| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * xHCI host controller driver |
| 4 | * |
| 5 | * Copyright (C) 2008 Intel Corp. |
| 6 | * |
| 7 | * Author: Sarah Sharp |
| 8 | * Some code borrowed from the Linux EHCI driver. |
| 9 | */ |
| 10 | |
| 11 | /* |
| 12 | * Ring initialization rules: |
| 13 | * 1. Each segment is initialized to zero, except for link TRBs. |
| 14 | * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or |
| 15 | * Consumer Cycle State (CCS), depending on ring function. |
| 16 | * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. |
| 17 | * |
| 18 | * Ring behavior rules: |
| 19 | * 1. A ring is empty if enqueue == dequeue. This means there will always be at |
| 20 | * least one free TRB in the ring. This is useful if you want to turn that |
| 21 | * into a link TRB and expand the ring. |
| 22 | * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a |
| 23 | * link TRB, then load the pointer with the address in the link TRB. If the |
| 24 | * link TRB had its toggle bit set, you may need to update the ring cycle |
| 25 | * state (see cycle bit rules). You may have to do this multiple times |
| 26 | * until you reach a non-link TRB. |
| 27 | * 3. A ring is full if enqueue++ (for the definition of increment above) |
| 28 | * equals the dequeue pointer. |
| 29 | * |
| 30 | * Cycle bit rules: |
| 31 | * 1. When a consumer increments a dequeue pointer and encounters a toggle bit |
| 32 | * in a link TRB, it must toggle the ring cycle state. |
| 33 | * 2. When a producer increments an enqueue pointer and encounters a toggle bit |
| 34 | * in a link TRB, it must toggle the ring cycle state. |
| 35 | * |
| 36 | * Producer rules: |
| 37 | * 1. Check if ring is full before you enqueue. |
| 38 | * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. |
| 39 | * Update enqueue pointer between each write (which may update the ring |
| 40 | * cycle state). |
| 41 | * 3. Notify consumer. If SW is producer, it rings the doorbell for command |
| 42 | * and endpoint rings. If HC is the producer for the event ring, |
| 43 | * and it generates an interrupt according to interrupt modulation rules. |
| 44 | * |
| 45 | * Consumer rules: |
| 46 | * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, |
| 47 | * the TRB is owned by the consumer. |
| 48 | * 2. Update dequeue pointer (which may update the ring cycle state) and |
| 49 | * continue processing TRBs until you reach a TRB which is not owned by you. |
| 50 | * 3. Notify the producer. SW is the consumer for the event ring, and it |
| 51 | * updates event ring dequeue pointer. HC is the consumer for the command and |
| 52 | * endpoint rings; it generates events on the event ring for these. |
| 53 | */ |
| 54 | |
| 55 | #include <linux/jiffies.h> |
| 56 | #include <linux/scatterlist.h> |
| 57 | #include <linux/slab.h> |
| 58 | #include <linux/string_choices.h> |
| 59 | #include <linux/dma-mapping.h> |
| 60 | #include "xhci.h" |
| 61 | #include "xhci-trace.h" |
| 62 | |
| 63 | static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, |
| 64 | u32 field1, u32 field2, |
| 65 | u32 field3, u32 field4, bool command_must_succeed); |
| 66 | |
| 67 | /* |
| 68 | * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA |
| 69 | * address of the TRB. |
| 70 | */ |
| 71 | dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, |
| 72 | union xhci_trb *trb) |
| 73 | { |
| 74 | unsigned long segment_offset; |
| 75 | |
| 76 | if (!seg || !trb || trb < seg->trbs) |
| 77 | return 0; |
| 78 | /* offset in TRBs */ |
| 79 | segment_offset = trb - seg->trbs; |
| 80 | if (segment_offset >= TRBS_PER_SEGMENT) |
| 81 | return 0; |
| 82 | return seg->dma + (segment_offset * sizeof(*trb)); |
| 83 | } |
| 84 | |
| 85 | static bool trb_is_noop(union xhci_trb *trb) |
| 86 | { |
| 87 | return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); |
| 88 | } |
| 89 | |
| 90 | static bool trb_is_link(union xhci_trb *trb) |
| 91 | { |
| 92 | return TRB_TYPE_LINK_LE32(trb->link.control); |
| 93 | } |
| 94 | |
| 95 | static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) |
| 96 | { |
| 97 | return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; |
| 98 | } |
| 99 | |
| 100 | static bool last_trb_on_ring(struct xhci_ring *ring, |
| 101 | struct xhci_segment *seg, union xhci_trb *trb) |
| 102 | { |
| 103 | return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); |
| 104 | } |
| 105 | |
| 106 | static bool link_trb_toggles_cycle(union xhci_trb *trb) |
| 107 | { |
| 108 | return le32_to_cpu(trb->link.control) & LINK_TOGGLE; |
| 109 | } |
| 110 | |
| 111 | static bool last_td_in_urb(struct xhci_td *td) |
| 112 | { |
| 113 | struct urb_priv *urb_priv = td->urb->hcpriv; |
| 114 | |
| 115 | return urb_priv->num_tds_done == urb_priv->num_tds; |
| 116 | } |
| 117 | |
| 118 | static bool unhandled_event_trb(struct xhci_ring *ring) |
| 119 | { |
| 120 | return ((le32_to_cpu(ring->dequeue->event_cmd.flags) & TRB_CYCLE) == |
| 121 | ring->cycle_state); |
| 122 | } |
| 123 | |
| 124 | static void inc_td_cnt(struct urb *urb) |
| 125 | { |
| 126 | struct urb_priv *urb_priv = urb->hcpriv; |
| 127 | |
| 128 | urb_priv->num_tds_done++; |
| 129 | } |
| 130 | |
| 131 | static void trb_to_noop(union xhci_trb *trb, u32 noop_type) |
| 132 | { |
| 133 | if (trb_is_link(trb)) { |
| 134 | /* unchain chained link TRBs */ |
| 135 | trb->link.control &= cpu_to_le32(~TRB_CHAIN); |
| 136 | } else { |
| 137 | trb->generic.field[0] = 0; |
| 138 | trb->generic.field[1] = 0; |
| 139 | trb->generic.field[2] = 0; |
| 140 | /* Preserve only the cycle bit of this TRB */ |
| 141 | trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); |
| 142 | trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); |
| 143 | } |
| 144 | } |
| 145 | |
| 146 | /* Updates trb to point to the next TRB in the ring, and updates seg if the next |
| 147 | * TRB is in a new segment. This does not skip over link TRBs, and it does not |
| 148 | * effect the ring dequeue or enqueue pointers. |
| 149 | */ |
| 150 | static void next_trb(struct xhci_segment **seg, |
| 151 | union xhci_trb **trb) |
| 152 | { |
| 153 | if (trb_is_link(*trb) || last_trb_on_seg(*seg, *trb)) { |
| 154 | *seg = (*seg)->next; |
| 155 | *trb = ((*seg)->trbs); |
| 156 | } else { |
| 157 | (*trb)++; |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | /* |
| 162 | * See Cycle bit rules. SW is the consumer for the event ring only. |
| 163 | */ |
| 164 | void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) |
| 165 | { |
| 166 | unsigned int link_trb_count = 0; |
| 167 | |
| 168 | /* event ring doesn't have link trbs, check for last trb */ |
| 169 | if (ring->type == TYPE_EVENT) { |
| 170 | if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { |
| 171 | ring->dequeue++; |
| 172 | return; |
| 173 | } |
| 174 | if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) |
| 175 | ring->cycle_state ^= 1; |
| 176 | ring->deq_seg = ring->deq_seg->next; |
| 177 | ring->dequeue = ring->deq_seg->trbs; |
| 178 | |
| 179 | trace_xhci_inc_deq(ring); |
| 180 | |
| 181 | return; |
| 182 | } |
| 183 | |
| 184 | /* All other rings have link trbs */ |
| 185 | if (!trb_is_link(ring->dequeue)) { |
| 186 | if (last_trb_on_seg(ring->deq_seg, ring->dequeue)) |
| 187 | xhci_warn(xhci, "Missing link TRB at end of segment\n"); |
| 188 | else |
| 189 | ring->dequeue++; |
| 190 | } |
| 191 | |
| 192 | while (trb_is_link(ring->dequeue)) { |
| 193 | ring->deq_seg = ring->deq_seg->next; |
| 194 | ring->dequeue = ring->deq_seg->trbs; |
| 195 | |
| 196 | trace_xhci_inc_deq(ring); |
| 197 | |
| 198 | if (link_trb_count++ > ring->num_segs) { |
| 199 | xhci_warn(xhci, "Ring is an endless link TRB loop\n"); |
| 200 | break; |
| 201 | } |
| 202 | } |
| 203 | return; |
| 204 | } |
| 205 | |
| 206 | /* |
| 207 | * If enqueue points at a link TRB, follow links until an ordinary TRB is reached. |
| 208 | * Toggle the cycle bit of passed link TRBs and optionally chain them. |
| 209 | */ |
| 210 | static void inc_enq_past_link(struct xhci_hcd *xhci, struct xhci_ring *ring, u32 chain) |
| 211 | { |
| 212 | unsigned int link_trb_count = 0; |
| 213 | |
| 214 | while (trb_is_link(ring->enqueue)) { |
| 215 | |
| 216 | /* |
| 217 | * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit |
| 218 | * set, but other sections talk about dealing with the chain bit set. This was |
| 219 | * fixed in the 0.96 specification errata, but we have to assume that all 0.95 |
| 220 | * xHCI hardware can't handle the chain bit being cleared on a link TRB. |
| 221 | * |
| 222 | * On 0.95 and some 0.96 HCs the chain bit is set once at segment initalization |
| 223 | * and never changed here. On all others, modify it as requested by the caller. |
| 224 | */ |
| 225 | if (!xhci_link_chain_quirk(xhci, ring->type)) { |
| 226 | ring->enqueue->link.control &= cpu_to_le32(~TRB_CHAIN); |
| 227 | ring->enqueue->link.control |= cpu_to_le32(chain); |
| 228 | } |
| 229 | |
| 230 | /* Give this link TRB to the hardware */ |
| 231 | wmb(); |
| 232 | ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); |
| 233 | |
| 234 | /* Toggle the cycle bit after the last ring segment. */ |
| 235 | if (link_trb_toggles_cycle(ring->enqueue)) |
| 236 | ring->cycle_state ^= 1; |
| 237 | |
| 238 | ring->enq_seg = ring->enq_seg->next; |
| 239 | ring->enqueue = ring->enq_seg->trbs; |
| 240 | |
| 241 | trace_xhci_inc_enq(ring); |
| 242 | |
| 243 | if (link_trb_count++ > ring->num_segs) { |
| 244 | xhci_warn(xhci, "Link TRB loop at enqueue\n"); |
| 245 | break; |
| 246 | } |
| 247 | } |
| 248 | } |
| 249 | |
| 250 | /* |
| 251 | * See Cycle bit rules. SW is the consumer for the event ring only. |
| 252 | * |
| 253 | * If we've just enqueued a TRB that is in the middle of a TD (meaning the |
| 254 | * chain bit is set), then set the chain bit in all the following link TRBs. |
| 255 | * If we've enqueued the last TRB in a TD, make sure the following link TRBs |
| 256 | * have their chain bit cleared (so that each Link TRB is a separate TD). |
| 257 | * |
| 258 | * @more_trbs_coming: Will you enqueue more TRBs before calling |
| 259 | * prepare_transfer()? |
| 260 | */ |
| 261 | static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, |
| 262 | bool more_trbs_coming) |
| 263 | { |
| 264 | u32 chain; |
| 265 | |
| 266 | chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; |
| 267 | |
| 268 | if (last_trb_on_seg(ring->enq_seg, ring->enqueue)) { |
| 269 | xhci_err(xhci, "Tried to move enqueue past ring segment\n"); |
| 270 | return; |
| 271 | } |
| 272 | |
| 273 | ring->enqueue++; |
| 274 | |
| 275 | /* |
| 276 | * If we are in the middle of a TD or the caller plans to enqueue more |
| 277 | * TDs as one transfer (eg. control), traverse any link TRBs right now. |
| 278 | * Otherwise, enqueue can stay on a link until the next prepare_ring(). |
| 279 | * This avoids enqueue entering deq_seg and simplifies ring expansion. |
| 280 | */ |
| 281 | if (trb_is_link(ring->enqueue) && (chain || more_trbs_coming)) |
| 282 | inc_enq_past_link(xhci, ring, chain); |
| 283 | } |
| 284 | |
| 285 | /* |
| 286 | * If the suspect DMA address is a TRB in this TD, this function returns that |
| 287 | * TRB's segment. Otherwise it returns 0. |
| 288 | */ |
| 289 | static struct xhci_segment *trb_in_td(struct xhci_td *td, dma_addr_t suspect_dma) |
| 290 | { |
| 291 | dma_addr_t start_dma; |
| 292 | dma_addr_t end_seg_dma; |
| 293 | dma_addr_t end_trb_dma; |
| 294 | struct xhci_segment *cur_seg; |
| 295 | |
| 296 | start_dma = xhci_trb_virt_to_dma(td->start_seg, td->start_trb); |
| 297 | cur_seg = td->start_seg; |
| 298 | |
| 299 | do { |
| 300 | if (start_dma == 0) |
| 301 | return NULL; |
| 302 | /* We may get an event for a Link TRB in the middle of a TD */ |
| 303 | end_seg_dma = xhci_trb_virt_to_dma(cur_seg, |
| 304 | &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); |
| 305 | /* If the end TRB isn't in this segment, this is set to 0 */ |
| 306 | end_trb_dma = xhci_trb_virt_to_dma(cur_seg, td->end_trb); |
| 307 | |
| 308 | if (end_trb_dma > 0) { |
| 309 | /* The end TRB is in this segment, so suspect should be here */ |
| 310 | if (start_dma <= end_trb_dma) { |
| 311 | if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) |
| 312 | return cur_seg; |
| 313 | } else { |
| 314 | /* Case for one segment with |
| 315 | * a TD wrapped around to the top |
| 316 | */ |
| 317 | if ((suspect_dma >= start_dma && |
| 318 | suspect_dma <= end_seg_dma) || |
| 319 | (suspect_dma >= cur_seg->dma && |
| 320 | suspect_dma <= end_trb_dma)) |
| 321 | return cur_seg; |
| 322 | } |
| 323 | return NULL; |
| 324 | } |
| 325 | /* Might still be somewhere in this segment */ |
| 326 | if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) |
| 327 | return cur_seg; |
| 328 | |
| 329 | cur_seg = cur_seg->next; |
| 330 | start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); |
| 331 | } while (cur_seg != td->start_seg); |
| 332 | |
| 333 | return NULL; |
| 334 | } |
| 335 | |
| 336 | /* |
| 337 | * Return number of free normal TRBs from enqueue to dequeue pointer on ring. |
| 338 | * Not counting an assumed link TRB at end of each TRBS_PER_SEGMENT sized segment. |
| 339 | * Only for transfer and command rings where driver is the producer, not for |
| 340 | * event rings. |
| 341 | */ |
| 342 | static unsigned int xhci_num_trbs_free(struct xhci_ring *ring) |
| 343 | { |
| 344 | struct xhci_segment *enq_seg = ring->enq_seg; |
| 345 | union xhci_trb *enq = ring->enqueue; |
| 346 | union xhci_trb *last_on_seg; |
| 347 | unsigned int free = 0; |
| 348 | int i = 0; |
| 349 | |
| 350 | /* Ring might be empty even if enq != deq if enq is left on a link trb */ |
| 351 | if (trb_is_link(enq)) { |
| 352 | enq_seg = enq_seg->next; |
| 353 | enq = enq_seg->trbs; |
| 354 | } |
| 355 | |
| 356 | /* Empty ring, common case, don't walk the segments */ |
| 357 | if (enq == ring->dequeue) |
| 358 | return ring->num_segs * (TRBS_PER_SEGMENT - 1); |
| 359 | |
| 360 | do { |
| 361 | if (ring->deq_seg == enq_seg && ring->dequeue >= enq) |
| 362 | return free + (ring->dequeue - enq); |
| 363 | last_on_seg = &enq_seg->trbs[TRBS_PER_SEGMENT - 1]; |
| 364 | free += last_on_seg - enq; |
| 365 | enq_seg = enq_seg->next; |
| 366 | enq = enq_seg->trbs; |
| 367 | } while (i++ < ring->num_segs); |
| 368 | |
| 369 | return free; |
| 370 | } |
| 371 | |
| 372 | /* |
| 373 | * Check to see if there's room to enqueue num_trbs on the ring and make sure |
| 374 | * enqueue pointer will not advance into dequeue segment. See rules above. |
| 375 | * return number of new segments needed to ensure this. |
| 376 | */ |
| 377 | |
| 378 | static unsigned int xhci_ring_expansion_needed(struct xhci_hcd *xhci, struct xhci_ring *ring, |
| 379 | unsigned int num_trbs) |
| 380 | { |
| 381 | struct xhci_segment *seg; |
| 382 | int trbs_past_seg; |
| 383 | int enq_used; |
| 384 | int new_segs; |
| 385 | |
| 386 | enq_used = ring->enqueue - ring->enq_seg->trbs; |
| 387 | |
| 388 | /* how many trbs will be queued past the enqueue segment? */ |
| 389 | trbs_past_seg = enq_used + num_trbs - (TRBS_PER_SEGMENT - 1); |
| 390 | |
| 391 | /* |
| 392 | * Consider expanding the ring already if num_trbs fills the current |
| 393 | * segment (i.e. trbs_past_seg == 0), not only when num_trbs goes into |
| 394 | * the next segment. Avoids confusing full ring with special empty ring |
| 395 | * case below |
| 396 | */ |
| 397 | if (trbs_past_seg < 0) |
| 398 | return 0; |
| 399 | |
| 400 | /* Empty ring special case, enqueue stuck on link trb while dequeue advanced */ |
| 401 | if (trb_is_link(ring->enqueue) && ring->enq_seg->next->trbs == ring->dequeue) |
| 402 | return 0; |
| 403 | |
| 404 | new_segs = 1 + (trbs_past_seg / (TRBS_PER_SEGMENT - 1)); |
| 405 | seg = ring->enq_seg; |
| 406 | |
| 407 | while (new_segs > 0) { |
| 408 | seg = seg->next; |
| 409 | if (seg == ring->deq_seg) { |
| 410 | xhci_dbg(xhci, "Adding %d trbs requires expanding ring by %d segments\n", |
| 411 | num_trbs, new_segs); |
| 412 | return new_segs; |
| 413 | } |
| 414 | new_segs--; |
| 415 | } |
| 416 | |
| 417 | return 0; |
| 418 | } |
| 419 | |
| 420 | /* Ring the host controller doorbell after placing a command on the ring */ |
| 421 | void xhci_ring_cmd_db(struct xhci_hcd *xhci) |
| 422 | { |
| 423 | if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) |
| 424 | return; |
| 425 | |
| 426 | xhci_dbg(xhci, "// Ding dong!\n"); |
| 427 | |
| 428 | trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST); |
| 429 | |
| 430 | writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); |
| 431 | /* Flush PCI posted writes */ |
| 432 | readl(&xhci->dba->doorbell[0]); |
| 433 | } |
| 434 | |
| 435 | static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci) |
| 436 | { |
| 437 | return mod_delayed_work(system_wq, &xhci->cmd_timer, |
| 438 | msecs_to_jiffies(xhci->current_cmd->timeout_ms)); |
| 439 | } |
| 440 | |
| 441 | static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) |
| 442 | { |
| 443 | return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, |
| 444 | cmd_list); |
| 445 | } |
| 446 | |
| 447 | /* |
| 448 | * Turn all commands on command ring with status set to "aborted" to no-op trbs. |
| 449 | * If there are other commands waiting then restart the ring and kick the timer. |
| 450 | * This must be called with command ring stopped and xhci->lock held. |
| 451 | */ |
| 452 | static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, |
| 453 | struct xhci_command *cur_cmd) |
| 454 | { |
| 455 | struct xhci_command *i_cmd; |
| 456 | |
| 457 | /* Turn all aborted commands in list to no-ops, then restart */ |
| 458 | list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { |
| 459 | |
| 460 | if (i_cmd->status != COMP_COMMAND_ABORTED) |
| 461 | continue; |
| 462 | |
| 463 | i_cmd->status = COMP_COMMAND_RING_STOPPED; |
| 464 | |
| 465 | xhci_dbg(xhci, "Turn aborted command %p to no-op\n", |
| 466 | i_cmd->command_trb); |
| 467 | |
| 468 | trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); |
| 469 | |
| 470 | /* |
| 471 | * caller waiting for completion is called when command |
| 472 | * completion event is received for these no-op commands |
| 473 | */ |
| 474 | } |
| 475 | |
| 476 | xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; |
| 477 | |
| 478 | /* ring command ring doorbell to restart the command ring */ |
| 479 | if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && |
| 480 | !(xhci->xhc_state & XHCI_STATE_DYING)) { |
| 481 | xhci->current_cmd = cur_cmd; |
| 482 | if (cur_cmd) |
| 483 | xhci_mod_cmd_timer(xhci); |
| 484 | xhci_ring_cmd_db(xhci); |
| 485 | } |
| 486 | } |
| 487 | |
| 488 | /* Must be called with xhci->lock held, releases and acquires lock back */ |
| 489 | static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) |
| 490 | { |
| 491 | struct xhci_segment *new_seg = xhci->cmd_ring->deq_seg; |
| 492 | union xhci_trb *new_deq = xhci->cmd_ring->dequeue; |
| 493 | u64 crcr; |
| 494 | int ret; |
| 495 | |
| 496 | xhci_dbg(xhci, "Abort command ring\n"); |
| 497 | |
| 498 | reinit_completion(&xhci->cmd_ring_stop_completion); |
| 499 | |
| 500 | /* |
| 501 | * The control bits like command stop, abort are located in lower |
| 502 | * dword of the command ring control register. |
| 503 | * Some controllers require all 64 bits to be written to abort the ring. |
| 504 | * Make sure the upper dword is valid, pointing to the next command, |
| 505 | * avoiding corrupting the command ring pointer in case the command ring |
| 506 | * is stopped by the time the upper dword is written. |
| 507 | */ |
| 508 | next_trb(&new_seg, &new_deq); |
| 509 | if (trb_is_link(new_deq)) |
| 510 | next_trb(&new_seg, &new_deq); |
| 511 | |
| 512 | crcr = xhci_trb_virt_to_dma(new_seg, new_deq); |
| 513 | xhci_write_64(xhci, crcr | CMD_RING_ABORT, &xhci->op_regs->cmd_ring); |
| 514 | |
| 515 | /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the |
| 516 | * completion of the Command Abort operation. If CRR is not negated in 5 |
| 517 | * seconds then driver handles it as if host died (-ENODEV). |
| 518 | * In the future we should distinguish between -ENODEV and -ETIMEDOUT |
| 519 | * and try to recover a -ETIMEDOUT with a host controller reset. |
| 520 | */ |
| 521 | ret = xhci_handshake(&xhci->op_regs->cmd_ring, |
| 522 | CMD_RING_RUNNING, 0, 5 * 1000 * 1000); |
| 523 | if (ret < 0) { |
| 524 | xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); |
| 525 | xhci_halt(xhci); |
| 526 | xhci_hc_died(xhci); |
| 527 | return ret; |
| 528 | } |
| 529 | /* |
| 530 | * Writing the CMD_RING_ABORT bit should cause a cmd completion event, |
| 531 | * however on some host hw the CMD_RING_RUNNING bit is correctly cleared |
| 532 | * but the completion event in never sent. Wait 2 secs (arbitrary |
| 533 | * number) to handle those cases after negation of CMD_RING_RUNNING. |
| 534 | */ |
| 535 | spin_unlock_irqrestore(&xhci->lock, flags); |
| 536 | ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, |
| 537 | msecs_to_jiffies(2000)); |
| 538 | spin_lock_irqsave(&xhci->lock, flags); |
| 539 | if (!ret) { |
| 540 | xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); |
| 541 | xhci_cleanup_command_queue(xhci); |
| 542 | } else { |
| 543 | xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); |
| 544 | } |
| 545 | return 0; |
| 546 | } |
| 547 | |
| 548 | void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, |
| 549 | unsigned int slot_id, |
| 550 | unsigned int ep_index, |
| 551 | unsigned int stream_id) |
| 552 | { |
| 553 | __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; |
| 554 | struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; |
| 555 | unsigned int ep_state = ep->ep_state; |
| 556 | |
| 557 | /* Don't ring the doorbell for this endpoint if there are pending |
| 558 | * cancellations because we don't want to interrupt processing. |
| 559 | * We don't want to restart any stream rings if there's a set dequeue |
| 560 | * pointer command pending because the device can choose to start any |
