Btrfs: allocator and tuning
[linux-2.6-block.git] / fs / btrfs / ctree.h
... / ...
CommitLineData
1#ifndef __BTRFS__
2#define __BTRFS__
3
4#include <linux/fs.h>
5#include <linux/buffer_head.h>
6#include <linux/kobject.h>
7#include "bit-radix.h"
8
9struct btrfs_trans_handle;
10struct btrfs_transaction;
11extern struct kmem_cache *btrfs_trans_handle_cachep;
12extern struct kmem_cache *btrfs_transaction_cachep;
13extern struct kmem_cache *btrfs_bit_radix_cachep;
14extern struct kmem_cache *btrfs_path_cachep;
15
16#define BTRFS_MAGIC "_BtRfS_M"
17
18#define BTRFS_ROOT_TREE_OBJECTID 1ULL
19#define BTRFS_DEV_TREE_OBJECTID 2ULL
20#define BTRFS_EXTENT_TREE_OBJECTID 3ULL
21#define BTRFS_FS_TREE_OBJECTID 4ULL
22#define BTRFS_ROOT_TREE_DIR_OBJECTID 5ULL
23#define BTRFS_FIRST_FREE_OBJECTID 6ULL
24
25/*
26 * we can actually store much bigger names, but lets not confuse the rest
27 * of linux
28 */
29#define BTRFS_NAME_LEN 255
30
31/* 32 bytes in various csum fields */
32#define BTRFS_CSUM_SIZE 32
33
34/*
35 * the key defines the order in the tree, and so it also defines (optimal)
36 * block layout. objectid corresonds to the inode number. The flags
37 * tells us things about the object, and is a kind of stream selector.
38 * so for a given inode, keys with flags of 1 might refer to the inode
39 * data, flags of 2 may point to file data in the btree and flags == 3
40 * may point to extents.
41 *
42 * offset is the starting byte offset for this key in the stream.
43 *
44 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
45 * in cpu native order. Otherwise they are identical and their sizes
46 * should be the same (ie both packed)
47 */
48struct btrfs_disk_key {
49 __le64 objectid;
50 __le32 flags;
51 __le64 offset;
52} __attribute__ ((__packed__));
53
54struct btrfs_key {
55 u64 objectid;
56 u32 flags;
57 u64 offset;
58} __attribute__ ((__packed__));
59
60/*
61 * every tree block (leaf or node) starts with this header.
62 */
63struct btrfs_header {
64 u8 csum[BTRFS_CSUM_SIZE];
65 u8 fsid[16]; /* FS specific uuid */
66 __le64 blocknr; /* which block this node is supposed to live in */
67 __le64 generation;
68 __le64 owner;
69 __le16 nritems;
70 __le16 flags;
71 u8 level;
72} __attribute__ ((__packed__));
73
74#define BTRFS_MAX_LEVEL 8
75#define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->blocksize - \
76 sizeof(struct btrfs_header)) / \
77 (sizeof(struct btrfs_disk_key) + sizeof(u64)))
78#define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
79#define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->blocksize))
80#define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
81 sizeof(struct btrfs_item) - \
82 sizeof(struct btrfs_file_extent_item))
83
84struct buffer_head;
85/*
86 * the super block basically lists the main trees of the FS
87 * it currently lacks any block count etc etc
88 */
89struct btrfs_super_block {
90 u8 csum[BTRFS_CSUM_SIZE];
91 /* the first 3 fields must match struct btrfs_header */
92 u8 fsid[16]; /* FS specific uuid */
93 __le64 blocknr; /* this block number */
94 __le64 magic;
95 __le32 blocksize;
96 __le64 generation;
97 __le64 root;
98 __le64 total_blocks;
99 __le64 blocks_used;
100 __le64 root_dir_objectid;
101 __le64 last_device_id;
102 /* fields below here vary with the underlying disk */
103 __le64 device_block_start;
104 __le64 device_num_blocks;
105 __le64 device_root;
106 __le64 device_id;
107} __attribute__ ((__packed__));
108
109/*
110 * A leaf is full of items. offset and size tell us where to find
111 * the item in the leaf (relative to the start of the data area)
112 */
113struct btrfs_item {
114 struct btrfs_disk_key key;
115 __le32 offset;
116 __le16 size;
117} __attribute__ ((__packed__));
118
119/*
120 * leaves have an item area and a data area:
121 * [item0, item1....itemN] [free space] [dataN...data1, data0]
122 *
123 * The data is separate from the items to get the keys closer together
124 * during searches.
125 */
126struct btrfs_leaf {
127 struct btrfs_header header;
128 struct btrfs_item items[];
129} __attribute__ ((__packed__));
130
131/*
132 * all non-leaf blocks are nodes, they hold only keys and pointers to
133 * other blocks
134 */
135struct btrfs_key_ptr {
136 struct btrfs_disk_key key;
137 __le64 blockptr;
138} __attribute__ ((__packed__));
139
140struct btrfs_node {
141 struct btrfs_header header;
142 struct btrfs_key_ptr ptrs[];
143} __attribute__ ((__packed__));
144
145/*
146 * btrfs_paths remember the path taken from the root down to the leaf.
