btrfs: set inode flags earlier in btrfs_new_inode()
[linux-block.git] / fs / btrfs / ctree.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/slab.h>
8#include <linux/rbtree.h>
9#include <linux/mm.h>
10#include <linux/error-injection.h>
11#include "ctree.h"
12#include "disk-io.h"
13#include "transaction.h"
14#include "print-tree.h"
15#include "locking.h"
16#include "volumes.h"
17#include "qgroup.h"
18#include "tree-mod-log.h"
19
20static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
21 *root, struct btrfs_path *path, int level);
22static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
23 const struct btrfs_key *ins_key, struct btrfs_path *path,
24 int data_size, int extend);
25static int push_node_left(struct btrfs_trans_handle *trans,
26 struct extent_buffer *dst,
27 struct extent_buffer *src, int empty);
28static int balance_node_right(struct btrfs_trans_handle *trans,
29 struct extent_buffer *dst_buf,
30 struct extent_buffer *src_buf);
31static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
32 int level, int slot);
33
34static const struct btrfs_csums {
35 u16 size;
36 const char name[10];
37 const char driver[12];
38} btrfs_csums[] = {
39 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
40 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
41 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
42 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
43 .driver = "blake2b-256" },
44};
45
46int btrfs_super_csum_size(const struct btrfs_super_block *s)
47{
48 u16 t = btrfs_super_csum_type(s);
49 /*
50 * csum type is validated at mount time
51 */
52 return btrfs_csums[t].size;
53}
54
55const char *btrfs_super_csum_name(u16 csum_type)
56{
57 /* csum type is validated at mount time */
58 return btrfs_csums[csum_type].name;
59}
60
61/*
62 * Return driver name if defined, otherwise the name that's also a valid driver
63 * name
64 */
65const char *btrfs_super_csum_driver(u16 csum_type)
66{
67 /* csum type is validated at mount time */
68 return btrfs_csums[csum_type].driver[0] ?
69 btrfs_csums[csum_type].driver :
70 btrfs_csums[csum_type].name;
71}
72
73size_t __attribute_const__ btrfs_get_num_csums(void)
74{
75 return ARRAY_SIZE(btrfs_csums);
76}
77
78struct btrfs_path *btrfs_alloc_path(void)
79{
80 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
81}
82
83/* this also releases the path */
84void btrfs_free_path(struct btrfs_path *p)
85{
86 if (!p)
87 return;
88 btrfs_release_path(p);
89 kmem_cache_free(btrfs_path_cachep, p);
90}
91
92/*
93 * path release drops references on the extent buffers in the path
94 * and it drops any locks held by this path
95 *
96 * It is safe to call this on paths that no locks or extent buffers held.
97 */
98noinline void btrfs_release_path(struct btrfs_path *p)
99{
100 int i;
101
102 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
103 p->slots[i] = 0;
104 if (!p->nodes[i])
105 continue;
106 if (p->locks[i]) {
107 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
108 p->locks[i] = 0;
109 }
110 free_extent_buffer(p->nodes[i]);
111 p->nodes[i] = NULL;
112 }
113}
114
115/*
116 * safely gets a reference on the root node of a tree. A lock
117 * is not taken, so a concurrent writer may put a different node
118 * at the root of the tree. See btrfs_lock_root_node for the
119 * looping required.
120 *
121 * The extent buffer returned by this has a reference taken, so
122 * it won't disappear. It may stop being the root of the tree
123 * at any time because there are no locks held.
124 */
125struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
126{
127 struct extent_buffer *eb;
128
129 while (1) {
130 rcu_read_lock();
131 eb = rcu_dereference(root->node);
132
133 /*
134 * RCU really hurts here, we could free up the root node because
135 * it was COWed but we may not get the new root node yet so do
136 * the inc_not_zero dance and if it doesn't work then
137 * synchronize_rcu and try again.
138 */
139 if (atomic_inc_not_zero(&eb->refs)) {
140 rcu_read_unlock();
141 break;
142 }
143 rcu_read_unlock();
144 synchronize_rcu();
145 }
146 return eb;
147}
148
149/*
150 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
151 * just get put onto a simple dirty list. Transaction walks this list to make
152 * sure they get properly updated on disk.
153 */
154static void add_root_to_dirty_list(struct btrfs_root *root)
155{
156 struct btrfs_fs_info *fs_info = root->fs_info;
157
158 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
159 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
160 return;
161
162 spin_lock(&fs_info->trans_lock);
163 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
164 /* Want the extent tree to be the last on the list */
165 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
166 list_move_tail(&root->dirty_list,
167 &fs_info->dirty_cowonly_roots);
168 else
169 list_move(&root->dirty_list,
170 &fs_info->dirty_cowonly_roots);
171 }
172 spin_unlock(&fs_info->trans_lock);
173}
174
175/*
176 * used by snapshot creation to make a copy of a root for a tree with
177 * a given objectid. The buffer with the new root node is returned in
178 * cow_ret, and this func returns zero on success or a negative error code.
179 */
180int btrfs_copy_root(struct btrfs_trans_handle *trans,
181 struct btrfs_root *root,
182 struct extent_buffer *buf,
183 struct extent_buffer **cow_ret, u64 new_root_objectid)
184{
185 struct btrfs_fs_info *fs_info = root->fs_info;
186 struct extent_buffer *cow;
187 int ret = 0;
188 int level;
189 struct btrfs_disk_key disk_key;
190
191 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
192 trans->transid != fs_info->running_transaction->transid);
193 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
194 trans->transid != root->last_trans);
195
196 level = btrfs_header_level(buf);
197 if (level == 0)
198 btrfs_item_key(buf, &disk_key, 0);
199 else
200 btrfs_node_key(buf, &disk_key, 0);
201
202 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
203 &disk_key, level, buf->start, 0,
204 BTRFS_NESTING_NEW_ROOT);
205 if (IS_ERR(cow))
206 return PTR_ERR(cow);
207
208 copy_extent_buffer_full(cow, buf);
209 btrfs_set_header_bytenr(cow, cow->start);
210 btrfs_set_header_generation(cow, trans->transid);
211 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
212 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
213 BTRFS_HEADER_FLAG_RELOC);
214 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
215 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
216 else
217 btrfs_set_header_owner(cow, new_root_objectid);
218
219 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
220
221 WARN_ON(btrfs_header_generation(buf) > trans->transid);
222 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
223 ret = btrfs_inc_ref(trans, root, cow, 1);
224 else
225 ret = btrfs_inc_ref(trans, root, cow, 0);
226 if (ret) {
227 btrfs_tree_unlock(cow);
228 free_extent_buffer(cow);
229 btrfs_abort_transaction(trans, ret);
230 return ret;
231 }
232
233 btrfs_mark_buffer_dirty(cow);
234 *cow_ret = cow;
235 return 0;
236}
237
238/*
239 * check if the tree block can be shared by multiple trees
240 */
241int btrfs_block_can_be_shared(struct btrfs_root *root,
242 struct extent_buffer *buf)
243{
244 /*
245 * Tree blocks not in shareable trees and tree roots are never shared.
246 * If a block was allocated after the last snapshot and the block was
247 * not allocated by tree relocation, we know the block is not shared.
248 */
249 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
250 buf != root->node && buf != root->commit_root &&
251 (btrfs_header_generation(buf) <=
252 btrfs_root_last_snapshot(&root->root_item) ||
253 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
254 return 1;
255
256 return 0;
257}
258
259static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
260 struct btrfs_root *root,
261 struct extent_buffer *buf,
262 struct extent_buffer *cow,
263 int *last_ref)
264{
265 struct btrfs_fs_info *fs_info = root->fs_info;
266 u64 refs;
267 u64 owner;
268 u64 flags;
269 u64 new_flags = 0;
270 int ret;
271
272 /*
273 * Backrefs update rules:
274 *
275 * Always use full backrefs for extent pointers in tree block
276 * allocated by tree relocation.
277 *
278 * If a shared tree block is no longer referenced by its owner
279 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
280 * use full backrefs for extent pointers in tree block.
281 *
282 * If a tree block is been relocating
283 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
284 * use full backrefs for extent pointers in tree block.
285 * The reason for this is some operations (such as drop tree)
286 * are only allowed for blocks use full backrefs.
287 */
288
289 if (btrfs_block_can_be_shared(root, buf)) {
290 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
291 btrfs_header_level(buf), 1,
292 &refs, &flags);
293 if (ret)
294 return ret;
295 if (refs == 0) {
296 ret = -EROFS;
297 btrfs_handle_fs_error(fs_info, ret, NULL);
298 return ret;
299 }
300 } else {
301 refs = 1;
302 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
303 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
304 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
305 else
306 flags = 0;
307 }
308
309 owner = btrfs_header_owner(buf);
310 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
311 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
312
313 if (refs > 1) {
314 if ((owner == root->root_key.objectid ||
315 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
316 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
317 ret = btrfs_inc_ref(trans, root, buf, 1);
318 if (ret)
319 return ret;
320
321 if (root->root_key.objectid ==
322 BTRFS_TREE_RELOC_OBJECTID) {
323 ret = btrfs_dec_ref(trans, root, buf, 0);
324 if (ret)
325 return ret;
326 ret = btrfs_inc_ref(trans, root, cow, 1);
327 if (ret)
328 return ret;
329 }
330 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
331 } else {
332
333 if (root->root_key.objectid ==
334 BTRFS_TREE_RELOC_OBJECTID)
335 ret = btrfs_inc_ref(trans, root, cow, 1);
336 else
337 ret = btrfs_inc_ref(trans, root, cow, 0);
338 if (ret)
339 return ret;
340 }
341 if (new_flags != 0) {
342 int level = btrfs_header_level(buf);
343
344 ret = btrfs_set_disk_extent_flags(trans, buf,
345 new_flags, level, 0);
346 if (ret)
347 return ret;
348 }
349 } else {
350 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
351 if (root->root_key.objectid ==
352 BTRFS_TREE_RELOC_OBJECTID)
353 ret = btrfs_inc_ref(trans, root, cow, 1);
354 else
355 ret = btrfs_inc_ref(trans, root, cow, 0);
356 if (ret)
357 return ret;
358 ret = btrfs_dec_ref(trans, root, buf, 1);
359 if (ret)
360 return ret;
361 }
362 btrfs_clean_tree_block(buf);
363 *last_ref = 1;
364 }
365 return 0;
366}
367
368/*
369 * does the dirty work in cow of a single block. The parent block (if
370 * supplied) is updated to point to the new cow copy. The new buffer is marked
371 * dirty and returned locked. If you modify the block it needs to be marked
372 * dirty again.
373 *
374 * search_start -- an allocation hint for the new block
375 *
376 * empty_size -- a hint that you plan on doing more cow. This is the size in
377 * bytes the allocator should try to find free next to the block it returns.
378 * This is just a hint and may be ignored by the allocator.
379 */
380static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
381 struct btrfs_root *root,
382 struct extent_buffer *buf,
383 struct extent_buffer *parent, int parent_slot,
384 struct extent_buffer **cow_ret,
385 u64 search_start, u64 empty_size,
386 enum btrfs_lock_nesting nest)
387{
388 struct btrfs_fs_info *fs_info = root->fs_info;
389 struct btrfs_disk_key disk_key;
390 struct extent_buffer *cow;
391 int level, ret;
392 int last_ref = 0;
393 int unlock_orig = 0;
394 u64 parent_start = 0;
395
396 if (*cow_ret == buf)
397 unlock_orig = 1;
398
399 btrfs_assert_tree_write_locked(buf);
400
401 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
402 trans->transid != fs_info->running_transaction->transid);
403 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
404 trans->transid != root->last_trans);
405
406 level = btrfs_header_level(buf);
407
408 if (level == 0)
409 btrfs_item_key(buf, &disk_key, 0);
410 else
411 btrfs_node_key(buf, &disk_key, 0);
412
413 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
414 parent_start = parent->start;
415
416 cow = btrfs_alloc_tree_block(trans, root, parent_start,
417 root->root_key.objectid, &disk_key, level,
418 search_start, empty_size, nest);
419 if (IS_ERR(cow))
420 return PTR_ERR(cow);
421
422 /* cow is set to blocking by btrfs_init_new_buffer */
423
424 copy_extent_buffer_full(cow, buf);
425 btrfs_set_header_bytenr(cow, cow->start);
426 btrfs_set_header_generation(cow, trans->transid);
427 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
428 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
429 BTRFS_HEADER_FLAG_RELOC);
430 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
431 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
432 else
433 btrfs_set_header_owner(cow, root->root_key.objectid);
434
435 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
436
437 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
438 if (ret) {
439 btrfs_tree_unlock(cow);
440 free_extent_buffer(cow);
441 btrfs_abort_transaction(trans, ret);
442 return ret;
443 }
444
445 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
446 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
447 if (ret) {
448 btrfs_tree_unlock(cow);
449 free_extent_buffer(cow);
450 btrfs_abort_transaction(trans, ret);
451 return ret;
452 }
453 }
454
455 if (buf == root->node) {
456 WARN_ON(parent && parent != buf);
457 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
458 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
459 parent_start = buf->start;
460
461 atomic_inc(&cow->refs);
462 ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
463 BUG_ON(ret < 0);
464 rcu_assign_pointer(root->node, cow);
465
466 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
467 parent_start, last_ref);
468 free_extent_buffer(buf);
469 add_root_to_dirty_list(root);
470 } else {
471 WARN_ON(trans->transid != btrfs_header_generation(parent));
472 btrfs_tree_mod_log_insert_key(parent, parent_slot,
473 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
474 btrfs_set_node_blockptr(parent, parent_slot,
475 cow->start);
476 btrfs_set_node_ptr_generation(parent, parent_slot,
477 trans->transid);
478 btrfs_mark_buffer_dirty(parent);
479 if (last_ref) {
480 ret = btrfs_tree_mod_log_free_eb(buf);
481 if (ret) {
482 btrfs_tree_unlock(cow);
483 free_extent_buffer(cow);
484 btrfs_abort_transaction(trans, ret);
485 return ret;
486 }
487 }
488 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
489 parent_start, last_ref);
490 }
491 if (unlock_orig)
492 btrfs_tree_unlock(buf);
493 free_extent_buffer_stale(buf);
494 btrfs_mark_buffer_dirty(cow);
495 *cow_ret = cow;
496 return 0;
497}
498
499static inline int should_cow_block(struct btrfs_trans_handle *trans,
500 struct btrfs_root *root,
501 struct extent_buffer *buf)
502{
503 if (btrfs_is_testing(root->fs_info))
504 return 0;
505
506 /* Ensure we can see the FORCE_COW bit */
507 smp_mb__before_atomic();
508
509 /*
510 * We do not need to cow a block if
511 * 1) this block is not created or changed in this transaction;
512 * 2) this block does not belong to TREE_RELOC tree;
513 * 3) the root is not forced COW.
514 *
515 * What is forced COW:
516 * when we create snapshot during committing the transaction,
517 * after we've finished copying src root, we must COW the shared
518 * block to ensure the metadata consistency.
519 */
520 if (btrfs_header_generation(buf) == trans->transid &&
521 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
522 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
523 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
524 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
525 return 0;
526 return 1;
527}
528
529/*
530 * cows a single block, see __btrfs_cow_block for the real work.
531 * This version of it has extra checks so that a block isn't COWed more than
532 * once per transaction, as long as it hasn't been written yet
533 */
534noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
535 struct btrfs_root *root, struct extent_buffer *buf,
536 struct extent_buffer *parent, int parent_slot,
537 struct extent_buffer **cow_ret,
538 enum btrfs_lock_nesting nest)
539{
540 struct btrfs_fs_info *fs_info = root->fs_info;
541 u64 search_start;
542 int ret;
543
544 if (test_bit(BTRFS_ROOT_DELETING, &root->state))
545 btrfs_err(fs_info,
546 "COW'ing blocks on a fs root that's being dropped");
547
548 if (trans->transaction != fs_info->running_transaction)
549 WARN(1, KERN_CRIT "trans %llu running %llu\n",
550 trans->transid,
551 fs_info->running_transaction->transid);
552
553 if (trans->transid != fs_info->generation)
554 WARN(1, KERN_CRIT "trans %llu running %llu\n",
555 trans->transid, fs_info->generation);
556
557 if (!should_cow_block(trans, root, buf)) {
558 *cow_ret = buf;
559 return 0;
560 }
561
562 search_start = buf->start & ~((u64)SZ_1G - 1);
563
564 /*
565 * Before CoWing this block for later modification, check if it's
566 * the subtree root and do the delayed subtree trace if needed.
567 *
568 * Also We don't care about the error, as it's handled internally.
569 */
570 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
571 ret = __btrfs_cow_block(trans, root, buf, parent,
572 parent_slot, cow_ret, search_start, 0, nest);
573
574 trace_btrfs_cow_block(root, buf, *cow_ret);
575
576 return ret;
577}
578ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
579
580/*
581 * helper function for defrag to decide if two blocks pointed to by a
582 * node are actually close by
583 */
584static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
585{
586 if (blocknr < other && other - (blocknr + blocksize) < 32768)
587 return 1;
588 if (blocknr > other && blocknr - (other + blocksize) < 32768)
589 return 1;
590 return 0;
591}
592
593#ifdef __LITTLE_ENDIAN
594
595/*
596 * Compare two keys, on little-endian the disk order is same as CPU order and
597 * we can avoid the conversion.
