Btrfs: directory readahead
[linux-2.6-block.git] / fs / btrfs / ctree.h
... / ...
CommitLineData
1#ifndef __BTRFS__
2#define __BTRFS__
3
4#include <linux/fs.h>
5#include <linux/buffer_head.h>
6#include <linux/kobject.h>
7#include "bit-radix.h"
8
9struct btrfs_trans_handle;
10struct btrfs_transaction;
11extern struct kmem_cache *btrfs_path_cachep;
12
13#define BTRFS_MAGIC "_BtRfS_M"
14
15#define BTRFS_ROOT_TREE_OBJECTID 1ULL
16#define BTRFS_DEV_TREE_OBJECTID 2ULL
17#define BTRFS_EXTENT_TREE_OBJECTID 3ULL
18#define BTRFS_FS_TREE_OBJECTID 4ULL
19#define BTRFS_ROOT_TREE_DIR_OBJECTID 5ULL
20#define BTRFS_FIRST_FREE_OBJECTID 6ULL
21
22/*
23 * we can actually store much bigger names, but lets not confuse the rest
24 * of linux
25 */
26#define BTRFS_NAME_LEN 255
27
28/* 32 bytes in various csum fields */
29#define BTRFS_CSUM_SIZE 32
30
31/*
32 * the key defines the order in the tree, and so it also defines (optimal)
33 * block layout. objectid corresonds to the inode number. The flags
34 * tells us things about the object, and is a kind of stream selector.
35 * so for a given inode, keys with flags of 1 might refer to the inode
36 * data, flags of 2 may point to file data in the btree and flags == 3
37 * may point to extents.
38 *
39 * offset is the starting byte offset for this key in the stream.
40 *
41 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
42 * in cpu native order. Otherwise they are identical and their sizes
43 * should be the same (ie both packed)
44 */
45struct btrfs_disk_key {
46 __le64 objectid;
47 __le32 flags;
48 __le64 offset;
49} __attribute__ ((__packed__));
50
51struct btrfs_key {
52 u64 objectid;
53 u32 flags;
54 u64 offset;
55} __attribute__ ((__packed__));
56
57/*
58 * every tree block (leaf or node) starts with this header.
59 */
60struct btrfs_header {
61 u8 csum[BTRFS_CSUM_SIZE];
62 u8 fsid[16]; /* FS specific uuid */
63 __le64 blocknr; /* which block this node is supposed to live in */
64 __le64 generation;
65 __le64 owner;
66 __le16 nritems;
67 __le16 flags;
68 u8 level;
69} __attribute__ ((__packed__));
70
71#define BTRFS_MAX_LEVEL 8
72#define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->blocksize - \
73 sizeof(struct btrfs_header)) / \
74 (sizeof(struct btrfs_disk_key) + sizeof(u64)))
75#define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
76#define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->blocksize))
77#define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
78 sizeof(struct btrfs_item) - \
79 sizeof(struct btrfs_file_extent_item))
80
81struct buffer_head;
82/*
83 * the super block basically lists the main trees of the FS
84 * it currently lacks any block count etc etc
85 */
86struct btrfs_super_block {
87 u8 csum[BTRFS_CSUM_SIZE];
88 /* the first 3 fields must match struct btrfs_header */
89 u8 fsid[16]; /* FS specific uuid */
90 __le64 blocknr; /* this block number */
91 __le64 magic;
92 __le32 blocksize;
93 __le64 generation;
94 __le64 root;
95 __le64 total_blocks;
96 __le64 blocks_used;
97 __le64 root_dir_objectid;
98 __le64 last_device_id;
99 /* fields below here vary with the underlying disk */
100 __le64 device_block_start;
101 __le64 device_num_blocks;
102 __le64 device_root;
103 __le64 device_id;
104} __attribute__ ((__packed__));
105
106/*
107 * A leaf is full of items. offset and size tell us where to find
108 * the item in the leaf (relative to the start of the data area)
109 */
110struct btrfs_item {
111 struct btrfs_disk_key key;
112 __le32 offset;
113 __le16 size;
114} __attribute__ ((__packed__));
115
116/*
117 * leaves have an item area and a data area:
118 * [item0, item1....itemN] [free space] [dataN...data1, data0]
119 *
120 * The data is separate from the items to get the keys closer together
121 * during searches.
122 */
123struct btrfs_leaf {
124 struct btrfs_header header;
125 struct btrfs_item items[];
126} __attribute__ ((__packed__));
127
128/*
129 * all non-leaf blocks are nodes, they hold only keys and pointers to
130 * other blocks
131 */
132struct btrfs_key_ptr {
133 struct btrfs_disk_key key;
134 __le64 blockptr;
135} __attribute__ ((__packed__));
136
137struct btrfs_node {
138 struct btrfs_header header;
139 struct btrfs_key_ptr ptrs[];
140} __attribute__ ((__packed__));
141
142/*
143 * btrfs_paths remember the path taken from the root down to the leaf.