| 561 | * stream once the endpoint is on the HW schedule. |
| 562 | */ |
| 563 | if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || |
| 564 | (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT)) |
| 565 | return; |
| 566 | |
| 567 | trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id)); |
| 568 | |
| 569 | writel(DB_VALUE(ep_index, stream_id), db_addr); |
| 570 | /* flush the write */ |
| 571 | readl(db_addr); |
| 572 | } |
| 573 | |
| 574 | /* Ring the doorbell for any rings with pending URBs */ |
| 575 | static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, |
| 576 | unsigned int slot_id, |
| 577 | unsigned int ep_index) |
| 578 | { |
| 579 | unsigned int stream_id; |
| 580 | struct xhci_virt_ep *ep; |
| 581 | |
| 582 | ep = &xhci->devs[slot_id]->eps[ep_index]; |
| 583 | |
| 584 | /* A ring has pending URBs if its TD list is not empty */ |
| 585 | if (!(ep->ep_state & EP_HAS_STREAMS)) { |
| 586 | if (ep->ring && !(list_empty(&ep->ring->td_list))) |
| 587 | xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); |
| 588 | return; |
| 589 | } |
| 590 | |
| 591 | for (stream_id = 1; stream_id < ep->stream_info->num_streams; |
| 592 | stream_id++) { |
| 593 | struct xhci_stream_info *stream_info = ep->stream_info; |
| 594 | if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) |
| 595 | xhci_ring_ep_doorbell(xhci, slot_id, ep_index, |
| 596 | stream_id); |
| 597 | } |
| 598 | } |
| 599 | |
| 600 | void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci, |
| 601 | unsigned int slot_id, |
| 602 | unsigned int ep_index) |
| 603 | { |
| 604 | ring_doorbell_for_active_rings(xhci, slot_id, ep_index); |
| 605 | } |
| 606 | |
| 607 | static struct xhci_virt_ep *xhci_get_virt_ep(struct xhci_hcd *xhci, |
| 608 | unsigned int slot_id, |
| 609 | unsigned int ep_index) |
| 610 | { |
| 611 | if (slot_id == 0 || slot_id >= MAX_HC_SLOTS) { |
| 612 | xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); |
| 613 | return NULL; |
| 614 | } |
| 615 | if (ep_index >= EP_CTX_PER_DEV) { |
| 616 | xhci_warn(xhci, "Invalid endpoint index %u\n", ep_index); |
| 617 | return NULL; |
| 618 | } |
| 619 | if (!xhci->devs[slot_id]) { |
| 620 | xhci_warn(xhci, "No xhci virt device for slot_id %u\n", slot_id); |
| 621 | return NULL; |
| 622 | } |
| 623 | |
| 624 | return &xhci->devs[slot_id]->eps[ep_index]; |
| 625 | } |
| 626 | |
| 627 | static struct xhci_ring *xhci_virt_ep_to_ring(struct xhci_hcd *xhci, |
| 628 | struct xhci_virt_ep *ep, |
| 629 | unsigned int stream_id) |
| 630 | { |
| 631 | /* common case, no streams */ |
| 632 | if (!(ep->ep_state & EP_HAS_STREAMS)) |
| 633 | return ep->ring; |
| 634 | |
| 635 | if (!ep->stream_info) |
| 636 | return NULL; |
| 637 | |
| 638 | if (stream_id == 0 || stream_id >= ep->stream_info->num_streams) { |
| 639 | xhci_warn(xhci, "Invalid stream_id %u request for slot_id %u ep_index %u\n", |
| 640 | stream_id, ep->vdev->slot_id, ep->ep_index); |
| 641 | return NULL; |
| 642 | } |
| 643 | |
| 644 | return ep->stream_info->stream_rings[stream_id]; |
| 645 | } |
| 646 | |
| 647 | /* Get the right ring for the given slot_id, ep_index and stream_id. |
| 648 | * If the endpoint supports streams, boundary check the URB's stream ID. |
| 649 | * If the endpoint doesn't support streams, return the singular endpoint ring. |
| 650 | */ |
| 651 | struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, |
| 652 | unsigned int slot_id, unsigned int ep_index, |
| 653 | unsigned int stream_id) |
| 654 | { |
| 655 | struct xhci_virt_ep *ep; |
| 656 | |
| 657 | ep = xhci_get_virt_ep(xhci, slot_id, ep_index); |
| 658 | if (!ep) |
| 659 | return NULL; |
| 660 | |
| 661 | return xhci_virt_ep_to_ring(xhci, ep, stream_id); |
| 662 | } |
| 663 | |
| 664 | |
| 665 | /* |
| 666 | * Get the hw dequeue pointer xHC stopped on, either directly from the |
| 667 | * endpoint context, or if streams are in use from the stream context. |
| 668 | * The returned hw_dequeue contains the lowest four bits with cycle state |
| 669 | * and possbile stream context type. |
| 670 | */ |
| 671 | static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, |
| 672 | unsigned int ep_index, unsigned int stream_id) |
| 673 | { |
| 674 | struct xhci_ep_ctx *ep_ctx; |
| 675 | struct xhci_stream_ctx *st_ctx; |
| 676 | struct xhci_virt_ep *ep; |
| 677 | |
| 678 | ep = &vdev->eps[ep_index]; |
| 679 | |
| 680 | if (ep->ep_state & EP_HAS_STREAMS) { |
| 681 | st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; |
| 682 | return le64_to_cpu(st_ctx->stream_ring); |
| 683 | } |
| 684 | ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); |
| 685 | return le64_to_cpu(ep_ctx->deq); |
| 686 | } |
| 687 | |
| 688 | static int xhci_move_dequeue_past_td(struct xhci_hcd *xhci, |
| 689 | unsigned int slot_id, unsigned int ep_index, |
| 690 | unsigned int stream_id, struct xhci_td *td) |
| 691 | { |
| 692 | struct xhci_virt_device *dev = xhci->devs[slot_id]; |
| 693 | struct xhci_virt_ep *ep = &dev->eps[ep_index]; |
| 694 | struct xhci_ring *ep_ring; |
| 695 | struct xhci_command *cmd; |
| 696 | struct xhci_segment *new_seg; |
| 697 | union xhci_trb *new_deq; |
| 698 | int new_cycle; |
| 699 | dma_addr_t addr; |
| 700 | u64 hw_dequeue; |
| 701 | bool hw_dequeue_found = false; |
| 702 | bool td_last_trb_found = false; |
| 703 | u32 trb_sct = 0; |
| 704 | int ret; |
| 705 | |
| 706 | ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, |
| 707 | ep_index, stream_id); |
| 708 | if (!ep_ring) { |
| 709 | xhci_warn(xhci, "WARN can't find new dequeue, invalid stream ID %u\n", |
| 710 | stream_id); |
| 711 | return -ENODEV; |
| 712 | } |
| 713 | |
| 714 | hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); |
| 715 | new_seg = ep_ring->deq_seg; |
| 716 | new_deq = ep_ring->dequeue; |
| 717 | new_cycle = le32_to_cpu(td->end_trb->generic.field[3]) & TRB_CYCLE; |
| 718 | |
| 719 | /* |
| 720 | * Walk the ring until both the next TRB and hw_dequeue are found (don't |
| 721 | * move hw_dequeue back if it went forward due to a HW bug). Cycle state |
| 722 | * is loaded from a known good TRB, track later toggles to maintain it. |
| 723 | */ |
| 724 | do { |
| 725 | if (!hw_dequeue_found && xhci_trb_virt_to_dma(new_seg, new_deq) |
| 726 | == (dma_addr_t)(hw_dequeue & ~0xf)) { |
| 727 | hw_dequeue_found = true; |
| 728 | if (td_last_trb_found) |
| 729 | break; |
| 730 | } |
| 731 | if (new_deq == td->end_trb) |
| 732 | td_last_trb_found = true; |
| 733 | |
| 734 | if (td_last_trb_found && trb_is_link(new_deq) && |
| 735 | link_trb_toggles_cycle(new_deq)) |
| 736 | new_cycle ^= 0x1; |
| 737 | |
| 738 | next_trb(&new_seg, &new_deq); |
| 739 | |
| 740 | /* Search wrapped around, bail out */ |
| 741 | if (new_deq == ep->ring->dequeue) { |
| 742 | xhci_err(xhci, "Error: Failed finding new dequeue state\n"); |
| 743 | return -EINVAL; |
| 744 | } |
| 745 | |
| 746 | } while (!hw_dequeue_found || !td_last_trb_found); |
| 747 | |
| 748 | /* Don't update the ring cycle state for the producer (us). */ |
| 749 | addr = xhci_trb_virt_to_dma(new_seg, new_deq); |
| 750 | if (addr == 0) { |
| 751 | xhci_warn(xhci, "Can't find dma of new dequeue ptr\n"); |
| 752 | xhci_warn(xhci, "deq seg = %p, deq ptr = %p\n", new_seg, new_deq); |
| 753 | return -EINVAL; |
| 754 | } |
| 755 | |
| 756 | if ((ep->ep_state & SET_DEQ_PENDING)) { |
| 757 | xhci_warn(xhci, "Set TR Deq already pending, don't submit for 0x%pad\n", |
| 758 | &addr); |
| 759 | return -EBUSY; |
| 760 | } |
| 761 | |
| 762 | /* This function gets called from contexts where it cannot sleep */ |
| 763 | cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); |
| 764 | if (!cmd) { |
| 765 | xhci_warn(xhci, "Can't alloc Set TR Deq cmd 0x%pad\n", &addr); |
| 766 | return -ENOMEM; |
| 767 | } |
| 768 | |
| 769 | if (stream_id) |
| 770 | trb_sct = SCT_FOR_TRB(SCT_PRI_TR); |
| 771 | ret = queue_command(xhci, cmd, |
| 772 | lower_32_bits(addr) | trb_sct | new_cycle, |
| 773 | upper_32_bits(addr), |
| 774 | STREAM_ID_FOR_TRB(stream_id), SLOT_ID_FOR_TRB(slot_id) | |
| 775 | EP_INDEX_FOR_TRB(ep_index) | TRB_TYPE(TRB_SET_DEQ), false); |
| 776 | if (ret < 0) { |
| 777 | xhci_free_command(xhci, cmd); |
| 778 | return ret; |
| 779 | } |
| 780 | ep->queued_deq_seg = new_seg; |
| 781 | ep->queued_deq_ptr = new_deq; |
| 782 | |
| 783 | xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, |
| 784 | "Set TR Deq ptr 0x%llx, cycle %u\n", addr, new_cycle); |
| 785 | |
| 786 | /* Stop the TD queueing code from ringing the doorbell until |
| 787 | * this command completes. The HC won't set the dequeue pointer |
| 788 | * if the ring is running, and ringing the doorbell starts the |
| 789 | * ring running. |
| 790 | */ |
| 791 | ep->ep_state |= SET_DEQ_PENDING; |
| 792 | xhci_ring_cmd_db(xhci); |
| 793 | return 0; |
| 794 | } |
| 795 | |
| 796 | /* flip_cycle means flip the cycle bit of all but the first and last TRB. |
| 797 | * (The last TRB actually points to the ring enqueue pointer, which is not part |
| 798 | * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. |
| 799 | */ |
| 800 | static void td_to_noop(struct xhci_td *td, bool flip_cycle) |
| 801 | { |
| 802 | struct xhci_segment *seg = td->start_seg; |
| 803 | union xhci_trb *trb = td->start_trb; |
| 804 | |
| 805 | while (1) { |
| 806 | trb_to_noop(trb, TRB_TR_NOOP); |
| 807 | |
| 808 | /* flip cycle if asked to */ |
| 809 | if (flip_cycle && trb != td->start_trb && trb != td->end_trb) |
| 810 | trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); |
| 811 | |
| 812 | if (trb == td->end_trb) |
| 813 | break; |
| 814 | |
| 815 | next_trb(&seg, &trb); |
| 816 | } |
| 817 | } |
| 818 | |
| 819 | static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, |
| 820 | struct xhci_td *cur_td, int status) |
| 821 | { |
| 822 | struct urb *urb = cur_td->urb; |
| 823 | struct urb_priv *urb_priv = urb->hcpriv; |
| 824 | struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); |
| 825 | |
| 826 | if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { |
| 827 | xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; |
| 828 | if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { |
| 829 | if (xhci->quirks & XHCI_AMD_PLL_FIX) |
| 830 | usb_amd_quirk_pll_enable(); |
| 831 | } |
| 832 | } |
| 833 | xhci_urb_free_priv(urb_priv); |
| 834 | usb_hcd_unlink_urb_from_ep(hcd, urb); |
| 835 | trace_xhci_urb_giveback(urb); |
| 836 | usb_hcd_giveback_urb(hcd, urb, status); |
| 837 | } |
| 838 | |
| 839 | static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, |
| 840 | struct xhci_ring *ring, struct xhci_td *td) |
| 841 | { |
| 842 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; |
| 843 | struct xhci_segment *seg = td->bounce_seg; |
| 844 | struct urb *urb = td->urb; |
| 845 | size_t len; |
| 846 | |
| 847 | if (!ring || !seg || !urb) |
| 848 | return; |
| 849 | |
| 850 | if (usb_urb_dir_out(urb)) { |
| 851 | dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, |
| 852 | DMA_TO_DEVICE); |
| 853 | return; |
| 854 | } |
| 855 | |
| 856 | dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, |
| 857 | DMA_FROM_DEVICE); |
| 858 | /* for in transfers we need to copy the data from bounce to sg */ |
| 859 | if (urb->num_sgs) { |
| 860 | len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, |
| 861 | seg->bounce_len, seg->bounce_offs); |
| 862 | if (len != seg->bounce_len) |
| 863 | xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", |
| 864 | len, seg->bounce_len); |
| 865 | } else { |
| 866 | memcpy(urb->transfer_buffer + seg->bounce_offs, seg->bounce_buf, |
| 867 | seg->bounce_len); |
| 868 | } |
| 869 | seg->bounce_len = 0; |
| 870 | seg->bounce_offs = 0; |
| 871 | } |
| 872 | |
| 873 | static void xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, |
| 874 | struct xhci_ring *ep_ring, int status) |
| 875 | { |
| 876 | struct urb *urb = NULL; |
| 877 | |
| 878 | /* Clean up the endpoint's TD list */ |
| 879 | urb = td->urb; |
| 880 | |
| 881 | /* if a bounce buffer was used to align this td then unmap it */ |
| 882 | xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); |
| 883 | |
| 884 | /* Do one last check of the actual transfer length. |
| 885 | * If the host controller said we transferred more data than the buffer |
| 886 | * length, urb->actual_length will be a very big number (since it's |
| 887 | * unsigned). Play it safe and say we didn't transfer anything. |
| 888 | */ |
| 889 | if (urb->actual_length > urb->transfer_buffer_length) { |
| 890 | xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", |
| 891 | urb->transfer_buffer_length, urb->actual_length); |
| 892 | urb->actual_length = 0; |
| 893 | status = 0; |
| 894 | } |
| 895 | /* TD might be removed from td_list if we are giving back a cancelled URB */ |
| 896 | if (!list_empty(&td->td_list)) |
| 897 | list_del_init(&td->td_list); |
| 898 | /* Giving back a cancelled URB, or if a slated TD completed anyway */ |
| 899 | if (!list_empty(&td->cancelled_td_list)) |
| 900 | list_del_init(&td->cancelled_td_list); |
| 901 | |
| 902 | inc_td_cnt(urb); |
| 903 | /* Giveback the urb when all the tds are completed */ |
| 904 | if (last_td_in_urb(td)) { |
| 905 | if ((urb->actual_length != urb->transfer_buffer_length && |
| 906 | (urb->transfer_flags & URB_SHORT_NOT_OK)) || |
| 907 | (status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) |
| 908 | xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", |
| 909 | urb, urb->actual_length, |
| 910 | urb->transfer_buffer_length, status); |
| 911 | |
| 912 | /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ |
| 913 | if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) |
| 914 | status = 0; |
| 915 | xhci_giveback_urb_in_irq(xhci, td, status); |
| 916 | } |
| 917 | } |
| 918 | |
| 919 | /* Give back previous TD and move on to the next TD. */ |
| 920 | static void xhci_dequeue_td(struct xhci_hcd *xhci, struct xhci_td *td, struct xhci_ring *ring, |
| 921 | u32 status) |
| 922 | { |
| 923 | ring->dequeue = td->end_trb; |
| 924 | ring->deq_seg = td->end_seg; |
| 925 | inc_deq(xhci, ring); |
| 926 | |
| 927 | xhci_td_cleanup(xhci, td, ring, status); |
| 928 | } |
| 929 | |
| 930 | /* Complete the cancelled URBs we unlinked from td_list. */ |
| 931 | static void xhci_giveback_invalidated_tds(struct xhci_virt_ep *ep) |
| 932 | { |
| 933 | struct xhci_ring *ring; |
| 934 | struct xhci_td *td, *tmp_td; |
| 935 | |
| 936 | list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, |
| 937 | cancelled_td_list) { |
| 938 | |
| 939 | ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); |
| 940 | |
| 941 | if (td->cancel_status == TD_CLEARED) { |
| 942 | xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", |
| 943 | __func__, td->urb); |
| 944 | xhci_td_cleanup(ep->xhci, td, ring, td->status); |
| 945 | } else { |
| 946 | xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", |
| 947 | __func__, td->urb, td->cancel_status); |
| 948 | } |
| 949 | if (ep->xhci->xhc_state & XHCI_STATE_DYING) |
| 950 | return; |
| 951 | } |
| 952 | } |
| 953 | |
| 954 | static int xhci_reset_halted_ep(struct xhci_hcd *xhci, unsigned int slot_id, |
| 955 | unsigned int ep_index, enum xhci_ep_reset_type reset_type) |
| 956 | { |
| 957 | struct xhci_command *command; |
| 958 | int ret = 0; |
| 959 | |
| 960 | command = xhci_alloc_command(xhci, false, GFP_ATOMIC); |
| 961 | if (!command) { |
| 962 | ret = -ENOMEM; |
| 963 | goto done; |
| 964 | } |
| 965 | |
| 966 | xhci_dbg(xhci, "%s-reset ep %u, slot %u\n", |
| 967 | (reset_type == EP_HARD_RESET) ? "Hard" : "Soft", |
| 968 | ep_index, slot_id); |
| 969 | |
| 970 | ret = xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); |
| 971 | done: |
| 972 | if (ret) |
| 973 | xhci_err(xhci, "ERROR queuing reset endpoint for slot %d ep_index %d, %d\n", |
| 974 | slot_id, ep_index, ret); |
| 975 | return ret; |
| 976 | } |
| 977 | |
| 978 | static int xhci_handle_halted_endpoint(struct xhci_hcd *xhci, |
| 979 | struct xhci_virt_ep *ep, |
| 980 | struct xhci_td *td, |
| 981 | enum xhci_ep_reset_type reset_type) |
| 982 | { |
| 983 | unsigned int slot_id = ep->vdev->slot_id; |
| 984 | int err; |
| 985 | |
| 986 | /* |
| 987 | * Avoid resetting endpoint if link is inactive. Can cause host hang. |
| 988 | * Device will be reset soon to recover the link so don't do anything |
| 989 | */ |
| 990 | if (ep->vdev->flags & VDEV_PORT_ERROR) |
| 991 | return -ENODEV; |
| 992 | |
| 993 | /* add td to cancelled list and let reset ep handler take care of it */ |
| 994 | if (reset_type == EP_HARD_RESET) { |
| 995 | ep->ep_state |= EP_HARD_CLEAR_TOGGLE; |
| 996 | if (td && list_empty(&td->cancelled_td_list)) { |
| 997 | list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); |
| 998 | td->cancel_status = TD_HALTED; |
| 999 | } |
| 1000 | } |
| 1001 | |
| 1002 | if (ep->ep_state & EP_HALTED) { |
| 1003 | xhci_dbg(xhci, "Reset ep command for ep_index %d already pending\n", |
| 1004 | ep->ep_index); |
| 1005 | return 0; |
| 1006 | } |
| 1007 | |
| 1008 | err = xhci_reset_halted_ep(xhci, slot_id, ep->ep_index, reset_type); |
| 1009 | if (err) |
| 1010 | return err; |
| 1011 | |
| 1012 | ep->ep_state |= EP_HALTED; |
| 1013 | |
| 1014 | xhci_ring_cmd_db(xhci); |
| 1015 | |
| 1016 | return 0; |
| 1017 | } |
| 1018 | |
| 1019 | /* |
| 1020 | * Fix up the ep ring first, so HW stops executing cancelled TDs. |
| 1021 | * We have the xHCI lock, so nothing can modify this list until we drop it. |
| 1022 | * We're also in the event handler, so we can't get re-interrupted if another |
| 1023 | * Stop Endpoint command completes. |
| 1024 | * |
| 1025 | * only call this when ring is not in a running state |
| 1026 | */ |
| 1027 | |
| 1028 | static int xhci_invalidate_cancelled_tds(struct xhci_virt_ep *ep) |
| 1029 | { |
| 1030 | struct xhci_hcd *xhci; |
| 1031 | struct xhci_td *td = NULL; |
| 1032 | struct xhci_td *tmp_td = NULL; |
| 1033 | struct xhci_td *cached_td = NULL; |
| 1034 | struct xhci_ring *ring; |
| 1035 | u64 hw_deq; |
| 1036 | unsigned int slot_id = ep->vdev->slot_id; |
| 1037 | int err; |
| 1038 | |
| 1039 | /* |
| 1040 | * This is not going to work if the hardware is changing its dequeue |
| 1041 | * pointers as we look at them. Completion handler will call us later. |
| 1042 | */ |
| 1043 | if (ep->ep_state & SET_DEQ_PENDING) |
| 1044 | return 0; |
| 1045 | |
| 1046 | xhci = ep->xhci; |
| 1047 | |
| 1048 | list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { |
| 1049 | xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, |
| 1050 | "Removing canceled TD starting at 0x%llx (dma) in stream %u URB %p", |
| 1051 | (unsigned long long)xhci_trb_virt_to_dma( |
| 1052 | td->start_seg, td->start_trb), |
| 1053 | td->urb->stream_id, td->urb); |
| 1054 | list_del_init(&td->td_list); |
| 1055 | ring = xhci_urb_to_transfer_ring(xhci, td->urb); |
| 1056 | if (!ring) { |
| 1057 | xhci_warn(xhci, "WARN Cancelled URB %p has invalid stream ID %u.\n", |
| 1058 | td->urb, td->urb->stream_id); |
| 1059 | continue; |
| 1060 | } |
| 1061 | /* |
| 1062 | * If a ring stopped on the TD we need to cancel then we have to |
| 1063 | * move the xHC endpoint ring dequeue pointer past this TD. |
| 1064 | * Rings halted due to STALL may show hw_deq is past the stalled |
| 1065 | * TD, but still require a set TR Deq command to flush xHC cache. |
| 1066 | */ |
| 1067 | hw_deq = xhci_get_hw_deq(xhci, ep->vdev, ep->ep_index, |
| 1068 | td->urb->stream_id); |
| 1069 | hw_deq &= ~0xf; |
| 1070 | |
| 1071 | if (td->cancel_status == TD_HALTED || trb_in_td(td, hw_deq)) { |
| 1072 | switch (td->cancel_status) { |
| 1073 | case TD_CLEARED: /* TD is already no-op */ |
| 1074 | case TD_CLEARING_CACHE: /* set TR deq command already queued */ |
| 1075 | break; |
| 1076 | case TD_DIRTY: /* TD is cached, clear it */ |
| 1077 | case TD_HALTED: |
| 1078 | case TD_CLEARING_CACHE_DEFERRED: |
| 1079 | if (cached_td) { |
| 1080 | if (cached_td->urb->stream_id != td->urb->stream_id) { |
| 1081 | /* Multiple streams case, defer move dq */ |
| 1082 | xhci_dbg(xhci, |
| 1083 | "Move dq deferred: stream %u URB %p\n", |
| 1084 | td->urb->stream_id, td->urb); |
| 1085 | td->cancel_status = TD_CLEARING_CACHE_DEFERRED; |
| 1086 | break; |
| 1087 | } |
| 1088 | |
| 1089 | /* Should never happen, but clear the TD if it does */ |
| 1090 | xhci_warn(xhci, |
| 1091 | "Found multiple active URBs %p and %p in stream %u?\n", |
| 1092 | td->urb, cached_td->urb, |
| 1093 | td->urb->stream_id); |
| 1094 | td_to_noop(cached_td, false); |
| 1095 | cached_td->cancel_status = TD_CLEARED; |
| 1096 | } |
| 1097 | td_to_noop(td, false); |
| 1098 | td->cancel_status = TD_CLEARING_CACHE; |
| 1099 | cached_td = td; |
| 1100 | break; |
| 1101 | } |
| 1102 | } else { |
| 1103 | td_to_noop(td, false); |
| 1104 | td->cancel_status = TD_CLEARED; |
| 1105 | } |
| 1106 | } |
| 1107 | |
| 1108 | /* If there's no need to move the dequeue pointer then we're done */ |
| 1109 | if (!cached_td) |
| 1110 | return 0; |
| 1111 | |
| 1112 | err = xhci_move_dequeue_past_td(xhci, slot_id, ep->ep_index, |
| 1113 | cached_td->urb->stream_id, |
| 1114 | cached_td); |
| 1115 | if (err) { |
| 1116 | /* Failed to move past cached td, just set cached TDs to no-op */ |
| 1117 | list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { |
| 1118 | /* |
| 1119 | * Deferred TDs need to have the deq pointer set after the above command |
| 1120 | * completes, so if that failed we just give up on all of them (and |
| 1121 | * complain loudly since this could cause issues due to caching). |
| 1122 | */ |
| 1123 | if (td->cancel_status != TD_CLEARING_CACHE && |
| 1124 | td->cancel_status != TD_CLEARING_CACHE_DEFERRED) |
| 1125 | continue; |
| 1126 | xhci_warn(xhci, "Failed to clear cancelled cached URB %p, mark clear anyway\n", |
| 1127 | td->urb); |
| 1128 | td_to_noop(td, false); |
| 1129 | td->cancel_status = TD_CLEARED; |
| 1130 | } |
| 1131 | } |
| 1132 | return 0; |
| 1133 | } |
| 1134 | |
| 1135 | /* |
| 1136 | * Erase queued TDs from transfer ring(s) and give back those the xHC didn't |