147 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
148 * to any other levels that are present.
149 *
150 * The slots array records the index of the item or block pointer
151 * used while walking the tree.
152 */
153struct btrfs_path {
154 struct buffer_head *nodes[BTRFS_MAX_LEVEL];
155 int slots[BTRFS_MAX_LEVEL];
156};
157
158/*
159 * items in the extent btree are used to record the objectid of the
160 * owner of the block and the number of references
161 */
162struct btrfs_extent_item {
163 __le32 refs;
164 __le64 owner;
165} __attribute__ ((__packed__));
166
167struct btrfs_inode_timespec {
168 __le64 sec;
169 __le32 nsec;
170} __attribute__ ((__packed__));
171
172/*
173 * there is no padding here on purpose. If you want to extent the inode,
174 * make a new item type
175 */
176struct btrfs_inode_item {
177 __le64 generation;
178 __le64 size;
179 __le64 nblocks;
180 __le64 block_group;
181 __le32 nlink;
182 __le32 uid;
183 __le32 gid;
184 __le32 mode;
185 __le32 rdev;
186 __le16 flags;
187 __le16 compat_flags;
188 struct btrfs_inode_timespec atime;
189 struct btrfs_inode_timespec ctime;
190 struct btrfs_inode_timespec mtime;
191 struct btrfs_inode_timespec otime;
192} __attribute__ ((__packed__));
193
194struct btrfs_dir_item {
195 struct btrfs_disk_key location;
196 __le16 flags;
197 __le16 name_len;
198 u8 type;
199} __attribute__ ((__packed__));
200
201struct btrfs_root_item {
202 struct btrfs_inode_item inode;
203 __le64 root_dirid;
204 __le64 blocknr;
205 __le32 flags;
206 __le64 block_limit;
207 __le64 blocks_used;
208 __le32 refs;
209} __attribute__ ((__packed__));
210
211#define BTRFS_FILE_EXTENT_REG 0
212#define BTRFS_FILE_EXTENT_INLINE 1
213
214struct btrfs_file_extent_item {
215 __le64 generation;
216 u8 type;
217 /*
218 * disk space consumed by the extent, checksum blocks are included
219 * in these numbers
220 */
221 __le64 disk_blocknr;
222 __le64 disk_num_blocks;
223 /*
224 * the logical offset in file blocks (no csums)
225 * this extent record is for. This allows a file extent to point
226 * into the middle of an existing extent on disk, sharing it
227 * between two snapshots (useful if some bytes in the middle of the
228 * extent have changed
229 */
230 __le64 offset;
231 /*
232 * the logical number of file blocks (no csums included)
233 */
234 __le64 num_blocks;
235} __attribute__ ((__packed__));
236
237struct btrfs_csum_item {
238 u8 csum[BTRFS_CSUM_SIZE];
239} __attribute__ ((__packed__));
240
241struct btrfs_device_item {
242 __le16 pathlen;
243 __le64 device_id;
244} __attribute__ ((__packed__));
245
246/* tag for the radix tree of block groups in ram */
247#define BTRFS_BLOCK_GROUP_DIRTY 0
248#define BTRFS_BLOCK_GROUP_AVAIL 1
249#define BTRFS_BLOCK_GROUP_HINTS 8
250#define BTRFS_BLOCK_GROUP_SIZE (256 * 1024 * 1024)
251struct btrfs_block_group_item {
252 __le64 used;
253} __attribute__ ((__packed__));
254
255struct btrfs_block_group_cache {
256 struct btrfs_key key;
257 struct btrfs_block_group_item item;
258 struct radix_tree_root *radix;
259 u64 first_free;
260 u64 last_alloc;
261 u64 pinned;
262 int data;
263};
264
265struct crypto_hash;
266struct btrfs_fs_info {
267 struct btrfs_root *extent_root;
268 struct btrfs_root *tree_root;
269 struct btrfs_root *dev_root;
270 struct radix_tree_root fs_roots_radix;
271 struct radix_tree_root pending_del_radix;
272 struct radix_tree_root pinned_radix;
273 struct radix_tree_root dev_radix;
274 struct radix_tree_root block_group_radix;
275 struct radix_tree_root block_group_data_radix;
276
277 u64 extent_tree_insert[BTRFS_MAX_LEVEL * 3];
278 int extent_tree_insert_nr;
279 u64 extent_tree_prealloc[BTRFS_MAX_LEVEL * 3];
280 int extent_tree_prealloc_nr;
281
282 u64 generation;
283 struct btrfs_transaction *running_transaction;
284 struct btrfs_super_block *disk_super;
285 struct buffer_head *sb_buffer;
286 struct super_block *sb;
287 struct inode *btree_inode;
288 struct mutex trans_mutex;
289 struct mutex fs_mutex;
290 struct list_head trans_list;
291 struct crypto_hash *hash_tfm;
292 spinlock_t hash_lock;
293 int do_barriers;
294 struct kobject kobj;
295};
296
297/*
298 * in ram representation of the tree. extent_root is used for all allocations
299 * and for the extent tree extent_root root.
