tty: rename and de-inline do_tty_write()
[linux-2.6-block.git] / drivers / tty / tty_io.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 */
5
6/*
7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
8 * or rs-channels. It also implements echoing, cooked mode etc.
9 *
10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
11 *
12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
13 * tty_struct and tty_queue structures. Previously there was an array
14 * of 256 tty_struct's which was statically allocated, and the
15 * tty_queue structures were allocated at boot time. Both are now
16 * dynamically allocated only when the tty is open.
17 *
18 * Also restructured routines so that there is more of a separation
19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
20 * the low-level tty routines (serial.c, pty.c, console.c). This
21 * makes for cleaner and more compact code. -TYT, 9/17/92
22 *
23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
24 * which can be dynamically activated and de-activated by the line
25 * discipline handling modules (like SLIP).
26 *
27 * NOTE: pay no attention to the line discipline code (yet); its
28 * interface is still subject to change in this version...
29 * -- TYT, 1/31/92
30 *
31 * Added functionality to the OPOST tty handling. No delays, but all
32 * other bits should be there.
33 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
34 *
35 * Rewrote canonical mode and added more termios flags.
36 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
37 *
38 * Reorganized FASYNC support so mouse code can share it.
39 * -- ctm@ardi.com, 9Sep95
40 *
41 * New TIOCLINUX variants added.
42 * -- mj@k332.feld.cvut.cz, 19-Nov-95
43 *
44 * Restrict vt switching via ioctl()
45 * -- grif@cs.ucr.edu, 5-Dec-95
46 *
47 * Move console and virtual terminal code to more appropriate files,
48 * implement CONFIG_VT and generalize console device interface.
49 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
50 *
51 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
52 * -- Bill Hawes <whawes@star.net>, June 97
53 *
54 * Added devfs support.
55 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
56 *
57 * Added support for a Unix98-style ptmx device.
58 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
59 *
60 * Reduced memory usage for older ARM systems
61 * -- Russell King <rmk@arm.linux.org.uk>
62 *
63 * Move do_SAK() into process context. Less stack use in devfs functions.
64 * alloc_tty_struct() always uses kmalloc()
65 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
66 */
67
68#include <linux/types.h>
69#include <linux/major.h>
70#include <linux/errno.h>
71#include <linux/signal.h>
72#include <linux/fcntl.h>
73#include <linux/sched/signal.h>
74#include <linux/sched/task.h>
75#include <linux/interrupt.h>
76#include <linux/tty.h>
77#include <linux/tty_driver.h>
78#include <linux/tty_flip.h>
79#include <linux/devpts_fs.h>
80#include <linux/file.h>
81#include <linux/fdtable.h>
82#include <linux/console.h>
83#include <linux/timer.h>
84#include <linux/ctype.h>
85#include <linux/kd.h>
86#include <linux/mm.h>
87#include <linux/string.h>
88#include <linux/slab.h>
89#include <linux/poll.h>
90#include <linux/ppp-ioctl.h>
91#include <linux/proc_fs.h>
92#include <linux/init.h>
93#include <linux/module.h>
94#include <linux/device.h>
95#include <linux/wait.h>
96#include <linux/bitops.h>
97#include <linux/delay.h>
98#include <linux/seq_file.h>
99#include <linux/serial.h>
100#include <linux/ratelimit.h>
101#include <linux/compat.h>
102#include <linux/uaccess.h>
103#include <linux/termios_internal.h>
104#include <linux/fs.h>
105
106#include <linux/kbd_kern.h>
107#include <linux/vt_kern.h>
108#include <linux/selection.h>
109
110#include <linux/kmod.h>
111#include <linux/nsproxy.h>
112#include "tty.h"
113
114#undef TTY_DEBUG_HANGUP
115#ifdef TTY_DEBUG_HANGUP
116# define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args)
117#else
118# define tty_debug_hangup(tty, f, args...) do { } while (0)
119#endif
120
121#define TTY_PARANOIA_CHECK 1
122#define CHECK_TTY_COUNT 1
123
124struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
125 .c_iflag = ICRNL | IXON,
126 .c_oflag = OPOST | ONLCR,
127 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
128 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
129 ECHOCTL | ECHOKE | IEXTEN,
130 .c_cc = INIT_C_CC,
131 .c_ispeed = 38400,
132 .c_ospeed = 38400,
133 /* .c_line = N_TTY, */
134};
135EXPORT_SYMBOL(tty_std_termios);
136
137/* This list gets poked at by procfs and various bits of boot up code. This
138 * could do with some rationalisation such as pulling the tty proc function
139 * into this file.
140 */
141
142LIST_HEAD(tty_drivers); /* linked list of tty drivers */
143
144/* Mutex to protect creating and releasing a tty */
145DEFINE_MUTEX(tty_mutex);
146
147static ssize_t tty_read(struct kiocb *, struct iov_iter *);
148static ssize_t tty_write(struct kiocb *, struct iov_iter *);
149static __poll_t tty_poll(struct file *, poll_table *);
150static int tty_open(struct inode *, struct file *);
151#ifdef CONFIG_COMPAT
152static long tty_compat_ioctl(struct file *file, unsigned int cmd,
153 unsigned long arg);
154#else
155#define tty_compat_ioctl NULL
156#endif
157static int __tty_fasync(int fd, struct file *filp, int on);
158static int tty_fasync(int fd, struct file *filp, int on);
159static void release_tty(struct tty_struct *tty, int idx);
160
161/**
162 * free_tty_struct - free a disused tty
163 * @tty: tty struct to free
164 *
165 * Free the write buffers, tty queue and tty memory itself.
166 *
167 * Locking: none. Must be called after tty is definitely unused
168 */
169static void free_tty_struct(struct tty_struct *tty)
170{
171 tty_ldisc_deinit(tty);
172 put_device(tty->dev);
173 kvfree(tty->write_buf);
174 kfree(tty);
175}
176
177static inline struct tty_struct *file_tty(struct file *file)
178{
179 return ((struct tty_file_private *)file->private_data)->tty;
180}
181
182int tty_alloc_file(struct file *file)
183{
184 struct tty_file_private *priv;
185
186 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
187 if (!priv)
188 return -ENOMEM;
189
190 file->private_data = priv;
191
192 return 0;
193}
194
195/* Associate a new file with the tty structure */
196void tty_add_file(struct tty_struct *tty, struct file *file)
197{
198 struct tty_file_private *priv = file->private_data;
199
200 priv->tty = tty;
201 priv->file = file;
202
203 spin_lock(&tty->files_lock);
204 list_add(&priv->list, &tty->tty_files);
205 spin_unlock(&tty->files_lock);
206}
207
208/**
209 * tty_free_file - free file->private_data
210 * @file: to free private_data of
211 *
212 * This shall be used only for fail path handling when tty_add_file was not
213 * called yet.
214 */
215void tty_free_file(struct file *file)
216{
217 struct tty_file_private *priv = file->private_data;
218
219 file->private_data = NULL;
220 kfree(priv);
221}
222
223/* Delete file from its tty */
224static void tty_del_file(struct file *file)
225{
226 struct tty_file_private *priv = file->private_data;
227 struct tty_struct *tty = priv->tty;
228
229 spin_lock(&tty->files_lock);
230 list_del(&priv->list);
231 spin_unlock(&tty->files_lock);
232 tty_free_file(file);
233}
234
235/**
236 * tty_name - return tty naming
237 * @tty: tty structure
238 *
239 * Convert a tty structure into a name. The name reflects the kernel naming
240 * policy and if udev is in use may not reflect user space
241 *
242 * Locking: none
243 */
244const char *tty_name(const struct tty_struct *tty)
245{
246 if (!tty) /* Hmm. NULL pointer. That's fun. */
247 return "NULL tty";
248 return tty->name;
249}
250EXPORT_SYMBOL(tty_name);
251
252const char *tty_driver_name(const struct tty_struct *tty)
253{
254 if (!tty || !tty->driver)
255 return "";
256 return tty->driver->name;
257}
258
259static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
260 const char *routine)
261{
262#ifdef TTY_PARANOIA_CHECK
263 if (!tty) {
264 pr_warn("(%d:%d): %s: NULL tty\n",
265 imajor(inode), iminor(inode), routine);
266 return 1;
267 }
268#endif
269 return 0;
270}
271
272/* Caller must hold tty_lock */
273static void check_tty_count(struct tty_struct *tty, const char *routine)
274{
275#ifdef CHECK_TTY_COUNT
276 struct list_head *p;
277 int count = 0, kopen_count = 0;
278
279 spin_lock(&tty->files_lock);
280 list_for_each(p, &tty->tty_files) {
281 count++;
282 }
283 spin_unlock(&tty->files_lock);
284 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
285 tty->driver->subtype == PTY_TYPE_SLAVE &&
286 tty->link && tty->link->count)
287 count++;
288 if (tty_port_kopened(tty->port))
289 kopen_count++;
290 if (tty->count != (count + kopen_count)) {
291 tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
292 routine, tty->count, count, kopen_count);
293 }
294#endif
295}
296
297/**
298 * get_tty_driver - find device of a tty
299 * @device: device identifier
300 * @index: returns the index of the tty
301 *
302 * This routine returns a tty driver structure, given a device number and also
303 * passes back the index number.
304 *
305 * Locking: caller must hold tty_mutex
306 */
307static struct tty_driver *get_tty_driver(dev_t device, int *index)
308{
309 struct tty_driver *p;
310
311 list_for_each_entry(p, &tty_drivers, tty_drivers) {
312 dev_t base = MKDEV(p->major, p->minor_start);
313
314 if (device < base || device >= base + p->num)
315 continue;
316 *index = device - base;
317 return tty_driver_kref_get(p);
318 }
319 return NULL;
320}
321
322/**
323 * tty_dev_name_to_number - return dev_t for device name
324 * @name: user space name of device under /dev
325 * @number: pointer to dev_t that this function will populate
326 *
327 * This function converts device names like ttyS0 or ttyUSB1 into dev_t like
328 * (4, 64) or (188, 1). If no corresponding driver is registered then the
329 * function returns -%ENODEV.
330 *
331 * Locking: this acquires tty_mutex to protect the tty_drivers list from
332 * being modified while we are traversing it, and makes sure to
333 * release it before exiting.
334 */
335int tty_dev_name_to_number(const char *name, dev_t *number)
336{
337 struct tty_driver *p;
338 int ret;
339 int index, prefix_length = 0;
340 const char *str;
341
342 for (str = name; *str && !isdigit(*str); str++)
343 ;
344
345 if (!*str)
346 return -EINVAL;
347
348 ret = kstrtoint(str, 10, &index);
349 if (ret)
350 return ret;
351
352 prefix_length = str - name;
353 mutex_lock(&tty_mutex);
354
355 list_for_each_entry(p, &tty_drivers, tty_drivers)
356 if (prefix_length == strlen(p->name) && strncmp(name,
357 p->name, prefix_length) == 0) {
358 if (index < p->num) {
359 *number = MKDEV(p->major, p->minor_start + index);
360 goto out;
361 }
362 }
363
364 /* if here then driver wasn't found */
365 ret = -ENODEV;
366out:
367 mutex_unlock(&tty_mutex);
368 return ret;
369}
370EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
371
372#ifdef CONFIG_CONSOLE_POLL
373
374/**
375 * tty_find_polling_driver - find device of a polled tty
376 * @name: name string to match
377 * @line: pointer to resulting tty line nr
378 *
379 * This routine returns a tty driver structure, given a name and the condition
380 * that the tty driver is capable of polled operation.