598 */
599static int comp_keys(const struct btrfs_disk_key *disk_key,
600 const struct btrfs_key *k2)
601{
602 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
603
604 return btrfs_comp_cpu_keys(k1, k2);
605}
606
607#else
608
609/*
610 * compare two keys in a memcmp fashion
611 */
612static int comp_keys(const struct btrfs_disk_key *disk,
613 const struct btrfs_key *k2)
614{
615 struct btrfs_key k1;
616
617 btrfs_disk_key_to_cpu(&k1, disk);
618
619 return btrfs_comp_cpu_keys(&k1, k2);
620}
621#endif
622
623/*
624 * same as comp_keys only with two btrfs_key's
625 */
626int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
627{
628 if (k1->objectid > k2->objectid)
629 return 1;
630 if (k1->objectid < k2->objectid)
631 return -1;
632 if (k1->type > k2->type)
633 return 1;
634 if (k1->type < k2->type)
635 return -1;
636 if (k1->offset > k2->offset)
637 return 1;
638 if (k1->offset < k2->offset)
639 return -1;
640 return 0;
641}
642
643/*
644 * this is used by the defrag code to go through all the
645 * leaves pointed to by a node and reallocate them so that
646 * disk order is close to key order
647 */
648int btrfs_realloc_node(struct btrfs_trans_handle *trans,
649 struct btrfs_root *root, struct extent_buffer *parent,
650 int start_slot, u64 *last_ret,
651 struct btrfs_key *progress)
652{
653 struct btrfs_fs_info *fs_info = root->fs_info;
654 struct extent_buffer *cur;
655 u64 blocknr;
656 u64 search_start = *last_ret;
657 u64 last_block = 0;
658 u64 other;
659 u32 parent_nritems;
660 int end_slot;
661 int i;
662 int err = 0;
663 u32 blocksize;
664 int progress_passed = 0;
665 struct btrfs_disk_key disk_key;
666
667 WARN_ON(trans->transaction != fs_info->running_transaction);
668 WARN_ON(trans->transid != fs_info->generation);
669
670 parent_nritems = btrfs_header_nritems(parent);
671 blocksize = fs_info->nodesize;
672 end_slot = parent_nritems - 1;
673
674 if (parent_nritems <= 1)
675 return 0;
676
677 for (i = start_slot; i <= end_slot; i++) {
678 int close = 1;
679
680 btrfs_node_key(parent, &disk_key, i);
681 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
682 continue;
683
684 progress_passed = 1;
685 blocknr = btrfs_node_blockptr(parent, i);
686 if (last_block == 0)
687 last_block = blocknr;
688
689 if (i > 0) {
690 other = btrfs_node_blockptr(parent, i - 1);
691 close = close_blocks(blocknr, other, blocksize);
692 }
693 if (!close && i < end_slot) {
694 other = btrfs_node_blockptr(parent, i + 1);
695 close = close_blocks(blocknr, other, blocksize);
696 }
697 if (close) {
698 last_block = blocknr;
699 continue;
700 }
701
702 cur = btrfs_read_node_slot(parent, i);
703 if (IS_ERR(cur))
704 return PTR_ERR(cur);
705 if (search_start == 0)
706 search_start = last_block;
707
708 btrfs_tree_lock(cur);
709 err = __btrfs_cow_block(trans, root, cur, parent, i,
710 &cur, search_start,
711 min(16 * blocksize,
712 (end_slot - i) * blocksize),
713 BTRFS_NESTING_COW);
714 if (err) {
715 btrfs_tree_unlock(cur);
716 free_extent_buffer(cur);
717 break;
718 }
719 search_start = cur->start;
720 last_block = cur->start;
721 *last_ret = search_start;
722 btrfs_tree_unlock(cur);
723 free_extent_buffer(cur);
724 }
725 return err;
726}
727
728/*
729 * Search for a key in the given extent_buffer.
730 *
731 * The lower boundary for the search is specified by the slot number @low. Use a
732 * value of 0 to search over the whole extent buffer.
733 *
734 * The slot in the extent buffer is returned via @slot. If the key exists in the
735 * extent buffer, then @slot will point to the slot where the key is, otherwise
736 * it points to the slot where you would insert the key.
737 *
738 * Slot may point to the total number of items (i.e. one position beyond the last
739 * key) if the key is bigger than the last key in the extent buffer.
740 */
741static noinline int generic_bin_search(struct extent_buffer *eb, int low,
742 const struct btrfs_key *key, int *slot)
743{
744 unsigned long p;
745 int item_size;
746 int high = btrfs_header_nritems(eb);
747 int ret;
748 const int key_size = sizeof(struct btrfs_disk_key);
749
750 if (low > high) {
751 btrfs_err(eb->fs_info,
752 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
753 __func__, low, high, eb->start,
754 btrfs_header_owner(eb), btrfs_header_level(eb));
755 return -EINVAL;
756 }
757
758 if (btrfs_header_level(eb) == 0) {
759 p = offsetof(struct btrfs_leaf, items);
760 item_size = sizeof(struct btrfs_item);
761 } else {
762 p = offsetof(struct btrfs_node, ptrs);
763 item_size = sizeof(struct btrfs_key_ptr);
764 }
765
766 while (low < high) {
767 unsigned long oip;
768 unsigned long offset;
769 struct btrfs_disk_key *tmp;
770 struct btrfs_disk_key unaligned;
771 int mid;
772
773 mid = (low + high) / 2;
774 offset = p + mid * item_size;
775 oip = offset_in_page(offset);
776
777 if (oip + key_size <= PAGE_SIZE) {
778 const unsigned long idx = get_eb_page_index(offset);
779 char *kaddr = page_address(eb->pages[idx]);
780
781 oip = get_eb_offset_in_page(eb, offset);
782 tmp = (struct btrfs_disk_key *)(kaddr + oip);
783 } else {
784 read_extent_buffer(eb, &unaligned, offset, key_size);
785 tmp = &unaligned;
786 }
787
788 ret = comp_keys(tmp, key);
789
790 if (ret < 0)
791 low = mid + 1;
792 else if (ret > 0)
793 high = mid;
794 else {
795 *slot = mid;
796 return 0;
797 }
798 }
799 *slot = low;
800 return 1;
801}
802
803/*
804 * Simple binary search on an extent buffer. Works for both leaves and nodes, and
805 * always searches over the whole range of keys (slot 0 to slot 'nritems - 1').
806 */
807int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
808 int *slot)
809{
810 return generic_bin_search(eb, 0, key, slot);
811}
812
813static void root_add_used(struct btrfs_root *root, u32 size)
814{
815 spin_lock(&root->accounting_lock);
816 btrfs_set_root_used(&root->root_item,
817 btrfs_root_used(&root->root_item) + size);
818 spin_unlock(&root->accounting_lock);
819}
820
821static void root_sub_used(struct btrfs_root *root, u32 size)
822{
823 spin_lock(&root->accounting_lock);
824 btrfs_set_root_used(&root->root_item,
825 btrfs_root_used(&root->root_item) - size);
826 spin_unlock(&root->accounting_lock);
827}
828
829/* given a node and slot number, this reads the blocks it points to. The
830 * extent buffer is returned with a reference taken (but unlocked).
831 */
832struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
833 int slot)
834{
835 int level = btrfs_header_level(parent);
836 struct extent_buffer *eb;
837 struct btrfs_key first_key;
838
839 if (slot < 0 || slot >= btrfs_header_nritems(parent))
840 return ERR_PTR(-ENOENT);
841
842 BUG_ON(level == 0);
843
844 btrfs_node_key_to_cpu(parent, &first_key, slot);
845 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
846 btrfs_header_owner(parent),
847 btrfs_node_ptr_generation(parent, slot),
848 level - 1, &first_key);
849 if (IS_ERR(eb))
850 return eb;
851 if (!extent_buffer_uptodate(eb)) {
852 free_extent_buffer(eb);
853 return ERR_PTR(-EIO);
854 }
855
856 return eb;
857}
858
859/*
860 * node level balancing, used to make sure nodes are in proper order for
861 * item deletion. We balance from the top down, so we have to make sure
862 * that a deletion won't leave an node completely empty later on.
863 */
864static noinline int balance_level(struct btrfs_trans_handle *trans,
865 struct btrfs_root *root,
866 struct btrfs_path *path, int level)
867{
868 struct btrfs_fs_info *fs_info = root->fs_info;
869 struct extent_buffer *right = NULL;
870 struct extent_buffer *mid;
871 struct extent_buffer *left = NULL;
872 struct extent_buffer *parent = NULL;
873 int ret = 0;
874 int wret;
875 int pslot;
876 int orig_slot = path->slots[level];
877 u64 orig_ptr;
878
879 ASSERT(level > 0);
880
881 mid = path->nodes[level];
882
883 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
884 WARN_ON(btrfs_header_generation(mid) != trans->transid);
885
886 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
887
888 if (level < BTRFS_MAX_LEVEL - 1) {
889 parent = path->nodes[level + 1];
890 pslot = path->slots[level + 1];
891 }
892
893 /*
894 * deal with the case where there is only one pointer in the root
895 * by promoting the node below to a root
896 */
897 if (!parent) {
898 struct extent_buffer *child;
899
900 if (btrfs_header_nritems(mid) != 1)
901 return 0;
902
903 /* promote the child to a root */
904 child = btrfs_read_node_slot(mid, 0);
905 if (IS_ERR(child)) {
906 ret = PTR_ERR(child);
907 btrfs_handle_fs_error(fs_info, ret, NULL);
908 goto enospc;
909 }
910
911 btrfs_tree_lock(child);
912 ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
913 BTRFS_NESTING_COW);
914 if (ret) {
915 btrfs_tree_unlock(child);
916 free_extent_buffer(child);
917 goto enospc;
918 }
919
920 ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
921 BUG_ON(ret < 0);
922 rcu_assign_pointer(root->node, child);
923
924 add_root_to_dirty_list(root);
925 btrfs_tree_unlock(child);
926
927 path->locks[level] = 0;
928 path->nodes[level] = NULL;
929 btrfs_clean_tree_block(mid);
930 btrfs_tree_unlock(mid);
931 /* once for the path */
932 free_extent_buffer(mid);
933
934 root_sub_used(root, mid->len);
935 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
936 /* once for the root ptr */
937 free_extent_buffer_stale(mid);
938 return 0;
939 }
940 if (btrfs_header_nritems(mid) >
941 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
942 return 0;
943
944 left = btrfs_read_node_slot(parent, pslot - 1);
945 if (IS_ERR(left))
946 left = NULL;
947
948 if (left) {
949 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
950 wret = btrfs_cow_block(trans, root, left,
951 parent, pslot - 1, &left,
952 BTRFS_NESTING_LEFT_COW);
953 if (wret) {
954 ret = wret;
955 goto enospc;
956 }
957 }
958
959 right = btrfs_read_node_slot(parent, pslot + 1);
960 if (IS_ERR(right))
961 right = NULL;
962
963 if (right) {
964 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
965 wret = btrfs_cow_block(trans, root, right,
966 parent, pslot + 1, &right,
967 BTRFS_NESTING_RIGHT_COW);
968 if (wret) {
969 ret = wret;
970 goto enospc;
971 }
972 }
973
974 /* first, try to make some room in the middle buffer */
975 if (left) {
976 orig_slot += btrfs_header_nritems(left);
977 wret = push_node_left(trans, left, mid, 1);
978 if (wret < 0)
979 ret = wret;
980 }
981
982 /*
983 * then try to empty the right most buffer into the middle
984 */
985 if (right) {
986 wret = push_node_left(trans, mid, right, 1);
987 if (wret < 0 && wret != -ENOSPC)
988 ret = wret;
989 if (btrfs_header_nritems(right) == 0) {
990 btrfs_clean_tree_block(right);
991 btrfs_tree_unlock(right);
992 del_ptr(root, path, level + 1, pslot + 1);
993 root_sub_used(root, right->len);
994 btrfs_free_tree_block(trans, btrfs_root_id(root), right,
995 0, 1);
996 free_extent_buffer_stale(right);
997 right = NULL;
998 } else {
999 struct btrfs_disk_key right_key;
1000 btrfs_node_key(right, &right_key, 0);
1001 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1002 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1003 BUG_ON(ret < 0);
1004 btrfs_set_node_key(parent, &right_key, pslot + 1);
1005 btrfs_mark_buffer_dirty(parent);
1006 }
1007 }
1008 if (btrfs_header_nritems(mid) == 1) {
1009 /*
1010 * we're not allowed to leave a node with one item in the
1011 * tree during a delete. A deletion from lower in the tree
1012 * could try to delete the only pointer in this node.
1013 * So, pull some keys from the left.
1014 * There has to be a left pointer at this point because
1015 * otherwise we would have pulled some pointers from the
1016 * right
1017 */
1018 if (!left) {
1019 ret = -EROFS;
1020 btrfs_handle_fs_error(fs_info, ret, NULL);
1021 goto enospc;
1022 }
1023 wret = balance_node_right(trans, mid, left);
1024 if (wret < 0) {
1025 ret = wret;
1026 goto enospc;
1027 }
1028 if (wret == 1) {
1029 wret = push_node_left(trans, left, mid, 1);
1030 if (wret < 0)
1031 ret = wret;
1032 }
1033 BUG_ON(wret == 1);
1034 }
1035 if (btrfs_header_nritems(mid) == 0) {
1036 btrfs_clean_tree_block(mid);
1037 btrfs_tree_unlock(mid);
1038 del_ptr(root, path, level + 1, pslot);
1039 root_sub_used(root, mid->len);
1040 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1041 free_extent_buffer_stale(mid);
1042 mid = NULL;
1043 } else {
1044 /* update the parent key to reflect our changes */
1045 struct btrfs_disk_key mid_key;
1046 btrfs_node_key(mid, &mid_key, 0);
1047 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1048 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1049 BUG_ON(ret < 0);
1050 btrfs_set_node_key(parent, &mid_key, pslot);
1051 btrfs_mark_buffer_dirty(parent);
1052 }
1053
1054 /* update the path */
1055 if (left) {
1056 if (btrfs_header_nritems(left) > orig_slot) {
1057 atomic_inc(&left->refs);
1058 /* left was locked after cow */
1059 path->nodes[level] = left;
1060 path->slots[level + 1] -= 1;
1061 path->slots[level] = orig_slot;
1062 if (mid) {
1063 btrfs_tree_unlock(mid);
1064 free_extent_buffer(mid);
1065 }
1066 } else {
1067 orig_slot -= btrfs_header_nritems(left);
1068 path->slots[level] = orig_slot;
1069 }
1070 }
1071 /* double check we haven't messed things up */
1072 if (orig_ptr !=
1073 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1074 BUG();
1075enospc:
1076 if (right) {
1077 btrfs_tree_unlock(right);
1078 free_extent_buffer(right);
1079 }
1080 if (left) {
1081 if (path->nodes[level] != left)
1082 btrfs_tree_unlock(left);
1083 free_extent_buffer(left);
1084 }
1085 return ret;
1086}
1087
1088/* Node balancing for insertion. Here we only split or push nodes around
1089 * when they are completely full. This is also done top down, so we
1090 * have to be pessimistic.
1091 */
1092static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1093 struct btrfs_root *root,
1094 struct btrfs_path *path, int level)
1095{
1096 struct btrfs_fs_info *fs_info = root->fs_info;
1097 struct extent_buffer *right = NULL;
1098 struct extent_buffer *mid;
1099 struct extent_buffer *left = NULL;
1100 struct extent_buffer *parent = NULL;
1101 int ret = 0;
1102 int wret;
1103 int pslot;
1104 int orig_slot = path->slots[level];
1105
1106 if (level == 0)
1107 return 1;
1108
1109 mid = path->nodes[level];
1110 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1111
1112 if (level < BTRFS_MAX_LEVEL - 1) {
1113 parent = path->nodes[level + 1];
1114 pslot = path->slots[level + 1];
1115 }
1116
1117 if (!parent)
1118 return 1;
1119
1120 left = btrfs_read_node_slot(parent, pslot - 1);
1121 if (IS_ERR(left))
1122 left = NULL;
1123
1124 /* first, try to make some room in the middle buffer */
1125 if (left) {
1126 u32 left_nr;
1127
1128 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1129
1130 left_nr = btrfs_header_nritems(left);
1131 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1132 wret = 1;
1133 } else {
1134 ret = btrfs_cow_block(trans, root, left, parent,
1135 pslot - 1, &left,
1136 BTRFS_NESTING_LEFT_COW);
1137 if (ret)
1138 wret = 1;
1139 else {
1140 wret = push_node_left(trans, left, mid, 0);
1141 }
1142 }
1143 if (wret < 0)
1144 ret = wret;
1145 if (wret == 0) {
1146 struct btrfs_disk_key disk_key;
1147 orig_slot += left_nr;
1148 btrfs_node_key(mid, &disk_key, 0);
1149 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1150 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1151 BUG_ON(ret < 0);
1152 btrfs_set_node_key(parent, &disk_key, pslot);
1153 btrfs_mark_buffer_dirty(parent);
1154 if (btrfs_header_nritems(left) > orig_slot) {
1155 path->nodes[level] = left;
1156 path->slots[level + 1] -= 1;
1157 path->slots[level] = orig_slot;
1158 btrfs_tree_unlock(mid);
1159 free_extent_buffer(mid);
1160 } else {
1161 orig_slot -=
1162 btrfs_header_nritems(left);
1163 path->slots[level] = orig_slot;
1164 btrfs_tree_unlock(left);
1165 free_extent_buffer(left);
1166 }
1167 return 0;
1168 }
1169 btrfs_tree_unlock(left);
1170 free_extent_buffer(left);
1171 }
1172 right = btrfs_read_node_slot(parent, pslot + 1);
1173 if (IS_ERR(right))
1174 right = NULL;
1175
1176 /*
1177 * then try to empty the right most buffer into the middle
1178 */
1179 if (right) {
1180 u32 right_nr;
1181
1182 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1183
1184 right_nr = btrfs_header_nritems(right);
1185 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1186 wret = 1;
1187 } else {
1188 ret = btrfs_cow_block(trans, root, right,
1189 parent, pslot + 1,
1190 &right, BTRFS_NESTING_RIGHT_COW);
1191 if (ret)
1192 wret = 1;
1193 else {
1194 wret = balance_node_right(trans, right, mid);
1195 }
1196 }
1197 if (wret < 0)
1198 ret = wret;
1199 if (wret == 0) {
1200 struct btrfs_disk_key disk_key;
1201
1202 btrfs_node_key(right, &disk_key, 0);
1203 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1204 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1205 BUG_ON(ret < 0);
1206 btrfs_set_node_key(parent, &disk_key, pslot + 1);
1207 btrfs_mark_buffer_dirty(parent);
1208
1209 if (btrfs_header_nritems(mid) <= orig_slot) {
1210 path->nodes[level] = right;
1211 path->slots[level + 1] += 1;
1212 path->slots[level] = orig_slot -
1213 btrfs_header_nritems(mid);
1214 btrfs_tree_unlock(mid);
1215 free_extent_buffer(mid);
1216 } else {
1217 btrfs_tree_unlock(right);
1218 free_extent_buffer(right);
1219 }
1220 return 0;
1221 }
1222 btrfs_tree_unlock(right);
1223 free_extent_buffer(right);
1224 }
1225 return 1;
1226}
1227
1228/*
1229 * readahead one full node of leaves, finding things that are close
1230 * to the block in 'slot', and triggering ra on them.
1231 */
1232static void reada_for_search(struct btrfs_fs_info *fs_info,
1233 struct btrfs_path *path,
1234 int level, int slot, u64 objectid)
1235{
1236 struct extent_buffer *node;
1237 struct btrfs_disk_key disk_key;
1238 u32 nritems;
1239 u64 search;
1240 u64 target;
1241 u64 nread = 0;
1242 u64 nread_max;
1243 u32 nr;
1244 u32 blocksize;
1245 u32 nscan = 0;
1246
1247 if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1248 return;
1249
1250 if (!path->nodes[level])
1251 return;
1252
1253 node = path->nodes[level];
1254
1255 /*
1256 * Since the time between visiting leaves is much shorter than the time
1257 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1258 * much IO at once (possibly random).
