Btrfs: fix check_node and check_leaf to use less cpu
[linux-2.6-block.git] / fs / btrfs / ctree.h
... / ...
CommitLineData
1#ifndef __BTRFS__
2#define __BTRFS__
3
4#include <linux/fs.h>
5#include <linux/buffer_head.h>
6#include <linux/kobject.h>
7#include "bit-radix.h"
8
9struct btrfs_trans_handle;
10struct btrfs_transaction;
11extern struct kmem_cache *btrfs_trans_handle_cachep;
12extern struct kmem_cache *btrfs_transaction_cachep;
13extern struct kmem_cache *btrfs_bit_radix_cachep;
14extern struct kmem_cache *btrfs_path_cachep;
15
16#define BTRFS_MAGIC "_BtRfS_M"
17
18#define BTRFS_ROOT_TREE_OBJECTID 1ULL
19#define BTRFS_DEV_TREE_OBJECTID 2ULL
20#define BTRFS_EXTENT_TREE_OBJECTID 3ULL
21#define BTRFS_FS_TREE_OBJECTID 4ULL
22#define BTRFS_ROOT_TREE_DIR_OBJECTID 5ULL
23#define BTRFS_FIRST_FREE_OBJECTID 6ULL
24
25/*
26 * we can actually store much bigger names, but lets not confuse the rest
27 * of linux
28 */
29#define BTRFS_NAME_LEN 255
30
31/* 32 bytes in various csum fields */
32#define BTRFS_CSUM_SIZE 32
33
34/*
35 * the key defines the order in the tree, and so it also defines (optimal)
36 * block layout. objectid corresonds to the inode number. The flags
37 * tells us things about the object, and is a kind of stream selector.
38 * so for a given inode, keys with flags of 1 might refer to the inode
39 * data, flags of 2 may point to file data in the btree and flags == 3
40 * may point to extents.
41 *
42 * offset is the starting byte offset for this key in the stream.
43 *
44 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
45 * in cpu native order. Otherwise they are identical and their sizes
46 * should be the same (ie both packed)
47 */
48struct btrfs_disk_key {
49 __le64 objectid;
50 __le32 flags;
51 __le64 offset;
52} __attribute__ ((__packed__));
53
54struct btrfs_key {
55 u64 objectid;
56 u32 flags;
57 u64 offset;
58} __attribute__ ((__packed__));
59
60/*
61 * every tree block (leaf or node) starts with this header.
62 */
63struct btrfs_header {
64 u8 csum[BTRFS_CSUM_SIZE];
65 u8 fsid[16]; /* FS specific uuid */
66 __le64 blocknr; /* which block this node is supposed to live in */
67 __le64 generation;
68 __le64 owner;
69 __le16 nritems;
70 __le16 flags;
71 u8 level;
72} __attribute__ ((__packed__));
73
74#define BTRFS_MAX_LEVEL 8
75#define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->blocksize - \
76 sizeof(struct btrfs_header)) / \
77 (sizeof(struct btrfs_disk_key) + sizeof(u64)))
78#define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
79#define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->blocksize))
80#define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
81 sizeof(struct btrfs_item) - \
82 sizeof(struct btrfs_file_extent_item))
83
84struct buffer_head;
85/*
86 * the super block basically lists the main trees of the FS
87 * it currently lacks any block count etc etc
88 */
89struct btrfs_super_block {
90 u8 csum[BTRFS_CSUM_SIZE];
91 /* the first 3 fields must match struct btrfs_header */
92 u8 fsid[16]; /* FS specific uuid */
93 __le64 blocknr; /* this block number */
94 __le64 magic;
95 __le32 blocksize;
96 __le64 generation;
97 __le64 root;
98 __le64 total_blocks;
99 __le64 blocks_used;
100 __le64 root_dir_objectid;
101 __le64 last_device_id;
102 /* fields below here vary with the underlying disk */
103 __le64 device_block_start;
104 __le64 device_num_blocks;
105 __le64 device_root;
106 __le64 device_id;
107} __attribute__ ((__packed__));
108
109/*
110 * A leaf is full of items. offset and size tell us where to find
111 * the item in the leaf (relative to the start of the data area)
112 */
113struct btrfs_item {
114 struct btrfs_disk_key key;
115 __le32 offset;
116 __le16 size;
117} __attribute__ ((__packed__));
118
119/*
120 * leaves have an item area and a data area:
121 * [item0, item1....itemN] [free space] [dataN...data1, data0]
122 *
123 * The data is separate from the items to get the keys closer together
124 * during searches.
125 */
126struct btrfs_leaf {
127 struct btrfs_header header;
128 struct btrfs_item items[];
129} __attribute__ ((__packed__));
130
131/*
132 * all non-leaf blocks are nodes, they hold only keys and pointers to
133 * other blocks
134 */
135struct btrfs_key_ptr {
136 struct btrfs_disk_key key;
137 __le64 blockptr;
138} __attribute__ ((__packed__));
139
140struct btrfs_node {
141 struct btrfs_header header;
142 struct btrfs_key_ptr ptrs[];
143} __attribute__ ((__packed__));
144
145/*
146 * btrfs_paths remember the path taken from the root down to the leaf.