300 */
301struct btrfs_root {
302 struct buffer_head *node;
303 struct buffer_head *commit_root;
304 struct btrfs_root_item root_item;
305 struct btrfs_key root_key;
306 struct btrfs_fs_info *fs_info;
307 struct inode *inode;
308 u64 objectid;
309 u64 last_trans;
310 u32 blocksize;
311 int ref_cows;
312 u32 type;
313 u64 highest_inode;
314 u64 last_inode_alloc;
315};
316
317/* the lower bits in the key flags defines the item type */
318#define BTRFS_KEY_TYPE_MAX 256
319#define BTRFS_KEY_TYPE_SHIFT 24
320#define BTRFS_KEY_TYPE_MASK (((u32)BTRFS_KEY_TYPE_MAX - 1) << \
321 BTRFS_KEY_TYPE_SHIFT)
322
323/*
324 * inode items have the data typically returned from stat and store other
325 * info about object characteristics. There is one for every file and dir in
326 * the FS
327 */
328#define BTRFS_INODE_ITEM_KEY 1
329
330/* reserve 2-15 close to the inode for later flexibility */
331
332/*
333 * dir items are the name -> inode pointers in a directory. There is one
334 * for every name in a directory.
335 */
336#define BTRFS_DIR_ITEM_KEY 16
337#define BTRFS_DIR_INDEX_KEY 17
338/*
339 * extent data is for file data
340 */
341#define BTRFS_EXTENT_DATA_KEY 18
342/*
343 * csum items have the checksums for data in the extents
344 */
345#define BTRFS_CSUM_ITEM_KEY 19
346
347/* reserve 20-31 for other file stuff */
348
349/*
350 * root items point to tree roots. There are typically in the root
351 * tree used by the super block to find all the other trees
352 */
353#define BTRFS_ROOT_ITEM_KEY 32
354/*
355 * extent items are in the extent map tree. These record which blocks
356 * are used, and how many references there are to each block
357 */
358#define BTRFS_EXTENT_ITEM_KEY 33
359
360/*
361 * block groups give us hints into the extent allocation trees. Which
362 * blocks are free etc etc
363 */
364#define BTRFS_BLOCK_GROUP_ITEM_KEY 34
365
366/*
367 * dev items list the devices that make up the FS
368 */
369#define BTRFS_DEV_ITEM_KEY 35
370
371/*
372 * string items are for debugging. They just store a short string of
373 * data in the FS
374 */
375#define BTRFS_STRING_ITEM_KEY 253
376
377
378static inline u64 btrfs_block_group_used(struct btrfs_block_group_item *bi)
379{
380 return le64_to_cpu(bi->used);
381}
382
383static inline void btrfs_set_block_group_used(struct
384 btrfs_block_group_item *bi,
385 u64 val)
386{
387 bi->used = cpu_to_le64(val);
388}
389
390static inline u64 btrfs_inode_generation(struct btrfs_inode_item *i)
391{
392 return le64_to_cpu(i->generation);
393}
394
395static inline void btrfs_set_inode_generation(struct btrfs_inode_item *i,
396 u64 val)
397{
398 i->generation = cpu_to_le64(val);
399}
400
401static inline u64 btrfs_inode_size(struct btrfs_inode_item *i)
402{
403 return le64_to_cpu(i->size);
404}
405
406static inline void btrfs_set_inode_size(struct btrfs_inode_item *i, u64 val)
407{
408 i->size = cpu_to_le64(val);
409}
410
411static inline u64 btrfs_inode_nblocks(struct btrfs_inode_item *i)
412{
413 return le64_to_cpu(i->nblocks);
414}
415
416static inline void btrfs_set_inode_nblocks(struct btrfs_inode_item *i, u64 val)
417{
418 i->nblocks = cpu_to_le64(val);
419}
420
421static inline u64 btrfs_inode_block_group(struct btrfs_inode_item *i)
422{
423 return le64_to_cpu(i->block_group);
424}
425
426static inline void btrfs_set_inode_block_group(struct btrfs_inode_item *i,
427 u64 val)
428{
429 i->block_group = cpu_to_le64(val);
430}
431
432static inline u32 btrfs_inode_nlink(struct btrfs_inode_item *i)
433{
434 return le32_to_cpu(i->nlink);
435}
436
437static inline void btrfs_set_inode_nlink(struct btrfs_inode_item *i, u32 val)
438{
439 i->nlink = cpu_to_le32(val);
440}
441
442static inline u32 btrfs_inode_uid(struct btrfs_inode_item *i)
443{
444 return le32_to_cpu(i->uid);
445}
446
447static inline void btrfs_set_inode_uid(struct btrfs_inode_item *i, u32 val)
448{
449 i->uid = cpu_to_le32(val);
450}
451
452static inline u32 btrfs_inode_gid(struct btrfs_inode_item *i)
453{
454 return le32_to_cpu(i->gid);
455}
456
457static inline void btrfs_set_inode_gid(struct btrfs_inode_item *i, u32 val)
458{
459 i->gid = cpu_to_le32(val);
460}
461
