| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (C) 2011 STRATO. All rights reserved. |
| 4 | */ |
| 5 | |
| 6 | #include <linux/mm.h> |
| 7 | #include <linux/rbtree.h> |
| 8 | #include <trace/events/btrfs.h> |
| 9 | #include "ctree.h" |
| 10 | #include "disk-io.h" |
| 11 | #include "backref.h" |
| 12 | #include "ulist.h" |
| 13 | #include "transaction.h" |
| 14 | #include "delayed-ref.h" |
| 15 | #include "locking.h" |
| 16 | #include "misc.h" |
| 17 | #include "tree-mod-log.h" |
| 18 | #include "fs.h" |
| 19 | #include "accessors.h" |
| 20 | #include "extent-tree.h" |
| 21 | #include "relocation.h" |
| 22 | #include "tree-checker.h" |
| 23 | |
| 24 | /* Just arbitrary numbers so we can be sure one of these happened. */ |
| 25 | #define BACKREF_FOUND_SHARED 6 |
| 26 | #define BACKREF_FOUND_NOT_SHARED 7 |
| 27 | |
| 28 | struct extent_inode_elem { |
| 29 | u64 inum; |
| 30 | u64 offset; |
| 31 | u64 num_bytes; |
| 32 | struct extent_inode_elem *next; |
| 33 | }; |
| 34 | |
| 35 | static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx, |
| 36 | const struct btrfs_key *key, |
| 37 | const struct extent_buffer *eb, |
| 38 | const struct btrfs_file_extent_item *fi, |
| 39 | struct extent_inode_elem **eie) |
| 40 | { |
| 41 | const u64 data_len = btrfs_file_extent_num_bytes(eb, fi); |
| 42 | u64 offset = key->offset; |
| 43 | struct extent_inode_elem *e; |
| 44 | const u64 *root_ids; |
| 45 | int root_count; |
| 46 | bool cached; |
| 47 | |
| 48 | if (!ctx->ignore_extent_item_pos && |
| 49 | !btrfs_file_extent_compression(eb, fi) && |
| 50 | !btrfs_file_extent_encryption(eb, fi) && |
| 51 | !btrfs_file_extent_other_encoding(eb, fi)) { |
| 52 | u64 data_offset; |
| 53 | |
| 54 | data_offset = btrfs_file_extent_offset(eb, fi); |
| 55 | |
| 56 | if (ctx->extent_item_pos < data_offset || |
| 57 | ctx->extent_item_pos >= data_offset + data_len) |
| 58 | return 1; |
| 59 | offset += ctx->extent_item_pos - data_offset; |
| 60 | } |
| 61 | |
| 62 | if (!ctx->indirect_ref_iterator || !ctx->cache_lookup) |
| 63 | goto add_inode_elem; |
| 64 | |
| 65 | cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids, |
| 66 | &root_count); |
| 67 | if (!cached) |
| 68 | goto add_inode_elem; |
| 69 | |
| 70 | for (int i = 0; i < root_count; i++) { |
| 71 | int ret; |
| 72 | |
| 73 | ret = ctx->indirect_ref_iterator(key->objectid, offset, |
| 74 | data_len, root_ids[i], |
| 75 | ctx->user_ctx); |
| 76 | if (ret) |
| 77 | return ret; |
| 78 | } |
| 79 | |
| 80 | add_inode_elem: |
| 81 | e = kmalloc(sizeof(*e), GFP_NOFS); |
| 82 | if (!e) |
| 83 | return -ENOMEM; |
| 84 | |
| 85 | e->next = *eie; |
| 86 | e->inum = key->objectid; |
| 87 | e->offset = offset; |
| 88 | e->num_bytes = data_len; |
| 89 | *eie = e; |
| 90 | |
| 91 | return 0; |
| 92 | } |
| 93 | |
| 94 | static void free_inode_elem_list(struct extent_inode_elem *eie) |
| 95 | { |
| 96 | struct extent_inode_elem *eie_next; |
| 97 | |
| 98 | for (; eie; eie = eie_next) { |
| 99 | eie_next = eie->next; |
| 100 | kfree(eie); |
| 101 | } |
| 102 | } |
| 103 | |
| 104 | static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx, |
| 105 | const struct extent_buffer *eb, |
| 106 | struct extent_inode_elem **eie) |
| 107 | { |
| 108 | u64 disk_byte; |
| 109 | struct btrfs_key key; |
| 110 | struct btrfs_file_extent_item *fi; |
| 111 | int slot; |
| 112 | int nritems; |
| 113 | int extent_type; |
| 114 | int ret; |
| 115 | |
| 116 | /* |
| 117 | * from the shared data ref, we only have the leaf but we need |
| 118 | * the key. thus, we must look into all items and see that we |
| 119 | * find one (some) with a reference to our extent item. |
| 120 | */ |
| 121 | nritems = btrfs_header_nritems(eb); |
| 122 | for (slot = 0; slot < nritems; ++slot) { |
| 123 | btrfs_item_key_to_cpu(eb, &key, slot); |
| 124 | if (key.type != BTRFS_EXTENT_DATA_KEY) |
| 125 | continue; |
| 126 | fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); |
| 127 | extent_type = btrfs_file_extent_type(eb, fi); |
| 128 | if (extent_type == BTRFS_FILE_EXTENT_INLINE) |
| 129 | continue; |
| 130 | /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ |
| 131 | disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); |
| 132 | if (disk_byte != ctx->bytenr) |
| 133 | continue; |
| 134 | |
| 135 | ret = check_extent_in_eb(ctx, &key, eb, fi, eie); |
| 136 | if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) |
| 137 | return ret; |
| 138 | } |
| 139 | |
| 140 | return 0; |
| 141 | } |
| 142 | |
| 143 | struct preftree { |
| 144 | struct rb_root_cached root; |
| 145 | unsigned int count; |
| 146 | }; |
| 147 | |
| 148 | #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 } |
| 149 | |
| 150 | struct preftrees { |
| 151 | struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ |
| 152 | struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ |
| 153 | struct preftree indirect_missing_keys; |
| 154 | }; |
| 155 | |
| 156 | /* |
| 157 | * Checks for a shared extent during backref search. |
| 158 | * |
| 159 | * The share_count tracks prelim_refs (direct and indirect) having a |
| 160 | * ref->count >0: |
| 161 | * - incremented when a ref->count transitions to >0 |
| 162 | * - decremented when a ref->count transitions to <1 |
| 163 | */ |
| 164 | struct share_check { |
| 165 | struct btrfs_backref_share_check_ctx *ctx; |
| 166 | struct btrfs_root *root; |
| 167 | u64 inum; |
| 168 | u64 data_bytenr; |
| 169 | u64 data_extent_gen; |
| 170 | /* |
| 171 | * Counts number of inodes that refer to an extent (different inodes in |
| 172 | * the same root or different roots) that we could find. The sharedness |
| 173 | * check typically stops once this counter gets greater than 1, so it |
| 174 | * may not reflect the total number of inodes. |
| 175 | */ |
| 176 | int share_count; |
| 177 | /* |
| 178 | * The number of times we found our inode refers to the data extent we |
| 179 | * are determining the sharedness. In other words, how many file extent |
| 180 | * items we could find for our inode that point to our target data |
| 181 | * extent. The value we get here after finishing the extent sharedness |
| 182 | * check may be smaller than reality, but if it ends up being greater |
| 183 | * than 1, then we know for sure the inode has multiple file extent |
| 184 | * items that point to our inode, and we can safely assume it's useful |
| 185 | * to cache the sharedness check result. |
| 186 | */ |
| 187 | int self_ref_count; |
| 188 | bool have_delayed_delete_refs; |
| 189 | }; |
| 190 | |
| 191 | static inline int extent_is_shared(struct share_check *sc) |
| 192 | { |
| 193 | return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; |
| 194 | } |
| 195 | |
| 196 | static struct kmem_cache *btrfs_prelim_ref_cache; |
| 197 | |
| 198 | int __init btrfs_prelim_ref_init(void) |
| 199 | { |
| 200 | btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", |
| 201 | sizeof(struct prelim_ref), 0, 0, NULL); |
| 202 | if (!btrfs_prelim_ref_cache) |
| 203 | return -ENOMEM; |
| 204 | return 0; |
| 205 | } |
| 206 | |
| 207 | void __cold btrfs_prelim_ref_exit(void) |
| 208 | { |
| 209 | kmem_cache_destroy(btrfs_prelim_ref_cache); |
| 210 | } |
| 211 | |
| 212 | static void free_pref(struct prelim_ref *ref) |
| 213 | { |
| 214 | kmem_cache_free(btrfs_prelim_ref_cache, ref); |
| 215 | } |
| 216 | |
| 217 | /* |
| 218 | * Return 0 when both refs are for the same block (and can be merged). |
| 219 | * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 |
| 220 | * indicates a 'higher' block. |
| 221 | */ |
| 222 | static int prelim_ref_compare(const struct prelim_ref *ref1, |
| 223 | const struct prelim_ref *ref2) |
| 224 | { |
| 225 | if (ref1->level < ref2->level) |
| 226 | return -1; |
| 227 | if (ref1->level > ref2->level) |
| 228 | return 1; |
| 229 | if (ref1->root_id < ref2->root_id) |
| 230 | return -1; |
| 231 | if (ref1->root_id > ref2->root_id) |
| 232 | return 1; |
| 233 | if (ref1->key_for_search.type < ref2->key_for_search.type) |
| 234 | return -1; |
| 235 | if (ref1->key_for_search.type > ref2->key_for_search.type) |
| 236 | return 1; |
| 237 | if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) |
| 238 | return -1; |
| 239 | if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) |
| 240 | return 1; |
| 241 | if (ref1->key_for_search.offset < ref2->key_for_search.offset) |
| 242 | return -1; |
| 243 | if (ref1->key_for_search.offset > ref2->key_for_search.offset) |
| 244 | return 1; |
| 245 | if (ref1->parent < ref2->parent) |
| 246 | return -1; |
| 247 | if (ref1->parent > ref2->parent) |
| 248 | return 1; |
| 249 | |
| 250 | return 0; |
| 251 | } |
| 252 | |
| 253 | static int prelim_ref_rb_add_cmp(const struct rb_node *new, |
| 254 | const struct rb_node *exist) |
| 255 | { |
| 256 | const struct prelim_ref *ref_new = |
| 257 | rb_entry(new, struct prelim_ref, rbnode); |
| 258 | const struct prelim_ref *ref_exist = |
| 259 | rb_entry(exist, struct prelim_ref, rbnode); |
| 260 | |
| 261 | /* |
| 262 | * prelim_ref_compare() expects the first parameter as the existing one, |
| 263 | * different from the rb_find_add_cached() order. |
| 264 | */ |
| 265 | return prelim_ref_compare(ref_exist, ref_new); |
| 266 | } |
| 267 | |
| 268 | static void update_share_count(struct share_check *sc, int oldcount, |
| 269 | int newcount, const struct prelim_ref *newref) |
| 270 | { |
| 271 | if ((!sc) || (oldcount == 0 && newcount < 1)) |
| 272 | return; |
| 273 | |
| 274 | if (oldcount > 0 && newcount < 1) |
| 275 | sc->share_count--; |
| 276 | else if (oldcount < 1 && newcount > 0) |
| 277 | sc->share_count++; |
| 278 | |
| 279 | if (newref->root_id == btrfs_root_id(sc->root) && |
| 280 | newref->wanted_disk_byte == sc->data_bytenr && |
| 281 | newref->key_for_search.objectid == sc->inum) |
| 282 | sc->self_ref_count += newref->count; |
| 283 | } |
| 284 | |
| 285 | /* |
| 286 | * Add @newref to the @root rbtree, merging identical refs. |
| 287 | * |
| 288 | * Callers should assume that newref has been freed after calling. |
| 289 | */ |
| 290 | static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, |
| 291 | struct preftree *preftree, |
| 292 | struct prelim_ref *newref, |
| 293 | struct share_check *sc) |
| 294 | { |
| 295 | struct rb_root_cached *root; |
| 296 | struct rb_node *exist; |
| 297 | |
| 298 | root = &preftree->root; |
| 299 | exist = rb_find_add_cached(&newref->rbnode, root, prelim_ref_rb_add_cmp); |
| 300 | if (exist) { |
| 301 | struct prelim_ref *ref = rb_entry(exist, struct prelim_ref, rbnode); |
| 302 | /* Identical refs, merge them and free @newref */ |
| 303 | struct extent_inode_elem *eie = ref->inode_list; |
| 304 | |
| 305 | while (eie && eie->next) |
| 306 | eie = eie->next; |
| 307 | |
| 308 | if (!eie) |
| 309 | ref->inode_list = newref->inode_list; |
| 310 | else |
| 311 | eie->next = newref->inode_list; |
| 312 | trace_btrfs_prelim_ref_merge(fs_info, ref, newref, |
| 313 | preftree->count); |
| 314 | /* |
| 315 | * A delayed ref can have newref->count < 0. |
| 316 | * The ref->count is updated to follow any |
| 317 | * BTRFS_[ADD|DROP]_DELAYED_REF actions. |
| 318 | */ |
| 319 | update_share_count(sc, ref->count, |
| 320 | ref->count + newref->count, newref); |
| 321 | ref->count += newref->count; |
| 322 | free_pref(newref); |
| 323 | return; |
| 324 | } |
| 325 | |
| 326 | update_share_count(sc, 0, newref->count, newref); |
| 327 | preftree->count++; |
| 328 | trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); |
| 329 | } |
| 330 | |
| 331 | /* |
| 332 | * Release the entire tree. We don't care about internal consistency so |
| 333 | * just free everything and then reset the tree root. |
| 334 | */ |
| 335 | static void prelim_release(struct preftree *preftree) |
| 336 | { |
| 337 | struct prelim_ref *ref, *next_ref; |
| 338 | |
| 339 | rbtree_postorder_for_each_entry_safe(ref, next_ref, |
| 340 | &preftree->root.rb_root, rbnode) { |
| 341 | free_inode_elem_list(ref->inode_list); |
| 342 | free_pref(ref); |
| 343 | } |
| 344 | |
| 345 | preftree->root = RB_ROOT_CACHED; |
| 346 | preftree->count = 0; |
| 347 | } |
| 348 | |
| 349 | /* |
| 350 | * the rules for all callers of this function are: |
| 351 | * - obtaining the parent is the goal |
| 352 | * - if you add a key, you must know that it is a correct key |
| 353 | * - if you cannot add the parent or a correct key, then we will look into the |
| 354 | * block later to set a correct key |
| 355 | * |
| 356 | * delayed refs |
| 357 | * ============ |
| 358 | * backref type | shared | indirect | shared | indirect |
| 359 | * information | tree | tree | data | data |
| 360 | * --------------------+--------+----------+--------+---------- |
| 361 | * parent logical | y | - | - | - |
| 362 | * key to resolve | - | y | y | y |
| 363 | * tree block logical | - | - | - | - |
| 364 | * root for resolving | y | y | y | y |
| 365 | * |
| 366 | * - column 1: we've the parent -> done |
| 367 | * - column 2, 3, 4: we use the key to find the parent |
| 368 | * |
| 369 | * on disk refs (inline or keyed) |
| 370 | * ============================== |
| 371 | * backref type | shared | indirect | shared | indirect |
| 372 | * information | tree | tree | data | data |
| 373 | * --------------------+--------+----------+--------+---------- |
| 374 | * parent logical | y | - | y | - |
| 375 | * key to resolve | - | - | - | y |
| 376 | * tree block logical | y | y | y | y |
| 377 | * root for resolving | - | y | y | y |
| 378 | * |
| 379 | * - column 1, 3: we've the parent -> done |
| 380 | * - column 2: we take the first key from the block to find the parent |
| 381 | * (see add_missing_keys) |
| 382 | * - column 4: we use the key to find the parent |
| 383 | * |
| 384 | * additional information that's available but not required to find the parent |
| 385 | * block might help in merging entries to gain some speed. |
| 386 | */ |
| 387 | static int add_prelim_ref(const struct btrfs_fs_info *fs_info, |
| 388 | struct preftree *preftree, u64 root_id, |
| 389 | const struct btrfs_key *key, int level, u64 parent, |
| 390 | u64 wanted_disk_byte, int count, |
| 391 | struct share_check *sc, gfp_t gfp_mask) |
| 392 | { |
| 393 | struct prelim_ref *ref; |
| 394 | |
| 395 | if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) |
| 396 | return 0; |
| 397 | |
| 398 | ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); |
| 399 | if (!ref) |
| 400 | return -ENOMEM; |
| 401 | |
| 402 | ref->root_id = root_id; |
| 403 | if (key) |
| 404 | ref->key_for_search = *key; |
| 405 | else |
| 406 | memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); |
| 407 | |
| 408 | ref->inode_list = NULL; |
| 409 | ref->level = level; |
| 410 | ref->count = count; |
| 411 | ref->parent = parent; |
| 412 | ref->wanted_disk_byte = wanted_disk_byte; |
| 413 | prelim_ref_insert(fs_info, preftree, ref, sc); |
| 414 | return extent_is_shared(sc); |
| 415 | } |
| 416 | |
| 417 | /* direct refs use root == 0, key == NULL */ |
| 418 | static int add_direct_ref(const struct btrfs_fs_info *fs_info, |
| 419 | struct preftrees *preftrees, int level, u64 parent, |
| 420 | u64 wanted_disk_byte, int count, |
| 421 | struct share_check *sc, gfp_t gfp_mask) |
| 422 | { |
| 423 | return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, |
| 424 | parent, wanted_disk_byte, count, sc, gfp_mask); |
| 425 | } |
| 426 | |
| 427 | /* indirect refs use parent == 0 */ |
| 428 | static int add_indirect_ref(const struct btrfs_fs_info *fs_info, |
| 429 | struct preftrees *preftrees, u64 root_id, |
| 430 | const struct btrfs_key *key, int level, |
| 431 | u64 wanted_disk_byte, int count, |
| 432 | struct share_check *sc, gfp_t gfp_mask) |
| 433 | { |
| 434 | struct preftree *tree = &preftrees->indirect; |
| 435 | |
| 436 | if (!key) |
| 437 | tree = &preftrees->indirect_missing_keys; |
| 438 | return add_prelim_ref(fs_info, tree, root_id, key, level, 0, |
| 439 | wanted_disk_byte, count, sc, gfp_mask); |
| 440 | } |
| 441 | |
| 442 | static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr) |
| 443 | { |
| 444 | struct rb_node **p = &preftrees->direct.root.rb_root.rb_node; |
| 445 | struct rb_node *parent = NULL; |
| 446 | struct prelim_ref *ref = NULL; |
| 447 | struct prelim_ref target = {}; |
| 448 | int result; |
| 449 | |
| 450 | target.parent = bytenr; |
| 451 | |
| 452 | while (*p) { |
| 453 | parent = *p; |
| 454 | ref = rb_entry(parent, struct prelim_ref, rbnode); |
| 455 | result = prelim_ref_compare(ref, &target); |
| 456 | |
| 457 | if (result < 0) |
| 458 | p = &(*p)->rb_left; |
| 459 | else if (result > 0) |
| 460 | p = &(*p)->rb_right; |
| 461 | else |
| 462 | return 1; |
| 463 | } |
| 464 | return 0; |
| 465 | } |
| 466 | |
| 467 | static int add_all_parents(struct btrfs_backref_walk_ctx *ctx, |