147 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
148 * to any other levels that are present.
149 *
150 * The slots array records the index of the item or block pointer
151 * used while walking the tree.
152 */
153struct btrfs_path {
154 struct buffer_head *nodes[BTRFS_MAX_LEVEL];
155 int slots[BTRFS_MAX_LEVEL];
156};
157
158/*
159 * items in the extent btree are used to record the objectid of the
160 * owner of the block and the number of references
161 */
162struct btrfs_extent_item {
163 __le32 refs;
164 __le64 owner;
165} __attribute__ ((__packed__));
166
167struct btrfs_inode_timespec {
168 __le64 sec;
169 __le32 nsec;
170} __attribute__ ((__packed__));
171
172/*
173 * there is no padding here on purpose. If you want to extent the inode,
174 * make a new item type
175 */
176struct btrfs_inode_item {
177 __le64 generation;
178 __le64 size;
179 __le64 nblocks;
180 __le64 block_group;
181 __le32 nlink;
182 __le32 uid;
183 __le32 gid;
184 __le32 mode;
185 __le32 rdev;
186 __le16 flags;
187 __le16 compat_flags;
188 struct btrfs_inode_timespec atime;
189 struct btrfs_inode_timespec ctime;
190 struct btrfs_inode_timespec mtime;
191 struct btrfs_inode_timespec otime;
192} __attribute__ ((__packed__));
193
194struct btrfs_dir_item {
195 struct btrfs_disk_key location;
196 __le16 flags;
197 __le16 name_len;
198 u8 type;
199} __attribute__ ((__packed__));
200
201struct btrfs_root_item {
202 struct btrfs_inode_item inode;
203 __le64 root_dirid;
204 __le64 blocknr;
205 __le32 flags;
206 __le64 block_limit;
207 __le64 blocks_used;
208 __le32 refs;
209} __attribute__ ((__packed__));
210
211#define BTRFS_FILE_EXTENT_REG 0
212#define BTRFS_FILE_EXTENT_INLINE 1
213
214struct btrfs_file_extent_item {
215 __le64 generation;
216 u8 type;
217 /*
218 * disk space consumed by the extent, checksum blocks are included
219 * in these numbers
220 */
221 __le64 disk_blocknr;
222 __le64 disk_num_blocks;
223 /*
224 * the logical offset in file blocks (no csums)
225 * this extent record is for. This allows a file extent to point
226 * into the middle of an existing extent on disk, sharing it
227 * between two snapshots (useful if some bytes in the middle of the
228 * extent have changed
229 */
230 __le64 offset;
231 /*
232 * the logical number of file blocks (no csums included)
233 */
234 __le64 num_blocks;
235} __attribute__ ((__packed__));
236
237struct btrfs_csum_item {
238 u8 csum[BTRFS_CSUM_SIZE];
239} __attribute__ ((__packed__));
240
241struct btrfs_device_item {
242 __le16 pathlen;
243 __le64 device_id;
244} __attribute__ ((__packed__));
245
246/* tag for the radix tree of block groups in ram */
247#define BTRFS_BLOCK_GROUP_DIRTY 0
248#define BTRFS_BLOCK_GROUP_AVAIL 1
249#define BTRFS_BLOCK_GROUP_HINTS 8
250#define BTRFS_BLOCK_GROUP_SIZE (256 * 1024 * 1024)
251struct btrfs_block_group_item {
252 __le64 used;
253} __attribute__ ((__packed__));
254
255struct btrfs_block_group_cache {
256 struct btrfs_key key;
257 struct btrfs_block_group_item item;
258 struct radix_tree_root *radix;
259 u64 first_free;
260 u64 last_alloc;
261 u64 pinned;
262 u64 last_prealloc;
263 int data;
264 int cached;
265};
266
267struct crypto_hash;
268struct btrfs_fs_info {
269 struct btrfs_root *extent_root;
270 struct btrfs_root *tree_root;
271 struct btrfs_root *dev_root;
272 struct radix_tree_root fs_roots_radix;
273 struct radix_tree_root pending_del_radix;
274 struct radix_tree_root pinned_radix;
275 struct radix_tree_root dev_radix;
276 struct radix_tree_root block_group_radix;
277 struct radix_tree_root block_group_data_radix;
278 struct radix_tree_root extent_map_radix;
279
280 u64 extent_tree_insert[BTRFS_MAX_LEVEL * 3];
281 int extent_tree_insert_nr;
282 u64 extent_tree_prealloc[BTRFS_MAX_LEVEL * 3];
283 int extent_tree_prealloc_nr;
284
285 u64 generation;
286 struct btrfs_transaction *running_transaction;
287 struct btrfs_super_block *disk_super;
288 struct buffer_head *sb_buffer;
289 struct super_block *sb;
290 struct inode *btree_inode;
291 struct mutex trans_mutex;
292 struct mutex fs_mutex;
293 struct list_head trans_list;
294 struct crypto_hash *hash_tfm;
295 spinlock_t hash_lock;
296 int do_barriers;
297 struct kobject kobj;
298};
299
300/*
301 * in ram representation of the tree. extent_root is used for all allocations
302 * and for the extent tree extent_root root.