| 1137 | * stop on. If necessary, queue commands to move the xHC off cancelled TDs it |
| 1138 | * stopped on. Those will be given back later when the commands complete. |
| 1139 | * |
| 1140 | * Call under xhci->lock on a stopped endpoint. |
| 1141 | */ |
| 1142 | void xhci_process_cancelled_tds(struct xhci_virt_ep *ep) |
| 1143 | { |
| 1144 | xhci_invalidate_cancelled_tds(ep); |
| 1145 | xhci_giveback_invalidated_tds(ep); |
| 1146 | } |
| 1147 | |
| 1148 | /* |
| 1149 | * Returns the TD the endpoint ring halted on. |
| 1150 | * Only call for non-running rings without streams. |
| 1151 | */ |
| 1152 | static struct xhci_td *find_halted_td(struct xhci_virt_ep *ep) |
| 1153 | { |
| 1154 | struct xhci_td *td; |
| 1155 | u64 hw_deq; |
| 1156 | |
| 1157 | if (!list_empty(&ep->ring->td_list)) { /* Not streams compatible */ |
| 1158 | hw_deq = xhci_get_hw_deq(ep->xhci, ep->vdev, ep->ep_index, 0); |
| 1159 | hw_deq &= ~0xf; |
| 1160 | td = list_first_entry(&ep->ring->td_list, struct xhci_td, td_list); |
| 1161 | if (trb_in_td(td, hw_deq)) |
| 1162 | return td; |
| 1163 | } |
| 1164 | return NULL; |
| 1165 | } |
| 1166 | |
| 1167 | /* |
| 1168 | * When we get a command completion for a Stop Endpoint Command, we need to |
| 1169 | * unlink any cancelled TDs from the ring. There are two ways to do that: |
| 1170 | * |
| 1171 | * 1. If the HW was in the middle of processing the TD that needs to be |
| 1172 | * cancelled, then we must move the ring's dequeue pointer past the last TRB |
| 1173 | * in the TD with a Set Dequeue Pointer Command. |
| 1174 | * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain |
| 1175 | * bit cleared) so that the HW will skip over them. |
| 1176 | */ |
| 1177 | static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, |
| 1178 | union xhci_trb *trb, u32 comp_code) |
| 1179 | { |
| 1180 | unsigned int ep_index; |
| 1181 | struct xhci_virt_ep *ep; |
| 1182 | struct xhci_ep_ctx *ep_ctx; |
| 1183 | struct xhci_td *td = NULL; |
| 1184 | enum xhci_ep_reset_type reset_type; |
| 1185 | struct xhci_command *command; |
| 1186 | int err; |
| 1187 | |
| 1188 | if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { |
| 1189 | if (!xhci->devs[slot_id]) |
| 1190 | xhci_warn(xhci, "Stop endpoint command completion for disabled slot %u\n", |
| 1191 | slot_id); |
| 1192 | return; |
| 1193 | } |
| 1194 | |
| 1195 | ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); |
| 1196 | ep = xhci_get_virt_ep(xhci, slot_id, ep_index); |
| 1197 | if (!ep) |
| 1198 | return; |
| 1199 | |
| 1200 | ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); |
| 1201 | |
| 1202 | trace_xhci_handle_cmd_stop_ep(ep_ctx); |
| 1203 | |
| 1204 | if (comp_code == COMP_CONTEXT_STATE_ERROR) { |
| 1205 | /* |
| 1206 | * If stop endpoint command raced with a halting endpoint we need to |
| 1207 | * reset the host side endpoint first. |
| 1208 | * If the TD we halted on isn't cancelled the TD should be given back |
| 1209 | * with a proper error code, and the ring dequeue moved past the TD. |
| 1210 | * If streams case we can't find hw_deq, or the TD we halted on so do a |
| 1211 | * soft reset. |
| 1212 | * |
| 1213 | * Proper error code is unknown here, it would be -EPIPE if device side |
| 1214 | * of enadpoit halted (aka STALL), and -EPROTO if not (transaction error) |
| 1215 | * We use -EPROTO, if device is stalled it should return a stall error on |
| 1216 | * next transfer, which then will return -EPIPE, and device side stall is |
| 1217 | * noted and cleared by class driver. |
| 1218 | */ |
| 1219 | switch (GET_EP_CTX_STATE(ep_ctx)) { |
| 1220 | case EP_STATE_HALTED: |
| 1221 | xhci_dbg(xhci, "Stop ep completion raced with stall\n"); |
| 1222 | /* |
| 1223 | * If the halt happened before Stop Endpoint failed, its transfer event |
| 1224 | * should have already been handled and Reset Endpoint should be pending. |
| 1225 | */ |
| 1226 | if (ep->ep_state & EP_HALTED) |
| 1227 | goto reset_done; |
| 1228 | |
| 1229 | if (ep->ep_state & EP_HAS_STREAMS) { |
| 1230 | reset_type = EP_SOFT_RESET; |
| 1231 | } else { |
| 1232 | reset_type = EP_HARD_RESET; |
| 1233 | td = find_halted_td(ep); |
| 1234 | if (td) |
| 1235 | td->status = -EPROTO; |
| 1236 | } |
| 1237 | /* reset ep, reset handler cleans up cancelled tds */ |
| 1238 | err = xhci_handle_halted_endpoint(xhci, ep, td, reset_type); |
| 1239 | xhci_dbg(xhci, "Stop ep completion resetting ep, status %d\n", err); |
| 1240 | if (err) |
| 1241 | break; |
| 1242 | reset_done: |
| 1243 | /* Reset EP handler will clean up cancelled TDs */ |
| 1244 | ep->ep_state &= ~EP_STOP_CMD_PENDING; |
| 1245 | return; |
| 1246 | case EP_STATE_STOPPED: |
| 1247 | /* |
| 1248 | * Per xHCI 4.6.9, Stop Endpoint command on a Stopped |
| 1249 | * EP is a Context State Error, and EP stays Stopped. |
| 1250 | * |
| 1251 | * But maybe it failed on Halted, and somebody ran Reset |
| 1252 | * Endpoint later. EP state is now Stopped and EP_HALTED |
| 1253 | * still set because Reset EP handler will run after us. |
| 1254 | */ |
| 1255 | if (ep->ep_state & EP_HALTED) |
| 1256 | break; |
| 1257 | /* |
| 1258 | * On some HCs EP state remains Stopped for some tens of |
| 1259 | * us to a few ms or more after a doorbell ring, and any |
| 1260 | * new Stop Endpoint fails without aborting the restart. |
| 1261 | * This handler may run quickly enough to still see this |
| 1262 | * Stopped state, but it will soon change to Running. |
| 1263 | * |
| 1264 | * Assume this bug on unexpected Stop Endpoint failures. |
| 1265 | * Keep retrying until the EP starts and stops again. |
| 1266 | */ |
| 1267 | fallthrough; |
| 1268 | case EP_STATE_RUNNING: |
| 1269 | /* Race, HW handled stop ep cmd before ep was running */ |
| 1270 | xhci_dbg(xhci, "Stop ep completion ctx error, ctx_state %d\n", |
| 1271 | GET_EP_CTX_STATE(ep_ctx)); |
| 1272 | /* |
| 1273 | * Don't retry forever if we guessed wrong or a defective HC never starts |
| 1274 | * the EP or says 'Running' but fails the command. We must give back TDs. |
| 1275 | */ |
| 1276 | if (time_is_before_jiffies(ep->stop_time + msecs_to_jiffies(100))) |
| 1277 | break; |
| 1278 | |
| 1279 | command = xhci_alloc_command(xhci, false, GFP_ATOMIC); |
| 1280 | if (!command) { |
| 1281 | ep->ep_state &= ~EP_STOP_CMD_PENDING; |
| 1282 | return; |
| 1283 | } |
| 1284 | xhci_queue_stop_endpoint(xhci, command, slot_id, ep_index, 0); |
| 1285 | xhci_ring_cmd_db(xhci); |
| 1286 | |
| 1287 | return; |
| 1288 | default: |
| 1289 | break; |
| 1290 | } |
| 1291 | } |
| 1292 | |
| 1293 | /* will queue a set TR deq if stopped on a cancelled, uncleared TD */ |
| 1294 | xhci_invalidate_cancelled_tds(ep); |
| 1295 | ep->ep_state &= ~EP_STOP_CMD_PENDING; |
| 1296 | |
| 1297 | /* Otherwise ring the doorbell(s) to restart queued transfers */ |
| 1298 | xhci_giveback_invalidated_tds(ep); |
| 1299 | ring_doorbell_for_active_rings(xhci, slot_id, ep_index); |
| 1300 | } |
| 1301 | |
| 1302 | static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) |
| 1303 | { |
| 1304 | struct xhci_td *cur_td; |
| 1305 | struct xhci_td *tmp; |
| 1306 | |
| 1307 | list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { |
| 1308 | list_del_init(&cur_td->td_list); |
| 1309 | |
| 1310 | if (!list_empty(&cur_td->cancelled_td_list)) |
| 1311 | list_del_init(&cur_td->cancelled_td_list); |
| 1312 | |
| 1313 | xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); |
| 1314 | |
| 1315 | inc_td_cnt(cur_td->urb); |
| 1316 | if (last_td_in_urb(cur_td)) |
| 1317 | xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); |
| 1318 | } |
| 1319 | } |
| 1320 | |
| 1321 | static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, |
| 1322 | int slot_id, int ep_index) |
| 1323 | { |
| 1324 | struct xhci_td *cur_td; |
| 1325 | struct xhci_td *tmp; |
| 1326 | struct xhci_virt_ep *ep; |
| 1327 | struct xhci_ring *ring; |
| 1328 | |
| 1329 | ep = xhci_get_virt_ep(xhci, slot_id, ep_index); |
| 1330 | if (!ep) |
| 1331 | return; |
| 1332 | |
| 1333 | if ((ep->ep_state & EP_HAS_STREAMS) || |
| 1334 | (ep->ep_state & EP_GETTING_NO_STREAMS)) { |
| 1335 | int stream_id; |
| 1336 | |
| 1337 | for (stream_id = 1; stream_id < ep->stream_info->num_streams; |
| 1338 | stream_id++) { |
| 1339 | ring = ep->stream_info->stream_rings[stream_id]; |
| 1340 | if (!ring) |
| 1341 | continue; |
| 1342 | |
| 1343 | xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, |
| 1344 | "Killing URBs for slot ID %u, ep index %u, stream %u", |
| 1345 | slot_id, ep_index, stream_id); |
| 1346 | xhci_kill_ring_urbs(xhci, ring); |
| 1347 | } |
| 1348 | } else { |
| 1349 | ring = ep->ring; |
| 1350 | if (!ring) |
| 1351 | return; |
| 1352 | xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, |
| 1353 | "Killing URBs for slot ID %u, ep index %u", |
| 1354 | slot_id, ep_index); |
| 1355 | xhci_kill_ring_urbs(xhci, ring); |
| 1356 | } |
| 1357 | |
| 1358 | list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, |
| 1359 | cancelled_td_list) { |
| 1360 | list_del_init(&cur_td->cancelled_td_list); |
| 1361 | inc_td_cnt(cur_td->urb); |
| 1362 | |
| 1363 | if (last_td_in_urb(cur_td)) |
| 1364 | xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); |
| 1365 | } |
| 1366 | } |
| 1367 | |
| 1368 | /* |
| 1369 | * host controller died, register read returns 0xffffffff |
| 1370 | * Complete pending commands, mark them ABORTED. |
| 1371 | * URBs need to be given back as usb core might be waiting with device locks |
| 1372 | * held for the URBs to finish during device disconnect, blocking host remove. |
| 1373 | * |
| 1374 | * Call with xhci->lock held. |
| 1375 | * lock is relased and re-acquired while giving back urb. |
| 1376 | */ |
| 1377 | void xhci_hc_died(struct xhci_hcd *xhci) |
| 1378 | { |
| 1379 | int i, j; |
| 1380 | |
| 1381 | if (xhci->xhc_state & XHCI_STATE_DYING) |
| 1382 | return; |
| 1383 | |
| 1384 | xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); |
| 1385 | xhci->xhc_state |= XHCI_STATE_DYING; |
| 1386 | |
| 1387 | xhci_cleanup_command_queue(xhci); |
| 1388 | |
| 1389 | /* return any pending urbs, remove may be waiting for them */ |
| 1390 | for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { |
| 1391 | if (!xhci->devs[i]) |
| 1392 | continue; |
| 1393 | for (j = 0; j < 31; j++) |
| 1394 | xhci_kill_endpoint_urbs(xhci, i, j); |
| 1395 | } |
| 1396 | |
| 1397 | /* inform usb core hc died if PCI remove isn't already handling it */ |
| 1398 | if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) |
| 1399 | usb_hc_died(xhci_to_hcd(xhci)); |
| 1400 | } |
| 1401 | |
| 1402 | /* |
| 1403 | * When we get a completion for a Set Transfer Ring Dequeue Pointer command, |
| 1404 | * we need to clear the set deq pending flag in the endpoint ring state, so that |
| 1405 | * the TD queueing code can ring the doorbell again. We also need to ring the |
| 1406 | * endpoint doorbell to restart the ring, but only if there aren't more |
| 1407 | * cancellations pending. |
| 1408 | */ |
| 1409 | static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, |
| 1410 | union xhci_trb *trb, u32 cmd_comp_code) |
| 1411 | { |
| 1412 | unsigned int ep_index; |
| 1413 | unsigned int stream_id; |
| 1414 | struct xhci_ring *ep_ring; |
| 1415 | struct xhci_virt_ep *ep; |
| 1416 | struct xhci_ep_ctx *ep_ctx; |
| 1417 | struct xhci_slot_ctx *slot_ctx; |
| 1418 | struct xhci_stream_ctx *stream_ctx; |
| 1419 | struct xhci_td *td, *tmp_td; |
| 1420 | |
| 1421 | ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); |
| 1422 | stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); |
| 1423 | ep = xhci_get_virt_ep(xhci, slot_id, ep_index); |
| 1424 | if (!ep) |
| 1425 | return; |
| 1426 | |
| 1427 | ep_ring = xhci_virt_ep_to_ring(xhci, ep, stream_id); |
| 1428 | if (!ep_ring) { |
| 1429 | xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", |
| 1430 | stream_id); |
| 1431 | /* XXX: Harmless??? */ |
| 1432 | goto cleanup; |
| 1433 | } |
| 1434 | |
| 1435 | ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); |
| 1436 | slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); |
| 1437 | trace_xhci_handle_cmd_set_deq(slot_ctx); |
| 1438 | trace_xhci_handle_cmd_set_deq_ep(ep_ctx); |
| 1439 | |
| 1440 | if (ep->ep_state & EP_HAS_STREAMS) { |
| 1441 | stream_ctx = &ep->stream_info->stream_ctx_array[stream_id]; |
| 1442 | trace_xhci_handle_cmd_set_deq_stream(ep->stream_info, stream_id); |
| 1443 | } |
| 1444 | |
| 1445 | if (cmd_comp_code != COMP_SUCCESS) { |
| 1446 | unsigned int ep_state; |
| 1447 | unsigned int slot_state; |
| 1448 | |
| 1449 | switch (cmd_comp_code) { |
| 1450 | case COMP_TRB_ERROR: |
| 1451 | xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); |
| 1452 | break; |
| 1453 | case COMP_CONTEXT_STATE_ERROR: |
| 1454 | xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); |
| 1455 | ep_state = GET_EP_CTX_STATE(ep_ctx); |
| 1456 | slot_state = le32_to_cpu(slot_ctx->dev_state); |
| 1457 | slot_state = GET_SLOT_STATE(slot_state); |
| 1458 | xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, |
| 1459 | "Slot state = %u, EP state = %u", |
| 1460 | slot_state, ep_state); |
| 1461 | break; |
| 1462 | case COMP_SLOT_NOT_ENABLED_ERROR: |
| 1463 | xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", |
| 1464 | slot_id); |
| 1465 | break; |
| 1466 | default: |
| 1467 | xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", |
| 1468 | cmd_comp_code); |
| 1469 | break; |
| 1470 | } |
| 1471 | /* OK what do we do now? The endpoint state is hosed, and we |
| 1472 | * should never get to this point if the synchronization between |
| 1473 | * queueing, and endpoint state are correct. This might happen |
| 1474 | * if the device gets disconnected after we've finished |
| 1475 | * cancelling URBs, which might not be an error... |
| 1476 | */ |
| 1477 | } else { |
| 1478 | u64 deq; |
| 1479 | /* 4.6.10 deq ptr is written to the stream ctx for streams */ |
| 1480 | if (ep->ep_state & EP_HAS_STREAMS) { |
| 1481 | deq = le64_to_cpu(stream_ctx->stream_ring) & SCTX_DEQ_MASK; |
| 1482 | |
| 1483 | /* |
| 1484 | * Cadence xHCI controllers store some endpoint state |
| 1485 | * information within Rsvd0 fields of Stream Endpoint |
| 1486 | * context. This field is not cleared during Set TR |
| 1487 | * Dequeue Pointer command which causes XDMA to skip |
| 1488 | * over transfer ring and leads to data loss on stream |
| 1489 | * pipe. |
| 1490 | * To fix this issue driver must clear Rsvd0 field. |
| 1491 | */ |
| 1492 | if (xhci->quirks & XHCI_CDNS_SCTX_QUIRK) { |
| 1493 | stream_ctx->reserved[0] = 0; |
| 1494 | stream_ctx->reserved[1] = 0; |
| 1495 | } |
| 1496 | } else { |
| 1497 | deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; |
| 1498 | } |
| 1499 | xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, |
| 1500 | "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); |
| 1501 | if (xhci_trb_virt_to_dma(ep->queued_deq_seg, |
| 1502 | ep->queued_deq_ptr) == deq) { |
| 1503 | /* Update the ring's dequeue segment and dequeue pointer |
| 1504 | * to reflect the new position. |
| 1505 | */ |
| 1506 | ep_ring->deq_seg = ep->queued_deq_seg; |
| 1507 | ep_ring->dequeue = ep->queued_deq_ptr; |
| 1508 | } else { |
| 1509 | xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); |
| 1510 | xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", |
| 1511 | ep->queued_deq_seg, ep->queued_deq_ptr); |
| 1512 | } |
| 1513 | } |
| 1514 | /* HW cached TDs cleared from cache, give them back */ |
| 1515 | list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, |
| 1516 | cancelled_td_list) { |
| 1517 | ep_ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); |
| 1518 | if (td->cancel_status == TD_CLEARING_CACHE) { |
| 1519 | td->cancel_status = TD_CLEARED; |
| 1520 | xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", |
| 1521 | __func__, td->urb); |
| 1522 | xhci_td_cleanup(ep->xhci, td, ep_ring, td->status); |
| 1523 | } else { |
| 1524 | xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", |
| 1525 | __func__, td->urb, td->cancel_status); |
| 1526 | } |
| 1527 | } |
| 1528 | cleanup: |
| 1529 | ep->ep_state &= ~SET_DEQ_PENDING; |
| 1530 | ep->queued_deq_seg = NULL; |
| 1531 | ep->queued_deq_ptr = NULL; |
| 1532 | |
| 1533 | /* Check for deferred or newly cancelled TDs */ |
| 1534 | if (!list_empty(&ep->cancelled_td_list)) { |
| 1535 | xhci_dbg(ep->xhci, "%s: Pending TDs to clear, continuing with invalidation\n", |
| 1536 | __func__); |
| 1537 | xhci_invalidate_cancelled_tds(ep); |
| 1538 | /* Try to restart the endpoint if all is done */ |
| 1539 | ring_doorbell_for_active_rings(xhci, slot_id, ep_index); |
| 1540 | /* Start giving back any TDs invalidated above */ |
| 1541 | xhci_giveback_invalidated_tds(ep); |
| 1542 | } else { |
| 1543 | /* Restart any rings with pending URBs */ |
| 1544 | xhci_dbg(ep->xhci, "%s: All TDs cleared, ring doorbell\n", __func__); |
| 1545 | ring_doorbell_for_active_rings(xhci, slot_id, ep_index); |
| 1546 | } |
| 1547 | } |
| 1548 | |
| 1549 | static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, |
| 1550 | union xhci_trb *trb, u32 cmd_comp_code) |
| 1551 | { |
| 1552 | struct xhci_virt_ep *ep; |
| 1553 | struct xhci_ep_ctx *ep_ctx; |
| 1554 | unsigned int ep_index; |
| 1555 | |
| 1556 | ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); |
| 1557 | ep = xhci_get_virt_ep(xhci, slot_id, ep_index); |
| 1558 | if (!ep) |
| 1559 | return; |
| 1560 | |
| 1561 | ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); |
| 1562 | trace_xhci_handle_cmd_reset_ep(ep_ctx); |
| 1563 | |
| 1564 | /* This command will only fail if the endpoint wasn't halted, |
| 1565 | * but we don't care. |
| 1566 | */ |
| 1567 | xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, |
| 1568 | "Ignoring reset ep completion code of %u", cmd_comp_code); |
| 1569 | |
| 1570 | /* Cleanup cancelled TDs as ep is stopped. May queue a Set TR Deq cmd */ |
| 1571 | xhci_invalidate_cancelled_tds(ep); |
| 1572 | |
| 1573 | /* Clear our internal halted state */ |
| 1574 | ep->ep_state &= ~EP_HALTED; |
| 1575 | |
| 1576 | xhci_giveback_invalidated_tds(ep); |
| 1577 | |
| 1578 | /* if this was a soft reset, then restart */ |
| 1579 | if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) |
| 1580 | ring_doorbell_for_active_rings(xhci, slot_id, ep_index); |
| 1581 | } |
| 1582 | |
| 1583 | static void xhci_handle_cmd_enable_slot(int slot_id, struct xhci_command *command, |
| 1584 | u32 cmd_comp_code) |
| 1585 | { |
| 1586 | if (cmd_comp_code == COMP_SUCCESS) |
| 1587 | command->slot_id = slot_id; |
| 1588 | else |
| 1589 | command->slot_id = 0; |
| 1590 | } |
| 1591 | |
| 1592 | static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) |
| 1593 | { |
| 1594 | struct xhci_virt_device *virt_dev; |
| 1595 | struct xhci_slot_ctx *slot_ctx; |
| 1596 | |
| 1597 | virt_dev = xhci->devs[slot_id]; |
| 1598 | if (!virt_dev) |
| 1599 | return; |
| 1600 | |
| 1601 | slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); |
| 1602 | trace_xhci_handle_cmd_disable_slot(slot_ctx); |
| 1603 | |
| 1604 | if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) |
| 1605 | /* Delete default control endpoint resources */ |
| 1606 | xhci_free_device_endpoint_resources(xhci, virt_dev, true); |
| 1607 | } |
| 1608 | |
| 1609 | static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id) |
| 1610 | { |
| 1611 | struct xhci_virt_device *virt_dev; |
| 1612 | struct xhci_input_control_ctx *ctrl_ctx; |
| 1613 | struct xhci_ep_ctx *ep_ctx; |
| 1614 | unsigned int ep_index; |
| 1615 | u32 add_flags; |
| 1616 | |
| 1617 | /* |
| 1618 | * Configure endpoint commands can come from the USB core configuration |
| 1619 | * or alt setting changes, or when streams were being configured. |
| 1620 | */ |
| 1621 | |
| 1622 | virt_dev = xhci->devs[slot_id]; |
| 1623 | if (!virt_dev) |
| 1624 | return; |
| 1625 | ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); |
| 1626 | if (!ctrl_ctx) { |
| 1627 | xhci_warn(xhci, "Could not get input context, bad type.\n"); |
| 1628 | return; |
| 1629 | } |
| 1630 | |
| 1631 | add_flags = le32_to_cpu(ctrl_ctx->add_flags); |
| 1632 | |
| 1633 | /* Input ctx add_flags are the endpoint index plus one */ |
| 1634 | ep_index = xhci_last_valid_endpoint(add_flags) - 1; |
| 1635 | |
| 1636 | ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); |
| 1637 | trace_xhci_handle_cmd_config_ep(ep_ctx); |
| 1638 | |
| 1639 | return; |
| 1640 | } |
| 1641 | |
| 1642 | static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) |
| 1643 | { |
| 1644 | struct xhci_virt_device *vdev; |
| 1645 | struct xhci_slot_ctx *slot_ctx; |
| 1646 | |
| 1647 | vdev = xhci->devs[slot_id]; |
| 1648 | if (!vdev) |
| 1649 | return; |
| 1650 | slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); |
| 1651 | trace_xhci_handle_cmd_addr_dev(slot_ctx); |
| 1652 | } |
| 1653 | |
| 1654 | static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id) |
| 1655 | { |
| 1656 | struct xhci_virt_device *vdev; |
| 1657 | struct xhci_slot_ctx *slot_ctx; |
| 1658 | |
| 1659 | vdev = xhci->devs[slot_id]; |
| 1660 | if (!vdev) { |
| 1661 | xhci_warn(xhci, "Reset device command completion for disabled slot %u\n", |
| 1662 | slot_id); |
| 1663 | return; |
| 1664 | } |
| 1665 | slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); |
| 1666 | trace_xhci_handle_cmd_reset_dev(slot_ctx); |
| 1667 | |
| 1668 | xhci_dbg(xhci, "Completed reset device command.\n"); |
| 1669 | } |
| 1670 | |
| 1671 | static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, |
| 1672 | struct xhci_event_cmd *event) |
| 1673 | { |
| 1674 | if (!(xhci->quirks & XHCI_NEC_HOST)) { |
| 1675 | xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); |
| 1676 | return; |
| 1677 | } |
| 1678 | xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, |
| 1679 | "NEC firmware version %2x.%02x", |
| 1680 | NEC_FW_MAJOR(le32_to_cpu(event->status)), |
| 1681 | NEC_FW_MINOR(le32_to_cpu(event->status))); |
| 1682 | } |
| 1683 | |
| 1684 | static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 comp_code, u32 comp_param) |