| 468 | struct btrfs_root *root, struct btrfs_path *path, |
| 469 | struct ulist *parents, |
| 470 | struct preftrees *preftrees, struct prelim_ref *ref, |
| 471 | int level) |
| 472 | { |
| 473 | int ret = 0; |
| 474 | int slot; |
| 475 | struct extent_buffer *eb; |
| 476 | struct btrfs_key key; |
| 477 | struct btrfs_key *key_for_search = &ref->key_for_search; |
| 478 | struct btrfs_file_extent_item *fi; |
| 479 | struct extent_inode_elem *eie = NULL, *old = NULL; |
| 480 | u64 disk_byte; |
| 481 | u64 wanted_disk_byte = ref->wanted_disk_byte; |
| 482 | u64 count = 0; |
| 483 | u64 data_offset; |
| 484 | u8 type; |
| 485 | |
| 486 | if (level != 0) { |
| 487 | eb = path->nodes[level]; |
| 488 | ret = ulist_add(parents, eb->start, 0, GFP_NOFS); |
| 489 | if (ret < 0) |
| 490 | return ret; |
| 491 | return 0; |
| 492 | } |
| 493 | |
| 494 | /* |
| 495 | * 1. We normally enter this function with the path already pointing to |
| 496 | * the first item to check. But sometimes, we may enter it with |
| 497 | * slot == nritems. |
| 498 | * 2. We are searching for normal backref but bytenr of this leaf |
| 499 | * matches shared data backref |
| 500 | * 3. The leaf owner is not equal to the root we are searching |
| 501 | * |
| 502 | * For these cases, go to the next leaf before we continue. |
| 503 | */ |
| 504 | eb = path->nodes[0]; |
| 505 | if (path->slots[0] >= btrfs_header_nritems(eb) || |
| 506 | is_shared_data_backref(preftrees, eb->start) || |
| 507 | ref->root_id != btrfs_header_owner(eb)) { |
| 508 | if (ctx->time_seq == BTRFS_SEQ_LAST) |
| 509 | ret = btrfs_next_leaf(root, path); |
| 510 | else |
| 511 | ret = btrfs_next_old_leaf(root, path, ctx->time_seq); |
| 512 | } |
| 513 | |
| 514 | while (!ret && count < ref->count) { |
| 515 | eb = path->nodes[0]; |
| 516 | slot = path->slots[0]; |
| 517 | |
| 518 | btrfs_item_key_to_cpu(eb, &key, slot); |
| 519 | |
| 520 | if (key.objectid != key_for_search->objectid || |
| 521 | key.type != BTRFS_EXTENT_DATA_KEY) |
| 522 | break; |
| 523 | |
| 524 | /* |
| 525 | * We are searching for normal backref but bytenr of this leaf |
| 526 | * matches shared data backref, OR |
| 527 | * the leaf owner is not equal to the root we are searching for |
| 528 | */ |
| 529 | if (slot == 0 && |
| 530 | (is_shared_data_backref(preftrees, eb->start) || |
| 531 | ref->root_id != btrfs_header_owner(eb))) { |
| 532 | if (ctx->time_seq == BTRFS_SEQ_LAST) |
| 533 | ret = btrfs_next_leaf(root, path); |
| 534 | else |
| 535 | ret = btrfs_next_old_leaf(root, path, ctx->time_seq); |
| 536 | continue; |
| 537 | } |
| 538 | fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); |
| 539 | type = btrfs_file_extent_type(eb, fi); |
| 540 | if (type == BTRFS_FILE_EXTENT_INLINE) |
| 541 | goto next; |
| 542 | disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); |
| 543 | data_offset = btrfs_file_extent_offset(eb, fi); |
| 544 | |
| 545 | if (disk_byte == wanted_disk_byte) { |
| 546 | eie = NULL; |
| 547 | old = NULL; |
| 548 | if (ref->key_for_search.offset == key.offset - data_offset) |
| 549 | count++; |
| 550 | else |
| 551 | goto next; |
| 552 | if (!ctx->skip_inode_ref_list) { |
| 553 | ret = check_extent_in_eb(ctx, &key, eb, fi, &eie); |
| 554 | if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || |
| 555 | ret < 0) |
| 556 | break; |
| 557 | } |
| 558 | if (ret > 0) |
| 559 | goto next; |
| 560 | ret = ulist_add_merge_ptr(parents, eb->start, |
| 561 | eie, (void **)&old, GFP_NOFS); |
| 562 | if (ret < 0) |
| 563 | break; |
| 564 | if (!ret && !ctx->skip_inode_ref_list) { |
| 565 | while (old->next) |
| 566 | old = old->next; |
| 567 | old->next = eie; |
| 568 | } |
| 569 | eie = NULL; |
| 570 | } |
| 571 | next: |
| 572 | if (ctx->time_seq == BTRFS_SEQ_LAST) |
| 573 | ret = btrfs_next_item(root, path); |
| 574 | else |
| 575 | ret = btrfs_next_old_item(root, path, ctx->time_seq); |
| 576 | } |
| 577 | |
| 578 | if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) |
| 579 | free_inode_elem_list(eie); |
| 580 | else if (ret > 0) |
| 581 | ret = 0; |
| 582 | |
| 583 | return ret; |
| 584 | } |
| 585 | |
| 586 | /* |
| 587 | * resolve an indirect backref in the form (root_id, key, level) |
| 588 | * to a logical address |
| 589 | */ |
| 590 | static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx, |
| 591 | struct btrfs_path *path, |
| 592 | struct preftrees *preftrees, |
| 593 | struct prelim_ref *ref, struct ulist *parents) |
| 594 | { |
| 595 | struct btrfs_root *root; |
| 596 | struct extent_buffer *eb; |
| 597 | int ret = 0; |
| 598 | int root_level; |
| 599 | int level = ref->level; |
| 600 | struct btrfs_key search_key = ref->key_for_search; |
| 601 | |
| 602 | /* |
| 603 | * If we're search_commit_root we could possibly be holding locks on |
| 604 | * other tree nodes. This happens when qgroups does backref walks when |
| 605 | * adding new delayed refs. To deal with this we need to look in cache |
| 606 | * for the root, and if we don't find it then we need to search the |
| 607 | * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage |
| 608 | * here. |
| 609 | */ |
| 610 | if (path->search_commit_root) |
| 611 | root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id); |
| 612 | else |
| 613 | root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false); |
| 614 | if (IS_ERR(root)) { |
| 615 | ret = PTR_ERR(root); |
| 616 | goto out_free; |
| 617 | } |
| 618 | |
| 619 | if (!path->search_commit_root && |
| 620 | test_bit(BTRFS_ROOT_DELETING, &root->state)) { |
| 621 | ret = -ENOENT; |
| 622 | goto out; |
| 623 | } |
| 624 | |
| 625 | if (btrfs_is_testing(ctx->fs_info)) { |
| 626 | ret = -ENOENT; |
| 627 | goto out; |
| 628 | } |
| 629 | |
| 630 | if (path->search_commit_root) |
| 631 | root_level = btrfs_header_level(root->commit_root); |
| 632 | else if (ctx->time_seq == BTRFS_SEQ_LAST) |
| 633 | root_level = btrfs_header_level(root->node); |
| 634 | else |
| 635 | root_level = btrfs_old_root_level(root, ctx->time_seq); |
| 636 | |
| 637 | if (root_level + 1 == level) |
| 638 | goto out; |
| 639 | |
| 640 | /* |
| 641 | * We can often find data backrefs with an offset that is too large |
| 642 | * (>= LLONG_MAX, maximum allowed file offset) due to underflows when |
| 643 | * subtracting a file's offset with the data offset of its |
| 644 | * corresponding extent data item. This can happen for example in the |
| 645 | * clone ioctl. |
| 646 | * |
| 647 | * So if we detect such case we set the search key's offset to zero to |
| 648 | * make sure we will find the matching file extent item at |
| 649 | * add_all_parents(), otherwise we will miss it because the offset |
| 650 | * taken form the backref is much larger then the offset of the file |
| 651 | * extent item. This can make us scan a very large number of file |
| 652 | * extent items, but at least it will not make us miss any. |
| 653 | * |
| 654 | * This is an ugly workaround for a behaviour that should have never |
| 655 | * existed, but it does and a fix for the clone ioctl would touch a lot |
| 656 | * of places, cause backwards incompatibility and would not fix the |
| 657 | * problem for extents cloned with older kernels. |
| 658 | */ |
| 659 | if (search_key.type == BTRFS_EXTENT_DATA_KEY && |
| 660 | search_key.offset >= LLONG_MAX) |
| 661 | search_key.offset = 0; |
| 662 | path->lowest_level = level; |
| 663 | if (ctx->time_seq == BTRFS_SEQ_LAST) |
| 664 | ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); |
| 665 | else |
| 666 | ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq); |
| 667 | |
| 668 | btrfs_debug(ctx->fs_info, |
| 669 | "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", |
| 670 | ref->root_id, level, ref->count, ret, |
| 671 | ref->key_for_search.objectid, ref->key_for_search.type, |
| 672 | ref->key_for_search.offset); |
| 673 | if (ret < 0) |
| 674 | goto out; |
| 675 | |
| 676 | eb = path->nodes[level]; |
| 677 | while (!eb) { |
| 678 | if (WARN_ON(!level)) { |
| 679 | ret = 1; |
| 680 | goto out; |
| 681 | } |
| 682 | level--; |
| 683 | eb = path->nodes[level]; |
| 684 | } |
| 685 | |
| 686 | ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level); |
| 687 | out: |
| 688 | btrfs_put_root(root); |
| 689 | out_free: |
| 690 | path->lowest_level = 0; |
| 691 | btrfs_release_path(path); |
| 692 | return ret; |
| 693 | } |
| 694 | |
| 695 | static struct extent_inode_elem * |
| 696 | unode_aux_to_inode_list(struct ulist_node *node) |
| 697 | { |
| 698 | if (!node) |
| 699 | return NULL; |
| 700 | return (struct extent_inode_elem *)(uintptr_t)node->aux; |
| 701 | } |
| 702 | |
| 703 | static void free_leaf_list(struct ulist *ulist) |
| 704 | { |
| 705 | struct ulist_node *node; |
| 706 | struct ulist_iterator uiter; |
| 707 | |
| 708 | ULIST_ITER_INIT(&uiter); |
| 709 | while ((node = ulist_next(ulist, &uiter))) |
| 710 | free_inode_elem_list(unode_aux_to_inode_list(node)); |
| 711 | |
| 712 | ulist_free(ulist); |
| 713 | } |
| 714 | |
| 715 | /* |
| 716 | * We maintain three separate rbtrees: one for direct refs, one for |
| 717 | * indirect refs which have a key, and one for indirect refs which do not |
| 718 | * have a key. Each tree does merge on insertion. |
| 719 | * |
| 720 | * Once all of the references are located, we iterate over the tree of |
| 721 | * indirect refs with missing keys. An appropriate key is located and |
| 722 | * the ref is moved onto the tree for indirect refs. After all missing |
| 723 | * keys are thus located, we iterate over the indirect ref tree, resolve |
| 724 | * each reference, and then insert the resolved reference onto the |
| 725 | * direct tree (merging there too). |
| 726 | * |
| 727 | * New backrefs (i.e., for parent nodes) are added to the appropriate |
| 728 | * rbtree as they are encountered. The new backrefs are subsequently |
| 729 | * resolved as above. |
| 730 | */ |
| 731 | static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx, |
| 732 | struct btrfs_path *path, |
| 733 | struct preftrees *preftrees, |
| 734 | struct share_check *sc) |
| 735 | { |
| 736 | int err; |
| 737 | int ret = 0; |
| 738 | struct ulist *parents; |
| 739 | struct ulist_node *node; |
| 740 | struct ulist_iterator uiter; |
| 741 | struct rb_node *rnode; |
| 742 | |
| 743 | parents = ulist_alloc(GFP_NOFS); |
| 744 | if (!parents) |
| 745 | return -ENOMEM; |
| 746 | |
| 747 | /* |
| 748 | * We could trade memory usage for performance here by iterating |
| 749 | * the tree, allocating new refs for each insertion, and then |
| 750 | * freeing the entire indirect tree when we're done. In some test |
| 751 | * cases, the tree can grow quite large (~200k objects). |
| 752 | */ |
| 753 | while ((rnode = rb_first_cached(&preftrees->indirect.root))) { |
| 754 | struct prelim_ref *ref; |
| 755 | |
| 756 | ref = rb_entry(rnode, struct prelim_ref, rbnode); |
| 757 | if (WARN(ref->parent, |
| 758 | "BUG: direct ref found in indirect tree")) { |
| 759 | ret = -EINVAL; |
| 760 | goto out; |
| 761 | } |
| 762 | |
| 763 | rb_erase_cached(&ref->rbnode, &preftrees->indirect.root); |
| 764 | preftrees->indirect.count--; |
| 765 | |
| 766 | if (ref->count == 0) { |
| 767 | free_pref(ref); |
| 768 | continue; |
| 769 | } |
| 770 | |
| 771 | if (sc && ref->root_id != btrfs_root_id(sc->root)) { |
| 772 | free_pref(ref); |
| 773 | ret = BACKREF_FOUND_SHARED; |
| 774 | goto out; |
| 775 | } |
| 776 | err = resolve_indirect_ref(ctx, path, preftrees, ref, parents); |
| 777 | /* |
| 778 | * we can only tolerate ENOENT,otherwise,we should catch error |
| 779 | * and return directly. |
| 780 | */ |
| 781 | if (err == -ENOENT) { |
| 782 | prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, |
| 783 | NULL); |
| 784 | continue; |
| 785 | } else if (err) { |
| 786 | free_pref(ref); |
| 787 | ret = err; |
| 788 | goto out; |
| 789 | } |
| 790 | |
| 791 | /* we put the first parent into the ref at hand */ |
| 792 | ULIST_ITER_INIT(&uiter); |
| 793 | node = ulist_next(parents, &uiter); |
| 794 | ref->parent = node ? node->val : 0; |
| 795 | ref->inode_list = unode_aux_to_inode_list(node); |
| 796 | |
| 797 | /* Add a prelim_ref(s) for any other parent(s). */ |
| 798 | while ((node = ulist_next(parents, &uiter))) { |
| 799 | struct prelim_ref *new_ref; |
| 800 | |
| 801 | new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, |
| 802 | GFP_NOFS); |
| 803 | if (!new_ref) { |
| 804 | free_pref(ref); |
| 805 | ret = -ENOMEM; |
| 806 | goto out; |
| 807 | } |
| 808 | memcpy(new_ref, ref, sizeof(*ref)); |
| 809 | new_ref->parent = node->val; |
| 810 | new_ref->inode_list = unode_aux_to_inode_list(node); |
| 811 | prelim_ref_insert(ctx->fs_info, &preftrees->direct, |
| 812 | new_ref, NULL); |
| 813 | } |
| 814 | |
| 815 | /* |
| 816 | * Now it's a direct ref, put it in the direct tree. We must |
| 817 | * do this last because the ref could be merged/freed here. |
| 818 | */ |
| 819 | prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL); |
| 820 | |
| 821 | ulist_reinit(parents); |
| 822 | cond_resched(); |
| 823 | } |
| 824 | out: |
| 825 | /* |
| 826 | * We may have inode lists attached to refs in the parents ulist, so we |
| 827 | * must free them before freeing the ulist and its refs. |
| 828 | */ |
| 829 | free_leaf_list(parents); |
| 830 | return ret; |
| 831 | } |
| 832 | |
| 833 | /* |
| 834 | * read tree blocks and add keys where required. |
| 835 | */ |
| 836 | static int add_missing_keys(struct btrfs_fs_info *fs_info, |
| 837 | struct preftrees *preftrees, bool lock) |
| 838 | { |
| 839 | struct prelim_ref *ref; |
| 840 | struct extent_buffer *eb; |
| 841 | struct preftree *tree = &preftrees->indirect_missing_keys; |
| 842 | struct rb_node *node; |
| 843 | |
| 844 | while ((node = rb_first_cached(&tree->root))) { |
| 845 | struct btrfs_tree_parent_check check = { 0 }; |
| 846 | |
| 847 | ref = rb_entry(node, struct prelim_ref, rbnode); |
| 848 | rb_erase_cached(node, &tree->root); |
| 849 | |
| 850 | BUG_ON(ref->parent); /* should not be a direct ref */ |
| 851 | BUG_ON(ref->key_for_search.type); |
| 852 | BUG_ON(!ref->wanted_disk_byte); |
| 853 | |
| 854 | check.level = ref->level - 1; |
| 855 | check.owner_root = ref->root_id; |
| 856 | |
| 857 | eb = read_tree_block(fs_info, ref->wanted_disk_byte, &check); |
| 858 | if (IS_ERR(eb)) { |
| 859 | free_pref(ref); |
| 860 | return PTR_ERR(eb); |
| 861 | } |
| 862 | if (!extent_buffer_uptodate(eb)) { |
| 863 | free_pref(ref); |
| 864 | free_extent_buffer(eb); |
| 865 | return -EIO; |
| 866 | } |
| 867 | |
| 868 | if (lock) |
| 869 | btrfs_tree_read_lock(eb); |
| 870 | if (btrfs_header_level(eb) == 0) |
| 871 | btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); |
| 872 | else |
| 873 | btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); |
| 874 | if (lock) |
| 875 | btrfs_tree_read_unlock(eb); |
| 876 | free_extent_buffer(eb); |
| 877 | prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); |
| 878 | cond_resched(); |
| 879 | } |
| 880 | return 0; |
| 881 | } |
| 882 | |
| 883 | /* |
| 884 | * add all currently queued delayed refs from this head whose seq nr is |
| 885 | * smaller or equal that seq to the list |
| 886 | */ |
| 887 | static int add_delayed_refs(const struct btrfs_fs_info *fs_info, |
| 888 | struct btrfs_delayed_ref_head *head, u64 seq, |
| 889 | struct preftrees *preftrees, struct share_check *sc) |
| 890 | { |
| 891 | struct btrfs_delayed_ref_node *node; |
| 892 | struct btrfs_key key; |
| 893 | struct rb_node *n; |
| 894 | int count; |
| 895 | int ret = 0; |
| 896 | |
| 897 | spin_lock(&head->lock); |
| 898 | for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) { |
| 899 | node = rb_entry(n, struct btrfs_delayed_ref_node, |
| 900 | ref_node); |
| 901 | if (node->seq > seq) |
| 902 | continue; |
| 903 | |
| 904 | switch (node->action) { |
| 905 | case BTRFS_ADD_DELAYED_EXTENT: |
| 906 | case BTRFS_UPDATE_DELAYED_HEAD: |
| 907 | WARN_ON(1); |
| 908 | continue; |
| 909 | case BTRFS_ADD_DELAYED_REF: |
| 910 | count = node->ref_mod; |
| 911 | break; |
| 912 | case BTRFS_DROP_DELAYED_REF: |
| 913 | count = node->ref_mod * -1; |
| 914 | break; |
| 915 | default: |
| 916 | BUG(); |
| 917 | } |
| 918 | switch (node->type) { |
| 919 | case BTRFS_TREE_BLOCK_REF_KEY: { |
| 920 | /* NORMAL INDIRECT METADATA backref */ |
| 921 | struct btrfs_key *key_ptr = NULL; |
| 922 | /* The owner of a tree block ref is the level. */ |
| 923 | int level = btrfs_delayed_ref_owner(node); |
| 924 | |
| 925 | if (head->extent_op && head->extent_op->update_key) { |
| 926 | btrfs_disk_key_to_cpu(&key, &head->extent_op->key); |
| 927 | key_ptr = &key; |
| 928 | } |
| 929 | |
| 930 | ret = add_indirect_ref(fs_info, preftrees, node->ref_root, |
| 931 | key_ptr, level + 1, node->bytenr, |
| 932 | count, sc, GFP_ATOMIC); |
| 933 | break; |
| 934 | } |