1259 */
1260 if (path->reada == READA_FORWARD_ALWAYS) {
1261 if (level > 1)
1262 nread_max = node->fs_info->nodesize;
1263 else
1264 nread_max = SZ_128K;
1265 } else {
1266 nread_max = SZ_64K;
1267 }
1268
1269 search = btrfs_node_blockptr(node, slot);
1270 blocksize = fs_info->nodesize;
1271 if (path->reada != READA_FORWARD_ALWAYS) {
1272 struct extent_buffer *eb;
1273
1274 eb = find_extent_buffer(fs_info, search);
1275 if (eb) {
1276 free_extent_buffer(eb);
1277 return;
1278 }
1279 }
1280
1281 target = search;
1282
1283 nritems = btrfs_header_nritems(node);
1284 nr = slot;
1285
1286 while (1) {
1287 if (path->reada == READA_BACK) {
1288 if (nr == 0)
1289 break;
1290 nr--;
1291 } else if (path->reada == READA_FORWARD ||
1292 path->reada == READA_FORWARD_ALWAYS) {
1293 nr++;
1294 if (nr >= nritems)
1295 break;
1296 }
1297 if (path->reada == READA_BACK && objectid) {
1298 btrfs_node_key(node, &disk_key, nr);
1299 if (btrfs_disk_key_objectid(&disk_key) != objectid)
1300 break;
1301 }
1302 search = btrfs_node_blockptr(node, nr);
1303 if (path->reada == READA_FORWARD_ALWAYS ||
1304 (search <= target && target - search <= 65536) ||
1305 (search > target && search - target <= 65536)) {
1306 btrfs_readahead_node_child(node, nr);
1307 nread += blocksize;
1308 }
1309 nscan++;
1310 if (nread > nread_max || nscan > 32)
1311 break;
1312 }
1313}
1314
1315static noinline void reada_for_balance(struct btrfs_path *path, int level)
1316{
1317 struct extent_buffer *parent;
1318 int slot;
1319 int nritems;
1320
1321 parent = path->nodes[level + 1];
1322 if (!parent)
1323 return;
1324
1325 nritems = btrfs_header_nritems(parent);
1326 slot = path->slots[level + 1];
1327
1328 if (slot > 0)
1329 btrfs_readahead_node_child(parent, slot - 1);
1330 if (slot + 1 < nritems)
1331 btrfs_readahead_node_child(parent, slot + 1);
1332}
1333
1334
1335/*
1336 * when we walk down the tree, it is usually safe to unlock the higher layers
1337 * in the tree. The exceptions are when our path goes through slot 0, because
1338 * operations on the tree might require changing key pointers higher up in the
1339 * tree.
1340 *
1341 * callers might also have set path->keep_locks, which tells this code to keep
1342 * the lock if the path points to the last slot in the block. This is part of
1343 * walking through the tree, and selecting the next slot in the higher block.
1344 *
1345 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1346 * if lowest_unlock is 1, level 0 won't be unlocked
1347 */
1348static noinline void unlock_up(struct btrfs_path *path, int level,
1349 int lowest_unlock, int min_write_lock_level,
1350 int *write_lock_level)
1351{
1352 int i;
1353 int skip_level = level;
1354 bool check_skip = true;
1355
1356 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1357 if (!path->nodes[i])
1358 break;
1359 if (!path->locks[i])
1360 break;
1361
1362 if (check_skip) {
1363 if (path->slots[i] == 0) {
1364 skip_level = i + 1;
1365 continue;
1366 }
1367
1368 if (path->keep_locks) {
1369 u32 nritems;
1370
1371 nritems = btrfs_header_nritems(path->nodes[i]);
1372 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1373 skip_level = i + 1;
1374 continue;
1375 }
1376 }
1377 }
1378
1379 if (i >= lowest_unlock && i > skip_level) {
1380 check_skip = false;
1381 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1382 path->locks[i] = 0;
1383 if (write_lock_level &&
1384 i > min_write_lock_level &&
1385 i <= *write_lock_level) {
1386 *write_lock_level = i - 1;
1387 }
1388 }
1389 }
1390}
1391
1392/*
1393 * helper function for btrfs_search_slot. The goal is to find a block
1394 * in cache without setting the path to blocking. If we find the block
1395 * we return zero and the path is unchanged.
1396 *
1397 * If we can't find the block, we set the path blocking and do some
1398 * reada. -EAGAIN is returned and the search must be repeated.
1399 */
1400static int
1401read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1402 struct extent_buffer **eb_ret, int level, int slot,
1403 const struct btrfs_key *key)
1404{
1405 struct btrfs_fs_info *fs_info = root->fs_info;
1406 u64 blocknr;
1407 u64 gen;
1408 struct extent_buffer *tmp;
1409 struct btrfs_key first_key;
1410 int ret;
1411 int parent_level;
1412
1413 blocknr = btrfs_node_blockptr(*eb_ret, slot);
1414 gen = btrfs_node_ptr_generation(*eb_ret, slot);
1415 parent_level = btrfs_header_level(*eb_ret);
1416 btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
1417
1418 tmp = find_extent_buffer(fs_info, blocknr);
1419 if (tmp) {
1420 if (p->reada == READA_FORWARD_ALWAYS)
1421 reada_for_search(fs_info, p, level, slot, key->objectid);
1422
1423 /* first we do an atomic uptodate check */
1424 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1425 /*
1426 * Do extra check for first_key, eb can be stale due to
1427 * being cached, read from scrub, or have multiple
1428 * parents (shared tree blocks).
1429 */
1430 if (btrfs_verify_level_key(tmp,
1431 parent_level - 1, &first_key, gen)) {
1432 free_extent_buffer(tmp);
1433 return -EUCLEAN;
1434 }
1435 *eb_ret = tmp;
1436 return 0;
1437 }
1438
1439 /* now we're allowed to do a blocking uptodate check */
1440 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
1441 if (ret) {
1442 free_extent_buffer(tmp);
1443 btrfs_release_path(p);
1444 return -EIO;
1445 }
1446 *eb_ret = tmp;
1447 return 0;
1448 }
1449
1450 /*
1451 * reduce lock contention at high levels
1452 * of the btree by dropping locks before
1453 * we read. Don't release the lock on the current
1454 * level because we need to walk this node to figure
1455 * out which blocks to read.
1456 */
1457 btrfs_unlock_up_safe(p, level + 1);
1458
1459 if (p->reada != READA_NONE)
1460 reada_for_search(fs_info, p, level, slot, key->objectid);
1461
1462 ret = -EAGAIN;
1463 tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid,
1464 gen, parent_level - 1, &first_key);
1465 if (IS_ERR(tmp)) {
1466 btrfs_release_path(p);
1467 return PTR_ERR(tmp);
1468 }
1469 /*
1470 * If the read above didn't mark this buffer up to date,
1471 * it will never end up being up to date. Set ret to EIO now
1472 * and give up so that our caller doesn't loop forever
1473 * on our EAGAINs.
1474 */
1475 if (!extent_buffer_uptodate(tmp))
1476 ret = -EIO;
1477 free_extent_buffer(tmp);
1478
1479 btrfs_release_path(p);
1480 return ret;
1481}
1482
1483/*
1484 * helper function for btrfs_search_slot. This does all of the checks
1485 * for node-level blocks and does any balancing required based on
1486 * the ins_len.
1487 *
1488 * If no extra work was required, zero is returned. If we had to
1489 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1490 * start over
1491 */
1492static int
1493setup_nodes_for_search(struct btrfs_trans_handle *trans,
1494 struct btrfs_root *root, struct btrfs_path *p,
1495 struct extent_buffer *b, int level, int ins_len,
1496 int *write_lock_level)
1497{
1498 struct btrfs_fs_info *fs_info = root->fs_info;
1499 int ret = 0;
1500
1501 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1502 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1503
1504 if (*write_lock_level < level + 1) {
1505 *write_lock_level = level + 1;
1506 btrfs_release_path(p);
1507 return -EAGAIN;
1508 }
1509
1510 reada_for_balance(p, level);
1511 ret = split_node(trans, root, p, level);
1512
1513 b = p->nodes[level];
1514 } else if (ins_len < 0 && btrfs_header_nritems(b) <
1515 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1516
1517 if (*write_lock_level < level + 1) {
1518 *write_lock_level = level + 1;
1519 btrfs_release_path(p);
1520 return -EAGAIN;
1521 }
1522
1523 reada_for_balance(p, level);
1524 ret = balance_level(trans, root, p, level);
1525 if (ret)
1526 return ret;
1527
1528 b = p->nodes[level];
1529 if (!b) {
1530 btrfs_release_path(p);
1531 return -EAGAIN;
1532 }
1533 BUG_ON(btrfs_header_nritems(b) == 1);
1534 }
1535 return ret;
1536}
1537
1538int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1539 u64 iobjectid, u64 ioff, u8 key_type,
1540 struct btrfs_key *found_key)
1541{
1542 int ret;
1543 struct btrfs_key key;
1544 struct extent_buffer *eb;
1545
1546 ASSERT(path);
1547 ASSERT(found_key);
1548
1549 key.type = key_type;
1550 key.objectid = iobjectid;
1551 key.offset = ioff;
1552
1553 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1554 if (ret < 0)
1555 return ret;
1556
1557 eb = path->nodes[0];
1558 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1559 ret = btrfs_next_leaf(fs_root, path);
1560 if (ret)
1561 return ret;
1562 eb = path->nodes[0];
1563 }
1564
1565 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1566 if (found_key->type != key.type ||
1567 found_key->objectid != key.objectid)
1568 return 1;
1569
1570 return 0;
1571}
1572
1573static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1574 struct btrfs_path *p,
1575 int write_lock_level)
1576{
1577 struct extent_buffer *b;
1578 int root_lock = 0;
1579 int level = 0;
1580
1581 if (p->search_commit_root) {
1582 b = root->commit_root;
1583 atomic_inc(&b->refs);
1584 level = btrfs_header_level(b);
1585 /*
1586 * Ensure that all callers have set skip_locking when
1587 * p->search_commit_root = 1.
1588 */
1589 ASSERT(p->skip_locking == 1);
1590
1591 goto out;
1592 }
1593
1594 if (p->skip_locking) {
1595 b = btrfs_root_node(root);
1596 level = btrfs_header_level(b);
1597 goto out;
1598 }
1599
1600 /* We try very hard to do read locks on the root */
1601 root_lock = BTRFS_READ_LOCK;
1602
1603 /*
1604 * If the level is set to maximum, we can skip trying to get the read
1605 * lock.
1606 */
1607 if (write_lock_level < BTRFS_MAX_LEVEL) {
1608 /*
1609 * We don't know the level of the root node until we actually
1610 * have it read locked
1611 */
1612 b = btrfs_read_lock_root_node(root);
1613 level = btrfs_header_level(b);
1614 if (level > write_lock_level)
1615 goto out;
1616
1617 /* Whoops, must trade for write lock */
1618 btrfs_tree_read_unlock(b);
1619 free_extent_buffer(b);
1620 }
1621
1622 b = btrfs_lock_root_node(root);
1623 root_lock = BTRFS_WRITE_LOCK;
1624
1625 /* The level might have changed, check again */
1626 level = btrfs_header_level(b);
1627
1628out:
1629 /*
1630 * The root may have failed to write out at some point, and thus is no
1631 * longer valid, return an error in this case.
1632 */
1633 if (!extent_buffer_uptodate(b)) {
1634 if (root_lock)
1635 btrfs_tree_unlock_rw(b, root_lock);
1636 free_extent_buffer(b);
1637 return ERR_PTR(-EIO);
1638 }
1639
1640 p->nodes[level] = b;
1641 if (!p->skip_locking)
1642 p->locks[level] = root_lock;
1643 /*
1644 * Callers are responsible for dropping b's references.
1645 */
1646 return b;
1647}
1648
1649/*
1650 * Replace the extent buffer at the lowest level of the path with a cloned
1651 * version. The purpose is to be able to use it safely, after releasing the
1652 * commit root semaphore, even if relocation is happening in parallel, the
1653 * transaction used for relocation is committed and the extent buffer is
1654 * reallocated in the next transaction.
1655 *
1656 * This is used in a context where the caller does not prevent transaction
1657 * commits from happening, either by holding a transaction handle or holding
1658 * some lock, while it's doing searches through a commit root.
1659 * At the moment it's only used for send operations.
1660 */
1661static int finish_need_commit_sem_search(struct btrfs_path *path)
1662{
1663 const int i = path->lowest_level;
1664 const int slot = path->slots[i];
1665 struct extent_buffer *lowest = path->nodes[i];
1666 struct extent_buffer *clone;
1667
1668 ASSERT(path->need_commit_sem);
1669
1670 if (!lowest)
1671 return 0;
1672
1673 lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1674
1675 clone = btrfs_clone_extent_buffer(lowest);
1676 if (!clone)
1677 return -ENOMEM;
1678
1679 btrfs_release_path(path);
1680 path->nodes[i] = clone;
1681 path->slots[i] = slot;
1682
1683 return 0;
1684}
1685
1686static inline int search_for_key_slot(struct extent_buffer *eb,
1687 int search_low_slot,
1688 const struct btrfs_key *key,
1689 int prev_cmp,
1690 int *slot)
1691{
1692 /*
1693 * If a previous call to btrfs_bin_search() on a parent node returned an
1694 * exact match (prev_cmp == 0), we can safely assume the target key will
1695 * always be at slot 0 on lower levels, since each key pointer
1696 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1697 * subtree it points to. Thus we can skip searching lower levels.
1698 */
1699 if (prev_cmp == 0) {
1700 *slot = 0;
1701 return 0;
1702 }
1703
1704 return generic_bin_search(eb, search_low_slot, key, slot);
1705}
1706
1707static int search_leaf(struct btrfs_trans_handle *trans,
1708 struct btrfs_root *root,
1709 const struct btrfs_key *key,
1710 struct btrfs_path *path,
1711 int ins_len,
1712 int prev_cmp)
1713{
1714 struct extent_buffer *leaf = path->nodes[0];
1715 int leaf_free_space = -1;
1716 int search_low_slot = 0;
1717 int ret;
1718 bool do_bin_search = true;
1719
1720 /*
1721 * If we are doing an insertion, the leaf has enough free space and the
1722 * destination slot for the key is not slot 0, then we can unlock our
1723 * write lock on the parent, and any other upper nodes, before doing the
1724 * binary search on the leaf (with search_for_key_slot()), allowing other
1725 * tasks to lock the parent and any other upper nodes.
1726 */
1727 if (ins_len > 0) {
1728 /*
1729 * Cache the leaf free space, since we will need it later and it
1730 * will not change until then.
1731 */
1732 leaf_free_space = btrfs_leaf_free_space(leaf);
1733
1734 /*
1735 * !path->locks[1] means we have a single node tree, the leaf is
1736 * the root of the tree.
1737 */
1738 if (path->locks[1] && leaf_free_space >= ins_len) {
1739 struct btrfs_disk_key first_key;
1740
1741 ASSERT(btrfs_header_nritems(leaf) > 0);
1742 btrfs_item_key(leaf, &first_key, 0);
1743
1744 /*
1745 * Doing the extra comparison with the first key is cheap,
1746 * taking into account that the first key is very likely
1747 * already in a cache line because it immediately follows
1748 * the extent buffer's header and we have recently accessed
1749 * the header's level field.
1750 */
1751 ret = comp_keys(&first_key, key);
1752 if (ret < 0) {
1753 /*
1754 * The first key is smaller than the key we want
1755 * to insert, so we are safe to unlock all upper
1756 * nodes and we have to do the binary search.
1757 *
1758 * We do use btrfs_unlock_up_safe() and not
1759 * unlock_up() because the later does not unlock
1760 * nodes with a slot of 0 - we can safely unlock
1761 * any node even if its slot is 0 since in this
1762 * case the key does not end up at slot 0 of the
1763 * leaf and there's no need to split the leaf.
1764 */
1765 btrfs_unlock_up_safe(path, 1);
1766 search_low_slot = 1;
1767 } else {
1768 /*
1769 * The first key is >= then the key we want to
1770 * insert, so we can skip the binary search as
1771 * the target key will be at slot 0.
1772 *
1773 * We can not unlock upper nodes when the key is
1774 * less than the first key, because we will need
1775 * to update the key at slot 0 of the parent node
1776 * and possibly of other upper nodes too.
1777 * If the key matches the first key, then we can
1778 * unlock all the upper nodes, using
1779 * btrfs_unlock_up_safe() instead of unlock_up()
1780 * as stated above.
1781 */
1782 if (ret == 0)
1783 btrfs_unlock_up_safe(path, 1);
1784 /*
1785 * ret is already 0 or 1, matching the result of
1786 * a btrfs_bin_search() call, so there is no need
1787 * to adjust it.
1788 */
1789 do_bin_search = false;
1790 path->slots[0] = 0;
1791 }
1792 }
1793 }
1794
1795 if (do_bin_search) {
1796 ret = search_for_key_slot(leaf, search_low_slot, key,
1797 prev_cmp, &path->slots[0]);
1798 if (ret < 0)
1799 return ret;
1800 }
1801
1802 if (ins_len > 0) {
1803 /*
1804 * Item key already exists. In this case, if we are allowed to
1805 * insert the item (for example, in dir_item case, item key
1806 * collision is allowed), it will be merged with the original
1807 * item. Only the item size grows, no new btrfs item will be
1808 * added. If search_for_extension is not set, ins_len already
1809 * accounts the size btrfs_item, deduct it here so leaf space
1810 * check will be correct.
1811 */
1812 if (ret == 0 && !path->search_for_extension) {
1813 ASSERT(ins_len >= sizeof(struct btrfs_item));
1814 ins_len -= sizeof(struct btrfs_item);
1815 }
1816
1817 ASSERT(leaf_free_space >= 0);
1818
1819 if (leaf_free_space < ins_len) {
1820 int err;
1821
1822 err = split_leaf(trans, root, key, path, ins_len,
1823 (ret == 0));
1824 ASSERT(err <= 0);
1825 if (WARN_ON(err > 0))
1826 err = -EUCLEAN;
1827 if (err)
1828 ret = err;
1829 }
1830 }
1831
1832 return ret;
1833}
1834
1835/*
1836 * btrfs_search_slot - look for a key in a tree and perform necessary
1837 * modifications to preserve tree invariants.