| 1685 | { |
| 1686 | list_del(&cmd->cmd_list); |
| 1687 | |
| 1688 | if (cmd->completion) { |
| 1689 | cmd->status = comp_code; |
| 1690 | cmd->comp_param = comp_param; |
| 1691 | complete(cmd->completion); |
| 1692 | } else { |
| 1693 | kfree(cmd); |
| 1694 | } |
| 1695 | } |
| 1696 | |
| 1697 | void xhci_cleanup_command_queue(struct xhci_hcd *xhci) |
| 1698 | { |
| 1699 | struct xhci_command *cur_cmd, *tmp_cmd; |
| 1700 | xhci->current_cmd = NULL; |
| 1701 | list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) |
| 1702 | xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED, 0); |
| 1703 | } |
| 1704 | |
| 1705 | void xhci_handle_command_timeout(struct work_struct *work) |
| 1706 | { |
| 1707 | struct xhci_hcd *xhci; |
| 1708 | unsigned long flags; |
| 1709 | char str[XHCI_MSG_MAX]; |
| 1710 | u64 hw_ring_state; |
| 1711 | u32 cmd_field3; |
| 1712 | u32 usbsts; |
| 1713 | |
| 1714 | xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); |
| 1715 | |
| 1716 | spin_lock_irqsave(&xhci->lock, flags); |
| 1717 | |
| 1718 | /* |
| 1719 | * If timeout work is pending, or current_cmd is NULL, it means we |
| 1720 | * raced with command completion. Command is handled so just return. |
| 1721 | */ |
| 1722 | if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { |
| 1723 | spin_unlock_irqrestore(&xhci->lock, flags); |
| 1724 | return; |
| 1725 | } |
| 1726 | |
| 1727 | cmd_field3 = le32_to_cpu(xhci->current_cmd->command_trb->generic.field[3]); |
| 1728 | usbsts = readl(&xhci->op_regs->status); |
| 1729 | xhci_dbg(xhci, "Command timeout, USBSTS:%s\n", xhci_decode_usbsts(str, usbsts)); |
| 1730 | |
| 1731 | /* Bail out and tear down xhci if a stop endpoint command failed */ |
| 1732 | if (TRB_FIELD_TO_TYPE(cmd_field3) == TRB_STOP_RING) { |
| 1733 | struct xhci_virt_ep *ep; |
| 1734 | |
| 1735 | xhci_warn(xhci, "xHCI host not responding to stop endpoint command\n"); |
| 1736 | |
| 1737 | ep = xhci_get_virt_ep(xhci, TRB_TO_SLOT_ID(cmd_field3), |
| 1738 | TRB_TO_EP_INDEX(cmd_field3)); |
| 1739 | if (ep) |
| 1740 | ep->ep_state &= ~EP_STOP_CMD_PENDING; |
| 1741 | |
| 1742 | xhci_halt(xhci); |
| 1743 | xhci_hc_died(xhci); |
| 1744 | goto time_out_completed; |
| 1745 | } |
| 1746 | |
| 1747 | /* mark this command to be cancelled */ |
| 1748 | xhci->current_cmd->status = COMP_COMMAND_ABORTED; |
| 1749 | |
| 1750 | /* Make sure command ring is running before aborting it */ |
| 1751 | hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); |
| 1752 | if (hw_ring_state == ~(u64)0) { |
| 1753 | xhci_hc_died(xhci); |
| 1754 | goto time_out_completed; |
| 1755 | } |
| 1756 | |
| 1757 | if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && |
| 1758 | (hw_ring_state & CMD_RING_RUNNING)) { |
| 1759 | /* Prevent new doorbell, and start command abort */ |
| 1760 | xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; |
| 1761 | xhci_dbg(xhci, "Command timeout\n"); |
| 1762 | xhci_abort_cmd_ring(xhci, flags); |
| 1763 | goto time_out_completed; |
| 1764 | } |
| 1765 | |
| 1766 | /* host removed. Bail out */ |
| 1767 | if (xhci->xhc_state & XHCI_STATE_REMOVING) { |
| 1768 | xhci_dbg(xhci, "host removed, ring start fail?\n"); |
| 1769 | xhci_cleanup_command_queue(xhci); |
| 1770 | |
| 1771 | goto time_out_completed; |
| 1772 | } |
| 1773 | |
| 1774 | /* command timeout on stopped ring, ring can't be aborted */ |
| 1775 | xhci_dbg(xhci, "Command timeout on stopped ring\n"); |
| 1776 | xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); |
| 1777 | |
| 1778 | time_out_completed: |
| 1779 | spin_unlock_irqrestore(&xhci->lock, flags); |
| 1780 | return; |
| 1781 | } |
| 1782 | |
| 1783 | static void handle_cmd_completion(struct xhci_hcd *xhci, |
| 1784 | struct xhci_event_cmd *event) |
| 1785 | { |
| 1786 | unsigned int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); |
| 1787 | u32 status = le32_to_cpu(event->status); |
| 1788 | u64 cmd_dma; |
| 1789 | dma_addr_t cmd_dequeue_dma; |
| 1790 | u32 cmd_comp_code; |
| 1791 | union xhci_trb *cmd_trb; |
| 1792 | struct xhci_command *cmd; |
| 1793 | u32 cmd_type; |
| 1794 | |
| 1795 | if (slot_id >= MAX_HC_SLOTS) { |
| 1796 | xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); |
| 1797 | return; |
| 1798 | } |
| 1799 | |
| 1800 | cmd_dma = le64_to_cpu(event->cmd_trb); |
| 1801 | cmd_trb = xhci->cmd_ring->dequeue; |
| 1802 | |
| 1803 | trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic, cmd_dma); |
| 1804 | |
| 1805 | cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); |
| 1806 | |
| 1807 | /* If CMD ring stopped we own the trbs between enqueue and dequeue */ |
| 1808 | if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { |
| 1809 | complete_all(&xhci->cmd_ring_stop_completion); |
| 1810 | return; |
| 1811 | } |
| 1812 | |
| 1813 | cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, |
| 1814 | cmd_trb); |
| 1815 | /* |
| 1816 | * Check whether the completion event is for our internal kept |
| 1817 | * command. |
| 1818 | */ |
| 1819 | if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { |
| 1820 | xhci_warn(xhci, |
| 1821 | "ERROR mismatched command completion event\n"); |
| 1822 | return; |
| 1823 | } |
| 1824 | |
| 1825 | cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); |
| 1826 | |
| 1827 | cancel_delayed_work(&xhci->cmd_timer); |
| 1828 | |
| 1829 | if (cmd->command_trb != xhci->cmd_ring->dequeue) { |
| 1830 | xhci_err(xhci, |
| 1831 | "Command completion event does not match command\n"); |
| 1832 | return; |
| 1833 | } |
| 1834 | |
| 1835 | /* |
| 1836 | * Host aborted the command ring, check if the current command was |
| 1837 | * supposed to be aborted, otherwise continue normally. |
| 1838 | * The command ring is stopped now, but the xHC will issue a Command |
| 1839 | * Ring Stopped event which will cause us to restart it. |
| 1840 | */ |
| 1841 | if (cmd_comp_code == COMP_COMMAND_ABORTED) { |
| 1842 | xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; |
| 1843 | if (cmd->status == COMP_COMMAND_ABORTED) { |
| 1844 | if (xhci->current_cmd == cmd) |
| 1845 | xhci->current_cmd = NULL; |
| 1846 | goto event_handled; |
| 1847 | } |
| 1848 | } |
| 1849 | |
| 1850 | cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); |
| 1851 | switch (cmd_type) { |
| 1852 | case TRB_ENABLE_SLOT: |
| 1853 | xhci_handle_cmd_enable_slot(slot_id, cmd, cmd_comp_code); |
| 1854 | break; |
| 1855 | case TRB_DISABLE_SLOT: |
| 1856 | xhci_handle_cmd_disable_slot(xhci, slot_id); |
| 1857 | break; |
| 1858 | case TRB_CONFIG_EP: |
| 1859 | if (!cmd->completion) |
| 1860 | xhci_handle_cmd_config_ep(xhci, slot_id); |
| 1861 | break; |
| 1862 | case TRB_EVAL_CONTEXT: |
| 1863 | break; |
| 1864 | case TRB_ADDR_DEV: |
| 1865 | xhci_handle_cmd_addr_dev(xhci, slot_id); |
| 1866 | break; |
| 1867 | case TRB_STOP_RING: |
| 1868 | WARN_ON(slot_id != TRB_TO_SLOT_ID( |
| 1869 | le32_to_cpu(cmd_trb->generic.field[3]))); |
| 1870 | if (!cmd->completion) |
| 1871 | xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, |
| 1872 | cmd_comp_code); |
| 1873 | break; |
| 1874 | case TRB_SET_DEQ: |
| 1875 | WARN_ON(slot_id != TRB_TO_SLOT_ID( |
| 1876 | le32_to_cpu(cmd_trb->generic.field[3]))); |
| 1877 | xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); |
| 1878 | break; |
| 1879 | case TRB_CMD_NOOP: |
| 1880 | /* Is this an aborted command turned to NO-OP? */ |
| 1881 | if (cmd->status == COMP_COMMAND_RING_STOPPED) |
| 1882 | cmd_comp_code = COMP_COMMAND_RING_STOPPED; |
| 1883 | break; |
| 1884 | case TRB_RESET_EP: |
| 1885 | WARN_ON(slot_id != TRB_TO_SLOT_ID( |
| 1886 | le32_to_cpu(cmd_trb->generic.field[3]))); |
| 1887 | xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); |
| 1888 | break; |
| 1889 | case TRB_RESET_DEV: |
| 1890 | /* SLOT_ID field in reset device cmd completion event TRB is 0. |
| 1891 | * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) |
| 1892 | */ |
| 1893 | slot_id = TRB_TO_SLOT_ID( |
| 1894 | le32_to_cpu(cmd_trb->generic.field[3])); |
| 1895 | xhci_handle_cmd_reset_dev(xhci, slot_id); |
| 1896 | break; |
| 1897 | case TRB_NEC_GET_FW: |
| 1898 | xhci_handle_cmd_nec_get_fw(xhci, event); |
| 1899 | break; |
| 1900 | case TRB_GET_BW: |
| 1901 | break; |
| 1902 | default: |
| 1903 | /* Skip over unknown commands on the event ring */ |
| 1904 | xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); |
| 1905 | break; |
| 1906 | } |
| 1907 | |
| 1908 | /* restart timer if this wasn't the last command */ |
| 1909 | if (!list_is_singular(&xhci->cmd_list)) { |
| 1910 | xhci->current_cmd = list_first_entry(&cmd->cmd_list, |
| 1911 | struct xhci_command, cmd_list); |
| 1912 | xhci_mod_cmd_timer(xhci); |
| 1913 | } else if (xhci->current_cmd == cmd) { |
| 1914 | xhci->current_cmd = NULL; |
| 1915 | } |
| 1916 | |
| 1917 | event_handled: |
| 1918 | xhci_complete_del_and_free_cmd(cmd, cmd_comp_code, COMP_PARAM(status)); |
| 1919 | |
| 1920 | inc_deq(xhci, xhci->cmd_ring); |
| 1921 | } |
| 1922 | |
| 1923 | static void handle_vendor_event(struct xhci_hcd *xhci, |
| 1924 | union xhci_trb *event, u32 trb_type) |
| 1925 | { |
| 1926 | xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); |
| 1927 | if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) |
| 1928 | handle_cmd_completion(xhci, &event->event_cmd); |
| 1929 | } |
| 1930 | |
| 1931 | static void handle_device_notification(struct xhci_hcd *xhci, |
| 1932 | union xhci_trb *event) |
| 1933 | { |
| 1934 | u32 slot_id; |
| 1935 | struct usb_device *udev; |
| 1936 | |
| 1937 | slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); |
| 1938 | if (!xhci->devs[slot_id]) { |
| 1939 | xhci_warn(xhci, "Device Notification event for " |
| 1940 | "unused slot %u\n", slot_id); |
| 1941 | return; |
| 1942 | } |
| 1943 | |
| 1944 | xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", |
| 1945 | slot_id); |
| 1946 | udev = xhci->devs[slot_id]->udev; |
| 1947 | if (udev && udev->parent) |
| 1948 | usb_wakeup_notification(udev->parent, udev->portnum); |
| 1949 | } |
| 1950 | |
| 1951 | /* |
| 1952 | * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI |
| 1953 | * Controller. |
| 1954 | * As per ThunderX2errata-129 USB 2 device may come up as USB 1 |
| 1955 | * If a connection to a USB 1 device is followed by another connection |
| 1956 | * to a USB 2 device. |
| 1957 | * |
| 1958 | * Reset the PHY after the USB device is disconnected if device speed |
| 1959 | * is less than HCD_USB3. |
| 1960 | * Retry the reset sequence max of 4 times checking the PLL lock status. |
| 1961 | * |
| 1962 | */ |
| 1963 | static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) |
| 1964 | { |
| 1965 | struct usb_hcd *hcd = xhci_to_hcd(xhci); |
| 1966 | u32 pll_lock_check; |
| 1967 | u32 retry_count = 4; |
| 1968 | |
| 1969 | do { |
| 1970 | /* Assert PHY reset */ |
| 1971 | writel(0x6F, hcd->regs + 0x1048); |
| 1972 | udelay(10); |
| 1973 | /* De-assert the PHY reset */ |
| 1974 | writel(0x7F, hcd->regs + 0x1048); |
| 1975 | udelay(200); |
| 1976 | pll_lock_check = readl(hcd->regs + 0x1070); |
| 1977 | } while (!(pll_lock_check & 0x1) && --retry_count); |
| 1978 | } |
| 1979 | |
| 1980 | static void handle_port_status(struct xhci_hcd *xhci, union xhci_trb *event) |
| 1981 | { |
| 1982 | struct usb_hcd *hcd; |
| 1983 | u32 port_id; |
| 1984 | u32 portsc, cmd_reg; |
| 1985 | int max_ports; |
| 1986 | unsigned int hcd_portnum; |
| 1987 | struct xhci_bus_state *bus_state; |
| 1988 | bool bogus_port_status = false; |
| 1989 | struct xhci_port *port; |
| 1990 | |
| 1991 | /* Port status change events always have a successful completion code */ |
| 1992 | if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) |
| 1993 | xhci_warn(xhci, |
| 1994 | "WARN: xHC returned failed port status event\n"); |
| 1995 | |
| 1996 | port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); |
| 1997 | max_ports = HCS_MAX_PORTS(xhci->hcs_params1); |
| 1998 | |
| 1999 | if ((port_id <= 0) || (port_id > max_ports)) { |
| 2000 | xhci_warn(xhci, "Port change event with invalid port ID %d\n", |
| 2001 | port_id); |
| 2002 | return; |
| 2003 | } |
| 2004 | |
| 2005 | port = &xhci->hw_ports[port_id - 1]; |
| 2006 | if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { |
| 2007 | xhci_warn(xhci, "Port change event, no port for port ID %u\n", |
| 2008 | port_id); |
| 2009 | bogus_port_status = true; |
| 2010 | goto cleanup; |
| 2011 | } |
| 2012 | |
| 2013 | /* We might get interrupts after shared_hcd is removed */ |
| 2014 | if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { |
| 2015 | xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); |
| 2016 | bogus_port_status = true; |
| 2017 | goto cleanup; |
| 2018 | } |
| 2019 | |
| 2020 | hcd = port->rhub->hcd; |
| 2021 | bus_state = &port->rhub->bus_state; |
| 2022 | hcd_portnum = port->hcd_portnum; |
| 2023 | portsc = readl(port->addr); |
| 2024 | |
| 2025 | xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", |
| 2026 | hcd->self.busnum, hcd_portnum + 1, port_id, portsc); |
| 2027 | |
| 2028 | trace_xhci_handle_port_status(port, portsc); |
| 2029 | |
| 2030 | if (hcd->state == HC_STATE_SUSPENDED) { |
| 2031 | xhci_dbg(xhci, "resume root hub\n"); |
| 2032 | usb_hcd_resume_root_hub(hcd); |
| 2033 | } |
| 2034 | |
| 2035 | if (hcd->speed >= HCD_USB3 && |
| 2036 | (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) { |
| 2037 | if (port->slot_id && xhci->devs[port->slot_id]) |
| 2038 | xhci->devs[port->slot_id]->flags |= VDEV_PORT_ERROR; |
| 2039 | } |
| 2040 | |
| 2041 | if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { |
| 2042 | xhci_dbg(xhci, "port resume event for port %d\n", port_id); |
| 2043 | |
| 2044 | cmd_reg = readl(&xhci->op_regs->command); |
| 2045 | if (!(cmd_reg & CMD_RUN)) { |
| 2046 | xhci_warn(xhci, "xHC is not running.\n"); |
| 2047 | goto cleanup; |
| 2048 | } |
| 2049 | |
| 2050 | if (DEV_SUPERSPEED_ANY(portsc)) { |
| 2051 | xhci_dbg(xhci, "remote wake SS port %d\n", port_id); |
| 2052 | /* Set a flag to say the port signaled remote wakeup, |
| 2053 | * so we can tell the difference between the end of |
| 2054 | * device and host initiated resume. |
| 2055 | */ |
| 2056 | bus_state->port_remote_wakeup |= 1 << hcd_portnum; |
| 2057 | xhci_test_and_clear_bit(xhci, port, PORT_PLC); |
| 2058 | usb_hcd_start_port_resume(&hcd->self, hcd_portnum); |
| 2059 | xhci_set_link_state(xhci, port, XDEV_U0); |
| 2060 | /* Need to wait until the next link state change |
| 2061 | * indicates the device is actually in U0. |
| 2062 | */ |
| 2063 | bogus_port_status = true; |
| 2064 | goto cleanup; |
| 2065 | } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { |
| 2066 | xhci_dbg(xhci, "resume HS port %d\n", port_id); |
| 2067 | port->resume_timestamp = jiffies + |
| 2068 | msecs_to_jiffies(USB_RESUME_TIMEOUT); |
| 2069 | set_bit(hcd_portnum, &bus_state->resuming_ports); |
| 2070 | /* Do the rest in GetPortStatus after resume time delay. |
| 2071 | * Avoid polling roothub status before that so that a |
| 2072 | * usb device auto-resume latency around ~40ms. |
| 2073 | */ |
| 2074 | set_bit(HCD_FLAG_POLL_RH, &hcd->flags); |
| 2075 | mod_timer(&hcd->rh_timer, |
| 2076 | port->resume_timestamp); |
| 2077 | usb_hcd_start_port_resume(&hcd->self, hcd_portnum); |
| 2078 | bogus_port_status = true; |
| 2079 | } |
| 2080 | } |
| 2081 | |
| 2082 | if ((portsc & PORT_PLC) && |
| 2083 | DEV_SUPERSPEED_ANY(portsc) && |
| 2084 | ((portsc & PORT_PLS_MASK) == XDEV_U0 || |
| 2085 | (portsc & PORT_PLS_MASK) == XDEV_U1 || |
| 2086 | (portsc & PORT_PLS_MASK) == XDEV_U2)) { |
| 2087 | xhci_dbg(xhci, "resume SS port %d finished\n", port_id); |
| 2088 | complete(&port->u3exit_done); |
| 2089 | /* We've just brought the device into U0/1/2 through either the |
| 2090 | * Resume state after a device remote wakeup, or through the |
| 2091 | * U3Exit state after a host-initiated resume. If it's a device |
| 2092 | * initiated remote wake, don't pass up the link state change, |
| 2093 | * so the roothub behavior is consistent with external |
| 2094 | * USB 3.0 hub behavior. |
| 2095 | */ |
| 2096 | if (port->slot_id && xhci->devs[port->slot_id]) |
| 2097 | xhci_ring_device(xhci, port->slot_id); |
| 2098 | if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { |
| 2099 | xhci_test_and_clear_bit(xhci, port, PORT_PLC); |
| 2100 | usb_wakeup_notification(hcd->self.root_hub, |
| 2101 | hcd_portnum + 1); |
| 2102 | bogus_port_status = true; |
| 2103 | goto cleanup; |
| 2104 | } |
| 2105 | } |
| 2106 | |
| 2107 | /* |
| 2108 | * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or |
| 2109 | * RExit to a disconnect state). If so, let the driver know it's |
| 2110 | * out of the RExit state. |
| 2111 | */ |
| 2112 | if (hcd->speed < HCD_USB3 && port->rexit_active) { |
| 2113 | complete(&port->rexit_done); |
| 2114 | port->rexit_active = false; |
| 2115 | bogus_port_status = true; |
| 2116 | goto cleanup; |
| 2117 | } |
| 2118 | |
| 2119 | if (hcd->speed < HCD_USB3) { |
| 2120 | xhci_test_and_clear_bit(xhci, port, PORT_PLC); |
| 2121 | if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && |
| 2122 | (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) |
| 2123 | xhci_cavium_reset_phy_quirk(xhci); |
| 2124 | } |
| 2125 | |
| 2126 | cleanup: |
| 2127 | |
| 2128 | /* Don't make the USB core poll the roothub if we got a bad port status |
| 2129 | * change event. Besides, at that point we can't tell which roothub |
| 2130 | * (USB 2.0 or USB 3.0) to kick. |
| 2131 | */ |
| 2132 | if (bogus_port_status) |
| 2133 | return; |
| 2134 | |
| 2135 | /* |
| 2136 | * xHCI port-status-change events occur when the "or" of all the |
| 2137 | * status-change bits in the portsc register changes from 0 to 1. |
| 2138 | * New status changes won't cause an event if any other change |
| 2139 | * bits are still set. When an event occurs, switch over to |
| 2140 | * polling to avoid losing status changes. |
| 2141 | */ |
| 2142 | xhci_dbg(xhci, "%s: starting usb%d port polling.\n", |
| 2143 | __func__, hcd->self.busnum); |
| 2144 | set_bit(HCD_FLAG_POLL_RH, &hcd->flags); |
| 2145 | spin_unlock(&xhci->lock); |
| 2146 | /* Pass this up to the core */ |
| 2147 | usb_hcd_poll_rh_status(hcd); |
| 2148 | spin_lock(&xhci->lock); |
| 2149 | } |
| 2150 | |
| 2151 | static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td, |
| 2152 | struct xhci_virt_ep *ep) |
| 2153 | { |
| 2154 | /* |
| 2155 | * As part of low/full-speed endpoint-halt processing |
| 2156 | * we must clear the TT buffer (USB 2.0 specification 11.17.5). |
| 2157 | */ |
| 2158 | if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) && |
| 2159 | (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) && |
| 2160 | !(ep->ep_state & EP_CLEARING_TT)) { |
| 2161 | ep->ep_state |= EP_CLEARING_TT; |
| 2162 | td->urb->ep->hcpriv = td->urb->dev; |
| 2163 | if (usb_hub_clear_tt_buffer(td->urb)) |
| 2164 | ep->ep_state &= ~EP_CLEARING_TT; |
| 2165 | } |
| 2166 | } |
| 2167 | |
| 2168 | /* |
| 2169 | * Check if xhci internal endpoint state has gone to a "halt" state due to an |
| 2170 | * error or stall, including default control pipe protocol stall. |
| 2171 | * The internal halt needs to be cleared with a reset endpoint command. |
| 2172 | * |
| 2173 | * External device side is also halted in functional stall cases. Class driver |
| 2174 | * will clear the device halt with a CLEAR_FEATURE(ENDPOINT_HALT) request later. |
| 2175 | */ |
| 2176 | static bool xhci_halted_host_endpoint(struct xhci_ep_ctx *ep_ctx, unsigned int comp_code) |
| 2177 | { |
| 2178 | /* Stall halts both internal and device side endpoint */ |
| 2179 | if (comp_code == COMP_STALL_ERROR) |
| 2180 | return true; |
| 2181 | |
| 2182 | /* TRB completion codes that may require internal halt cleanup */ |
| 2183 | if (comp_code == COMP_USB_TRANSACTION_ERROR || |
| 2184 | comp_code == COMP_BABBLE_DETECTED_ERROR || |
| 2185 | comp_code == COMP_SPLIT_TRANSACTION_ERROR) |
| 2186 | /* |
| 2187 | * The 0.95 spec says a babbling control endpoint is not halted. |
| 2188 | * The 0.96 spec says it is. Some HW claims to be 0.95 |
| 2189 | * compliant, but it halts the control endpoint anyway. |
| 2190 | * Check endpoint context if endpoint is halted. |
| 2191 | */ |
| 2192 | if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) |
| 2193 | return true; |
| 2194 | |
| 2195 | return false; |
| 2196 | } |
| 2197 | |
| 2198 | int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) |
| 2199 | { |
| 2200 | if (trb_comp_code >= 224 && trb_comp_code <= 255) { |
| 2201 | /* Vendor defined "informational" completion code, |
| 2202 | * treat as not-an-error. |
| 2203 | */ |
| 2204 | xhci_dbg(xhci, "Vendor defined info completion code %u\n", |
| 2205 | trb_comp_code); |
| 2206 | xhci_dbg(xhci, "Treating code as success.\n"); |
| 2207 | return 1; |
| 2208 | } |
| 2209 | return 0; |
| 2210 | } |
| 2211 | |
| 2212 | static void finish_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, |
| 2213 | struct xhci_ring *ep_ring, struct xhci_td *td, |
| 2214 | u32 trb_comp_code) |
| 2215 | { |
| 2216 | struct xhci_ep_ctx *ep_ctx; |
| 2217 | |
| 2218 | ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); |
| 2219 | |
| 2220 | switch (trb_comp_code) { |
| 2221 | case COMP_STOPPED_LENGTH_INVALID: |
| 2222 | case COMP_STOPPED_SHORT_PACKET: |
| 2223 | case COMP_STOPPED: |
| 2224 | /* |
| 2225 | * The "Stop Endpoint" completion will take care of any |
| 2226 | * stopped TDs. A stopped TD may be restarted, so don't update |
| 2227 | * the ring dequeue pointer or take this TD off any lists yet. |
| 2228 | */ |
| 2229 | return; |
| 2230 | case COMP_USB_TRANSACTION_ERROR: |
| 2231 | case COMP_BABBLE_DETECTED_ERROR: |
| 2232 | case COMP_SPLIT_TRANSACTION_ERROR: |
| 2233 | /* |
| 2234 | * If endpoint context state is not halted we might be |
| 2235 | * racing with a reset endpoint command issued by a unsuccessful |
| 2236 | * stop endpoint completion (context error). In that case the |
| 2237 | * td should be on the cancelled list, and EP_HALTED flag set. |