303 */
304struct btrfs_root {
305 struct buffer_head *node;
306 struct buffer_head *commit_root;
307 struct btrfs_root_item root_item;
308 struct btrfs_key root_key;
309 struct btrfs_fs_info *fs_info;
310 struct inode *inode;
311 u64 objectid;
312 u64 last_trans;
313 u32 blocksize;
314 int ref_cows;
315 u32 type;
316 u64 highest_inode;
317 u64 last_inode_alloc;
318};
319
320/* the lower bits in the key flags defines the item type */
321#define BTRFS_KEY_TYPE_MAX 256
322#define BTRFS_KEY_TYPE_SHIFT 24
323#define BTRFS_KEY_TYPE_MASK (((u32)BTRFS_KEY_TYPE_MAX - 1) << \
324 BTRFS_KEY_TYPE_SHIFT)
325
326/*
327 * inode items have the data typically returned from stat and store other
328 * info about object characteristics. There is one for every file and dir in
329 * the FS
330 */
331#define BTRFS_INODE_ITEM_KEY 1
332
333/* reserve 2-15 close to the inode for later flexibility */
334
335/*
336 * dir items are the name -> inode pointers in a directory. There is one
337 * for every name in a directory.
338 */
339#define BTRFS_DIR_ITEM_KEY 16
340#define BTRFS_DIR_INDEX_KEY 17
341/*
342 * extent data is for file data
343 */
344#define BTRFS_EXTENT_DATA_KEY 18
345/*
346 * csum items have the checksums for data in the extents
347 */
348#define BTRFS_CSUM_ITEM_KEY 19
349
350/* reserve 20-31 for other file stuff */
351
352/*
353 * root items point to tree roots. There are typically in the root
354 * tree used by the super block to find all the other trees
355 */
356#define BTRFS_ROOT_ITEM_KEY 32
357/*
358 * extent items are in the extent map tree. These record which blocks
359 * are used, and how many references there are to each block
360 */
361#define BTRFS_EXTENT_ITEM_KEY 33
362
363/*
364 * block groups give us hints into the extent allocation trees. Which
365 * blocks are free etc etc
366 */
367#define BTRFS_BLOCK_GROUP_ITEM_KEY 34
368
369/*
370 * dev items list the devices that make up the FS
371 */
372#define BTRFS_DEV_ITEM_KEY 35
373
374/*
375 * string items are for debugging. They just store a short string of
376 * data in the FS
377 */
378#define BTRFS_STRING_ITEM_KEY 253
379
380
381static inline u64 btrfs_block_group_used(struct btrfs_block_group_item *bi)
382{
383 return le64_to_cpu(bi->used);
384}
385
386static inline void btrfs_set_block_group_used(struct
387 btrfs_block_group_item *bi,
388 u64 val)
389{
390 bi->used = cpu_to_le64(val);
391}
392
393static inline u64 btrfs_inode_generation(struct btrfs_inode_item *i)
394{
395 return le64_to_cpu(i->generation);
396}
397
398static inline void btrfs_set_inode_generation(struct btrfs_inode_item *i,
399 u64 val)
400{
401 i->generation = cpu_to_le64(val);
402}
403
404static inline u64 btrfs_inode_size(struct btrfs_inode_item *i)
405{
406 return le64_to_cpu(i->size);
407}
408
409static inline void btrfs_set_inode_size(struct btrfs_inode_item *i, u64 val)
410{
411 i->size = cpu_to_le64(val);
412}
413
414static inline u64 btrfs_inode_nblocks(struct btrfs_inode_item *i)
415{
416 return le64_to_cpu(i->nblocks);
417}
418
419static inline void btrfs_set_inode_nblocks(struct btrfs_inode_item *i, u64 val)
420{
421 i->nblocks = cpu_to_le64(val);
422}
423
424static inline u64 btrfs_inode_block_group(struct btrfs_inode_item *i)
425{
426 return le64_to_cpu(i->block_group);
427}
428
429static inline void btrfs_set_inode_block_group(struct btrfs_inode_item *i,
430 u64 val)
431{
432 i->block_group = cpu_to_le64(val);
433}
434
435static inline u32 btrfs_inode_nlink(struct btrfs_inode_item *i)
436{
437 return le32_to_cpu(i->nlink);
438}
439
440static inline void btrfs_set_inode_nlink(struct btrfs_inode_item *i, u32 val)
441{
442 i->nlink = cpu_to_le32(val);
443}
444
445static inline u32 btrfs_inode_uid(struct btrfs_inode_item *i)
446{
447 return le32_to_cpu(i->uid);
448}
449
450static inline void btrfs_set_inode_uid(struct btrfs_inode_item *i, u32 val)
451{
452 i->uid = cpu_to_le32(val);
453}
454
455static inline u32 btrfs_inode_gid(struct btrfs_inode_item *i)
456{
457 return le32_to_cpu(i->gid);
458}
459
460static inline void btrfs_set_inode_gid(struct btrfs_inode_item *i, u32 val)
461{
462 i->gid = cpu_to_le32(val);
463}
464