1838 *
1839 * @trans: Handle of transaction, used when modifying the tree
1840 * @p: Holds all btree nodes along the search path
1841 * @root: The root node of the tree
1842 * @key: The key we are looking for
1843 * @ins_len: Indicates purpose of search:
1844 * >0 for inserts it's size of item inserted (*)
1845 * <0 for deletions
1846 * 0 for plain searches, not modifying the tree
1847 *
1848 * (*) If size of item inserted doesn't include
1849 * sizeof(struct btrfs_item), then p->search_for_extension must
1850 * be set.
1851 * @cow: boolean should CoW operations be performed. Must always be 1
1852 * when modifying the tree.
1853 *
1854 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
1855 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
1856 *
1857 * If @key is found, 0 is returned and you can find the item in the leaf level
1858 * of the path (level 0)
1859 *
1860 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
1861 * points to the slot where it should be inserted
1862 *
1863 * If an error is encountered while searching the tree a negative error number
1864 * is returned
1865 */
1866int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1867 const struct btrfs_key *key, struct btrfs_path *p,
1868 int ins_len, int cow)
1869{
1870 struct btrfs_fs_info *fs_info = root->fs_info;
1871 struct extent_buffer *b;
1872 int slot;
1873 int ret;
1874 int err;
1875 int level;
1876 int lowest_unlock = 1;
1877 /* everything at write_lock_level or lower must be write locked */
1878 int write_lock_level = 0;
1879 u8 lowest_level = 0;
1880 int min_write_lock_level;
1881 int prev_cmp;
1882
1883 lowest_level = p->lowest_level;
1884 WARN_ON(lowest_level && ins_len > 0);
1885 WARN_ON(p->nodes[0] != NULL);
1886 BUG_ON(!cow && ins_len);
1887
1888 if (ins_len < 0) {
1889 lowest_unlock = 2;
1890
1891 /* when we are removing items, we might have to go up to level
1892 * two as we update tree pointers Make sure we keep write
1893 * for those levels as well
1894 */
1895 write_lock_level = 2;
1896 } else if (ins_len > 0) {
1897 /*
1898 * for inserting items, make sure we have a write lock on
1899 * level 1 so we can update keys
1900 */
1901 write_lock_level = 1;
1902 }
1903
1904 if (!cow)
1905 write_lock_level = -1;
1906
1907 if (cow && (p->keep_locks || p->lowest_level))
1908 write_lock_level = BTRFS_MAX_LEVEL;
1909
1910 min_write_lock_level = write_lock_level;
1911
1912 if (p->need_commit_sem) {
1913 ASSERT(p->search_commit_root);
1914 down_read(&fs_info->commit_root_sem);
1915 }
1916
1917again:
1918 prev_cmp = -1;
1919 b = btrfs_search_slot_get_root(root, p, write_lock_level);
1920 if (IS_ERR(b)) {
1921 ret = PTR_ERR(b);
1922 goto done;
1923 }
1924
1925 while (b) {
1926 int dec = 0;
1927
1928 level = btrfs_header_level(b);
1929
1930 if (cow) {
1931 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
1932
1933 /*
1934 * if we don't really need to cow this block
1935 * then we don't want to set the path blocking,
1936 * so we test it here
1937 */
1938 if (!should_cow_block(trans, root, b))
1939 goto cow_done;
1940
1941 /*
1942 * must have write locks on this node and the
1943 * parent
1944 */
1945 if (level > write_lock_level ||
1946 (level + 1 > write_lock_level &&
1947 level + 1 < BTRFS_MAX_LEVEL &&
1948 p->nodes[level + 1])) {
1949 write_lock_level = level + 1;
1950 btrfs_release_path(p);
1951 goto again;
1952 }
1953
1954 if (last_level)
1955 err = btrfs_cow_block(trans, root, b, NULL, 0,
1956 &b,
1957 BTRFS_NESTING_COW);
1958 else
1959 err = btrfs_cow_block(trans, root, b,
1960 p->nodes[level + 1],
1961 p->slots[level + 1], &b,
1962 BTRFS_NESTING_COW);
1963 if (err) {
1964 ret = err;
1965 goto done;
1966 }
1967 }
1968cow_done:
1969 p->nodes[level] = b;
1970
1971 /*
1972 * we have a lock on b and as long as we aren't changing
1973 * the tree, there is no way to for the items in b to change.
1974 * It is safe to drop the lock on our parent before we
1975 * go through the expensive btree search on b.
1976 *
1977 * If we're inserting or deleting (ins_len != 0), then we might
1978 * be changing slot zero, which may require changing the parent.
1979 * So, we can't drop the lock until after we know which slot
1980 * we're operating on.
1981 */
1982 if (!ins_len && !p->keep_locks) {
1983 int u = level + 1;
1984
1985 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
1986 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
1987 p->locks[u] = 0;
1988 }
1989 }
1990
1991 if (level == 0) {
1992 if (ins_len > 0)
1993 ASSERT(write_lock_level >= 1);
1994
1995 ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
1996 if (!p->search_for_split)
1997 unlock_up(p, level, lowest_unlock,
1998 min_write_lock_level, NULL);
1999 goto done;
2000 }
2001
2002 ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2003 if (ret < 0)
2004 goto done;
2005 prev_cmp = ret;
2006
2007 if (ret && slot > 0) {
2008 dec = 1;
2009 slot--;
2010 }
2011 p->slots[level] = slot;
2012 err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2013 &write_lock_level);
2014 if (err == -EAGAIN)
2015 goto again;
2016 if (err) {
2017 ret = err;
2018 goto done;
2019 }
2020 b = p->nodes[level];
2021 slot = p->slots[level];
2022
2023 /*
2024 * Slot 0 is special, if we change the key we have to update
2025 * the parent pointer which means we must have a write lock on
2026 * the parent
2027 */
2028 if (slot == 0 && ins_len && write_lock_level < level + 1) {
2029 write_lock_level = level + 1;
2030 btrfs_release_path(p);
2031 goto again;
2032 }
2033
2034 unlock_up(p, level, lowest_unlock, min_write_lock_level,
2035 &write_lock_level);
2036
2037 if (level == lowest_level) {
2038 if (dec)
2039 p->slots[level]++;
2040 goto done;
2041 }
2042
2043 err = read_block_for_search(root, p, &b, level, slot, key);
2044 if (err == -EAGAIN)
2045 goto again;
2046 if (err) {
2047 ret = err;
2048 goto done;
2049 }
2050
2051 if (!p->skip_locking) {
2052 level = btrfs_header_level(b);
2053 if (level <= write_lock_level) {
2054 btrfs_tree_lock(b);
2055 p->locks[level] = BTRFS_WRITE_LOCK;
2056 } else {
2057 btrfs_tree_read_lock(b);
2058 p->locks[level] = BTRFS_READ_LOCK;
2059 }
2060 p->nodes[level] = b;
2061 }
2062 }
2063 ret = 1;
2064done:
2065 if (ret < 0 && !p->skip_release_on_error)
2066 btrfs_release_path(p);
2067
2068 if (p->need_commit_sem) {
2069 int ret2;
2070
2071 ret2 = finish_need_commit_sem_search(p);
2072 up_read(&fs_info->commit_root_sem);
2073 if (ret2)
2074 ret = ret2;
2075 }
2076
2077 return ret;
2078}
2079ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2080
2081/*
2082 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2083 * current state of the tree together with the operations recorded in the tree
2084 * modification log to search for the key in a previous version of this tree, as
2085 * denoted by the time_seq parameter.
2086 *
2087 * Naturally, there is no support for insert, delete or cow operations.
2088 *
2089 * The resulting path and return value will be set up as if we called
2090 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2091 */
2092int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2093 struct btrfs_path *p, u64 time_seq)
2094{
2095 struct btrfs_fs_info *fs_info = root->fs_info;
2096 struct extent_buffer *b;
2097 int slot;
2098 int ret;
2099 int err;
2100 int level;
2101 int lowest_unlock = 1;
2102 u8 lowest_level = 0;
2103
2104 lowest_level = p->lowest_level;
2105 WARN_ON(p->nodes[0] != NULL);
2106
2107 if (p->search_commit_root) {
2108 BUG_ON(time_seq);
2109 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2110 }
2111
2112again:
2113 b = btrfs_get_old_root(root, time_seq);
2114 if (!b) {
2115 ret = -EIO;
2116 goto done;
2117 }
2118 level = btrfs_header_level(b);
2119 p->locks[level] = BTRFS_READ_LOCK;
2120
2121 while (b) {
2122 int dec = 0;
2123
2124 level = btrfs_header_level(b);
2125 p->nodes[level] = b;
2126
2127 /*
2128 * we have a lock on b and as long as we aren't changing
2129 * the tree, there is no way to for the items in b to change.
2130 * It is safe to drop the lock on our parent before we
2131 * go through the expensive btree search on b.
2132 */
2133 btrfs_unlock_up_safe(p, level + 1);
2134
2135 ret = btrfs_bin_search(b, key, &slot);
2136 if (ret < 0)
2137 goto done;
2138
2139 if (level == 0) {
2140 p->slots[level] = slot;
2141 unlock_up(p, level, lowest_unlock, 0, NULL);
2142 goto done;
2143 }
2144
2145 if (ret && slot > 0) {
2146 dec = 1;
2147 slot--;
2148 }
2149 p->slots[level] = slot;
2150 unlock_up(p, level, lowest_unlock, 0, NULL);
2151
2152 if (level == lowest_level) {
2153 if (dec)
2154 p->slots[level]++;
2155 goto done;
2156 }
2157
2158 err = read_block_for_search(root, p, &b, level, slot, key);
2159 if (err == -EAGAIN)
2160 goto again;
2161 if (err) {
2162 ret = err;
2163 goto done;
2164 }
2165
2166 level = btrfs_header_level(b);
2167 btrfs_tree_read_lock(b);
2168 b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2169 if (!b) {
2170 ret = -ENOMEM;
2171 goto done;
2172 }
2173 p->locks[level] = BTRFS_READ_LOCK;
2174 p->nodes[level] = b;
2175 }
2176 ret = 1;
2177done:
2178 if (ret < 0)
2179 btrfs_release_path(p);
2180
2181 return ret;
2182}
2183
2184/*
2185 * helper to use instead of search slot if no exact match is needed but
2186 * instead the next or previous item should be returned.
2187 * When find_higher is true, the next higher item is returned, the next lower
2188 * otherwise.
2189 * When return_any and find_higher are both true, and no higher item is found,
2190 * return the next lower instead.
2191 * When return_any is true and find_higher is false, and no lower item is found,
2192 * return the next higher instead.
2193 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2194 * < 0 on error
2195 */
2196int btrfs_search_slot_for_read(struct btrfs_root *root,
2197 const struct btrfs_key *key,
2198 struct btrfs_path *p, int find_higher,
2199 int return_any)
2200{
2201 int ret;
2202 struct extent_buffer *leaf;
2203
2204again:
2205 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2206 if (ret <= 0)
2207 return ret;
2208 /*
2209 * a return value of 1 means the path is at the position where the
2210 * item should be inserted. Normally this is the next bigger item,
2211 * but in case the previous item is the last in a leaf, path points
2212 * to the first free slot in the previous leaf, i.e. at an invalid
2213 * item.
2214 */
2215 leaf = p->nodes[0];
2216
2217 if (find_higher) {
2218 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2219 ret = btrfs_next_leaf(root, p);
2220 if (ret <= 0)
2221 return ret;
2222 if (!return_any)
2223 return 1;
2224 /*
2225 * no higher item found, return the next
2226 * lower instead
2227 */
2228 return_any = 0;
2229 find_higher = 0;
2230 btrfs_release_path(p);
2231 goto again;
2232 }
2233 } else {
2234 if (p->slots[0] == 0) {
2235 ret = btrfs_prev_leaf(root, p);
2236 if (ret < 0)
2237 return ret;
2238 if (!ret) {
2239 leaf = p->nodes[0];
2240 if (p->slots[0] == btrfs_header_nritems(leaf))
2241 p->slots[0]--;
2242 return 0;
2243 }
2244 if (!return_any)
2245 return 1;
2246 /*
2247 * no lower item found, return the next
2248 * higher instead
2249 */
2250 return_any = 0;
2251 find_higher = 1;
2252 btrfs_release_path(p);
2253 goto again;
2254 } else {
2255 --p->slots[0];
2256 }
2257 }
2258 return 0;
2259}
2260
2261/*
2262 * Execute search and call btrfs_previous_item to traverse backwards if the item
2263 * was not found.
2264 *
2265 * Return 0 if found, 1 if not found and < 0 if error.
2266 */
2267int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2268 struct btrfs_path *path)
2269{
2270 int ret;
2271
2272 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2273 if (ret > 0)
2274 ret = btrfs_previous_item(root, path, key->objectid, key->type);
2275
2276 if (ret == 0)
2277 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2278
2279 return ret;
2280}
2281
2282/*
2283 * adjust the pointers going up the tree, starting at level
2284 * making sure the right key of each node is points to 'key'.
2285 * This is used after shifting pointers to the left, so it stops
2286 * fixing up pointers when a given leaf/node is not in slot 0 of the
2287 * higher levels
2288 *
2289 */
2290static void fixup_low_keys(struct btrfs_path *path,
2291 struct btrfs_disk_key *key, int level)
2292{
2293 int i;
2294 struct extent_buffer *t;
2295 int ret;
2296
2297 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2298 int tslot = path->slots[i];
2299
2300 if (!path->nodes[i])
2301 break;
2302 t = path->nodes[i];
2303 ret = btrfs_tree_mod_log_insert_key(t, tslot,
2304 BTRFS_MOD_LOG_KEY_REPLACE, GFP_ATOMIC);
2305 BUG_ON(ret < 0);
2306 btrfs_set_node_key(t, key, tslot);
2307 btrfs_mark_buffer_dirty(path->nodes[i]);
2308 if (tslot != 0)
2309 break;
2310 }
2311}
2312
2313/*
2314 * update item key.
2315 *
2316 * This function isn't completely safe. It's the caller's responsibility
2317 * that the new key won't break the order
2318 */
2319void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2320 struct btrfs_path *path,
2321 const struct btrfs_key *new_key)
2322{
2323 struct btrfs_disk_key disk_key;
2324 struct extent_buffer *eb;
2325 int slot;
2326
2327 eb = path->nodes[0];
2328 slot = path->slots[0];
2329 if (slot > 0) {
2330 btrfs_item_key(eb, &disk_key, slot - 1);
2331 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2332 btrfs_crit(fs_info,
2333 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2334 slot, btrfs_disk_key_objectid(&disk_key),
2335 btrfs_disk_key_type(&disk_key),
2336 btrfs_disk_key_offset(&disk_key),
2337 new_key->objectid, new_key->type,
2338 new_key->offset);
2339 btrfs_print_leaf(eb);
2340 BUG();
2341 }
2342 }
2343 if (slot < btrfs_header_nritems(eb) - 1) {
2344 btrfs_item_key(eb, &disk_key, slot + 1);
2345 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2346 btrfs_crit(fs_info,
2347 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2348 slot, btrfs_disk_key_objectid(&disk_key),
2349 btrfs_disk_key_type(&disk_key),
2350 btrfs_disk_key_offset(&disk_key),
2351 new_key->objectid, new_key->type,
2352 new_key->offset);
2353 btrfs_print_leaf(eb);
2354 BUG();
2355 }
2356 }
2357
2358 btrfs_cpu_key_to_disk(&disk_key, new_key);
2359 btrfs_set_item_key(eb, &disk_key, slot);
2360 btrfs_mark_buffer_dirty(eb);
2361 if (slot == 0)
2362 fixup_low_keys(path, &disk_key, 1);
2363}
2364
2365/*
2366 * Check key order of two sibling extent buffers.
2367 *
2368 * Return true if something is wrong.
2369 * Return false if everything is fine.
2370 *
2371 * Tree-checker only works inside one tree block, thus the following
2372 * corruption can not be detected by tree-checker:
2373 *
2374 * Leaf @left | Leaf @right
2375 * --------------------------------------------------------------
2376 * | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 |
2377 *
2378 * Key f6 in leaf @left itself is valid, but not valid when the next
2379 * key in leaf @right is 7.
2380 * This can only be checked at tree block merge time.
2381 * And since tree checker has ensured all key order in each tree block
2382 * is correct, we only need to bother the last key of @left and the first
2383 * key of @right.
2384 */
2385static bool check_sibling_keys(struct extent_buffer *left,
2386 struct extent_buffer *right)
2387{
2388 struct btrfs_key left_last;
2389 struct btrfs_key right_first;
2390 int level = btrfs_header_level(left);
2391 int nr_left = btrfs_header_nritems(left);
2392 int nr_right = btrfs_header_nritems(right);
2393
2394 /* No key to check in one of the tree blocks */
2395 if (!nr_left || !nr_right)
2396 return false;
2397
2398 if (level) {
2399 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2400 btrfs_node_key_to_cpu(right, &right_first, 0);
2401 } else {
2402 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2403 btrfs_item_key_to_cpu(right, &right_first, 0);
2404 }
2405
2406 if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
2407 btrfs_crit(left->fs_info,
2408"bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2409 left_last.objectid, left_last.type,
2410 left_last.offset, right_first.objectid,
2411 right_first.type, right_first.offset);
2412 return true;
2413 }
2414 return false;
2415}
2416
2417/*
2418 * try to push data from one node into the next node left in the
2419 * tree.
2420 *
2421 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2422 * error, and > 0 if there was no room in the left hand block.
2423 */
2424static int push_node_left(struct btrfs_trans_handle *trans,
2425 struct extent_buffer *dst,
2426 struct extent_buffer *src, int empty)
2427{
2428 struct btrfs_fs_info *fs_info = trans->fs_info;
2429 int push_items = 0;
2430 int src_nritems;
2431 int dst_nritems;
2432 int ret = 0;
2433
2434 src_nritems = btrfs_header_nritems(src);
2435 dst_nritems = btrfs_header_nritems(dst);
2436 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2437 WARN_ON(btrfs_header_generation(src) != trans->transid);
2438 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2439
2440 if (!empty && src_nritems <= 8)
2441 return 1;
2442
2443 if (push_items <= 0)
2444 return 1;
2445
2446 if (empty) {
2447 push_items = min(src_nritems, push_items);
2448 if (push_items < src_nritems) {
2449 /* leave at least 8 pointers in the node if
2450 * we aren't going to empty it
2451 */
2452 if (src_nritems - push_items < 8) {
2453 if (push_items <= 8)
2454 return 1;
2455 push_items -= 8;
2456 }
2457 }
2458 } else
2459 push_items = min(src_nritems - 8, push_items);
2460
2461 /* dst is the left eb, src is the middle eb */
2462 if (check_sibling_keys(dst, src)) {
2463 ret = -EUCLEAN;
2464 btrfs_abort_transaction(trans, ret);
2465 return ret;
2466 }
2467 ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2468 if (ret) {
2469 btrfs_abort_transaction(trans, ret);
2470 return ret;
2471 }
2472 copy_extent_buffer(dst, src,
2473 btrfs_node_key_ptr_offset(dst_nritems),
2474 btrfs_node_key_ptr_offset(0),
2475 push_items * sizeof(struct btrfs_key_ptr));
2476
2477 if (push_items < src_nritems) {
2478 /*
2479 * Don't call btrfs_tree_mod_log_insert_move() here, key removal
2480 * was already fully logged by btrfs_tree_mod_log_eb_copy() above.