381 */
382struct tty_driver *tty_find_polling_driver(char *name, int *line)
383{
384 struct tty_driver *p, *res = NULL;
385 int tty_line = 0;
386 int len;
387 char *str, *stp;
388
389 for (str = name; *str; str++)
390 if ((*str >= '0' && *str <= '9') || *str == ',')
391 break;
392 if (!*str)
393 return NULL;
394
395 len = str - name;
396 tty_line = simple_strtoul(str, &str, 10);
397
398 mutex_lock(&tty_mutex);
399 /* Search through the tty devices to look for a match */
400 list_for_each_entry(p, &tty_drivers, tty_drivers) {
401 if (!len || strncmp(name, p->name, len) != 0)
402 continue;
403 stp = str;
404 if (*stp == ',')
405 stp++;
406 if (*stp == '\0')
407 stp = NULL;
408
409 if (tty_line >= 0 && tty_line < p->num && p->ops &&
410 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
411 res = tty_driver_kref_get(p);
412 *line = tty_line;
413 break;
414 }
415 }
416 mutex_unlock(&tty_mutex);
417
418 return res;
419}
420EXPORT_SYMBOL_GPL(tty_find_polling_driver);
421#endif
422
423static ssize_t hung_up_tty_read(struct kiocb *iocb, struct iov_iter *to)
424{
425 return 0;
426}
427
428static ssize_t hung_up_tty_write(struct kiocb *iocb, struct iov_iter *from)
429{
430 return -EIO;
431}
432
433/* No kernel lock held - none needed ;) */
434static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
435{
436 return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
437}
438
439static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
440 unsigned long arg)
441{
442 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
443}
444
445static long hung_up_tty_compat_ioctl(struct file *file,
446 unsigned int cmd, unsigned long arg)
447{
448 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
449}
450
451static int hung_up_tty_fasync(int fd, struct file *file, int on)
452{
453 return -ENOTTY;
454}
455
456static void tty_show_fdinfo(struct seq_file *m, struct file *file)
457{
458 struct tty_struct *tty = file_tty(file);
459
460 if (tty && tty->ops && tty->ops->show_fdinfo)
461 tty->ops->show_fdinfo(tty, m);
462}
463
464static const struct file_operations tty_fops = {
465 .llseek = no_llseek,
466 .read_iter = tty_read,
467 .write_iter = tty_write,
468 .splice_read = copy_splice_read,
469 .splice_write = iter_file_splice_write,
470 .poll = tty_poll,
471 .unlocked_ioctl = tty_ioctl,
472 .compat_ioctl = tty_compat_ioctl,
473 .open = tty_open,
474 .release = tty_release,
475 .fasync = tty_fasync,
476 .show_fdinfo = tty_show_fdinfo,
477};
478
479static const struct file_operations console_fops = {
480 .llseek = no_llseek,
481 .read_iter = tty_read,
482 .write_iter = redirected_tty_write,
483 .splice_read = copy_splice_read,
484 .splice_write = iter_file_splice_write,
485 .poll = tty_poll,
486 .unlocked_ioctl = tty_ioctl,
487 .compat_ioctl = tty_compat_ioctl,
488 .open = tty_open,
489 .release = tty_release,
490 .fasync = tty_fasync,
491};
492
493static const struct file_operations hung_up_tty_fops = {
494 .llseek = no_llseek,
495 .read_iter = hung_up_tty_read,
496 .write_iter = hung_up_tty_write,
497 .poll = hung_up_tty_poll,
498 .unlocked_ioctl = hung_up_tty_ioctl,
499 .compat_ioctl = hung_up_tty_compat_ioctl,
500 .release = tty_release,
501 .fasync = hung_up_tty_fasync,
502};
503
504static DEFINE_SPINLOCK(redirect_lock);
505static struct file *redirect;
506
507/**
508 * tty_wakeup - request more data
509 * @tty: terminal
510 *
511 * Internal and external helper for wakeups of tty. This function informs the
512 * line discipline if present that the driver is ready to receive more output
513 * data.
514 */
515void tty_wakeup(struct tty_struct *tty)
516{
517 struct tty_ldisc *ld;
518
519 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
520 ld = tty_ldisc_ref(tty);
521 if (ld) {
522 if (ld->ops->write_wakeup)
523 ld->ops->write_wakeup(tty);
524 tty_ldisc_deref(ld);
525 }
526 }
527 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
528}
529EXPORT_SYMBOL_GPL(tty_wakeup);
530
531/**
532 * tty_release_redirect - Release a redirect on a pty if present
533 * @tty: tty device
534 *
535 * This is available to the pty code so if the master closes, if the slave is a
536 * redirect it can release the redirect.
537 */
538static struct file *tty_release_redirect(struct tty_struct *tty)
539{
540 struct file *f = NULL;
541
542 spin_lock(&redirect_lock);
543 if (redirect && file_tty(redirect) == tty) {
544 f = redirect;
545 redirect = NULL;
546 }
547 spin_unlock(&redirect_lock);
548
549 return f;
550}
551
552/**
553 * __tty_hangup - actual handler for hangup events
554 * @tty: tty device
555 * @exit_session: if non-zero, signal all foreground group processes
556 *
557 * This can be called by a "kworker" kernel thread. That is process synchronous
558 * but doesn't hold any locks, so we need to make sure we have the appropriate
559 * locks for what we're doing.
560 *
561 * The hangup event clears any pending redirections onto the hung up device. It
562 * ensures future writes will error and it does the needed line discipline
563 * hangup and signal delivery. The tty object itself remains intact.
564 *
565 * Locking:
566 * * BTM
567 *
568 * * redirect lock for undoing redirection
569 * * file list lock for manipulating list of ttys
570 * * tty_ldiscs_lock from called functions
571 * * termios_rwsem resetting termios data
572 * * tasklist_lock to walk task list for hangup event
573 *
574 * * ->siglock to protect ->signal/->sighand
575 *
576 */
577static void __tty_hangup(struct tty_struct *tty, int exit_session)
578{
579 struct file *cons_filp = NULL;
580 struct file *filp, *f;
581 struct tty_file_private *priv;
582 int closecount = 0, n;
583 int refs;
584
585 if (!tty)
586 return;
587
588 f = tty_release_redirect(tty);
589
590 tty_lock(tty);
591
592 if (test_bit(TTY_HUPPED, &tty->flags)) {
593 tty_unlock(tty);
594 return;
595 }
596
597 /*
598 * Some console devices aren't actually hung up for technical and
599 * historical reasons, which can lead to indefinite interruptible
600 * sleep in n_tty_read(). The following explicitly tells
601 * n_tty_read() to abort readers.
602 */
603 set_bit(TTY_HUPPING, &tty->flags);
604
605 /* inuse_filps is protected by the single tty lock,
606 * this really needs to change if we want to flush the
607 * workqueue with the lock held.
608 */
609 check_tty_count(tty, "tty_hangup");
610
611 spin_lock(&tty->files_lock);
612 /* This breaks for file handles being sent over AF_UNIX sockets ? */
613 list_for_each_entry(priv, &tty->tty_files, list) {
614 filp = priv->file;
615 if (filp->f_op->write_iter == redirected_tty_write)
616 cons_filp = filp;
617 if (filp->f_op->write_iter != tty_write)
618 continue;
619 closecount++;
620 __tty_fasync(-1, filp, 0); /* can't block */
621 filp->f_op = &hung_up_tty_fops;
622 }
623 spin_unlock(&tty->files_lock);
624
625 refs = tty_signal_session_leader(tty, exit_session);
626 /* Account for the p->signal references we killed */
627 while (refs--)
628 tty_kref_put(tty);
629
630 tty_ldisc_hangup(tty, cons_filp != NULL);
631
632 spin_lock_irq(&tty->ctrl.lock);
633 clear_bit(TTY_THROTTLED, &tty->flags);
634 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
635 put_pid(tty->ctrl.session);
636 put_pid(tty->ctrl.pgrp);
637 tty->ctrl.session = NULL;
638 tty->ctrl.pgrp = NULL;
639 tty->ctrl.pktstatus = 0;
640 spin_unlock_irq(&tty->ctrl.lock);
641
642 /*
643 * If one of the devices matches a console pointer, we
644 * cannot just call hangup() because that will cause
645 * tty->count and state->count to go out of sync.
646 * So we just call close() the right number of times.
647 */
648 if (cons_filp) {
649 if (tty->ops->close)
650 for (n = 0; n < closecount; n++)
651 tty->ops->close(tty, cons_filp);
652 } else if (tty->ops->hangup)
653 tty->ops->hangup(tty);
654 /*
655 * We don't want to have driver/ldisc interactions beyond the ones
656 * we did here. The driver layer expects no calls after ->hangup()
657 * from the ldisc side, which is now guaranteed.
658 */
659 set_bit(TTY_HUPPED, &tty->flags);
660 clear_bit(TTY_HUPPING, &tty->flags);
661 tty_unlock(tty);
662
663 if (f)
664 fput(f);
665}
666
667static void do_tty_hangup(struct work_struct *work)
668{
669 struct tty_struct *tty =
670 container_of(work, struct tty_struct, hangup_work);
671
672 __tty_hangup(tty, 0);
673}
674
675/**
676 * tty_hangup - trigger a hangup event
677 * @tty: tty to hangup
678 *
679 * A carrier loss (virtual or otherwise) has occurred on @tty. Schedule a
680 * hangup sequence to run after this event.
681 */
682void tty_hangup(struct tty_struct *tty)
683{
684 tty_debug_hangup(tty, "hangup\n");
685 schedule_work(&tty->hangup_work);
686}
687EXPORT_SYMBOL(tty_hangup);
688
689/**
690 * tty_vhangup - process vhangup
691 * @tty: tty to hangup
692 *
693 * The user has asked via system call for the terminal to be hung up. We do
694 * this synchronously so that when the syscall returns the process is complete.
695 * That guarantee is necessary for security reasons.
696 */
697void tty_vhangup(struct tty_struct *tty)
698{
699 tty_debug_hangup(tty, "vhangup\n");
700 __tty_hangup(tty, 0);
701}
702EXPORT_SYMBOL(tty_vhangup);
703
704
705/**
706 * tty_vhangup_self - process vhangup for own ctty
707 *
708 * Perform a vhangup on the current controlling tty
709 */
710void tty_vhangup_self(void)
711{
712 struct tty_struct *tty;
713
714 tty = get_current_tty();
715 if (tty) {
716 tty_vhangup(tty);
717 tty_kref_put(tty);
718 }
719}
720
721/**
722 * tty_vhangup_session - hangup session leader exit
723 * @tty: tty to hangup
724 *
725 * The session leader is exiting and hanging up its controlling terminal.
726 * Every process in the foreground process group is signalled %SIGHUP.
727 *
728 * We do this synchronously so that when the syscall returns the process is
729 * complete. That guarantee is necessary for security reasons.
730 */
731void tty_vhangup_session(struct tty_struct *tty)
732{
733 tty_debug_hangup(tty, "session hangup\n");
734 __tty_hangup(tty, 1);
735}
736
737/**
738 * tty_hung_up_p - was tty hung up
739 * @filp: file pointer of tty
740 *
741 * Return: true if the tty has been subject to a vhangup or a carrier loss
742 */
743int tty_hung_up_p(struct file *filp)
744{
745 return (filp && filp->f_op == &hung_up_tty_fops);
746}
747EXPORT_SYMBOL(tty_hung_up_p);
748
749void __stop_tty(struct tty_struct *tty)
750{
751 if (tty->flow.stopped)
752 return;
753 tty->flow.stopped = true;
754 if (tty->ops->stop)
755 tty->ops->stop(tty);
756}
757
758/**
759 * stop_tty - propagate flow control
760 * @tty: tty to stop
761 *
762 * Perform flow control to the driver. May be called on an already stopped
763 * device and will not re-call the &tty_driver->stop() method.
764 *
765 * This functionality is used by both the line disciplines for halting incoming
766 * flow and by the driver. It may therefore be called from any context, may be
767 * under the tty %atomic_write_lock but not always.
768 *
769 * Locking:
770 * flow.lock
771 */
772void stop_tty(struct tty_struct *tty)
773{
774 unsigned long flags;
775
776 spin_lock_irqsave(&tty->flow.lock, flags);
777 __stop_tty(tty);
778 spin_unlock_irqrestore(&tty->flow.lock, flags);
779}
780EXPORT_SYMBOL(stop_tty);
781
782void __start_tty(struct tty_struct *tty)
783{
784 if (!tty->flow.stopped || tty->flow.tco_stopped)
785 return;
786 tty->flow.stopped = false;
787 if (tty->ops->start)
788 tty->ops->start(tty);
789 tty_wakeup(tty);
790}
791
792/**
793 * start_tty - propagate flow control
794 * @tty: tty to start
795 *
796 * Start a tty that has been stopped if at all possible. If @tty was previously
797 * stopped and is now being started, the &tty_driver->start() method is invoked
798 * and the line discipline woken.
799 *
800 * Locking:
801 * flow.lock
802 */
803void start_tty(struct tty_struct *tty)
804{
805 unsigned long flags;
806
807 spin_lock_irqsave(&tty->flow.lock, flags);
808 __start_tty(tty);
809 spin_unlock_irqrestore(&tty->flow.lock, flags);
810}
811EXPORT_SYMBOL(start_tty);
812
813static void tty_update_time(struct tty_struct *tty, bool mtime)
814{
815 time64_t sec = ktime_get_real_seconds();
816 struct tty_file_private *priv;
817
818 spin_lock(&tty->files_lock);
819 list_for_each_entry(priv, &tty->tty_files, list) {
820 struct inode *inode = file_inode(priv->file);
821 struct timespec64 *time = mtime ? &inode->i_mtime : &inode->i_atime;
822
823 /*
824 * We only care if the two values differ in anything other than the
825 * lower three bits (i.e every 8 seconds). If so, then we can update
826 * the time of the tty device, otherwise it could be construded as a
827 * security leak to let userspace know the exact timing of the tty.