| 2238 | * |
| 2239 | * Or then it's not halted due to the 0.95 spec stating that a |
| 2240 | * babbling control endpoint should not halt. The 0.96 spec |
| 2241 | * again says it should. Some HW claims to be 0.95 compliant, |
| 2242 | * but it halts the control endpoint anyway. |
| 2243 | */ |
| 2244 | if (GET_EP_CTX_STATE(ep_ctx) != EP_STATE_HALTED) { |
| 2245 | /* |
| 2246 | * If EP_HALTED is set and TD is on the cancelled list |
| 2247 | * the TD and dequeue pointer will be handled by reset |
| 2248 | * ep command completion |
| 2249 | */ |
| 2250 | if ((ep->ep_state & EP_HALTED) && |
| 2251 | !list_empty(&td->cancelled_td_list)) { |
| 2252 | xhci_dbg(xhci, "Already resolving halted ep for 0x%llx\n", |
| 2253 | (unsigned long long)xhci_trb_virt_to_dma( |
| 2254 | td->start_seg, td->start_trb)); |
| 2255 | return; |
| 2256 | } |
| 2257 | /* endpoint not halted, don't reset it */ |
| 2258 | break; |
| 2259 | } |
| 2260 | /* Almost same procedure as for STALL_ERROR below */ |
| 2261 | xhci_clear_hub_tt_buffer(xhci, td, ep); |
| 2262 | xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); |
| 2263 | return; |
| 2264 | case COMP_STALL_ERROR: |
| 2265 | /* |
| 2266 | * xhci internal endpoint state will go to a "halt" state for |
| 2267 | * any stall, including default control pipe protocol stall. |
| 2268 | * To clear the host side halt we need to issue a reset endpoint |
| 2269 | * command, followed by a set dequeue command to move past the |
| 2270 | * TD. |
| 2271 | * Class drivers clear the device side halt from a functional |
| 2272 | * stall later. Hub TT buffer should only be cleared for FS/LS |
| 2273 | * devices behind HS hubs for functional stalls. |
| 2274 | */ |
| 2275 | if (ep->ep_index != 0) |
| 2276 | xhci_clear_hub_tt_buffer(xhci, td, ep); |
| 2277 | |
| 2278 | xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); |
| 2279 | |
| 2280 | return; /* xhci_handle_halted_endpoint marked td cancelled */ |
| 2281 | default: |
| 2282 | break; |
| 2283 | } |
| 2284 | |
| 2285 | xhci_dequeue_td(xhci, td, ep_ring, td->status); |
| 2286 | } |
| 2287 | |
| 2288 | /* sum trb lengths from the first trb up to stop_trb, _excluding_ stop_trb */ |
| 2289 | static u32 sum_trb_lengths(struct xhci_td *td, union xhci_trb *stop_trb) |
| 2290 | { |
| 2291 | u32 sum; |
| 2292 | union xhci_trb *trb = td->start_trb; |
| 2293 | struct xhci_segment *seg = td->start_seg; |
| 2294 | |
| 2295 | for (sum = 0; trb != stop_trb; next_trb(&seg, &trb)) { |
| 2296 | if (!trb_is_noop(trb) && !trb_is_link(trb)) |
| 2297 | sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); |
| 2298 | } |
| 2299 | return sum; |
| 2300 | } |
| 2301 | |
| 2302 | /* |
| 2303 | * Process control tds, update urb status and actual_length. |
| 2304 | */ |
| 2305 | static void process_ctrl_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, |
| 2306 | struct xhci_ring *ep_ring, struct xhci_td *td, |
| 2307 | union xhci_trb *ep_trb, struct xhci_transfer_event *event) |
| 2308 | { |
| 2309 | struct xhci_ep_ctx *ep_ctx; |
| 2310 | u32 trb_comp_code; |
| 2311 | u32 remaining, requested; |
| 2312 | u32 trb_type; |
| 2313 | |
| 2314 | trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); |
| 2315 | ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); |
| 2316 | trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); |
| 2317 | requested = td->urb->transfer_buffer_length; |
| 2318 | remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); |
| 2319 | |
| 2320 | switch (trb_comp_code) { |
| 2321 | case COMP_SUCCESS: |
| 2322 | if (trb_type != TRB_STATUS) { |
| 2323 | xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", |
| 2324 | (trb_type == TRB_DATA) ? "data" : "setup"); |
| 2325 | td->status = -ESHUTDOWN; |
| 2326 | break; |
| 2327 | } |
| 2328 | td->status = 0; |
| 2329 | break; |
| 2330 | case COMP_SHORT_PACKET: |
| 2331 | td->status = 0; |
| 2332 | break; |
| 2333 | case COMP_STOPPED_SHORT_PACKET: |
| 2334 | if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) |
| 2335 | td->urb->actual_length = remaining; |
| 2336 | else |
| 2337 | xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); |
| 2338 | goto finish_td; |
| 2339 | case COMP_STOPPED: |
| 2340 | switch (trb_type) { |
| 2341 | case TRB_SETUP: |
| 2342 | td->urb->actual_length = 0; |
| 2343 | goto finish_td; |
| 2344 | case TRB_DATA: |
| 2345 | case TRB_NORMAL: |
| 2346 | td->urb->actual_length = requested - remaining; |
| 2347 | goto finish_td; |
| 2348 | case TRB_STATUS: |
| 2349 | td->urb->actual_length = requested; |
| 2350 | goto finish_td; |
| 2351 | default: |
| 2352 | xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", |
| 2353 | trb_type); |
| 2354 | goto finish_td; |
| 2355 | } |
| 2356 | case COMP_STOPPED_LENGTH_INVALID: |
| 2357 | goto finish_td; |
| 2358 | default: |
| 2359 | if (!xhci_halted_host_endpoint(ep_ctx, trb_comp_code)) |
| 2360 | break; |
| 2361 | xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", |
| 2362 | trb_comp_code, ep->ep_index); |
| 2363 | fallthrough; |
| 2364 | case COMP_STALL_ERROR: |
| 2365 | /* Did we transfer part of the data (middle) phase? */ |
| 2366 | if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) |
| 2367 | td->urb->actual_length = requested - remaining; |
| 2368 | else if (!td->urb_length_set) |
| 2369 | td->urb->actual_length = 0; |
| 2370 | goto finish_td; |
| 2371 | } |
| 2372 | |
| 2373 | /* stopped at setup stage, no data transferred */ |
| 2374 | if (trb_type == TRB_SETUP) |
| 2375 | goto finish_td; |
| 2376 | |
| 2377 | /* |
| 2378 | * if on data stage then update the actual_length of the URB and flag it |
| 2379 | * as set, so it won't be overwritten in the event for the last TRB. |
| 2380 | */ |
| 2381 | if (trb_type == TRB_DATA || |
| 2382 | trb_type == TRB_NORMAL) { |
| 2383 | td->urb_length_set = true; |
| 2384 | td->urb->actual_length = requested - remaining; |
| 2385 | xhci_dbg(xhci, "Waiting for status stage event\n"); |
| 2386 | return; |
| 2387 | } |
| 2388 | |
| 2389 | /* at status stage */ |
| 2390 | if (!td->urb_length_set) |
| 2391 | td->urb->actual_length = requested; |
| 2392 | |
| 2393 | finish_td: |
| 2394 | finish_td(xhci, ep, ep_ring, td, trb_comp_code); |
| 2395 | } |
| 2396 | |
| 2397 | /* |
| 2398 | * Process isochronous tds, update urb packet status and actual_length. |
| 2399 | */ |
| 2400 | static void process_isoc_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, |
| 2401 | struct xhci_ring *ep_ring, struct xhci_td *td, |
| 2402 | union xhci_trb *ep_trb, struct xhci_transfer_event *event) |
| 2403 | { |
| 2404 | struct urb_priv *urb_priv; |
| 2405 | int idx; |
| 2406 | struct usb_iso_packet_descriptor *frame; |
| 2407 | u32 trb_comp_code; |
| 2408 | bool sum_trbs_for_length = false; |
| 2409 | u32 remaining, requested, ep_trb_len; |
| 2410 | int short_framestatus; |
| 2411 | |
| 2412 | trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); |
| 2413 | urb_priv = td->urb->hcpriv; |
| 2414 | idx = urb_priv->num_tds_done; |
| 2415 | frame = &td->urb->iso_frame_desc[idx]; |
| 2416 | requested = frame->length; |
| 2417 | remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); |
| 2418 | ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); |
| 2419 | short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? |
| 2420 | -EREMOTEIO : 0; |
| 2421 | |
| 2422 | /* handle completion code */ |
| 2423 | switch (trb_comp_code) { |
| 2424 | case COMP_SUCCESS: |
| 2425 | /* Don't overwrite status if TD had an error, see xHCI 4.9.1 */ |
| 2426 | if (td->error_mid_td) |
| 2427 | break; |
| 2428 | if (remaining) { |
| 2429 | frame->status = short_framestatus; |
| 2430 | sum_trbs_for_length = true; |
| 2431 | break; |
| 2432 | } |
| 2433 | frame->status = 0; |
| 2434 | break; |
| 2435 | case COMP_SHORT_PACKET: |
| 2436 | frame->status = short_framestatus; |
| 2437 | sum_trbs_for_length = true; |
| 2438 | break; |
| 2439 | case COMP_BANDWIDTH_OVERRUN_ERROR: |
| 2440 | frame->status = -ECOMM; |
| 2441 | break; |
| 2442 | case COMP_BABBLE_DETECTED_ERROR: |
| 2443 | sum_trbs_for_length = true; |
| 2444 | fallthrough; |
| 2445 | case COMP_ISOCH_BUFFER_OVERRUN: |
| 2446 | frame->status = -EOVERFLOW; |
| 2447 | if (ep_trb != td->end_trb) |
| 2448 | td->error_mid_td = true; |
| 2449 | break; |
| 2450 | case COMP_MISSED_SERVICE_ERROR: |
| 2451 | frame->status = -EXDEV; |
| 2452 | sum_trbs_for_length = true; |
| 2453 | if (ep_trb != td->end_trb) |
| 2454 | td->error_mid_td = true; |
| 2455 | break; |
| 2456 | case COMP_INCOMPATIBLE_DEVICE_ERROR: |
| 2457 | case COMP_STALL_ERROR: |
| 2458 | frame->status = -EPROTO; |
| 2459 | break; |
| 2460 | case COMP_USB_TRANSACTION_ERROR: |
| 2461 | frame->status = -EPROTO; |
| 2462 | sum_trbs_for_length = true; |
| 2463 | if (ep_trb != td->end_trb) |
| 2464 | td->error_mid_td = true; |
| 2465 | break; |
| 2466 | case COMP_STOPPED: |
| 2467 | sum_trbs_for_length = true; |
| 2468 | break; |
| 2469 | case COMP_STOPPED_SHORT_PACKET: |
| 2470 | /* field normally containing residue now contains transferred */ |
| 2471 | frame->status = short_framestatus; |
| 2472 | requested = remaining; |
| 2473 | break; |
| 2474 | case COMP_STOPPED_LENGTH_INVALID: |
| 2475 | /* exclude stopped trb with invalid length from length sum */ |
| 2476 | sum_trbs_for_length = true; |
| 2477 | ep_trb_len = 0; |
| 2478 | remaining = 0; |
| 2479 | break; |
| 2480 | default: |
| 2481 | sum_trbs_for_length = true; |
| 2482 | frame->status = -1; |
| 2483 | break; |
| 2484 | } |
| 2485 | |
| 2486 | if (td->urb_length_set) |
| 2487 | goto finish_td; |
| 2488 | |
| 2489 | if (sum_trbs_for_length) |
| 2490 | frame->actual_length = sum_trb_lengths(td, ep_trb) + |
| 2491 | ep_trb_len - remaining; |
| 2492 | else |
| 2493 | frame->actual_length = requested; |
| 2494 | |
| 2495 | td->urb->actual_length += frame->actual_length; |
| 2496 | |
| 2497 | finish_td: |
| 2498 | /* Don't give back TD yet if we encountered an error mid TD */ |
| 2499 | if (td->error_mid_td && ep_trb != td->end_trb) { |
| 2500 | xhci_dbg(xhci, "Error mid isoc TD, wait for final completion event\n"); |
| 2501 | td->urb_length_set = true; |
| 2502 | return; |
| 2503 | } |
| 2504 | finish_td(xhci, ep, ep_ring, td, trb_comp_code); |
| 2505 | } |
| 2506 | |
| 2507 | static void skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, |
| 2508 | struct xhci_virt_ep *ep, int status) |
| 2509 | { |
| 2510 | struct urb_priv *urb_priv; |
| 2511 | struct usb_iso_packet_descriptor *frame; |
| 2512 | int idx; |
| 2513 | |
| 2514 | urb_priv = td->urb->hcpriv; |
| 2515 | idx = urb_priv->num_tds_done; |
| 2516 | frame = &td->urb->iso_frame_desc[idx]; |
| 2517 | |
| 2518 | /* The transfer is partly done. */ |
| 2519 | frame->status = -EXDEV; |
| 2520 | |
| 2521 | /* calc actual length */ |
| 2522 | frame->actual_length = 0; |
| 2523 | |
| 2524 | xhci_dequeue_td(xhci, td, ep->ring, status); |
| 2525 | } |
| 2526 | |
| 2527 | /* |
| 2528 | * Process bulk and interrupt tds, update urb status and actual_length. |
| 2529 | */ |
| 2530 | static void process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, |
| 2531 | struct xhci_ring *ep_ring, struct xhci_td *td, |
| 2532 | union xhci_trb *ep_trb, struct xhci_transfer_event *event) |
| 2533 | { |
| 2534 | struct xhci_slot_ctx *slot_ctx; |
| 2535 | u32 trb_comp_code; |
| 2536 | u32 remaining, requested, ep_trb_len; |
| 2537 | |
| 2538 | slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); |
| 2539 | trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); |
| 2540 | remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); |
| 2541 | ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); |
| 2542 | requested = td->urb->transfer_buffer_length; |
| 2543 | |
| 2544 | switch (trb_comp_code) { |
| 2545 | case COMP_SUCCESS: |
| 2546 | ep->err_count = 0; |
| 2547 | /* handle success with untransferred data as short packet */ |
| 2548 | if (ep_trb != td->end_trb || remaining) { |
| 2549 | xhci_warn(xhci, "WARN Successful completion on short TX\n"); |
| 2550 | xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", |
| 2551 | td->urb->ep->desc.bEndpointAddress, |
| 2552 | requested, remaining); |
| 2553 | } |
| 2554 | td->status = 0; |
| 2555 | break; |
| 2556 | case COMP_SHORT_PACKET: |
| 2557 | td->status = 0; |
| 2558 | break; |
| 2559 | case COMP_STOPPED_SHORT_PACKET: |
| 2560 | td->urb->actual_length = remaining; |
| 2561 | goto finish_td; |
| 2562 | case COMP_STOPPED_LENGTH_INVALID: |
| 2563 | /* stopped on ep trb with invalid length, exclude it */ |
| 2564 | td->urb->actual_length = sum_trb_lengths(td, ep_trb); |
| 2565 | goto finish_td; |
| 2566 | case COMP_USB_TRANSACTION_ERROR: |
| 2567 | if (xhci->quirks & XHCI_NO_SOFT_RETRY || |
| 2568 | (ep->err_count++ > MAX_SOFT_RETRY) || |
| 2569 | le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) |
| 2570 | break; |
| 2571 | |
| 2572 | td->status = 0; |
| 2573 | |
| 2574 | xhci_handle_halted_endpoint(xhci, ep, td, EP_SOFT_RESET); |
| 2575 | return; |
| 2576 | default: |
| 2577 | /* do nothing */ |
| 2578 | break; |
| 2579 | } |
| 2580 | |
| 2581 | if (ep_trb == td->end_trb) |
| 2582 | td->urb->actual_length = requested - remaining; |
| 2583 | else |
| 2584 | td->urb->actual_length = |
| 2585 | sum_trb_lengths(td, ep_trb) + |
| 2586 | ep_trb_len - remaining; |
| 2587 | finish_td: |
| 2588 | if (remaining > requested) { |
| 2589 | xhci_warn(xhci, "bad transfer trb length %d in event trb\n", |
| 2590 | remaining); |
| 2591 | td->urb->actual_length = 0; |
| 2592 | } |
| 2593 | |
| 2594 | finish_td(xhci, ep, ep_ring, td, trb_comp_code); |
| 2595 | } |
| 2596 | |
| 2597 | /* Transfer events which don't point to a transfer TRB, see xhci 4.17.4 */ |
| 2598 | static int handle_transferless_tx_event(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, |
| 2599 | u32 trb_comp_code) |
| 2600 | { |
| 2601 | switch (trb_comp_code) { |
| 2602 | case COMP_STALL_ERROR: |
| 2603 | case COMP_USB_TRANSACTION_ERROR: |
| 2604 | case COMP_INVALID_STREAM_TYPE_ERROR: |
| 2605 | case COMP_INVALID_STREAM_ID_ERROR: |
| 2606 | xhci_dbg(xhci, "Stream transaction error ep %u no id\n", ep->ep_index); |
| 2607 | if (ep->err_count++ > MAX_SOFT_RETRY) |
| 2608 | xhci_handle_halted_endpoint(xhci, ep, NULL, EP_HARD_RESET); |
| 2609 | else |
| 2610 | xhci_handle_halted_endpoint(xhci, ep, NULL, EP_SOFT_RESET); |
| 2611 | break; |
| 2612 | case COMP_RING_UNDERRUN: |
| 2613 | case COMP_RING_OVERRUN: |
| 2614 | case COMP_STOPPED_LENGTH_INVALID: |
| 2615 | break; |
| 2616 | default: |
| 2617 | xhci_err(xhci, "Transfer event %u for unknown stream ring slot %u ep %u\n", |
| 2618 | trb_comp_code, ep->vdev->slot_id, ep->ep_index); |
| 2619 | return -ENODEV; |
| 2620 | } |
| 2621 | return 0; |
| 2622 | } |
| 2623 | |
| 2624 | static bool xhci_spurious_success_tx_event(struct xhci_hcd *xhci, |
| 2625 | struct xhci_ring *ring) |
| 2626 | { |
| 2627 | switch (ring->old_trb_comp_code) { |
| 2628 | case COMP_SHORT_PACKET: |
| 2629 | return xhci->quirks & XHCI_SPURIOUS_SUCCESS; |
| 2630 | case COMP_USB_TRANSACTION_ERROR: |
| 2631 | case COMP_BABBLE_DETECTED_ERROR: |
| 2632 | case COMP_ISOCH_BUFFER_OVERRUN: |
| 2633 | return xhci->quirks & XHCI_ETRON_HOST && |
| 2634 | ring->type == TYPE_ISOC; |
| 2635 | default: |
| 2636 | return false; |
| 2637 | } |
| 2638 | } |
| 2639 | |
| 2640 | /* |
| 2641 | * If this function returns an error condition, it means it got a Transfer |
| 2642 | * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. |
| 2643 | * At this point, the host controller is probably hosed and should be reset. |
| 2644 | */ |
| 2645 | static int handle_tx_event(struct xhci_hcd *xhci, |
| 2646 | struct xhci_interrupter *ir, |
| 2647 | struct xhci_transfer_event *event) |
| 2648 | { |
| 2649 | struct xhci_virt_ep *ep; |
| 2650 | struct xhci_ring *ep_ring; |
| 2651 | unsigned int slot_id; |
| 2652 | int ep_index; |
| 2653 | struct xhci_td *td = NULL; |
| 2654 | dma_addr_t ep_trb_dma; |
| 2655 | struct xhci_segment *ep_seg; |
| 2656 | union xhci_trb *ep_trb; |
| 2657 | int status = -EINPROGRESS; |
| 2658 | struct xhci_ep_ctx *ep_ctx; |
| 2659 | u32 trb_comp_code; |
| 2660 | bool ring_xrun_event = false; |
| 2661 | |
| 2662 | slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); |
| 2663 | ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; |
| 2664 | trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); |
| 2665 | ep_trb_dma = le64_to_cpu(event->buffer); |
| 2666 | |
| 2667 | ep = xhci_get_virt_ep(xhci, slot_id, ep_index); |
| 2668 | if (!ep) { |
| 2669 | xhci_err(xhci, "ERROR Invalid Transfer event\n"); |
| 2670 | goto err_out; |
| 2671 | } |
| 2672 | |
| 2673 | ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); |
| 2674 | ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); |
| 2675 | |
| 2676 | if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { |
| 2677 | xhci_err(xhci, |
| 2678 | "ERROR Transfer event for disabled endpoint slot %u ep %u\n", |
| 2679 | slot_id, ep_index); |
| 2680 | goto err_out; |
| 2681 | } |
| 2682 | |
| 2683 | if (!ep_ring) |
| 2684 | return handle_transferless_tx_event(xhci, ep, trb_comp_code); |
| 2685 | |
| 2686 | /* Look for common error cases */ |
| 2687 | switch (trb_comp_code) { |
| 2688 | /* Skip codes that require special handling depending on |
| 2689 | * transfer type |
| 2690 | */ |
| 2691 | case COMP_SUCCESS: |
| 2692 | if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { |
| 2693 | trb_comp_code = COMP_SHORT_PACKET; |
| 2694 | xhci_dbg(xhci, "Successful completion on short TX for slot %u ep %u with last td comp code %d\n", |
| 2695 | slot_id, ep_index, ep_ring->old_trb_comp_code); |
| 2696 | } |
| 2697 | break; |
| 2698 | case COMP_SHORT_PACKET: |
| 2699 | break; |
| 2700 | /* Completion codes for endpoint stopped state */ |
| 2701 | case COMP_STOPPED: |
| 2702 | xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", |
| 2703 | slot_id, ep_index); |
| 2704 | break; |
| 2705 | case COMP_STOPPED_LENGTH_INVALID: |
| 2706 | xhci_dbg(xhci, |
| 2707 | "Stopped on No-op or Link TRB for slot %u ep %u\n", |
| 2708 | slot_id, ep_index); |
| 2709 | break; |
| 2710 | case COMP_STOPPED_SHORT_PACKET: |
| 2711 | xhci_dbg(xhci, |
| 2712 | "Stopped with short packet transfer detected for slot %u ep %u\n", |
| 2713 | slot_id, ep_index); |
| 2714 | break; |
| 2715 | /* Completion codes for endpoint halted state */ |
| 2716 | case COMP_STALL_ERROR: |
| 2717 | xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, |
| 2718 | ep_index); |
| 2719 | status = -EPIPE; |
| 2720 | break; |
| 2721 | case COMP_SPLIT_TRANSACTION_ERROR: |
| 2722 | xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n", |
| 2723 | slot_id, ep_index); |
| 2724 | status = -EPROTO; |
| 2725 | break; |
| 2726 | case COMP_USB_TRANSACTION_ERROR: |
| 2727 | xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", |
| 2728 | slot_id, ep_index); |
| 2729 | status = -EPROTO; |
| 2730 | break; |
| 2731 | case COMP_BABBLE_DETECTED_ERROR: |
| 2732 | xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", |
| 2733 | slot_id, ep_index); |
| 2734 | status = -EOVERFLOW; |
| 2735 | break; |
| 2736 | /* Completion codes for endpoint error state */ |
| 2737 | case COMP_TRB_ERROR: |
| 2738 | xhci_warn(xhci, |
| 2739 | "WARN: TRB error for slot %u ep %u on endpoint\n", |
| 2740 | slot_id, ep_index); |
| 2741 | status = -EILSEQ; |
| 2742 | break; |
| 2743 | /* completion codes not indicating endpoint state change */ |
| 2744 | case COMP_DATA_BUFFER_ERROR: |
| 2745 | xhci_warn(xhci, |
| 2746 | "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", |
| 2747 | slot_id, ep_index); |
| 2748 | status = -ENOSR; |
| 2749 | break; |
| 2750 | case COMP_BANDWIDTH_OVERRUN_ERROR: |
| 2751 | xhci_warn(xhci, |
| 2752 | "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", |
| 2753 | slot_id, ep_index); |
| 2754 | break; |
| 2755 | case COMP_ISOCH_BUFFER_OVERRUN: |
| 2756 | xhci_warn(xhci, |
| 2757 | "WARN: buffer overrun event for slot %u ep %u on endpoint", |
| 2758 | slot_id, ep_index); |
| 2759 | break; |
| 2760 | case COMP_RING_UNDERRUN: |
| 2761 | /* |
| 2762 | * When the Isoch ring is empty, the xHC will generate |
| 2763 | * a Ring Overrun Event for IN Isoch endpoint or Ring |
| 2764 | * Underrun Event for OUT Isoch endpoint. |
| 2765 | */ |
| 2766 | xhci_dbg(xhci, "Underrun event on slot %u ep %u\n", slot_id, ep_index); |
| 2767 | ring_xrun_event = true; |
| 2768 | break; |
| 2769 | case COMP_RING_OVERRUN: |
| 2770 | xhci_dbg(xhci, "Overrun event on slot %u ep %u\n", slot_id, ep_index); |
| 2771 | ring_xrun_event = true; |
| 2772 | break; |
| 2773 | case COMP_MISSED_SERVICE_ERROR: |
| 2774 | /* |
| 2775 | * When encounter missed service error, one or more isoc tds |
| 2776 | * may be missed by xHC. |
| 2777 | * Set skip flag of the ep_ring; Complete the missed tds as |
| 2778 | * short transfer when process the ep_ring next time. |
| 2779 | */ |
| 2780 | ep->skip = true; |
| 2781 | xhci_dbg(xhci, |
| 2782 | "Miss service interval error for slot %u ep %u, set skip flag%s\n", |
| 2783 | slot_id, ep_index, ep_trb_dma ? ", skip now" : ""); |
| 2784 | break; |
| 2785 | case COMP_NO_PING_RESPONSE_ERROR: |
| 2786 | ep->skip = true; |
| 2787 | xhci_dbg(xhci, |
| 2788 | "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", |
| 2789 | slot_id, ep_index); |
| 2790 | return 0; |
| 2791 | |
| 2792 | case COMP_INCOMPATIBLE_DEVICE_ERROR: |
| 2793 | /* needs disable slot command to recover */ |
| 2794 | xhci_warn(xhci, |
| 2795 | "WARN: detect an incompatible device for slot %u ep %u", |
| 2796 | slot_id, ep_index); |
| 2797 | status = -EPROTO; |
| 2798 | break; |
| 2799 | default: |
| 2800 | if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { |
| 2801 | status = 0; |
| 2802 | break; |
| 2803 | } |
| 2804 | xhci_warn(xhci, |
| 2805 | "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", |
| 2806 | trb_comp_code, slot_id, ep_index); |
| 2807 | if (ep->skip) |
| 2808 | break; |
| 2809 | return 0; |
| 2810 | } |
| 2811 | |
| 2812 | /* |