144 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
145 * to any other levels that are present.
146 *
147 * The slots array records the index of the item or block pointer
148 * used while walking the tree.
149 */
150struct btrfs_path {
151 struct buffer_head *nodes[BTRFS_MAX_LEVEL];
152 int slots[BTRFS_MAX_LEVEL];
153};
154
155/*
156 * items in the extent btree are used to record the objectid of the
157 * owner of the block and the number of references
158 */
159struct btrfs_extent_item {
160 __le32 refs;
161 __le64 owner;
162} __attribute__ ((__packed__));
163
164struct btrfs_inode_timespec {
165 __le64 sec;
166 __le32 nsec;
167} __attribute__ ((__packed__));
168
169/*
170 * there is no padding here on purpose. If you want to extent the inode,
171 * make a new item type
172 */
173struct btrfs_inode_item {
174 __le64 generation;
175 __le64 size;
176 __le64 nblocks;
177 __le64 block_group;
178 __le32 nlink;
179 __le32 uid;
180 __le32 gid;
181 __le32 mode;
182 __le32 rdev;
183 __le16 flags;
184 __le16 compat_flags;
185 struct btrfs_inode_timespec atime;
186 struct btrfs_inode_timespec ctime;
187 struct btrfs_inode_timespec mtime;
188 struct btrfs_inode_timespec otime;
189} __attribute__ ((__packed__));
190
191struct btrfs_dir_item {
192 struct btrfs_disk_key location;
193 __le16 flags;
194 __le16 name_len;
195 u8 type;
196} __attribute__ ((__packed__));
197
198struct btrfs_root_item {
199 struct btrfs_inode_item inode;
200 __le64 root_dirid;
201 __le64 blocknr;
202 __le32 flags;
203 __le64 block_limit;
204 __le64 blocks_used;
205 __le32 refs;
206} __attribute__ ((__packed__));
207
208#define BTRFS_FILE_EXTENT_REG 0
209#define BTRFS_FILE_EXTENT_INLINE 1
210
211struct btrfs_file_extent_item {
212 __le64 generation;
213 u8 type;
214 /*
215 * disk space consumed by the extent, checksum blocks are included
216 * in these numbers
217 */
218 __le64 disk_blocknr;
219 __le64 disk_num_blocks;
220 /*
221 * the logical offset in file blocks (no csums)
222 * this extent record is for. This allows a file extent to point
223 * into the middle of an existing extent on disk, sharing it
224 * between two snapshots (useful if some bytes in the middle of the
225 * extent have changed
226 */
227 __le64 offset;
228 /*
229 * the logical number of file blocks (no csums included)
230 */
231 __le64 num_blocks;
232} __attribute__ ((__packed__));
233
234struct btrfs_csum_item {
235 u8 csum[BTRFS_CSUM_SIZE];
236} __attribute__ ((__packed__));
237
238struct btrfs_device_item {
239 __le16 pathlen;
240 __le64 device_id;
241} __attribute__ ((__packed__));
242
243/* tag for the radix tree of block groups in ram */
244#define BTRFS_BLOCK_GROUP_DIRTY 0
245#define BTRFS_BLOCK_GROUP_AVAIL 1
246#define BTRFS_BLOCK_GROUP_HINTS 8
247#define BTRFS_BLOCK_GROUP_SIZE (256 * 1024 * 1024)
248struct btrfs_block_group_item {
249 __le64 used;
250} __attribute__ ((__packed__));
251
252struct btrfs_block_group_cache {
253 struct btrfs_key key;
254 struct btrfs_block_group_item item;
255 u64 first_free;
256 u64 last_alloc;
257};
258
259struct crypto_hash;
260struct btrfs_fs_info {
261 struct btrfs_root *extent_root;
262 struct btrfs_root *tree_root;
263 struct btrfs_root *dev_root;
264 struct btrfs_block_group_cache *block_group_cache;
265 struct radix_tree_root fs_roots_radix;
266 struct radix_tree_root pending_del_radix;
267 struct radix_tree_root pinned_radix;
268 struct radix_tree_root dev_radix;
269 struct radix_tree_root block_group_radix;
270
271 u64 extent_tree_insert[BTRFS_MAX_LEVEL * 3];
272 int extent_tree_insert_nr;
273 u64 extent_tree_prealloc[BTRFS_MAX_LEVEL * 3];
274 int extent_tree_prealloc_nr;
275
276 u64 generation;
277 struct btrfs_transaction *running_transaction;
278 struct btrfs_super_block *disk_super;
279 struct buffer_head *sb_buffer;
280 struct super_block *sb;
281 struct inode *btree_inode;
282 struct mutex trans_mutex;
283 struct mutex fs_mutex;
284 struct list_head trans_list;
285 struct crypto_hash *hash_tfm;
286 spinlock_t hash_lock;
287 int do_barriers;
288 struct kobject kobj;
289};
290
291/*
292 * in ram representation of the tree. extent_root is used for all allocations
293 * and for the extent tree extent_root root.