| 935 | case BTRFS_SHARED_BLOCK_REF_KEY: { |
| 936 | /* |
| 937 | * SHARED DIRECT METADATA backref |
| 938 | * |
| 939 | * The owner of a tree block ref is the level. |
| 940 | */ |
| 941 | int level = btrfs_delayed_ref_owner(node); |
| 942 | |
| 943 | ret = add_direct_ref(fs_info, preftrees, level + 1, |
| 944 | node->parent, node->bytenr, count, |
| 945 | sc, GFP_ATOMIC); |
| 946 | break; |
| 947 | } |
| 948 | case BTRFS_EXTENT_DATA_REF_KEY: { |
| 949 | /* NORMAL INDIRECT DATA backref */ |
| 950 | key.objectid = btrfs_delayed_ref_owner(node); |
| 951 | key.type = BTRFS_EXTENT_DATA_KEY; |
| 952 | key.offset = btrfs_delayed_ref_offset(node); |
| 953 | |
| 954 | /* |
| 955 | * If we have a share check context and a reference for |
| 956 | * another inode, we can't exit immediately. This is |
| 957 | * because even if this is a BTRFS_ADD_DELAYED_REF |
| 958 | * reference we may find next a BTRFS_DROP_DELAYED_REF |
| 959 | * which cancels out this ADD reference. |
| 960 | * |
| 961 | * If this is a DROP reference and there was no previous |
| 962 | * ADD reference, then we need to signal that when we |
| 963 | * process references from the extent tree (through |
| 964 | * add_inline_refs() and add_keyed_refs()), we should |
| 965 | * not exit early if we find a reference for another |
| 966 | * inode, because one of the delayed DROP references |
| 967 | * may cancel that reference in the extent tree. |
| 968 | */ |
| 969 | if (sc && count < 0) |
| 970 | sc->have_delayed_delete_refs = true; |
| 971 | |
| 972 | ret = add_indirect_ref(fs_info, preftrees, node->ref_root, |
| 973 | &key, 0, node->bytenr, count, sc, |
| 974 | GFP_ATOMIC); |
| 975 | break; |
| 976 | } |
| 977 | case BTRFS_SHARED_DATA_REF_KEY: { |
| 978 | /* SHARED DIRECT FULL backref */ |
| 979 | ret = add_direct_ref(fs_info, preftrees, 0, node->parent, |
| 980 | node->bytenr, count, sc, |
| 981 | GFP_ATOMIC); |
| 982 | break; |
| 983 | } |
| 984 | default: |
| 985 | WARN_ON(1); |
| 986 | } |
| 987 | /* |
| 988 | * We must ignore BACKREF_FOUND_SHARED until all delayed |
| 989 | * refs have been checked. |
| 990 | */ |
| 991 | if (ret && (ret != BACKREF_FOUND_SHARED)) |
| 992 | break; |
| 993 | } |
| 994 | if (!ret) |
| 995 | ret = extent_is_shared(sc); |
| 996 | |
| 997 | spin_unlock(&head->lock); |
| 998 | return ret; |
| 999 | } |
| 1000 | |
| 1001 | /* |
| 1002 | * add all inline backrefs for bytenr to the list |
| 1003 | * |
| 1004 | * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. |
| 1005 | */ |
| 1006 | static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx, |
| 1007 | struct btrfs_path *path, |
| 1008 | int *info_level, struct preftrees *preftrees, |
| 1009 | struct share_check *sc) |
| 1010 | { |
| 1011 | int ret = 0; |
| 1012 | int slot; |
| 1013 | struct extent_buffer *leaf; |
| 1014 | struct btrfs_key key; |
| 1015 | struct btrfs_key found_key; |
| 1016 | unsigned long ptr; |
| 1017 | unsigned long end; |
| 1018 | struct btrfs_extent_item *ei; |
| 1019 | u64 flags; |
| 1020 | u64 item_size; |
| 1021 | |
| 1022 | /* |
| 1023 | * enumerate all inline refs |
| 1024 | */ |
| 1025 | leaf = path->nodes[0]; |
| 1026 | slot = path->slots[0]; |
| 1027 | |
| 1028 | item_size = btrfs_item_size(leaf, slot); |
| 1029 | ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); |
| 1030 | |
| 1031 | if (ctx->check_extent_item) { |
| 1032 | ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx); |
| 1033 | if (ret) |
| 1034 | return ret; |
| 1035 | } |
| 1036 | |
| 1037 | flags = btrfs_extent_flags(leaf, ei); |
| 1038 | btrfs_item_key_to_cpu(leaf, &found_key, slot); |
| 1039 | |
| 1040 | ptr = (unsigned long)(ei + 1); |
| 1041 | end = (unsigned long)ei + item_size; |
| 1042 | |
| 1043 | if (found_key.type == BTRFS_EXTENT_ITEM_KEY && |
| 1044 | flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { |
| 1045 | struct btrfs_tree_block_info *info; |
| 1046 | |
| 1047 | info = (struct btrfs_tree_block_info *)ptr; |
| 1048 | *info_level = btrfs_tree_block_level(leaf, info); |
| 1049 | ptr += sizeof(struct btrfs_tree_block_info); |
| 1050 | BUG_ON(ptr > end); |
| 1051 | } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { |
| 1052 | *info_level = found_key.offset; |
| 1053 | } else { |
| 1054 | BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); |
| 1055 | } |
| 1056 | |
| 1057 | while (ptr < end) { |
| 1058 | struct btrfs_extent_inline_ref *iref; |
| 1059 | u64 offset; |
| 1060 | int type; |
| 1061 | |
| 1062 | iref = (struct btrfs_extent_inline_ref *)ptr; |
| 1063 | type = btrfs_get_extent_inline_ref_type(leaf, iref, |
| 1064 | BTRFS_REF_TYPE_ANY); |
| 1065 | if (type == BTRFS_REF_TYPE_INVALID) |
| 1066 | return -EUCLEAN; |
| 1067 | |
| 1068 | offset = btrfs_extent_inline_ref_offset(leaf, iref); |
| 1069 | |
| 1070 | switch (type) { |
| 1071 | case BTRFS_SHARED_BLOCK_REF_KEY: |
| 1072 | ret = add_direct_ref(ctx->fs_info, preftrees, |
| 1073 | *info_level + 1, offset, |
| 1074 | ctx->bytenr, 1, NULL, GFP_NOFS); |
| 1075 | break; |
| 1076 | case BTRFS_SHARED_DATA_REF_KEY: { |
| 1077 | struct btrfs_shared_data_ref *sdref; |
| 1078 | int count; |
| 1079 | |
| 1080 | sdref = (struct btrfs_shared_data_ref *)(iref + 1); |
| 1081 | count = btrfs_shared_data_ref_count(leaf, sdref); |
| 1082 | |
| 1083 | ret = add_direct_ref(ctx->fs_info, preftrees, 0, offset, |
| 1084 | ctx->bytenr, count, sc, GFP_NOFS); |
| 1085 | break; |
| 1086 | } |
| 1087 | case BTRFS_TREE_BLOCK_REF_KEY: |
| 1088 | ret = add_indirect_ref(ctx->fs_info, preftrees, offset, |
| 1089 | NULL, *info_level + 1, |
| 1090 | ctx->bytenr, 1, NULL, GFP_NOFS); |
| 1091 | break; |
| 1092 | case BTRFS_EXTENT_DATA_REF_KEY: { |
| 1093 | struct btrfs_extent_data_ref *dref; |
| 1094 | int count; |
| 1095 | u64 root; |
| 1096 | |
| 1097 | dref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| 1098 | count = btrfs_extent_data_ref_count(leaf, dref); |
| 1099 | key.objectid = btrfs_extent_data_ref_objectid(leaf, |
| 1100 | dref); |
| 1101 | key.type = BTRFS_EXTENT_DATA_KEY; |
| 1102 | key.offset = btrfs_extent_data_ref_offset(leaf, dref); |
| 1103 | |
| 1104 | if (sc && key.objectid != sc->inum && |
| 1105 | !sc->have_delayed_delete_refs) { |
| 1106 | ret = BACKREF_FOUND_SHARED; |
| 1107 | break; |
| 1108 | } |
| 1109 | |
| 1110 | root = btrfs_extent_data_ref_root(leaf, dref); |
| 1111 | |
| 1112 | if (!ctx->skip_data_ref || |
| 1113 | !ctx->skip_data_ref(root, key.objectid, key.offset, |
| 1114 | ctx->user_ctx)) |
| 1115 | ret = add_indirect_ref(ctx->fs_info, preftrees, |
| 1116 | root, &key, 0, ctx->bytenr, |
| 1117 | count, sc, GFP_NOFS); |
| 1118 | break; |
| 1119 | } |
| 1120 | case BTRFS_EXTENT_OWNER_REF_KEY: |
| 1121 | ASSERT(btrfs_fs_incompat(ctx->fs_info, SIMPLE_QUOTA)); |
| 1122 | break; |
| 1123 | default: |
| 1124 | WARN_ON(1); |
| 1125 | } |
| 1126 | if (ret) |
| 1127 | return ret; |
| 1128 | ptr += btrfs_extent_inline_ref_size(type); |
| 1129 | } |
| 1130 | |
| 1131 | return 0; |
| 1132 | } |
| 1133 | |
| 1134 | /* |
| 1135 | * add all non-inline backrefs for bytenr to the list |
| 1136 | * |
| 1137 | * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. |
| 1138 | */ |
| 1139 | static int add_keyed_refs(struct btrfs_backref_walk_ctx *ctx, |
| 1140 | struct btrfs_root *extent_root, |
| 1141 | struct btrfs_path *path, |
| 1142 | int info_level, struct preftrees *preftrees, |
| 1143 | struct share_check *sc) |
| 1144 | { |
| 1145 | struct btrfs_fs_info *fs_info = extent_root->fs_info; |
| 1146 | int ret; |
| 1147 | int slot; |
| 1148 | struct extent_buffer *leaf; |
| 1149 | struct btrfs_key key; |
| 1150 | |
| 1151 | while (1) { |
| 1152 | ret = btrfs_next_item(extent_root, path); |
| 1153 | if (ret < 0) |
| 1154 | break; |
| 1155 | if (ret) { |
| 1156 | ret = 0; |
| 1157 | break; |
| 1158 | } |
| 1159 | |
| 1160 | slot = path->slots[0]; |
| 1161 | leaf = path->nodes[0]; |
| 1162 | btrfs_item_key_to_cpu(leaf, &key, slot); |
| 1163 | |
| 1164 | if (key.objectid != ctx->bytenr) |
| 1165 | break; |
| 1166 | if (key.type < BTRFS_TREE_BLOCK_REF_KEY) |
| 1167 | continue; |
| 1168 | if (key.type > BTRFS_SHARED_DATA_REF_KEY) |
| 1169 | break; |
| 1170 | |
| 1171 | switch (key.type) { |
| 1172 | case BTRFS_SHARED_BLOCK_REF_KEY: |
| 1173 | /* SHARED DIRECT METADATA backref */ |
| 1174 | ret = add_direct_ref(fs_info, preftrees, |
| 1175 | info_level + 1, key.offset, |
| 1176 | ctx->bytenr, 1, NULL, GFP_NOFS); |
| 1177 | break; |
| 1178 | case BTRFS_SHARED_DATA_REF_KEY: { |
| 1179 | /* SHARED DIRECT FULL backref */ |
| 1180 | struct btrfs_shared_data_ref *sdref; |
| 1181 | int count; |
| 1182 | |
| 1183 | sdref = btrfs_item_ptr(leaf, slot, |
| 1184 | struct btrfs_shared_data_ref); |
| 1185 | count = btrfs_shared_data_ref_count(leaf, sdref); |
| 1186 | ret = add_direct_ref(fs_info, preftrees, 0, |
| 1187 | key.offset, ctx->bytenr, count, |
| 1188 | sc, GFP_NOFS); |
| 1189 | break; |
| 1190 | } |
| 1191 | case BTRFS_TREE_BLOCK_REF_KEY: |
| 1192 | /* NORMAL INDIRECT METADATA backref */ |
| 1193 | ret = add_indirect_ref(fs_info, preftrees, key.offset, |
| 1194 | NULL, info_level + 1, ctx->bytenr, |
| 1195 | 1, NULL, GFP_NOFS); |
| 1196 | break; |
| 1197 | case BTRFS_EXTENT_DATA_REF_KEY: { |
| 1198 | /* NORMAL INDIRECT DATA backref */ |
| 1199 | struct btrfs_extent_data_ref *dref; |
| 1200 | int count; |
| 1201 | u64 root; |
| 1202 | |
| 1203 | dref = btrfs_item_ptr(leaf, slot, |
| 1204 | struct btrfs_extent_data_ref); |
| 1205 | count = btrfs_extent_data_ref_count(leaf, dref); |
| 1206 | key.objectid = btrfs_extent_data_ref_objectid(leaf, |
| 1207 | dref); |
| 1208 | key.type = BTRFS_EXTENT_DATA_KEY; |
| 1209 | key.offset = btrfs_extent_data_ref_offset(leaf, dref); |
| 1210 | |
| 1211 | if (sc && key.objectid != sc->inum && |
| 1212 | !sc->have_delayed_delete_refs) { |
| 1213 | ret = BACKREF_FOUND_SHARED; |
| 1214 | break; |
| 1215 | } |
| 1216 | |
| 1217 | root = btrfs_extent_data_ref_root(leaf, dref); |
| 1218 | |
| 1219 | if (!ctx->skip_data_ref || |
| 1220 | !ctx->skip_data_ref(root, key.objectid, key.offset, |
| 1221 | ctx->user_ctx)) |
| 1222 | ret = add_indirect_ref(fs_info, preftrees, root, |
| 1223 | &key, 0, ctx->bytenr, |
| 1224 | count, sc, GFP_NOFS); |
| 1225 | break; |
| 1226 | } |
| 1227 | default: |
| 1228 | WARN_ON(1); |
| 1229 | } |
| 1230 | if (ret) |
| 1231 | return ret; |
| 1232 | |
| 1233 | } |
| 1234 | |
| 1235 | return ret; |
| 1236 | } |
| 1237 | |
| 1238 | /* |
| 1239 | * The caller has joined a transaction or is holding a read lock on the |
| 1240 | * fs_info->commit_root_sem semaphore, so no need to worry about the root's last |
| 1241 | * snapshot field changing while updating or checking the cache. |
| 1242 | */ |
| 1243 | static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx, |
| 1244 | struct btrfs_root *root, |
| 1245 | u64 bytenr, int level, bool *is_shared) |
| 1246 | { |
| 1247 | const struct btrfs_fs_info *fs_info = root->fs_info; |
| 1248 | struct btrfs_backref_shared_cache_entry *entry; |
| 1249 | |
| 1250 | if (!current->journal_info) |
| 1251 | lockdep_assert_held(&fs_info->commit_root_sem); |
| 1252 | |
| 1253 | if (!ctx->use_path_cache) |
| 1254 | return false; |
| 1255 | |
| 1256 | if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL)) |
| 1257 | return false; |
| 1258 | |
| 1259 | /* |
| 1260 | * Level -1 is used for the data extent, which is not reliable to cache |
| 1261 | * because its reference count can increase or decrease without us |
| 1262 | * realizing. We cache results only for extent buffers that lead from |
| 1263 | * the root node down to the leaf with the file extent item. |
| 1264 | */ |
| 1265 | ASSERT(level >= 0); |
| 1266 | |
| 1267 | entry = &ctx->path_cache_entries[level]; |
| 1268 | |
| 1269 | /* Unused cache entry or being used for some other extent buffer. */ |
| 1270 | if (entry->bytenr != bytenr) |
| 1271 | return false; |
| 1272 | |
| 1273 | /* |
| 1274 | * We cached a false result, but the last snapshot generation of the |
| 1275 | * root changed, so we now have a snapshot. Don't trust the result. |
| 1276 | */ |
| 1277 | if (!entry->is_shared && |
| 1278 | entry->gen != btrfs_root_last_snapshot(&root->root_item)) |
| 1279 | return false; |
| 1280 | |
| 1281 | /* |
| 1282 | * If we cached a true result and the last generation used for dropping |
| 1283 | * a root changed, we can not trust the result, because the dropped root |
| 1284 | * could be a snapshot sharing this extent buffer. |
| 1285 | */ |
| 1286 | if (entry->is_shared && |
| 1287 | entry->gen != btrfs_get_last_root_drop_gen(fs_info)) |
| 1288 | return false; |
| 1289 | |
| 1290 | *is_shared = entry->is_shared; |
| 1291 | /* |
| 1292 | * If the node at this level is shared, than all nodes below are also |
| 1293 | * shared. Currently some of the nodes below may be marked as not shared |
| 1294 | * because we have just switched from one leaf to another, and switched |
| 1295 | * also other nodes above the leaf and below the current level, so mark |
| 1296 | * them as shared. |
| 1297 | */ |
| 1298 | if (*is_shared) { |
| 1299 | for (int i = 0; i < level; i++) { |
| 1300 | ctx->path_cache_entries[i].is_shared = true; |
| 1301 | ctx->path_cache_entries[i].gen = entry->gen; |
| 1302 | } |
| 1303 | } |
| 1304 | |
| 1305 | return true; |
| 1306 | } |
| 1307 | |
| 1308 | /* |
| 1309 | * The caller has joined a transaction or is holding a read lock on the |
| 1310 | * fs_info->commit_root_sem semaphore, so no need to worry about the root's last |
| 1311 | * snapshot field changing while updating or checking the cache. |
| 1312 | */ |
| 1313 | static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx, |
| 1314 | struct btrfs_root *root, |
| 1315 | u64 bytenr, int level, bool is_shared) |
| 1316 | { |
| 1317 | const struct btrfs_fs_info *fs_info = root->fs_info; |
| 1318 | struct btrfs_backref_shared_cache_entry *entry; |
| 1319 | u64 gen; |
| 1320 | |
| 1321 | if (!current->journal_info) |
| 1322 | lockdep_assert_held(&fs_info->commit_root_sem); |
| 1323 | |
| 1324 | if (!ctx->use_path_cache) |
| 1325 | return; |
| 1326 | |
| 1327 | if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL)) |
| 1328 | return; |
| 1329 | |
| 1330 | /* |
| 1331 | * Level -1 is used for the data extent, which is not reliable to cache |
| 1332 | * because its reference count can increase or decrease without us |
| 1333 | * realizing. We cache results only for extent buffers that lead from |
| 1334 | * the root node down to the leaf with the file extent item. |
| 1335 | */ |
| 1336 | ASSERT(level >= 0); |
| 1337 | |
| 1338 | if (is_shared) |
| 1339 | gen = btrfs_get_last_root_drop_gen(fs_info); |
| 1340 | else |
| 1341 | gen = btrfs_root_last_snapshot(&root->root_item); |
| 1342 | |
| 1343 | entry = &ctx->path_cache_entries[level]; |
| 1344 | entry->bytenr = bytenr; |
| 1345 | entry->is_shared = is_shared; |
| 1346 | entry->gen = gen; |
| 1347 | |
| 1348 | /* |
| 1349 | * If we found an extent buffer is shared, set the cache result for all |
| 1350 | * extent buffers below it to true. As nodes in the path are COWed, |
| 1351 | * their sharedness is moved to their children, and if a leaf is COWed, |
| 1352 | * then the sharedness of a data extent becomes direct, the refcount of |
| 1353 | * data extent is increased in the extent item at the extent tree. |
| 1354 | */ |
| 1355 | if (is_shared) { |
| 1356 | for (int i = 0; i < level; i++) { |
| 1357 | entry = &ctx->path_cache_entries[i]; |
| 1358 | entry->is_shared = is_shared; |
| 1359 | entry->gen = gen; |
| 1360 | } |
| 1361 | } |
| 1362 | } |
| 1363 | |
| 1364 | /* |
| 1365 | * this adds all existing backrefs (inline backrefs, backrefs and delayed |
| 1366 | * refs) for the given bytenr to the refs list, merges duplicates and resolves |
| 1367 | * indirect refs to their parent bytenr. |
| 1368 | * When roots are found, they're added to the roots list |
| 1369 | * |
| 1370 | * @ctx: Backref walking context object, must be not NULL. |
| 1371 | * @sc: If !NULL, then immediately return BACKREF_FOUND_SHARED when a |
| 1372 | * shared extent is detected. |
| 1373 | * |
| 1374 | * Otherwise this returns 0 for success and <0 for an error. |
| 1375 | * |
| 1376 | * FIXME some caching might speed things up |
| 1377 | */ |
| 1378 | static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx, |
| 1379 | struct share_check *sc) |
| 1380 | { |
| 1381 | struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr); |
| 1382 | struct btrfs_key key; |
| 1383 | struct btrfs_path *path; |
| 1384 | struct btrfs_delayed_ref_root *delayed_refs = NULL; |
| 1385 | struct btrfs_delayed_ref_head *head; |
| 1386 | int info_level = 0; |
| 1387 | int ret; |
| 1388 | struct prelim_ref *ref; |
| 1389 | struct rb_node *node; |
| 1390 | struct extent_inode_elem *eie = NULL; |
| 1391 | struct preftrees preftrees = { |