| 2813 | * xhci 4.10.2 states isoc endpoints should continue |
| 2814 | * processing the next TD if there was an error mid TD. |
| 2815 | * So host like NEC don't generate an event for the last |
| 2816 | * isoc TRB even if the IOC flag is set. |
| 2817 | * xhci 4.9.1 states that if there are errors in mult-TRB |
| 2818 | * TDs xHC should generate an error for that TRB, and if xHC |
| 2819 | * proceeds to the next TD it should genete an event for |
| 2820 | * any TRB with IOC flag on the way. Other host follow this. |
| 2821 | * |
| 2822 | * We wait for the final IOC event, but if we get an event |
| 2823 | * anywhere outside this TD, just give it back already. |
| 2824 | */ |
| 2825 | td = list_first_entry_or_null(&ep_ring->td_list, struct xhci_td, td_list); |
| 2826 | |
| 2827 | if (td && td->error_mid_td && !trb_in_td(td, ep_trb_dma)) { |
| 2828 | xhci_dbg(xhci, "Missing TD completion event after mid TD error\n"); |
| 2829 | xhci_dequeue_td(xhci, td, ep_ring, td->status); |
| 2830 | } |
| 2831 | |
| 2832 | /* If the TRB pointer is NULL, missed TDs will be skipped on the next event */ |
| 2833 | if (trb_comp_code == COMP_MISSED_SERVICE_ERROR && !ep_trb_dma) |
| 2834 | return 0; |
| 2835 | |
| 2836 | if (list_empty(&ep_ring->td_list)) { |
| 2837 | /* |
| 2838 | * Don't print wanings if ring is empty due to a stopped endpoint generating an |
| 2839 | * extra completion event if the device was suspended. Or, a event for the last TRB |
| 2840 | * of a short TD we already got a short event for. The short TD is already removed |
| 2841 | * from the TD list. |
| 2842 | */ |
| 2843 | if (trb_comp_code != COMP_STOPPED && |
| 2844 | trb_comp_code != COMP_STOPPED_LENGTH_INVALID && |
| 2845 | !ring_xrun_event && |
| 2846 | !xhci_spurious_success_tx_event(xhci, ep_ring)) { |
| 2847 | xhci_warn(xhci, "Event TRB for slot %u ep %u with no TDs queued\n", |
| 2848 | slot_id, ep_index); |
| 2849 | } |
| 2850 | |
| 2851 | ep->skip = false; |
| 2852 | goto check_endpoint_halted; |
| 2853 | } |
| 2854 | |
| 2855 | do { |
| 2856 | td = list_first_entry(&ep_ring->td_list, struct xhci_td, |
| 2857 | td_list); |
| 2858 | |
| 2859 | /* Is this a TRB in the currently executing TD? */ |
| 2860 | ep_seg = trb_in_td(td, ep_trb_dma); |
| 2861 | |
| 2862 | if (!ep_seg) { |
| 2863 | |
| 2864 | if (ep->skip && usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { |
| 2865 | /* this event is unlikely to match any TD, don't skip them all */ |
| 2866 | if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID) |
| 2867 | return 0; |
| 2868 | |
| 2869 | skip_isoc_td(xhci, td, ep, status); |
| 2870 | |
| 2871 | if (!list_empty(&ep_ring->td_list)) { |
| 2872 | if (ring_xrun_event) { |
| 2873 | /* |
| 2874 | * If we are here, we are on xHCI 1.0 host with no |
| 2875 | * idea how many TDs were missed or where the xrun |
| 2876 | * occurred. New TDs may have been added after the |
| 2877 | * xrun, so skip only one TD to be safe. |
| 2878 | */ |
| 2879 | xhci_dbg(xhci, "Skipped one TD for slot %u ep %u", |
| 2880 | slot_id, ep_index); |
| 2881 | return 0; |
| 2882 | } |
| 2883 | continue; |
| 2884 | } |
| 2885 | |
| 2886 | xhci_dbg(xhci, "All TDs skipped for slot %u ep %u. Clear skip flag.\n", |
| 2887 | slot_id, ep_index); |
| 2888 | ep->skip = false; |
| 2889 | td = NULL; |
| 2890 | goto check_endpoint_halted; |
| 2891 | } |
| 2892 | |
| 2893 | /* TD was queued after xrun, maybe xrun was on a link, don't panic yet */ |
| 2894 | if (ring_xrun_event) |
| 2895 | return 0; |
| 2896 | |
| 2897 | /* |
| 2898 | * Skip the Force Stopped Event. The 'ep_trb' of FSE is not in the current |
| 2899 | * TD pointed by 'ep_ring->dequeue' because that the hardware dequeue |
| 2900 | * pointer still at the previous TRB of the current TD. The previous TRB |
| 2901 | * maybe a Link TD or the last TRB of the previous TD. The command |
| 2902 | * completion handle will take care the rest. |
| 2903 | */ |
| 2904 | if (trb_comp_code == COMP_STOPPED || |
| 2905 | trb_comp_code == COMP_STOPPED_LENGTH_INVALID) { |
| 2906 | return 0; |
| 2907 | } |
| 2908 | |
| 2909 | /* |
| 2910 | * Some hosts give a spurious success event after a short |
| 2911 | * transfer or error on last TRB. Ignore it. |
| 2912 | */ |
| 2913 | if (xhci_spurious_success_tx_event(xhci, ep_ring)) { |
| 2914 | xhci_dbg(xhci, "Spurious event dma %pad, comp_code %u after %u\n", |
| 2915 | &ep_trb_dma, trb_comp_code, ep_ring->old_trb_comp_code); |
| 2916 | ep_ring->old_trb_comp_code = 0; |
| 2917 | return 0; |
| 2918 | } |
| 2919 | |
| 2920 | /* HC is busted, give up! */ |
| 2921 | goto debug_finding_td; |
| 2922 | } |
| 2923 | |
| 2924 | if (ep->skip) { |
| 2925 | xhci_dbg(xhci, |
| 2926 | "Found td. Clear skip flag for slot %u ep %u.\n", |
| 2927 | slot_id, ep_index); |
| 2928 | ep->skip = false; |
| 2929 | } |
| 2930 | |
| 2931 | /* |
| 2932 | * If ep->skip is set, it means there are missed tds on the |
| 2933 | * endpoint ring need to take care of. |
| 2934 | * Process them as short transfer until reach the td pointed by |
| 2935 | * the event. |
| 2936 | */ |
| 2937 | } while (ep->skip); |
| 2938 | |
| 2939 | ep_ring->old_trb_comp_code = trb_comp_code; |
| 2940 | |
| 2941 | /* Get out if a TD was queued at enqueue after the xrun occurred */ |
| 2942 | if (ring_xrun_event) |
| 2943 | return 0; |
| 2944 | |
| 2945 | ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / sizeof(*ep_trb)]; |
| 2946 | trace_xhci_handle_transfer(ep_ring, (struct xhci_generic_trb *) ep_trb, ep_trb_dma); |
| 2947 | |
| 2948 | /* |
| 2949 | * No-op TRB could trigger interrupts in a case where a URB was killed |
| 2950 | * and a STALL_ERROR happens right after the endpoint ring stopped. |
| 2951 | * Reset the halted endpoint. Otherwise, the endpoint remains stalled |
| 2952 | * indefinitely. |
| 2953 | */ |
| 2954 | |
| 2955 | if (trb_is_noop(ep_trb)) |
| 2956 | goto check_endpoint_halted; |
| 2957 | |
| 2958 | td->status = status; |
| 2959 | |
| 2960 | /* update the urb's actual_length and give back to the core */ |
| 2961 | if (usb_endpoint_xfer_control(&td->urb->ep->desc)) |
| 2962 | process_ctrl_td(xhci, ep, ep_ring, td, ep_trb, event); |
| 2963 | else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) |
| 2964 | process_isoc_td(xhci, ep, ep_ring, td, ep_trb, event); |
| 2965 | else |
| 2966 | process_bulk_intr_td(xhci, ep, ep_ring, td, ep_trb, event); |
| 2967 | return 0; |
| 2968 | |
| 2969 | check_endpoint_halted: |
| 2970 | if (xhci_halted_host_endpoint(ep_ctx, trb_comp_code)) |
| 2971 | xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); |
| 2972 | |
| 2973 | return 0; |
| 2974 | |
| 2975 | debug_finding_td: |
| 2976 | xhci_err(xhci, "Event dma %pad for ep %d status %d not part of TD at %016llx - %016llx\n", |
| 2977 | &ep_trb_dma, ep_index, trb_comp_code, |
| 2978 | (unsigned long long)xhci_trb_virt_to_dma(td->start_seg, td->start_trb), |
| 2979 | (unsigned long long)xhci_trb_virt_to_dma(td->end_seg, td->end_trb)); |
| 2980 | |
| 2981 | return -ESHUTDOWN; |
| 2982 | |
| 2983 | err_out: |
| 2984 | xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", |
| 2985 | (unsigned long long) xhci_trb_virt_to_dma( |
| 2986 | ir->event_ring->deq_seg, |
| 2987 | ir->event_ring->dequeue), |
| 2988 | lower_32_bits(le64_to_cpu(event->buffer)), |
| 2989 | upper_32_bits(le64_to_cpu(event->buffer)), |
| 2990 | le32_to_cpu(event->transfer_len), |
| 2991 | le32_to_cpu(event->flags)); |
| 2992 | return -ENODEV; |
| 2993 | } |
| 2994 | |
| 2995 | /* |
| 2996 | * This function handles one OS-owned event on the event ring. It may drop |
| 2997 | * xhci->lock between event processing (e.g. to pass up port status changes). |
| 2998 | */ |
| 2999 | static int xhci_handle_event_trb(struct xhci_hcd *xhci, struct xhci_interrupter *ir, |
| 3000 | union xhci_trb *event) |
| 3001 | { |
| 3002 | u32 trb_type; |
| 3003 | |
| 3004 | trace_xhci_handle_event(ir->event_ring, &event->generic, |
| 3005 | xhci_trb_virt_to_dma(ir->event_ring->deq_seg, |
| 3006 | ir->event_ring->dequeue)); |
| 3007 | |
| 3008 | /* |
| 3009 | * Barrier between reading the TRB_CYCLE (valid) flag before, and any |
| 3010 | * speculative reads of the event's flags/data below. |
| 3011 | */ |
| 3012 | rmb(); |
| 3013 | trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->event_cmd.flags)); |
| 3014 | /* FIXME: Handle more event types. */ |
| 3015 | |
| 3016 | switch (trb_type) { |
| 3017 | case TRB_COMPLETION: |
| 3018 | handle_cmd_completion(xhci, &event->event_cmd); |
| 3019 | break; |
| 3020 | case TRB_PORT_STATUS: |
| 3021 | handle_port_status(xhci, event); |
| 3022 | break; |
| 3023 | case TRB_TRANSFER: |
| 3024 | handle_tx_event(xhci, ir, &event->trans_event); |
| 3025 | break; |
| 3026 | case TRB_DEV_NOTE: |
| 3027 | handle_device_notification(xhci, event); |
| 3028 | break; |
| 3029 | default: |
| 3030 | if (trb_type >= TRB_VENDOR_DEFINED_LOW) |
| 3031 | handle_vendor_event(xhci, event, trb_type); |
| 3032 | else |
| 3033 | xhci_warn(xhci, "ERROR unknown event type %d\n", trb_type); |
| 3034 | } |
| 3035 | /* Any of the above functions may drop and re-acquire the lock, so check |
| 3036 | * to make sure a watchdog timer didn't mark the host as non-responsive. |
| 3037 | */ |
| 3038 | if (xhci->xhc_state & XHCI_STATE_DYING) { |
| 3039 | xhci_dbg(xhci, "xHCI host dying, returning from event handler.\n"); |
| 3040 | return -ENODEV; |
| 3041 | } |
| 3042 | |
| 3043 | return 0; |
| 3044 | } |
| 3045 | |
| 3046 | /* |
| 3047 | * Update Event Ring Dequeue Pointer: |
| 3048 | * - When all events have finished |
| 3049 | * - To avoid "Event Ring Full Error" condition |
| 3050 | */ |
| 3051 | void xhci_update_erst_dequeue(struct xhci_hcd *xhci, |
| 3052 | struct xhci_interrupter *ir, |
| 3053 | bool clear_ehb) |
| 3054 | { |
| 3055 | u64 temp_64; |
| 3056 | dma_addr_t deq; |
| 3057 | |
| 3058 | temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); |
| 3059 | deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg, |
| 3060 | ir->event_ring->dequeue); |
| 3061 | if (deq == 0) |
| 3062 | xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n"); |
| 3063 | /* |
| 3064 | * Per 4.9.4, Software writes to the ERDP register shall always advance |
| 3065 | * the Event Ring Dequeue Pointer value. |
| 3066 | */ |
| 3067 | if ((temp_64 & ERST_PTR_MASK) == (deq & ERST_PTR_MASK) && !clear_ehb) |
| 3068 | return; |
| 3069 | |
| 3070 | /* Update HC event ring dequeue pointer */ |
| 3071 | temp_64 = ir->event_ring->deq_seg->num & ERST_DESI_MASK; |
| 3072 | temp_64 |= deq & ERST_PTR_MASK; |
| 3073 | |
| 3074 | /* Clear the event handler busy flag (RW1C) */ |
| 3075 | if (clear_ehb) |
| 3076 | temp_64 |= ERST_EHB; |
| 3077 | xhci_write_64(xhci, temp_64, &ir->ir_set->erst_dequeue); |
| 3078 | } |
| 3079 | |
| 3080 | /* Clear the interrupt pending bit for a specific interrupter. */ |
| 3081 | static void xhci_clear_interrupt_pending(struct xhci_interrupter *ir) |
| 3082 | { |
| 3083 | if (!ir->ip_autoclear) { |
| 3084 | u32 iman; |
| 3085 | |
| 3086 | iman = readl(&ir->ir_set->iman); |
| 3087 | iman |= IMAN_IP; |
| 3088 | writel(iman, &ir->ir_set->iman); |
| 3089 | |
| 3090 | /* Read operation to guarantee the write has been flushed from posted buffers */ |
| 3091 | readl(&ir->ir_set->iman); |
| 3092 | } |
| 3093 | } |
| 3094 | |
| 3095 | /* |
| 3096 | * Handle all OS-owned events on an interrupter event ring. It may drop |
| 3097 | * and reaquire xhci->lock between event processing. |
| 3098 | */ |
| 3099 | static int xhci_handle_events(struct xhci_hcd *xhci, struct xhci_interrupter *ir, |
| 3100 | bool skip_events) |
| 3101 | { |
| 3102 | int event_loop = 0; |
| 3103 | int err = 0; |
| 3104 | u64 temp; |
| 3105 | |
| 3106 | xhci_clear_interrupt_pending(ir); |
| 3107 | |
| 3108 | /* Event ring hasn't been allocated yet. */ |
| 3109 | if (!ir->event_ring || !ir->event_ring->dequeue) { |
| 3110 | xhci_err(xhci, "ERROR interrupter event ring not ready\n"); |
| 3111 | return -ENOMEM; |
| 3112 | } |
| 3113 | |
| 3114 | if (xhci->xhc_state & XHCI_STATE_DYING || |
| 3115 | xhci->xhc_state & XHCI_STATE_HALTED) { |
| 3116 | xhci_dbg(xhci, "xHCI dying, ignoring interrupt. Shouldn't IRQs be disabled?\n"); |
| 3117 | |
| 3118 | /* Clear the event handler busy flag (RW1C) */ |
| 3119 | temp = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); |
| 3120 | xhci_write_64(xhci, temp | ERST_EHB, &ir->ir_set->erst_dequeue); |
| 3121 | return -ENODEV; |
| 3122 | } |
| 3123 | |
| 3124 | /* Process all OS owned event TRBs on this event ring */ |
| 3125 | while (unhandled_event_trb(ir->event_ring)) { |
| 3126 | if (!skip_events) |
| 3127 | err = xhci_handle_event_trb(xhci, ir, ir->event_ring->dequeue); |
| 3128 | |
| 3129 | /* |
| 3130 | * If half a segment of events have been handled in one go then |
| 3131 | * update ERDP, and force isoc trbs to interrupt more often |
| 3132 | */ |
| 3133 | if (event_loop++ > TRBS_PER_SEGMENT / 2) { |
| 3134 | xhci_update_erst_dequeue(xhci, ir, false); |
| 3135 | |
| 3136 | if (ir->isoc_bei_interval > AVOID_BEI_INTERVAL_MIN) |
| 3137 | ir->isoc_bei_interval = ir->isoc_bei_interval / 2; |
| 3138 | |
| 3139 | event_loop = 0; |
| 3140 | } |
| 3141 | |
| 3142 | /* Update SW event ring dequeue pointer */ |
| 3143 | inc_deq(xhci, ir->event_ring); |
| 3144 | |
| 3145 | if (err) |
| 3146 | break; |
| 3147 | } |
| 3148 | |
| 3149 | xhci_update_erst_dequeue(xhci, ir, true); |
| 3150 | |
| 3151 | return 0; |
| 3152 | } |
| 3153 | |
| 3154 | /* |
| 3155 | * Move the event ring dequeue pointer to skip events kept in the secondary |
| 3156 | * event ring. This is used to ensure that pending events in the ring are |
| 3157 | * acknowledged, so the xHCI HCD can properly enter suspend/resume. The |
| 3158 | * secondary ring is typically maintained by an external component. |
| 3159 | */ |
| 3160 | void xhci_skip_sec_intr_events(struct xhci_hcd *xhci, |
| 3161 | struct xhci_ring *ring, struct xhci_interrupter *ir) |
| 3162 | { |
| 3163 | union xhci_trb *current_trb; |
| 3164 | u64 erdp_reg; |
| 3165 | dma_addr_t deq; |
| 3166 | |
| 3167 | /* disable irq, ack pending interrupt and ack all pending events */ |
| 3168 | xhci_disable_interrupter(xhci, ir); |
| 3169 | |
| 3170 | /* last acked event trb is in erdp reg */ |
| 3171 | erdp_reg = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); |
| 3172 | deq = (dma_addr_t)(erdp_reg & ERST_PTR_MASK); |
| 3173 | if (!deq) { |
| 3174 | xhci_err(xhci, "event ring handling not required\n"); |
| 3175 | return; |
| 3176 | } |
| 3177 | |
| 3178 | current_trb = ir->event_ring->dequeue; |
| 3179 | /* read cycle state of the last acked trb to find out CCS */ |
| 3180 | ring->cycle_state = le32_to_cpu(current_trb->event_cmd.flags) & TRB_CYCLE; |
| 3181 | |
| 3182 | xhci_handle_events(xhci, ir, true); |
| 3183 | } |
| 3184 | |
| 3185 | /* |
| 3186 | * xHCI spec says we can get an interrupt, and if the HC has an error condition, |
| 3187 | * we might get bad data out of the event ring. Section 4.10.2.7 has a list of |
| 3188 | * indicators of an event TRB error, but we check the status *first* to be safe. |
| 3189 | */ |
| 3190 | irqreturn_t xhci_irq(struct usb_hcd *hcd) |
| 3191 | { |
| 3192 | struct xhci_hcd *xhci = hcd_to_xhci(hcd); |
| 3193 | irqreturn_t ret = IRQ_HANDLED; |
| 3194 | u32 status; |
| 3195 | |
| 3196 | spin_lock(&xhci->lock); |
| 3197 | /* Check if the xHC generated the interrupt, or the irq is shared */ |
| 3198 | status = readl(&xhci->op_regs->status); |
| 3199 | if (status == ~(u32)0) { |
| 3200 | xhci_hc_died(xhci); |
| 3201 | goto out; |
| 3202 | } |
| 3203 | |
| 3204 | if (!(status & STS_EINT)) { |
| 3205 | ret = IRQ_NONE; |
| 3206 | goto out; |
| 3207 | } |
| 3208 | |
| 3209 | if (status & STS_HCE) { |
| 3210 | xhci_warn(xhci, "WARNING: Host Controller Error\n"); |
| 3211 | goto out; |
| 3212 | } |
| 3213 | |
| 3214 | if (status & STS_FATAL) { |
| 3215 | xhci_warn(xhci, "WARNING: Host System Error\n"); |
| 3216 | xhci_halt(xhci); |
| 3217 | goto out; |
| 3218 | } |
| 3219 | |
| 3220 | /* |
| 3221 | * Clear the op reg interrupt status first, |
| 3222 | * so we can receive interrupts from other MSI-X interrupters. |
| 3223 | * Write 1 to clear the interrupt status. |
| 3224 | */ |
| 3225 | status |= STS_EINT; |
| 3226 | writel(status, &xhci->op_regs->status); |
| 3227 | |
| 3228 | /* This is the handler of the primary interrupter */ |
| 3229 | xhci_handle_events(xhci, xhci->interrupters[0], false); |
| 3230 | out: |
| 3231 | spin_unlock(&xhci->lock); |
| 3232 | |
| 3233 | return ret; |
| 3234 | } |
| 3235 | |
| 3236 | irqreturn_t xhci_msi_irq(int irq, void *hcd) |
| 3237 | { |
| 3238 | return xhci_irq(hcd); |
| 3239 | } |
| 3240 | EXPORT_SYMBOL_GPL(xhci_msi_irq); |
| 3241 | |
| 3242 | /**** Endpoint Ring Operations ****/ |
| 3243 | |
| 3244 | /* |
| 3245 | * Generic function for queueing a TRB on a ring. |
| 3246 | * The caller must have checked to make sure there's room on the ring. |
| 3247 | * |
| 3248 | * @more_trbs_coming: Will you enqueue more TRBs before calling |
| 3249 | * prepare_transfer()? |
| 3250 | */ |
| 3251 | static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, |
| 3252 | bool more_trbs_coming, |
| 3253 | u32 field1, u32 field2, u32 field3, u32 field4) |
| 3254 | { |
| 3255 | struct xhci_generic_trb *trb; |
| 3256 | |
| 3257 | trb = &ring->enqueue->generic; |
| 3258 | trb->field[0] = cpu_to_le32(field1); |
| 3259 | trb->field[1] = cpu_to_le32(field2); |
| 3260 | trb->field[2] = cpu_to_le32(field3); |
| 3261 | /* make sure TRB is fully written before giving it to the controller */ |
| 3262 | wmb(); |
| 3263 | trb->field[3] = cpu_to_le32(field4); |
| 3264 | |
| 3265 | trace_xhci_queue_trb(ring, trb, |
| 3266 | xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue)); |
| 3267 | |
| 3268 | inc_enq(xhci, ring, more_trbs_coming); |
| 3269 | } |
| 3270 | |
| 3271 | /* |
| 3272 | * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. |
| 3273 | * expand ring if it start to be full. |
| 3274 | */ |
| 3275 | static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, |
| 3276 | u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) |
| 3277 | { |
| 3278 | unsigned int new_segs = 0; |
| 3279 | |
| 3280 | /* Make sure the endpoint has been added to xHC schedule */ |
| 3281 | switch (ep_state) { |
| 3282 | case EP_STATE_DISABLED: |
| 3283 | /* |
| 3284 | * USB core changed config/interfaces without notifying us, |
| 3285 | * or hardware is reporting the wrong state. |
| 3286 | */ |
| 3287 | xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); |
| 3288 | return -ENOENT; |
| 3289 | case EP_STATE_ERROR: |
| 3290 | xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); |
| 3291 | /* FIXME event handling code for error needs to clear it */ |
| 3292 | /* XXX not sure if this should be -ENOENT or not */ |
| 3293 | return -EINVAL; |
| 3294 | case EP_STATE_HALTED: |
| 3295 | xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); |
| 3296 | break; |
| 3297 | case EP_STATE_STOPPED: |
| 3298 | case EP_STATE_RUNNING: |
| 3299 | break; |
| 3300 | default: |
| 3301 | xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); |
| 3302 | /* |
| 3303 | * FIXME issue Configure Endpoint command to try to get the HC |
| 3304 | * back into a known state. |
| 3305 | */ |
| 3306 | return -EINVAL; |
| 3307 | } |
| 3308 | |
| 3309 | if (ep_ring != xhci->cmd_ring) { |
| 3310 | new_segs = xhci_ring_expansion_needed(xhci, ep_ring, num_trbs); |
| 3311 | } else if (xhci_num_trbs_free(ep_ring) <= num_trbs) { |
| 3312 | xhci_err(xhci, "Do not support expand command ring\n"); |
| 3313 | return -ENOMEM; |
| 3314 | } |
| 3315 | |
| 3316 | if (new_segs) { |
| 3317 | xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, |
| 3318 | "ERROR no room on ep ring, try ring expansion"); |
| 3319 | if (xhci_ring_expansion(xhci, ep_ring, new_segs, mem_flags)) { |
| 3320 | xhci_err(xhci, "Ring expansion failed\n"); |
| 3321 | return -ENOMEM; |
| 3322 | } |
| 3323 | } |
| 3324 | |
| 3325 | /* Ensure that new TRBs won't overwrite a link */ |
| 3326 | if (trb_is_link(ep_ring->enqueue)) |
| 3327 | inc_enq_past_link(xhci, ep_ring, 0); |
| 3328 | |
| 3329 | if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue)) { |
| 3330 | xhci_warn(xhci, "Missing link TRB at end of ring segment\n"); |
| 3331 | return -EINVAL; |
| 3332 | } |
| 3333 | |
| 3334 | return 0; |
| 3335 | } |
| 3336 | |
| 3337 | static int prepare_transfer(struct xhci_hcd *xhci, |
| 3338 | struct xhci_virt_device *xdev, |
| 3339 | unsigned int ep_index, |
| 3340 | unsigned int stream_id, |
| 3341 | unsigned int num_trbs, |
| 3342 | struct urb *urb, |
| 3343 | unsigned int td_index, |
| 3344 | gfp_t mem_flags) |
| 3345 | { |
| 3346 | int ret; |
| 3347 | struct urb_priv *urb_priv; |
| 3348 | struct xhci_td *td; |
| 3349 | struct xhci_ring *ep_ring; |
| 3350 | struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); |
| 3351 | |
| 3352 | ep_ring = xhci_triad_to_transfer_ring(xhci, xdev->slot_id, ep_index, |
| 3353 | stream_id); |
| 3354 | if (!ep_ring) { |
| 3355 | xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", |
| 3356 | stream_id); |
| 3357 | return -EINVAL; |
| 3358 | } |
| 3359 | |
| 3360 | ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), |
| 3361 | num_trbs, mem_flags); |
| 3362 | if (ret) |
| 3363 | return ret; |
| 3364 | |
| 3365 | urb_priv = urb->hcpriv; |
| 3366 | td = &urb_priv->td[td_index]; |
| 3367 | |
| 3368 | INIT_LIST_HEAD(&td->td_list); |
| 3369 | INIT_LIST_HEAD(&td->cancelled_td_list); |
| 3370 | |
| 3371 | if (td_index == 0) { |
| 3372 | ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); |
| 3373 | if (unlikely(ret)) |
| 3374 | return ret; |
| 3375 | } |
| 3376 | |
| 3377 | td->urb = urb; |
| 3378 | /* Add this TD to the tail of the endpoint ring's TD list */ |
| 3379 | list_add_tail(&td->td_list, &ep_ring->td_list); |
| 3380 | td->start_seg = ep_ring->enq_seg; |
| 3381 | td->start_trb = ep_ring->enqueue; |
| 3382 | |
| 3383 | return 0; |
| 3384 | } |
| 3385 | |
| 3386 | unsigned int count_trbs(u64 addr, u64 len) |
| 3387 | { |
| 3388 | unsigned int num_trbs; |