462static inline u32 btrfs_inode_mode(struct btrfs_inode_item *i)
463{
464 return le32_to_cpu(i->mode);
465}
466
467static inline void btrfs_set_inode_mode(struct btrfs_inode_item *i, u32 val)
468{
469 i->mode = cpu_to_le32(val);
470}
471
472static inline u32 btrfs_inode_rdev(struct btrfs_inode_item *i)
473{
474 return le32_to_cpu(i->rdev);
475}
476
477static inline void btrfs_set_inode_rdev(struct btrfs_inode_item *i, u32 val)
478{
479 i->rdev = cpu_to_le32(val);
480}
481
482static inline u16 btrfs_inode_flags(struct btrfs_inode_item *i)
483{
484 return le16_to_cpu(i->flags);
485}
486
487static inline void btrfs_set_inode_flags(struct btrfs_inode_item *i, u16 val)
488{
489 i->flags = cpu_to_le16(val);
490}
491
492static inline u16 btrfs_inode_compat_flags(struct btrfs_inode_item *i)
493{
494 return le16_to_cpu(i->compat_flags);
495}
496
497static inline void btrfs_set_inode_compat_flags(struct btrfs_inode_item *i,
498 u16 val)
499{
500 i->compat_flags = cpu_to_le16(val);
501}
502
503static inline u64 btrfs_timespec_sec(struct btrfs_inode_timespec *ts)
504{
505 return le64_to_cpu(ts->sec);
506}
507
508static inline void btrfs_set_timespec_sec(struct btrfs_inode_timespec *ts,
509 u64 val)
510{
511 ts->sec = cpu_to_le64(val);
512}
513
514static inline u32 btrfs_timespec_nsec(struct btrfs_inode_timespec *ts)
515{
516 return le32_to_cpu(ts->nsec);
517}
518
519static inline void btrfs_set_timespec_nsec(struct btrfs_inode_timespec *ts,
520 u32 val)
521{
522 ts->nsec = cpu_to_le32(val);
523}
524
525static inline u32 btrfs_extent_refs(struct btrfs_extent_item *ei)
526{
527 return le32_to_cpu(ei->refs);
528}
529
530static inline void btrfs_set_extent_refs(struct btrfs_extent_item *ei, u32 val)
531{
532 ei->refs = cpu_to_le32(val);
533}
534
535static inline u64 btrfs_extent_owner(struct btrfs_extent_item *ei)
536{
537 return le64_to_cpu(ei->owner);
538}
539
540static inline void btrfs_set_extent_owner(struct btrfs_extent_item *ei, u64 val)
541{
542 ei->owner = cpu_to_le64(val);
543}
544
545static inline u64 btrfs_node_blockptr(struct btrfs_node *n, int nr)
546{
547 return le64_to_cpu(n->ptrs[nr].blockptr);
548}
549
550
551static inline void btrfs_set_node_blockptr(struct btrfs_node *n, int nr,
552 u64 val)
553{
554 n->ptrs[nr].blockptr = cpu_to_le64(val);
555}
556
557static inline u32 btrfs_item_offset(struct btrfs_item *item)
558{
559 return le32_to_cpu(item->offset);
560}
561
562static inline void btrfs_set_item_offset(struct btrfs_item *item, u32 val)
563{
564 item->offset = cpu_to_le32(val);
565}
566
567static inline u32 btrfs_item_end(struct btrfs_item *item)
568{
569 return le32_to_cpu(item->offset) + le16_to_cpu(item->size);
570}
571
572static inline u16 btrfs_item_size(struct btrfs_item *item)
573{
574 return le16_to_cpu(item->size);
575}
576
577static inline void btrfs_set_item_size(struct btrfs_item *item, u16 val)
578{
579 item->size = cpu_to_le16(val);
580}
581
582static inline u16 btrfs_dir_flags(struct btrfs_dir_item *d)
583{
584 return le16_to_cpu(d->flags);
585}
586
587static inline void btrfs_set_dir_flags(struct btrfs_dir_item *d, u16 val)
588{
589 d->flags = cpu_to_le16(val);
590}
591
592static inline u8 btrfs_dir_type(struct btrfs_dir_item *d)
593{
594 return d->type;
595}
596
597static inline void btrfs_set_dir_type(struct btrfs_dir_item *d, u8 val)
598{
599 d->type = val;
600}
601
602static inline u16 btrfs_dir_name_len(struct btrfs_dir_item *d)
603{
604 return le16_to_cpu(d->name_len);
605}
606
607static inline void btrfs_set_dir_name_len(struct btrfs_dir_item *d, u16 val)
608{
609 d->name_len = cpu_to_le16(val);
610}
611
612static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
613 struct btrfs_disk_key *disk)
614{
615 cpu->offset = le64_to_cpu(disk->offset);
616 cpu->flags = le32_to_cpu(disk->flags);
617 cpu->objectid = le64_to_cpu(disk->objectid);
618}
619
620static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
621 struct btrfs_key *cpu)
622{
623 disk->offset = cpu_to_le64(cpu->offset);
624 disk->flags = cpu_to_le32(cpu->flags);
625 disk->objectid = cpu_to_le64(cpu->objectid);
626}
627
628static inline u64 btrfs_disk_key_objectid(struct btrfs_disk_key *disk)