828 */
829 if ((sec ^ time->tv_sec) & ~7)
830 time->tv_sec = sec;
831 }
832 spin_unlock(&tty->files_lock);
833}
834
835/*
836 * Iterate on the ldisc ->read() function until we've gotten all
837 * the data the ldisc has for us.
838 *
839 * The "cookie" is something that the ldisc read function can fill
840 * in to let us know that there is more data to be had.
841 *
842 * We promise to continue to call the ldisc until it stops returning
843 * data or clears the cookie. The cookie may be something that the
844 * ldisc maintains state for and needs to free.
845 */
846static int iterate_tty_read(struct tty_ldisc *ld, struct tty_struct *tty,
847 struct file *file, struct iov_iter *to)
848{
849 int retval = 0;
850 void *cookie = NULL;
851 unsigned long offset = 0;
852 char kernel_buf[64];
853 size_t count = iov_iter_count(to);
854
855 do {
856 int size, copied;
857
858 size = count > sizeof(kernel_buf) ? sizeof(kernel_buf) : count;
859 size = ld->ops->read(tty, file, kernel_buf, size, &cookie, offset);
860 if (!size)
861 break;
862
863 if (size < 0) {
864 /* Did we have an earlier error (ie -EFAULT)? */
865 if (retval)
866 break;
867 retval = size;
868
869 /*
870 * -EOVERFLOW means we didn't have enough space
871 * for a whole packet, and we shouldn't return
872 * a partial result.
873 */
874 if (retval == -EOVERFLOW)
875 offset = 0;
876 break;
877 }
878
879 copied = copy_to_iter(kernel_buf, size, to);
880 offset += copied;
881 count -= copied;
882
883 /*
884 * If the user copy failed, we still need to do another ->read()
885 * call if we had a cookie to let the ldisc clear up.
886 *
887 * But make sure size is zeroed.
888 */
889 if (unlikely(copied != size)) {
890 count = 0;
891 retval = -EFAULT;
892 }
893 } while (cookie);
894
895 /* We always clear tty buffer in case they contained passwords */
896 memzero_explicit(kernel_buf, sizeof(kernel_buf));
897 return offset ? offset : retval;
898}
899
900
901/**
902 * tty_read - read method for tty device files
903 * @iocb: kernel I/O control block
904 * @to: destination for the data read
905 *
906 * Perform the read system call function on this terminal device. Checks
907 * for hung up devices before calling the line discipline method.
908 *
909 * Locking:
910 * Locks the line discipline internally while needed. Multiple read calls
911 * may be outstanding in parallel.
912 */
913static ssize_t tty_read(struct kiocb *iocb, struct iov_iter *to)
914{
915 int i;
916 struct file *file = iocb->ki_filp;
917 struct inode *inode = file_inode(file);
918 struct tty_struct *tty = file_tty(file);
919 struct tty_ldisc *ld;
920
921 if (tty_paranoia_check(tty, inode, "tty_read"))
922 return -EIO;
923 if (!tty || tty_io_error(tty))
924 return -EIO;
925
926 /* We want to wait for the line discipline to sort out in this
927 * situation.
928 */
929 ld = tty_ldisc_ref_wait(tty);
930 if (!ld)
931 return hung_up_tty_read(iocb, to);
932 i = -EIO;
933 if (ld->ops->read)
934 i = iterate_tty_read(ld, tty, file, to);
935 tty_ldisc_deref(ld);
936
937 if (i > 0)
938 tty_update_time(tty, false);
939
940 return i;
941}
942
943void tty_write_unlock(struct tty_struct *tty)
944{
945 mutex_unlock(&tty->atomic_write_lock);
946 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
947}
948
949int tty_write_lock(struct tty_struct *tty, bool ndelay)
950{
951 if (!mutex_trylock(&tty->atomic_write_lock)) {
952 if (ndelay)
953 return -EAGAIN;
954 if (mutex_lock_interruptible(&tty->atomic_write_lock))
955 return -ERESTARTSYS;
956 }
957 return 0;
958}
959
960/*
961 * Split writes up in sane blocksizes to avoid
962 * denial-of-service type attacks
963 */
964static ssize_t iterate_tty_write(struct tty_ldisc *ld, struct tty_struct *tty,
965 struct file *file, struct iov_iter *from)
966{
967 size_t count = iov_iter_count(from);
968 ssize_t ret, written = 0;
969 unsigned int chunk;
970
971 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
972 if (ret < 0)
973 return ret;
974
975 /*
976 * We chunk up writes into a temporary buffer. This
977 * simplifies low-level drivers immensely, since they
978 * don't have locking issues and user mode accesses.
979 *
980 * But if TTY_NO_WRITE_SPLIT is set, we should use a
981 * big chunk-size..
982 *
983 * The default chunk-size is 2kB, because the NTTY
984 * layer has problems with bigger chunks. It will
985 * claim to be able to handle more characters than
986 * it actually does.
987 */
988 chunk = 2048;
989 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
990 chunk = 65536;
991 if (count < chunk)
992 chunk = count;
993
994 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
995 if (tty->write_cnt < chunk) {
996 unsigned char *buf_chunk;
997
998 if (chunk < 1024)
999 chunk = 1024;
1000
1001 buf_chunk = kvmalloc(chunk, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1002 if (!buf_chunk) {
1003 ret = -ENOMEM;
1004 goto out;
1005 }
1006 kvfree(tty->write_buf);
1007 tty->write_cnt = chunk;
1008 tty->write_buf = buf_chunk;
1009 }
1010
1011 /* Do the write .. */
1012 for (;;) {
1013 size_t size = count;
1014
1015 if (size > chunk)
1016 size = chunk;
1017
1018 ret = -EFAULT;
1019 if (copy_from_iter(tty->write_buf, size, from) != size)
1020 break;
1021
1022 ret = ld->ops->write(tty, file, tty->write_buf, size);
1023 if (ret <= 0)
1024 break;
1025
1026 written += ret;
1027 if (ret > size)
1028 break;
1029
1030 /* FIXME! Have Al check this! */
1031 if (ret != size)
1032 iov_iter_revert(from, size-ret);
1033
1034 count -= ret;
1035 if (!count)
1036 break;
1037 ret = -ERESTARTSYS;
1038 if (signal_pending(current))
1039 break;
1040 cond_resched();
1041 }
1042 if (written) {
1043 tty_update_time(tty, true);
1044 ret = written;
1045 }
1046out:
1047 tty_write_unlock(tty);
1048 return ret;
1049}
1050
1051/**
1052 * tty_write_message - write a message to a certain tty, not just the console.
1053 * @tty: the destination tty_struct
1054 * @msg: the message to write
1055 *
1056 * This is used for messages that need to be redirected to a specific tty. We
1057 * don't put it into the syslog queue right now maybe in the future if really
1058 * needed.
1059 *
1060 * We must still hold the BTM and test the CLOSING flag for the moment.
1061 */
1062void tty_write_message(struct tty_struct *tty, char *msg)
1063{
1064 if (tty) {
1065 mutex_lock(&tty->atomic_write_lock);
1066 tty_lock(tty);
1067 if (tty->ops->write && tty->count > 0)
1068 tty->ops->write(tty, msg, strlen(msg));
1069 tty_unlock(tty);
1070 tty_write_unlock(tty);
1071 }
1072}
1073
1074static ssize_t file_tty_write(struct file *file, struct kiocb *iocb, struct iov_iter *from)
1075{
1076 struct tty_struct *tty = file_tty(file);
1077 struct tty_ldisc *ld;
1078 ssize_t ret;
1079
1080 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1081 return -EIO;
1082 if (!tty || !tty->ops->write || tty_io_error(tty))
1083 return -EIO;
1084 /* Short term debug to catch buggy drivers */
1085 if (tty->ops->write_room == NULL)
1086 tty_err(tty, "missing write_room method\n");
1087 ld = tty_ldisc_ref_wait(tty);
1088 if (!ld)
1089 return hung_up_tty_write(iocb, from);
1090 if (!ld->ops->write)
1091 ret = -EIO;
1092 else
1093 ret = iterate_tty_write(ld, tty, file, from);
1094 tty_ldisc_deref(ld);
1095 return ret;
1096}
1097
1098/**
1099 * tty_write - write method for tty device file
1100 * @iocb: kernel I/O control block
1101 * @from: iov_iter with data to write
1102 *
1103 * Write data to a tty device via the line discipline.
1104 *
1105 * Locking:
1106 * Locks the line discipline as required
1107 * Writes to the tty driver are serialized by the atomic_write_lock
1108 * and are then processed in chunks to the device. The line
1109 * discipline write method will not be invoked in parallel for
1110 * each device.
1111 */
1112static ssize_t tty_write(struct kiocb *iocb, struct iov_iter *from)
1113{
1114 return file_tty_write(iocb->ki_filp, iocb, from);
1115}
1116
1117ssize_t redirected_tty_write(struct kiocb *iocb, struct iov_iter *iter)
1118{
1119 struct file *p = NULL;
1120
1121 spin_lock(&redirect_lock);
1122 if (redirect)
1123 p = get_file(redirect);
1124 spin_unlock(&redirect_lock);
1125
1126 /*
1127 * We know the redirected tty is just another tty, we can
1128 * call file_tty_write() directly with that file pointer.
1129 */
1130 if (p) {
1131 ssize_t res;
1132
1133 res = file_tty_write(p, iocb, iter);
1134 fput(p);
1135 return res;
1136 }
1137 return tty_write(iocb, iter);
1138}
1139
1140/**
1141 * tty_send_xchar - send priority character
1142 * @tty: the tty to send to
1143 * @ch: xchar to send
1144 *
1145 * Send a high priority character to the tty even if stopped.
1146 *
1147 * Locking: none for xchar method, write ordering for write method.
1148 */
1149int tty_send_xchar(struct tty_struct *tty, char ch)
1150{
1151 bool was_stopped = tty->flow.stopped;
1152
1153 if (tty->ops->send_xchar) {
1154 down_read(&tty->termios_rwsem);
1155 tty->ops->send_xchar(tty, ch);
1156 up_read(&tty->termios_rwsem);
1157 return 0;
1158 }
1159
1160 if (tty_write_lock(tty, false) < 0)
1161 return -ERESTARTSYS;
1162
1163 down_read(&tty->termios_rwsem);
1164 if (was_stopped)
1165 start_tty(tty);
1166 tty->ops->write(tty, &ch, 1);
1167 if (was_stopped)
1168 stop_tty(tty);
1169 up_read(&tty->termios_rwsem);
1170 tty_write_unlock(tty);
1171 return 0;
1172}
1173
1174/**
1175 * pty_line_name - generate name for a pty
1176 * @driver: the tty driver in use
1177 * @index: the minor number
1178 * @p: output buffer of at least 6 bytes
1179 *
1180 * Generate a name from a @driver reference and write it to the output buffer
1181 * @p.
1182 *
1183 * Locking: None
1184 */
1185static void pty_line_name(struct tty_driver *driver, int index, char *p)
1186{
1187 static const char ptychar[] = "pqrstuvwxyzabcde";
1188 int i = index + driver->name_base;
1189 /* ->name is initialized to "ttyp", but "tty" is expected */
1190 sprintf(p, "%s%c%x",
1191 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1192 ptychar[i >> 4 & 0xf], i & 0xf);
1193}
1194
1195/**
1196 * tty_line_name - generate name for a tty
1197 * @driver: the tty driver in use
1198 * @index: the minor number
1199 * @p: output buffer of at least 7 bytes
1200 *
1201 * Generate a name from a @driver reference and write it to the output buffer
1202 * @p.
1203 *
1204 * Locking: None
1205 */
1206static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1207{
1208 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1209 return sprintf(p, "%s", driver->name);
1210 else
1211 return sprintf(p, "%s%d", driver->name,
1212 index + driver->name_base);
1213}
1214
1215/**
1216 * tty_driver_lookup_tty() - find an existing tty, if any
1217 * @driver: the driver for the tty
1218 * @file: file object
1219 * @idx: the minor number
1220 *
1221 * Return: the tty, if found. If not found, return %NULL or ERR_PTR() if the
1222 * driver lookup() method returns an error.
1223 *
1224 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1225 */
1226static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1227 struct file *file, int idx)
1228{
1229 struct tty_struct *tty;
1230
1231 if (driver->ops->lookup) {
1232 if (!file)
1233 tty = ERR_PTR(-EIO);
1234 else
1235 tty = driver->ops->lookup(driver, file, idx);
1236 } else {
1237 if (idx >= driver->num)
1238 return ERR_PTR(-EINVAL);
1239 tty = driver->ttys[idx];
1240 }
1241 if (!IS_ERR(tty))
1242 tty_kref_get(tty);
1243 return tty;
1244}
1245
1246/**
1247 * tty_init_termios - helper for termios setup
1248 * @tty: the tty to set up
1249 *
1250 * Initialise the termios structure for this tty. This runs under the
1251 * %tty_mutex currently so we can be relaxed about ordering.