294 */
295struct btrfs_root {
296 struct buffer_head *node;
297 struct buffer_head *commit_root;
298 struct btrfs_root_item root_item;
299 struct btrfs_key root_key;
300 struct btrfs_fs_info *fs_info;
301 struct inode *inode;
302 u64 objectid;
303 u64 last_trans;
304 u32 blocksize;
305 int ref_cows;
306 u32 type;
307 u64 highest_inode;
308 u64 last_inode_alloc;
309};
310
311/* the lower bits in the key flags defines the item type */
312#define BTRFS_KEY_TYPE_MAX 256
313#define BTRFS_KEY_TYPE_SHIFT 24
314#define BTRFS_KEY_TYPE_MASK (((u32)BTRFS_KEY_TYPE_MAX - 1) << \
315 BTRFS_KEY_TYPE_SHIFT)
316
317/*
318 * inode items have the data typically returned from stat and store other
319 * info about object characteristics. There is one for every file and dir in
320 * the FS
321 */
322#define BTRFS_INODE_ITEM_KEY 1
323
324/* reserve 2-15 close to the inode for later flexibility */
325
326/*
327 * dir items are the name -> inode pointers in a directory. There is one
328 * for every name in a directory.
329 */
330#define BTRFS_DIR_ITEM_KEY 16
331#define BTRFS_DIR_INDEX_KEY 17
332/*
333 * extent data is for file data
334 */
335#define BTRFS_EXTENT_DATA_KEY 18
336/*
337 * csum items have the checksums for data in the extents
338 */
339#define BTRFS_CSUM_ITEM_KEY 19
340
341/* reserve 20-31 for other file stuff */
342
343/*
344 * root items point to tree roots. There are typically in the root
345 * tree used by the super block to find all the other trees
346 */
347#define BTRFS_ROOT_ITEM_KEY 32
348/*
349 * extent items are in the extent map tree. These record which blocks
350 * are used, and how many references there are to each block
351 */
352#define BTRFS_EXTENT_ITEM_KEY 33
353
354/*
355 * block groups give us hints into the extent allocation trees. Which
356 * blocks are free etc etc
357 */
358#define BTRFS_BLOCK_GROUP_ITEM_KEY 34
359
360/*
361 * dev items list the devices that make up the FS
362 */
363#define BTRFS_DEV_ITEM_KEY 35
364
365/*
366 * string items are for debugging. They just store a short string of
367 * data in the FS
368 */
369#define BTRFS_STRING_ITEM_KEY 253
370
371
372static inline u64 btrfs_block_group_used(struct btrfs_block_group_item *bi)
373{
374 return le64_to_cpu(bi->used);
375}
376
377static inline void btrfs_set_block_group_used(struct
378 btrfs_block_group_item *bi,
379 u64 val)
380{
381 bi->used = cpu_to_le64(val);
382}
383
384static inline u64 btrfs_inode_generation(struct btrfs_inode_item *i)
385{
386 return le64_to_cpu(i->generation);
387}
388
389static inline void btrfs_set_inode_generation(struct btrfs_inode_item *i,
390 u64 val)
391{
392 i->generation = cpu_to_le64(val);
393}
394
395static inline u64 btrfs_inode_size(struct btrfs_inode_item *i)
396{
397 return le64_to_cpu(i->size);
398}
399
400static inline void btrfs_set_inode_size(struct btrfs_inode_item *i, u64 val)
401{
402 i->size = cpu_to_le64(val);
403}
404
405static inline u64 btrfs_inode_nblocks(struct btrfs_inode_item *i)
406{
407 return le64_to_cpu(i->nblocks);
408}
409
410static inline void btrfs_set_inode_nblocks(struct btrfs_inode_item *i, u64 val)
411{
412 i->nblocks = cpu_to_le64(val);
413}
414
415static inline u64 btrfs_inode_block_group(struct btrfs_inode_item *i)
416{
417 return le64_to_cpu(i->block_group);
418}
419
420static inline void btrfs_set_inode_block_group(struct btrfs_inode_item *i,
421 u64 val)
422{
423 i->block_group = cpu_to_le64(val);
424}
425
426static inline u32 btrfs_inode_nlink(struct btrfs_inode_item *i)
427{
428 return le32_to_cpu(i->nlink);
429}
430
431static inline void btrfs_set_inode_nlink(struct btrfs_inode_item *i, u32 val)
432{
433 i->nlink = cpu_to_le32(val);
434}
435
436static inline u32 btrfs_inode_uid(struct btrfs_inode_item *i)
437{
438 return le32_to_cpu(i->uid);
439}
440
441static inline void btrfs_set_inode_uid(struct btrfs_inode_item *i, u32 val)
442{
443 i->uid = cpu_to_le32(val);
444}
445
446static inline u32 btrfs_inode_gid(struct btrfs_inode_item *i)
447{
448 return le32_to_cpu(i->gid);
449}
450
451static inline void btrfs_set_inode_gid(struct btrfs_inode_item *i, u32 val)
452{
453 i->gid = cpu_to_le32(val);
454}
455
