used(struct btrfs_super_block *s,
777 u64 val)
778{
779 s->blocks_used = cpu_to_le64(val);
780}
781
782static inline u32 btrfs_super_blocksize(struct btrfs_super_block *s)
783{
784 return le32_to_cpu(s->blocksize);
785}
786
787static inline void btrfs_set_super_blocksize(struct btrfs_super_block *s,
788 u32 val)
789{
790 s->blocksize = cpu_to_le32(val);
791}
792
793static inline u64 btrfs_super_root_dir(struct btrfs_super_block *s)
794{
795 return le64_to_cpu(s->root_dir_objectid);
796}
797
798static inline void btrfs_set_super_root_dir(struct btrfs_super_block *s, u64
799 val)
800{
801 s->root_dir_objectid = cpu_to_le64(val);
802}
803
804static inline u64 btrfs_super_last_device_id(struct btrfs_super_block *s)
805{
806 return le64_to_cpu(s->last_device_id);
807}
808
809static inline void btrfs_set_super_last_device_id(struct btrfs_super_block *s,
810 u64 val)
811{
812 s->last_device_id = cpu_to_le64(val);
813}
814
815static inline u64 btrfs_super_device_id(struct btrfs_super_block *s)
816{
817 return le64_to_cpu(s->device_id);
818}
819
820static inline void btrfs_set_super_device_id(struct btrfs_super_block *s,
821 u64 val)
822{
823 s->device_id = cpu_to_le64(val);
824}
825
826static inline u64 btrfs_super_device_block_start(struct btrfs_super_block *s)
827{
828 return le64_to_cpu(s->device_block_start);
829}
830
831static inline void btrfs_set_super_device_block_start(struct btrfs_super_block
832 *s, u64 val)
833{
834 s->device_block_start = cpu_to_le64(val);
835}
836
837static inline u64 btrfs_super_device_num_blocks(struct btrfs_super_block *s)
838{
839 return le64_to_cpu(s->device_num_blocks);
840}
841
842static inline void btrfs_set_super_device_num_blocks(struct btrfs_super_block
843 *s, u64 val)
844{
845 s->device_num_blocks = cpu_to_le64(val);
846}
847
848static inline u64 btrfs_super_device_root(struct btrfs_super_block *s)
849{
850 return le64_to_cpu(s->device_root);
851}
852
853static inline void btrfs_set_super_device_root(struct btrfs_super_block
854 *s, u64 val)
855{
856 s->device_root = cpu_to_le64(val);
857}
858
859
860static inline u8 *btrfs_leaf_data(struct btrfs_leaf *l)
861{
862 return (u8 *)l->items;
863}
864
865static inline int btrfs_file_extent_type(struct btrfs_file_extent_item *e)
866{
867 return e->type;
868}
869static inline void btrfs_set_file_extent_type(struct btrfs_file_extent_item *e,
870 u8 val)
871{
872 e->type = val;
873}
874
875static inline char *btrfs_file_extent_inline_start(struct
876 btrfs_file_extent_item *e)
877{
878 return (char *)(&e->disk_blocknr);
879}
880
881static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
882{
883 return (unsigned long)(&((struct
884 btrfs_file_extent_item *)NULL)->disk_blocknr) + datasize;
885}
886
887static inline u32 btrfs_file_extent_inline_len(struct btrfs_item *e)
888{
889 struct btrfs_file_extent_item *fe = NULL;
890 return btrfs_item_size(e) - (unsigned long)(&fe->disk_blocknr);
891}
892
893static inline u64 btrfs_file_extent_disk_blocknr(struct btrfs_file_extent_item
894 *e)
895{
896 return le64_to_cpu(e->disk_blocknr);
897}
898
899static inline void btrfs_set_file_extent_disk_blocknr(struct
900 btrfs_file_extent_item
901 *e, u64 val)
902{
903 e->disk_blocknr = cpu_to_le64(val);
904}
905
906static inline u64 btrfs_file_extent_generation(struct btrfs_file_extent_item *e)
907{
908 return le64_to_cpu(e->generation);
909}
910
911static inline void btrfs_set_file_extent_generation(struct
912 btrfs_file_extent_item *e,
913 u64 val)
914{
915 e->generation = cpu_to_le64(val);
916}
917
918static inline u64 btrfs_file_extent_disk_num_blocks(struct
919 btrfs_file_extent_item *e)
920{
921 return le64_to_cpu(e->disk_num_blocks);