1252 */
1253void tty_init_termios(struct tty_struct *tty)
1254{
1255 struct ktermios *tp;
1256 int idx = tty->index;
1257
1258 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1259 tty->termios = tty->driver->init_termios;
1260 else {
1261 /* Check for lazy saved data */
1262 tp = tty->driver->termios[idx];
1263 if (tp != NULL) {
1264 tty->termios = *tp;
1265 tty->termios.c_line = tty->driver->init_termios.c_line;
1266 } else
1267 tty->termios = tty->driver->init_termios;
1268 }
1269 /* Compatibility until drivers always set this */
1270 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1271 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1272}
1273EXPORT_SYMBOL_GPL(tty_init_termios);
1274
1275/**
1276 * tty_standard_install - usual tty->ops->install
1277 * @driver: the driver for the tty
1278 * @tty: the tty
1279 *
1280 * If the @driver overrides @tty->ops->install, it still can call this function
1281 * to perform the standard install operations.
1282 */
1283int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1284{
1285 tty_init_termios(tty);
1286 tty_driver_kref_get(driver);
1287 tty->count++;
1288 driver->ttys[tty->index] = tty;
1289 return 0;
1290}
1291EXPORT_SYMBOL_GPL(tty_standard_install);
1292
1293/**
1294 * tty_driver_install_tty() - install a tty entry in the driver
1295 * @driver: the driver for the tty
1296 * @tty: the tty
1297 *
1298 * Install a tty object into the driver tables. The @tty->index field will be
1299 * set by the time this is called. This method is responsible for ensuring any
1300 * need additional structures are allocated and configured.
1301 *
1302 * Locking: tty_mutex for now
1303 */
1304static int tty_driver_install_tty(struct tty_driver *driver,
1305 struct tty_struct *tty)
1306{
1307 return driver->ops->install ? driver->ops->install(driver, tty) :
1308 tty_standard_install(driver, tty);
1309}
1310
1311/**
1312 * tty_driver_remove_tty() - remove a tty from the driver tables
1313 * @driver: the driver for the tty
1314 * @tty: tty to remove
1315 *
1316 * Remove a tty object from the driver tables. The tty->index field will be set
1317 * by the time this is called.
1318 *
1319 * Locking: tty_mutex for now
1320 */
1321static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1322{
1323 if (driver->ops->remove)
1324 driver->ops->remove(driver, tty);
1325 else
1326 driver->ttys[tty->index] = NULL;
1327}
1328
1329/**
1330 * tty_reopen() - fast re-open of an open tty
1331 * @tty: the tty to open
1332 *
1333 * Re-opens on master ptys are not allowed and return -%EIO.
1334 *
1335 * Locking: Caller must hold tty_lock
1336 * Return: 0 on success, -errno on error.
1337 */
1338static int tty_reopen(struct tty_struct *tty)
1339{
1340 struct tty_driver *driver = tty->driver;
1341 struct tty_ldisc *ld;
1342 int retval = 0;
1343
1344 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1345 driver->subtype == PTY_TYPE_MASTER)
1346 return -EIO;
1347
1348 if (!tty->count)
1349 return -EAGAIN;
1350
1351 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1352 return -EBUSY;
1353
1354 ld = tty_ldisc_ref_wait(tty);
1355 if (ld) {
1356 tty_ldisc_deref(ld);
1357 } else {
1358 retval = tty_ldisc_lock(tty, 5 * HZ);
1359 if (retval)
1360 return retval;
1361
1362 if (!tty->ldisc)
1363 retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1364 tty_ldisc_unlock(tty);
1365 }
1366
1367 if (retval == 0)
1368 tty->count++;
1369
1370 return retval;
1371}
1372
1373/**
1374 * tty_init_dev - initialise a tty device
1375 * @driver: tty driver we are opening a device on
1376 * @idx: device index
1377 *
1378 * Prepare a tty device. This may not be a "new" clean device but could also be
1379 * an active device. The pty drivers require special handling because of this.
1380 *
1381 * Locking:
1382 * The function is called under the tty_mutex, which protects us from the
1383 * tty struct or driver itself going away.
1384 *
1385 * On exit the tty device has the line discipline attached and a reference
1386 * count of 1. If a pair was created for pty/tty use and the other was a pty
1387 * master then it too has a reference count of 1.
1388 *
1389 * WSH 06/09/97: Rewritten to remove races and properly clean up after a failed
1390 * open. The new code protects the open with a mutex, so it's really quite
1391 * straightforward. The mutex locking can probably be relaxed for the (most
1392 * common) case of reopening a tty.
1393 *
1394 * Return: new tty structure
1395 */
1396struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1397{
1398 struct tty_struct *tty;
1399 int retval;
1400
1401 /*
1402 * First time open is complex, especially for PTY devices.
1403 * This code guarantees that either everything succeeds and the
1404 * TTY is ready for operation, or else the table slots are vacated
1405 * and the allocated memory released. (Except that the termios
1406 * may be retained.)
1407 */
1408
1409 if (!try_module_get(driver->owner))
1410 return ERR_PTR(-ENODEV);
1411
1412 tty = alloc_tty_struct(driver, idx);
1413 if (!tty) {
1414 retval = -ENOMEM;
1415 goto err_module_put;
1416 }
1417
1418 tty_lock(tty);
1419 retval = tty_driver_install_tty(driver, tty);
1420 if (retval < 0)
1421 goto err_free_tty;
1422
1423 if (!tty->port)
1424 tty->port = driver->ports[idx];
1425
1426 if (WARN_RATELIMIT(!tty->port,
1427 "%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n",
1428 __func__, tty->driver->name)) {
1429 retval = -EINVAL;
1430 goto err_release_lock;
1431 }
1432
1433 retval = tty_ldisc_lock(tty, 5 * HZ);
1434 if (retval)
1435 goto err_release_lock;
1436 tty->port->itty = tty;
1437
1438 /*
1439 * Structures all installed ... call the ldisc open routines.
1440 * If we fail here just call release_tty to clean up. No need
1441 * to decrement the use counts, as release_tty doesn't care.
1442 */
1443 retval = tty_ldisc_setup(tty, tty->link);
1444 if (retval)
1445 goto err_release_tty;
1446 tty_ldisc_unlock(tty);
1447 /* Return the tty locked so that it cannot vanish under the caller */
1448 return tty;
1449
1450err_free_tty:
1451 tty_unlock(tty);
1452 free_tty_struct(tty);
1453err_module_put:
1454 module_put(driver->owner);
1455 return ERR_PTR(retval);
1456
1457 /* call the tty release_tty routine to clean out this slot */
1458err_release_tty:
1459 tty_ldisc_unlock(tty);
1460 tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1461 retval, idx);
1462err_release_lock:
1463 tty_unlock(tty);
1464 release_tty(tty, idx);
1465 return ERR_PTR(retval);
1466}
1467
1468/**
1469 * tty_save_termios() - save tty termios data in driver table
1470 * @tty: tty whose termios data to save
1471 *
1472 * Locking: Caller guarantees serialisation with tty_init_termios().
1473 */
1474void tty_save_termios(struct tty_struct *tty)
1475{
1476 struct ktermios *tp;
1477 int idx = tty->index;
1478
1479 /* If the port is going to reset then it has no termios to save */
1480 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1481 return;
1482
1483 /* Stash the termios data */
1484 tp = tty->driver->termios[idx];
1485 if (tp == NULL) {
1486 tp = kmalloc(sizeof(*tp), GFP_KERNEL);
1487 if (tp == NULL)
1488 return;
1489 tty->driver->termios[idx] = tp;
1490 }
1491 *tp = tty->termios;
1492}
1493EXPORT_SYMBOL_GPL(tty_save_termios);
1494
1495/**
1496 * tty_flush_works - flush all works of a tty/pty pair
1497 * @tty: tty device to flush works for (or either end of a pty pair)
1498 *
1499 * Sync flush all works belonging to @tty (and the 'other' tty).
1500 */
1501static void tty_flush_works(struct tty_struct *tty)
1502{
1503 flush_work(&tty->SAK_work);
1504 flush_work(&tty->hangup_work);
1505 if (tty->link) {
1506 flush_work(&tty->link->SAK_work);
1507 flush_work(&tty->link->hangup_work);
1508 }
1509}
1510
1511/**
1512 * release_one_tty - release tty structure memory
1513 * @work: work of tty we are obliterating
1514 *
1515 * Releases memory associated with a tty structure, and clears out the
1516 * driver table slots. This function is called when a device is no longer
1517 * in use. It also gets called when setup of a device fails.
1518 *
1519 * Locking:
1520 * takes the file list lock internally when working on the list of ttys
1521 * that the driver keeps.
1522 *
1523 * This method gets called from a work queue so that the driver private
1524 * cleanup ops can sleep (needed for USB at least)
1525 */
1526static void release_one_tty(struct work_struct *work)
1527{
1528 struct tty_struct *tty =
1529 container_of(work, struct tty_struct, hangup_work);
1530 struct tty_driver *driver = tty->driver;
1531 struct module *owner = driver->owner;
1532
1533 if (tty->ops->cleanup)
1534 tty->ops->cleanup(tty);
1535
1536 tty_driver_kref_put(driver);
1537 module_put(owner);
1538
1539 spin_lock(&tty->files_lock);
1540 list_del_init(&tty->tty_files);
1541 spin_unlock(&tty->files_lock);
1542
1543 put_pid(tty->ctrl.pgrp);
1544 put_pid(tty->ctrl.session);
1545 free_tty_struct(tty);
1546}
1547
1548static void queue_release_one_tty(struct kref *kref)
1549{
1550 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1551
1552 /* The hangup queue is now free so we can reuse it rather than
1553 * waste a chunk of memory for each port.
1554 */
1555 INIT_WORK(&tty->hangup_work, release_one_tty);
1556 schedule_work(&tty->hangup_work);
1557}
1558
1559/**
1560 * tty_kref_put - release a tty kref
1561 * @tty: tty device
1562 *
1563 * Release a reference to the @tty device and if need be let the kref layer
1564 * destruct the object for us.
1565 */
1566void tty_kref_put(struct tty_struct *tty)
1567{
1568 if (tty)
1569 kref_put(&tty->kref, queue_release_one_tty);
1570}
1571EXPORT_SYMBOL(tty_kref_put);
1572
1573/**
1574 * release_tty - release tty structure memory
1575 * @tty: tty device release
1576 * @idx: index of the tty device release
1577 *
1578 * Release both @tty and a possible linked partner (think pty pair),
1579 * and decrement the refcount of the backing module.
1580 *
1581 * Locking:
1582 * tty_mutex
1583 * takes the file list lock internally when working on the list of ttys
1584 * that the driver keeps.
1585 */
1586static void release_tty(struct tty_struct *tty, int idx)
1587{
1588 /* This should always be true but check for the moment */
1589 WARN_ON(tty->index != idx);
1590 WARN_ON(!mutex_is_locked(&tty_mutex));
1591 if (tty->ops->shutdown)
1592 tty->ops->shutdown(tty);
1593 tty_save_termios(tty);
1594 tty_driver_remove_tty(tty->driver, tty);
1595 if (tty->port)
1596 tty->port->itty = NULL;
1597 if (tty->link)
1598 tty->link->port->itty = NULL;
1599 if (tty->port)
1600 tty_buffer_cancel_work(tty->port);
1601 if (tty->link)
1602 tty_buffer_cancel_work(tty->link->port);
1603
1604 tty_kref_put(tty->link);
1605 tty_kref_put(tty);
1606}
1607
1608/**
1609 * tty_release_checks - check a tty before real release
1610 * @tty: tty to check
1611 * @idx: index of the tty
1612 *
1613 * Performs some paranoid checking before true release of the @tty. This is a
1614 * no-op unless %TTY_PARANOIA_CHECK is defined.
1615 */
1616static int tty_release_checks(struct tty_struct *tty, int idx)
1617{
1618#ifdef TTY_PARANOIA_CHECK
1619 if (idx < 0 || idx >= tty->driver->num) {
1620 tty_debug(tty, "bad idx %d\n", idx);
1621 return -1;
1622 }
1623
1624 /* not much to check for devpts */
1625 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1626 return 0;
1627
1628 if (tty != tty->driver->ttys[idx]) {
1629 tty_debug(tty, "bad driver table[%d] = %p\n",
1630 idx, tty->driver->ttys[idx]);
1631 return -1;
1632 }
1633 if (tty->driver->other) {
1634 struct tty_struct *o_tty = tty->link;
1635
1636 if (o_tty != tty->driver->other->ttys[idx]) {
1637 tty_debug(tty, "bad other table[%d] = %p\n",
1638 idx, tty->driver->other->ttys[idx]);
1639 return -1;
1640 }
1641 if (o_tty->link != tty) {
1642 tty_debug(tty, "bad link = %p\n", o_tty->link);
1643 return -1;
1644 }
1645 }
1646#endif
1647 return 0;
1648}
1649
1650/**
1651 * tty_kclose - closes tty opened by tty_kopen
1652 * @tty: tty device
1653 *
1654 * Performs the final steps to release and free a tty device. It is the same as
1655 * tty_release_struct() except that it also resets %TTY_PORT_KOPENED flag on
1656 * @tty->port.
