Btrfs: struct extent_item endian
[linux-2.6-block.git] / fs / btrfs / ctree.h
... / ...
CommitLineData
1#ifndef __CTREE__
2#define __CTREE__
3
4#include "list.h"
5#include "kerncompat.h"
6
7#define CTREE_BLOCKSIZE 1024
8
9/*
10 * the key defines the order in the tree, and so it also defines (optimal)
11 * block layout. objectid corresonds to the inode number. The flags
12 * tells us things about the object, and is a kind of stream selector.
13 * so for a given inode, keys with flags of 1 might refer to the inode
14 * data, flags of 2 may point to file data in the btree and flags == 3
15 * may point to extents.
16 *
17 * offset is the starting byte offset for this key in the stream.
18 *
19 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
20 * in cpu native order. Otherwise they are identical and their sizes
21 * should be the same (ie both packed)
22 */
23struct btrfs_disk_key {
24 __le64 objectid;
25 __le32 flags;
26 __le64 offset;
27} __attribute__ ((__packed__));
28
29struct btrfs_key {
30 u64 objectid;
31 u32 flags;
32 u64 offset;
33} __attribute__ ((__packed__));
34
35/*
36 * every tree block (leaf or node) starts with this header.
37 */
38struct btrfs_header {
39 __le64 fsid[2]; /* FS specific uuid */
40 __le64 blocknr; /* which block this node is supposed to live in */
41 __le64 parentid; /* objectid of the tree root */
42 __le32 csum;
43 __le32 ham;
44 __le16 nritems;
45 __le16 flags;
46 /* generation flags to be added */
47} __attribute__ ((__packed__));
48
49#define MAX_LEVEL 8
50#define NODEPTRS_PER_BLOCK ((CTREE_BLOCKSIZE - sizeof(struct btrfs_header)) / \
51 (sizeof(struct btrfs_disk_key) + sizeof(u64)))
52
53struct tree_buffer;
54
55/*
56 * in ram representation of the tree. extent_root is used for all allocations
57 * and for the extent tree extent_root root. current_insert is used
58 * only for the extent tree.
59 */
60struct ctree_root {
61 struct tree_buffer *node;
62 struct tree_buffer *commit_root;
63 struct ctree_root *extent_root;
64 struct btrfs_key current_insert;
65 struct btrfs_key last_insert;
66 int fp;
67 struct radix_tree_root cache_radix;
68 struct radix_tree_root pinned_radix;
69 struct list_head trans;
70 struct list_head cache;
71 int cache_size;
72};
73
74/*
75 * describes a tree on disk
76 */
77struct ctree_root_info {
78 u64 fsid[2]; /* FS specific uuid */
79 u64 blocknr; /* blocknr of this block */
80 u64 objectid; /* inode number of this root */
81 u64 tree_root; /* the tree root block */
82 u32 csum;
83 u32 ham;
84 u64 snapuuid[2]; /* root specific uuid */
85} __attribute__ ((__packed__));
86
87/*
88 * the super block basically lists the main trees of the FS
89 * it currently lacks any block count etc etc
90 */
91struct ctree_super_block {
92 struct ctree_root_info root_info;
93 struct ctree_root_info extent_info;
94} __attribute__ ((__packed__));
95
96/*
97 * A leaf is full of items. The exact type of item is defined by
98 * the key flags parameter. offset and size tell us where to find
99 * the item in the leaf (relative to the start of the data area)
100 */
101struct btrfs_item {
102 struct btrfs_disk_key key;
103 __le16 offset;
104 __le16 size;
105} __attribute__ ((__packed__));
106
107/*
108 * leaves have an item area and a data area:
109 * [item0, item1....itemN] [free space] [dataN...data1, data0]
110 *
111 * The data is separate from the items to get the keys closer together
112 * during searches.
113 */
114#define LEAF_DATA_SIZE (CTREE_BLOCKSIZE - sizeof(struct btrfs_header))
115struct leaf {
116 struct btrfs_header header;
117 union {
118 struct btrfs_item items[LEAF_DATA_SIZE/
119 sizeof(struct btrfs_item)];
120 u8 data[CTREE_BLOCKSIZE-sizeof(struct btrfs_header)];
121 };
122} __attribute__ ((__packed__));
123
124/*
125 * all non-leaf blocks are nodes, they hold only keys and pointers to
126 * other blocks
127 */
128struct node {
129 struct btrfs_header header;
130 struct btrfs_disk_key keys[NODEPTRS_PER_BLOCK];
131 __le64 blockptrs[NODEPTRS_PER_BLOCK];
132} __attribute__ ((__packed__));
133
134/*
135 * items in the extent btree are used to record the objectid of the
136 * owner of the block and the number of references
137 */
138struct extent_item {
139 __le32 refs;
140 __le64 owner;
141} __attribute__ ((__packed__));
142
143/*
144 * ctree_paths remember the path taken from the root down to the leaf.
145 * level 0 is always the leaf, and nodes[1...MAX_LEVEL] will point
146 * to any other levels that are present.
147 *
148 * The slots array records the index of the item or block pointer
149 * used while walking the tree.