922}
923
924static inline void btrfs_set_file_extent_disk_num_blocks(struct
925 btrfs_file_extent_item
926 *e, u64 val)
927{
928 e->disk_num_blocks = cpu_to_le64(val);
929}
930
931static inline u64 btrfs_file_extent_offset(struct btrfs_file_extent_item *e)
932{
933 return le64_to_cpu(e->offset);
934}
935
936static inline void btrfs_set_file_extent_offset(struct btrfs_file_extent_item
937 *e, u64 val)
938{
939 e->offset = cpu_to_le64(val);
940}
941
942static inline u64 btrfs_file_extent_num_blocks(struct btrfs_file_extent_item
943 *e)
944{
945 return le64_to_cpu(e->num_blocks);
946}
947
948static inline void btrfs_set_file_extent_num_blocks(struct
949 btrfs_file_extent_item *e,
950 u64 val)
951{
952 e->num_blocks = cpu_to_le64(val);
953}
954
955static inline u16 btrfs_device_pathlen(struct btrfs_device_item *d)
956{
957 return le16_to_cpu(d->pathlen);
958}
959
960static inline void btrfs_set_device_pathlen(struct btrfs_device_item *d,
961 u16 val)
962{
963 d->pathlen = cpu_to_le16(val);
964}
965
966static inline u64 btrfs_device_id(struct btrfs_device_item *d)
967{
968 return le64_to_cpu(d->device_id);
969}
970
971static inline void btrfs_set_device_id(struct btrfs_device_item *d,
972 u64 val)
973{
974 d->device_id = cpu_to_le64(val);
975}
976
977static inline struct btrfs_root *btrfs_sb(struct super_block *sb)
978{
979 return sb->s_fs_info;
980}
981
982static inline void btrfs_check_bounds(void *vptr, size_t len,
983 void *vcontainer, size_t container_len)
984{
985 char *ptr = vptr;
986 char *container = vcontainer;
987 WARN_ON(ptr < container);
988 WARN_ON(ptr + len > container + container_len);
989}
990
991static inline void btrfs_memcpy(struct btrfs_root *root,
992 void *dst_block,
993 void *dst, const void *src, size_t nr)
994{
995 btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize);
996 memcpy(dst, src, nr);
997}
998
999static inline void btrfs_memmove(struct btrfs_root *root,
1000 void *dst_block,
1001 void *dst, void *src, size_t nr)
1002{
1003 btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize);
1004 memmove(dst, src, nr);
1005}
1006
1007static inline void btrfs_mark_buffer_dirty(struct buffer_head *bh)
1008{
1009 WARN_ON(!atomic_read(&bh->b_count));
1010 mark_buffer_dirty(bh);
1011}
1012
1013/* helper function to cast into the data area of the leaf. */
1014#define btrfs_item_ptr(leaf, slot, type) \
1015 ((type *)(btrfs_leaf_data(leaf) + \
1016 btrfs_item_offset((leaf)->items + (slot))))
1017
1018/* extent-tree.c */
1019int btrfs_inc_root_ref(struct btrfs_trans_handle *trans,
1020 struct btrfs_root *root);
1021struct buffer_head *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
1022 struct btrfs_root *root);
1023int btrfs_alloc_extent(struct btrfs_trans_handle *trans,
1024 struct btrfs_root *root, u64 owner,
1025 u64 num_blocks, u64 search_start,
1026 u64 search_end, struct btrfs_key *ins);
1027int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1028 struct buffer_head *buf);
1029int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
1030 *root, u64 blocknr, u64 num_blocks, int pin);
1031int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct
1032 btrfs_root *root);
1033int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1034 struct btrfs_root *root,
1035 u64 blocknr, u64 num_blocks);
1036/* ctree.c */
1037int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
1038 *root, struct btrfs_path *path, u32 data_size);
1039int btrfs_truncate_item(struct btrfs_trans_handle *trans,
1040 struct btrfs_root *root,
1041 struct btrfs_path *path,
1042 u32 new_size);
1043int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1044 *root, struct btrfs_key *key, struct btrfs_path *p, int