629{
630 return le64_to_cpu(disk->objectid);
631}
632
633static inline void btrfs_set_disk_key_objectid(struct btrfs_disk_key *disk,
634 u64 val)
635{
636 disk->objectid = cpu_to_le64(val);
637}
638
639static inline u64 btrfs_disk_key_offset(struct btrfs_disk_key *disk)
640{
641 return le64_to_cpu(disk->offset);
642}
643
644static inline void btrfs_set_disk_key_offset(struct btrfs_disk_key *disk,
645 u64 val)
646{
647 disk->offset = cpu_to_le64(val);
648}
649
650static inline u32 btrfs_disk_key_flags(struct btrfs_disk_key *disk)
651{
652 return le32_to_cpu(disk->flags);
653}
654
655static inline void btrfs_set_disk_key_flags(struct btrfs_disk_key *disk,
656 u32 val)
657{
658 disk->flags = cpu_to_le32(val);
659}
660
661static inline u32 btrfs_disk_key_type(struct btrfs_disk_key *key)
662{
663 return le32_to_cpu(key->flags) >> BTRFS_KEY_TYPE_SHIFT;
664}
665
666static inline void btrfs_set_disk_key_type(struct btrfs_disk_key *key,
667 u32 val)
668{
669 u32 flags = btrfs_disk_key_flags(key);
670 BUG_ON(val >= BTRFS_KEY_TYPE_MAX);
671 val = val << BTRFS_KEY_TYPE_SHIFT;
672 flags = (flags & ~BTRFS_KEY_TYPE_MASK) | val;
673 btrfs_set_disk_key_flags(key, flags);
674}
675
676static inline u32 btrfs_key_type(struct btrfs_key *key)
677{
678 return key->flags >> BTRFS_KEY_TYPE_SHIFT;
679}
680
681static inline void btrfs_set_key_type(struct btrfs_key *key, u32 val)
682{
683 BUG_ON(val >= BTRFS_KEY_TYPE_MAX);
684 val = val << BTRFS_KEY_TYPE_SHIFT;
685 key->flags = (key->flags & ~(BTRFS_KEY_TYPE_MASK)) | val;
686}
687
688static inline u64 btrfs_header_blocknr(struct btrfs_header *h)
689{
690 return le64_to_cpu(h->blocknr);
691}
692
693static inline void btrfs_set_header_blocknr(struct btrfs_header *h, u64 blocknr)
694{
695 h->blocknr = cpu_to_le64(blocknr);
696}
697
698static inline u64 btrfs_header_generation(struct btrfs_header *h)
699{
700 return le64_to_cpu(h->generation);
701}
702
703static inline void btrfs_set_header_generation(struct btrfs_header *h,
704 u64 val)
705{
706 h->generation = cpu_to_le64(val);
707}
708
709static inline u64 btrfs_header_owner(struct btrfs_header *h)
710{
711 return le64_to_cpu(h->owner);
712}
713
714static inline void btrfs_set_header_owner(struct btrfs_header *h,
715 u64 val)
716{
717 h->owner = cpu_to_le64(val);
718}
719
720static inline u16 btrfs_header_nritems(struct btrfs_header *h)
721{
722 return le16_to_cpu(h->nritems);
723}
724
725static inline void btrfs_set_header_nritems(struct btrfs_header *h, u16 val)
726{
727 h->nritems = cpu_to_le16(val);
728}
729
730static inline u16 btrfs_header_flags(struct btrfs_header *h)
731{
732 return le16_to_cpu(h->flags);
733}
734
735static inline void btrfs_set_header_flags(struct btrfs_header *h, u16 val)
736{
737 h->flags = cpu_to_le16(val);
738}
739
740static inline int btrfs_header_level(struct btrfs_header *h)
741{
742 return h->level;
743}
744
745static inline void btrfs_set_header_level(struct btrfs_header *h, int level)
746{
747 BUG_ON(level > BTRFS_MAX_LEVEL);
748 h->level = level;
749}
750
751static inline int btrfs_is_leaf(struct btrfs_node *n)
752{
753 return (btrfs_header_level(&n->header) == 0);
754}
755
756static inline u64 btrfs_root_blocknr(struct btrfs_root_item *item)
757{
758 return le64_to_cpu(item->blocknr);
759}
760
761static inline void btrfs_set_root_blocknr(struct btrfs_root_item *item, u64 val)
762{
763 item->blocknr = cpu_to_le64(val);
764}
765
766static inline u64 btrfs_root_dirid(struct btrfs_root_item *item)
767{
768 return le64_to_cpu(item->root_dirid);
769}
770
771static inline void btrfs_set_root_dirid(struct btrfs_root_item *item, u64 val)
772{
773 item->root_dirid = cpu_to_le64(val);
774}
775
776static inline u32 btrfs_root_refs(struct btrfs_root_item *item)
777{
778 return le32_to_cpu(item->refs);
779}
780
781static inline void btrfs_set_root_refs(struct btrfs_root_item *item, u32 val)
782{
783 item->refs = cpu_to_le32(val);
784}
785
786static inline u64 btrfs_super_blocknr(struct btrfs_super_block *s)
787{
788 return le64_to_cpu(s->blocknr);
789}
790
791static inline void btrfs_set_super_blocknr(struct btrfs_super_block *s, u64 val)
792{