2481 */
2482 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2483 btrfs_node_key_ptr_offset(push_items),
2484 (src_nritems - push_items) *
2485 sizeof(struct btrfs_key_ptr));
2486 }
2487 btrfs_set_header_nritems(src, src_nritems - push_items);
2488 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2489 btrfs_mark_buffer_dirty(src);
2490 btrfs_mark_buffer_dirty(dst);
2491
2492 return ret;
2493}
2494
2495/*
2496 * try to push data from one node into the next node right in the
2497 * tree.
2498 *
2499 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2500 * error, and > 0 if there was no room in the right hand block.
2501 *
2502 * this will only push up to 1/2 the contents of the left node over
2503 */
2504static int balance_node_right(struct btrfs_trans_handle *trans,
2505 struct extent_buffer *dst,
2506 struct extent_buffer *src)
2507{
2508 struct btrfs_fs_info *fs_info = trans->fs_info;
2509 int push_items = 0;
2510 int max_push;
2511 int src_nritems;
2512 int dst_nritems;
2513 int ret = 0;
2514
2515 WARN_ON(btrfs_header_generation(src) != trans->transid);
2516 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2517
2518 src_nritems = btrfs_header_nritems(src);
2519 dst_nritems = btrfs_header_nritems(dst);
2520 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2521 if (push_items <= 0)
2522 return 1;
2523
2524 if (src_nritems < 4)
2525 return 1;
2526
2527 max_push = src_nritems / 2 + 1;
2528 /* don't try to empty the node */
2529 if (max_push >= src_nritems)
2530 return 1;
2531
2532 if (max_push < push_items)
2533 push_items = max_push;
2534
2535 /* dst is the right eb, src is the middle eb */
2536 if (check_sibling_keys(src, dst)) {
2537 ret = -EUCLEAN;
2538 btrfs_abort_transaction(trans, ret);
2539 return ret;
2540 }
2541 ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
2542 BUG_ON(ret < 0);
2543 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2544 btrfs_node_key_ptr_offset(0),
2545 (dst_nritems) *
2546 sizeof(struct btrfs_key_ptr));
2547
2548 ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2549 push_items);
2550 if (ret) {
2551 btrfs_abort_transaction(trans, ret);
2552 return ret;
2553 }
2554 copy_extent_buffer(dst, src,
2555 btrfs_node_key_ptr_offset(0),
2556 btrfs_node_key_ptr_offset(src_nritems - push_items),
2557 push_items * sizeof(struct btrfs_key_ptr));
2558
2559 btrfs_set_header_nritems(src, src_nritems - push_items);
2560 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2561
2562 btrfs_mark_buffer_dirty(src);
2563 btrfs_mark_buffer_dirty(dst);
2564
2565 return ret;
2566}
2567
2568/*
2569 * helper function to insert a new root level in the tree.
2570 * A new node is allocated, and a single item is inserted to
2571 * point to the existing root
2572 *
2573 * returns zero on success or < 0 on failure.
2574 */
2575static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2576 struct btrfs_root *root,
2577 struct btrfs_path *path, int level)
2578{
2579 struct btrfs_fs_info *fs_info = root->fs_info;
2580 u64 lower_gen;
2581 struct extent_buffer *lower;
2582 struct extent_buffer *c;
2583 struct extent_buffer *old;
2584 struct btrfs_disk_key lower_key;
2585 int ret;
2586
2587 BUG_ON(path->nodes[level]);
2588 BUG_ON(path->nodes[level-1] != root->node);
2589
2590 lower = path->nodes[level-1];
2591 if (level == 1)
2592 btrfs_item_key(lower, &lower_key, 0);
2593 else
2594 btrfs_node_key(lower, &lower_key, 0);
2595
2596 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2597 &lower_key, level, root->node->start, 0,
2598 BTRFS_NESTING_NEW_ROOT);
2599 if (IS_ERR(c))
2600 return PTR_ERR(c);
2601
2602 root_add_used(root, fs_info->nodesize);
2603
2604 btrfs_set_header_nritems(c, 1);
2605 btrfs_set_node_key(c, &lower_key, 0);
2606 btrfs_set_node_blockptr(c, 0, lower->start);
2607 lower_gen = btrfs_header_generation(lower);
2608 WARN_ON(lower_gen != trans->transid);
2609
2610 btrfs_set_node_ptr_generation(c, 0, lower_gen);
2611
2612 btrfs_mark_buffer_dirty(c);
2613
2614 old = root->node;
2615 ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2616 BUG_ON(ret < 0);
2617 rcu_assign_pointer(root->node, c);
2618
2619 /* the super has an extra ref to root->node */
2620 free_extent_buffer(old);
2621
2622 add_root_to_dirty_list(root);
2623 atomic_inc(&c->refs);
2624 path->nodes[level] = c;
2625 path->locks[level] = BTRFS_WRITE_LOCK;
2626 path->slots[level] = 0;
2627 return 0;
2628}
2629
2630/*
2631 * worker function to insert a single pointer in a node.
2632 * the node should have enough room for the pointer already
2633 *
2634 * slot and level indicate where you want the key to go, and
2635 * blocknr is the block the key points to.
2636 */
2637static void insert_ptr(struct btrfs_trans_handle *trans,
2638 struct btrfs_path *path,
2639 struct btrfs_disk_key *key, u64 bytenr,
2640 int slot, int level)
2641{
2642 struct extent_buffer *lower;
2643 int nritems;
2644 int ret;
2645
2646 BUG_ON(!path->nodes[level]);
2647 btrfs_assert_tree_write_locked(path->nodes[level]);
2648 lower = path->nodes[level];
2649 nritems = btrfs_header_nritems(lower);
2650 BUG_ON(slot > nritems);
2651 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2652 if (slot != nritems) {
2653 if (level) {
2654 ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2655 slot, nritems - slot);
2656 BUG_ON(ret < 0);
2657 }
2658 memmove_extent_buffer(lower,
2659 btrfs_node_key_ptr_offset(slot + 1),
2660 btrfs_node_key_ptr_offset(slot),
2661 (nritems - slot) * sizeof(struct btrfs_key_ptr));
2662 }
2663 if (level) {
2664 ret = btrfs_tree_mod_log_insert_key(lower, slot,
2665 BTRFS_MOD_LOG_KEY_ADD, GFP_NOFS);
2666 BUG_ON(ret < 0);
2667 }
2668 btrfs_set_node_key(lower, key, slot);
2669 btrfs_set_node_blockptr(lower, slot, bytenr);
2670 WARN_ON(trans->transid == 0);
2671 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2672 btrfs_set_header_nritems(lower, nritems + 1);
2673 btrfs_mark_buffer_dirty(lower);
2674}
2675
2676/*
2677 * split the node at the specified level in path in two.
2678 * The path is corrected to point to the appropriate node after the split
2679 *
2680 * Before splitting this tries to make some room in the node by pushing
2681 * left and right, if either one works, it returns right away.
2682 *
2683 * returns 0 on success and < 0 on failure
2684 */
2685static noinline int split_node(struct btrfs_trans_handle *trans,
2686 struct btrfs_root *root,
2687 struct btrfs_path *path, int level)
2688{
2689 struct btrfs_fs_info *fs_info = root->fs_info;
2690 struct extent_buffer *c;
2691 struct extent_buffer *split;
2692 struct btrfs_disk_key disk_key;
2693 int mid;
2694 int ret;
2695 u32 c_nritems;
2696
2697 c = path->nodes[level];
2698 WARN_ON(btrfs_header_generation(c) != trans->transid);
2699 if (c == root->node) {
2700 /*
2701 * trying to split the root, lets make a new one
2702 *
2703 * tree mod log: We don't log_removal old root in
2704 * insert_new_root, because that root buffer will be kept as a
2705 * normal node. We are going to log removal of half of the
2706 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2707 * holding a tree lock on the buffer, which is why we cannot
2708 * race with other tree_mod_log users.
2709 */
2710 ret = insert_new_root(trans, root, path, level + 1);
2711 if (ret)
2712 return ret;
2713 } else {
2714 ret = push_nodes_for_insert(trans, root, path, level);
2715 c = path->nodes[level];
2716 if (!ret && btrfs_header_nritems(c) <
2717 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
2718 return 0;
2719 if (ret < 0)
2720 return ret;
2721 }
2722
2723 c_nritems = btrfs_header_nritems(c);
2724 mid = (c_nritems + 1) / 2;
2725 btrfs_node_key(c, &disk_key, mid);
2726
2727 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2728 &disk_key, level, c->start, 0,
2729 BTRFS_NESTING_SPLIT);
2730 if (IS_ERR(split))
2731 return PTR_ERR(split);
2732
2733 root_add_used(root, fs_info->nodesize);
2734 ASSERT(btrfs_header_level(c) == level);
2735
2736 ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
2737 if (ret) {
2738 btrfs_abort_transaction(trans, ret);
2739 return ret;
2740 }
2741 copy_extent_buffer(split, c,
2742 btrfs_node_key_ptr_offset(0),
2743 btrfs_node_key_ptr_offset(mid),
2744 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2745 btrfs_set_header_nritems(split, c_nritems - mid);
2746 btrfs_set_header_nritems(c, mid);
2747
2748 btrfs_mark_buffer_dirty(c);
2749 btrfs_mark_buffer_dirty(split);
2750
2751 insert_ptr(trans, path, &disk_key, split->start,
2752 path->slots[level + 1] + 1, level + 1);
2753
2754 if (path->slots[level] >= mid) {
2755 path->slots[level] -= mid;
2756 btrfs_tree_unlock(c);
2757 free_extent_buffer(c);
2758 path->nodes[level] = split;
2759 path->slots[level + 1] += 1;
2760 } else {
2761 btrfs_tree_unlock(split);
2762 free_extent_buffer(split);
2763 }
2764 return 0;
2765}
2766
2767/*
2768 * how many bytes are required to store the items in a leaf. start
2769 * and nr indicate which items in the leaf to check. This totals up the
2770 * space used both by the item structs and the item data
2771 */
2772static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2773{
2774 int data_len;
2775 int nritems = btrfs_header_nritems(l);
2776 int end = min(nritems, start + nr) - 1;
2777
2778 if (!nr)
2779 return 0;
2780 data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
2781 data_len = data_len - btrfs_item_offset(l, end);
2782 data_len += sizeof(struct btrfs_item) * nr;
2783 WARN_ON(data_len < 0);
2784 return data_len;
2785}
2786
2787/*
2788 * The space between the end of the leaf items and
2789 * the start of the leaf data. IOW, how much room
2790 * the leaf has left for both items and data
2791 */
2792noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
2793{
2794 struct btrfs_fs_info *fs_info = leaf->fs_info;
2795 int nritems = btrfs_header_nritems(leaf);
2796 int ret;
2797
2798 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
2799 if (ret < 0) {
2800 btrfs_crit(fs_info,
2801 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
2802 ret,
2803 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
2804 leaf_space_used(leaf, 0, nritems), nritems);
2805 }
2806 return ret;
2807}
2808
2809/*
2810 * min slot controls the lowest index we're willing to push to the
2811 * right. We'll push up to and including min_slot, but no lower
2812 */
2813static noinline int __push_leaf_right(struct btrfs_path *path,
2814 int data_size, int empty,
2815 struct extent_buffer *right,
2816 int free_space, u32 left_nritems,
2817 u32 min_slot)
2818{
2819 struct btrfs_fs_info *fs_info = right->fs_info;
2820 struct extent_buffer *left = path->nodes[0];
2821 struct extent_buffer *upper = path->nodes[1];
2822 struct btrfs_map_token token;
2823 struct btrfs_disk_key disk_key;
2824 int slot;
2825 u32 i;
2826 int push_space = 0;
2827 int push_items = 0;
2828 u32 nr;
2829 u32 right_nritems;
2830 u32 data_end;
2831 u32 this_item_size;
2832
2833 if (empty)
2834 nr = 0;
2835 else
2836 nr = max_t(u32, 1, min_slot);
2837
2838 if (path->slots[0] >= left_nritems)
2839 push_space += data_size;
2840
2841 slot = path->slots[1];
2842 i = left_nritems - 1;
2843 while (i >= nr) {
2844 if (!empty && push_items > 0) {
2845 if (path->slots[0] > i)
2846 break;
2847 if (path->slots[0] == i) {
2848 int space = btrfs_leaf_free_space(left);
2849
2850 if (space + push_space * 2 > free_space)
2851 break;
2852 }
2853 }
2854
2855 if (path->slots[0] == i)
2856 push_space += data_size;
2857
2858 this_item_size = btrfs_item_size(left, i);
2859 if (this_item_size + sizeof(struct btrfs_item) +
2860 push_space > free_space)
2861 break;
2862
2863 push_items++;
2864 push_space += this_item_size + sizeof(struct btrfs_item);
2865 if (i == 0)
2866 break;
2867 i--;
2868 }
2869
2870 if (push_items == 0)
2871 goto out_unlock;
2872
2873 WARN_ON(!empty && push_items == left_nritems);
2874
2875 /* push left to right */
2876 right_nritems = btrfs_header_nritems(right);
2877
2878 push_space = btrfs_item_data_end(left, left_nritems - push_items);
2879 push_space -= leaf_data_end(left);
2880
2881 /* make room in the right data area */
2882 data_end = leaf_data_end(right);
2883 memmove_extent_buffer(right,
2884 BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
2885 BTRFS_LEAF_DATA_OFFSET + data_end,
2886 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
2887
2888 /* copy from the left data area */
2889 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
2890 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
2891 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
2892 push_space);
2893
2894 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2895 btrfs_item_nr_offset(0),
2896 right_nritems * sizeof(struct btrfs_item));
2897
2898 /* copy the items from left to right */
2899 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2900 btrfs_item_nr_offset(left_nritems - push_items),
2901 push_items * sizeof(struct btrfs_item));
2902
2903 /* update the item pointers */
2904 btrfs_init_map_token(&token, right);
2905 right_nritems += push_items;
2906 btrfs_set_header_nritems(right, right_nritems);
2907 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
2908 for (i = 0; i < right_nritems; i++) {
2909 push_space -= btrfs_token_item_size(&token, i);
2910 btrfs_set_token_item_offset(&token, i, push_space);
2911 }
2912
2913 left_nritems -= push_items;
2914 btrfs_set_header_nritems(left, left_nritems);
2915
2916 if (left_nritems)
2917 btrfs_mark_buffer_dirty(left);
2918 else
2919 btrfs_clean_tree_block(left);
2920
2921 btrfs_mark_buffer_dirty(right);
2922
2923 btrfs_item_key(right, &disk_key, 0);
2924 btrfs_set_node_key(upper, &disk_key, slot + 1);
2925 btrfs_mark_buffer_dirty(upper);
2926
2927 /* then fixup the leaf pointer in the path */
2928 if (path->slots[0] >= left_nritems) {
2929 path->slots[0] -= left_nritems;
2930 if (btrfs_header_nritems(path->nodes[0]) == 0)
2931 btrfs_clean_tree_block(path->nodes[0]);
2932 btrfs_tree_unlock(path->nodes[0]);
2933 free_extent_buffer(path->nodes[0]);
2934 path->nodes[0] = right;
2935 path->slots[1] += 1;
2936 } else {
2937 btrfs_tree_unlock(right);
2938 free_extent_buffer(right);
2939 }
2940 return 0;
2941
2942out_unlock:
2943 btrfs_tree_unlock(right);
2944 free_extent_buffer(right);
2945 return 1;
2946}
2947
2948/*
2949 * push some data in the path leaf to the right, trying to free up at
2950 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2951 *
2952 * returns 1 if the push failed because the other node didn't have enough
2953 * room, 0 if everything worked out and < 0 if there were major errors.
2954 *
2955 * this will push starting from min_slot to the end of the leaf. It won't
2956 * push any slot lower than min_slot
2957 */
2958static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2959 *root, struct btrfs_path *path,
2960 int min_data_size, int data_size,
2961 int empty, u32 min_slot)
2962{
2963 struct extent_buffer *left = path->nodes[0];
2964 struct extent_buffer *right;
2965 struct extent_buffer *upper;
2966 int slot;
2967 int free_space;
2968 u32 left_nritems;
2969 int ret;
2970
2971 if (!path->nodes[1])
2972 return 1;
2973
2974 slot = path->slots[1];
2975 upper = path->nodes[1];
2976 if (slot >= btrfs_header_nritems(upper) - 1)
2977 return 1;
2978
2979 btrfs_assert_tree_write_locked(path->nodes[1]);
2980
2981 right = btrfs_read_node_slot(upper, slot + 1);
2982 /*
2983 * slot + 1 is not valid or we fail to read the right node,
2984 * no big deal, just return.