456static inline u32 btrfs_inode_mode(struct btrfs_inode_item *i)
457{
458 return le32_to_cpu(i->mode);
459}
460
461static inline void btrfs_set_inode_mode(struct btrfs_inode_item *i, u32 val)
462{
463 i->mode = cpu_to_le32(val);
464}
465
466static inline u32 btrfs_inode_rdev(struct btrfs_inode_item *i)
467{
468 return le32_to_cpu(i->rdev);
469}
470
471static inline void btrfs_set_inode_rdev(struct btrfs_inode_item *i, u32 val)
472{
473 i->rdev = cpu_to_le32(val);
474}
475
476static inline u16 btrfs_inode_flags(struct btrfs_inode_item *i)
477{
478 return le16_to_cpu(i->flags);
479}
480
481static inline void btrfs_set_inode_flags(struct btrfs_inode_item *i, u16 val)
482{
483 i->flags = cpu_to_le16(val);
484}
485
486static inline u16 btrfs_inode_compat_flags(struct btrfs_inode_item *i)
487{
488 return le16_to_cpu(i->compat_flags);
489}
490
491static inline void btrfs_set_inode_compat_flags(struct btrfs_inode_item *i,
492 u16 val)
493{
494 i->compat_flags = cpu_to_le16(val);
495}
496
497static inline u64 btrfs_timespec_sec(struct btrfs_inode_timespec *ts)
498{
499 return le64_to_cpu(ts->sec);
500}
501
502static inline void btrfs_set_timespec_sec(struct btrfs_inode_timespec *ts,
503 u64 val)
504{
505 ts->sec = cpu_to_le64(val);
506}
507
508static inline u32 btrfs_timespec_nsec(struct btrfs_inode_timespec *ts)
509{
510 return le32_to_cpu(ts->nsec);
511}
512
513static inline void btrfs_set_timespec_nsec(struct btrfs_inode_timespec *ts,
514 u32 val)
515{
516 ts->nsec = cpu_to_le32(val);
517}
518
519static inline u32 btrfs_extent_refs(struct btrfs_extent_item *ei)
520{
521 return le32_to_cpu(ei->refs);
522}
523
524static inline void btrfs_set_extent_refs(struct btrfs_extent_item *ei, u32 val)
525{
526 ei->refs = cpu_to_le32(val);
527}
528
529static inline u64 btrfs_extent_owner(struct btrfs_extent_item *ei)
530{
531 return le64_to_cpu(ei->owner);
532}
533
534static inline void btrfs_set_extent_owner(struct btrfs_extent_item *ei, u64 val)
535{
536 ei->owner = cpu_to_le64(val);
537}
538
539static inline u64 btrfs_node_blockptr(struct btrfs_node *n, int nr)
540{
541 return le64_to_cpu(n->ptrs[nr].blockptr);
542}
543
544
545static inline void btrfs_set_node_blockptr(struct btrfs_node *n, int nr,
546 u64 val)
547{
548 n->ptrs[nr].blockptr = cpu_to_le64(val);
549}
550
551static inline u32 btrfs_item_offset(struct btrfs_item *item)
552{
553 return le32_to_cpu(item->offset);
554}
555
556static inline void btrfs_set_item_offset(struct btrfs_item *item, u32 val)
557{
558 item->offset = cpu_to_le32(val);
559}
560
561static inline u32 btrfs_item_end(struct btrfs_item *item)
562{
563 return le32_to_cpu(item->offset) + le16_to_cpu(item->size);
564}
565
566static inline u16 btrfs_item_size(struct btrfs_item *item)
567{
568 return le16_to_cpu(item->size);
569}
570
571static inline void btrfs_set_item_size(struct btrfs_item *item, u16 val)
572{
573 item->size = cpu_to_le16(val);
574}
575
576static inline u16 btrfs_dir_flags(struct btrfs_dir_item *d)
577{
578 return le16_to_cpu(d->flags);
579}
580
581static inline void btrfs_set_dir_flags(struct btrfs_dir_item *d, u16 val)
582{
583 d->flags = cpu_to_le16(val);
584}
585
586static inline u8 btrfs_dir_type(struct btrfs_dir_item *d)
587{
588 return d->type;
589}
590
591static inline void btrfs_set_dir_type(struct btrfs_dir_item *d, u8 val)
592{
593 d->type = val;
594}
595
596static inline u16 btrfs_dir_name_len(struct btrfs_dir_item *d)
597{
598 return le16_to_cpu(d->name_len);
599}
600
601static inline void btrfs_set_dir_name_len(struct btrfs_dir_item *d, u16 val)
602{
603 d->name_len = cpu_to_le16(val);
604}
605
606static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
607 struct btrfs_disk_key *disk)
608{
609 cpu->offset = le64_to_cpu(disk->offset);
610 cpu->flags = le32_to_cpu(disk->flags);
611 cpu->objectid = le64_to_cpu(disk->objectid);
612}
613
614static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
615 struct btrfs_key *cpu)
616{
617 disk->offset = cpu_to_le64(cpu->offset);
618 disk->flags = cpu_to_le32(cpu->flags);
619 disk->objectid = cpu_to_le64(cpu->objectid);
620}
621
622static inline u64 btrfs_disk_key_objectid(struct btrfs_disk_key *disk)