793 s->blocknr = cpu_to_le64(val);
794}
795
796static inline u64 btrfs_super_generation(struct btrfs_super_block *s)
797{
798 return le64_to_cpu(s->generation);
799}
800
801static inline void btrfs_set_super_generation(struct btrfs_super_block *s,
802 u64 val)
803{
804 s->generation = cpu_to_le64(val);
805}
806
807static inline u64 btrfs_super_root(struct btrfs_super_block *s)
808{
809 return le64_to_cpu(s->root);
810}
811
812static inline void btrfs_set_super_root(struct btrfs_super_block *s, u64 val)
813{
814 s->root = cpu_to_le64(val);
815}
816
817static inline u64 btrfs_super_total_blocks(struct btrfs_super_block *s)
818{
819 return le64_to_cpu(s->total_blocks);
820}
821
822static inline void btrfs_set_super_total_blocks(struct btrfs_super_block *s,
823 u64 val)
824{
825 s->total_blocks = cpu_to_le64(val);
826}
827
828static inline u64 btrfs_super_blocks_used(struct btrfs_super_block *s)
829{
830 return le64_to_cpu(s->blocks_used);
831}
832
833static inline void btrfs_set_super_blocks_used(struct btrfs_super_block *s,
834 u64 val)
835{
836 s->blocks_used = cpu_to_le64(val);
837}
838
839static inline u32 btrfs_super_blocksize(struct btrfs_super_block *s)
840{
841 return le32_to_cpu(s->blocksize);
842}
843
844static inline void btrfs_set_super_blocksize(struct btrfs_super_block *s,
845 u32 val)
846{
847 s->blocksize = cpu_to_le32(val);
848}
849
850static inline u64 btrfs_super_root_dir(struct btrfs_super_block *s)
851{
852 return le64_to_cpu(s->root_dir_objectid);
853}
854
855static inline void btrfs_set_super_root_dir(struct btrfs_super_block *s, u64
856 val)
857{
858 s->root_dir_objectid = cpu_to_le64(val);
859}
860
861static inline u64 btrfs_super_last_device_id(struct btrfs_super_block *s)
862{
863 return le64_to_cpu(s->last_device_id);
864}
865
866static inline void btrfs_set_super_last_device_id(struct btrfs_super_block *s,
867 u64 val)
868{
869 s->last_device_id = cpu_to_le64(val);
870}
871
872static inline u64 btrfs_super_device_id(struct btrfs_super_block *s)
873{
874 return le64_to_cpu(s->device_id);
875}
876
877static inline void btrfs_set_super_device_id(struct btrfs_super_block *s,
878 u64 val)
879{
880 s->device_id = cpu_to_le64(val);
881}
882
883static inline u64 btrfs_super_device_block_start(struct btrfs_super_block *s)
884{
885 return le64_to_cpu(s->device_block_start);
886}
887
888static inline void btrfs_set_super_device_block_start(struct btrfs_super_block
889 *s, u64 val)
890{
891 s->device_block_start = cpu_to_le64(val);
892}
893
894static inline u64 btrfs_super_device_num_blocks(struct btrfs_super_block *s)
895{
896 return le64_to_cpu(s->device_num_blocks);
897}
898
899static inline void btrfs_set_super_device_num_blocks(struct btrfs_super_block
900 *s, u64 val)
901{
902 s->device_num_blocks = cpu_to_le64(val);
903}
904
905static inline u64 btrfs_super_device_root(struct btrfs_super_block *s)
906{
907 return le64_to_cpu(s->device_root);
908}
909
910static inline void btrfs_set_super_device_root(struct btrfs_super_block
911 *s, u64 val)
912{
913 s->device_root = cpu_to_le64(val);
914}
915
916
917static inline u8 *btrfs_leaf_data(struct btrfs_leaf *l)
918{
919 return (u8 *)l->items;
920}
921
922static inline int btrfs_file_extent_type(struct btrfs_file_extent_item *e)
923{
924 return e->type;
925}
926static inline void btrfs_set_file_extent_type(struct btrfs_file_extent_item *e,
927 u8 val)
928{
929 e->type = val;
930}
931
932static inline char *btrfs_file_extent_inline_start(struct
933 btrfs_file_extent_item *e)
934{
935 return (char *)(&e->disk_blocknr);
936}
937
938static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
939{
940 return (unsigned long)(&((struct
941 btrfs_file_extent_item *)NULL)->disk_blocknr) + datasize;
942}
943
944static inline u32 btrfs_file_extent_inline_len(struct btrfs_item *e)
945{
946 struct btrfs_file_extent_item *fe = NULL;
947 return btrfs_item_size(e) - (unsigned long)(&fe->disk_blocknr);
948}
949
950static inline u64 btrfs_file_extent_disk_blocknr(struct btrfs_file_extent_item
951 *e)
952{
953 return le64_to_cpu(e->disk_blocknr);
954}
955
956static inline void btrfs_set_file_extent_disk_blocknr(struct
957 btrfs_file_extent_item