| 1392 | .direct = PREFTREE_INIT, |
| 1393 | .indirect = PREFTREE_INIT, |
| 1394 | .indirect_missing_keys = PREFTREE_INIT |
| 1395 | }; |
| 1396 | |
| 1397 | /* Roots ulist is not needed when using a sharedness check context. */ |
| 1398 | if (sc) |
| 1399 | ASSERT(ctx->roots == NULL); |
| 1400 | |
| 1401 | key.objectid = ctx->bytenr; |
| 1402 | if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA)) |
| 1403 | key.type = BTRFS_METADATA_ITEM_KEY; |
| 1404 | else |
| 1405 | key.type = BTRFS_EXTENT_ITEM_KEY; |
| 1406 | key.offset = (u64)-1; |
| 1407 | |
| 1408 | path = btrfs_alloc_path(); |
| 1409 | if (!path) |
| 1410 | return -ENOMEM; |
| 1411 | if (!ctx->trans) { |
| 1412 | path->search_commit_root = 1; |
| 1413 | path->skip_locking = 1; |
| 1414 | } |
| 1415 | |
| 1416 | if (ctx->time_seq == BTRFS_SEQ_LAST) |
| 1417 | path->skip_locking = 1; |
| 1418 | |
| 1419 | again: |
| 1420 | head = NULL; |
| 1421 | |
| 1422 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| 1423 | if (ret < 0) |
| 1424 | goto out; |
| 1425 | if (ret == 0) { |
| 1426 | /* |
| 1427 | * Key with offset -1 found, there would have to exist an extent |
| 1428 | * item with such offset, but this is out of the valid range. |
| 1429 | */ |
| 1430 | ret = -EUCLEAN; |
| 1431 | goto out; |
| 1432 | } |
| 1433 | |
| 1434 | if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) && |
| 1435 | ctx->time_seq != BTRFS_SEQ_LAST) { |
| 1436 | /* |
| 1437 | * We have a specific time_seq we care about and trans which |
| 1438 | * means we have the path lock, we need to grab the ref head and |
| 1439 | * lock it so we have a consistent view of the refs at the given |
| 1440 | * time. |
| 1441 | */ |
| 1442 | delayed_refs = &ctx->trans->transaction->delayed_refs; |
| 1443 | spin_lock(&delayed_refs->lock); |
| 1444 | head = btrfs_find_delayed_ref_head(ctx->fs_info, delayed_refs, |
| 1445 | ctx->bytenr); |
| 1446 | if (head) { |
| 1447 | if (!mutex_trylock(&head->mutex)) { |
| 1448 | refcount_inc(&head->refs); |
| 1449 | spin_unlock(&delayed_refs->lock); |
| 1450 | |
| 1451 | btrfs_release_path(path); |
| 1452 | |
| 1453 | /* |
| 1454 | * Mutex was contended, block until it's |
| 1455 | * released and try again |
| 1456 | */ |
| 1457 | mutex_lock(&head->mutex); |
| 1458 | mutex_unlock(&head->mutex); |
| 1459 | btrfs_put_delayed_ref_head(head); |
| 1460 | goto again; |
| 1461 | } |
| 1462 | spin_unlock(&delayed_refs->lock); |
| 1463 | ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq, |
| 1464 | &preftrees, sc); |
| 1465 | mutex_unlock(&head->mutex); |
| 1466 | if (ret) |
| 1467 | goto out; |
| 1468 | } else { |
| 1469 | spin_unlock(&delayed_refs->lock); |
| 1470 | } |
| 1471 | } |
| 1472 | |
| 1473 | if (path->slots[0]) { |
| 1474 | struct extent_buffer *leaf; |
| 1475 | int slot; |
| 1476 | |
| 1477 | path->slots[0]--; |
| 1478 | leaf = path->nodes[0]; |
| 1479 | slot = path->slots[0]; |
| 1480 | btrfs_item_key_to_cpu(leaf, &key, slot); |
| 1481 | if (key.objectid == ctx->bytenr && |
| 1482 | (key.type == BTRFS_EXTENT_ITEM_KEY || |
| 1483 | key.type == BTRFS_METADATA_ITEM_KEY)) { |
| 1484 | ret = add_inline_refs(ctx, path, &info_level, |
| 1485 | &preftrees, sc); |
| 1486 | if (ret) |
| 1487 | goto out; |
| 1488 | ret = add_keyed_refs(ctx, root, path, info_level, |
| 1489 | &preftrees, sc); |
| 1490 | if (ret) |
| 1491 | goto out; |
| 1492 | } |
| 1493 | } |
| 1494 | |
| 1495 | /* |
| 1496 | * If we have a share context and we reached here, it means the extent |
| 1497 | * is not directly shared (no multiple reference items for it), |
| 1498 | * otherwise we would have exited earlier with a return value of |
| 1499 | * BACKREF_FOUND_SHARED after processing delayed references or while |
| 1500 | * processing inline or keyed references from the extent tree. |
| 1501 | * The extent may however be indirectly shared through shared subtrees |
| 1502 | * as a result from creating snapshots, so we determine below what is |
| 1503 | * its parent node, in case we are dealing with a metadata extent, or |
| 1504 | * what's the leaf (or leaves), from a fs tree, that has a file extent |
| 1505 | * item pointing to it in case we are dealing with a data extent. |
| 1506 | */ |
| 1507 | ASSERT(extent_is_shared(sc) == 0); |
| 1508 | |
| 1509 | /* |
| 1510 | * If we are here for a data extent and we have a share_check structure |
| 1511 | * it means the data extent is not directly shared (does not have |
| 1512 | * multiple reference items), so we have to check if a path in the fs |
| 1513 | * tree (going from the root node down to the leaf that has the file |
| 1514 | * extent item pointing to the data extent) is shared, that is, if any |
| 1515 | * of the extent buffers in the path is referenced by other trees. |
| 1516 | */ |
| 1517 | if (sc && ctx->bytenr == sc->data_bytenr) { |
| 1518 | /* |
| 1519 | * If our data extent is from a generation more recent than the |
| 1520 | * last generation used to snapshot the root, then we know that |
| 1521 | * it can not be shared through subtrees, so we can skip |
| 1522 | * resolving indirect references, there's no point in |
| 1523 | * determining the extent buffers for the path from the fs tree |
| 1524 | * root node down to the leaf that has the file extent item that |
| 1525 | * points to the data extent. |
| 1526 | */ |
| 1527 | if (sc->data_extent_gen > |
| 1528 | btrfs_root_last_snapshot(&sc->root->root_item)) { |
| 1529 | ret = BACKREF_FOUND_NOT_SHARED; |
| 1530 | goto out; |
| 1531 | } |
| 1532 | |
| 1533 | /* |
| 1534 | * If we are only determining if a data extent is shared or not |
| 1535 | * and the corresponding file extent item is located in the same |
| 1536 | * leaf as the previous file extent item, we can skip resolving |
| 1537 | * indirect references for a data extent, since the fs tree path |
| 1538 | * is the same (same leaf, so same path). We skip as long as the |
| 1539 | * cached result for the leaf is valid and only if there's only |
| 1540 | * one file extent item pointing to the data extent, because in |
| 1541 | * the case of multiple file extent items, they may be located |
| 1542 | * in different leaves and therefore we have multiple paths. |
| 1543 | */ |
| 1544 | if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr && |
| 1545 | sc->self_ref_count == 1) { |
| 1546 | bool cached; |
| 1547 | bool is_shared; |
| 1548 | |
| 1549 | cached = lookup_backref_shared_cache(sc->ctx, sc->root, |
| 1550 | sc->ctx->curr_leaf_bytenr, |
| 1551 | 0, &is_shared); |
| 1552 | if (cached) { |
| 1553 | if (is_shared) |
| 1554 | ret = BACKREF_FOUND_SHARED; |
| 1555 | else |
| 1556 | ret = BACKREF_FOUND_NOT_SHARED; |
| 1557 | goto out; |
| 1558 | } |
| 1559 | } |
| 1560 | } |
| 1561 | |
| 1562 | btrfs_release_path(path); |
| 1563 | |
| 1564 | ret = add_missing_keys(ctx->fs_info, &preftrees, path->skip_locking == 0); |
| 1565 | if (ret) |
| 1566 | goto out; |
| 1567 | |
| 1568 | WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root)); |
| 1569 | |
| 1570 | ret = resolve_indirect_refs(ctx, path, &preftrees, sc); |
| 1571 | if (ret) |
| 1572 | goto out; |
| 1573 | |
| 1574 | WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root)); |
| 1575 | |
| 1576 | /* |
| 1577 | * This walks the tree of merged and resolved refs. Tree blocks are |
| 1578 | * read in as needed. Unique entries are added to the ulist, and |
| 1579 | * the list of found roots is updated. |
| 1580 | * |
| 1581 | * We release the entire tree in one go before returning. |
| 1582 | */ |
| 1583 | node = rb_first_cached(&preftrees.direct.root); |
| 1584 | while (node) { |
| 1585 | ref = rb_entry(node, struct prelim_ref, rbnode); |
| 1586 | node = rb_next(&ref->rbnode); |
| 1587 | /* |
| 1588 | * ref->count < 0 can happen here if there are delayed |
| 1589 | * refs with a node->action of BTRFS_DROP_DELAYED_REF. |
| 1590 | * prelim_ref_insert() relies on this when merging |
| 1591 | * identical refs to keep the overall count correct. |
| 1592 | * prelim_ref_insert() will merge only those refs |
| 1593 | * which compare identically. Any refs having |
| 1594 | * e.g. different offsets would not be merged, |
| 1595 | * and would retain their original ref->count < 0. |
| 1596 | */ |
| 1597 | if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) { |
| 1598 | /* no parent == root of tree */ |
| 1599 | ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS); |
| 1600 | if (ret < 0) |
| 1601 | goto out; |
| 1602 | } |
| 1603 | if (ref->count && ref->parent) { |
| 1604 | if (!ctx->skip_inode_ref_list && !ref->inode_list && |
| 1605 | ref->level == 0) { |
| 1606 | struct btrfs_tree_parent_check check = { 0 }; |
| 1607 | struct extent_buffer *eb; |
| 1608 | |
| 1609 | check.level = ref->level; |
| 1610 | |
| 1611 | eb = read_tree_block(ctx->fs_info, ref->parent, |
| 1612 | &check); |
| 1613 | if (IS_ERR(eb)) { |
| 1614 | ret = PTR_ERR(eb); |
| 1615 | goto out; |
| 1616 | } |
| 1617 | if (!extent_buffer_uptodate(eb)) { |
| 1618 | free_extent_buffer(eb); |
| 1619 | ret = -EIO; |
| 1620 | goto out; |
| 1621 | } |
| 1622 | |
| 1623 | if (!path->skip_locking) |
| 1624 | btrfs_tree_read_lock(eb); |
| 1625 | ret = find_extent_in_eb(ctx, eb, &eie); |
| 1626 | if (!path->skip_locking) |
| 1627 | btrfs_tree_read_unlock(eb); |
| 1628 | free_extent_buffer(eb); |
| 1629 | if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || |
| 1630 | ret < 0) |
| 1631 | goto out; |
| 1632 | ref->inode_list = eie; |
| 1633 | /* |
| 1634 | * We transferred the list ownership to the ref, |
| 1635 | * so set to NULL to avoid a double free in case |
| 1636 | * an error happens after this. |
| 1637 | */ |
| 1638 | eie = NULL; |
| 1639 | } |
| 1640 | ret = ulist_add_merge_ptr(ctx->refs, ref->parent, |
| 1641 | ref->inode_list, |
| 1642 | (void **)&eie, GFP_NOFS); |
| 1643 | if (ret < 0) |
| 1644 | goto out; |
| 1645 | if (!ret && !ctx->skip_inode_ref_list) { |
| 1646 | /* |
| 1647 | * We've recorded that parent, so we must extend |
| 1648 | * its inode list here. |
| 1649 | * |
| 1650 | * However if there was corruption we may not |
| 1651 | * have found an eie, return an error in this |
| 1652 | * case. |
| 1653 | */ |
| 1654 | ASSERT(eie); |
| 1655 | if (!eie) { |
| 1656 | ret = -EUCLEAN; |
| 1657 | goto out; |
| 1658 | } |
| 1659 | while (eie->next) |
| 1660 | eie = eie->next; |
| 1661 | eie->next = ref->inode_list; |
| 1662 | } |
| 1663 | eie = NULL; |
| 1664 | /* |
| 1665 | * We have transferred the inode list ownership from |
| 1666 | * this ref to the ref we added to the 'refs' ulist. |
| 1667 | * So set this ref's inode list to NULL to avoid |
| 1668 | * use-after-free when our caller uses it or double |
| 1669 | * frees in case an error happens before we return. |
| 1670 | */ |
| 1671 | ref->inode_list = NULL; |
| 1672 | } |
| 1673 | cond_resched(); |
| 1674 | } |
| 1675 | |
| 1676 | out: |
| 1677 | btrfs_free_path(path); |
| 1678 | |
| 1679 | prelim_release(&preftrees.direct); |
| 1680 | prelim_release(&preftrees.indirect); |
| 1681 | prelim_release(&preftrees.indirect_missing_keys); |
| 1682 | |
| 1683 | if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) |
| 1684 | free_inode_elem_list(eie); |
| 1685 | return ret; |
| 1686 | } |
| 1687 | |
| 1688 | /* |
| 1689 | * Finds all leaves with a reference to the specified combination of |
| 1690 | * @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are |
| 1691 | * added to the ulist at @ctx->refs, and that ulist is allocated by this |
| 1692 | * function. The caller should free the ulist with free_leaf_list() if |
| 1693 | * @ctx->ignore_extent_item_pos is false, otherwise a fimple ulist_free() is |
| 1694 | * enough. |
| 1695 | * |
| 1696 | * Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated. |
| 1697 | */ |
| 1698 | int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx) |
| 1699 | { |
| 1700 | int ret; |
| 1701 | |
| 1702 | ASSERT(ctx->refs == NULL); |
| 1703 | |
| 1704 | ctx->refs = ulist_alloc(GFP_NOFS); |
| 1705 | if (!ctx->refs) |
| 1706 | return -ENOMEM; |
| 1707 | |
| 1708 | ret = find_parent_nodes(ctx, NULL); |
| 1709 | if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || |
| 1710 | (ret < 0 && ret != -ENOENT)) { |
| 1711 | free_leaf_list(ctx->refs); |
| 1712 | ctx->refs = NULL; |
| 1713 | return ret; |
| 1714 | } |
| 1715 | |
| 1716 | return 0; |
| 1717 | } |
| 1718 | |
| 1719 | /* |
| 1720 | * Walk all backrefs for a given extent to find all roots that reference this |
| 1721 | * extent. Walking a backref means finding all extents that reference this |
| 1722 | * extent and in turn walk the backrefs of those, too. Naturally this is a |
| 1723 | * recursive process, but here it is implemented in an iterative fashion: We |
| 1724 | * find all referencing extents for the extent in question and put them on a |
| 1725 | * list. In turn, we find all referencing extents for those, further appending |
| 1726 | * to the list. The way we iterate the list allows adding more elements after |
| 1727 | * the current while iterating. The process stops when we reach the end of the |
| 1728 | * list. |
| 1729 | * |
| 1730 | * Found roots are added to @ctx->roots, which is allocated by this function if |
| 1731 | * it points to NULL, in which case the caller is responsible for freeing it |
| 1732 | * after it's not needed anymore. |
| 1733 | * This function requires @ctx->refs to be NULL, as it uses it for allocating a |
| 1734 | * ulist to do temporary work, and frees it before returning. |
| 1735 | * |
| 1736 | * Returns 0 on success, < 0 on error. |
| 1737 | */ |
| 1738 | static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx) |
| 1739 | { |
| 1740 | const u64 orig_bytenr = ctx->bytenr; |
| 1741 | const bool orig_skip_inode_ref_list = ctx->skip_inode_ref_list; |
| 1742 | bool roots_ulist_allocated = false; |
| 1743 | struct ulist_iterator uiter; |
| 1744 | int ret = 0; |
| 1745 | |
| 1746 | ASSERT(ctx->refs == NULL); |
| 1747 | |
| 1748 | ctx->refs = ulist_alloc(GFP_NOFS); |
| 1749 | if (!ctx->refs) |
| 1750 | return -ENOMEM; |
| 1751 | |
| 1752 | if (!ctx->roots) { |
| 1753 | ctx->roots = ulist_alloc(GFP_NOFS); |
| 1754 | if (!ctx->roots) { |
| 1755 | ulist_free(ctx->refs); |
| 1756 | ctx->refs = NULL; |
| 1757 | return -ENOMEM; |
| 1758 | } |
| 1759 | roots_ulist_allocated = true; |
| 1760 | } |
| 1761 | |
| 1762 | ctx->skip_inode_ref_list = true; |
| 1763 | |
| 1764 | ULIST_ITER_INIT(&uiter); |
| 1765 | while (1) { |
| 1766 | struct ulist_node *node; |
| 1767 | |
| 1768 | ret = find_parent_nodes(ctx, NULL); |
| 1769 | if (ret < 0 && ret != -ENOENT) { |
| 1770 | if (roots_ulist_allocated) { |
| 1771 | ulist_free(ctx->roots); |
| 1772 | ctx->roots = NULL; |
| 1773 | } |
| 1774 | break; |
| 1775 | } |
| 1776 | ret = 0; |
| 1777 | node = ulist_next(ctx->refs, &uiter); |
| 1778 | if (!node) |
| 1779 | break; |
| 1780 | ctx->bytenr = node->val; |
| 1781 | cond_resched(); |
| 1782 | } |
| 1783 | |
| 1784 | ulist_free(ctx->refs); |
| 1785 | ctx->refs = NULL; |
| 1786 | ctx->bytenr = orig_bytenr; |
| 1787 | ctx->skip_inode_ref_list = orig_skip_inode_ref_list; |
| 1788 | |
| 1789 | return ret; |
| 1790 | } |
| 1791 | |
| 1792 | int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx, |
| 1793 | bool skip_commit_root_sem) |
| 1794 | { |
| 1795 | int ret; |
| 1796 | |
| 1797 | if (!ctx->trans && !skip_commit_root_sem) |
| 1798 | down_read(&ctx->fs_info->commit_root_sem); |
| 1799 | ret = btrfs_find_all_roots_safe(ctx); |
| 1800 | if (!ctx->trans && !skip_commit_root_sem) |
| 1801 | up_read(&ctx->fs_info->commit_root_sem); |
| 1802 | return ret; |
| 1803 | } |
| 1804 | |
| 1805 | struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void) |
| 1806 | { |
| 1807 | struct btrfs_backref_share_check_ctx *ctx; |
| 1808 | |
| 1809 | ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); |
| 1810 | if (!ctx) |
| 1811 | return NULL; |
| 1812 | |
| 1813 | ulist_init(&ctx->refs); |
| 1814 | |
| 1815 | return ctx; |
| 1816 | } |
| 1817 | |
| 1818 | void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx) |
| 1819 | { |
| 1820 | if (!ctx) |
| 1821 | return; |
| 1822 | |
| 1823 | ulist_release(&ctx->refs); |
| 1824 | kfree(ctx); |
| 1825 | } |
| 1826 | |
| 1827 | /* |
| 1828 | * Check if a data extent is shared or not. |
| 1829 | * |
| 1830 | * @inode: The inode whose extent we are checking. |
| 1831 | * @bytenr: Logical bytenr of the extent we are checking. |
| 1832 | * @extent_gen: Generation of the extent (file extent item) or 0 if it is |
| 1833 | * not known. |
| 1834 | * @ctx: A backref sharedness check context. |
| 1835 | * |
| 1836 | * btrfs_is_data_extent_shared uses the backref walking code but will short |
| 1837 | * circuit as soon as it finds a root or inode that doesn't match the |
| 1838 | * one passed in. This provides a significant performance benefit for |