623{
624 return le64_to_cpu(disk->objectid);
625}
626
627static inline void btrfs_set_disk_key_objectid(struct btrfs_disk_key *disk,
628 u64 val)
629{
630 disk->objectid = cpu_to_le64(val);
631}
632
633static inline u64 btrfs_disk_key_offset(struct btrfs_disk_key *disk)
634{
635 return le64_to_cpu(disk->offset);
636}
637
638static inline void btrfs_set_disk_key_offset(struct btrfs_disk_key *disk,
639 u64 val)
640{
641 disk->offset = cpu_to_le64(val);
642}
643
644static inline u32 btrfs_disk_key_flags(struct btrfs_disk_key *disk)
645{
646 return le32_to_cpu(disk->flags);
647}
648
649static inline void btrfs_set_disk_key_flags(struct btrfs_disk_key *disk,
650 u32 val)
651{
652 disk->flags = cpu_to_le32(val);
653}
654
655static inline u32 btrfs_disk_key_type(struct btrfs_disk_key *key)
656{
657 return le32_to_cpu(key->flags) >> BTRFS_KEY_TYPE_SHIFT;
658}
659
660static inline void btrfs_set_disk_key_type(struct btrfs_disk_key *key,
661 u32 val)
662{
663 u32 flags = btrfs_disk_key_flags(key);
664 BUG_ON(val >= BTRFS_KEY_TYPE_MAX);
665 val = val << BTRFS_KEY_TYPE_SHIFT;
666 flags = (flags & ~BTRFS_KEY_TYPE_MASK) | val;
667 btrfs_set_disk_key_flags(key, flags);
668}
669
670static inline u32 btrfs_key_type(struct btrfs_key *key)
671{
672 return key->flags >> BTRFS_KEY_TYPE_SHIFT;
673}
674
675static inline void btrfs_set_key_type(struct btrfs_key *key, u32 val)
676{
677 BUG_ON(val >= BTRFS_KEY_TYPE_MAX);
678 val = val << BTRFS_KEY_TYPE_SHIFT;
679 key->flags = (key->flags & ~(BTRFS_KEY_TYPE_MASK)) | val;
680}
681
682static inline u64 btrfs_header_blocknr(struct btrfs_header *h)
683{
684 return le64_to_cpu(h->blocknr);
685}
686
687static inline void btrfs_set_header_blocknr(struct btrfs_header *h, u64 blocknr)
688{
689 h->blocknr = cpu_to_le64(blocknr);
690}
691
692static inline u64 btrfs_header_generation(struct btrfs_header *h)
693{
694 return le64_to_cpu(h->generation);
695}
696
697static inline void btrfs_set_header_generation(struct btrfs_header *h,
698 u64 val)
699{
700 h->generation = cpu_to_le64(val);
701}
702
703static inline u64 btrfs_header_owner(struct btrfs_header *h)
704{
705 return le64_to_cpu(h->owner);
706}
707
708static inline void btrfs_set_header_owner(struct btrfs_header *h,
709 u64 val)
710{
711 h->owner = cpu_to_le64(val);
712}
713
714static inline u16 btrfs_header_nritems(struct btrfs_header *h)
715{
716 return le16_to_cpu(h->nritems);
717}
718
719static inline void btrfs_set_header_nritems(struct btrfs_header *h, u16 val)
720{
721 h->nritems = cpu_to_le16(val);
722}
723
724static inline u16 btrfs_header_flags(struct btrfs_header *h)
725{
726 return le16_to_cpu(h->flags);
727}
728
729static inline void btrfs_set_header_flags(struct btrfs_header *h, u16 val)
730{
731 h->flags = cpu_to_le16(val);
732}
733
734static inline int btrfs_header_level(struct btrfs_header *h)
735{
736 return h->level;
737}
738
739static inline void btrfs_set_header_level(struct btrfs_header *h, int level)
740{
741 BUG_ON(level > BTRFS_MAX_LEVEL);
742 h->level = level;
743}
744
745static inline int btrfs_is_leaf(struct btrfs_node *n)
746{
747 return (btrfs_header_level(&n->header) == 0);
748}
749
750static inline u64 btrfs_root_blocknr(struct btrfs_root_item *item)
751{
752 return le64_to_cpu(item->blocknr);
753}
754
755static inline void btrfs_set_root_blocknr(struct btrfs_root_item *item, u64 val)
756{
757 item->blocknr = cpu_to_le64(val);
758}
759
760static inline u64 btrfs_root_dirid(struct btrfs_root_item *item)
761{
762 return le64_to_cpu(item->root_dirid);
763}
764
765static inline void btrfs_set_root_dirid(struct btrfs_root_item *item, u64 val)
766{
767 item->root_dirid = cpu_to_le64(val);
768}
769
770static inline u32 btrfs_root_refs(struct btrfs_root_item *item)
771{
772 return le32_to_cpu(item->refs);
773}
774
775static inline void btrfs_set_root_refs(struct btrfs_root_item *item, u32 val)
776{
777 item->refs = cpu_to_le32(val);
778}
779
780static inline u64 btrfs_super_blocknr(struct btrfs_super_block *s)
781{
782 return le64_to_cpu(s->blocknr);
783}
784
785static inline void btrfs_set_super_blocknr(struct btrfs_super_block *s, u64 val)