1657 */
1658void tty_kclose(struct tty_struct *tty)
1659{
1660 /*
1661 * Ask the line discipline code to release its structures
1662 */
1663 tty_ldisc_release(tty);
1664
1665 /* Wait for pending work before tty destruction commences */
1666 tty_flush_works(tty);
1667
1668 tty_debug_hangup(tty, "freeing structure\n");
1669 /*
1670 * The release_tty function takes care of the details of clearing
1671 * the slots and preserving the termios structure.
1672 */
1673 mutex_lock(&tty_mutex);
1674 tty_port_set_kopened(tty->port, 0);
1675 release_tty(tty, tty->index);
1676 mutex_unlock(&tty_mutex);
1677}
1678EXPORT_SYMBOL_GPL(tty_kclose);
1679
1680/**
1681 * tty_release_struct - release a tty struct
1682 * @tty: tty device
1683 * @idx: index of the tty
1684 *
1685 * Performs the final steps to release and free a tty device. It is roughly the
1686 * reverse of tty_init_dev().
1687 */
1688void tty_release_struct(struct tty_struct *tty, int idx)
1689{
1690 /*
1691 * Ask the line discipline code to release its structures
1692 */
1693 tty_ldisc_release(tty);
1694
1695 /* Wait for pending work before tty destruction commmences */
1696 tty_flush_works(tty);
1697
1698 tty_debug_hangup(tty, "freeing structure\n");
1699 /*
1700 * The release_tty function takes care of the details of clearing
1701 * the slots and preserving the termios structure.
1702 */
1703 mutex_lock(&tty_mutex);
1704 release_tty(tty, idx);
1705 mutex_unlock(&tty_mutex);
1706}
1707EXPORT_SYMBOL_GPL(tty_release_struct);
1708
1709/**
1710 * tty_release - vfs callback for close
1711 * @inode: inode of tty
1712 * @filp: file pointer for handle to tty
1713 *
1714 * Called the last time each file handle is closed that references this tty.
1715 * There may however be several such references.
1716 *
1717 * Locking:
1718 * Takes BKL. See tty_release_dev().
1719 *
1720 * Even releasing the tty structures is a tricky business. We have to be very
1721 * careful that the structures are all released at the same time, as interrupts
1722 * might otherwise get the wrong pointers.
1723 *
1724 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1725 * lead to double frees or releasing memory still in use.
1726 */
1727int tty_release(struct inode *inode, struct file *filp)
1728{
1729 struct tty_struct *tty = file_tty(filp);
1730 struct tty_struct *o_tty = NULL;
1731 int do_sleep, final;
1732 int idx;
1733 long timeout = 0;
1734 int once = 1;
1735
1736 if (tty_paranoia_check(tty, inode, __func__))
1737 return 0;
1738
1739 tty_lock(tty);
1740 check_tty_count(tty, __func__);
1741
1742 __tty_fasync(-1, filp, 0);
1743
1744 idx = tty->index;
1745 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1746 tty->driver->subtype == PTY_TYPE_MASTER)
1747 o_tty = tty->link;
1748
1749 if (tty_release_checks(tty, idx)) {
1750 tty_unlock(tty);
1751 return 0;
1752 }
1753
1754 tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1755
1756 if (tty->ops->close)
1757 tty->ops->close(tty, filp);
1758
1759 /* If tty is pty master, lock the slave pty (stable lock order) */
1760 tty_lock_slave(o_tty);
1761
1762 /*
1763 * Sanity check: if tty->count is going to zero, there shouldn't be
1764 * any waiters on tty->read_wait or tty->write_wait. We test the
1765 * wait queues and kick everyone out _before_ actually starting to
1766 * close. This ensures that we won't block while releasing the tty
1767 * structure.
1768 *
1769 * The test for the o_tty closing is necessary, since the master and
1770 * slave sides may close in any order. If the slave side closes out
1771 * first, its count will be one, since the master side holds an open.
1772 * Thus this test wouldn't be triggered at the time the slave closed,
1773 * so we do it now.
1774 */
1775 while (1) {
1776 do_sleep = 0;
1777
1778 if (tty->count <= 1) {
1779 if (waitqueue_active(&tty->read_wait)) {
1780 wake_up_poll(&tty->read_wait, EPOLLIN);
1781 do_sleep++;
1782 }
1783 if (waitqueue_active(&tty->write_wait)) {
1784 wake_up_poll(&tty->write_wait, EPOLLOUT);
1785 do_sleep++;
1786 }
1787 }
1788 if (o_tty && o_tty->count <= 1) {
1789 if (waitqueue_active(&o_tty->read_wait)) {
1790 wake_up_poll(&o_tty->read_wait, EPOLLIN);
1791 do_sleep++;
1792 }
1793 if (waitqueue_active(&o_tty->write_wait)) {
1794 wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1795 do_sleep++;
1796 }
1797 }
1798 if (!do_sleep)
1799 break;
1800
1801 if (once) {
1802 once = 0;
1803 tty_warn(tty, "read/write wait queue active!\n");
1804 }
1805 schedule_timeout_killable(timeout);
1806 if (timeout < 120 * HZ)
1807 timeout = 2 * timeout + 1;
1808 else
1809 timeout = MAX_SCHEDULE_TIMEOUT;
1810 }
1811
1812 if (o_tty) {
1813 if (--o_tty->count < 0) {
1814 tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1815 o_tty->count = 0;
1816 }
1817 }
1818 if (--tty->count < 0) {
1819 tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1820 tty->count = 0;
1821 }
1822
1823 /*
1824 * We've decremented tty->count, so we need to remove this file
1825 * descriptor off the tty->tty_files list; this serves two
1826 * purposes:
1827 * - check_tty_count sees the correct number of file descriptors
1828 * associated with this tty.
1829 * - do_tty_hangup no longer sees this file descriptor as
1830 * something that needs to be handled for hangups.
1831 */
1832 tty_del_file(filp);
1833
1834 /*
1835 * Perform some housekeeping before deciding whether to return.
1836 *
1837 * If _either_ side is closing, make sure there aren't any
1838 * processes that still think tty or o_tty is their controlling
1839 * tty.
1840 */
1841 if (!tty->count) {
1842 read_lock(&tasklist_lock);
1843 session_clear_tty(tty->ctrl.session);
1844 if (o_tty)
1845 session_clear_tty(o_tty->ctrl.session);
1846 read_unlock(&tasklist_lock);
1847 }
1848
1849 /* check whether both sides are closing ... */
1850 final = !tty->count && !(o_tty && o_tty->count);
1851
1852 tty_unlock_slave(o_tty);
1853 tty_unlock(tty);
1854
1855 /* At this point, the tty->count == 0 should ensure a dead tty
1856 * cannot be re-opened by a racing opener.
1857 */
1858
1859 if (!final)
1860 return 0;
1861
1862 tty_debug_hangup(tty, "final close\n");
1863
1864 tty_release_struct(tty, idx);
1865 return 0;
1866}
1867
1868/**
1869 * tty_open_current_tty - get locked tty of current task
1870 * @device: device number
1871 * @filp: file pointer to tty
1872 * @return: locked tty of the current task iff @device is /dev/tty
1873 *
1874 * Performs a re-open of the current task's controlling tty.
1875 *
1876 * We cannot return driver and index like for the other nodes because devpts
1877 * will not work then. It expects inodes to be from devpts FS.
1878 */
1879static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1880{
1881 struct tty_struct *tty;
1882 int retval;
1883
1884 if (device != MKDEV(TTYAUX_MAJOR, 0))
1885 return NULL;
1886
1887 tty = get_current_tty();
1888 if (!tty)
1889 return ERR_PTR(-ENXIO);
1890
1891 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1892 /* noctty = 1; */
1893 tty_lock(tty);
1894 tty_kref_put(tty); /* safe to drop the kref now */
1895
1896 retval = tty_reopen(tty);
1897 if (retval < 0) {
1898 tty_unlock(tty);
1899 tty = ERR_PTR(retval);
1900 }
1901 return tty;
1902}
1903
1904/**
1905 * tty_lookup_driver - lookup a tty driver for a given device file
1906 * @device: device number
1907 * @filp: file pointer to tty
1908 * @index: index for the device in the @return driver
1909 *
1910 * If returned value is not erroneous, the caller is responsible to decrement
1911 * the refcount by tty_driver_kref_put().
1912 *
1913 * Locking: %tty_mutex protects get_tty_driver()
1914 *
1915 * Return: driver for this inode (with increased refcount)
1916 */
1917static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1918 int *index)
1919{
1920 struct tty_driver *driver = NULL;
1921
1922 switch (device) {
1923#ifdef CONFIG_VT
1924 case MKDEV(TTY_MAJOR, 0): {
1925 extern struct tty_driver *console_driver;
1926
1927 driver = tty_driver_kref_get(console_driver);
1928 *index = fg_console;
1929 break;
1930 }
1931#endif
1932 case MKDEV(TTYAUX_MAJOR, 1): {
1933 struct tty_driver *console_driver = console_device(index);
1934
1935 if (console_driver) {
1936 driver = tty_driver_kref_get(console_driver);
1937 if (driver && filp) {
1938 /* Don't let /dev/console block */
1939 filp->f_flags |= O_NONBLOCK;
1940 break;
1941 }
1942 }
1943 if (driver)
1944 tty_driver_kref_put(driver);
1945 return ERR_PTR(-ENODEV);
1946 }
1947 default:
1948 driver = get_tty_driver(device, index);
1949 if (!driver)
1950 return ERR_PTR(-ENODEV);
1951 break;
1952 }
1953 return driver;
1954}
1955
1956static struct tty_struct *tty_kopen(dev_t device, int shared)
1957{
1958 struct tty_struct *tty;
1959 struct tty_driver *driver;
1960 int index = -1;
1961
1962 mutex_lock(&tty_mutex);
1963 driver = tty_lookup_driver(device, NULL, &index);
1964 if (IS_ERR(driver)) {
1965 mutex_unlock(&tty_mutex);
1966 return ERR_CAST(driver);
1967 }
1968
1969 /* check whether we're reopening an existing tty */
1970 tty = tty_driver_lookup_tty(driver, NULL, index);
1971 if (IS_ERR(tty) || shared)
1972 goto out;
1973
1974 if (tty) {
1975 /* drop kref from tty_driver_lookup_tty() */
1976 tty_kref_put(tty);
1977 tty = ERR_PTR(-EBUSY);
1978 } else { /* tty_init_dev returns tty with the tty_lock held */
1979 tty = tty_init_dev(driver, index);
1980 if (IS_ERR(tty))
1981 goto out;
1982 tty_port_set_kopened(tty->port, 1);
1983 }
1984out:
1985 mutex_unlock(&tty_mutex);
1986 tty_driver_kref_put(driver);
1987 return tty;
1988}
1989
1990/**
1991 * tty_kopen_exclusive - open a tty device for kernel
1992 * @device: dev_t of device to open
1993 *
1994 * Opens tty exclusively for kernel. Performs the driver lookup, makes sure
1995 * it's not already opened and performs the first-time tty initialization.
1996 *
1997 * Claims the global %tty_mutex to serialize:
1998 * * concurrent first-time tty initialization
1999 * * concurrent tty driver removal w/ lookup
2000 * * concurrent tty removal from driver table
2001 *
2002 * Return: the locked initialized &tty_struct
2003 */
2004struct tty_struct *tty_kopen_exclusive(dev_t device)
2005{
2006 return tty_kopen(device, 0);
2007}
2008EXPORT_SYMBOL_GPL(tty_kopen_exclusive);
2009
2010/**
2011 * tty_kopen_shared - open a tty device for shared in-kernel use
2012 * @device: dev_t of device to open
2013 *
2014 * Opens an already existing tty for in-kernel use. Compared to
2015 * tty_kopen_exclusive() above it doesn't ensure to be the only user.
2016 *
2017 * Locking: identical to tty_kopen() above.
2018 */
2019struct tty_struct *tty_kopen_shared(dev_t device)
2020{
2021 return tty_kopen(device, 1);
2022}
2023EXPORT_SYMBOL_GPL(tty_kopen_shared);
2024
2025/**
2026 * tty_open_by_driver - open a tty device
2027 * @device: dev_t of device to open
2028 * @filp: file pointer to tty
2029 *
2030 * Performs the driver lookup, checks for a reopen, or otherwise performs the
2031 * first-time tty initialization.