2985 */
2986 if (IS_ERR(right))
2987 return 1;
2988
2989 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
2990
2991 free_space = btrfs_leaf_free_space(right);
2992 if (free_space < data_size)
2993 goto out_unlock;
2994
2995 ret = btrfs_cow_block(trans, root, right, upper,
2996 slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
2997 if (ret)
2998 goto out_unlock;
2999
3000 left_nritems = btrfs_header_nritems(left);
3001 if (left_nritems == 0)
3002 goto out_unlock;
3003
3004 if (check_sibling_keys(left, right)) {
3005 ret = -EUCLEAN;
3006 btrfs_tree_unlock(right);
3007 free_extent_buffer(right);
3008 return ret;
3009 }
3010 if (path->slots[0] == left_nritems && !empty) {
3011 /* Key greater than all keys in the leaf, right neighbor has
3012 * enough room for it and we're not emptying our leaf to delete
3013 * it, therefore use right neighbor to insert the new item and
3014 * no need to touch/dirty our left leaf. */
3015 btrfs_tree_unlock(left);
3016 free_extent_buffer(left);
3017 path->nodes[0] = right;
3018 path->slots[0] = 0;
3019 path->slots[1]++;
3020 return 0;
3021 }
3022
3023 return __push_leaf_right(path, min_data_size, empty,
3024 right, free_space, left_nritems, min_slot);
3025out_unlock:
3026 btrfs_tree_unlock(right);
3027 free_extent_buffer(right);
3028 return 1;
3029}
3030
3031/*
3032 * push some data in the path leaf to the left, trying to free up at
3033 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3034 *
3035 * max_slot can put a limit on how far into the leaf we'll push items. The
3036 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3037 * items
3038 */
3039static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3040 int empty, struct extent_buffer *left,
3041 int free_space, u32 right_nritems,
3042 u32 max_slot)
3043{
3044 struct btrfs_fs_info *fs_info = left->fs_info;
3045 struct btrfs_disk_key disk_key;
3046 struct extent_buffer *right = path->nodes[0];
3047 int i;
3048 int push_space = 0;
3049 int push_items = 0;
3050 u32 old_left_nritems;
3051 u32 nr;
3052 int ret = 0;
3053 u32 this_item_size;
3054 u32 old_left_item_size;
3055 struct btrfs_map_token token;
3056
3057 if (empty)
3058 nr = min(right_nritems, max_slot);
3059 else
3060 nr = min(right_nritems - 1, max_slot);
3061
3062 for (i = 0; i < nr; i++) {
3063 if (!empty && push_items > 0) {
3064 if (path->slots[0] < i)
3065 break;
3066 if (path->slots[0] == i) {
3067 int space = btrfs_leaf_free_space(right);
3068
3069 if (space + push_space * 2 > free_space)
3070 break;
3071 }
3072 }
3073
3074 if (path->slots[0] == i)
3075 push_space += data_size;
3076
3077 this_item_size = btrfs_item_size(right, i);
3078 if (this_item_size + sizeof(struct btrfs_item) + push_space >
3079 free_space)
3080 break;
3081
3082 push_items++;
3083 push_space += this_item_size + sizeof(struct btrfs_item);
3084 }
3085
3086 if (push_items == 0) {
3087 ret = 1;
3088 goto out;
3089 }
3090 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3091
3092 /* push data from right to left */
3093 copy_extent_buffer(left, right,
3094 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3095 btrfs_item_nr_offset(0),
3096 push_items * sizeof(struct btrfs_item));
3097
3098 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3099 btrfs_item_offset(right, push_items - 1);
3100
3101 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3102 leaf_data_end(left) - push_space,
3103 BTRFS_LEAF_DATA_OFFSET +
3104 btrfs_item_offset(right, push_items - 1),
3105 push_space);
3106 old_left_nritems = btrfs_header_nritems(left);
3107 BUG_ON(old_left_nritems <= 0);
3108
3109 btrfs_init_map_token(&token, left);
3110 old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3111 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3112 u32 ioff;
3113
3114 ioff = btrfs_token_item_offset(&token, i);
3115 btrfs_set_token_item_offset(&token, i,
3116 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3117 }
3118 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3119
3120 /* fixup right node */
3121 if (push_items > right_nritems)
3122 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3123 right_nritems);
3124
3125 if (push_items < right_nritems) {
3126 push_space = btrfs_item_offset(right, push_items - 1) -
3127 leaf_data_end(right);
3128 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3129 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3130 BTRFS_LEAF_DATA_OFFSET +
3131 leaf_data_end(right), push_space);
3132
3133 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3134 btrfs_item_nr_offset(push_items),
3135 (btrfs_header_nritems(right) - push_items) *
3136 sizeof(struct btrfs_item));
3137 }
3138
3139 btrfs_init_map_token(&token, right);
3140 right_nritems -= push_items;
3141 btrfs_set_header_nritems(right, right_nritems);
3142 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3143 for (i = 0; i < right_nritems; i++) {
3144 push_space = push_space - btrfs_token_item_size(&token, i);
3145 btrfs_set_token_item_offset(&token, i, push_space);
3146 }
3147
3148 btrfs_mark_buffer_dirty(left);
3149 if (right_nritems)
3150 btrfs_mark_buffer_dirty(right);
3151 else
3152 btrfs_clean_tree_block(right);
3153
3154 btrfs_item_key(right, &disk_key, 0);
3155 fixup_low_keys(path, &disk_key, 1);
3156
3157 /* then fixup the leaf pointer in the path */
3158 if (path->slots[0] < push_items) {
3159 path->slots[0] += old_left_nritems;
3160 btrfs_tree_unlock(path->nodes[0]);
3161 free_extent_buffer(path->nodes[0]);
3162 path->nodes[0] = left;
3163 path->slots[1] -= 1;
3164 } else {
3165 btrfs_tree_unlock(left);
3166 free_extent_buffer(left);
3167 path->slots[0] -= push_items;
3168 }
3169 BUG_ON(path->slots[0] < 0);
3170 return ret;
3171out:
3172 btrfs_tree_unlock(left);
3173 free_extent_buffer(left);
3174 return ret;
3175}
3176
3177/*
3178 * push some data in the path leaf to the left, trying to free up at
3179 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3180 *
3181 * max_slot can put a limit on how far into the leaf we'll push items. The
3182 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3183 * items
3184 */
3185static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3186 *root, struct btrfs_path *path, int min_data_size,
3187 int data_size, int empty, u32 max_slot)
3188{
3189 struct extent_buffer *right = path->nodes[0];
3190 struct extent_buffer *left;
3191 int slot;
3192 int free_space;
3193 u32 right_nritems;
3194 int ret = 0;
3195
3196 slot = path->slots[1];
3197 if (slot == 0)
3198 return 1;
3199 if (!path->nodes[1])
3200 return 1;
3201
3202 right_nritems = btrfs_header_nritems(right);
3203 if (right_nritems == 0)
3204 return 1;
3205
3206 btrfs_assert_tree_write_locked(path->nodes[1]);
3207
3208 left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3209 /*
3210 * slot - 1 is not valid or we fail to read the left node,
3211 * no big deal, just return.
3212 */
3213 if (IS_ERR(left))
3214 return 1;
3215
3216 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3217
3218 free_space = btrfs_leaf_free_space(left);
3219 if (free_space < data_size) {
3220 ret = 1;
3221 goto out;
3222 }
3223
3224 ret = btrfs_cow_block(trans, root, left,
3225 path->nodes[1], slot - 1, &left,
3226 BTRFS_NESTING_LEFT_COW);
3227 if (ret) {
3228 /* we hit -ENOSPC, but it isn't fatal here */
3229 if (ret == -ENOSPC)
3230 ret = 1;
3231 goto out;
3232 }
3233
3234 if (check_sibling_keys(left, right)) {
3235 ret = -EUCLEAN;
3236 goto out;
3237 }
3238 return __push_leaf_left(path, min_data_size,
3239 empty, left, free_space, right_nritems,
3240 max_slot);
3241out:
3242 btrfs_tree_unlock(left);
3243 free_extent_buffer(left);
3244 return ret;
3245}
3246
3247/*
3248 * split the path's leaf in two, making sure there is at least data_size
3249 * available for the resulting leaf level of the path.
3250 */
3251static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3252 struct btrfs_path *path,
3253 struct extent_buffer *l,
3254 struct extent_buffer *right,
3255 int slot, int mid, int nritems)
3256{
3257 struct btrfs_fs_info *fs_info = trans->fs_info;
3258 int data_copy_size;
3259 int rt_data_off;
3260 int i;
3261 struct btrfs_disk_key disk_key;
3262 struct btrfs_map_token token;
3263
3264 nritems = nritems - mid;
3265 btrfs_set_header_nritems(right, nritems);
3266 data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3267
3268 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3269 btrfs_item_nr_offset(mid),
3270 nritems * sizeof(struct btrfs_item));
3271
3272 copy_extent_buffer(right, l,
3273 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
3274 data_copy_size, BTRFS_LEAF_DATA_OFFSET +
3275 leaf_data_end(l), data_copy_size);
3276
3277 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3278
3279 btrfs_init_map_token(&token, right);
3280 for (i = 0; i < nritems; i++) {
3281 u32 ioff;
3282
3283 ioff = btrfs_token_item_offset(&token, i);
3284 btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3285 }
3286
3287 btrfs_set_header_nritems(l, mid);
3288 btrfs_item_key(right, &disk_key, 0);
3289 insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3290
3291 btrfs_mark_buffer_dirty(right);
3292 btrfs_mark_buffer_dirty(l);
3293 BUG_ON(path->slots[0] != slot);
3294
3295 if (mid <= slot) {
3296 btrfs_tree_unlock(path->nodes[0]);
3297 free_extent_buffer(path->nodes[0]);
3298 path->nodes[0] = right;
3299 path->slots[0] -= mid;
3300 path->slots[1] += 1;
3301 } else {
3302 btrfs_tree_unlock(right);
3303 free_extent_buffer(right);
3304 }
3305
3306 BUG_ON(path->slots[0] < 0);
3307}
3308
3309/*
3310 * double splits happen when we need to insert a big item in the middle
3311 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3312 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3313 * A B C
3314 *
3315 * We avoid this by trying to push the items on either side of our target
3316 * into the adjacent leaves. If all goes well we can avoid the double split
3317 * completely.
3318 */
3319static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3320 struct btrfs_root *root,
3321 struct btrfs_path *path,
3322 int data_size)
3323{
3324 int ret;
3325 int progress = 0;
3326 int slot;
3327 u32 nritems;
3328 int space_needed = data_size;
3329
3330 slot = path->slots[0];
3331 if (slot < btrfs_header_nritems(path->nodes[0]))
3332 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3333
3334 /*
3335 * try to push all the items after our slot into the
3336 * right leaf
3337 */
3338 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3339 if (ret < 0)
3340 return ret;
3341
3342 if (ret == 0)
3343 progress++;
3344
3345 nritems = btrfs_header_nritems(path->nodes[0]);
3346 /*
3347 * our goal is to get our slot at the start or end of a leaf. If
3348 * we've done so we're done
3349 */
3350 if (path->slots[0] == 0 || path->slots[0] == nritems)
3351 return 0;
3352
3353 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3354 return 0;
3355
3356 /* try to push all the items before our slot into the next leaf */
3357 slot = path->slots[0];
3358 space_needed = data_size;
3359 if (slot > 0)
3360 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3361 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3362 if (ret < 0)
3363 return ret;
3364
3365 if (ret == 0)
3366 progress++;
3367
3368 if (progress)
3369 return 0;
3370 return 1;
3371}
3372
3373/*
3374 * split the path's leaf in two, making sure there is at least data_size
3375 * available for the resulting leaf level of the path.
3376 *
3377 * returns 0 if all went well and < 0 on failure.
3378 */
3379static noinline int split_leaf(struct btrfs_trans_handle *trans,
3380 struct btrfs_root *root,
3381 const struct btrfs_key *ins_key,
3382 struct btrfs_path *path, int data_size,
3383 int extend)
3384{
3385 struct btrfs_disk_key disk_key;
3386 struct extent_buffer *l;
3387 u32 nritems;
3388 int mid;
3389 int slot;
3390 struct extent_buffer *right;
3391 struct btrfs_fs_info *fs_info = root->fs_info;
3392 int ret = 0;
3393 int wret;
3394 int split;
3395 int num_doubles = 0;
3396 int tried_avoid_double = 0;
3397
3398 l = path->nodes[0];
3399 slot = path->slots[0];
3400 if (extend && data_size + btrfs_item_size(l, slot) +
3401 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3402 return -EOVERFLOW;
3403
3404 /* first try to make some room by pushing left and right */
3405 if (data_size && path->nodes[1]) {
3406 int space_needed = data_size;
3407
3408 if (slot < btrfs_header_nritems(l))
3409 space_needed -= btrfs_leaf_free_space(l);
3410
3411 wret = push_leaf_right(trans, root, path, space_needed,
3412 space_needed, 0, 0);
3413 if (wret < 0)
3414 return wret;
3415 if (wret) {
3416 space_needed = data_size;
3417 if (slot > 0)
3418 space_needed -= btrfs_leaf_free_space(l);
3419 wret = push_leaf_left(trans, root, path, space_needed,
3420 space_needed, 0, (u32)-1);
3421 if (wret < 0)
3422 return wret;
3423 }
3424 l = path->nodes[0];
3425
3426 /* did the pushes work? */
3427 if (btrfs_leaf_free_space(l) >= data_size)
3428 return 0;
3429 }
3430
3431 if (!path->nodes[1]) {
3432 ret = insert_new_root(trans, root, path, 1);
3433 if (ret)
3434 return ret;
3435 }
3436again:
3437 split = 1;
3438 l = path->nodes[0];
3439 slot = path->slots[0];
3440 nritems = btrfs_header_nritems(l);
3441 mid = (nritems + 1) / 2;
3442
3443 if (mid <= slot) {
3444 if (nritems == 1 ||
3445 leaf_space_used(l, mid, nritems - mid) + data_size >
3446 BTRFS_LEAF_DATA_SIZE(fs_info)) {
3447 if (slot >= nritems) {
3448 split = 0;
3449 } else {
3450 mid = slot;
3451 if (mid != nritems &&
3452 leaf_space_used(l, mid, nritems - mid) +
3453 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3454 if (data_size && !tried_avoid_double)
3455 goto push_for_double;
3456 split = 2;
3457 }
3458 }
3459 }
3460 } else {
3461 if (leaf_space_used(l, 0, mid) + data_size >
3462 BTRFS_LEAF_DATA_SIZE(fs_info)) {
3463 if (!extend && data_size && slot == 0) {
3464 split = 0;
3465 } else if ((extend || !data_size) && slot == 0) {
3466 mid = 1;
3467 } else {
3468 mid = slot;
3469 if (mid != nritems &&
3470 leaf_space_used(l, mid, nritems - mid) +
3471 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3472 if (data_size && !tried_avoid_double)
3473 goto push_for_double;
3474 split = 2;
3475 }
3476 }
3477 }
3478 }
3479
3480 if (split == 0)
3481 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3482 else
3483 btrfs_item_key(l, &disk_key, mid);
3484
3485 /*
3486 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3487 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3488 * subclasses, which is 8 at the time of this patch, and we've maxed it
3489 * out. In the future we could add a
3490 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3491 * use BTRFS_NESTING_NEW_ROOT.
3492 */
3493 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3494 &disk_key, 0, l->start, 0,
3495 num_doubles ? BTRFS_NESTING_NEW_ROOT :
3496 BTRFS_NESTING_SPLIT);
3497 if (IS_ERR(right))
3498 return PTR_ERR(right);
3499
3500 root_add_used(root, fs_info->nodesize);
3501
3502 if (split == 0) {
3503 if (mid <= slot) {
3504 btrfs_set_header_nritems(right, 0);
3505 insert_ptr(trans, path, &disk_key,
3506 right->start, path->slots[1] + 1, 1);
3507 btrfs_tree_unlock(path->nodes[0]);
3508 free_extent_buffer(path->nodes[0]);
3509 path->nodes[0] = right;
3510 path->slots[0] = 0;
3511 path->slots[1] += 1;
3512 } else {
3513 btrfs_set_header_nritems(right, 0);
3514 insert_ptr(trans, path, &disk_key,
3515 right->start, path->slots[1], 1);
3516 btrfs_tree_unlock(path->nodes[0]);
3517 free_extent_buffer(path->nodes[0]);
3518 path->nodes[0] = right;
3519 path->slots[0] = 0;
3520 if (path->slots[1] == 0)
3521 fixup_low_keys(path, &disk_key, 1);
3522 }
3523 /*
3524 * We create a new leaf 'right' for the required ins_len and
3525 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3526 * the content of ins_len to 'right'.
3527 */
3528 return ret;
3529 }
3530
3531 copy_for_split(trans, path, l, right, slot, mid, nritems);
3532
3533 if (split == 2) {
3534 BUG_ON(num_doubles != 0);
3535 num_doubles++;
3536 goto again;
3537 }
3538
3539 return 0;
3540
3541push_for_double:
3542 push_for_double_split(trans, root, path, data_size);
3543 tried_avoid_double = 1;
3544 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3545 return 0;
3546 goto again;
3547}
3548
3549static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3550 struct btrfs_root *root,
3551 struct btrfs_path *path, int ins_len)
3552{
3553 struct btrfs_key key;
3554 struct extent_buffer *leaf;
3555 struct btrfs_file_extent_item *fi;
3556 u64 extent_len = 0;
3557 u32 item_size;
3558 int ret;
3559
3560 leaf = path->nodes[0];
3561 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3562
3563 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3564 key.type != BTRFS_EXTENT_CSUM_KEY);
3565
3566 if (btrfs_leaf_free_space(leaf) >= ins_len)
3567 return 0;
3568
3569 item_size = btrfs_item_size(leaf, path->slots[0]);
3570 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3571 fi = btrfs_item_ptr(leaf, path->slots[0],
3572 struct btrfs_file_extent_item);
3573 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3574 }
3575 btrfs_release_path(path);
3576
3577 path->keep_locks = 1;
3578 path->search_for_split = 1;
3579 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3580 path->search_for_split = 0;
3581 if (ret > 0)
3582 ret = -EAGAIN;
3583 if (ret < 0)
3584 goto err;
3585
3586 ret = -EAGAIN;
3587 leaf = path->nodes[0];
3588 /* if our item isn't there, return now */
3589 if (item_size != btrfs_item_size(leaf, path->slots[0]))
3590 goto err;
3591
3592 /* the leaf has changed, it now has room. return now */
3593 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3594 goto err;
3595
3596 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3597 fi = btrfs_item_ptr(leaf, path->slots[0],
3598 struct btrfs_file_extent_item);
3599 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3600 goto err;
3601 }
3602
3603 ret = split_leaf(trans, root, &key, path, ins_len, 1);
3604 if (ret)
3605 goto err;
3606
3607 path->keep_locks = 0;
3608 btrfs_unlock_up_safe(path, 1);
3609 return 0;
3610err:
3611 path->keep_locks = 0;
3612 return ret;
3613}
3614
3615static noinline int split_item(struct btrfs_path *path,
3616 const struct btrfs_key *new_key,
3617 unsigned long split_offset)
3618{
3619 struct extent_buffer *leaf;
3620 int orig_slot, slot;
3621 char *buf;
3622 u32 nritems;
3623 u32 item_size;
3624 u32 orig_offset;
3625 struct btrfs_disk_key disk_key;
3626
3627 leaf = path->nodes[0];
3628 BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
3629
3630 orig_slot = path->slots[0];
3631 orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3632 item_size = btrfs_item_size(leaf, path->slots[0]);
3633
3634 buf = kmalloc(item_size, GFP_NOFS);
3635 if (!buf)
3636 return -ENOMEM;
3637
3638 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3639 path->slots[0]), item_size);
3640
3641 slot = path->slots[0] + 1;
3642 nritems = btrfs_header_nritems(leaf);
3643 if (slot != nritems) {
3644 /* shift the items */
3645 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3646 btrfs_item_nr_offset(slot),
3647 (nritems - slot) * sizeof(struct btrfs_item));
3648 }
3649
3650 btrfs_cpu_key_to_disk(&disk_key, new_key);
3651 btrfs_set_item_key(leaf, &disk_key, slot);
3652
3653 btrfs_set_item_offset(leaf, slot, orig_offset);
3654 btrfs_set_item_size(leaf, slot, item_size - split_offset);
3655
3656 btrfs_set_item_offset(leaf, orig_slot,
3657 orig_offset + item_size - split_offset);
3658 btrfs_set_item_size(leaf, orig_slot, split_offset);
3659
3660 btrfs_set_header_nritems(leaf, nritems + 1);
3661
3662 /* write the data for the start of the original item */
3663 write_extent_buffer(leaf, buf,
3664 btrfs_item_ptr_offset(leaf, path->slots[0]),
3665 split_offset);
3666
3667 /* write the data for the new item */
3668 write_extent_buffer(leaf, buf + split_offset,
3669 btrfs_item_ptr_offset(leaf, slot),
3670 item_size - split_offset);
3671 btrfs_mark_buffer_dirty(leaf);
3672
3673 BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3674 kfree(buf);
3675 return 0;
3676}
3677
3678/*
3679 * This function splits a single item into two items,
3680 * giving 'new_key' to the new item and splitting the
3681 * old one at split_offset (from the start of the item).