465static inline u32 btrfs_inode_mode(struct btrfs_inode_item *i)
466{
467 return le32_to_cpu(i->mode);
468}
469
470static inline void btrfs_set_inode_mode(struct btrfs_inode_item *i, u32 val)
471{
472 i->mode = cpu_to_le32(val);
473}
474
475static inline u32 btrfs_inode_rdev(struct btrfs_inode_item *i)
476{
477 return le32_to_cpu(i->rdev);
478}
479
480static inline void btrfs_set_inode_rdev(struct btrfs_inode_item *i, u32 val)
481{
482 i->rdev = cpu_to_le32(val);
483}
484
485static inline u16 btrfs_inode_flags(struct btrfs_inode_item *i)
486{
487 return le16_to_cpu(i->flags);
488}
489
490static inline void btrfs_set_inode_flags(struct btrfs_inode_item *i, u16 val)
491{
492 i->flags = cpu_to_le16(val);
493}
494
495static inline u16 btrfs_inode_compat_flags(struct btrfs_inode_item *i)
496{
497 return le16_to_cpu(i->compat_flags);
498}
499
500static inline void btrfs_set_inode_compat_flags(struct btrfs_inode_item *i,
501 u16 val)
502{
503 i->compat_flags = cpu_to_le16(val);
504}
505
506static inline u64 btrfs_timespec_sec(struct btrfs_inode_timespec *ts)
507{
508 return le64_to_cpu(ts->sec);
509}
510
511static inline void btrfs_set_timespec_sec(struct btrfs_inode_timespec *ts,
512 u64 val)
513{
514 ts->sec = cpu_to_le64(val);
515}
516
517static inline u32 btrfs_timespec_nsec(struct btrfs_inode_timespec *ts)
518{
519 return le32_to_cpu(ts->nsec);
520}
521
522static inline void btrfs_set_timespec_nsec(struct btrfs_inode_timespec *ts,
523 u32 val)
524{
525 ts->nsec = cpu_to_le32(val);
526}
527
528static inline u32 btrfs_extent_refs(struct btrfs_extent_item *ei)
529{
530 return le32_to_cpu(ei->refs);
531}
532
533static inline void btrfs_set_extent_refs(struct btrfs_extent_item *ei, u32 val)
534{
535 ei->refs = cpu_to_le32(val);
536}
537
538static inline u64 btrfs_extent_owner(struct btrfs_extent_item *ei)
539{
540 return le64_to_cpu(ei->owner);
541}
542
543static inline void btrfs_set_extent_owner(struct btrfs_extent_item *ei, u64 val)
544{
545 ei->owner = cpu_to_le64(val);
546}
547
548static inline u64 btrfs_node_blockptr(struct btrfs_node *n, int nr)
549{
550 return le64_to_cpu(n->ptrs[nr].blockptr);
551}
552
553
554static inline void btrfs_set_node_blockptr(struct btrfs_node *n, int nr,
555 u64 val)
556{
557 n->ptrs[nr].blockptr = cpu_to_le64(val);
558}
559
560static inline u32 btrfs_item_offset(struct btrfs_item *item)
561{
562 return le32_to_cpu(item->offset);
563}
564
565static inline void btrfs_set_item_offset(struct btrfs_item *item, u32 val)
566{
567 item->offset = cpu_to_le32(val);
568}
569
570static inline u32 btrfs_item_end(struct btrfs_item *item)
571{
572 return le32_to_cpu(item->offset) + le16_to_cpu(item->size);
573}
574
575static inline u16 btrfs_item_size(struct btrfs_item *item)
576{
577 return le16_to_cpu(item->size);
578}
579
580static inline void btrfs_set_item_size(struct btrfs_item *item, u16 val)
581{
582 item->size = cpu_to_le16(val);
583}
584
585static inline u16 btrfs_dir_flags(struct btrfs_dir_item *d)
586{
587 return le16_to_cpu(d->flags);
588}
589
590static inline void btrfs_set_dir_flags(struct btrfs_dir_item *d, u16 val)
591{
592 d->flags = cpu_to_le16(val);
593}
594
595static inline u8 btrfs_dir_type(struct btrfs_dir_item *d)
596{
597 return d->type;
598}
599
600static inline void btrfs_set_dir_type(struct btrfs_dir_item *d, u8 val)
601{
602 d->type = val;
603}
604
605static inline u16 btrfs_dir_name_len(struct btrfs_dir_item *d)
606{
607 return le16_to_cpu(d->name_len);
608}
609
610static inline void btrfs_set_dir_name_len(struct btrfs_dir_item *d, u16 val)
611{
612 d->name_len = cpu_to_le16(val);
613}
614
615static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
616 struct btrfs_disk_key *disk)
617{
618 cpu->offset = le64_to_cpu(disk->offset);
619 cpu->flags = le32_to_cpu(disk->flags);
620 cpu->objectid = le64_to_cpu(disk->objectid);
621}
622
623static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
624 struct btrfs_key *cpu)
625{
626 disk->offset = cpu_to_le64(cpu->offset);
627 disk->flags = cpu_to_le32(cpu->flags);
628 disk->objectid = cpu_to_le64(cpu->objectid);
629}
630
631static inline u64 btrfs_disk_key_objectid(struct btrfs_disk_key *disk)