2032 *
2033 *
2034 * Claims the global tty_mutex to serialize:
2035 * * concurrent first-time tty initialization
2036 * * concurrent tty driver removal w/ lookup
2037 * * concurrent tty removal from driver table
2038 *
2039 * Return: the locked initialized or re-opened &tty_struct
2040 */
2041static struct tty_struct *tty_open_by_driver(dev_t device,
2042 struct file *filp)
2043{
2044 struct tty_struct *tty;
2045 struct tty_driver *driver = NULL;
2046 int index = -1;
2047 int retval;
2048
2049 mutex_lock(&tty_mutex);
2050 driver = tty_lookup_driver(device, filp, &index);
2051 if (IS_ERR(driver)) {
2052 mutex_unlock(&tty_mutex);
2053 return ERR_CAST(driver);
2054 }
2055
2056 /* check whether we're reopening an existing tty */
2057 tty = tty_driver_lookup_tty(driver, filp, index);
2058 if (IS_ERR(tty)) {
2059 mutex_unlock(&tty_mutex);
2060 goto out;
2061 }
2062
2063 if (tty) {
2064 if (tty_port_kopened(tty->port)) {
2065 tty_kref_put(tty);
2066 mutex_unlock(&tty_mutex);
2067 tty = ERR_PTR(-EBUSY);
2068 goto out;
2069 }
2070 mutex_unlock(&tty_mutex);
2071 retval = tty_lock_interruptible(tty);
2072 tty_kref_put(tty); /* drop kref from tty_driver_lookup_tty() */
2073 if (retval) {
2074 if (retval == -EINTR)
2075 retval = -ERESTARTSYS;
2076 tty = ERR_PTR(retval);
2077 goto out;
2078 }
2079 retval = tty_reopen(tty);
2080 if (retval < 0) {
2081 tty_unlock(tty);
2082 tty = ERR_PTR(retval);
2083 }
2084 } else { /* Returns with the tty_lock held for now */
2085 tty = tty_init_dev(driver, index);
2086 mutex_unlock(&tty_mutex);
2087 }
2088out:
2089 tty_driver_kref_put(driver);
2090 return tty;
2091}
2092
2093/**
2094 * tty_open - open a tty device
2095 * @inode: inode of device file
2096 * @filp: file pointer to tty
2097 *
2098 * tty_open() and tty_release() keep up the tty count that contains the number
2099 * of opens done on a tty. We cannot use the inode-count, as different inodes
2100 * might point to the same tty.
2101 *
2102 * Open-counting is needed for pty masters, as well as for keeping track of
2103 * serial lines: DTR is dropped when the last close happens.
2104 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2105 *
2106 * The termios state of a pty is reset on the first open so that settings don't
2107 * persist across reuse.
2108 *
2109 * Locking:
2110 * * %tty_mutex protects tty, tty_lookup_driver() and tty_init_dev().
2111 * * @tty->count should protect the rest.
2112 * * ->siglock protects ->signal/->sighand
2113 *
2114 * Note: the tty_unlock/lock cases without a ref are only safe due to %tty_mutex
2115 */
2116static int tty_open(struct inode *inode, struct file *filp)
2117{
2118 struct tty_struct *tty;
2119 int noctty, retval;
2120 dev_t device = inode->i_rdev;
2121 unsigned saved_flags = filp->f_flags;
2122
2123 nonseekable_open(inode, filp);
2124
2125retry_open:
2126 retval = tty_alloc_file(filp);
2127 if (retval)
2128 return -ENOMEM;
2129
2130 tty = tty_open_current_tty(device, filp);
2131 if (!tty)
2132 tty = tty_open_by_driver(device, filp);
2133
2134 if (IS_ERR(tty)) {
2135 tty_free_file(filp);
2136 retval = PTR_ERR(tty);
2137 if (retval != -EAGAIN || signal_pending(current))
2138 return retval;
2139 schedule();
2140 goto retry_open;
2141 }
2142
2143 tty_add_file(tty, filp);
2144
2145 check_tty_count(tty, __func__);
2146 tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2147
2148 if (tty->ops->open)
2149 retval = tty->ops->open(tty, filp);
2150 else
2151 retval = -ENODEV;
2152 filp->f_flags = saved_flags;
2153
2154 if (retval) {
2155 tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2156
2157 tty_unlock(tty); /* need to call tty_release without BTM */
2158 tty_release(inode, filp);
2159 if (retval != -ERESTARTSYS)
2160 return retval;
2161
2162 if (signal_pending(current))
2163 return retval;
2164
2165 schedule();
2166 /*
2167 * Need to reset f_op in case a hangup happened.
2168 */
2169 if (tty_hung_up_p(filp))
2170 filp->f_op = &tty_fops;
2171 goto retry_open;
2172 }
2173 clear_bit(TTY_HUPPED, &tty->flags);
2174
2175 noctty = (filp->f_flags & O_NOCTTY) ||
2176 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2177 device == MKDEV(TTYAUX_MAJOR, 1) ||
2178 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2179 tty->driver->subtype == PTY_TYPE_MASTER);
2180 if (!noctty)
2181 tty_open_proc_set_tty(filp, tty);
2182 tty_unlock(tty);
2183 return 0;
2184}
2185
2186
2187/**
2188 * tty_poll - check tty status
2189 * @filp: file being polled
2190 * @wait: poll wait structures to update
2191 *
2192 * Call the line discipline polling method to obtain the poll status of the
2193 * device.
2194 *
2195 * Locking: locks called line discipline but ldisc poll method may be
2196 * re-entered freely by other callers.
2197 */
2198static __poll_t tty_poll(struct file *filp, poll_table *wait)
2199{
2200 struct tty_struct *tty = file_tty(filp);
2201 struct tty_ldisc *ld;
2202 __poll_t ret = 0;
2203
2204 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2205 return 0;
2206
2207 ld = tty_ldisc_ref_wait(tty);
2208 if (!ld)
2209 return hung_up_tty_poll(filp, wait);
2210 if (ld->ops->poll)
2211 ret = ld->ops->poll(tty, filp, wait);
2212 tty_ldisc_deref(ld);
2213 return ret;
2214}
2215
2216static int __tty_fasync(int fd, struct file *filp, int on)
2217{
2218 struct tty_struct *tty = file_tty(filp);
2219 unsigned long flags;
2220 int retval = 0;
2221
2222 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2223 goto out;
2224
2225 retval = fasync_helper(fd, filp, on, &tty->fasync);
2226 if (retval <= 0)
2227 goto out;
2228
2229 if (on) {
2230 enum pid_type type;
2231 struct pid *pid;
2232
2233 spin_lock_irqsave(&tty->ctrl.lock, flags);
2234 if (tty->ctrl.pgrp) {
2235 pid = tty->ctrl.pgrp;
2236 type = PIDTYPE_PGID;
2237 } else {
2238 pid = task_pid(current);
2239 type = PIDTYPE_TGID;
2240 }
2241 get_pid(pid);
2242 spin_unlock_irqrestore(&tty->ctrl.lock, flags);
2243 __f_setown(filp, pid, type, 0);
2244 put_pid(pid);
2245 retval = 0;
2246 }
2247out:
2248 return retval;
2249}
2250
2251static int tty_fasync(int fd, struct file *filp, int on)
2252{
2253 struct tty_struct *tty = file_tty(filp);
2254 int retval = -ENOTTY;
2255
2256 tty_lock(tty);
2257 if (!tty_hung_up_p(filp))
2258 retval = __tty_fasync(fd, filp, on);
2259 tty_unlock(tty);
2260
2261 return retval;
2262}
2263
2264static bool tty_legacy_tiocsti __read_mostly = IS_ENABLED(CONFIG_LEGACY_TIOCSTI);
2265/**
2266 * tiocsti - fake input character
2267 * @tty: tty to fake input into
2268 * @p: pointer to character
2269 *
2270 * Fake input to a tty device. Does the necessary locking and input management.
2271 *
2272 * FIXME: does not honour flow control ??
2273 *
2274 * Locking:
2275 * * Called functions take tty_ldiscs_lock
2276 * * current->signal->tty check is safe without locks
2277 */
2278static int tiocsti(struct tty_struct *tty, char __user *p)
2279{
2280 char ch, mbz = 0;
2281 struct tty_ldisc *ld;
2282
2283 if (!tty_legacy_tiocsti && !capable(CAP_SYS_ADMIN))
2284 return -EIO;
2285
2286 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2287 return -EPERM;
2288 if (get_user(ch, p))
2289 return -EFAULT;
2290 tty_audit_tiocsti(tty, ch);
2291 ld = tty_ldisc_ref_wait(tty);
2292 if (!ld)
2293 return -EIO;
2294 tty_buffer_lock_exclusive(tty->port);
2295 if (ld->ops->receive_buf)
2296 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2297 tty_buffer_unlock_exclusive(tty->port);
2298 tty_ldisc_deref(ld);
2299 return 0;
2300}
2301
2302/**
2303 * tiocgwinsz - implement window query ioctl
2304 * @tty: tty
2305 * @arg: user buffer for result
2306 *
2307 * Copies the kernel idea of the window size into the user buffer.
2308 *
2309 * Locking: @tty->winsize_mutex is taken to ensure the winsize data is
2310 * consistent.
2311 */
2312static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2313{
2314 int err;
2315
2316 mutex_lock(&tty->winsize_mutex);
2317 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2318 mutex_unlock(&tty->winsize_mutex);
2319
2320 return err ? -EFAULT : 0;
2321}
2322
2323/**
2324 * tty_do_resize - resize event
2325 * @tty: tty being resized
2326 * @ws: new dimensions
2327 *
2328 * Update the termios variables and send the necessary signals to peform a
2329 * terminal resize correctly.
2330 */
2331int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2332{
2333 struct pid *pgrp;
2334
2335 /* Lock the tty */
2336 mutex_lock(&tty->winsize_mutex);
2337 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2338 goto done;
2339
2340 /* Signal the foreground process group */
2341 pgrp = tty_get_pgrp(tty);
2342 if (pgrp)
2343 kill_pgrp(pgrp, SIGWINCH, 1);
2344 put_pid(pgrp);
2345
2346 tty->winsize = *ws;
2347done:
2348 mutex_unlock(&tty->winsize_mutex);
2349 return 0;
2350}
2351EXPORT_SYMBOL(tty_do_resize);
2352
2353/**
2354 * tiocswinsz - implement window size set ioctl
2355 * @tty: tty side of tty
2356 * @arg: user buffer for result
2357 *
2358 * Copies the user idea of the window size to the kernel. Traditionally this is
2359 * just advisory information but for the Linux console it actually has driver
2360 * level meaning and triggers a VC resize.
2361 *
2362 * Locking:
2363 * Driver dependent. The default do_resize method takes the tty termios
2364 * mutex and ctrl.lock. The console takes its own lock then calls into the
2365 * default method.
2366 */
2367static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2368{
2369 struct winsize tmp_ws;
2370
2371 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2372 return -EFAULT;
2373
2374 if (tty->ops->resize)
2375 return tty->ops->resize(tty, &tmp_ws);
2376 else
2377 return tty_do_resize(tty, &tmp_ws);
2378}
2379
2380/**
2381 * tioccons - allow admin to move logical console
2382 * @file: the file to become console
2383 *
2384 * Allow the administrator to move the redirected console device.
2385 *
2386 * Locking: uses redirect_lock to guard the redirect information
2387 */
2388static int tioccons(struct file *file)
2389{
2390 if (!capable(CAP_SYS_ADMIN))
2391 return -EPERM;
2392 if (file->f_op->write_iter == redirected_tty_write) {
2393 struct file *f;
2394
2395 spin_lock(&redirect_lock);
2396 f = redirect;
2397 redirect = NULL;
2398 spin_unlock(&redirect_lock);
2399 if (f)
2400 fput(f);
2401 return 0;
2402 }
2403 if (file->f_op->write_iter != tty_write)
2404 return -ENOTTY;
2405 if (!(file->f_mode & FMODE_WRITE))
2406 return -EBADF;
2407 if (!(file->f_mode & FMODE_CAN_WRITE))
2408 return -EINVAL;
2409 spin_lock(&redirect_lock);
2410 if (redirect) {
2411 spin_unlock(&redirect_lock);
2412 return -EBUSY;
2413 }
2414 redirect = get_file(file);
2415 spin_unlock(&redirect_lock);
2416 return 0;
2417}
2418
2419/**
2420 * tiocsetd - set line discipline
2421 * @tty: tty device
2422 * @p: pointer to user data
2423 *
2424 * Set the line discipline according to user request.