958 *e, u64 val)
959{
960 e->disk_blocknr = cpu_to_le64(val);
961}
962
963static inline u64 btrfs_file_extent_generation(struct btrfs_file_extent_item *e)
964{
965 return le64_to_cpu(e->generation);
966}
967
968static inline void btrfs_set_file_extent_generation(struct
969 btrfs_file_extent_item *e,
970 u64 val)
971{
972 e->generation = cpu_to_le64(val);
973}
974
975static inline u64 btrfs_file_extent_disk_num_blocks(struct
976 btrfs_file_extent_item *e)
977{
978 return le64_to_cpu(e->disk_num_blocks);
979}
980
981static inline void btrfs_set_file_extent_disk_num_blocks(struct
982 btrfs_file_extent_item
983 *e, u64 val)
984{
985 e->disk_num_blocks = cpu_to_le64(val);
986}
987
988static inline u64 btrfs_file_extent_offset(struct btrfs_file_extent_item *e)
989{
990 return le64_to_cpu(e->offset);
991}
992
993static inline void btrfs_set_file_extent_offset(struct btrfs_file_extent_item
994 *e, u64 val)
995{
996 e->offset = cpu_to_le64(val);
997}
998
999static inline u64 btrfs_file_extent_num_blocks(struct btrfs_file_extent_item
1000 *e)
1001{
1002 return le64_to_cpu(e->num_blocks);
1003}
1004
1005static inline void btrfs_set_file_extent_num_blocks(struct
1006 btrfs_file_extent_item *e,
1007 u64 val)
1008{
1009 e->num_blocks = cpu_to_le64(val);
1010}
1011
1012static inline u16 btrfs_device_pathlen(struct btrfs_device_item *d)
1013{
1014 return le16_to_cpu(d->pathlen);
1015}
1016
1017static inline void btrfs_set_device_pathlen(struct btrfs_device_item *d,
1018 u16 val)
1019{
1020 d->pathlen = cpu_to_le16(val);
1021}
1022
1023static inline u64 btrfs_device_id(struct btrfs_device_item *d)
1024{
1025 return le64_to_cpu(d->device_id);
1026}
1027
1028static inline void btrfs_set_device_id(struct btrfs_device_item *d,
1029 u64 val)
1030{
1031 d->device_id = cpu_to_le64(val);
1032}
1033
1034static inline struct btrfs_root *btrfs_sb(struct super_block *sb)
1035{
1036 return sb->s_fs_info;
1037}
1038
1039static inline void btrfs_check_bounds(void *vptr, size_t len,
1040 void *vcontainer, size_t container_len)
1041{
1042 char *ptr = vptr;
1043 char *container = vcontainer;
1044 WARN_ON(ptr < container);
1045 WARN_ON(ptr + len > container + container_len);
1046}
1047
1048static inline void btrfs_memcpy(struct btrfs_root *root,
1049 void *dst_block,
1050 void *dst, const void *src, size_t nr)
1051{
1052 btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize);
1053 memcpy(dst, src, nr);
1054}
1055
1056static inline void btrfs_memmove(struct btrfs_root *root,
1057 void *dst_block,
1058 void *dst, void *src, size_t nr)
1059{
1060 btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize);
1061 memmove(dst, src, nr);
1062}
1063
1064static inline void btrfs_mark_buffer_dirty(struct buffer_head *bh)
1065{
1066 WARN_ON(!atomic_read(&bh->b_count));
1067 mark_buffer_dirty(bh);
1068}
1069
1070/* helper function to cast into the data area of the leaf. */
1071#define btrfs_item_ptr(leaf, slot, type) \
1072 ((type *)(btrfs_leaf_data(leaf) + \
1073 btrfs_item_offset((leaf)->items + (slot))))
1074
1075/* extent-tree.c */
1076struct btrfs_block_group_cache *btrfs_find_block_group(struct btrfs_root *root,
1077 struct btrfs_block_group_cache
1078 *hint, u64 search_start,
1079 int data);
1080int btrfs_inc_root_ref(struct btrfs_trans_handle *trans,
1081 struct btrfs_root *root);
1082struct buffer_head *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
1083 struct btrfs_root *root, u64 hint);
1084int btrfs_alloc_extent(struct btrfs_trans_handle *trans,
1085 struct btrfs_root *root, u64 owner,
1086 u64 num_blocks, u64 search_start,
1087 u64 search_end, struct btrfs_key *ins, int data);
1088int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1089 struct buffer_head *buf);
1090int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
1091 *root, u64 blocknr, u64 num_blocks, int pin);
1092int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct
1093 btrfs_root *root);
1094int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1095 struct btrfs_root *root,
1096 u64 blocknr, u64 num_blocks);
1097int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
1098 struct btrfs_root *root);