| 1839 | * callers (such as fiemap) which want to know whether the extent is |
| 1840 | * shared but do not need a ref count. |
| 1841 | * |
| 1842 | * This attempts to attach to the running transaction in order to account for |
| 1843 | * delayed refs, but continues on even when no running transaction exists. |
| 1844 | * |
| 1845 | * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. |
| 1846 | */ |
| 1847 | int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr, |
| 1848 | u64 extent_gen, |
| 1849 | struct btrfs_backref_share_check_ctx *ctx) |
| 1850 | { |
| 1851 | struct btrfs_backref_walk_ctx walk_ctx = { 0 }; |
| 1852 | struct btrfs_root *root = inode->root; |
| 1853 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 1854 | struct btrfs_trans_handle *trans; |
| 1855 | struct ulist_iterator uiter; |
| 1856 | struct ulist_node *node; |
| 1857 | struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem); |
| 1858 | int ret = 0; |
| 1859 | struct share_check shared = { |
| 1860 | .ctx = ctx, |
| 1861 | .root = root, |
| 1862 | .inum = btrfs_ino(inode), |
| 1863 | .data_bytenr = bytenr, |
| 1864 | .data_extent_gen = extent_gen, |
| 1865 | .share_count = 0, |
| 1866 | .self_ref_count = 0, |
| 1867 | .have_delayed_delete_refs = false, |
| 1868 | }; |
| 1869 | int level; |
| 1870 | bool leaf_cached; |
| 1871 | bool leaf_is_shared; |
| 1872 | |
| 1873 | for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) { |
| 1874 | if (ctx->prev_extents_cache[i].bytenr == bytenr) |
| 1875 | return ctx->prev_extents_cache[i].is_shared; |
| 1876 | } |
| 1877 | |
| 1878 | ulist_init(&ctx->refs); |
| 1879 | |
| 1880 | trans = btrfs_join_transaction_nostart(root); |
| 1881 | if (IS_ERR(trans)) { |
| 1882 | if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) { |
| 1883 | ret = PTR_ERR(trans); |
| 1884 | goto out; |
| 1885 | } |
| 1886 | trans = NULL; |
| 1887 | down_read(&fs_info->commit_root_sem); |
| 1888 | } else { |
| 1889 | btrfs_get_tree_mod_seq(fs_info, &elem); |
| 1890 | walk_ctx.time_seq = elem.seq; |
| 1891 | } |
| 1892 | |
| 1893 | ctx->use_path_cache = true; |
| 1894 | |
| 1895 | /* |
| 1896 | * We may have previously determined that the current leaf is shared. |
| 1897 | * If it is, then we have a data extent that is shared due to a shared |
| 1898 | * subtree (caused by snapshotting) and we don't need to check for data |
| 1899 | * backrefs. If the leaf is not shared, then we must do backref walking |
| 1900 | * to determine if the data extent is shared through reflinks. |
| 1901 | */ |
| 1902 | leaf_cached = lookup_backref_shared_cache(ctx, root, |
| 1903 | ctx->curr_leaf_bytenr, 0, |
| 1904 | &leaf_is_shared); |
| 1905 | if (leaf_cached && leaf_is_shared) { |
| 1906 | ret = 1; |
| 1907 | goto out_trans; |
| 1908 | } |
| 1909 | |
| 1910 | walk_ctx.skip_inode_ref_list = true; |
| 1911 | walk_ctx.trans = trans; |
| 1912 | walk_ctx.fs_info = fs_info; |
| 1913 | walk_ctx.refs = &ctx->refs; |
| 1914 | |
| 1915 | /* -1 means we are in the bytenr of the data extent. */ |
| 1916 | level = -1; |
| 1917 | ULIST_ITER_INIT(&uiter); |
| 1918 | while (1) { |
| 1919 | const unsigned long prev_ref_count = ctx->refs.nnodes; |
| 1920 | |
| 1921 | walk_ctx.bytenr = bytenr; |
| 1922 | ret = find_parent_nodes(&walk_ctx, &shared); |
| 1923 | if (ret == BACKREF_FOUND_SHARED || |
| 1924 | ret == BACKREF_FOUND_NOT_SHARED) { |
| 1925 | /* If shared must return 1, otherwise return 0. */ |
| 1926 | ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0; |
| 1927 | if (level >= 0) |
| 1928 | store_backref_shared_cache(ctx, root, bytenr, |
| 1929 | level, ret == 1); |
| 1930 | break; |
| 1931 | } |
| 1932 | if (ret < 0 && ret != -ENOENT) |
| 1933 | break; |
| 1934 | ret = 0; |
| 1935 | |
| 1936 | /* |
| 1937 | * More than one extent buffer (bytenr) may have been added to |
| 1938 | * the ctx->refs ulist, in which case we have to check multiple |
| 1939 | * tree paths in case the first one is not shared, so we can not |
| 1940 | * use the path cache which is made for a single path. Multiple |
| 1941 | * extent buffers at the current level happen when: |
| 1942 | * |
| 1943 | * 1) level -1, the data extent: If our data extent was not |
| 1944 | * directly shared (without multiple reference items), then |
| 1945 | * it might have a single reference item with a count > 1 for |
| 1946 | * the same offset, which means there are 2 (or more) file |
| 1947 | * extent items that point to the data extent - this happens |
| 1948 | * when a file extent item needs to be split and then one |
| 1949 | * item gets moved to another leaf due to a b+tree leaf split |
| 1950 | * when inserting some item. In this case the file extent |
| 1951 | * items may be located in different leaves and therefore |
| 1952 | * some of the leaves may be referenced through shared |
| 1953 | * subtrees while others are not. Since our extent buffer |
| 1954 | * cache only works for a single path (by far the most common |
| 1955 | * case and simpler to deal with), we can not use it if we |
| 1956 | * have multiple leaves (which implies multiple paths). |
| 1957 | * |
| 1958 | * 2) level >= 0, a tree node/leaf: We can have a mix of direct |
| 1959 | * and indirect references on a b+tree node/leaf, so we have |
| 1960 | * to check multiple paths, and the extent buffer (the |
| 1961 | * current bytenr) may be shared or not. One example is |
| 1962 | * during relocation as we may get a shared tree block ref |
| 1963 | * (direct ref) and a non-shared tree block ref (indirect |
| 1964 | * ref) for the same node/leaf. |
| 1965 | */ |
| 1966 | if ((ctx->refs.nnodes - prev_ref_count) > 1) |
| 1967 | ctx->use_path_cache = false; |
| 1968 | |
| 1969 | if (level >= 0) |
| 1970 | store_backref_shared_cache(ctx, root, bytenr, |
| 1971 | level, false); |
| 1972 | node = ulist_next(&ctx->refs, &uiter); |
| 1973 | if (!node) |
| 1974 | break; |
| 1975 | bytenr = node->val; |
| 1976 | if (ctx->use_path_cache) { |
| 1977 | bool is_shared; |
| 1978 | bool cached; |
| 1979 | |
| 1980 | level++; |
| 1981 | cached = lookup_backref_shared_cache(ctx, root, bytenr, |
| 1982 | level, &is_shared); |
| 1983 | if (cached) { |
| 1984 | ret = (is_shared ? 1 : 0); |
| 1985 | break; |
| 1986 | } |
| 1987 | } |
| 1988 | shared.share_count = 0; |
| 1989 | shared.have_delayed_delete_refs = false; |
| 1990 | cond_resched(); |
| 1991 | } |
| 1992 | |
| 1993 | /* |
| 1994 | * If the path cache is disabled, then it means at some tree level we |
| 1995 | * got multiple parents due to a mix of direct and indirect backrefs or |
| 1996 | * multiple leaves with file extent items pointing to the same data |
| 1997 | * extent. We have to invalidate the cache and cache only the sharedness |
| 1998 | * result for the levels where we got only one node/reference. |
| 1999 | */ |
| 2000 | if (!ctx->use_path_cache) { |
| 2001 | int i = 0; |
| 2002 | |
| 2003 | level--; |
| 2004 | if (ret >= 0 && level >= 0) { |
| 2005 | bytenr = ctx->path_cache_entries[level].bytenr; |
| 2006 | ctx->use_path_cache = true; |
| 2007 | store_backref_shared_cache(ctx, root, bytenr, level, ret); |
| 2008 | i = level + 1; |
| 2009 | } |
| 2010 | |
| 2011 | for ( ; i < BTRFS_MAX_LEVEL; i++) |
| 2012 | ctx->path_cache_entries[i].bytenr = 0; |
| 2013 | } |
| 2014 | |
| 2015 | /* |
| 2016 | * Cache the sharedness result for the data extent if we know our inode |
| 2017 | * has more than 1 file extent item that refers to the data extent. |
| 2018 | */ |
| 2019 | if (ret >= 0 && shared.self_ref_count > 1) { |
| 2020 | int slot = ctx->prev_extents_cache_slot; |
| 2021 | |
| 2022 | ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr; |
| 2023 | ctx->prev_extents_cache[slot].is_shared = (ret == 1); |
| 2024 | |
| 2025 | slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; |
| 2026 | ctx->prev_extents_cache_slot = slot; |
| 2027 | } |
| 2028 | |
| 2029 | out_trans: |
| 2030 | if (trans) { |
| 2031 | btrfs_put_tree_mod_seq(fs_info, &elem); |
| 2032 | btrfs_end_transaction(trans); |
| 2033 | } else { |
| 2034 | up_read(&fs_info->commit_root_sem); |
| 2035 | } |
| 2036 | out: |
| 2037 | ulist_release(&ctx->refs); |
| 2038 | ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr; |
| 2039 | |
| 2040 | return ret; |
| 2041 | } |
| 2042 | |
| 2043 | int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, |
| 2044 | u64 start_off, struct btrfs_path *path, |
| 2045 | struct btrfs_inode_extref **ret_extref, |
| 2046 | u64 *found_off) |
| 2047 | { |
| 2048 | int ret, slot; |
| 2049 | struct btrfs_key key; |
| 2050 | struct btrfs_key found_key; |
| 2051 | struct btrfs_inode_extref *extref; |
| 2052 | const struct extent_buffer *leaf; |
| 2053 | unsigned long ptr; |
| 2054 | |
| 2055 | key.objectid = inode_objectid; |
| 2056 | key.type = BTRFS_INODE_EXTREF_KEY; |
| 2057 | key.offset = start_off; |
| 2058 | |
| 2059 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| 2060 | if (ret < 0) |
| 2061 | return ret; |
| 2062 | |
| 2063 | while (1) { |
| 2064 | leaf = path->nodes[0]; |
| 2065 | slot = path->slots[0]; |
| 2066 | if (slot >= btrfs_header_nritems(leaf)) { |
| 2067 | /* |
| 2068 | * If the item at offset is not found, |
| 2069 | * btrfs_search_slot will point us to the slot |
| 2070 | * where it should be inserted. In our case |
| 2071 | * that will be the slot directly before the |
| 2072 | * next INODE_REF_KEY_V2 item. In the case |
| 2073 | * that we're pointing to the last slot in a |
| 2074 | * leaf, we must move one leaf over. |
| 2075 | */ |
| 2076 | ret = btrfs_next_leaf(root, path); |
| 2077 | if (ret) { |
| 2078 | if (ret >= 1) |
| 2079 | ret = -ENOENT; |
| 2080 | break; |
| 2081 | } |
| 2082 | continue; |
| 2083 | } |
| 2084 | |
| 2085 | btrfs_item_key_to_cpu(leaf, &found_key, slot); |
| 2086 | |
| 2087 | /* |
| 2088 | * Check that we're still looking at an extended ref key for |
| 2089 | * this particular objectid. If we have different |
| 2090 | * objectid or type then there are no more to be found |
| 2091 | * in the tree and we can exit. |
| 2092 | */ |
| 2093 | ret = -ENOENT; |
| 2094 | if (found_key.objectid != inode_objectid) |
| 2095 | break; |
| 2096 | if (found_key.type != BTRFS_INODE_EXTREF_KEY) |
| 2097 | break; |
| 2098 | |
| 2099 | ret = 0; |
| 2100 | ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); |
| 2101 | extref = (struct btrfs_inode_extref *)ptr; |
| 2102 | *ret_extref = extref; |
| 2103 | if (found_off) |
| 2104 | *found_off = found_key.offset; |
| 2105 | break; |
| 2106 | } |
| 2107 | |
| 2108 | return ret; |
| 2109 | } |
| 2110 | |
| 2111 | /* |
| 2112 | * this iterates to turn a name (from iref/extref) into a full filesystem path. |
| 2113 | * Elements of the path are separated by '/' and the path is guaranteed to be |
| 2114 | * 0-terminated. the path is only given within the current file system. |
| 2115 | * Therefore, it never starts with a '/'. the caller is responsible to provide |
| 2116 | * "size" bytes in "dest". the dest buffer will be filled backwards. finally, |
| 2117 | * the start point of the resulting string is returned. this pointer is within |
| 2118 | * dest, normally. |
| 2119 | * in case the path buffer would overflow, the pointer is decremented further |
| 2120 | * as if output was written to the buffer, though no more output is actually |
| 2121 | * generated. that way, the caller can determine how much space would be |
| 2122 | * required for the path to fit into the buffer. in that case, the returned |
| 2123 | * value will be smaller than dest. callers must check this! |
| 2124 | */ |
| 2125 | char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, |
| 2126 | u32 name_len, unsigned long name_off, |
| 2127 | struct extent_buffer *eb_in, u64 parent, |
| 2128 | char *dest, u32 size) |
| 2129 | { |
| 2130 | int slot; |
| 2131 | u64 next_inum; |
| 2132 | int ret; |
| 2133 | s64 bytes_left = ((s64)size) - 1; |
| 2134 | struct extent_buffer *eb = eb_in; |
| 2135 | struct btrfs_key found_key; |
| 2136 | struct btrfs_inode_ref *iref; |
| 2137 | |
| 2138 | if (bytes_left >= 0) |
| 2139 | dest[bytes_left] = '\0'; |
| 2140 | |
| 2141 | while (1) { |
| 2142 | bytes_left -= name_len; |
| 2143 | if (bytes_left >= 0) |
| 2144 | read_extent_buffer(eb, dest + bytes_left, |
| 2145 | name_off, name_len); |
| 2146 | if (eb != eb_in) { |
| 2147 | if (!path->skip_locking) |
| 2148 | btrfs_tree_read_unlock(eb); |
| 2149 | free_extent_buffer(eb); |
| 2150 | } |
| 2151 | ret = btrfs_find_item(fs_root, path, parent, 0, |
| 2152 | BTRFS_INODE_REF_KEY, &found_key); |
| 2153 | if (ret > 0) |
| 2154 | ret = -ENOENT; |
| 2155 | if (ret) |
| 2156 | break; |
| 2157 | |
| 2158 | next_inum = found_key.offset; |
| 2159 | |
| 2160 | /* regular exit ahead */ |
| 2161 | if (parent == next_inum) |
| 2162 | break; |
| 2163 | |
| 2164 | slot = path->slots[0]; |
| 2165 | eb = path->nodes[0]; |
| 2166 | /* make sure we can use eb after releasing the path */ |
| 2167 | if (eb != eb_in) { |
| 2168 | path->nodes[0] = NULL; |
| 2169 | path->locks[0] = 0; |
| 2170 | } |
| 2171 | btrfs_release_path(path); |
| 2172 | iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); |
| 2173 | |
| 2174 | name_len = btrfs_inode_ref_name_len(eb, iref); |
| 2175 | name_off = (unsigned long)(iref + 1); |
| 2176 | |
| 2177 | parent = next_inum; |
| 2178 | --bytes_left; |
| 2179 | if (bytes_left >= 0) |
| 2180 | dest[bytes_left] = '/'; |
| 2181 | } |
| 2182 | |
| 2183 | btrfs_release_path(path); |
| 2184 | |
| 2185 | if (ret) |
| 2186 | return ERR_PTR(ret); |
| 2187 | |
| 2188 | return dest + bytes_left; |
| 2189 | } |
| 2190 | |
| 2191 | /* |
| 2192 | * this makes the path point to (logical EXTENT_ITEM *) |
| 2193 | * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for |
| 2194 | * tree blocks and <0 on error. |
| 2195 | */ |
| 2196 | int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, |
| 2197 | struct btrfs_path *path, struct btrfs_key *found_key, |
| 2198 | u64 *flags_ret) |
| 2199 | { |
| 2200 | struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical); |
| 2201 | int ret; |
| 2202 | u64 flags; |
| 2203 | u64 size = 0; |
| 2204 | u32 item_size; |
| 2205 | const struct extent_buffer *eb; |
| 2206 | struct btrfs_extent_item *ei; |
| 2207 | struct btrfs_key key; |
| 2208 | |
| 2209 | key.objectid = logical; |
| 2210 | if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) |
| 2211 | key.type = BTRFS_METADATA_ITEM_KEY; |
| 2212 | else |
| 2213 | key.type = BTRFS_EXTENT_ITEM_KEY; |
| 2214 | key.offset = (u64)-1; |
| 2215 | |
| 2216 | ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); |
| 2217 | if (ret < 0) |
| 2218 | return ret; |
| 2219 | if (ret == 0) { |
| 2220 | /* |
| 2221 | * Key with offset -1 found, there would have to exist an extent |
| 2222 | * item with such offset, but this is out of the valid range. |
| 2223 | */ |
| 2224 | return -EUCLEAN; |
| 2225 | } |
| 2226 | |
| 2227 | ret = btrfs_previous_extent_item(extent_root, path, 0); |
| 2228 | if (ret) { |
| 2229 | if (ret > 0) |
| 2230 | ret = -ENOENT; |
| 2231 | return ret; |
| 2232 | } |
| 2233 | btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); |
| 2234 | if (found_key->type == BTRFS_METADATA_ITEM_KEY) |
| 2235 | size = fs_info->nodesize; |
| 2236 | else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) |
| 2237 | size = found_key->offset; |
| 2238 | |
| 2239 | if (found_key->objectid > logical || |
| 2240 | found_key->objectid + size <= logical) { |
| 2241 | btrfs_debug(fs_info, |
| 2242 | "logical %llu is not within any extent", logical); |
| 2243 | return -ENOENT; |
| 2244 | } |
| 2245 | |
| 2246 | eb = path->nodes[0]; |
| 2247 | item_size = btrfs_item_size(eb, path->slots[0]); |
| 2248 | |
| 2249 | ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); |
| 2250 | flags = btrfs_extent_flags(eb, ei); |
| 2251 | |
| 2252 | btrfs_debug(fs_info, |
| 2253 | "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", |
| 2254 | logical, logical - found_key->objectid, found_key->objectid, |
| 2255 | found_key->offset, flags, item_size); |
| 2256 | |
| 2257 | WARN_ON(!flags_ret); |
| 2258 | if (flags_ret) { |
| 2259 | if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) |
| 2260 | *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; |
| 2261 | else if (flags & BTRFS_EXTENT_FLAG_DATA) |
| 2262 | *flags_ret = BTRFS_EXTENT_FLAG_DATA; |
| 2263 | else |
| 2264 | BUG(); |
| 2265 | return 0; |
| 2266 | } |
| 2267 | |
| 2268 | return -EIO; |
| 2269 | } |
| 2270 | |
| 2271 | /* |
| 2272 | * helper function to iterate extent inline refs. ptr must point to a 0 value |
| 2273 | * for the first call and may be modified. it is used to track state. |
| 2274 | * if more refs exist, 0 is returned and the next call to |
| 2275 | * get_extent_inline_ref must pass the modified ptr parameter to get the |