3682 *
3683 * The path may be released by this operation. After
3684 * the split, the path is pointing to the old item. The
3685 * new item is going to be in the same node as the old one.
3686 *
3687 * Note, the item being split must be smaller enough to live alone on
3688 * a tree block with room for one extra struct btrfs_item
3689 *
3690 * This allows us to split the item in place, keeping a lock on the
3691 * leaf the entire time.
3692 */
3693int btrfs_split_item(struct btrfs_trans_handle *trans,
3694 struct btrfs_root *root,
3695 struct btrfs_path *path,
3696 const struct btrfs_key *new_key,
3697 unsigned long split_offset)
3698{
3699 int ret;
3700 ret = setup_leaf_for_split(trans, root, path,
3701 sizeof(struct btrfs_item));
3702 if (ret)
3703 return ret;
3704
3705 ret = split_item(path, new_key, split_offset);
3706 return ret;
3707}
3708
3709/*
3710 * make the item pointed to by the path smaller. new_size indicates
3711 * how small to make it, and from_end tells us if we just chop bytes
3712 * off the end of the item or if we shift the item to chop bytes off
3713 * the front.
3714 */
3715void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
3716{
3717 int slot;
3718 struct extent_buffer *leaf;
3719 u32 nritems;
3720 unsigned int data_end;
3721 unsigned int old_data_start;
3722 unsigned int old_size;
3723 unsigned int size_diff;
3724 int i;
3725 struct btrfs_map_token token;
3726
3727 leaf = path->nodes[0];
3728 slot = path->slots[0];
3729
3730 old_size = btrfs_item_size(leaf, slot);
3731 if (old_size == new_size)
3732 return;
3733
3734 nritems = btrfs_header_nritems(leaf);
3735 data_end = leaf_data_end(leaf);
3736
3737 old_data_start = btrfs_item_offset(leaf, slot);
3738
3739 size_diff = old_size - new_size;
3740
3741 BUG_ON(slot < 0);
3742 BUG_ON(slot >= nritems);
3743
3744 /*
3745 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3746 */
3747 /* first correct the data pointers */
3748 btrfs_init_map_token(&token, leaf);
3749 for (i = slot; i < nritems; i++) {
3750 u32 ioff;
3751
3752 ioff = btrfs_token_item_offset(&token, i);
3753 btrfs_set_token_item_offset(&token, i, ioff + size_diff);
3754 }
3755
3756 /* shift the data */
3757 if (from_end) {
3758 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3759 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3760 data_end, old_data_start + new_size - data_end);
3761 } else {
3762 struct btrfs_disk_key disk_key;
3763 u64 offset;
3764
3765 btrfs_item_key(leaf, &disk_key, slot);
3766
3767 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3768 unsigned long ptr;
3769 struct btrfs_file_extent_item *fi;
3770
3771 fi = btrfs_item_ptr(leaf, slot,
3772 struct btrfs_file_extent_item);
3773 fi = (struct btrfs_file_extent_item *)(
3774 (unsigned long)fi - size_diff);
3775
3776 if (btrfs_file_extent_type(leaf, fi) ==
3777 BTRFS_FILE_EXTENT_INLINE) {
3778 ptr = btrfs_item_ptr_offset(leaf, slot);
3779 memmove_extent_buffer(leaf, ptr,
3780 (unsigned long)fi,
3781 BTRFS_FILE_EXTENT_INLINE_DATA_START);
3782 }
3783 }
3784
3785 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3786 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3787 data_end, old_data_start - data_end);
3788
3789 offset = btrfs_disk_key_offset(&disk_key);
3790 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3791 btrfs_set_item_key(leaf, &disk_key, slot);
3792 if (slot == 0)
3793 fixup_low_keys(path, &disk_key, 1);
3794 }
3795
3796 btrfs_set_item_size(leaf, slot, new_size);
3797 btrfs_mark_buffer_dirty(leaf);
3798
3799 if (btrfs_leaf_free_space(leaf) < 0) {
3800 btrfs_print_leaf(leaf);
3801 BUG();
3802 }
3803}
3804
3805/*
3806 * make the item pointed to by the path bigger, data_size is the added size.
3807 */
3808void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
3809{
3810 int slot;
3811 struct extent_buffer *leaf;
3812 u32 nritems;
3813 unsigned int data_end;
3814 unsigned int old_data;
3815 unsigned int old_size;
3816 int i;
3817 struct btrfs_map_token token;
3818
3819 leaf = path->nodes[0];
3820
3821 nritems = btrfs_header_nritems(leaf);
3822 data_end = leaf_data_end(leaf);
3823
3824 if (btrfs_leaf_free_space(leaf) < data_size) {
3825 btrfs_print_leaf(leaf);
3826 BUG();
3827 }
3828 slot = path->slots[0];
3829 old_data = btrfs_item_data_end(leaf, slot);
3830
3831 BUG_ON(slot < 0);
3832 if (slot >= nritems) {
3833 btrfs_print_leaf(leaf);
3834 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
3835 slot, nritems);
3836 BUG();
3837 }
3838
3839 /*
3840 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3841 */
3842 /* first correct the data pointers */
3843 btrfs_init_map_token(&token, leaf);
3844 for (i = slot; i < nritems; i++) {
3845 u32 ioff;
3846
3847 ioff = btrfs_token_item_offset(&token, i);
3848 btrfs_set_token_item_offset(&token, i, ioff - data_size);
3849 }
3850
3851 /* shift the data */
3852 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3853 data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
3854 data_end, old_data - data_end);
3855
3856 data_end = old_data;
3857 old_size = btrfs_item_size(leaf, slot);
3858 btrfs_set_item_size(leaf, slot, old_size + data_size);
3859 btrfs_mark_buffer_dirty(leaf);
3860
3861 if (btrfs_leaf_free_space(leaf) < 0) {
3862 btrfs_print_leaf(leaf);
3863 BUG();
3864 }
3865}
3866
3867/**
3868 * setup_items_for_insert - Helper called before inserting one or more items
3869 * to a leaf. Main purpose is to save stack depth by doing the bulk of the work
3870 * in a function that doesn't call btrfs_search_slot
3871 *
3872 * @root: root we are inserting items to
3873 * @path: points to the leaf/slot where we are going to insert new items
3874 * @batch: information about the batch of items to insert
3875 */
3876static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
3877 const struct btrfs_item_batch *batch)
3878{
3879 struct btrfs_fs_info *fs_info = root->fs_info;
3880 int i;
3881 u32 nritems;
3882 unsigned int data_end;
3883 struct btrfs_disk_key disk_key;
3884 struct extent_buffer *leaf;
3885 int slot;
3886 struct btrfs_map_token token;
3887 u32 total_size;
3888
3889 /*
3890 * Before anything else, update keys in the parent and other ancestors
3891 * if needed, then release the write locks on them, so that other tasks
3892 * can use them while we modify the leaf.
3893 */
3894 if (path->slots[0] == 0) {
3895 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
3896 fixup_low_keys(path, &disk_key, 1);
3897 }
3898 btrfs_unlock_up_safe(path, 1);
3899
3900 leaf = path->nodes[0];
3901 slot = path->slots[0];
3902
3903 nritems = btrfs_header_nritems(leaf);
3904 data_end = leaf_data_end(leaf);
3905 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
3906
3907 if (btrfs_leaf_free_space(leaf) < total_size) {
3908 btrfs_print_leaf(leaf);
3909 btrfs_crit(fs_info, "not enough freespace need %u have %d",
3910 total_size, btrfs_leaf_free_space(leaf));
3911 BUG();
3912 }
3913
3914 btrfs_init_map_token(&token, leaf);
3915 if (slot != nritems) {
3916 unsigned int old_data = btrfs_item_data_end(leaf, slot);
3917
3918 if (old_data < data_end) {
3919 btrfs_print_leaf(leaf);
3920 btrfs_crit(fs_info,
3921 "item at slot %d with data offset %u beyond data end of leaf %u",
3922 slot, old_data, data_end);
3923 BUG();
3924 }
3925 /*
3926 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3927 */
3928 /* first correct the data pointers */
3929 for (i = slot; i < nritems; i++) {
3930 u32 ioff;
3931
3932 ioff = btrfs_token_item_offset(&token, i);
3933 btrfs_set_token_item_offset(&token, i,
3934 ioff - batch->total_data_size);
3935 }
3936 /* shift the items */
3937 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + batch->nr),
3938 btrfs_item_nr_offset(slot),
3939 (nritems - slot) * sizeof(struct btrfs_item));
3940
3941 /* shift the data */
3942 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3943 data_end - batch->total_data_size,
3944 BTRFS_LEAF_DATA_OFFSET + data_end,
3945 old_data - data_end);
3946 data_end = old_data;
3947 }
3948
3949 /* setup the item for the new data */
3950 for (i = 0; i < batch->nr; i++) {
3951 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
3952 btrfs_set_item_key(leaf, &disk_key, slot + i);
3953 data_end -= batch->data_sizes[i];
3954 btrfs_set_token_item_offset(&token, slot + i, data_end);
3955 btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
3956 }
3957
3958 btrfs_set_header_nritems(leaf, nritems + batch->nr);
3959 btrfs_mark_buffer_dirty(leaf);
3960
3961 if (btrfs_leaf_free_space(leaf) < 0) {
3962 btrfs_print_leaf(leaf);
3963 BUG();
3964 }
3965}
3966
3967/*
3968 * Insert a new item into a leaf.
3969 *
3970 * @root: The root of the btree.
3971 * @path: A path pointing to the target leaf and slot.
3972 * @key: The key of the new item.
3973 * @data_size: The size of the data associated with the new key.
3974 */
3975void btrfs_setup_item_for_insert(struct btrfs_root *root,
3976 struct btrfs_path *path,
3977 const struct btrfs_key *key,
3978 u32 data_size)
3979{
3980 struct btrfs_item_batch batch;
3981
3982 batch.keys = key;
3983 batch.data_sizes = &data_size;
3984 batch.total_data_size = data_size;
3985 batch.nr = 1;
3986
3987 setup_items_for_insert(root, path, &batch);
3988}
3989
3990/*
3991 * Given a key and some data, insert items into the tree.
3992 * This does all the path init required, making room in the tree if needed.
3993 */
3994int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3995 struct btrfs_root *root,
3996 struct btrfs_path *path,
3997 const struct btrfs_item_batch *batch)
3998{
3999 int ret = 0;
4000 int slot;
4001 u32 total_size;
4002
4003 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4004 ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4005 if (ret == 0)
4006 return -EEXIST;
4007 if (ret < 0)
4008 return ret;
4009
4010 slot = path->slots[0];
4011 BUG_ON(slot < 0);
4012
4013 setup_items_for_insert(root, path, batch);
4014 return 0;
4015}
4016
4017/*
4018 * Given a key and some data, insert an item into the tree.
4019 * This does all the path init required, making room in the tree if needed.
4020 */
4021int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4022 const struct btrfs_key *cpu_key, void *data,
4023 u32 data_size)
4024{
4025 int ret = 0;
4026 struct btrfs_path *path;
4027 struct extent_buffer *leaf;
4028 unsigned long ptr;
4029
4030 path = btrfs_alloc_path();
4031 if (!path)
4032 return -ENOMEM;
4033 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4034 if (!ret) {
4035 leaf = path->nodes[0];
4036 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4037 write_extent_buffer(leaf, data, ptr, data_size);
4038 btrfs_mark_buffer_dirty(leaf);
4039 }
4040 btrfs_free_path(path);
4041 return ret;
4042}
4043
4044/*
4045 * This function duplicates an item, giving 'new_key' to the new item.
4046 * It guarantees both items live in the same tree leaf and the new item is
4047 * contiguous with the original item.
4048 *
4049 * This allows us to split a file extent in place, keeping a lock on the leaf
4050 * the entire time.
4051 */
4052int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4053 struct btrfs_root *root,
4054 struct btrfs_path *path,
4055 const struct btrfs_key *new_key)
4056{
4057 struct extent_buffer *leaf;
4058 int ret;
4059 u32 item_size;
4060
4061 leaf = path->nodes[0];
4062 item_size = btrfs_item_size(leaf, path->slots[0]);
4063 ret = setup_leaf_for_split(trans, root, path,
4064 item_size + sizeof(struct btrfs_item));
4065 if (ret)
4066 return ret;
4067
4068 path->slots[0]++;
4069 btrfs_setup_item_for_insert(root, path, new_key, item_size);
4070 leaf = path->nodes[0];
4071 memcpy_extent_buffer(leaf,
4072 btrfs_item_ptr_offset(leaf, path->slots[0]),
4073 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4074 item_size);
4075 return 0;
4076}
4077
4078/*
4079 * delete the pointer from a given node.
4080 *
4081 * the tree should have been previously balanced so the deletion does not
4082 * empty a node.
4083 */
4084static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4085 int level, int slot)
4086{
4087 struct extent_buffer *parent = path->nodes[level];
4088 u32 nritems;
4089 int ret;
4090
4091 nritems = btrfs_header_nritems(parent);
4092 if (slot != nritems - 1) {
4093 if (level) {
4094 ret = btrfs_tree_mod_log_insert_move(parent, slot,
4095 slot + 1, nritems - slot - 1);
4096 BUG_ON(ret < 0);
4097 }
4098 memmove_extent_buffer(parent,
4099 btrfs_node_key_ptr_offset(slot),
4100 btrfs_node_key_ptr_offset(slot + 1),
4101 sizeof(struct btrfs_key_ptr) *
4102 (nritems - slot - 1));
4103 } else if (level) {
4104 ret = btrfs_tree_mod_log_insert_key(parent, slot,
4105 BTRFS_MOD_LOG_KEY_REMOVE, GFP_NOFS);
4106 BUG_ON(ret < 0);
4107 }
4108
4109 nritems--;
4110 btrfs_set_header_nritems(parent, nritems);
4111 if (nritems == 0 && parent == root->node) {
4112 BUG_ON(btrfs_header_level(root->node) != 1);
4113 /* just turn the root into a leaf and break */
4114 btrfs_set_header_level(root->node, 0);
4115 } else if (slot == 0) {
4116 struct btrfs_disk_key disk_key;
4117
4118 btrfs_node_key(parent, &disk_key, 0);
4119 fixup_low_keys(path, &disk_key, level + 1);
4120 }
4121 btrfs_mark_buffer_dirty(parent);
4122}
4123
4124/*
4125 * a helper function to delete the leaf pointed to by path->slots[1] and
4126 * path->nodes[1].
4127 *
4128 * This deletes the pointer in path->nodes[1] and frees the leaf
4129 * block extent. zero is returned if it all worked out, < 0 otherwise.
4130 *
4131 * The path must have already been setup for deleting the leaf, including
4132 * all the proper balancing. path->nodes[1] must be locked.
4133 */
4134static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4135 struct btrfs_root *root,
4136 struct btrfs_path *path,
4137 struct extent_buffer *leaf)
4138{
4139 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4140 del_ptr(root, path, 1, path->slots[1]);
4141
4142 /*
4143 * btrfs_free_extent is expensive, we want to make sure we
4144 * aren't holding any locks when we call it
4145 */
4146 btrfs_unlock_up_safe(path, 0);
4147
4148 root_sub_used(root, leaf->len);
4149
4150 atomic_inc(&leaf->refs);
4151 btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4152 free_extent_buffer_stale(leaf);
4153}
4154/*
4155 * delete the item at the leaf level in path. If that empties
4156 * the leaf, remove it from the tree
4157 */
4158int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4159 struct btrfs_path *path, int slot, int nr)
4160{
4161 struct btrfs_fs_info *fs_info = root->fs_info;
4162 struct extent_buffer *leaf;
4163 int ret = 0;
4164 int wret;
4165 u32 nritems;
4166
4167 leaf = path->nodes[0];
4168 nritems = btrfs_header_nritems(leaf);
4169
4170 if (slot + nr != nritems) {
4171 const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4172 const int data_end = leaf_data_end(leaf);
4173 struct btrfs_map_token token;
4174 u32 dsize = 0;
4175 int i;
4176
4177 for (i = 0; i < nr; i++)
4178 dsize += btrfs_item_size(leaf, slot + i);
4179
4180 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4181 data_end + dsize,
4182 BTRFS_LEAF_DATA_OFFSET + data_end,
4183 last_off - data_end);
4184
4185 btrfs_init_map_token(&token, leaf);
4186 for (i = slot + nr; i < nritems; i++) {
4187 u32 ioff;
4188
4189 ioff = btrfs_token_item_offset(&token, i);
4190 btrfs_set_token_item_offset(&token, i, ioff + dsize);
4191 }
4192
4193 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4194 btrfs_item_nr_offset(slot + nr),
4195 sizeof(struct btrfs_item) *
4196 (nritems - slot - nr));
4197 }
4198 btrfs_set_header_nritems(leaf, nritems - nr);
4199 nritems -= nr;
4200
4201 /* delete the leaf if we've emptied it */
4202 if (nritems == 0) {
4203 if (leaf == root->node) {
4204 btrfs_set_header_level(leaf, 0);
4205 } else {
4206 btrfs_clean_tree_block(leaf);
4207 btrfs_del_leaf(trans, root, path, leaf);
4208 }
4209 } else {
4210 int used = leaf_space_used(leaf, 0, nritems);
4211 if (slot == 0) {
4212 struct btrfs_disk_key disk_key;
4213
4214 btrfs_item_key(leaf, &disk_key, 0);
4215 fixup_low_keys(path, &disk_key, 1);
4216 }
4217
4218 /*
4219 * Try to delete the leaf if it is mostly empty. We do this by
4220 * trying to move all its items into its left and right neighbours.