632{
633 return le64_to_cpu(disk->objectid);
634}
635
636static inline void btrfs_set_disk_key_objectid(struct btrfs_disk_key *disk,
637 u64 val)
638{
639 disk->objectid = cpu_to_le64(val);
640}
641
642static inline u64 btrfs_disk_key_offset(struct btrfs_disk_key *disk)
643{
644 return le64_to_cpu(disk->offset);
645}
646
647static inline void btrfs_set_disk_key_offset(struct btrfs_disk_key *disk,
648 u64 val)
649{
650 disk->offset = cpu_to_le64(val);
651}
652
653static inline u32 btrfs_disk_key_flags(struct btrfs_disk_key *disk)
654{
655 return le32_to_cpu(disk->flags);
656}
657
658static inline void btrfs_set_disk_key_flags(struct btrfs_disk_key *disk,
659 u32 val)
660{
661 disk->flags = cpu_to_le32(val);
662}
663
664static inline u32 btrfs_disk_key_type(struct btrfs_disk_key *key)
665{
666 return le32_to_cpu(key->flags) >> BTRFS_KEY_TYPE_SHIFT;
667}
668
669static inline void btrfs_set_disk_key_type(struct btrfs_disk_key *key,
670 u32 val)
671{
672 u32 flags = btrfs_disk_key_flags(key);
673 BUG_ON(val >= BTRFS_KEY_TYPE_MAX);
674 val = val << BTRFS_KEY_TYPE_SHIFT;
675 flags = (flags & ~BTRFS_KEY_TYPE_MASK) | val;
676 btrfs_set_disk_key_flags(key, flags);
677}
678
679static inline u32 btrfs_key_type(struct btrfs_key *key)
680{
681 return key->flags >> BTRFS_KEY_TYPE_SHIFT;
682}
683
684static inline void btrfs_set_key_type(struct btrfs_key *key, u32 val)
685{
686 BUG_ON(val >= BTRFS_KEY_TYPE_MAX);
687 val = val << BTRFS_KEY_TYPE_SHIFT;
688 key->flags = (key->flags & ~(BTRFS_KEY_TYPE_MASK)) | val;
689}
690
691static inline u64 btrfs_header_blocknr(struct btrfs_header *h)
692{
693 return le64_to_cpu(h->blocknr);
694}
695
696static inline void btrfs_set_header_blocknr(struct btrfs_header *h, u64 blocknr)
697{
698 h->blocknr = cpu_to_le64(blocknr);
699}
700
701static inline u64 btrfs_header_generation(struct btrfs_header *h)
702{
703 return le64_to_cpu(h->generation);
704}
705
706static inline void btrfs_set_header_generation(struct btrfs_header *h,
707 u64 val)
708{
709 h->generation = cpu_to_le64(val);
710}
711
712static inline u64 btrfs_header_owner(struct btrfs_header *h)
713{
714 return le64_to_cpu(h->owner);
715}
716
717static inline void btrfs_set_header_owner(struct btrfs_header *h,
718 u64 val)
719{
720 h->owner = cpu_to_le64(val);
721}
722
723static inline u16 btrfs_header_nritems(struct btrfs_header *h)
724{
725 return le16_to_cpu(h->nritems);
726}
727
728static inline void btrfs_set_header_nritems(struct btrfs_header *h, u16 val)
729{
730 h->nritems = cpu_to_le16(val);
731}
732
733static inline u16 btrfs_header_flags(struct btrfs_header *h)
734{
735 return le16_to_cpu(h->flags);
736}
737
738static inline void btrfs_set_header_flags(struct btrfs_header *h, u16 val)
739{
740 h->flags = cpu_to_le16(val);
741}
742
743static inline int btrfs_header_level(struct btrfs_header *h)
744{
745 return h->level;
746}
747
748static inline void btrfs_set_header_level(struct btrfs_header *h, int level)
749{
750 BUG_ON(level > BTRFS_MAX_LEVEL);
751 h->level = level;
752}
753
754static inline int btrfs_is_leaf(struct btrfs_node *n)
755{
756 return (btrfs_header_level(&n->header) == 0);
757}
758
759static inline u64 btrfs_root_blocknr(struct btrfs_root_item *item)
760{
761 return le64_to_cpu(item->blocknr);
762}
763
764static inline void btrfs_set_root_blocknr(struct btrfs_root_item *item, u64 val)
765{
766 item->blocknr = cpu_to_le64(val);
767}
768
769static inline u64 btrfs_root_dirid(struct btrfs_root_item *item)
770{
771 return le64_to_cpu(item->root_dirid);
772}
773
774static inline void btrfs_set_root_dirid(struct btrfs_root_item *item, u64 val)
775{
776 item->root_dirid = cpu_to_le64(val);
777}
778
779static inline u32 btrfs_root_refs(struct btrfs_root_item *item)
780{
781 return le32_to_cpu(item->refs);
782}
783
784static inline void btrfs_set_root_refs(struct btrfs_root_item *item, u32 val)
785{
786 item->refs = cpu_to_le32(val);
787}
788
789static inline u64 btrfs_super_blocknr(struct btrfs_super_block *s)
790{
791 return le64_to_cpu(s->blocknr);
792}
793
794static inline void btrfs_set_super_blocknr(struct btrfs_super_block *s, u64 val)
795{