| 2276 | * next ref. after the last ref was processed, 1 is returned. |
| 2277 | * returns <0 on error |
| 2278 | */ |
| 2279 | static int get_extent_inline_ref(unsigned long *ptr, |
| 2280 | const struct extent_buffer *eb, |
| 2281 | const struct btrfs_key *key, |
| 2282 | const struct btrfs_extent_item *ei, |
| 2283 | u32 item_size, |
| 2284 | struct btrfs_extent_inline_ref **out_eiref, |
| 2285 | int *out_type) |
| 2286 | { |
| 2287 | unsigned long end; |
| 2288 | u64 flags; |
| 2289 | struct btrfs_tree_block_info *info; |
| 2290 | |
| 2291 | if (!*ptr) { |
| 2292 | /* first call */ |
| 2293 | flags = btrfs_extent_flags(eb, ei); |
| 2294 | if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { |
| 2295 | if (key->type == BTRFS_METADATA_ITEM_KEY) { |
| 2296 | /* a skinny metadata extent */ |
| 2297 | *out_eiref = |
| 2298 | (struct btrfs_extent_inline_ref *)(ei + 1); |
| 2299 | } else { |
| 2300 | WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); |
| 2301 | info = (struct btrfs_tree_block_info *)(ei + 1); |
| 2302 | *out_eiref = |
| 2303 | (struct btrfs_extent_inline_ref *)(info + 1); |
| 2304 | } |
| 2305 | } else { |
| 2306 | *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); |
| 2307 | } |
| 2308 | *ptr = (unsigned long)*out_eiref; |
| 2309 | if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) |
| 2310 | return -ENOENT; |
| 2311 | } |
| 2312 | |
| 2313 | end = (unsigned long)ei + item_size; |
| 2314 | *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); |
| 2315 | *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, |
| 2316 | BTRFS_REF_TYPE_ANY); |
| 2317 | if (*out_type == BTRFS_REF_TYPE_INVALID) |
| 2318 | return -EUCLEAN; |
| 2319 | |
| 2320 | *ptr += btrfs_extent_inline_ref_size(*out_type); |
| 2321 | WARN_ON(*ptr > end); |
| 2322 | if (*ptr == end) |
| 2323 | return 1; /* last */ |
| 2324 | |
| 2325 | return 0; |
| 2326 | } |
| 2327 | |
| 2328 | /* |
| 2329 | * reads the tree block backref for an extent. tree level and root are returned |
| 2330 | * through out_level and out_root. ptr must point to a 0 value for the first |
| 2331 | * call and may be modified (see get_extent_inline_ref comment). |
| 2332 | * returns 0 if data was provided, 1 if there was no more data to provide or |
| 2333 | * <0 on error. |
| 2334 | */ |
| 2335 | int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, |
| 2336 | struct btrfs_key *key, struct btrfs_extent_item *ei, |
| 2337 | u32 item_size, u64 *out_root, u8 *out_level) |
| 2338 | { |
| 2339 | int ret; |
| 2340 | int type; |
| 2341 | struct btrfs_extent_inline_ref *eiref; |
| 2342 | |
| 2343 | if (*ptr == (unsigned long)-1) |
| 2344 | return 1; |
| 2345 | |
| 2346 | while (1) { |
| 2347 | ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, |
| 2348 | &eiref, &type); |
| 2349 | if (ret < 0) |
| 2350 | return ret; |
| 2351 | |
| 2352 | if (type == BTRFS_TREE_BLOCK_REF_KEY || |
| 2353 | type == BTRFS_SHARED_BLOCK_REF_KEY) |
| 2354 | break; |
| 2355 | |
| 2356 | if (ret == 1) |
| 2357 | return 1; |
| 2358 | } |
| 2359 | |
| 2360 | /* we can treat both ref types equally here */ |
| 2361 | *out_root = btrfs_extent_inline_ref_offset(eb, eiref); |
| 2362 | |
| 2363 | if (key->type == BTRFS_EXTENT_ITEM_KEY) { |
| 2364 | struct btrfs_tree_block_info *info; |
| 2365 | |
| 2366 | info = (struct btrfs_tree_block_info *)(ei + 1); |
| 2367 | *out_level = btrfs_tree_block_level(eb, info); |
| 2368 | } else { |
| 2369 | ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); |
| 2370 | *out_level = (u8)key->offset; |
| 2371 | } |
| 2372 | |
| 2373 | if (ret == 1) |
| 2374 | *ptr = (unsigned long)-1; |
| 2375 | |
| 2376 | return 0; |
| 2377 | } |
| 2378 | |
| 2379 | static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, |
| 2380 | struct extent_inode_elem *inode_list, |
| 2381 | u64 root, u64 extent_item_objectid, |
| 2382 | iterate_extent_inodes_t *iterate, void *ctx) |
| 2383 | { |
| 2384 | struct extent_inode_elem *eie; |
| 2385 | int ret = 0; |
| 2386 | |
| 2387 | for (eie = inode_list; eie; eie = eie->next) { |
| 2388 | btrfs_debug(fs_info, |
| 2389 | "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", |
| 2390 | extent_item_objectid, eie->inum, |
| 2391 | eie->offset, root); |
| 2392 | ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx); |
| 2393 | if (ret) { |
| 2394 | btrfs_debug(fs_info, |
| 2395 | "stopping iteration for %llu due to ret=%d", |
| 2396 | extent_item_objectid, ret); |
| 2397 | break; |
| 2398 | } |
| 2399 | } |
| 2400 | |
| 2401 | return ret; |
| 2402 | } |
| 2403 | |
| 2404 | /* |
| 2405 | * calls iterate() for every inode that references the extent identified by |
| 2406 | * the given parameters. |
| 2407 | * when the iterator function returns a non-zero value, iteration stops. |
| 2408 | */ |
| 2409 | int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx, |
| 2410 | bool search_commit_root, |
| 2411 | iterate_extent_inodes_t *iterate, void *user_ctx) |
| 2412 | { |
| 2413 | int ret; |
| 2414 | struct ulist *refs; |
| 2415 | struct ulist_node *ref_node; |
| 2416 | struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem); |
| 2417 | struct ulist_iterator ref_uiter; |
| 2418 | |
| 2419 | btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu", |
| 2420 | ctx->bytenr); |
| 2421 | |
| 2422 | ASSERT(ctx->trans == NULL); |
| 2423 | ASSERT(ctx->roots == NULL); |
| 2424 | |
| 2425 | if (!search_commit_root) { |
| 2426 | struct btrfs_trans_handle *trans; |
| 2427 | |
| 2428 | trans = btrfs_attach_transaction(ctx->fs_info->tree_root); |
| 2429 | if (IS_ERR(trans)) { |
| 2430 | if (PTR_ERR(trans) != -ENOENT && |
| 2431 | PTR_ERR(trans) != -EROFS) |
| 2432 | return PTR_ERR(trans); |
| 2433 | trans = NULL; |
| 2434 | } |
| 2435 | ctx->trans = trans; |
| 2436 | } |
| 2437 | |
| 2438 | if (ctx->trans) { |
| 2439 | btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem); |
| 2440 | ctx->time_seq = seq_elem.seq; |
| 2441 | } else { |
| 2442 | down_read(&ctx->fs_info->commit_root_sem); |
| 2443 | } |
| 2444 | |
| 2445 | ret = btrfs_find_all_leafs(ctx); |
| 2446 | if (ret) |
| 2447 | goto out; |
| 2448 | refs = ctx->refs; |
| 2449 | ctx->refs = NULL; |
| 2450 | |
| 2451 | ULIST_ITER_INIT(&ref_uiter); |
| 2452 | while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { |
| 2453 | const u64 leaf_bytenr = ref_node->val; |
| 2454 | struct ulist_node *root_node; |
| 2455 | struct ulist_iterator root_uiter; |
| 2456 | struct extent_inode_elem *inode_list; |
| 2457 | |
| 2458 | inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux; |
| 2459 | |
| 2460 | if (ctx->cache_lookup) { |
| 2461 | const u64 *root_ids; |
| 2462 | int root_count; |
| 2463 | bool cached; |
| 2464 | |
| 2465 | cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx, |
| 2466 | &root_ids, &root_count); |
| 2467 | if (cached) { |
| 2468 | for (int i = 0; i < root_count; i++) { |
| 2469 | ret = iterate_leaf_refs(ctx->fs_info, |
| 2470 | inode_list, |
| 2471 | root_ids[i], |
| 2472 | leaf_bytenr, |
| 2473 | iterate, |
| 2474 | user_ctx); |
| 2475 | if (ret) |
| 2476 | break; |
| 2477 | } |
| 2478 | continue; |
| 2479 | } |
| 2480 | } |
| 2481 | |
| 2482 | if (!ctx->roots) { |
| 2483 | ctx->roots = ulist_alloc(GFP_NOFS); |
| 2484 | if (!ctx->roots) { |
| 2485 | ret = -ENOMEM; |
| 2486 | break; |
| 2487 | } |
| 2488 | } |
| 2489 | |
| 2490 | ctx->bytenr = leaf_bytenr; |
| 2491 | ret = btrfs_find_all_roots_safe(ctx); |
| 2492 | if (ret) |
| 2493 | break; |
| 2494 | |
| 2495 | if (ctx->cache_store) |
| 2496 | ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx); |
| 2497 | |
| 2498 | ULIST_ITER_INIT(&root_uiter); |
| 2499 | while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) { |
| 2500 | btrfs_debug(ctx->fs_info, |
| 2501 | "root %llu references leaf %llu, data list %#llx", |
| 2502 | root_node->val, ref_node->val, |
| 2503 | ref_node->aux); |
| 2504 | ret = iterate_leaf_refs(ctx->fs_info, inode_list, |
| 2505 | root_node->val, ctx->bytenr, |
| 2506 | iterate, user_ctx); |
| 2507 | } |
| 2508 | ulist_reinit(ctx->roots); |
| 2509 | } |
| 2510 | |
| 2511 | free_leaf_list(refs); |
| 2512 | out: |
| 2513 | if (ctx->trans) { |
| 2514 | btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem); |
| 2515 | btrfs_end_transaction(ctx->trans); |
| 2516 | ctx->trans = NULL; |
| 2517 | } else { |
| 2518 | up_read(&ctx->fs_info->commit_root_sem); |
| 2519 | } |
| 2520 | |
| 2521 | ulist_free(ctx->roots); |
| 2522 | ctx->roots = NULL; |
| 2523 | |
| 2524 | if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP) |
| 2525 | ret = 0; |
| 2526 | |
| 2527 | return ret; |
| 2528 | } |
| 2529 | |
| 2530 | static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx) |
| 2531 | { |
| 2532 | struct btrfs_data_container *inodes = ctx; |
| 2533 | const size_t c = 3 * sizeof(u64); |
| 2534 | |
| 2535 | if (inodes->bytes_left >= c) { |
| 2536 | inodes->bytes_left -= c; |
| 2537 | inodes->val[inodes->elem_cnt] = inum; |
| 2538 | inodes->val[inodes->elem_cnt + 1] = offset; |
| 2539 | inodes->val[inodes->elem_cnt + 2] = root; |
| 2540 | inodes->elem_cnt += 3; |
| 2541 | } else { |
| 2542 | inodes->bytes_missing += c - inodes->bytes_left; |
| 2543 | inodes->bytes_left = 0; |
| 2544 | inodes->elem_missed += 3; |
| 2545 | } |
| 2546 | |
| 2547 | return 0; |
| 2548 | } |
| 2549 | |
| 2550 | int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, |
| 2551 | struct btrfs_path *path, |
| 2552 | void *ctx, bool ignore_offset) |
| 2553 | { |
| 2554 | struct btrfs_backref_walk_ctx walk_ctx = { 0 }; |
| 2555 | int ret; |
| 2556 | u64 flags = 0; |
| 2557 | struct btrfs_key found_key; |
| 2558 | int search_commit_root = path->search_commit_root; |
| 2559 | |
| 2560 | ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); |
| 2561 | btrfs_release_path(path); |
| 2562 | if (ret < 0) |
| 2563 | return ret; |
| 2564 | if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) |
| 2565 | return -EINVAL; |
| 2566 | |
| 2567 | walk_ctx.bytenr = found_key.objectid; |
| 2568 | if (ignore_offset) |
| 2569 | walk_ctx.ignore_extent_item_pos = true; |
| 2570 | else |
| 2571 | walk_ctx.extent_item_pos = logical - found_key.objectid; |
| 2572 | walk_ctx.fs_info = fs_info; |
| 2573 | |
| 2574 | return iterate_extent_inodes(&walk_ctx, search_commit_root, |
| 2575 | build_ino_list, ctx); |
| 2576 | } |
| 2577 | |
| 2578 | static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, |
| 2579 | struct extent_buffer *eb, struct inode_fs_paths *ipath); |
| 2580 | |
| 2581 | static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath) |
| 2582 | { |
| 2583 | int ret = 0; |
| 2584 | int slot; |
| 2585 | u32 cur; |
| 2586 | u32 len; |
| 2587 | u32 name_len; |
| 2588 | u64 parent = 0; |
| 2589 | int found = 0; |
| 2590 | struct btrfs_root *fs_root = ipath->fs_root; |
| 2591 | struct btrfs_path *path = ipath->btrfs_path; |
| 2592 | struct extent_buffer *eb; |
| 2593 | struct btrfs_inode_ref *iref; |
| 2594 | struct btrfs_key found_key; |
| 2595 | |
| 2596 | while (!ret) { |
| 2597 | ret = btrfs_find_item(fs_root, path, inum, |
| 2598 | parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, |
| 2599 | &found_key); |
| 2600 | |
| 2601 | if (ret < 0) |
| 2602 | break; |
| 2603 | if (ret) { |
| 2604 | ret = found ? 0 : -ENOENT; |
| 2605 | break; |
| 2606 | } |
| 2607 | ++found; |
| 2608 | |
| 2609 | parent = found_key.offset; |
| 2610 | slot = path->slots[0]; |
| 2611 | eb = btrfs_clone_extent_buffer(path->nodes[0]); |
| 2612 | if (!eb) { |
| 2613 | ret = -ENOMEM; |
| 2614 | break; |
| 2615 | } |
| 2616 | btrfs_release_path(path); |
| 2617 | |
| 2618 | iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); |
| 2619 | |
| 2620 | for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) { |
| 2621 | name_len = btrfs_inode_ref_name_len(eb, iref); |
| 2622 | /* path must be released before calling iterate()! */ |
| 2623 | btrfs_debug(fs_root->fs_info, |
| 2624 | "following ref at offset %u for inode %llu in tree %llu", |
| 2625 | cur, found_key.objectid, |
| 2626 | btrfs_root_id(fs_root)); |
| 2627 | ret = inode_to_path(parent, name_len, |
| 2628 | (unsigned long)(iref + 1), eb, ipath); |
| 2629 | if (ret) |
| 2630 | break; |
| 2631 | len = sizeof(*iref) + name_len; |
| 2632 | iref = (struct btrfs_inode_ref *)((char *)iref + len); |
| 2633 | } |
| 2634 | free_extent_buffer(eb); |
| 2635 | } |
| 2636 | |
| 2637 | btrfs_release_path(path); |
| 2638 | |
| 2639 | return ret; |
| 2640 | } |
| 2641 | |
| 2642 | static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath) |
| 2643 | { |
| 2644 | int ret; |
| 2645 | int slot; |
| 2646 | u64 offset = 0; |
| 2647 | u64 parent; |
| 2648 | int found = 0; |
| 2649 | struct btrfs_root *fs_root = ipath->fs_root; |
| 2650 | struct btrfs_path *path = ipath->btrfs_path; |
| 2651 | struct extent_buffer *eb; |
| 2652 | struct btrfs_inode_extref *extref; |
| 2653 | u32 item_size; |
| 2654 | u32 cur_offset; |
| 2655 | unsigned long ptr; |
| 2656 | |
| 2657 | while (1) { |
| 2658 | ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, |
| 2659 | &offset); |
| 2660 | if (ret < 0) |
| 2661 | break; |
| 2662 | if (ret) { |
| 2663 | ret = found ? 0 : -ENOENT; |
| 2664 | break; |
| 2665 | } |
| 2666 | ++found; |
| 2667 | |
| 2668 | slot = path->slots[0]; |
| 2669 | eb = btrfs_clone_extent_buffer(path->nodes[0]); |
| 2670 | if (!eb) { |
| 2671 | ret = -ENOMEM; |
| 2672 | break; |
| 2673 | } |
| 2674 | btrfs_release_path(path); |
| 2675 | |
| 2676 | item_size = btrfs_item_size(eb, slot); |
| 2677 | ptr = btrfs_item_ptr_offset(eb, slot); |
| 2678 | cur_offset = 0; |
| 2679 | |
| 2680 | while (cur_offset < item_size) { |
| 2681 | u32 name_len; |
| 2682 | |
| 2683 | extref = (struct btrfs_inode_extref *)(ptr + cur_offset); |
| 2684 | parent = btrfs_inode_extref_parent(eb, extref); |
| 2685 | name_len = btrfs_inode_extref_name_len(eb, extref); |
| 2686 | ret = inode_to_path(parent, name_len, |
| 2687 | (unsigned long)&extref->name, eb, ipath); |
| 2688 | if (ret) |
| 2689 | break; |
| 2690 | |
| 2691 | cur_offset += btrfs_inode_extref_name_len(eb, extref); |
| 2692 | cur_offset += sizeof(*extref); |
| 2693 | } |
| 2694 | free_extent_buffer(eb); |
| 2695 | |
| 2696 | offset++; |
| 2697 | } |
| 2698 | |
| 2699 | btrfs_release_path(path); |
| 2700 | |
| 2701 | return ret; |
| 2702 | } |
| 2703 | |
| 2704 | /* |
| 2705 | * returns 0 if the path could be dumped (probably truncated) |
| 2706 | * returns <0 in case of an error |
| 2707 | */ |
| 2708 | static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, |
| 2709 | struct extent_buffer *eb, struct inode_fs_paths *ipath) |
| 2710 | { |
| 2711 | char *fspath; |
| 2712 | char *fspath_min; |
| 2713 | int i = ipath->fspath->elem_cnt; |
| 2714 | const int s_ptr = sizeof(char *); |
| 2715 | u32 bytes_left; |
| 2716 | |
| 2717 | bytes_left = ipath->fspath->bytes_left > s_ptr ? |
| 2718 | ipath->fspath->bytes_left - s_ptr : 0; |
| 2719 | |
| 2720 | fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; |
| 2721 | fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, |
| 2722 | name_off, eb, inum, fspath_min, bytes_left); |
| 2723 | if (IS_ERR(fspath)) |
| 2724 | return PTR_ERR(fspath); |
| 2725 | |
| 2726 | if (fspath > fspath_min) { |
| 2727 | ipath->fspath->val[i] = (u64)(unsigned long)fspath; |
| 2728 | ++ipath->fspath->elem_cnt; |
| 2729 | ipath->fspath->bytes_left = fspath - fspath_min; |
| 2730 | } else { |
| 2731 | ++ipath->fspath->elem_missed; |
| 2732 | ipath->fspath->bytes_missing += fspath_min - fspath; |
| 2733 | ipath->fspath->bytes_left = 0; |
| 2734 | } |
| 2735 | |
| 2736 | return 0; |
| 2737 | } |
| 2738 | |
| 2739 | /* |
| 2740 | * this dumps all file system paths to the inode into the ipath struct, provided |
| 2741 | * is has been created large enough. each path is zero-terminated and accessed |
| 2742 | * from ipath->fspath->val[i]. |
| 2743 | * when it returns, there are ipath->fspath->elem_cnt number of paths available |
| 2744 | * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the |
| 2745 | * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, |
| 2746 | * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would |
| 2747 | * have been needed to return all paths. |
| 2748 | */ |
| 2749 | int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) |
| 2750 | { |
| 2751 | int ret; |
| 2752 | int found_refs = 0; |
| 2753 | |
| 2754 | ret = iterate_inode_refs(inum, ipath); |
| 2755 | if (!ret) |
| 2756 | ++found_refs; |
| 2757 | else if (ret != -ENOENT) |
| 2758 | return ret; |
| 2759 | |
| 2760 | ret = iterate_inode_extrefs(inum, ipath); |
| 2761 | if (ret == -ENOENT && found_refs) |
| 2762 | return 0; |
| 2763 | |
| 2764 | return ret; |
| 2765 | } |
| 2766 | |
| 2767 | struct btrfs_data_container *init_data_container(u32 total_bytes) |
| 2768 | { |
| 2769 | struct btrfs_data_container *data; |