1099int btrfs_free_block_groups(struct btrfs_fs_info *info);
1100int btrfs_read_block_groups(struct btrfs_root *root);
1101/* ctree.c */
1102int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
1103 *root, struct btrfs_path *path, u32 data_size);
1104int btrfs_truncate_item(struct btrfs_trans_handle *trans,
1105 struct btrfs_root *root,
1106 struct btrfs_path *path,
1107 u32 new_size);
1108int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1109 *root, struct btrfs_key *key, struct btrfs_path *p, int
1110 ins_len, int cow);
1111void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p);
1112struct btrfs_path *btrfs_alloc_path(void);
1113void btrfs_free_path(struct btrfs_path *p);
1114void btrfs_init_path(struct btrfs_path *p);
1115int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1116 struct btrfs_path *path);
1117int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
1118 *root, struct btrfs_key *key, void *data, u32 data_size);
1119int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
1120 *root, struct btrfs_path *path, struct btrfs_key
1121 *cpu_key, u32 data_size);
1122int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
1123int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf);
1124int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root
1125 *root, struct buffer_head *snap);
1126/* root-item.c */
1127int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1128 struct btrfs_key *key);
1129int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
1130 *root, struct btrfs_key *key, struct btrfs_root_item
1131 *item);
1132int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
1133 *root, struct btrfs_key *key, struct btrfs_root_item
1134 *item);
1135int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, struct
1136 btrfs_root_item *item, struct btrfs_key *key);
1137/* dir-item.c */
1138int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
1139 *root, const char *name, int name_len, u64 dir,
1140 struct btrfs_key *location, u8 type);
1141struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
1142 struct btrfs_root *root,
1143 struct btrfs_path *path, u64 dir,
1144 const char *name, int name_len,
1145 int mod);
1146struct btrfs_dir_item *
1147btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
1148 struct btrfs_root *root,
1149 struct btrfs_path *path, u64 dir,
1150 u64 objectid, const char *name, int name_len,
1151 int mod);
1152struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_root *root,
1153 struct btrfs_path *path,
1154 const char *name, int name_len);
1155int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
1156 struct btrfs_root *root,
1157 struct btrfs_path *path,
1158 struct btrfs_dir_item *di);
1159/* inode-map.c */
1160int btrfs_find_free_objectid(struct btrfs_trans_handle *trans,
1161 struct btrfs_root *fs_root,
1162 u64 dirid, u64 *objectid);
1163int btrfs_find_highest_inode(struct btrfs_root *fs_root, u64 *objectid);
1164
1165/* inode-item.c */
1166int btrfs_insert_inode(struct btrfs_trans_handle *trans, struct btrfs_root
1167 *root, u64 objectid, struct btrfs_inode_item
1168 *inode_item);
1169int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
1170 *root, struct btrfs_path *path,
1171 struct btrfs_key *location, int mod);
1172
1173/* file-item.c */
1174int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
1175 struct btrfs_root *root,
1176 u64 objectid, u64 pos, u64 offset,
1177 u64 num_blocks);
1178int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
1179 struct btrfs_root *root,
1180 struct btrfs_path *path, u64 objectid,
1181 u64 blocknr, int mod);
1182int btrfs_csum_file_block(struct btrfs_trans_handle *trans,
1183 struct btrfs_root *root,
1184 u64 objectid, u64 offset,
1185 char *data, size_t len);
1186int btrfs_csum_verify_file_block(struct btrfs_root *root,
1187 u64 objectid, u64 offset,
1188 char *data, size_t len);
1189struct btrfs_csum_item *btrfs_lookup_csum(struct btrfs_trans_handle *trans,
1190 struct btrfs_root *root,
1191 struct btrfs_path *path,
1192 u64 objectid, u64 offset,
1193 int cow);
1194/* super.c */
1195extern struct subsystem btrfs_subsys;
1196
1197#endif