796 s->blocknr = cpu_to_le64(val);
797}
798
799static inline u64 btrfs_super_generation(struct btrfs_super_block *s)
800{
801 return le64_to_cpu(s->generation);
802}
803
804static inline void btrfs_set_super_generation(struct btrfs_super_block *s,
805 u64 val)
806{
807 s->generation = cpu_to_le64(val);
808}
809
810static inline u64 btrfs_super_root(struct btrfs_super_block *s)
811{
812 return le64_to_cpu(s->root);
813}
814
815static inline void btrfs_set_super_root(struct btrfs_super_block *s, u64 val)
816{
817 s->root = cpu_to_le64(val);
818}
819
820static inline u64 btrfs_super_total_blocks(struct btrfs_super_block *s)
821{
822 return le64_to_cpu(s->total_blocks);
823}
824
825static inline void btrfs_set_super_total_blocks(struct btrfs_super_block *s,
826 u64 val)
827{
828 s->total_blocks = cpu_to_le64(val);
829}
830
831static inline u64 btrfs_super_blocks_used(struct btrfs_super_block *s)
832{
833 return le64_to_cpu(s->blocks_used);
834}
835
836static inline void btrfs_set_super_blocks_used(struct btrfs_super_block *s,
837 u64 val)
838{
839 s->blocks_used = cpu_to_le64(val);
840}
841
842static inline u32 btrfs_super_blocksize(struct btrfs_super_block *s)
843{
844 return le32_to_cpu(s->blocksize);
845}
846
847static inline void btrfs_set_super_blocksize(struct btrfs_super_block *s,
848 u32 val)
849{
850 s->blocksize = cpu_to_le32(val);
851}
852
853static inline u64 btrfs_super_root_dir(struct btrfs_super_block *s)
854{
855 return le64_to_cpu(s->root_dir_objectid);
856}
857
858static inline void btrfs_set_super_root_dir(struct btrfs_super_block *s, u64
859 val)
860{
861 s->root_dir_objectid = cpu_to_le64(val);
862}
863
864static inline u64 btrfs_super_last_device_id(struct btrfs_super_block *s)
865{
866 return le64_to_cpu(s->last_device_id);
867}
868
869static inline void btrfs_set_super_last_device_id(struct btrfs_super_block *s,
870 u64 val)
871{
872 s->last_device_id = cpu_to_le64(val);
873}
874
875static inline u64 btrfs_super_device_id(struct btrfs_super_block *s)
876{
877 return le64_to_cpu(s->device_id);
878}
879
880static inline void btrfs_set_super_device_id(struct btrfs_super_block *s,
881 u64 val)
882{
883 s->device_id = cpu_to_le64(val);
884}
885
886static inline u64 btrfs_super_device_block_start(struct btrfs_super_block *s)
887{
888 return le64_to_cpu(s->device_block_start);
889}
890
891static inline void btrfs_set_super_device_block_start(struct btrfs_super_block
892 *s, u64 val)
893{
894 s->device_block_start = cpu_to_le64(val);
895}
896
897static inline u64 btrfs_super_device_num_blocks(struct btrfs_super_block *s)
898{
899 return le64_to_cpu(s->device_num_blocks);
900}
901
902static inline void btrfs_set_super_device_num_blocks(struct btrfs_super_block
903 *s, u64 val)
904{
905 s->device_num_blocks = cpu_to_le64(val);
906}
907
908static inline u64 btrfs_super_device_root(struct btrfs_super_block *s)
909{
910 return le64_to_cpu(s->device_root);
911}
912
913static inline void btrfs_set_super_device_root(struct btrfs_super_block
914 *s, u64 val)
915{
916 s->device_root = cpu_to_le64(val);
917}
918
919
920static inline u8 *btrfs_leaf_data(struct btrfs_leaf *l)
921{
922 return (u8 *)l->items;
923}
924
925static inline int btrfs_file_extent_type(struct btrfs_file_extent_item *e)
926{
927 return e->type;
928}
929static inline void btrfs_set_file_extent_type(struct btrfs_file_extent_item *e,
930 u8 val)
931{
932 e->type = val;
933}
934
935static inline char *btrfs_file_extent_inline_start(struct
936 btrfs_file_extent_item *e)
937{
938 return (char *)(&e->disk_blocknr);
939}
940
941static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
942{
943 return (unsigned long)(&((struct
944 btrfs_file_extent_item *)NULL)->disk_blocknr) + datasize;
945}
946
947static inline u32 btrfs_file_extent_inline_len(struct btrfs_item *e)
948{
949 struct btrfs_file_extent_item *fe = NULL;
950 return btrfs_item_size(e) - (unsigned long)(&fe->disk_blocknr);
951}
952
953static inline u64 btrfs_file_extent_disk_blocknr(struct btrfs_file_extent_item
954 *e)
955{
956 return le64_to_cpu(e->disk_blocknr);
957}
958
959static inline void btrfs_set_file_extent_disk_blocknr(struct
960 btrfs_file_extent_item