786{
787 s->blocknr = cpu_to_le64(val);
788}
789
790static inline u64 btrfs_super_generation(struct btrfs_super_block *s)
791{
792 return le64_to_cpu(s->generation);
793}
794
795static inline void btrfs_set_super_generation(struct btrfs_super_block *s,
796 u64 val)
797{
798 s->generation = cpu_to_le64(val);
799}
800
801static inline u64 btrfs_super_root(struct btrfs_super_block *s)
802{
803 return le64_to_cpu(s->root);
804}
805
806static inline void btrfs_set_super_root(struct btrfs_super_block *s, u64 val)
807{
808 s->root = cpu_to_le64(val);
809}
810
811static inline u64 btrfs_super_total_blocks(struct btrfs_super_block *s)
812{
813 return le64_to_cpu(s->total_blocks);
814}
815
816static inline void btrfs_set_super_total_blocks(struct btrfs_super_block *s,
817 u64 val)
818{
819 s->total_blocks = cpu_to_le64(val);
820}
821
822static inline u64 btrfs_super_blocks_used(struct btrfs_super_block *s)
823{
824 return le64_to_cpu(s->blocks_used);
825}
826
827static inline void btrfs_set_super_blocks_used(struct btrfs_super_block *s,
828 u64 val)
829{
830 s->blocks_used = cpu_to_le64(val);
831}
832
833static inline u32 btrfs_super_blocksize(struct btrfs_super_block *s)
834{
835 return le32_to_cpu(s->blocksize);
836}
837
838static inline void btrfs_set_super_blocksize(struct btrfs_super_block *s,
839 u32 val)
840{
841 s->blocksize = cpu_to_le32(val);
842}
843
844static inline u64 btrfs_super_root_dir(struct btrfs_super_block *s)
845{
846 return le64_to_cpu(s->root_dir_objectid);
847}
848
849static inline void btrfs_set_super_root_dir(struct btrfs_super_block *s, u64
850 val)
851{
852 s->root_dir_objectid = cpu_to_le64(val);
853}
854
855static inline u64 btrfs_super_last_device_id(struct btrfs_super_block *s)
856{
857 return le64_to_cpu(s->last_device_id);
858}
859
860static inline void btrfs_set_super_last_device_id(struct btrfs_super_block *s,
861 u64 val)
862{
863 s->last_device_id = cpu_to_le64(val);
864}
865
866static inline u64 btrfs_super_device_id(struct btrfs_super_block *s)
867{
868 return le64_to_cpu(s->device_id);
869}
870
871static inline void btrfs_set_super_device_id(struct btrfs_super_block *s,
872 u64 val)
873{
874 s->device_id = cpu_to_le64(val);
875}
876
877static inline u64 btrfs_super_device_block_start(struct btrfs_super_block *s)
878{
879 return le64_to_cpu(s->device_block_start);
880}
881
882static inline void btrfs_set_super_device_block_start(struct btrfs_super_block
883 *s, u64 val)
884{
885 s->device_block_start = cpu_to_le64(val);
886}
887
888static inline u64 btrfs_super_device_num_blocks(struct btrfs_super_block *s)
889{
890 return le64_to_cpu(s->device_num_blocks);
891}
892
893static inline void btrfs_set_super_device_num_blocks(struct btrfs_super_block
894 *s, u64 val)
895{
896 s->device_num_blocks = cpu_to_le64(val);
897}
898
899static inline u64 btrfs_super_device_root(struct btrfs_super_block *s)
900{
901 return le64_to_cpu(s->device_root);
902}
903
904static inline void btrfs_set_super_device_root(struct btrfs_super_block
905 *s, u64 val)
906{
907 s->device_root = cpu_to_le64(val);
908}
909
910
911static inline u8 *btrfs_leaf_data(struct btrfs_leaf *l)
912{
913 return (u8 *)l->items;
914}
915
916static inline int btrfs_file_extent_type(struct btrfs_file_extent_item *e)
917{
918 return e->type;
919}
920static inline void btrfs_set_file_extent_type(struct btrfs_file_extent_item *e,
921 u8 val)
922{
923 e->type = val;
924}
925
926static inline char *btrfs_file_extent_inline_start(struct
927 btrfs_file_extent_item *e)
928{
929 return (char *)(&e->disk_blocknr);
930}
931
932static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
933{
934 return (unsigned long)(&((struct
935 btrfs_file_extent_item *)NULL)->disk_blocknr) + datasize;
936}
937
938static inline u32 btrfs_file_extent_inline_len(struct btrfs_item *e)
939{
940 struct btrfs_file_extent_item *fe = NULL;
941 return btrfs_item_size(e) - (unsigned long)(&fe->disk_blocknr);
942}
943
944static inline u64 btrfs_file_extent_disk_blocknr(struct btrfs_file_extent_item
945 *e)
946{
947 return le64_to_cpu(e->disk_blocknr);
948}
949
950static inline void btrfs_set_file_extent_disk_blocknr(struct