1045 ins_len, int cow);
1046void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p);
1047struct btrfs_path *btrfs_alloc_path(void);
1048void btrfs_free_path(struct btrfs_path *p);
1049void btrfs_init_path(struct btrfs_path *p);
1050int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1051 struct btrfs_path *path);
1052int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
1053 *root, struct btrfs_key *key, void *data, u32 data_size);
1054int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
1055 *root, struct btrfs_path *path, struct btrfs_key
1056 *cpu_key, u32 data_size);
1057int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
1058int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf);
1059int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root
1060 *root, struct buffer_head *snap);
1061/* root-item.c */
1062int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1063 struct btrfs_key *key);
1064int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
1065 *root, struct btrfs_key *key, struct btrfs_root_item
1066 *item);
1067int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
1068 *root, struct btrfs_key *key, struct btrfs_root_item
1069 *item);
1070int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, struct
1071 btrfs_root_item *item, struct btrfs_key *key);
1072/* dir-item.c */
1073int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
1074 *root, const char *name, int name_len, u64 dir,
1075 struct btrfs_key *location, u8 type);
1076struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
1077 struct btrfs_root *root,
1078 struct btrfs_path *path, u64 dir,
1079 const char *name, int name_len,
1080 int mod);
1081struct btrfs_dir_item *
1082btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
1083 struct btrfs_root *root,
1084 struct btrfs_path *path, u64 dir,
1085 u64 objectid, const char *name, int name_len,
1086 int mod);
1087struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_root *root,
1088 struct btrfs_path *path,
1089 const char *name, int name_len);
1090int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
1091 struct btrfs_root *root,
1092 struct btrfs_path *path,
1093 struct btrfs_dir_item *di);
1094/* inode-map.c */
1095int btrfs_find_free_objectid(struct btrfs_trans_handle *trans,
1096 struct btrfs_root *fs_root,
1097 u64 dirid, u64 *objectid);
1098int btrfs_find_highest_inode(struct btrfs_root *fs_root, u64 *objectid);
1099
1100/* inode-item.c */
1101int btrfs_insert_inode(struct btrfs_trans_handle *trans, struct btrfs_root
1102 *root, u64 objectid, struct btrfs_inode_item
1103 *inode_item);
1104int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
1105 *root, struct btrfs_path *path,
1106 struct btrfs_key *location, int mod);
1107
1108/* file-item.c */
1109int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
1110 struct btrfs_root *root,
1111 u64 objectid, u64 pos, u64 offset,
1112 u64 num_blocks);
1113int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
1114 struct btrfs_root *root,
1115 struct btrfs_path *path, u64 objectid,
1116 u64 blocknr, int mod);
1117int btrfs_csum_file_block(struct btrfs_trans_handle *trans,
1118 struct btrfs_root *root,
1119 u64 objectid, u64 offset,
1120 char *data, size_t len);
1121int btrfs_csum_verify_file_block(struct btrfs_root *root,
1122 u64 objectid, u64 offset,
1123 char *data, size_t len);
1124struct btrfs_csum_item *btrfs_lookup_csum(struct btrfs_trans_handle *trans,
1125 struct btrfs_root *root,
1126 struct btrfs_path *path,
1127 u64 objectid, u64 offset,
1128 int cow);
1129/* super.c */
1130extern struct subsystem btrfs_subsys;
1131
1132#endif