961 *e, u64 val)
962{
963 e->disk_blocknr = cpu_to_le64(val);
964}
965
966static inline u64 btrfs_file_extent_generation(struct btrfs_file_extent_item *e)
967{
968 return le64_to_cpu(e->generation);
969}
970
971static inline void btrfs_set_file_extent_generation(struct
972 btrfs_file_extent_item *e,
973 u64 val)
974{
975 e->generation = cpu_to_le64(val);
976}
977
978static inline u64 btrfs_file_extent_disk_num_blocks(struct
979 btrfs_file_extent_item *e)
980{
981 return le64_to_cpu(e->disk_num_blocks);
982}
983
984static inline void btrfs_set_file_extent_disk_num_blocks(struct
985 btrfs_file_extent_item
986 *e, u64 val)
987{
988 e->disk_num_blocks = cpu_to_le64(val);
989}
990
991static inline u64 btrfs_file_extent_offset(struct btrfs_file_extent_item *e)
992{
993 return le64_to_cpu(e->offset);
994}
995
996static inline void btrfs_set_file_extent_offset(struct btrfs_file_extent_item
997 *e, u64 val)
998{
999 e->offset = cpu_to_le64(val);
1000}
1001
1002static inline u64 btrfs_file_extent_num_blocks(struct btrfs_file_extent_item
1003 *e)
1004{
1005 return le64_to_cpu(e->num_blocks);
1006}
1007
1008static inline void btrfs_set_file_extent_num_blocks(struct
1009 btrfs_file_extent_item *e,
1010 u64 val)
1011{
1012 e->num_blocks = cpu_to_le64(val);
1013}
1014
1015static inline u16 btrfs_device_pathlen(struct btrfs_device_item *d)
1016{
1017 return le16_to_cpu(d->pathlen);
1018}
1019
1020static inline void btrfs_set_device_pathlen(struct btrfs_device_item *d,
1021 u16 val)
1022{
1023 d->pathlen = cpu_to_le16(val);
1024}
1025
1026static inline u64 btrfs_device_id(struct btrfs_device_item *d)
1027{
1028 return le64_to_cpu(d->device_id);
1029}
1030
1031static inline void btrfs_set_device_id(struct btrfs_device_item *d,
1032 u64 val)
1033{
1034 d->device_id = cpu_to_le64(val);
1035}
1036
1037static inline struct btrfs_root *btrfs_sb(struct super_block *sb)
1038{
1039 return sb->s_fs_info;
1040}
1041
1042static inline void btrfs_check_bounds(void *vptr, size_t len,
1043 void *vcontainer, size_t container_len)
1044{
1045 char *ptr = vptr;
1046 char *container = vcontainer;
1047 WARN_ON(ptr < container);
1048 WARN_ON(ptr + len > container + container_len);
1049}
1050
1051static inline void btrfs_memcpy(struct btrfs_root *root,
1052 void *dst_block,
1053 void *dst, const void *src, size_t nr)
1054{
1055 btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize);
1056 memcpy(dst, src, nr);
1057}
1058
1059static inline void btrfs_memmove(struct btrfs_root *root,
1060 void *dst_block,
1061 void *dst, void *src, size_t nr)
1062{
1063 btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize);
1064 memmove(dst, src, nr);
1065}
1066
1067static inline void btrfs_mark_buffer_dirty(struct buffer_head *bh)
1068{
1069 WARN_ON(!atomic_read(&bh->b_count));
1070 mark_buffer_dirty(bh);
1071}
1072
1073/* helper function to cast into the data area of the leaf. */
1074#define btrfs_item_ptr(leaf, slot, type) \
1075 ((type *)(btrfs_leaf_data(leaf) + \
1076 btrfs_item_offset((leaf)->items + (slot))))
1077
1078/* extent-tree.c */
1079struct btrfs_block_group_cache *btrfs_find_block_group(struct btrfs_root *root,
1080 struct btrfs_block_group_cache
1081 *hint, u64 search_start,
1082 int data);
1083int btrfs_inc_root_ref(struct btrfs_trans_handle *trans,
1084 struct btrfs_root *root);
1085struct buffer_head *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
1086 struct btrfs_root *root, u64 hint);
1087int btrfs_alloc_extent(struct btrfs_trans_handle *trans,
1088 struct btrfs_root *root, u64 owner,
1089 u64 num_blocks, u64 search_start,
1090 u64 search_end, struct btrfs_key *ins, int data);
1091int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1092 struct buffer_head *buf);
1093int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
1094 *root, u64 blocknr, u64 num_blocks, int pin);
1095int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct
1096 btrfs_root *root);
1097int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1098 struct btrfs_root *root,
1099 u64 blocknr, u64 num_blocks);
1100int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
1101 struct btrfs_root *root);