| 3389 | |
| 3390 | num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), |
| 3391 | TRB_MAX_BUFF_SIZE); |
| 3392 | if (num_trbs == 0) |
| 3393 | num_trbs++; |
| 3394 | |
| 3395 | return num_trbs; |
| 3396 | } |
| 3397 | |
| 3398 | static inline unsigned int count_trbs_needed(struct urb *urb) |
| 3399 | { |
| 3400 | return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); |
| 3401 | } |
| 3402 | |
| 3403 | static unsigned int count_sg_trbs_needed(struct urb *urb) |
| 3404 | { |
| 3405 | struct scatterlist *sg; |
| 3406 | unsigned int i, len, full_len, num_trbs = 0; |
| 3407 | |
| 3408 | full_len = urb->transfer_buffer_length; |
| 3409 | |
| 3410 | for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { |
| 3411 | len = sg_dma_len(sg); |
| 3412 | num_trbs += count_trbs(sg_dma_address(sg), len); |
| 3413 | len = min_t(unsigned int, len, full_len); |
| 3414 | full_len -= len; |
| 3415 | if (full_len == 0) |
| 3416 | break; |
| 3417 | } |
| 3418 | |
| 3419 | return num_trbs; |
| 3420 | } |
| 3421 | |
| 3422 | static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) |
| 3423 | { |
| 3424 | u64 addr, len; |
| 3425 | |
| 3426 | addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); |
| 3427 | len = urb->iso_frame_desc[i].length; |
| 3428 | |
| 3429 | return count_trbs(addr, len); |
| 3430 | } |
| 3431 | |
| 3432 | static void check_trb_math(struct urb *urb, int running_total) |
| 3433 | { |
| 3434 | if (unlikely(running_total != urb->transfer_buffer_length)) |
| 3435 | dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " |
| 3436 | "queued %#x (%d), asked for %#x (%d)\n", |
| 3437 | __func__, |
| 3438 | urb->ep->desc.bEndpointAddress, |
| 3439 | running_total, running_total, |
| 3440 | urb->transfer_buffer_length, |
| 3441 | urb->transfer_buffer_length); |
| 3442 | } |
| 3443 | |
| 3444 | static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, |
| 3445 | unsigned int ep_index, unsigned int stream_id, int start_cycle, |
| 3446 | struct xhci_generic_trb *start_trb) |
| 3447 | { |
| 3448 | /* |
| 3449 | * Pass all the TRBs to the hardware at once and make sure this write |
| 3450 | * isn't reordered. |
| 3451 | */ |
| 3452 | wmb(); |
| 3453 | if (start_cycle) |
| 3454 | start_trb->field[3] |= cpu_to_le32(start_cycle); |
| 3455 | else |
| 3456 | start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); |
| 3457 | xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); |
| 3458 | } |
| 3459 | |
| 3460 | static void check_interval(struct urb *urb, struct xhci_ep_ctx *ep_ctx) |
| 3461 | { |
| 3462 | int xhci_interval; |
| 3463 | int ep_interval; |
| 3464 | |
| 3465 | xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); |
| 3466 | ep_interval = urb->interval; |
| 3467 | |
| 3468 | /* Convert to microframes */ |
| 3469 | if (urb->dev->speed == USB_SPEED_LOW || |
| 3470 | urb->dev->speed == USB_SPEED_FULL) |
| 3471 | ep_interval *= 8; |
| 3472 | |
| 3473 | /* FIXME change this to a warning and a suggestion to use the new API |
| 3474 | * to set the polling interval (once the API is added). |
| 3475 | */ |
| 3476 | if (xhci_interval != ep_interval) { |
| 3477 | dev_dbg_ratelimited(&urb->dev->dev, |
| 3478 | "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", |
| 3479 | ep_interval, str_plural(ep_interval), |
| 3480 | xhci_interval, str_plural(xhci_interval)); |
| 3481 | urb->interval = xhci_interval; |
| 3482 | /* Convert back to frames for LS/FS devices */ |
| 3483 | if (urb->dev->speed == USB_SPEED_LOW || |
| 3484 | urb->dev->speed == USB_SPEED_FULL) |
| 3485 | urb->interval /= 8; |
| 3486 | } |
| 3487 | } |
| 3488 | |
| 3489 | /* |
| 3490 | * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt |
| 3491 | * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD |
| 3492 | * (comprised of sg list entries) can take several service intervals to |
| 3493 | * transmit. |
| 3494 | */ |
| 3495 | int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, |
| 3496 | struct urb *urb, int slot_id, unsigned int ep_index) |
| 3497 | { |
| 3498 | struct xhci_ep_ctx *ep_ctx; |
| 3499 | |
| 3500 | ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); |
| 3501 | check_interval(urb, ep_ctx); |
| 3502 | |
| 3503 | return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); |
| 3504 | } |
| 3505 | |
| 3506 | /* |
| 3507 | * For xHCI 1.0 host controllers, TD size is the number of max packet sized |
| 3508 | * packets remaining in the TD (*not* including this TRB). |
| 3509 | * |
| 3510 | * Total TD packet count = total_packet_count = |
| 3511 | * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) |
| 3512 | * |
| 3513 | * Packets transferred up to and including this TRB = packets_transferred = |
| 3514 | * rounddown(total bytes transferred including this TRB / wMaxPacketSize) |
| 3515 | * |
| 3516 | * TD size = total_packet_count - packets_transferred |
| 3517 | * |
| 3518 | * For xHCI 0.96 and older, TD size field should be the remaining bytes |
| 3519 | * including this TRB, right shifted by 10 |
| 3520 | * |
| 3521 | * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. |
| 3522 | * This is taken care of in the TRB_TD_SIZE() macro |
| 3523 | * |
| 3524 | * The last TRB in a TD must have the TD size set to zero. |
| 3525 | */ |
| 3526 | static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, |
| 3527 | int trb_buff_len, unsigned int td_total_len, |
| 3528 | struct urb *urb, bool more_trbs_coming) |
| 3529 | { |
| 3530 | u32 maxp, total_packet_count; |
| 3531 | |
| 3532 | /* MTK xHCI 0.96 contains some features from 1.0 */ |
| 3533 | if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) |
| 3534 | return ((td_total_len - transferred) >> 10); |
| 3535 | |
| 3536 | /* One TRB with a zero-length data packet. */ |
| 3537 | if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || |
| 3538 | trb_buff_len == td_total_len) |
| 3539 | return 0; |
| 3540 | |
| 3541 | /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ |
| 3542 | if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) |
| 3543 | trb_buff_len = 0; |
| 3544 | |
| 3545 | maxp = usb_endpoint_maxp(&urb->ep->desc); |
| 3546 | total_packet_count = DIV_ROUND_UP(td_total_len, maxp); |
| 3547 | |
| 3548 | /* Queueing functions don't count the current TRB into transferred */ |
| 3549 | return (total_packet_count - ((transferred + trb_buff_len) / maxp)); |
| 3550 | } |
| 3551 | |
| 3552 | |
| 3553 | static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, |
| 3554 | u32 *trb_buff_len, struct xhci_segment *seg) |
| 3555 | { |
| 3556 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; |
| 3557 | unsigned int unalign; |
| 3558 | unsigned int max_pkt; |
| 3559 | u32 new_buff_len; |
| 3560 | size_t len; |
| 3561 | |
| 3562 | max_pkt = usb_endpoint_maxp(&urb->ep->desc); |
| 3563 | unalign = (enqd_len + *trb_buff_len) % max_pkt; |
| 3564 | |
| 3565 | /* we got lucky, last normal TRB data on segment is packet aligned */ |
| 3566 | if (unalign == 0) |
| 3567 | return 0; |
| 3568 | |
| 3569 | xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", |
| 3570 | unalign, *trb_buff_len); |
| 3571 | |
| 3572 | /* is the last nornal TRB alignable by splitting it */ |
| 3573 | if (*trb_buff_len > unalign) { |
| 3574 | *trb_buff_len -= unalign; |
| 3575 | xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); |
| 3576 | return 0; |
| 3577 | } |
| 3578 | |
| 3579 | /* |
| 3580 | * We want enqd_len + trb_buff_len to sum up to a number aligned to |
| 3581 | * number which is divisible by the endpoint's wMaxPacketSize. IOW: |
| 3582 | * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. |
| 3583 | */ |
| 3584 | new_buff_len = max_pkt - (enqd_len % max_pkt); |
| 3585 | |
| 3586 | if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) |
| 3587 | new_buff_len = (urb->transfer_buffer_length - enqd_len); |
| 3588 | |
| 3589 | /* create a max max_pkt sized bounce buffer pointed to by last trb */ |
| 3590 | if (usb_urb_dir_out(urb)) { |
| 3591 | if (urb->num_sgs) { |
| 3592 | len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, |
| 3593 | seg->bounce_buf, new_buff_len, enqd_len); |
| 3594 | if (len != new_buff_len) |
| 3595 | xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n", |
| 3596 | len, new_buff_len); |
| 3597 | } else { |
| 3598 | memcpy(seg->bounce_buf, urb->transfer_buffer + enqd_len, new_buff_len); |
| 3599 | } |
| 3600 | |
| 3601 | seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, |
| 3602 | max_pkt, DMA_TO_DEVICE); |
| 3603 | } else { |
| 3604 | seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, |
| 3605 | max_pkt, DMA_FROM_DEVICE); |
| 3606 | } |
| 3607 | |
| 3608 | if (dma_mapping_error(dev, seg->bounce_dma)) { |
| 3609 | /* try without aligning. Some host controllers survive */ |
| 3610 | xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); |
| 3611 | return 0; |
| 3612 | } |
| 3613 | *trb_buff_len = new_buff_len; |
| 3614 | seg->bounce_len = new_buff_len; |
| 3615 | seg->bounce_offs = enqd_len; |
| 3616 | |
| 3617 | xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); |
| 3618 | |
| 3619 | return 1; |
| 3620 | } |
| 3621 | |
| 3622 | /* This is very similar to what ehci-q.c qtd_fill() does */ |
| 3623 | int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, |
| 3624 | struct urb *urb, int slot_id, unsigned int ep_index) |
| 3625 | { |
| 3626 | struct xhci_ring *ring; |
| 3627 | struct urb_priv *urb_priv; |
| 3628 | struct xhci_td *td; |
| 3629 | struct xhci_generic_trb *start_trb; |
| 3630 | struct scatterlist *sg = NULL; |
| 3631 | bool more_trbs_coming = true; |
| 3632 | bool need_zero_pkt = false; |
| 3633 | bool first_trb = true; |
| 3634 | unsigned int num_trbs; |
| 3635 | unsigned int start_cycle, num_sgs = 0; |
| 3636 | unsigned int enqd_len, block_len, trb_buff_len, full_len; |
| 3637 | int sent_len, ret; |
| 3638 | u32 field, length_field, remainder; |
| 3639 | u64 addr, send_addr; |
| 3640 | |
| 3641 | ring = xhci_urb_to_transfer_ring(xhci, urb); |
| 3642 | if (!ring) |
| 3643 | return -EINVAL; |
| 3644 | |
| 3645 | full_len = urb->transfer_buffer_length; |
| 3646 | /* If we have scatter/gather list, we use it. */ |
| 3647 | if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) { |
| 3648 | num_sgs = urb->num_mapped_sgs; |
| 3649 | sg = urb->sg; |
| 3650 | addr = (u64) sg_dma_address(sg); |
| 3651 | block_len = sg_dma_len(sg); |
| 3652 | num_trbs = count_sg_trbs_needed(urb); |
| 3653 | } else { |
| 3654 | num_trbs = count_trbs_needed(urb); |
| 3655 | addr = (u64) urb->transfer_dma; |
| 3656 | block_len = full_len; |
| 3657 | } |
| 3658 | ret = prepare_transfer(xhci, xhci->devs[slot_id], |
| 3659 | ep_index, urb->stream_id, |
| 3660 | num_trbs, urb, 0, mem_flags); |
| 3661 | if (unlikely(ret < 0)) |
| 3662 | return ret; |
| 3663 | |
| 3664 | urb_priv = urb->hcpriv; |
| 3665 | |
| 3666 | /* Deal with URB_ZERO_PACKET - need one more td/trb */ |
| 3667 | if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) |
| 3668 | need_zero_pkt = true; |
| 3669 | |
| 3670 | td = &urb_priv->td[0]; |
| 3671 | |
| 3672 | /* |
| 3673 | * Don't give the first TRB to the hardware (by toggling the cycle bit) |
| 3674 | * until we've finished creating all the other TRBs. The ring's cycle |
| 3675 | * state may change as we enqueue the other TRBs, so save it too. |
| 3676 | */ |
| 3677 | start_trb = &ring->enqueue->generic; |
| 3678 | start_cycle = ring->cycle_state; |
| 3679 | send_addr = addr; |
| 3680 | |
| 3681 | /* Queue the TRBs, even if they are zero-length */ |
| 3682 | for (enqd_len = 0; first_trb || enqd_len < full_len; |
| 3683 | enqd_len += trb_buff_len) { |
| 3684 | field = TRB_TYPE(TRB_NORMAL); |
| 3685 | |
| 3686 | /* TRB buffer should not cross 64KB boundaries */ |
| 3687 | trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); |
| 3688 | trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); |
| 3689 | |
| 3690 | if (enqd_len + trb_buff_len > full_len) |
| 3691 | trb_buff_len = full_len - enqd_len; |
| 3692 | |
| 3693 | /* Don't change the cycle bit of the first TRB until later */ |
| 3694 | if (first_trb) { |
| 3695 | first_trb = false; |
| 3696 | if (start_cycle == 0) |
| 3697 | field |= TRB_CYCLE; |
| 3698 | } else |
| 3699 | field |= ring->cycle_state; |
| 3700 | |
| 3701 | /* Chain all the TRBs together; clear the chain bit in the last |
| 3702 | * TRB to indicate it's the last TRB in the chain. |
| 3703 | */ |
| 3704 | if (enqd_len + trb_buff_len < full_len) { |
| 3705 | field |= TRB_CHAIN; |
| 3706 | if (trb_is_link(ring->enqueue + 1)) { |
| 3707 | if (xhci_align_td(xhci, urb, enqd_len, |
| 3708 | &trb_buff_len, |
| 3709 | ring->enq_seg)) { |
| 3710 | send_addr = ring->enq_seg->bounce_dma; |
| 3711 | /* assuming TD won't span 2 segs */ |
| 3712 | td->bounce_seg = ring->enq_seg; |
| 3713 | } |
| 3714 | } |
| 3715 | } |
| 3716 | if (enqd_len + trb_buff_len >= full_len) { |
| 3717 | field &= ~TRB_CHAIN; |
| 3718 | field |= TRB_IOC; |
| 3719 | more_trbs_coming = false; |
| 3720 | td->end_trb = ring->enqueue; |
| 3721 | td->end_seg = ring->enq_seg; |
| 3722 | if (xhci_urb_suitable_for_idt(urb)) { |
| 3723 | memcpy(&send_addr, urb->transfer_buffer, |
| 3724 | trb_buff_len); |
| 3725 | le64_to_cpus(&send_addr); |
| 3726 | field |= TRB_IDT; |
| 3727 | } |
| 3728 | } |
| 3729 | |
| 3730 | /* Only set interrupt on short packet for IN endpoints */ |
| 3731 | if (usb_urb_dir_in(urb)) |
| 3732 | field |= TRB_ISP; |
| 3733 | |
| 3734 | /* Set the TRB length, TD size, and interrupter fields. */ |
| 3735 | remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, |
| 3736 | full_len, urb, more_trbs_coming); |
| 3737 | |
| 3738 | length_field = TRB_LEN(trb_buff_len) | |
| 3739 | TRB_TD_SIZE(remainder) | |
| 3740 | TRB_INTR_TARGET(0); |
| 3741 | |
| 3742 | queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, |
| 3743 | lower_32_bits(send_addr), |
| 3744 | upper_32_bits(send_addr), |
| 3745 | length_field, |
| 3746 | field); |
| 3747 | addr += trb_buff_len; |
| 3748 | sent_len = trb_buff_len; |
| 3749 | |
| 3750 | while (sg && sent_len >= block_len) { |
| 3751 | /* New sg entry */ |
| 3752 | --num_sgs; |
| 3753 | sent_len -= block_len; |
| 3754 | sg = sg_next(sg); |
| 3755 | if (num_sgs != 0 && sg) { |
| 3756 | block_len = sg_dma_len(sg); |
| 3757 | addr = (u64) sg_dma_address(sg); |
| 3758 | addr += sent_len; |
| 3759 | } |
| 3760 | } |
| 3761 | block_len -= sent_len; |
| 3762 | send_addr = addr; |
| 3763 | } |
| 3764 | |
| 3765 | if (need_zero_pkt) { |
| 3766 | ret = prepare_transfer(xhci, xhci->devs[slot_id], |
| 3767 | ep_index, urb->stream_id, |
| 3768 | 1, urb, 1, mem_flags); |
| 3769 | urb_priv->td[1].end_trb = ring->enqueue; |
| 3770 | urb_priv->td[1].end_seg = ring->enq_seg; |
| 3771 | field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; |
| 3772 | queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); |
| 3773 | } |
| 3774 | |
| 3775 | check_trb_math(urb, enqd_len); |
| 3776 | giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, |
| 3777 | start_cycle, start_trb); |
| 3778 | return 0; |
| 3779 | } |
| 3780 | |
| 3781 | /* Caller must have locked xhci->lock */ |
| 3782 | int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, |
| 3783 | struct urb *urb, int slot_id, unsigned int ep_index) |
| 3784 | { |
| 3785 | struct xhci_ring *ep_ring; |
| 3786 | int num_trbs; |
| 3787 | int ret; |
| 3788 | struct usb_ctrlrequest *setup; |
| 3789 | struct xhci_generic_trb *start_trb; |
| 3790 | int start_cycle; |
| 3791 | u32 field; |
| 3792 | struct urb_priv *urb_priv; |
| 3793 | struct xhci_td *td; |
| 3794 | |
| 3795 | ep_ring = xhci_urb_to_transfer_ring(xhci, urb); |
| 3796 | if (!ep_ring) |
| 3797 | return -EINVAL; |
| 3798 | |
| 3799 | /* |
| 3800 | * Need to copy setup packet into setup TRB, so we can't use the setup |
| 3801 | * DMA address. |
| 3802 | */ |
| 3803 | if (!urb->setup_packet) |
| 3804 | return -EINVAL; |
| 3805 | |
| 3806 | if ((xhci->quirks & XHCI_ETRON_HOST) && |
| 3807 | urb->dev->speed >= USB_SPEED_SUPER) { |
| 3808 | /* |
| 3809 | * If next available TRB is the Link TRB in the ring segment then |
| 3810 | * enqueue a No Op TRB, this can prevent the Setup and Data Stage |
| 3811 | * TRB to be breaked by the Link TRB. |
| 3812 | */ |
| 3813 | if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue + 1)) { |
| 3814 | field = TRB_TYPE(TRB_TR_NOOP) | ep_ring->cycle_state; |
| 3815 | queue_trb(xhci, ep_ring, false, 0, 0, |
| 3816 | TRB_INTR_TARGET(0), field); |
| 3817 | } |
| 3818 | } |
| 3819 | |
| 3820 | /* 1 TRB for setup, 1 for status */ |
| 3821 | num_trbs = 2; |
| 3822 | /* |
| 3823 | * Don't need to check if we need additional event data and normal TRBs, |
| 3824 | * since data in control transfers will never get bigger than 16MB |
| 3825 | * XXX: can we get a buffer that crosses 64KB boundaries? |
| 3826 | */ |
| 3827 | if (urb->transfer_buffer_length > 0) |
| 3828 | num_trbs++; |
| 3829 | ret = prepare_transfer(xhci, xhci->devs[slot_id], |
| 3830 | ep_index, urb->stream_id, |
| 3831 | num_trbs, urb, 0, mem_flags); |
| 3832 | if (ret < 0) |
| 3833 | return ret; |
| 3834 | |
| 3835 | urb_priv = urb->hcpriv; |
| 3836 | td = &urb_priv->td[0]; |
| 3837 | |
| 3838 | /* |
| 3839 | * Don't give the first TRB to the hardware (by toggling the cycle bit) |
| 3840 | * until we've finished creating all the other TRBs. The ring's cycle |
| 3841 | * state may change as we enqueue the other TRBs, so save it too. |
| 3842 | */ |
| 3843 | start_trb = &ep_ring->enqueue->generic; |
| 3844 | start_cycle = ep_ring->cycle_state; |
| 3845 | |
| 3846 | /* Queue setup TRB - see section 6.4.1.2.1 */ |
| 3847 | /* FIXME better way to translate setup_packet into two u32 fields? */ |
| 3848 | setup = (struct usb_ctrlrequest *) urb->setup_packet; |
| 3849 | field = 0; |
| 3850 | field |= TRB_IDT | TRB_TYPE(TRB_SETUP); |
| 3851 | if (start_cycle == 0) |
| 3852 | field |= 0x1; |
| 3853 | |
| 3854 | /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ |
| 3855 | if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { |
| 3856 | if (urb->transfer_buffer_length > 0) { |
| 3857 | if (setup->bRequestType & USB_DIR_IN) |
| 3858 | field |= TRB_TX_TYPE(TRB_DATA_IN); |
| 3859 | else |
| 3860 | field |= TRB_TX_TYPE(TRB_DATA_OUT); |
| 3861 | } |
| 3862 | } |
| 3863 | |
| 3864 | queue_trb(xhci, ep_ring, true, |
| 3865 | setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, |
| 3866 | le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, |
| 3867 | TRB_LEN(8) | TRB_INTR_TARGET(0), |
| 3868 | /* Immediate data in pointer */ |
| 3869 | field); |
| 3870 | |
| 3871 | /* If there's data, queue data TRBs */ |
| 3872 | /* Only set interrupt on short packet for IN endpoints */ |
| 3873 | if (usb_urb_dir_in(urb)) |
| 3874 | field = TRB_ISP | TRB_TYPE(TRB_DATA); |
| 3875 | else |
| 3876 | field = TRB_TYPE(TRB_DATA); |
| 3877 | |
| 3878 | if (urb->transfer_buffer_length > 0) { |
| 3879 | u32 length_field, remainder; |
| 3880 | u64 addr; |
| 3881 | |
| 3882 | if (xhci_urb_suitable_for_idt(urb)) { |
| 3883 | memcpy(&addr, urb->transfer_buffer, |
| 3884 | urb->transfer_buffer_length); |
| 3885 | le64_to_cpus(&addr); |
| 3886 | field |= TRB_IDT; |
| 3887 | } else { |
| 3888 | addr = (u64) urb->transfer_dma; |
| 3889 | } |
| 3890 | |
| 3891 | remainder = xhci_td_remainder(xhci, 0, |
| 3892 | urb->transfer_buffer_length, |
| 3893 | urb->transfer_buffer_length, |
| 3894 | urb, 1); |
| 3895 | length_field = TRB_LEN(urb->transfer_buffer_length) | |
| 3896 | TRB_TD_SIZE(remainder) | |
| 3897 | TRB_INTR_TARGET(0); |
| 3898 | if (setup->bRequestType & USB_DIR_IN) |
| 3899 | field |= TRB_DIR_IN; |
| 3900 | queue_trb(xhci, ep_ring, true, |
| 3901 | lower_32_bits(addr), |
| 3902 | upper_32_bits(addr), |
| 3903 | length_field, |
| 3904 | field | ep_ring->cycle_state); |
| 3905 | } |
| 3906 | |
| 3907 | /* Save the DMA address of the last TRB in the TD */ |
| 3908 | td->end_trb = ep_ring->enqueue; |
| 3909 | td->end_seg = ep_ring->enq_seg; |
| 3910 | |
| 3911 | /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ |
| 3912 | /* If the device sent data, the status stage is an OUT transfer */ |
| 3913 | if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) |
| 3914 | field = 0; |
| 3915 | else |
| 3916 | field = TRB_DIR_IN; |
| 3917 | queue_trb(xhci, ep_ring, false, |
| 3918 | 0, |
| 3919 | 0, |
| 3920 | TRB_INTR_TARGET(0), |
| 3921 | /* Event on completion */ |
| 3922 | field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); |
| 3923 | |
| 3924 | giveback_first_trb(xhci, slot_id, ep_index, 0, |
| 3925 | start_cycle, start_trb); |
| 3926 | return 0; |
| 3927 | } |
| 3928 | |
| 3929 | /* |
| 3930 | * The transfer burst count field of the isochronous TRB defines the number of |
| 3931 | * bursts that are required to move all packets in this TD. Only SuperSpeed |
| 3932 | * devices can burst up to bMaxBurst number of packets per service interval. |
| 3933 | * This field is zero based, meaning a value of zero in the field means one |
| 3934 | * burst. Basically, for everything but SuperSpeed devices, this field will be |
| 3935 | * zero. Only xHCI 1.0 host controllers support this field. |
| 3936 | */ |
| 3937 | static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, |
| 3938 | struct urb *urb, unsigned int total_packet_count) |
| 3939 | { |
| 3940 | unsigned int max_burst; |
| 3941 | |
| 3942 | if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) |
| 3943 | return 0; |
| 3944 | |
| 3945 | max_burst = urb->ep->ss_ep_comp.bMaxBurst; |
| 3946 | return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; |
| 3947 | } |
| 3948 | |
| 3949 | /* |
| 3950 | * Returns the number of packets in the last "burst" of packets. This field is |
| 3951 | * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so |
| 3952 | * the last burst packet count is equal to the total number of packets in the |
| 3953 | * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst |
| 3954 | * must contain (bMaxBurst + 1) number of packets, but the last burst can |
| 3955 | * contain 1 to (bMaxBurst + 1) packets. |