| 2770 | size_t alloc_bytes; |
| 2771 | |
| 2772 | alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); |
| 2773 | data = kvzalloc(alloc_bytes, GFP_KERNEL); |
| 2774 | if (!data) |
| 2775 | return ERR_PTR(-ENOMEM); |
| 2776 | |
| 2777 | if (total_bytes >= sizeof(*data)) |
| 2778 | data->bytes_left = total_bytes - sizeof(*data); |
| 2779 | else |
| 2780 | data->bytes_missing = sizeof(*data) - total_bytes; |
| 2781 | |
| 2782 | return data; |
| 2783 | } |
| 2784 | |
| 2785 | /* |
| 2786 | * allocates space to return multiple file system paths for an inode. |
| 2787 | * total_bytes to allocate are passed, note that space usable for actual path |
| 2788 | * information will be total_bytes - sizeof(struct inode_fs_paths). |
| 2789 | * the returned pointer must be freed with free_ipath() in the end. |
| 2790 | */ |
| 2791 | struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, |
| 2792 | struct btrfs_path *path) |
| 2793 | { |
| 2794 | struct inode_fs_paths *ifp; |
| 2795 | struct btrfs_data_container *fspath; |
| 2796 | |
| 2797 | fspath = init_data_container(total_bytes); |
| 2798 | if (IS_ERR(fspath)) |
| 2799 | return ERR_CAST(fspath); |
| 2800 | |
| 2801 | ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); |
| 2802 | if (!ifp) { |
| 2803 | kvfree(fspath); |
| 2804 | return ERR_PTR(-ENOMEM); |
| 2805 | } |
| 2806 | |
| 2807 | ifp->btrfs_path = path; |
| 2808 | ifp->fspath = fspath; |
| 2809 | ifp->fs_root = fs_root; |
| 2810 | |
| 2811 | return ifp; |
| 2812 | } |
| 2813 | |
| 2814 | void free_ipath(struct inode_fs_paths *ipath) |
| 2815 | { |
| 2816 | if (!ipath) |
| 2817 | return; |
| 2818 | kvfree(ipath->fspath); |
| 2819 | kfree(ipath); |
| 2820 | } |
| 2821 | |
| 2822 | struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info) |
| 2823 | { |
| 2824 | struct btrfs_backref_iter *ret; |
| 2825 | |
| 2826 | ret = kzalloc(sizeof(*ret), GFP_NOFS); |
| 2827 | if (!ret) |
| 2828 | return NULL; |
| 2829 | |
| 2830 | ret->path = btrfs_alloc_path(); |
| 2831 | if (!ret->path) { |
| 2832 | kfree(ret); |
| 2833 | return NULL; |
| 2834 | } |
| 2835 | |
| 2836 | /* Current backref iterator only supports iteration in commit root */ |
| 2837 | ret->path->search_commit_root = 1; |
| 2838 | ret->path->skip_locking = 1; |
| 2839 | ret->fs_info = fs_info; |
| 2840 | |
| 2841 | return ret; |
| 2842 | } |
| 2843 | |
| 2844 | static void btrfs_backref_iter_release(struct btrfs_backref_iter *iter) |
| 2845 | { |
| 2846 | iter->bytenr = 0; |
| 2847 | iter->item_ptr = 0; |
| 2848 | iter->cur_ptr = 0; |
| 2849 | iter->end_ptr = 0; |
| 2850 | btrfs_release_path(iter->path); |
| 2851 | memset(&iter->cur_key, 0, sizeof(iter->cur_key)); |
| 2852 | } |
| 2853 | |
| 2854 | int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr) |
| 2855 | { |
| 2856 | struct btrfs_fs_info *fs_info = iter->fs_info; |
| 2857 | struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); |
| 2858 | struct btrfs_path *path = iter->path; |
| 2859 | struct btrfs_extent_item *ei; |
| 2860 | struct btrfs_key key; |
| 2861 | int ret; |
| 2862 | |
| 2863 | key.objectid = bytenr; |
| 2864 | key.type = BTRFS_METADATA_ITEM_KEY; |
| 2865 | key.offset = (u64)-1; |
| 2866 | iter->bytenr = bytenr; |
| 2867 | |
| 2868 | ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); |
| 2869 | if (ret < 0) |
| 2870 | return ret; |
| 2871 | if (ret == 0) { |
| 2872 | /* |
| 2873 | * Key with offset -1 found, there would have to exist an extent |
| 2874 | * item with such offset, but this is out of the valid range. |
| 2875 | */ |
| 2876 | ret = -EUCLEAN; |
| 2877 | goto release; |
| 2878 | } |
| 2879 | if (path->slots[0] == 0) { |
| 2880 | DEBUG_WARN(); |
| 2881 | ret = -EUCLEAN; |
| 2882 | goto release; |
| 2883 | } |
| 2884 | path->slots[0]--; |
| 2885 | |
| 2886 | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); |
| 2887 | if ((key.type != BTRFS_EXTENT_ITEM_KEY && |
| 2888 | key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) { |
| 2889 | ret = -ENOENT; |
| 2890 | goto release; |
| 2891 | } |
| 2892 | memcpy(&iter->cur_key, &key, sizeof(key)); |
| 2893 | iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], |
| 2894 | path->slots[0]); |
| 2895 | iter->end_ptr = (u32)(iter->item_ptr + |
| 2896 | btrfs_item_size(path->nodes[0], path->slots[0])); |
| 2897 | ei = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| 2898 | struct btrfs_extent_item); |
| 2899 | |
| 2900 | /* |
| 2901 | * Only support iteration on tree backref yet. |
| 2902 | * |
| 2903 | * This is an extra precaution for non skinny-metadata, where |
| 2904 | * EXTENT_ITEM is also used for tree blocks, that we can only use |
| 2905 | * extent flags to determine if it's a tree block. |
| 2906 | */ |
| 2907 | if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) { |
| 2908 | ret = -ENOTSUPP; |
| 2909 | goto release; |
| 2910 | } |
| 2911 | iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei)); |
| 2912 | |
| 2913 | /* If there is no inline backref, go search for keyed backref */ |
| 2914 | if (iter->cur_ptr >= iter->end_ptr) { |
| 2915 | ret = btrfs_next_item(extent_root, path); |
| 2916 | |
| 2917 | /* No inline nor keyed ref */ |
| 2918 | if (ret > 0) { |
| 2919 | ret = -ENOENT; |
| 2920 | goto release; |
| 2921 | } |
| 2922 | if (ret < 0) |
| 2923 | goto release; |
| 2924 | |
| 2925 | btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, |
| 2926 | path->slots[0]); |
| 2927 | if (iter->cur_key.objectid != bytenr || |
| 2928 | (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY && |
| 2929 | iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) { |
| 2930 | ret = -ENOENT; |
| 2931 | goto release; |
| 2932 | } |
| 2933 | iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], |
| 2934 | path->slots[0]); |
| 2935 | iter->item_ptr = iter->cur_ptr; |
| 2936 | iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size( |
| 2937 | path->nodes[0], path->slots[0])); |
| 2938 | } |
| 2939 | |
| 2940 | return 0; |
| 2941 | release: |
| 2942 | btrfs_backref_iter_release(iter); |
| 2943 | return ret; |
| 2944 | } |
| 2945 | |
| 2946 | static bool btrfs_backref_iter_is_inline_ref(struct btrfs_backref_iter *iter) |
| 2947 | { |
| 2948 | if (iter->cur_key.type == BTRFS_EXTENT_ITEM_KEY || |
| 2949 | iter->cur_key.type == BTRFS_METADATA_ITEM_KEY) |
| 2950 | return true; |
| 2951 | return false; |
| 2952 | } |
| 2953 | |
| 2954 | /* |
| 2955 | * Go to the next backref item of current bytenr, can be either inlined or |
| 2956 | * keyed. |
| 2957 | * |
| 2958 | * Caller needs to check whether it's inline ref or not by iter->cur_key. |
| 2959 | * |
| 2960 | * Return 0 if we get next backref without problem. |
| 2961 | * Return >0 if there is no extra backref for this bytenr. |
| 2962 | * Return <0 if there is something wrong happened. |
| 2963 | */ |
| 2964 | int btrfs_backref_iter_next(struct btrfs_backref_iter *iter) |
| 2965 | { |
| 2966 | struct extent_buffer *eb = iter->path->nodes[0]; |
| 2967 | struct btrfs_root *extent_root; |
| 2968 | struct btrfs_path *path = iter->path; |
| 2969 | struct btrfs_extent_inline_ref *iref; |
| 2970 | int ret; |
| 2971 | u32 size; |
| 2972 | |
| 2973 | if (btrfs_backref_iter_is_inline_ref(iter)) { |
| 2974 | /* We're still inside the inline refs */ |
| 2975 | ASSERT(iter->cur_ptr < iter->end_ptr); |
| 2976 | |
| 2977 | if (btrfs_backref_has_tree_block_info(iter)) { |
| 2978 | /* First tree block info */ |
| 2979 | size = sizeof(struct btrfs_tree_block_info); |
| 2980 | } else { |
| 2981 | /* Use inline ref type to determine the size */ |
| 2982 | int type; |
| 2983 | |
| 2984 | iref = (struct btrfs_extent_inline_ref *) |
| 2985 | ((unsigned long)iter->cur_ptr); |
| 2986 | type = btrfs_extent_inline_ref_type(eb, iref); |
| 2987 | |
| 2988 | size = btrfs_extent_inline_ref_size(type); |
| 2989 | } |
| 2990 | iter->cur_ptr += size; |
| 2991 | if (iter->cur_ptr < iter->end_ptr) |
| 2992 | return 0; |
| 2993 | |
| 2994 | /* All inline items iterated, fall through */ |
| 2995 | } |
| 2996 | |
| 2997 | /* We're at keyed items, there is no inline item, go to the next one */ |
| 2998 | extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr); |
| 2999 | ret = btrfs_next_item(extent_root, iter->path); |
| 3000 | if (ret) |
| 3001 | return ret; |
| 3002 | |
| 3003 | btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]); |
| 3004 | if (iter->cur_key.objectid != iter->bytenr || |
| 3005 | (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY && |
| 3006 | iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY)) |
| 3007 | return 1; |
| 3008 | iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], |
| 3009 | path->slots[0]); |
| 3010 | iter->cur_ptr = iter->item_ptr; |
| 3011 | iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0], |
| 3012 | path->slots[0]); |
| 3013 | return 0; |
| 3014 | } |
| 3015 | |
| 3016 | void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info, |
| 3017 | struct btrfs_backref_cache *cache, bool is_reloc) |
| 3018 | { |
| 3019 | int i; |
| 3020 | |
| 3021 | cache->rb_root = RB_ROOT; |
| 3022 | for (i = 0; i < BTRFS_MAX_LEVEL; i++) |
| 3023 | INIT_LIST_HEAD(&cache->pending[i]); |
| 3024 | INIT_LIST_HEAD(&cache->pending_edge); |
| 3025 | INIT_LIST_HEAD(&cache->useless_node); |
| 3026 | cache->fs_info = fs_info; |
| 3027 | cache->is_reloc = is_reloc; |
| 3028 | } |
| 3029 | |
| 3030 | struct btrfs_backref_node *btrfs_backref_alloc_node( |
| 3031 | struct btrfs_backref_cache *cache, u64 bytenr, int level) |
| 3032 | { |
| 3033 | struct btrfs_backref_node *node; |
| 3034 | |
| 3035 | ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL); |
| 3036 | node = kzalloc(sizeof(*node), GFP_NOFS); |
| 3037 | if (!node) |
| 3038 | return node; |
| 3039 | |
| 3040 | INIT_LIST_HEAD(&node->list); |
| 3041 | INIT_LIST_HEAD(&node->upper); |
| 3042 | INIT_LIST_HEAD(&node->lower); |
| 3043 | RB_CLEAR_NODE(&node->rb_node); |
| 3044 | cache->nr_nodes++; |
| 3045 | node->level = level; |
| 3046 | node->bytenr = bytenr; |
| 3047 | |
| 3048 | return node; |
| 3049 | } |
| 3050 | |
| 3051 | void btrfs_backref_free_node(struct btrfs_backref_cache *cache, |
| 3052 | struct btrfs_backref_node *node) |
| 3053 | { |
| 3054 | if (node) { |
| 3055 | ASSERT(list_empty(&node->list)); |
| 3056 | ASSERT(list_empty(&node->lower)); |
| 3057 | ASSERT(node->eb == NULL); |
| 3058 | cache->nr_nodes--; |
| 3059 | btrfs_put_root(node->root); |
| 3060 | kfree(node); |
| 3061 | } |
| 3062 | } |
| 3063 | |
| 3064 | struct btrfs_backref_edge *btrfs_backref_alloc_edge( |
| 3065 | struct btrfs_backref_cache *cache) |
| 3066 | { |
| 3067 | struct btrfs_backref_edge *edge; |
| 3068 | |
| 3069 | edge = kzalloc(sizeof(*edge), GFP_NOFS); |
| 3070 | if (edge) |
| 3071 | cache->nr_edges++; |
| 3072 | return edge; |
| 3073 | } |
| 3074 | |
| 3075 | void btrfs_backref_free_edge(struct btrfs_backref_cache *cache, |
| 3076 | struct btrfs_backref_edge *edge) |
| 3077 | { |
| 3078 | if (edge) { |
| 3079 | cache->nr_edges--; |
| 3080 | kfree(edge); |
| 3081 | } |
| 3082 | } |
| 3083 | |
| 3084 | void btrfs_backref_unlock_node_buffer(struct btrfs_backref_node *node) |
| 3085 | { |
| 3086 | if (node->locked) { |
| 3087 | btrfs_tree_unlock(node->eb); |
| 3088 | node->locked = 0; |
| 3089 | } |
| 3090 | } |
| 3091 | |
| 3092 | void btrfs_backref_drop_node_buffer(struct btrfs_backref_node *node) |
| 3093 | { |
| 3094 | if (node->eb) { |
| 3095 | btrfs_backref_unlock_node_buffer(node); |
| 3096 | free_extent_buffer(node->eb); |
| 3097 | node->eb = NULL; |
| 3098 | } |
| 3099 | } |
| 3100 | |
| 3101 | /* |
| 3102 | * Drop the backref node from cache without cleaning up its children |
| 3103 | * edges. |
| 3104 | * |
| 3105 | * This can only be called on node without parent edges. |
| 3106 | * The children edges are still kept as is. |
| 3107 | */ |
| 3108 | void btrfs_backref_drop_node(struct btrfs_backref_cache *tree, |
| 3109 | struct btrfs_backref_node *node) |
| 3110 | { |
| 3111 | ASSERT(list_empty(&node->upper)); |
| 3112 | |
| 3113 | btrfs_backref_drop_node_buffer(node); |
| 3114 | list_del_init(&node->list); |
| 3115 | list_del_init(&node->lower); |
| 3116 | if (!RB_EMPTY_NODE(&node->rb_node)) |
| 3117 | rb_erase(&node->rb_node, &tree->rb_root); |
| 3118 | btrfs_backref_free_node(tree, node); |
| 3119 | } |
| 3120 | |
| 3121 | /* |
| 3122 | * Drop the backref node from cache, also cleaning up all its |
| 3123 | * upper edges and any uncached nodes in the path. |
| 3124 | * |
| 3125 | * This cleanup happens bottom up, thus the node should either |
| 3126 | * be the lowest node in the cache or a detached node. |
| 3127 | */ |
| 3128 | void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache, |
| 3129 | struct btrfs_backref_node *node) |
| 3130 | { |
| 3131 | struct btrfs_backref_edge *edge; |
| 3132 | |
| 3133 | if (!node) |
| 3134 | return; |
| 3135 | |
| 3136 | while (!list_empty(&node->upper)) { |
| 3137 | edge = list_first_entry(&node->upper, struct btrfs_backref_edge, |
| 3138 | list[LOWER]); |
| 3139 | list_del(&edge->list[LOWER]); |
| 3140 | list_del(&edge->list[UPPER]); |
| 3141 | btrfs_backref_free_edge(cache, edge); |
| 3142 | } |
| 3143 | |
| 3144 | btrfs_backref_drop_node(cache, node); |
| 3145 | } |
| 3146 | |
| 3147 | /* |
| 3148 | * Release all nodes/edges from current cache |
| 3149 | */ |
| 3150 | void btrfs_backref_release_cache(struct btrfs_backref_cache *cache) |
| 3151 | { |
| 3152 | struct btrfs_backref_node *node; |
| 3153 | |
| 3154 | while ((node = rb_entry_safe(rb_first(&cache->rb_root), |
| 3155 | struct btrfs_backref_node, rb_node))) |
| 3156 | btrfs_backref_cleanup_node(cache, node); |
| 3157 | |
| 3158 | ASSERT(list_empty(&cache->pending_edge)); |
| 3159 | ASSERT(list_empty(&cache->useless_node)); |
| 3160 | ASSERT(!cache->nr_nodes); |
| 3161 | ASSERT(!cache->nr_edges); |
| 3162 | } |
| 3163 | |
| 3164 | void btrfs_backref_link_edge(struct btrfs_backref_edge *edge, |
| 3165 | struct btrfs_backref_node *lower, |
| 3166 | struct btrfs_backref_node *upper, |
| 3167 | int link_which) |
| 3168 | { |
| 3169 | ASSERT(upper && lower && upper->level == lower->level + 1); |
| 3170 | edge->node[LOWER] = lower; |
| 3171 | edge->node[UPPER] = upper; |
| 3172 | if (link_which & LINK_LOWER) |
| 3173 | list_add_tail(&edge->list[LOWER], &lower->upper); |
| 3174 | if (link_which & LINK_UPPER) |
| 3175 | list_add_tail(&edge->list[UPPER], &upper->lower); |
| 3176 | } |
| 3177 | /* |
| 3178 | * Handle direct tree backref |
| 3179 | * |
| 3180 | * Direct tree backref means, the backref item shows its parent bytenr |
| 3181 | * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined). |
| 3182 | * |
| 3183 | * @ref_key: The converted backref key. |
| 3184 | * For keyed backref, it's the item key. |
| 3185 | * For inlined backref, objectid is the bytenr, |
| 3186 | * type is btrfs_inline_ref_type, offset is |
| 3187 | * btrfs_inline_ref_offset. |
| 3188 | */ |
| 3189 | static int handle_direct_tree_backref(struct btrfs_backref_cache *cache, |
| 3190 | struct btrfs_key *ref_key, |
| 3191 | struct btrfs_backref_node *cur) |
| 3192 | { |
| 3193 | struct btrfs_backref_edge *edge; |
| 3194 | struct btrfs_backref_node *upper; |
| 3195 | struct rb_node *rb_node; |
| 3196 | |
| 3197 | ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY); |
| 3198 | |
| 3199 | /* Only reloc root uses backref pointing to itself */ |
| 3200 | if (ref_key->objectid == ref_key->offset) { |
| 3201 | struct btrfs_root *root; |
| 3202 | |
| 3203 | cur->is_reloc_root = 1; |
| 3204 | /* Only reloc backref cache cares about a specific root */ |
| 3205 | if (cache->is_reloc) { |
| 3206 | root = find_reloc_root(cache->fs_info, cur->bytenr); |
| 3207 | if (!root) |
| 3208 | return -ENOENT; |
| 3209 | cur->root = root; |
| 3210 | } else { |
| 3211 | /* |
| 3212 | * For generic purpose backref cache, reloc root node |
| 3213 | * is useless. |
| 3214 | */ |
| 3215 | list_add(&cur->list, &cache->useless_node); |
| 3216 | } |
| 3217 | return 0; |
| 3218 | } |
| 3219 | |
| 3220 | edge = btrfs_backref_alloc_edge(cache); |
| 3221 | if (!edge) |
| 3222 | return -ENOMEM; |
| 3223 | |
| 3224 | rb_node = rb_simple_search(&cache->rb_root, ref_key->offset); |
| 3225 | if (!rb_node) { |
| 3226 | /* Parent node not yet cached */ |
| 3227 | upper = btrfs_backref_alloc_node(cache, ref_key->offset, |
| 3228 | cur->level + 1); |
| 3229 | if (!upper) { |
| 3230 | btrfs_backref_free_edge(cache, edge); |
| 3231 | return -ENOMEM; |
| 3232 | } |
| 3233 | |
| 3234 | /* |
| 3235 | * Backrefs for the upper level block isn't cached, add the |
| 3236 | * block to pending list |
| 3237 | */ |
| 3238 | list_add_tail(&edge->list[UPPER], &cache->pending_edge); |
| 3239 | } else { |
| 3240 | /* Parent node already cached */ |
| 3241 | upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node); |