1102int btrfs_free_block_groups(struct btrfs_fs_info *info);
1103int btrfs_read_block_groups(struct btrfs_root *root);
1104/* ctree.c */
1105int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
1106 *root, struct btrfs_path *path, u32 data_size);
1107int btrfs_truncate_item(struct btrfs_trans_handle *trans,
1108 struct btrfs_root *root,
1109 struct btrfs_path *path,
1110 u32 new_size);
1111int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1112 *root, struct btrfs_key *key, struct btrfs_path *p, int
1113 ins_len, int cow);
1114void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p);
1115struct btrfs_path *btrfs_alloc_path(void);
1116void btrfs_free_path(struct btrfs_path *p);
1117void btrfs_init_path(struct btrfs_path *p);
1118int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1119 struct btrfs_path *path);
1120int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
1121 *root, struct btrfs_key *key, void *data, u32 data_size);
1122int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
1123 *root, struct btrfs_path *path, struct btrfs_key
1124 *cpu_key, u32 data_size);
1125int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
1126int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf);
1127int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root
1128 *root, struct buffer_head *snap);
1129/* root-item.c */
1130int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1131 struct btrfs_key *key);
1132int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
1133 *root, struct btrfs_key *key, struct btrfs_root_item
1134 *item);
1135int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
1136 *root, struct btrfs_key *key, struct btrfs_root_item
1137 *item);
1138int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, struct
1139 btrfs_root_item *item, struct btrfs_key *key);
1140/* dir-item.c */
1141int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
1142 *root, const char *name, int name_len, u64 dir,
1143 struct btrfs_key *location, u8 type);
1144struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
1145 struct btrfs_root *root,
1146 struct btrfs_path *path, u64 dir,
1147 const char *name, int name_len,
1148 int mod);
1149struct btrfs_dir_item *
1150btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
1151 struct btrfs_root *root,
1152 struct btrfs_path *path, u64 dir,
1153 u64 objectid, const char *name, int name_len,
1154 int mod);
1155struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_root *root,
1156 struct btrfs_path *path,
1157 const char *name, int name_len);
1158int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
1159 struct btrfs_root *root,
1160 struct btrfs_path *path,
1161 struct btrfs_dir_item *di);
1162/* inode-map.c */
1163int btrfs_find_free_objectid(struct btrfs_trans_handle *trans,
1164 struct btrfs_root *fs_root,
1165 u64 dirid, u64 *objectid);
1166int btrfs_find_highest_inode(struct btrfs_root *fs_root, u64 *objectid);
1167
1168/* inode-item.c */
1169int btrfs_insert_inode(struct btrfs_trans_handle *trans, struct btrfs_root
1170 *root, u64 objectid, struct btrfs_inode_item
1171 *inode_item);
1172int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
1173 *root, struct btrfs_path *path,
1174 struct btrfs_key *location, int mod);
1175
1176/* file-item.c */
1177int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
1178 struct btrfs_root *root,
1179 u64 objectid, u64 pos, u64 offset,
1180 u64 num_blocks);
1181int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
1182 struct btrfs_root *root,
1183 struct btrfs_path *path, u64 objectid,
1184 u64 blocknr, int mod);
1185int btrfs_csum_file_block(struct btrfs_trans_handle *trans,
1186 struct btrfs_root *root,
1187 u64 objectid, u64 offset,
1188 char *data, size_t len);
1189int btrfs_csum_verify_file_block(struct btrfs_root *root,
1190 u64 objectid, u64 offset,
1191 char *data, size_t len);
1192struct btrfs_csum_item *btrfs_lookup_csum(struct btrfs_trans_handle *trans,
1193 struct btrfs_root *root,
1194 struct btrfs_path *path,
1195 u64 objectid, u64 offset,
1196 int cow);
1197/* super.c */
1198extern struct subsystem btrfs_subsys;
1199
1200#endif