| 3956 | */ |
| 3957 | static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, |
| 3958 | struct urb *urb, unsigned int total_packet_count) |
| 3959 | { |
| 3960 | unsigned int max_burst; |
| 3961 | unsigned int residue; |
| 3962 | |
| 3963 | if (xhci->hci_version < 0x100) |
| 3964 | return 0; |
| 3965 | |
| 3966 | if (urb->dev->speed >= USB_SPEED_SUPER) { |
| 3967 | /* bMaxBurst is zero based: 0 means 1 packet per burst */ |
| 3968 | max_burst = urb->ep->ss_ep_comp.bMaxBurst; |
| 3969 | residue = total_packet_count % (max_burst + 1); |
| 3970 | /* If residue is zero, the last burst contains (max_burst + 1) |
| 3971 | * number of packets, but the TLBPC field is zero-based. |
| 3972 | */ |
| 3973 | if (residue == 0) |
| 3974 | return max_burst; |
| 3975 | return residue - 1; |
| 3976 | } |
| 3977 | if (total_packet_count == 0) |
| 3978 | return 0; |
| 3979 | return total_packet_count - 1; |
| 3980 | } |
| 3981 | |
| 3982 | /* |
| 3983 | * Calculates Frame ID field of the isochronous TRB identifies the |
| 3984 | * target frame that the Interval associated with this Isochronous |
| 3985 | * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. |
| 3986 | * |
| 3987 | * Returns actual frame id on success, negative value on error. |
| 3988 | */ |
| 3989 | static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, |
| 3990 | struct urb *urb, int index) |
| 3991 | { |
| 3992 | int start_frame, ist, ret = 0; |
| 3993 | int start_frame_id, end_frame_id, current_frame_id; |
| 3994 | |
| 3995 | if (urb->dev->speed == USB_SPEED_LOW || |
| 3996 | urb->dev->speed == USB_SPEED_FULL) |
| 3997 | start_frame = urb->start_frame + index * urb->interval; |
| 3998 | else |
| 3999 | start_frame = (urb->start_frame + index * urb->interval) >> 3; |
| 4000 | |
| 4001 | /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): |
| 4002 | * |
| 4003 | * If bit [3] of IST is cleared to '0', software can add a TRB no |
| 4004 | * later than IST[2:0] Microframes before that TRB is scheduled to |
| 4005 | * be executed. |
| 4006 | * If bit [3] of IST is set to '1', software can add a TRB no later |
| 4007 | * than IST[2:0] Frames before that TRB is scheduled to be executed. |
| 4008 | */ |
| 4009 | ist = HCS_IST(xhci->hcs_params2) & 0x7; |
| 4010 | if (HCS_IST(xhci->hcs_params2) & (1 << 3)) |
| 4011 | ist <<= 3; |
| 4012 | |
| 4013 | /* Software shall not schedule an Isoch TD with a Frame ID value that |
| 4014 | * is less than the Start Frame ID or greater than the End Frame ID, |
| 4015 | * where: |
| 4016 | * |
| 4017 | * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 |
| 4018 | * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 |
| 4019 | * |
| 4020 | * Both the End Frame ID and Start Frame ID values are calculated |
| 4021 | * in microframes. When software determines the valid Frame ID value; |
| 4022 | * The End Frame ID value should be rounded down to the nearest Frame |
| 4023 | * boundary, and the Start Frame ID value should be rounded up to the |
| 4024 | * nearest Frame boundary. |
| 4025 | */ |
| 4026 | current_frame_id = readl(&xhci->run_regs->microframe_index); |
| 4027 | start_frame_id = roundup(current_frame_id + ist + 1, 8); |
| 4028 | end_frame_id = rounddown(current_frame_id + 895 * 8, 8); |
| 4029 | |
| 4030 | start_frame &= 0x7ff; |
| 4031 | start_frame_id = (start_frame_id >> 3) & 0x7ff; |
| 4032 | end_frame_id = (end_frame_id >> 3) & 0x7ff; |
| 4033 | |
| 4034 | if (start_frame_id < end_frame_id) { |
| 4035 | if (start_frame > end_frame_id || |
| 4036 | start_frame < start_frame_id) |
| 4037 | ret = -EINVAL; |
| 4038 | } else if (start_frame_id > end_frame_id) { |
| 4039 | if ((start_frame > end_frame_id && |
| 4040 | start_frame < start_frame_id)) |
| 4041 | ret = -EINVAL; |
| 4042 | } else { |
| 4043 | ret = -EINVAL; |
| 4044 | } |
| 4045 | |
| 4046 | if (index == 0) { |
| 4047 | if (ret == -EINVAL || start_frame == start_frame_id) { |
| 4048 | start_frame = start_frame_id + 1; |
| 4049 | if (urb->dev->speed == USB_SPEED_LOW || |
| 4050 | urb->dev->speed == USB_SPEED_FULL) |
| 4051 | urb->start_frame = start_frame; |
| 4052 | else |
| 4053 | urb->start_frame = start_frame << 3; |
| 4054 | ret = 0; |
| 4055 | } |
| 4056 | } |
| 4057 | |
| 4058 | if (ret) { |
| 4059 | xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", |
| 4060 | start_frame, current_frame_id, index, |
| 4061 | start_frame_id, end_frame_id); |
| 4062 | xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); |
| 4063 | return ret; |
| 4064 | } |
| 4065 | |
| 4066 | return start_frame; |
| 4067 | } |
| 4068 | |
| 4069 | /* Check if we should generate event interrupt for a TD in an isoc URB */ |
| 4070 | static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i, |
| 4071 | struct xhci_interrupter *ir) |
| 4072 | { |
| 4073 | if (xhci->hci_version < 0x100) |
| 4074 | return false; |
| 4075 | /* always generate an event interrupt for the last TD */ |
| 4076 | if (i == num_tds - 1) |
| 4077 | return false; |
| 4078 | /* |
| 4079 | * If AVOID_BEI is set the host handles full event rings poorly, |
| 4080 | * generate an event at least every 8th TD to clear the event ring |
| 4081 | */ |
| 4082 | if (i && ir->isoc_bei_interval && xhci->quirks & XHCI_AVOID_BEI) |
| 4083 | return !!(i % ir->isoc_bei_interval); |
| 4084 | |
| 4085 | return true; |
| 4086 | } |
| 4087 | |
| 4088 | /* This is for isoc transfer */ |
| 4089 | static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, |
| 4090 | struct urb *urb, int slot_id, unsigned int ep_index) |
| 4091 | { |
| 4092 | struct xhci_interrupter *ir; |
| 4093 | struct xhci_ring *ep_ring; |
| 4094 | struct urb_priv *urb_priv; |
| 4095 | struct xhci_td *td; |
| 4096 | int num_tds, trbs_per_td; |
| 4097 | struct xhci_generic_trb *start_trb; |
| 4098 | bool first_trb; |
| 4099 | int start_cycle; |
| 4100 | u32 field, length_field; |
| 4101 | int running_total, trb_buff_len, td_len, td_remain_len, ret; |
| 4102 | u64 start_addr, addr; |
| 4103 | int i, j; |
| 4104 | bool more_trbs_coming; |
| 4105 | struct xhci_virt_ep *xep; |
| 4106 | int frame_id; |
| 4107 | |
| 4108 | xep = &xhci->devs[slot_id]->eps[ep_index]; |
| 4109 | ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; |
| 4110 | ir = xhci->interrupters[0]; |
| 4111 | |
| 4112 | num_tds = urb->number_of_packets; |
| 4113 | if (num_tds < 1) { |
| 4114 | xhci_dbg(xhci, "Isoc URB with zero packets?\n"); |
| 4115 | return -EINVAL; |
| 4116 | } |
| 4117 | start_addr = (u64) urb->transfer_dma; |
| 4118 | start_trb = &ep_ring->enqueue->generic; |
| 4119 | start_cycle = ep_ring->cycle_state; |
| 4120 | |
| 4121 | urb_priv = urb->hcpriv; |
| 4122 | /* Queue the TRBs for each TD, even if they are zero-length */ |
| 4123 | for (i = 0; i < num_tds; i++) { |
| 4124 | unsigned int total_pkt_count, max_pkt; |
| 4125 | unsigned int burst_count, last_burst_pkt_count; |
| 4126 | u32 sia_frame_id; |
| 4127 | |
| 4128 | first_trb = true; |
| 4129 | running_total = 0; |
| 4130 | addr = start_addr + urb->iso_frame_desc[i].offset; |
| 4131 | td_len = urb->iso_frame_desc[i].length; |
| 4132 | td_remain_len = td_len; |
| 4133 | max_pkt = usb_endpoint_maxp(&urb->ep->desc); |
| 4134 | total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); |
| 4135 | |
| 4136 | /* A zero-length transfer still involves at least one packet. */ |
| 4137 | if (total_pkt_count == 0) |
| 4138 | total_pkt_count++; |
| 4139 | burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); |
| 4140 | last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, |
| 4141 | urb, total_pkt_count); |
| 4142 | |
| 4143 | trbs_per_td = count_isoc_trbs_needed(urb, i); |
| 4144 | |
| 4145 | ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, |
| 4146 | urb->stream_id, trbs_per_td, urb, i, mem_flags); |
| 4147 | if (ret < 0) { |
| 4148 | if (i == 0) |
| 4149 | return ret; |
| 4150 | goto cleanup; |
| 4151 | } |
| 4152 | td = &urb_priv->td[i]; |
| 4153 | /* use SIA as default, if frame id is used overwrite it */ |
| 4154 | sia_frame_id = TRB_SIA; |
| 4155 | if (!(urb->transfer_flags & URB_ISO_ASAP) && |
| 4156 | HCC_CFC(xhci->hcc_params)) { |
| 4157 | frame_id = xhci_get_isoc_frame_id(xhci, urb, i); |
| 4158 | if (frame_id >= 0) |
| 4159 | sia_frame_id = TRB_FRAME_ID(frame_id); |
| 4160 | } |
| 4161 | /* |
| 4162 | * Set isoc specific data for the first TRB in a TD. |
| 4163 | * Prevent HW from getting the TRBs by keeping the cycle state |
| 4164 | * inverted in the first TDs isoc TRB. |
| 4165 | */ |
| 4166 | field = TRB_TYPE(TRB_ISOC) | |
| 4167 | TRB_TLBPC(last_burst_pkt_count) | |
| 4168 | sia_frame_id | |
| 4169 | (i ? ep_ring->cycle_state : !start_cycle); |
| 4170 | |
| 4171 | /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ |
| 4172 | if (!xep->use_extended_tbc) |
| 4173 | field |= TRB_TBC(burst_count); |
| 4174 | |
| 4175 | /* fill the rest of the TRB fields, and remaining normal TRBs */ |
| 4176 | for (j = 0; j < trbs_per_td; j++) { |
| 4177 | u32 remainder = 0; |
| 4178 | |
| 4179 | /* only first TRB is isoc, overwrite otherwise */ |
| 4180 | if (!first_trb) |
| 4181 | field = TRB_TYPE(TRB_NORMAL) | |
| 4182 | ep_ring->cycle_state; |
| 4183 | |
| 4184 | /* Only set interrupt on short packet for IN EPs */ |
| 4185 | if (usb_urb_dir_in(urb)) |
| 4186 | field |= TRB_ISP; |
| 4187 | |
| 4188 | /* Set the chain bit for all except the last TRB */ |
| 4189 | if (j < trbs_per_td - 1) { |
| 4190 | more_trbs_coming = true; |
| 4191 | field |= TRB_CHAIN; |
| 4192 | } else { |
| 4193 | more_trbs_coming = false; |
| 4194 | td->end_trb = ep_ring->enqueue; |
| 4195 | td->end_seg = ep_ring->enq_seg; |
| 4196 | field |= TRB_IOC; |
| 4197 | if (trb_block_event_intr(xhci, num_tds, i, ir)) |
| 4198 | field |= TRB_BEI; |
| 4199 | } |
| 4200 | /* Calculate TRB length */ |
| 4201 | trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); |
| 4202 | if (trb_buff_len > td_remain_len) |
| 4203 | trb_buff_len = td_remain_len; |
| 4204 | |
| 4205 | /* Set the TRB length, TD size, & interrupter fields. */ |
| 4206 | remainder = xhci_td_remainder(xhci, running_total, |
| 4207 | trb_buff_len, td_len, |
| 4208 | urb, more_trbs_coming); |
| 4209 | |
| 4210 | length_field = TRB_LEN(trb_buff_len) | |
| 4211 | TRB_INTR_TARGET(0); |
| 4212 | |
| 4213 | /* xhci 1.1 with ETE uses TD Size field for TBC */ |
| 4214 | if (first_trb && xep->use_extended_tbc) |
| 4215 | length_field |= TRB_TD_SIZE_TBC(burst_count); |
| 4216 | else |
| 4217 | length_field |= TRB_TD_SIZE(remainder); |
| 4218 | first_trb = false; |
| 4219 | |
| 4220 | queue_trb(xhci, ep_ring, more_trbs_coming, |
| 4221 | lower_32_bits(addr), |
| 4222 | upper_32_bits(addr), |
| 4223 | length_field, |
| 4224 | field); |
| 4225 | running_total += trb_buff_len; |
| 4226 | |
| 4227 | addr += trb_buff_len; |
| 4228 | td_remain_len -= trb_buff_len; |
| 4229 | } |
| 4230 | |
| 4231 | /* Check TD length */ |
| 4232 | if (running_total != td_len) { |
| 4233 | xhci_err(xhci, "ISOC TD length unmatch\n"); |
| 4234 | ret = -EINVAL; |
| 4235 | goto cleanup; |
| 4236 | } |
| 4237 | } |
| 4238 | |
| 4239 | /* store the next frame id */ |
| 4240 | if (HCC_CFC(xhci->hcc_params)) |
| 4241 | xep->next_frame_id = urb->start_frame + num_tds * urb->interval; |
| 4242 | |
| 4243 | if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { |
| 4244 | if (xhci->quirks & XHCI_AMD_PLL_FIX) |
| 4245 | usb_amd_quirk_pll_disable(); |
| 4246 | } |
| 4247 | xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; |
| 4248 | |
| 4249 | giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, |
| 4250 | start_cycle, start_trb); |
| 4251 | return 0; |
| 4252 | cleanup: |
| 4253 | /* Clean up a partially enqueued isoc transfer. */ |
| 4254 | |
| 4255 | for (i--; i >= 0; i--) |
| 4256 | list_del_init(&urb_priv->td[i].td_list); |
| 4257 | |
| 4258 | /* Use the first TD as a temporary variable to turn the TDs we've queued |
| 4259 | * into No-ops with a software-owned cycle bit. That way the hardware |
| 4260 | * won't accidentally start executing bogus TDs when we partially |
| 4261 | * overwrite them. td->start_trb and td->start_seg are already set. |
| 4262 | */ |
| 4263 | urb_priv->td[0].end_trb = ep_ring->enqueue; |
| 4264 | /* Every TRB except the first & last will have its cycle bit flipped. */ |
| 4265 | td_to_noop(&urb_priv->td[0], true); |
| 4266 | |
| 4267 | /* Reset the ring enqueue back to the first TRB and its cycle bit. */ |
| 4268 | ep_ring->enqueue = urb_priv->td[0].start_trb; |
| 4269 | ep_ring->enq_seg = urb_priv->td[0].start_seg; |
| 4270 | ep_ring->cycle_state = start_cycle; |
| 4271 | usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); |
| 4272 | return ret; |
| 4273 | } |
| 4274 | |
| 4275 | /* |
| 4276 | * Check transfer ring to guarantee there is enough room for the urb. |
| 4277 | * Update ISO URB start_frame and interval. |
| 4278 | * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to |
| 4279 | * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or |
| 4280 | * Contiguous Frame ID is not supported by HC. |
| 4281 | */ |
| 4282 | int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, |
| 4283 | struct urb *urb, int slot_id, unsigned int ep_index) |
| 4284 | { |
| 4285 | struct xhci_virt_device *xdev; |
| 4286 | struct xhci_ring *ep_ring; |
| 4287 | struct xhci_ep_ctx *ep_ctx; |
| 4288 | int start_frame; |
| 4289 | int num_tds, num_trbs, i; |
| 4290 | int ret; |
| 4291 | struct xhci_virt_ep *xep; |
| 4292 | int ist; |
| 4293 | |
| 4294 | xdev = xhci->devs[slot_id]; |
| 4295 | xep = &xhci->devs[slot_id]->eps[ep_index]; |
| 4296 | ep_ring = xdev->eps[ep_index].ring; |
| 4297 | ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); |
| 4298 | |
| 4299 | num_trbs = 0; |
| 4300 | num_tds = urb->number_of_packets; |
| 4301 | for (i = 0; i < num_tds; i++) |
| 4302 | num_trbs += count_isoc_trbs_needed(urb, i); |
| 4303 | |
| 4304 | /* Check the ring to guarantee there is enough room for the whole urb. |
| 4305 | * Do not insert any td of the urb to the ring if the check failed. |
| 4306 | */ |
| 4307 | ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), |
| 4308 | num_trbs, mem_flags); |
| 4309 | if (ret) |
| 4310 | return ret; |
| 4311 | |
| 4312 | /* |
| 4313 | * Check interval value. This should be done before we start to |
| 4314 | * calculate the start frame value. |
| 4315 | */ |
| 4316 | check_interval(urb, ep_ctx); |
| 4317 | |
| 4318 | /* Calculate the start frame and put it in urb->start_frame. */ |
| 4319 | if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { |
| 4320 | if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { |
| 4321 | urb->start_frame = xep->next_frame_id; |
| 4322 | goto skip_start_over; |
| 4323 | } |
| 4324 | } |
| 4325 | |
| 4326 | start_frame = readl(&xhci->run_regs->microframe_index); |
| 4327 | start_frame &= 0x3fff; |
| 4328 | /* |
| 4329 | * Round up to the next frame and consider the time before trb really |
| 4330 | * gets scheduled by hardare. |
| 4331 | */ |
| 4332 | ist = HCS_IST(xhci->hcs_params2) & 0x7; |
| 4333 | if (HCS_IST(xhci->hcs_params2) & (1 << 3)) |
| 4334 | ist <<= 3; |
| 4335 | start_frame += ist + XHCI_CFC_DELAY; |
| 4336 | start_frame = roundup(start_frame, 8); |
| 4337 | |
| 4338 | /* |
| 4339 | * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT |
| 4340 | * is greate than 8 microframes. |
| 4341 | */ |
| 4342 | if (urb->dev->speed == USB_SPEED_LOW || |
| 4343 | urb->dev->speed == USB_SPEED_FULL) { |
| 4344 | start_frame = roundup(start_frame, urb->interval << 3); |
| 4345 | urb->start_frame = start_frame >> 3; |
| 4346 | } else { |
| 4347 | start_frame = roundup(start_frame, urb->interval); |
| 4348 | urb->start_frame = start_frame; |
| 4349 | } |
| 4350 | |
| 4351 | skip_start_over: |
| 4352 | |
| 4353 | return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); |
| 4354 | } |
| 4355 | |
| 4356 | /**** Command Ring Operations ****/ |
| 4357 | |
| 4358 | /* Generic function for queueing a command TRB on the command ring. |
| 4359 | * Check to make sure there's room on the command ring for one command TRB. |
| 4360 | * Also check that there's room reserved for commands that must not fail. |
| 4361 | * If this is a command that must not fail, meaning command_must_succeed = TRUE, |
| 4362 | * then only check for the number of reserved spots. |
| 4363 | * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB |
| 4364 | * because the command event handler may want to resubmit a failed command. |
| 4365 | */ |
| 4366 | static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, |
| 4367 | u32 field1, u32 field2, |
| 4368 | u32 field3, u32 field4, bool command_must_succeed) |
| 4369 | { |
| 4370 | int reserved_trbs = xhci->cmd_ring_reserved_trbs; |
| 4371 | int ret; |
| 4372 | |
| 4373 | if ((xhci->xhc_state & XHCI_STATE_DYING) || |
| 4374 | (xhci->xhc_state & XHCI_STATE_HALTED)) { |
| 4375 | xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); |
| 4376 | return -ESHUTDOWN; |
| 4377 | } |
| 4378 | |
| 4379 | if (!command_must_succeed) |
| 4380 | reserved_trbs++; |
| 4381 | |
| 4382 | ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, |
| 4383 | reserved_trbs, GFP_ATOMIC); |
| 4384 | if (ret < 0) { |
| 4385 | xhci_err(xhci, "ERR: No room for command on command ring\n"); |
| 4386 | if (command_must_succeed) |
| 4387 | xhci_err(xhci, "ERR: Reserved TRB counting for " |
| 4388 | "unfailable commands failed.\n"); |
| 4389 | return ret; |
| 4390 | } |
| 4391 | |
| 4392 | cmd->command_trb = xhci->cmd_ring->enqueue; |
| 4393 | |
| 4394 | /* if there are no other commands queued we start the timeout timer */ |
| 4395 | if (list_empty(&xhci->cmd_list)) { |
| 4396 | xhci->current_cmd = cmd; |
| 4397 | xhci_mod_cmd_timer(xhci); |
| 4398 | } |
| 4399 | |
| 4400 | list_add_tail(&cmd->cmd_list, &xhci->cmd_list); |
| 4401 | |
| 4402 | queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, |
| 4403 | field4 | xhci->cmd_ring->cycle_state); |
| 4404 | return 0; |
| 4405 | } |
| 4406 | |
| 4407 | /* Queue a slot enable or disable request on the command ring */ |
| 4408 | int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, |
| 4409 | u32 trb_type, u32 slot_id) |
| 4410 | { |
| 4411 | return queue_command(xhci, cmd, 0, 0, 0, |
| 4412 | TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); |
| 4413 | } |
| 4414 | |
| 4415 | /* Queue an address device command TRB */ |
| 4416 | int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, |
| 4417 | dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) |
| 4418 | { |
| 4419 | return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), |
| 4420 | upper_32_bits(in_ctx_ptr), 0, |
| 4421 | TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) |
| 4422 | | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); |
| 4423 | } |
| 4424 | |
| 4425 | int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, |
| 4426 | u32 field1, u32 field2, u32 field3, u32 field4) |
| 4427 | { |
| 4428 | return queue_command(xhci, cmd, field1, field2, field3, field4, false); |
| 4429 | } |
| 4430 | |
| 4431 | /* Queue a reset device command TRB */ |
| 4432 | int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, |
| 4433 | u32 slot_id) |
| 4434 | { |
| 4435 | return queue_command(xhci, cmd, 0, 0, 0, |
| 4436 | TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), |
| 4437 | false); |
| 4438 | } |
| 4439 | |
| 4440 | /* Queue a configure endpoint command TRB */ |
| 4441 | int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, |
| 4442 | struct xhci_command *cmd, dma_addr_t in_ctx_ptr, |
| 4443 | u32 slot_id, bool command_must_succeed) |
| 4444 | { |
| 4445 | return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), |
| 4446 | upper_32_bits(in_ctx_ptr), 0, |
| 4447 | TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), |
| 4448 | command_must_succeed); |
| 4449 | } |
| 4450 | |
| 4451 | /* Queue a get root hub port bandwidth command TRB */ |
| 4452 | int xhci_queue_get_port_bw(struct xhci_hcd *xhci, |
| 4453 | struct xhci_command *cmd, dma_addr_t in_ctx_ptr, |
| 4454 | u8 dev_speed, bool command_must_succeed) |
| 4455 | { |
| 4456 | return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), |
| 4457 | upper_32_bits(in_ctx_ptr), 0, |
| 4458 | TRB_TYPE(TRB_GET_BW) | DEV_SPEED_FOR_TRB(dev_speed), |
| 4459 | command_must_succeed); |
| 4460 | } |
| 4461 | |
| 4462 | /* Queue an evaluate context command TRB */ |
| 4463 | int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, |
| 4464 | dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) |
| 4465 | { |
| 4466 | return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), |
| 4467 | upper_32_bits(in_ctx_ptr), 0, |
| 4468 | TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), |
| 4469 | command_must_succeed); |
| 4470 | } |
| 4471 | |
| 4472 | /* |
| 4473 | * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop |
| 4474 | * activity on an endpoint that is about to be suspended. |
| 4475 | */ |
| 4476 | int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, |
| 4477 | int slot_id, unsigned int ep_index, int suspend) |
| 4478 | { |
| 4479 | u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); |
| 4480 | u32 trb_ep_index = EP_INDEX_FOR_TRB(ep_index); |
| 4481 | u32 type = TRB_TYPE(TRB_STOP_RING); |
| 4482 | u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); |
| 4483 | |
| 4484 | return queue_command(xhci, cmd, 0, 0, 0, |
| 4485 | trb_slot_id | trb_ep_index | type | trb_suspend, false); |
| 4486 | } |
| 4487 | |
| 4488 | int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, |
| 4489 | int slot_id, unsigned int ep_index, |
| 4490 | enum xhci_ep_reset_type reset_type) |
| 4491 | { |
| 4492 | u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); |
| 4493 | u32 trb_ep_index = EP_INDEX_FOR_TRB(ep_index); |
| 4494 | u32 type = TRB_TYPE(TRB_RESET_EP); |
| 4495 | |
| 4496 | if (reset_type == EP_SOFT_RESET) |
| 4497 | type |= TRB_TSP; |
| 4498 | |
| 4499 | return queue_command(xhci, cmd, 0, 0, 0, |
| 4500 | trb_slot_id | trb_ep_index | type, false); |
| 4501 | } |