| 3242 | ASSERT(upper->checked); |
| 3243 | INIT_LIST_HEAD(&edge->list[UPPER]); |
| 3244 | } |
| 3245 | btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER); |
| 3246 | return 0; |
| 3247 | } |
| 3248 | |
| 3249 | /* |
| 3250 | * Handle indirect tree backref |
| 3251 | * |
| 3252 | * Indirect tree backref means, we only know which tree the node belongs to. |
| 3253 | * We still need to do a tree search to find out the parents. This is for |
| 3254 | * TREE_BLOCK_REF backref (keyed or inlined). |
| 3255 | * |
| 3256 | * @trans: Transaction handle. |
| 3257 | * @ref_key: The same as @ref_key in handle_direct_tree_backref() |
| 3258 | * @tree_key: The first key of this tree block. |
| 3259 | * @path: A clean (released) path, to avoid allocating path every time |
| 3260 | * the function get called. |
| 3261 | */ |
| 3262 | static int handle_indirect_tree_backref(struct btrfs_trans_handle *trans, |
| 3263 | struct btrfs_backref_cache *cache, |
| 3264 | struct btrfs_path *path, |
| 3265 | struct btrfs_key *ref_key, |
| 3266 | struct btrfs_key *tree_key, |
| 3267 | struct btrfs_backref_node *cur) |
| 3268 | { |
| 3269 | struct btrfs_fs_info *fs_info = cache->fs_info; |
| 3270 | struct btrfs_backref_node *upper; |
| 3271 | struct btrfs_backref_node *lower; |
| 3272 | struct btrfs_backref_edge *edge; |
| 3273 | struct extent_buffer *eb; |
| 3274 | struct btrfs_root *root; |
| 3275 | struct rb_node *rb_node; |
| 3276 | int level; |
| 3277 | bool need_check = true; |
| 3278 | int ret; |
| 3279 | |
| 3280 | root = btrfs_get_fs_root(fs_info, ref_key->offset, false); |
| 3281 | if (IS_ERR(root)) |
| 3282 | return PTR_ERR(root); |
| 3283 | |
| 3284 | /* We shouldn't be using backref cache for non-shareable roots. */ |
| 3285 | if (unlikely(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))) { |
| 3286 | btrfs_put_root(root); |
| 3287 | return -EUCLEAN; |
| 3288 | } |
| 3289 | |
| 3290 | if (btrfs_root_level(&root->root_item) == cur->level) { |
| 3291 | /* Tree root */ |
| 3292 | ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr); |
| 3293 | /* |
| 3294 | * For reloc backref cache, we may ignore reloc root. But for |
| 3295 | * general purpose backref cache, we can't rely on |
| 3296 | * btrfs_should_ignore_reloc_root() as it may conflict with |
| 3297 | * current running relocation and lead to missing root. |
| 3298 | * |
| 3299 | * For general purpose backref cache, reloc root detection is |
| 3300 | * completely relying on direct backref (key->offset is parent |
| 3301 | * bytenr), thus only do such check for reloc cache. |
| 3302 | */ |
| 3303 | if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) { |
| 3304 | btrfs_put_root(root); |
| 3305 | list_add(&cur->list, &cache->useless_node); |
| 3306 | } else { |
| 3307 | cur->root = root; |
| 3308 | } |
| 3309 | return 0; |
| 3310 | } |
| 3311 | |
| 3312 | level = cur->level + 1; |
| 3313 | |
| 3314 | /* Search the tree to find parent blocks referring to the block */ |
| 3315 | path->search_commit_root = 1; |
| 3316 | path->skip_locking = 1; |
| 3317 | path->lowest_level = level; |
| 3318 | ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0); |
| 3319 | path->lowest_level = 0; |
| 3320 | if (ret < 0) { |
| 3321 | btrfs_put_root(root); |
| 3322 | return ret; |
| 3323 | } |
| 3324 | if (ret > 0 && path->slots[level] > 0) |
| 3325 | path->slots[level]--; |
| 3326 | |
| 3327 | eb = path->nodes[level]; |
| 3328 | if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) { |
| 3329 | btrfs_err(fs_info, |
| 3330 | "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", |
| 3331 | cur->bytenr, level - 1, btrfs_root_id(root), |
| 3332 | tree_key->objectid, tree_key->type, tree_key->offset); |
| 3333 | btrfs_put_root(root); |
| 3334 | ret = -ENOENT; |
| 3335 | goto out; |
| 3336 | } |
| 3337 | lower = cur; |
| 3338 | |
| 3339 | /* Add all nodes and edges in the path */ |
| 3340 | for (; level < BTRFS_MAX_LEVEL; level++) { |
| 3341 | if (!path->nodes[level]) { |
| 3342 | ASSERT(btrfs_root_bytenr(&root->root_item) == |
| 3343 | lower->bytenr); |
| 3344 | /* Same as previous should_ignore_reloc_root() call */ |
| 3345 | if (btrfs_should_ignore_reloc_root(root) && |
| 3346 | cache->is_reloc) { |
| 3347 | btrfs_put_root(root); |
| 3348 | list_add(&lower->list, &cache->useless_node); |
| 3349 | } else { |
| 3350 | lower->root = root; |
| 3351 | } |
| 3352 | break; |
| 3353 | } |
| 3354 | |
| 3355 | edge = btrfs_backref_alloc_edge(cache); |
| 3356 | if (!edge) { |
| 3357 | btrfs_put_root(root); |
| 3358 | ret = -ENOMEM; |
| 3359 | goto out; |
| 3360 | } |
| 3361 | |
| 3362 | eb = path->nodes[level]; |
| 3363 | rb_node = rb_simple_search(&cache->rb_root, eb->start); |
| 3364 | if (!rb_node) { |
| 3365 | upper = btrfs_backref_alloc_node(cache, eb->start, |
| 3366 | lower->level + 1); |
| 3367 | if (!upper) { |
| 3368 | btrfs_put_root(root); |
| 3369 | btrfs_backref_free_edge(cache, edge); |
| 3370 | ret = -ENOMEM; |
| 3371 | goto out; |
| 3372 | } |
| 3373 | upper->owner = btrfs_header_owner(eb); |
| 3374 | |
| 3375 | /* We shouldn't be using backref cache for non shareable roots. */ |
| 3376 | if (unlikely(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))) { |
| 3377 | btrfs_put_root(root); |
| 3378 | btrfs_backref_free_edge(cache, edge); |
| 3379 | btrfs_backref_free_node(cache, upper); |
| 3380 | ret = -EUCLEAN; |
| 3381 | goto out; |
| 3382 | } |
| 3383 | |
| 3384 | /* |
| 3385 | * If we know the block isn't shared we can avoid |
| 3386 | * checking its backrefs. |
| 3387 | */ |
| 3388 | if (btrfs_block_can_be_shared(trans, root, eb)) |
| 3389 | upper->checked = 0; |
| 3390 | else |
| 3391 | upper->checked = 1; |
| 3392 | |
| 3393 | /* |
| 3394 | * Add the block to pending list if we need to check its |
| 3395 | * backrefs, we only do this once while walking up a |
| 3396 | * tree as we will catch anything else later on. |
| 3397 | */ |
| 3398 | if (!upper->checked && need_check) { |
| 3399 | need_check = false; |
| 3400 | list_add_tail(&edge->list[UPPER], |
| 3401 | &cache->pending_edge); |
| 3402 | } else { |
| 3403 | if (upper->checked) |
| 3404 | need_check = true; |
| 3405 | INIT_LIST_HEAD(&edge->list[UPPER]); |
| 3406 | } |
| 3407 | } else { |
| 3408 | upper = rb_entry(rb_node, struct btrfs_backref_node, |
| 3409 | rb_node); |
| 3410 | ASSERT(upper->checked); |
| 3411 | INIT_LIST_HEAD(&edge->list[UPPER]); |
| 3412 | if (!upper->owner) |
| 3413 | upper->owner = btrfs_header_owner(eb); |
| 3414 | } |
| 3415 | btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER); |
| 3416 | |
| 3417 | if (rb_node) { |
| 3418 | btrfs_put_root(root); |
| 3419 | break; |
| 3420 | } |
| 3421 | lower = upper; |
| 3422 | upper = NULL; |
| 3423 | } |
| 3424 | out: |
| 3425 | btrfs_release_path(path); |
| 3426 | return ret; |
| 3427 | } |
| 3428 | |
| 3429 | /* |
| 3430 | * Add backref node @cur into @cache. |
| 3431 | * |
| 3432 | * NOTE: Even if the function returned 0, @cur is not yet cached as its upper |
| 3433 | * links aren't yet bi-directional. Needs to finish such links. |
| 3434 | * Use btrfs_backref_finish_upper_links() to finish such linkage. |
| 3435 | * |
| 3436 | * @trans: Transaction handle. |
| 3437 | * @path: Released path for indirect tree backref lookup |
| 3438 | * @iter: Released backref iter for extent tree search |
| 3439 | * @node_key: The first key of the tree block |
| 3440 | */ |
| 3441 | int btrfs_backref_add_tree_node(struct btrfs_trans_handle *trans, |
| 3442 | struct btrfs_backref_cache *cache, |
| 3443 | struct btrfs_path *path, |
| 3444 | struct btrfs_backref_iter *iter, |
| 3445 | struct btrfs_key *node_key, |
| 3446 | struct btrfs_backref_node *cur) |
| 3447 | { |
| 3448 | struct btrfs_backref_edge *edge; |
| 3449 | struct btrfs_backref_node *exist; |
| 3450 | int ret; |
| 3451 | |
| 3452 | ret = btrfs_backref_iter_start(iter, cur->bytenr); |
| 3453 | if (ret < 0) |
| 3454 | return ret; |
| 3455 | /* |
| 3456 | * We skip the first btrfs_tree_block_info, as we don't use the key |
| 3457 | * stored in it, but fetch it from the tree block |
| 3458 | */ |
| 3459 | if (btrfs_backref_has_tree_block_info(iter)) { |
| 3460 | ret = btrfs_backref_iter_next(iter); |
| 3461 | if (ret < 0) |
| 3462 | goto out; |
| 3463 | /* No extra backref? This means the tree block is corrupted */ |
| 3464 | if (ret > 0) { |
| 3465 | ret = -EUCLEAN; |
| 3466 | goto out; |
| 3467 | } |
| 3468 | } |
| 3469 | WARN_ON(cur->checked); |
| 3470 | if (!list_empty(&cur->upper)) { |
| 3471 | /* |
| 3472 | * The backref was added previously when processing backref of |
| 3473 | * type BTRFS_TREE_BLOCK_REF_KEY |
| 3474 | */ |
| 3475 | ASSERT(list_is_singular(&cur->upper)); |
| 3476 | edge = list_first_entry(&cur->upper, struct btrfs_backref_edge, |
| 3477 | list[LOWER]); |
| 3478 | ASSERT(list_empty(&edge->list[UPPER])); |
| 3479 | exist = edge->node[UPPER]; |
| 3480 | /* |
| 3481 | * Add the upper level block to pending list if we need check |
| 3482 | * its backrefs |
| 3483 | */ |
| 3484 | if (!exist->checked) |
| 3485 | list_add_tail(&edge->list[UPPER], &cache->pending_edge); |
| 3486 | } else { |
| 3487 | exist = NULL; |
| 3488 | } |
| 3489 | |
| 3490 | for (; ret == 0; ret = btrfs_backref_iter_next(iter)) { |
| 3491 | struct extent_buffer *eb; |
| 3492 | struct btrfs_key key; |
| 3493 | int type; |
| 3494 | |
| 3495 | cond_resched(); |
| 3496 | eb = iter->path->nodes[0]; |
| 3497 | |
| 3498 | key.objectid = iter->bytenr; |
| 3499 | if (btrfs_backref_iter_is_inline_ref(iter)) { |
| 3500 | struct btrfs_extent_inline_ref *iref; |
| 3501 | |
| 3502 | /* Update key for inline backref */ |
| 3503 | iref = (struct btrfs_extent_inline_ref *) |
| 3504 | ((unsigned long)iter->cur_ptr); |
| 3505 | type = btrfs_get_extent_inline_ref_type(eb, iref, |
| 3506 | BTRFS_REF_TYPE_BLOCK); |
| 3507 | if (type == BTRFS_REF_TYPE_INVALID) { |
| 3508 | ret = -EUCLEAN; |
| 3509 | goto out; |
| 3510 | } |
| 3511 | key.type = type; |
| 3512 | key.offset = btrfs_extent_inline_ref_offset(eb, iref); |
| 3513 | } else { |
| 3514 | key.type = iter->cur_key.type; |
| 3515 | key.offset = iter->cur_key.offset; |
| 3516 | } |
| 3517 | |
| 3518 | /* |
| 3519 | * Parent node found and matches current inline ref, no need to |
| 3520 | * rebuild this node for this inline ref |
| 3521 | */ |
| 3522 | if (exist && |
| 3523 | ((key.type == BTRFS_TREE_BLOCK_REF_KEY && |
| 3524 | exist->owner == key.offset) || |
| 3525 | (key.type == BTRFS_SHARED_BLOCK_REF_KEY && |
| 3526 | exist->bytenr == key.offset))) { |
| 3527 | exist = NULL; |
| 3528 | continue; |
| 3529 | } |
| 3530 | |
| 3531 | /* SHARED_BLOCK_REF means key.offset is the parent bytenr */ |
| 3532 | if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { |
| 3533 | ret = handle_direct_tree_backref(cache, &key, cur); |
| 3534 | if (ret < 0) |
| 3535 | goto out; |
| 3536 | } else if (key.type == BTRFS_TREE_BLOCK_REF_KEY) { |
| 3537 | /* |
| 3538 | * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref |
| 3539 | * offset means the root objectid. We need to search |
| 3540 | * the tree to get its parent bytenr. |
| 3541 | */ |
| 3542 | ret = handle_indirect_tree_backref(trans, cache, path, |
| 3543 | &key, node_key, cur); |
| 3544 | if (ret < 0) |
| 3545 | goto out; |
| 3546 | } |
| 3547 | /* |
| 3548 | * Unrecognized tree backref items (if it can pass tree-checker) |
| 3549 | * would be ignored. |
| 3550 | */ |
| 3551 | } |
| 3552 | ret = 0; |
| 3553 | cur->checked = 1; |
| 3554 | WARN_ON(exist); |
| 3555 | out: |
| 3556 | btrfs_backref_iter_release(iter); |
| 3557 | return ret; |
| 3558 | } |
| 3559 | |
| 3560 | /* |
| 3561 | * Finish the upwards linkage created by btrfs_backref_add_tree_node() |
| 3562 | */ |
| 3563 | int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache, |
| 3564 | struct btrfs_backref_node *start) |
| 3565 | { |
| 3566 | struct list_head *useless_node = &cache->useless_node; |
| 3567 | struct btrfs_backref_edge *edge; |
| 3568 | struct rb_node *rb_node; |
| 3569 | LIST_HEAD(pending_edge); |
| 3570 | |
| 3571 | ASSERT(start->checked); |
| 3572 | |
| 3573 | rb_node = rb_simple_insert(&cache->rb_root, start->bytenr, &start->rb_node); |
| 3574 | if (rb_node) |
| 3575 | btrfs_backref_panic(cache->fs_info, start->bytenr, -EEXIST); |
| 3576 | |
| 3577 | /* |
| 3578 | * Use breadth first search to iterate all related edges. |
| 3579 | * |
| 3580 | * The starting points are all the edges of this node |
| 3581 | */ |
| 3582 | list_for_each_entry(edge, &start->upper, list[LOWER]) |
| 3583 | list_add_tail(&edge->list[UPPER], &pending_edge); |
| 3584 | |
| 3585 | while (!list_empty(&pending_edge)) { |
| 3586 | struct btrfs_backref_node *upper; |
| 3587 | struct btrfs_backref_node *lower; |
| 3588 | |
| 3589 | edge = list_first_entry(&pending_edge, |
| 3590 | struct btrfs_backref_edge, list[UPPER]); |
| 3591 | list_del_init(&edge->list[UPPER]); |
| 3592 | upper = edge->node[UPPER]; |
| 3593 | lower = edge->node[LOWER]; |
| 3594 | |
| 3595 | /* Parent is detached, no need to keep any edges */ |
| 3596 | if (upper->detached) { |
| 3597 | list_del(&edge->list[LOWER]); |
| 3598 | btrfs_backref_free_edge(cache, edge); |
| 3599 | |
| 3600 | /* Lower node is orphan, queue for cleanup */ |
| 3601 | if (list_empty(&lower->upper)) |
| 3602 | list_add(&lower->list, useless_node); |
| 3603 | continue; |
| 3604 | } |
| 3605 | |
| 3606 | /* |
| 3607 | * All new nodes added in current build_backref_tree() haven't |
| 3608 | * been linked to the cache rb tree. |
| 3609 | * So if we have upper->rb_node populated, this means a cache |
| 3610 | * hit. We only need to link the edge, as @upper and all its |
| 3611 | * parents have already been linked. |
| 3612 | */ |
| 3613 | if (!RB_EMPTY_NODE(&upper->rb_node)) { |
| 3614 | list_add_tail(&edge->list[UPPER], &upper->lower); |
| 3615 | continue; |
| 3616 | } |
| 3617 | |
| 3618 | /* Sanity check, we shouldn't have any unchecked nodes */ |
| 3619 | if (!upper->checked) { |
| 3620 | DEBUG_WARN("we should not have any unchecked nodes"); |
| 3621 | return -EUCLEAN; |
| 3622 | } |
| 3623 | |
| 3624 | rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr, |
| 3625 | &upper->rb_node); |
| 3626 | if (unlikely(rb_node)) { |
| 3627 | btrfs_backref_panic(cache->fs_info, upper->bytenr, -EEXIST); |
| 3628 | return -EUCLEAN; |
| 3629 | } |
| 3630 | |
| 3631 | list_add_tail(&edge->list[UPPER], &upper->lower); |
| 3632 | |
| 3633 | /* |
| 3634 | * Also queue all the parent edges of this uncached node |
| 3635 | * to finish the upper linkage |
| 3636 | */ |
| 3637 | list_for_each_entry(edge, &upper->upper, list[LOWER]) |
| 3638 | list_add_tail(&edge->list[UPPER], &pending_edge); |
| 3639 | } |
| 3640 | return 0; |
| 3641 | } |
| 3642 | |
| 3643 | void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache, |
| 3644 | struct btrfs_backref_node *node) |
| 3645 | { |
| 3646 | struct btrfs_backref_node *lower; |
| 3647 | struct btrfs_backref_node *upper; |
| 3648 | struct btrfs_backref_edge *edge; |
| 3649 | |
| 3650 | while (!list_empty(&cache->useless_node)) { |
| 3651 | lower = list_first_entry(&cache->useless_node, |
| 3652 | struct btrfs_backref_node, list); |
| 3653 | list_del_init(&lower->list); |
| 3654 | } |
| 3655 | while (!list_empty(&cache->pending_edge)) { |
| 3656 | edge = list_first_entry(&cache->pending_edge, |
| 3657 | struct btrfs_backref_edge, list[UPPER]); |
| 3658 | list_del(&edge->list[UPPER]); |
| 3659 | list_del(&edge->list[LOWER]); |
| 3660 | lower = edge->node[LOWER]; |
| 3661 | upper = edge->node[UPPER]; |
| 3662 | btrfs_backref_free_edge(cache, edge); |
| 3663 | |
| 3664 | /* |
| 3665 | * Lower is no longer linked to any upper backref nodes and |
| 3666 | * isn't in the cache, we can free it ourselves. |
| 3667 | */ |
| 3668 | if (list_empty(&lower->upper) && |
| 3669 | RB_EMPTY_NODE(&lower->rb_node)) |
| 3670 | list_add(&lower->list, &cache->useless_node); |
| 3671 | |
| 3672 | if (!RB_EMPTY_NODE(&upper->rb_node)) |
| 3673 | continue; |
| 3674 | |
| 3675 | /* Add this guy's upper edges to the list to process */ |
| 3676 | list_for_each_entry(edge, &upper->upper, list[LOWER]) |
| 3677 | list_add_tail(&edge->list[UPPER], |
| 3678 | &cache->pending_edge); |
| 3679 | if (list_empty(&upper->upper)) |
| 3680 | list_add(&upper->list, &cache->useless_node); |
| 3681 | } |
| 3682 | |
| 3683 | while (!list_empty(&cache->useless_node)) { |
| 3684 | lower = list_first_entry(&cache->useless_node, |
| 3685 | struct btrfs_backref_node, list); |
| 3686 | list_del_init(&lower->list); |
| 3687 | if (lower == node) |
| 3688 | node = NULL; |
| 3689 | btrfs_backref_drop_node(cache, lower); |
| 3690 | } |
| 3691 | |
| 3692 | btrfs_backref_cleanup_node(cache, node); |
| 3693 | ASSERT(list_empty(&cache->useless_node) && |
| 3694 | list_empty(&cache->pending_edge)); |
| 3695 | } |