951 btrfs_file_extent_item
952 *e, u64 val)
953{
954 e->disk_blocknr = cpu_to_le64(val);
955}
956
957static inline u64 btrfs_file_extent_generation(struct btrfs_file_extent_item *e)
958{
959 return le64_to_cpu(e->generation);
960}
961
962static inline void btrfs_set_file_extent_generation(struct
963 btrfs_file_extent_item *e,
964 u64 val)
965{
966 e->generation = cpu_to_le64(val);
967}
968
969static inline u64 btrfs_file_extent_disk_num_blocks(struct
970 btrfs_file_extent_item *e)
971{
972 return le64_to_cpu(e->disk_num_blocks);
973}
974
975static inline void btrfs_set_file_extent_disk_num_blocks(struct
976 btrfs_file_extent_item
977 *e, u64 val)
978{
979 e->disk_num_blocks = cpu_to_le64(val);
980}
981
982static inline u64 btrfs_file_extent_offset(struct btrfs_file_extent_item *e)
983{
984 return le64_to_cpu(e->offset);
985}
986
987static inline void btrfs_set_file_extent_offset(struct btrfs_file_extent_item
988 *e, u64 val)
989{
990 e->offset = cpu_to_le64(val);
991}
992
993static inline u64 btrfs_file_extent_num_blocks(struct btrfs_file_extent_item
994 *e)
995{
996 return le64_to_cpu(e->num_blocks);
997}
998
999static inline void btrfs_set_file_extent_num_blocks(struct
1000 btrfs_file_extent_item *e,
1001 u64 val)
1002{
1003 e->num_blocks = cpu_to_le64(val);
1004}
1005
1006static inline u16 btrfs_device_pathlen(struct btrfs_device_item *d)
1007{
1008 return le16_to_cpu(d->pathlen);
1009}
1010
1011static inline void btrfs_set_device_pathlen(struct btrfs_device_item *d,
1012 u16 val)
1013{
1014 d->pathlen = cpu_to_le16(val);
1015}
1016
1017static inline u64 btrfs_device_id(struct btrfs_device_item *d)
1018{
1019 return le64_to_cpu(d->device_id);
1020}
1021
1022static inline void btrfs_set_device_id(struct btrfs_device_item *d,
1023 u64 val)
1024{
1025 d->device_id = cpu_to_le64(val);
1026}
1027
1028static inline struct btrfs_root *btrfs_sb(struct super_block *sb)
1029{
1030 return sb->s_fs_info;
1031}
1032
1033static inline void btrfs_check_bounds(void *vptr, size_t len,
1034 void *vcontainer, size_t container_len)
1035{
1036 char *ptr = vptr;
1037 char *container = vcontainer;
1038 WARN_ON(ptr < container);
1039 WARN_ON(ptr + len > container + container_len);
1040}
1041
1042static inline void btrfs_memcpy(struct btrfs_root *root,
1043 void *dst_block,
1044 void *dst, const void *src, size_t nr)
1045{
1046 btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize);
1047 memcpy(dst, src, nr);
1048}
1049
1050static inline void btrfs_memmove(struct btrfs_root *root,
1051 void *dst_block,
1052 void *dst, void *src, size_t nr)
1053{
1054 btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize);
1055 memmove(dst, src, nr);
1056}
1057
1058static inline void btrfs_mark_buffer_dirty(struct buffer_head *bh)
1059{
1060 WARN_ON(!atomic_read(&bh->b_count));
1061 mark_buffer_dirty(bh);
1062}
1063
1064/* helper function to cast into the data area of the leaf. */
1065#define btrfs_item_ptr(leaf, slot, type) \
1066 ((type *)(btrfs_leaf_data(leaf) + \
1067 btrfs_item_offset((leaf)->items + (slot))))
1068
1069/* extent-tree.c */
1070struct btrfs_block_group_cache *btrfs_find_block_group(struct btrfs_root *root,
1071 struct btrfs_block_group_cache
1072 *hint, int data);
1073int btrfs_inc_root_ref(struct btrfs_trans_handle *trans,
1074 struct btrfs_root *root);
1075struct buffer_head *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
1076 struct btrfs_root *root, u64 hint);
1077int btrfs_alloc_extent(struct btrfs_trans_handle *trans,
1078 struct btrfs_root *root, u64 owner,
1079 u64 num_blocks, u64 search_start,
1080 u64 search_end, struct btrfs_key *ins);
1081int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1082 struct buffer_head *buf);
1083int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
1084 *root, u64 blocknr, u64 num_blocks, int pin);
1085int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct
1086 btrfs_root *root);
1087int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1088 struct btrfs_root *root,
1089 u64 blocknr, u64 num_blocks);
1090int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
1091 struct btrfs_root *root);