150 */
151struct ctree_path {
152 struct tree_buffer *nodes[MAX_LEVEL];
153 int slots[MAX_LEVEL];
154};
155
156static inline u64 btrfs_extent_owner(struct extent_item *ei)
157{
158 return le64_to_cpu(ei->owner);
159}
160
161static inline void btrfs_set_extent_owner(struct extent_item *ei, u64 val)
162{
163 ei->owner = cpu_to_le64(val);
164}
165
166static inline u32 btrfs_extent_refs(struct extent_item *ei)
167{
168 return le32_to_cpu(ei->refs);
169}
170
171static inline void btrfs_set_extent_refs(struct extent_item *ei, u32 val)
172{
173 ei->refs = cpu_to_le32(val);
174}
175
176static inline u64 btrfs_node_blockptr(struct node *n, int nr)
177{
178 return le64_to_cpu(n->blockptrs[nr]);
179}
180
181static inline void btrfs_set_node_blockptr(struct node *n, int nr, u64 val)
182{
183 n->blockptrs[nr] = cpu_to_le64(val);
184}
185
186static inline u16 btrfs_item_offset(struct btrfs_item *item)
187{
188 return le16_to_cpu(item->offset);
189}
190
191static inline void btrfs_set_item_offset(struct btrfs_item *item, u16 val)
192{
193 item->offset = cpu_to_le16(val);
194}
195
196static inline u16 btrfs_item_end(struct btrfs_item *item)
197{
198 return le16_to_cpu(item->offset) + le16_to_cpu(item->size);
199}
200
201static inline u16 btrfs_item_size(struct btrfs_item *item)
202{
203 return le16_to_cpu(item->size);
204}
205
206static inline void btrfs_set_item_size(struct btrfs_item *item, u16 val)
207{
208 item->size = cpu_to_le16(val);
209}
210
211static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
212 struct btrfs_disk_key *disk)
213{
214 cpu->offset = le64_to_cpu(disk->offset);
215 cpu->flags = le32_to_cpu(disk->flags);
216 cpu->objectid = le64_to_cpu(disk->objectid);
217}
218
219static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
220 struct btrfs_key *cpu)
221{
222 disk->offset = cpu_to_le64(cpu->offset);
223 disk->flags = cpu_to_le32(cpu->flags);
224 disk->objectid = cpu_to_le64(cpu->objectid);
225}
226
227static inline u64 btrfs_key_objectid(struct btrfs_disk_key *disk)
228{
229 return le64_to_cpu(disk->objectid);
230}
231
232static inline void btrfs_set_key_objectid(struct btrfs_disk_key *disk,
233 u64 val)
234{
235 disk->objectid = cpu_to_le64(val);
236}
237
238static inline u64 btrfs_key_offset(struct btrfs_disk_key *disk)
239{
240 return le64_to_cpu(disk->offset);
241}
242
243static inline void btrfs_set_key_offset(struct btrfs_disk_key *disk,
244 u64 val)
245{
246 disk->offset = cpu_to_le64(val);
247}
248
249static inline u32 btrfs_key_flags(struct btrfs_disk_key *disk)
250{
251 return le32_to_cpu(disk->flags);
252}
253
254static inline void btrfs_set_key_flags(struct btrfs_disk_key *disk,
255 u32 val)
256{
257 disk->flags = cpu_to_le32(val);
258}
259
260static inline u64 btrfs_header_blocknr(struct btrfs_header *h)
261{
262 return le64_to_cpu(h->blocknr);
263}
264
265static inline void btrfs_set_header_blocknr(struct btrfs_header *h, u64 blocknr)
266{
267 h->blocknr = cpu_to_le64(blocknr);
268}
269
270static inline u64 btrfs_header_parentid(struct btrfs_header *h)
271{
272 return le64_to_cpu(h->parentid);
273}
274
275static inline void btrfs_set_header_parentid(struct btrfs_header *h,
276 u64 parentid)
277{
278 h->parentid = cpu_to_le64(parentid);
279}
280
281static inline u16 btrfs_header_nritems(struct btrfs_header *h)
282{
283 return le16_to_cpu(h->nritems);
284}
285
286static inline void btrfs_set_header_nritems(struct btrfs_header *h, u16 val)
287{
288 h->nritems = cpu_to_le16(val);
289}
290
291static inline u16 btrfs_header_flags(struct btrfs_header *h)
292{
293 return le16_to_cpu(h->flags);
294}
295
296static inline void btrfs_set_header_flags(struct btrfs_header *h, u16 val)
297{
298 h->flags = cpu_to_le16(val);
299}
300
301static inline int btrfs_header_level(struct btrfs_header *h)
302{
303 return btrfs_header_flags(h) & (MAX_LEVEL - 1);
304}
305
306static inline void btrfs_set_header_level(struct btrfs_header *h, int level)
307{
308 u16 flags;
309 BUG_ON(level > MAX_LEVEL);
310 flags = btrfs_header_flags(h) & ~(MAX_LEVEL - 1);
311 btrfs_set_header_flags(h, flags | level);
312}
313
314static inline int btrfs_is_leaf(struct node *n)
315{
316 return (btrfs_header_level(&n->header) == 0);
317}
318
319struct tree_buffer *alloc_free_block(struct ctree_root *root);
320int btrfs_inc_ref(struct ctree_root *root, struct tree_buffer *buf);
321int free_extent(struct ctree_root *root, u64 blocknr, u64 num_blocks);
322int search_slot(struct ctree_root *root, struct btrfs_key *key,
323 struct ctree_path *p, int ins_len, int cow);
324void release_path(struct ctree_root *root, struct ctree_path *p);
325void init_path(struct ctree_path *p);
326int del_item(struct ctree_root *root, struct ctree_path *path);
327int insert_item(struct ctree_root *root, struct btrfs_key *key,
328 void *data, int data_size);
329int next_leaf(struct ctree_root *root, struct ctree_path *path);
330int leaf_free_space(struct leaf *leaf);
331int btrfs_drop_snapshot(struct ctree_root *root, struct tree_buffer *snap);
332int btrfs_finish_extent_commit(struct ctree_root *root);
333#endif