2425 *
2426 * Locking: see tty_set_ldisc(), this function is just a helper
2427 */
2428static int tiocsetd(struct tty_struct *tty, int __user *p)
2429{
2430 int disc;
2431 int ret;
2432
2433 if (get_user(disc, p))
2434 return -EFAULT;
2435
2436 ret = tty_set_ldisc(tty, disc);
2437
2438 return ret;
2439}
2440
2441/**
2442 * tiocgetd - get line discipline
2443 * @tty: tty device
2444 * @p: pointer to user data
2445 *
2446 * Retrieves the line discipline id directly from the ldisc.
2447 *
2448 * Locking: waits for ldisc reference (in case the line discipline is changing
2449 * or the @tty is being hungup)
2450 */
2451static int tiocgetd(struct tty_struct *tty, int __user *p)
2452{
2453 struct tty_ldisc *ld;
2454 int ret;
2455
2456 ld = tty_ldisc_ref_wait(tty);
2457 if (!ld)
2458 return -EIO;
2459 ret = put_user(ld->ops->num, p);
2460 tty_ldisc_deref(ld);
2461 return ret;
2462}
2463
2464/**
2465 * send_break - performed time break
2466 * @tty: device to break on
2467 * @duration: timeout in mS
2468 *
2469 * Perform a timed break on hardware that lacks its own driver level timed
2470 * break functionality.
2471 *
2472 * Locking:
2473 * @tty->atomic_write_lock serializes
2474 */
2475static int send_break(struct tty_struct *tty, unsigned int duration)
2476{
2477 int retval;
2478
2479 if (tty->ops->break_ctl == NULL)
2480 return 0;
2481
2482 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2483 retval = tty->ops->break_ctl(tty, duration);
2484 else {
2485 /* Do the work ourselves */
2486 if (tty_write_lock(tty, false) < 0)
2487 return -EINTR;
2488 retval = tty->ops->break_ctl(tty, -1);
2489 if (retval)
2490 goto out;
2491 if (!signal_pending(current))
2492 msleep_interruptible(duration);
2493 retval = tty->ops->break_ctl(tty, 0);
2494out:
2495 tty_write_unlock(tty);
2496 if (signal_pending(current))
2497 retval = -EINTR;
2498 }
2499 return retval;
2500}
2501
2502/**
2503 * tty_tiocmget - get modem status
2504 * @tty: tty device
2505 * @p: pointer to result
2506 *
2507 * Obtain the modem status bits from the tty driver if the feature is
2508 * supported. Return -%ENOTTY if it is not available.
2509 *
2510 * Locking: none (up to the driver)
2511 */
2512static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2513{
2514 int retval = -ENOTTY;
2515
2516 if (tty->ops->tiocmget) {
2517 retval = tty->ops->tiocmget(tty);
2518
2519 if (retval >= 0)
2520 retval = put_user(retval, p);
2521 }
2522 return retval;
2523}
2524
2525/**
2526 * tty_tiocmset - set modem status
2527 * @tty: tty device
2528 * @cmd: command - clear bits, set bits or set all
2529 * @p: pointer to desired bits
2530 *
2531 * Set the modem status bits from the tty driver if the feature
2532 * is supported. Return -%ENOTTY if it is not available.
2533 *
2534 * Locking: none (up to the driver)
2535 */
2536static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2537 unsigned __user *p)
2538{
2539 int retval;
2540 unsigned int set, clear, val;
2541
2542 if (tty->ops->tiocmset == NULL)
2543 return -ENOTTY;
2544
2545 retval = get_user(val, p);
2546 if (retval)
2547 return retval;
2548 set = clear = 0;
2549 switch (cmd) {
2550 case TIOCMBIS:
2551 set = val;
2552 break;
2553 case TIOCMBIC:
2554 clear = val;
2555 break;
2556 case TIOCMSET:
2557 set = val;
2558 clear = ~val;
2559 break;
2560 }
2561 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2562 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2563 return tty->ops->tiocmset(tty, set, clear);
2564}
2565
2566/**
2567 * tty_get_icount - get tty statistics
2568 * @tty: tty device
2569 * @icount: output parameter
2570 *
2571 * Gets a copy of the @tty's icount statistics.
2572 *
2573 * Locking: none (up to the driver)
2574 */
2575int tty_get_icount(struct tty_struct *tty,
2576 struct serial_icounter_struct *icount)
2577{
2578 memset(icount, 0, sizeof(*icount));
2579
2580 if (tty->ops->get_icount)
2581 return tty->ops->get_icount(tty, icount);
2582 else
2583 return -ENOTTY;
2584}
2585EXPORT_SYMBOL_GPL(tty_get_icount);
2586
2587static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2588{
2589 struct serial_icounter_struct icount;
2590 int retval;
2591
2592 retval = tty_get_icount(tty, &icount);
2593 if (retval != 0)
2594 return retval;
2595
2596 if (copy_to_user(arg, &icount, sizeof(icount)))
2597 return -EFAULT;
2598 return 0;
2599}
2600
2601static int tty_set_serial(struct tty_struct *tty, struct serial_struct *ss)
2602{
2603 char comm[TASK_COMM_LEN];
2604 int flags;
2605
2606 flags = ss->flags & ASYNC_DEPRECATED;
2607
2608 if (flags)
2609 pr_warn_ratelimited("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2610 __func__, get_task_comm(comm, current), flags);
2611
2612 if (!tty->ops->set_serial)
2613 return -ENOTTY;
2614
2615 return tty->ops->set_serial(tty, ss);
2616}
2617
2618static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss)
2619{
2620 struct serial_struct v;
2621
2622 if (copy_from_user(&v, ss, sizeof(*ss)))
2623 return -EFAULT;
2624
2625 return tty_set_serial(tty, &v);
2626}
2627
2628static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss)
2629{
2630 struct serial_struct v;
2631 int err;
2632
2633 memset(&v, 0, sizeof(v));
2634 if (!tty->ops->get_serial)
2635 return -ENOTTY;
2636 err = tty->ops->get_serial(tty, &v);
2637 if (!err && copy_to_user(ss, &v, sizeof(v)))
2638 err = -EFAULT;
2639 return err;
2640}
2641
2642/*
2643 * if pty, return the slave side (real_tty)
2644 * otherwise, return self
2645 */
2646static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2647{
2648 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2649 tty->driver->subtype == PTY_TYPE_MASTER)
2650 tty = tty->link;
2651 return tty;
2652}
2653
2654/*
2655 * Split this up, as gcc can choke on it otherwise..
2656 */
2657long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2658{
2659 struct tty_struct *tty = file_tty(file);
2660 struct tty_struct *real_tty;
2661 void __user *p = (void __user *)arg;
2662 int retval;
2663 struct tty_ldisc *ld;
2664
2665 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2666 return -EINVAL;
2667
2668 real_tty = tty_pair_get_tty(tty);
2669
2670 /*
2671 * Factor out some common prep work
2672 */
2673 switch (cmd) {
2674 case TIOCSETD:
2675 case TIOCSBRK:
2676 case TIOCCBRK:
2677 case TCSBRK:
2678 case TCSBRKP:
2679 retval = tty_check_change(tty);
2680 if (retval)
2681 return retval;
2682 if (cmd != TIOCCBRK) {
2683 tty_wait_until_sent(tty, 0);
2684 if (signal_pending(current))
2685 return -EINTR;
2686 }
2687 break;
2688 }
2689
2690 /*
2691 * Now do the stuff.
2692 */
2693 switch (cmd) {
2694 case TIOCSTI:
2695 return tiocsti(tty, p);
2696 case TIOCGWINSZ:
2697 return tiocgwinsz(real_tty, p);
2698 case TIOCSWINSZ:
2699 return tiocswinsz(real_tty, p);
2700 case TIOCCONS:
2701 return real_tty != tty ? -EINVAL : tioccons(file);
2702 case TIOCEXCL:
2703 set_bit(TTY_EXCLUSIVE, &tty->flags);
2704 return 0;
2705 case TIOCNXCL:
2706 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2707 return 0;
2708 case TIOCGEXCL:
2709 {
2710 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2711
2712 return put_user(excl, (int __user *)p);
2713 }
2714 case TIOCGETD:
2715 return tiocgetd(tty, p);
2716 case TIOCSETD:
2717 return tiocsetd(tty, p);
2718 case TIOCVHANGUP:
2719 if (!capable(CAP_SYS_ADMIN))
2720 return -EPERM;
2721 tty_vhangup(tty);
2722 return 0;
2723 case TIOCGDEV:
2724 {
2725 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2726
2727 return put_user(ret, (unsigned int __user *)p);
2728 }
2729 /*
2730 * Break handling
2731 */
2732 case TIOCSBRK: /* Turn break on, unconditionally */
2733 if (tty->ops->break_ctl)
2734 return tty->ops->break_ctl(tty, -1);
2735 return 0;
2736 case TIOCCBRK: /* Turn break off, unconditionally */
2737 if (tty->ops->break_ctl)
2738 return tty->ops->break_ctl(tty, 0);
2739 return 0;
2740 case TCSBRK: /* SVID version: non-zero arg --> no break */
2741 /* non-zero arg means wait for all output data
2742 * to be sent (performed above) but don't send break.
2743 * This is used by the tcdrain() termios function.
2744 */
2745 if (!arg)
2746 return send_break(tty, 250);
2747 return 0;
2748 case TCSBRKP: /* support for POSIX tcsendbreak() */
2749 return send_break(tty, arg ? arg*100 : 250);
2750
2751 case TIOCMGET:
2752 return tty_tiocmget(tty, p);
2753 case TIOCMSET:
2754 case TIOCMBIC:
2755 case TIOCMBIS:
2756 return tty_tiocmset(tty, cmd, p);
2757 case TIOCGICOUNT:
2758 return tty_tiocgicount(tty, p);
2759 case TCFLSH:
2760 switch (arg) {
2761 case TCIFLUSH:
2762 case TCIOFLUSH:
2763 /* flush tty buffer and allow ldisc to process ioctl */
2764 tty_buffer_flush(tty, NULL);
2765 break;
2766 }
2767 break;
2768 case TIOCSSERIAL:
2769 return tty_tiocsserial(tty, p);
2770 case TIOCGSERIAL:
2771 return tty_tiocgserial(tty, p);
2772 case TIOCGPTPEER:
2773 /* Special because the struct file is needed */
2774 return ptm_open_peer(file, tty, (int)arg);
2775 default:
2776 retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2777 if (retval != -ENOIOCTLCMD)
2778 return retval;
2779 }
2780 if (tty->ops->ioctl) {
2781 retval = tty->ops->ioctl(tty, cmd, arg);
2782 if (retval != -ENOIOCTLCMD)
2783 return retval;
2784 }
2785 ld = tty_ldisc_ref_wait(tty);
2786 if (!ld)
2787 return hung_up_tty_ioctl(file, cmd, arg);
2788 retval = -EINVAL;
2789 if (ld->ops->ioctl) {
2790 retval = ld->ops->ioctl(tty, cmd, arg);
2791 if (retval == -ENOIOCTLCMD)
2792 retval = -ENOTTY;
2793 }
2794 tty_ldisc_deref(ld);
2795 return retval;
2796}
2797
2798#ifdef CONFIG_COMPAT
2799
2800struct serial_struct32 {
2801 compat_int_t type;
2802 compat_int_t line;
2803 compat_uint_t port;
2804 compat_int_t irq;
2805 compat_int_t flags;
2806 compat_int_t xmit_fifo_size;
2807 compat_int_t custom_divisor;
2808 compat_int_t baud_base;
2809 unsigned short close_delay;
2810 char io_type;
2811 char reserved_char;
2812 compat_int_t hub6;
2813 unsigned short closing_wait; /* time to wait before closing */
2814 unsigned short closing_wait2; /* no longer used... */
2815 compat_uint_t iomem_base;
2816 unsigned short iomem_reg_shift;
2817 unsigned int port_high;
2818 /* compat_ulong_t iomap_base FIXME */
2819 compat_int_t reserved;
2820};
2821
2822static int compat_tty_tiocsserial(struct tty_struct *tty,
2823 struct serial_struct32 __user *ss)
2824{
2825 struct serial_struct32 v32;
2826 struct serial_struct v;
2827
2828 if (copy_from_user(&v32, ss, sizeof(*ss)))
2829 return -EFAULT;
2830
2831 memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base));
2832 v.iomem_base = compat_ptr(v32.iomem_base);
2833 v.iomem_reg_shift = v32.iomem_reg_shift;
2834 v.port_high = v32.port_high;
2835 v.iomap_base = 0;
2836
2837 return tty_set_serial(tty, &v);
2838}
2839
2840static int compat_tty_tiocgserial(struct tty_struct *tty,
2841 struct serial_struct32 __user *ss)
2842{
2843 struct serial_struct32 v32;
2844 struct serial_struct v;
2845 int err;
2846
2847 memset(&v, 0, sizeof(v));
2848 memset(&v32, 0, sizeof(v32));
2849
2850 if (!tty->ops->get_serial)
2851 return -ENOTTY;
2852 err = tty->ops->get_serial(tty, &v);
2853 if (!err) {
2854 memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base));
2855 v32.iomem_base = (unsigned long)v.iomem_base >> 32 ?