1092int btrfs_free_block_groups(struct btrfs_fs_info *info);
1093int btrfs_read_block_groups(struct btrfs_root *root);
1094/* ctree.c */
1095int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
1096 *root, struct btrfs_path *path, u32 data_size);
1097int btrfs_truncate_item(struct btrfs_trans_handle *trans,
1098 struct btrfs_root *root,
1099 struct btrfs_path *path,
1100 u32 new_size);
1101int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1102 *root, struct btrfs_key *key, struct btrfs_path *p, int
1103 ins_len, int cow);
1104void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p);
1105struct btrfs_path *btrfs_alloc_path(void);
1106void btrfs_free_path(struct btrfs_path *p);
1107void btrfs_init_path(struct btrfs_path *p);
1108int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1109 struct btrfs_path *path);
1110int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
1111 *root, struct btrfs_key *key, void *data, u32 data_size);
1112int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
1113 *root, struct btrfs_path *path, struct btrfs_key
1114 *cpu_key, u32 data_size);
1115int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
1116int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf);
1117int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root
1118 *root, struct buffer_head *snap);
1119/* root-item.c */
1120int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1121 struct btrfs_key *key);
1122int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
1123 *root, struct btrfs_key *key, struct btrfs_root_item
1124 *item);
1125int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
1126 *root, struct btrfs_key *key, struct btrfs_root_item
1127 *item);
1128int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, struct
1129 btrfs_root_item *item, struct btrfs_key *key);
1130/* dir-item.c */
1131int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
1132 *root, const char *name, int name_len, u64 dir,
1133 struct btrfs_key *location, u8 type);
1134struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
1135 struct btrfs_root *root,
1136 struct btrfs_path *path, u64 dir,
1137 const char *name, int name_len,
1138 int mod);
1139struct btrfs_dir_item *
1140btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
1141 struct btrfs_root *root,
1142 struct btrfs_path *path, u64 dir,
1143 u64 objectid, const char *name, int name_len,
1144 int mod);
1145struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_root *root,
1146 struct btrfs_path *path,
1147 const char *name, int name_len);
1148int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
1149 struct btrfs_root *root,
1150 struct btrfs_path *path,
1151 struct btrfs_dir_item *di);
1152/* inode-map.c */
1153int btrfs_find_free_objectid(struct btrfs_trans_handle *trans,
1154 struct btrfs_root *fs_root,
1155 u64 dirid, u64 *objectid);
1156int btrfs_find_highest_inode(struct btrfs_root *fs_root, u64 *objectid);
1157
1158/* inode-item.c */
1159int btrfs_insert_inode(struct btrfs_trans_handle *trans, struct btrfs_root
1160 *root, u64 objectid, struct btrfs_inode_item
1161 *inode_item);
1162int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
1163 *root, struct btrfs_path *path,
1164 struct btrfs_key *location, int mod);
1165
1166/* file-item.c */
1167int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
1168 struct btrfs_root *root,
1169 u64 objectid, u64 pos, u64 offset,
1170 u64 num_blocks);
1171int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
1172 struct btrfs_root *root,
1173 struct btrfs_path *path, u64 objectid,
1174 u64 blocknr, int mod);
1175int btrfs_csum_file_block(struct btrfs_trans_handle *trans,
1176 struct btrfs_root *root,
1177 u64 objectid, u64 offset,
1178 char *data, size_t len);
1179int btrfs_csum_verify_file_block(struct btrfs_root *root,
1180 u64 objectid, u64 offset,
1181 char *data, size_t len);
1182struct btrfs_csum_item *btrfs_lookup_csum(struct btrfs_trans_handle *trans,
1183 struct btrfs_root *root,
1184 struct btrfs_path *path,
1185 u64 objectid, u64 offset,
1186 int cow);
1187/* super.c */
1188extern struct subsystem btrfs_subsys;
1189
1190#endif