4221 * If we can't move all the items, then we don't delete it - it's
4222 * not ideal, but future insertions might fill the leaf with more
4223 * items, or items from other leaves might be moved later into our
4224 * leaf due to deletions on those leaves.
4225 */
4226 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4227 u32 min_push_space;
4228
4229 /* push_leaf_left fixes the path.
4230 * make sure the path still points to our leaf
4231 * for possible call to del_ptr below
4232 */
4233 slot = path->slots[1];
4234 atomic_inc(&leaf->refs);
4235 /*
4236 * We want to be able to at least push one item to the
4237 * left neighbour leaf, and that's the first item.
4238 */
4239 min_push_space = sizeof(struct btrfs_item) +
4240 btrfs_item_size(leaf, 0);
4241 wret = push_leaf_left(trans, root, path, 0,
4242 min_push_space, 1, (u32)-1);
4243 if (wret < 0 && wret != -ENOSPC)
4244 ret = wret;
4245
4246 if (path->nodes[0] == leaf &&
4247 btrfs_header_nritems(leaf)) {
4248 /*
4249 * If we were not able to push all items from our
4250 * leaf to its left neighbour, then attempt to
4251 * either push all the remaining items to the
4252 * right neighbour or none. There's no advantage
4253 * in pushing only some items, instead of all, as
4254 * it's pointless to end up with a leaf having
4255 * too few items while the neighbours can be full
4256 * or nearly full.
4257 */
4258 nritems = btrfs_header_nritems(leaf);
4259 min_push_space = leaf_space_used(leaf, 0, nritems);
4260 wret = push_leaf_right(trans, root, path, 0,
4261 min_push_space, 1, 0);
4262 if (wret < 0 && wret != -ENOSPC)
4263 ret = wret;
4264 }
4265
4266 if (btrfs_header_nritems(leaf) == 0) {
4267 path->slots[1] = slot;
4268 btrfs_del_leaf(trans, root, path, leaf);
4269 free_extent_buffer(leaf);
4270 ret = 0;
4271 } else {
4272 /* if we're still in the path, make sure
4273 * we're dirty. Otherwise, one of the
4274 * push_leaf functions must have already
4275 * dirtied this buffer
4276 */
4277 if (path->nodes[0] == leaf)
4278 btrfs_mark_buffer_dirty(leaf);
4279 free_extent_buffer(leaf);
4280 }
4281 } else {
4282 btrfs_mark_buffer_dirty(leaf);
4283 }
4284 }
4285 return ret;
4286}
4287
4288/*
4289 * search the tree again to find a leaf with lesser keys
4290 * returns 0 if it found something or 1 if there are no lesser leaves.
4291 * returns < 0 on io errors.
4292 *
4293 * This may release the path, and so you may lose any locks held at the
4294 * time you call it.
4295 */
4296int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4297{
4298 struct btrfs_key key;
4299 struct btrfs_disk_key found_key;
4300 int ret;
4301
4302 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4303
4304 if (key.offset > 0) {
4305 key.offset--;
4306 } else if (key.type > 0) {
4307 key.type--;
4308 key.offset = (u64)-1;
4309 } else if (key.objectid > 0) {
4310 key.objectid--;
4311 key.type = (u8)-1;
4312 key.offset = (u64)-1;
4313 } else {
4314 return 1;
4315 }
4316
4317 btrfs_release_path(path);
4318 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4319 if (ret < 0)
4320 return ret;
4321 btrfs_item_key(path->nodes[0], &found_key, 0);
4322 ret = comp_keys(&found_key, &key);
4323 /*
4324 * We might have had an item with the previous key in the tree right
4325 * before we released our path. And after we released our path, that
4326 * item might have been pushed to the first slot (0) of the leaf we
4327 * were holding due to a tree balance. Alternatively, an item with the
4328 * previous key can exist as the only element of a leaf (big fat item).
4329 * Therefore account for these 2 cases, so that our callers (like
4330 * btrfs_previous_item) don't miss an existing item with a key matching
4331 * the previous key we computed above.
4332 */
4333 if (ret <= 0)
4334 return 0;
4335 return 1;
4336}
4337
4338/*
4339 * A helper function to walk down the tree starting at min_key, and looking
4340 * for nodes or leaves that are have a minimum transaction id.
4341 * This is used by the btree defrag code, and tree logging
4342 *
4343 * This does not cow, but it does stuff the starting key it finds back
4344 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4345 * key and get a writable path.
4346 *
4347 * This honors path->lowest_level to prevent descent past a given level
4348 * of the tree.
4349 *
4350 * min_trans indicates the oldest transaction that you are interested
4351 * in walking through. Any nodes or leaves older than min_trans are
4352 * skipped over (without reading them).
4353 *
4354 * returns zero if something useful was found, < 0 on error and 1 if there
4355 * was nothing in the tree that matched the search criteria.
4356 */
4357int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4358 struct btrfs_path *path,
4359 u64 min_trans)
4360{
4361 struct extent_buffer *cur;
4362 struct btrfs_key found_key;
4363 int slot;
4364 int sret;
4365 u32 nritems;
4366 int level;
4367 int ret = 1;
4368 int keep_locks = path->keep_locks;
4369
4370 path->keep_locks = 1;
4371again:
4372 cur = btrfs_read_lock_root_node(root);
4373 level = btrfs_header_level(cur);
4374 WARN_ON(path->nodes[level]);
4375 path->nodes[level] = cur;
4376 path->locks[level] = BTRFS_READ_LOCK;
4377
4378 if (btrfs_header_generation(cur) < min_trans) {
4379 ret = 1;
4380 goto out;
4381 }
4382 while (1) {
4383 nritems = btrfs_header_nritems(cur);
4384 level = btrfs_header_level(cur);
4385 sret = btrfs_bin_search(cur, min_key, &slot);
4386 if (sret < 0) {
4387 ret = sret;
4388 goto out;
4389 }
4390
4391 /* at the lowest level, we're done, setup the path and exit */
4392 if (level == path->lowest_level) {
4393 if (slot >= nritems)
4394 goto find_next_key;
4395 ret = 0;
4396 path->slots[level] = slot;
4397 btrfs_item_key_to_cpu(cur, &found_key, slot);
4398 goto out;
4399 }
4400 if (sret && slot > 0)
4401 slot--;
4402 /*
4403 * check this node pointer against the min_trans parameters.
4404 * If it is too old, skip to the next one.
4405 */
4406 while (slot < nritems) {
4407 u64 gen;
4408
4409 gen = btrfs_node_ptr_generation(cur, slot);
4410 if (gen < min_trans) {
4411 slot++;
4412 continue;
4413 }
4414 break;
4415 }
4416find_next_key:
4417 /*
4418 * we didn't find a candidate key in this node, walk forward
4419 * and find another one
4420 */
4421 if (slot >= nritems) {
4422 path->slots[level] = slot;
4423 sret = btrfs_find_next_key(root, path, min_key, level,
4424 min_trans);
4425 if (sret == 0) {
4426 btrfs_release_path(path);
4427 goto again;
4428 } else {
4429 goto out;
4430 }
4431 }
4432 /* save our key for returning back */
4433 btrfs_node_key_to_cpu(cur, &found_key, slot);
4434 path->slots[level] = slot;
4435 if (level == path->lowest_level) {
4436 ret = 0;
4437 goto out;
4438 }
4439 cur = btrfs_read_node_slot(cur, slot);
4440 if (IS_ERR(cur)) {
4441 ret = PTR_ERR(cur);
4442 goto out;
4443 }
4444
4445 btrfs_tree_read_lock(cur);
4446
4447 path->locks[level - 1] = BTRFS_READ_LOCK;
4448 path->nodes[level - 1] = cur;
4449 unlock_up(path, level, 1, 0, NULL);
4450 }
4451out:
4452 path->keep_locks = keep_locks;
4453 if (ret == 0) {
4454 btrfs_unlock_up_safe(path, path->lowest_level + 1);
4455 memcpy(min_key, &found_key, sizeof(found_key));
4456 }
4457 return ret;
4458}
4459
4460/*
4461 * this is similar to btrfs_next_leaf, but does not try to preserve
4462 * and fixup the path. It looks for and returns the next key in the
4463 * tree based on the current path and the min_trans parameters.
4464 *
4465 * 0 is returned if another key is found, < 0 if there are any errors
4466 * and 1 is returned if there are no higher keys in the tree
4467 *
4468 * path->keep_locks should be set to 1 on the search made before
4469 * calling this function.
4470 */
4471int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4472 struct btrfs_key *key, int level, u64 min_trans)
4473{
4474 int slot;
4475 struct extent_buffer *c;
4476
4477 WARN_ON(!path->keep_locks && !path->skip_locking);
4478 while (level < BTRFS_MAX_LEVEL) {
4479 if (!path->nodes[level])
4480 return 1;
4481
4482 slot = path->slots[level] + 1;
4483 c = path->nodes[level];
4484next:
4485 if (slot >= btrfs_header_nritems(c)) {
4486 int ret;
4487 int orig_lowest;
4488 struct btrfs_key cur_key;
4489 if (level + 1 >= BTRFS_MAX_LEVEL ||
4490 !path->nodes[level + 1])
4491 return 1;
4492
4493 if (path->locks[level + 1] || path->skip_locking) {
4494 level++;
4495 continue;
4496 }
4497
4498 slot = btrfs_header_nritems(c) - 1;
4499 if (level == 0)
4500 btrfs_item_key_to_cpu(c, &cur_key, slot);
4501 else
4502 btrfs_node_key_to_cpu(c, &cur_key, slot);
4503
4504 orig_lowest = path->lowest_level;
4505 btrfs_release_path(path);
4506 path->lowest_level = level;
4507 ret = btrfs_search_slot(NULL, root, &cur_key, path,
4508 0, 0);
4509 path->lowest_level = orig_lowest;
4510 if (ret < 0)
4511 return ret;
4512
4513 c = path->nodes[level];
4514 slot = path->slots[level];
4515 if (ret == 0)
4516 slot++;
4517 goto next;
4518 }
4519
4520 if (level == 0)
4521 btrfs_item_key_to_cpu(c, key, slot);
4522 else {
4523 u64 gen = btrfs_node_ptr_generation(c, slot);
4524
4525 if (gen < min_trans) {
4526 slot++;
4527 goto next;
4528 }
4529 btrfs_node_key_to_cpu(c, key, slot);
4530 }
4531 return 0;
4532 }
4533 return 1;
4534}
4535
4536int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4537 u64 time_seq)
4538{
4539 int slot;
4540 int level;
4541 struct extent_buffer *c;
4542 struct extent_buffer *next;
4543 struct btrfs_fs_info *fs_info = root->fs_info;
4544 struct btrfs_key key;
4545 bool need_commit_sem = false;
4546 u32 nritems;
4547 int ret;
4548 int i;
4549
4550 nritems = btrfs_header_nritems(path->nodes[0]);
4551 if (nritems == 0)
4552 return 1;
4553
4554 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4555again:
4556 level = 1;
4557 next = NULL;
4558 btrfs_release_path(path);
4559
4560 path->keep_locks = 1;
4561
4562 if (time_seq) {
4563 ret = btrfs_search_old_slot(root, &key, path, time_seq);
4564 } else {
4565 if (path->need_commit_sem) {
4566 path->need_commit_sem = 0;
4567 need_commit_sem = true;
4568 down_read(&fs_info->commit_root_sem);
4569 }
4570 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4571 }
4572 path->keep_locks = 0;
4573
4574 if (ret < 0)
4575 goto done;
4576
4577 nritems = btrfs_header_nritems(path->nodes[0]);
4578 /*
4579 * by releasing the path above we dropped all our locks. A balance
4580 * could have added more items next to the key that used to be
4581 * at the very end of the block. So, check again here and
4582 * advance the path if there are now more items available.
4583 */
4584 if (nritems > 0 && path->slots[0] < nritems - 1) {
4585 if (ret == 0)
4586 path->slots[0]++;
4587 ret = 0;
4588 goto done;
4589 }
4590 /*
4591 * So the above check misses one case:
4592 * - after releasing the path above, someone has removed the item that
4593 * used to be at the very end of the block, and balance between leafs
4594 * gets another one with bigger key.offset to replace it.
4595 *
4596 * This one should be returned as well, or we can get leaf corruption
4597 * later(esp. in __btrfs_drop_extents()).
4598 *
4599 * And a bit more explanation about this check,
4600 * with ret > 0, the key isn't found, the path points to the slot
4601 * where it should be inserted, so the path->slots[0] item must be the
4602 * bigger one.
4603 */
4604 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4605 ret = 0;
4606 goto done;
4607 }
4608
4609 while (level < BTRFS_MAX_LEVEL) {
4610 if (!path->nodes[level]) {
4611 ret = 1;
4612 goto done;
4613 }
4614
4615 slot = path->slots[level] + 1;
4616 c = path->nodes[level];
4617 if (slot >= btrfs_header_nritems(c)) {
4618 level++;
4619 if (level == BTRFS_MAX_LEVEL) {
4620 ret = 1;
4621 goto done;
4622 }
4623 continue;
4624 }
4625
4626
4627 /*
4628 * Our current level is where we're going to start from, and to
4629 * make sure lockdep doesn't complain we need to drop our locks
4630 * and nodes from 0 to our current level.
4631 */
4632 for (i = 0; i < level; i++) {
4633 if (path->locks[level]) {
4634 btrfs_tree_read_unlock(path->nodes[i]);
4635 path->locks[i] = 0;
4636 }
4637 free_extent_buffer(path->nodes[i]);
4638 path->nodes[i] = NULL;
4639 }
4640
4641 next = c;
4642 ret = read_block_for_search(root, path, &next, level,
4643 slot, &key);
4644 if (ret == -EAGAIN)
4645 goto again;
4646
4647 if (ret < 0) {
4648 btrfs_release_path(path);
4649 goto done;
4650 }
4651
4652 if (!path->skip_locking) {
4653 ret = btrfs_try_tree_read_lock(next);
4654 if (!ret && time_seq) {
4655 /*
4656 * If we don't get the lock, we may be racing
4657 * with push_leaf_left, holding that lock while
4658 * itself waiting for the leaf we've currently
4659 * locked. To solve this situation, we give up
4660 * on our lock and cycle.
4661 */
4662 free_extent_buffer(next);
4663 btrfs_release_path(path);
4664 cond_resched();
4665 goto again;
4666 }
4667 if (!ret)
4668 btrfs_tree_read_lock(next);
4669 }
4670 break;
4671 }
4672 path->slots[level] = slot;
4673 while (1) {
4674 level--;
4675 path->nodes[level] = next;
4676 path->slots[level] = 0;
4677 if (!path->skip_locking)
4678 path->locks[level] = BTRFS_READ_LOCK;
4679 if (!level)
4680 break;
4681
4682 ret = read_block_for_search(root, path, &next, level,
4683 0, &key);
4684 if (ret == -EAGAIN)
4685 goto again;
4686
4687 if (ret < 0) {
4688 btrfs_release_path(path);
4689 goto done;
4690 }
4691
4692 if (!path->skip_locking)
4693 btrfs_tree_read_lock(next);
4694 }
4695 ret = 0;
4696done:
4697 unlock_up(path, 0, 1, 0, NULL);
4698 if (need_commit_sem) {
4699 int ret2;
4700
4701 path->need_commit_sem = 1;
4702 ret2 = finish_need_commit_sem_search(path);
4703 up_read(&fs_info->commit_root_sem);
4704 if (ret2)
4705 ret = ret2;
4706 }
4707
4708 return ret;
4709}
4710
4711/*
4712 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4713 * searching until it gets past min_objectid or finds an item of 'type'
4714 *
4715 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4716 */
4717int btrfs_previous_item(struct btrfs_root *root,
4718 struct btrfs_path *path, u64 min_objectid,
4719 int type)
4720{
4721 struct btrfs_key found_key;
4722 struct extent_buffer *leaf;
4723 u32 nritems;
4724 int ret;
4725
4726 while (1) {
4727 if (path->slots[0] == 0) {
4728 ret = btrfs_prev_leaf(root, path);
4729 if (ret != 0)
4730 return ret;
4731 } else {
4732 path->slots[0]--;
4733 }
4734 leaf = path->nodes[0];
4735 nritems = btrfs_header_nritems(leaf);
4736 if (nritems == 0)
4737 return 1;
4738 if (path->slots[0] == nritems)
4739 path->slots[0]--;
4740
4741 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4742 if (found_key.objectid < min_objectid)
4743 break;
4744 if (found_key.type == type)
4745 return 0;
4746 if (found_key.objectid == min_objectid &&
4747 found_key.type < type)
4748 break;
4749 }
4750 return 1;
4751}
4752
4753/*
4754 * search in extent tree to find a previous Metadata/Data extent item with
4755 * min objecitd.
4756 *
4757 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4758 */
4759int btrfs_previous_extent_item(struct btrfs_root *root,
4760 struct btrfs_path *path, u64 min_objectid)
4761{
4762 struct btrfs_key found_key;
4763 struct extent_buffer *leaf;
4764 u32 nritems;
4765 int ret;
4766
4767 while (1) {
4768 if (path->slots[0] == 0) {
4769 ret = btrfs_prev_leaf(root, path);
4770 if (ret != 0)
4771 return ret;
4772 } else {
4773 path->slots[0]--;
4774 }
4775 leaf = path->nodes[0];
4776 nritems = btrfs_header_nritems(leaf);
4777 if (nritems == 0)
4778 return 1;
4779 if (path->slots[0] == nritems)
4780 path->slots[0]--;
4781
4782 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4783 if (found_key.objectid < min_objectid)
4784 break;
4785 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
4786 found_key.type == BTRFS_METADATA_ITEM_KEY)
4787 return 0;
4788 if (found_key.objectid == min_objectid &&
4789 found_key.type < BTRFS_EXTENT_ITEM_KEY)
4790 break;
4791 }
4792 return 1;
4793}