2856 0xfffffff : ptr_to_compat(v.iomem_base);
2857 v32.iomem_reg_shift = v.iomem_reg_shift;
2858 v32.port_high = v.port_high;
2859 if (copy_to_user(ss, &v32, sizeof(v32)))
2860 err = -EFAULT;
2861 }
2862 return err;
2863}
2864static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2865 unsigned long arg)
2866{
2867 struct tty_struct *tty = file_tty(file);
2868 struct tty_ldisc *ld;
2869 int retval = -ENOIOCTLCMD;
2870
2871 switch (cmd) {
2872 case TIOCOUTQ:
2873 case TIOCSTI:
2874 case TIOCGWINSZ:
2875 case TIOCSWINSZ:
2876 case TIOCGEXCL:
2877 case TIOCGETD:
2878 case TIOCSETD:
2879 case TIOCGDEV:
2880 case TIOCMGET:
2881 case TIOCMSET:
2882 case TIOCMBIC:
2883 case TIOCMBIS:
2884 case TIOCGICOUNT:
2885 case TIOCGPGRP:
2886 case TIOCSPGRP:
2887 case TIOCGSID:
2888 case TIOCSERGETLSR:
2889 case TIOCGRS485:
2890 case TIOCSRS485:
2891#ifdef TIOCGETP
2892 case TIOCGETP:
2893 case TIOCSETP:
2894 case TIOCSETN:
2895#endif
2896#ifdef TIOCGETC
2897 case TIOCGETC:
2898 case TIOCSETC:
2899#endif
2900#ifdef TIOCGLTC
2901 case TIOCGLTC:
2902 case TIOCSLTC:
2903#endif
2904 case TCSETSF:
2905 case TCSETSW:
2906 case TCSETS:
2907 case TCGETS:
2908#ifdef TCGETS2
2909 case TCGETS2:
2910 case TCSETSF2:
2911 case TCSETSW2:
2912 case TCSETS2:
2913#endif
2914 case TCGETA:
2915 case TCSETAF:
2916 case TCSETAW:
2917 case TCSETA:
2918 case TIOCGLCKTRMIOS:
2919 case TIOCSLCKTRMIOS:
2920#ifdef TCGETX
2921 case TCGETX:
2922 case TCSETX:
2923 case TCSETXW:
2924 case TCSETXF:
2925#endif
2926 case TIOCGSOFTCAR:
2927 case TIOCSSOFTCAR:
2928
2929 case PPPIOCGCHAN:
2930 case PPPIOCGUNIT:
2931 return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2932 case TIOCCONS:
2933 case TIOCEXCL:
2934 case TIOCNXCL:
2935 case TIOCVHANGUP:
2936 case TIOCSBRK:
2937 case TIOCCBRK:
2938 case TCSBRK:
2939 case TCSBRKP:
2940 case TCFLSH:
2941 case TIOCGPTPEER:
2942 case TIOCNOTTY:
2943 case TIOCSCTTY:
2944 case TCXONC:
2945 case TIOCMIWAIT:
2946 case TIOCSERCONFIG:
2947 return tty_ioctl(file, cmd, arg);
2948 }
2949
2950 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2951 return -EINVAL;
2952
2953 switch (cmd) {
2954 case TIOCSSERIAL:
2955 return compat_tty_tiocsserial(tty, compat_ptr(arg));
2956 case TIOCGSERIAL:
2957 return compat_tty_tiocgserial(tty, compat_ptr(arg));
2958 }
2959 if (tty->ops->compat_ioctl) {
2960 retval = tty->ops->compat_ioctl(tty, cmd, arg);
2961 if (retval != -ENOIOCTLCMD)
2962 return retval;
2963 }
2964
2965 ld = tty_ldisc_ref_wait(tty);
2966 if (!ld)
2967 return hung_up_tty_compat_ioctl(file, cmd, arg);
2968 if (ld->ops->compat_ioctl)
2969 retval = ld->ops->compat_ioctl(tty, cmd, arg);
2970 if (retval == -ENOIOCTLCMD && ld->ops->ioctl)
2971 retval = ld->ops->ioctl(tty, (unsigned long)compat_ptr(cmd),
2972 arg);
2973 tty_ldisc_deref(ld);
2974
2975 return retval;
2976}
2977#endif
2978
2979static int this_tty(const void *t, struct file *file, unsigned fd)
2980{
2981 if (likely(file->f_op->read_iter != tty_read))
2982 return 0;
2983 return file_tty(file) != t ? 0 : fd + 1;
2984}
2985
2986/*
2987 * This implements the "Secure Attention Key" --- the idea is to
2988 * prevent trojan horses by killing all processes associated with this
2989 * tty when the user hits the "Secure Attention Key". Required for
2990 * super-paranoid applications --- see the Orange Book for more details.
2991 *
2992 * This code could be nicer; ideally it should send a HUP, wait a few
2993 * seconds, then send a INT, and then a KILL signal. But you then
2994 * have to coordinate with the init process, since all processes associated
2995 * with the current tty must be dead before the new getty is allowed
2996 * to spawn.
2997 *
2998 * Now, if it would be correct ;-/ The current code has a nasty hole -
2999 * it doesn't catch files in flight. We may send the descriptor to ourselves
3000 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3001 *
3002 * Nasty bug: do_SAK is being called in interrupt context. This can
3003 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3004 */
3005void __do_SAK(struct tty_struct *tty)
3006{
3007 struct task_struct *g, *p;
3008 struct pid *session;
3009 int i;
3010 unsigned long flags;
3011
3012 spin_lock_irqsave(&tty->ctrl.lock, flags);
3013 session = get_pid(tty->ctrl.session);
3014 spin_unlock_irqrestore(&tty->ctrl.lock, flags);
3015
3016 tty_ldisc_flush(tty);
3017
3018 tty_driver_flush_buffer(tty);
3019
3020 read_lock(&tasklist_lock);
3021 /* Kill the entire session */
3022 do_each_pid_task(session, PIDTYPE_SID, p) {
3023 tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3024 task_pid_nr(p), p->comm);
3025 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3026 } while_each_pid_task(session, PIDTYPE_SID, p);
3027
3028 /* Now kill any processes that happen to have the tty open */
3029 do_each_thread(g, p) {
3030 if (p->signal->tty == tty) {
3031 tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3032 task_pid_nr(p), p->comm);
3033 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3034 PIDTYPE_SID);
3035 continue;
3036 }
3037 task_lock(p);
3038 i = iterate_fd(p->files, 0, this_tty, tty);
3039 if (i != 0) {
3040 tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3041 task_pid_nr(p), p->comm, i - 1);
3042 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3043 PIDTYPE_SID);
3044 }
3045 task_unlock(p);
3046 } while_each_thread(g, p);
3047 read_unlock(&tasklist_lock);
3048 put_pid(session);
3049}
3050
3051static void do_SAK_work(struct work_struct *work)
3052{
3053 struct tty_struct *tty =
3054 container_of(work, struct tty_struct, SAK_work);
3055 __do_SAK(tty);
3056}
3057
3058/*
3059 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3060 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3061 * the values which we write to it will be identical to the values which it
3062 * already has. --akpm
3063 */
3064void do_SAK(struct tty_struct *tty)
3065{
3066 if (!tty)
3067 return;
3068 schedule_work(&tty->SAK_work);
3069}
3070EXPORT_SYMBOL(do_SAK);
3071
3072/* Must put_device() after it's unused! */
3073static struct device *tty_get_device(struct tty_struct *tty)
3074{
3075 dev_t devt = tty_devnum(tty);
3076
3077 return class_find_device_by_devt(&tty_class, devt);
3078}
3079
3080
3081/**
3082 * alloc_tty_struct - allocate a new tty
3083 * @driver: driver which will handle the returned tty
3084 * @idx: minor of the tty
3085 *
3086 * This subroutine allocates and initializes a tty structure.
3087 *
3088 * Locking: none - @tty in question is not exposed at this point
3089 */
3090struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3091{
3092 struct tty_struct *tty;
3093
3094 tty = kzalloc(sizeof(*tty), GFP_KERNEL_ACCOUNT);
3095 if (!tty)
3096 return NULL;
3097
3098 kref_init(&tty->kref);
3099 if (tty_ldisc_init(tty)) {
3100 kfree(tty);
3101 return NULL;
3102 }
3103 tty->ctrl.session = NULL;
3104 tty->ctrl.pgrp = NULL;
3105 mutex_init(&tty->legacy_mutex);
3106 mutex_init(&tty->throttle_mutex);
3107 init_rwsem(&tty->termios_rwsem);
3108 mutex_init(&tty->winsize_mutex);
3109 init_ldsem(&tty->ldisc_sem);
3110 init_waitqueue_head(&tty->write_wait);
3111 init_waitqueue_head(&tty->read_wait);
3112 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3113 mutex_init(&tty->atomic_write_lock);
3114 spin_lock_init(&tty->ctrl.lock);
3115 spin_lock_init(&tty->flow.lock);
3116 spin_lock_init(&tty->files_lock);
3117 INIT_LIST_HEAD(&tty->tty_files);
3118 INIT_WORK(&tty->SAK_work, do_SAK_work);
3119
3120 tty->driver = driver;
3121 tty->ops = driver->ops;
3122 tty->index = idx;
3123 tty_line_name(driver, idx, tty->name);
3124 tty->dev = tty_get_device(tty);
3125
3126 return tty;
3127}
3128
3129/**
3130 * tty_put_char - write one character to a tty
3131 * @tty: tty
3132 * @ch: character to write
3133 *
3134 * Write one byte to the @tty using the provided @tty->ops->put_char() method
3135 * if present.
3136 *
3137 * Note: the specific put_char operation in the driver layer may go
3138 * away soon. Don't call it directly, use this method
3139 *
3140 * Return: the number of characters successfully output.
3141 */
3142int tty_put_char(struct tty_struct *tty, unsigned char ch)
3143{
3144 if (tty->ops->put_char)
3145 return tty->ops->put_char(tty, ch);
3146 return tty->ops->write(tty, &ch, 1);
3147}
3148EXPORT_SYMBOL_GPL(tty_put_char);
3149
3150static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3151 unsigned int index, unsigned int count)
3152{
3153 int err;
3154
3155 /* init here, since reused cdevs cause crashes */
3156 driver->cdevs[index] = cdev_alloc();
3157 if (!driver->cdevs[index])
3158 return -ENOMEM;
3159 driver->cdevs[index]->ops = &tty_fops;
3160 driver->cdevs[index]->owner = driver->owner;
3161 err = cdev_add(driver->cdevs[index], dev, count);
3162 if (err)
3163 kobject_put(&driver->cdevs[index]->kobj);
3164 return err;
3165}
3166
3167/**
3168 * tty_register_device - register a tty device
3169 * @driver: the tty driver that describes the tty device
3170 * @index: the index in the tty driver for this tty device
3171 * @device: a struct device that is associated with this tty device.
3172 * This field is optional, if there is no known struct device
3173 * for this tty device it can be set to NULL safely.
3174 *
3175 * This call is required to be made to register an individual tty device
3176 * if the tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set. If
3177 * that bit is not set, this function should not be called by a tty
3178 * driver.
3179 *
3180 * Locking: ??
3181 *
3182 * Return: A pointer to the struct device for this tty device (or
3183 * ERR_PTR(-EFOO) on error).
3184 */
3185struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3186 struct device *device)
3187{
3188 return tty_register_device_attr(driver, index, device, NULL, NULL);
3189}
3190EXPORT_SYMBOL(tty_register_device);
3191
3192static void tty_device_create_release(struct device *dev)
3193{
3194 dev_dbg(dev, "releasing...\n");
3195 kfree(dev);
3196}
3197
3198/**
3199 * tty_register_device_attr - register a tty device
3200 * @driver: the tty driver that describes the tty device
3201 * @index: the index in the tty driver for this tty device
3202 * @device: a struct device that is associated with this tty device.
3203 * This field is optional, if there is no known struct device
3204 * for this tty device it can be set to %NULL safely.
3205 * @drvdata: Driver data to be set to device.
3206 * @attr_grp: Attribute group to be set on device.
3207 *
3208 * This call is required to be made to register an individual tty device if the
3209 * tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set. If that bit is
3210 * not set, this function should not be called by a tty driver.
3211 *
3212 * Locking: ??
3213 *
3214 * Return: A pointer to the struct device for this tty device (or
3215 * ERR_PTR(-EFOO) on error).
3216 */
3217struct device *tty_register_device_attr(struct tty_driver *driver,
3218 unsigned index, struct device *device,
3219 void *drvdata,
3220 const struct attribute_group **attr_grp)
3221{
3222 char name[64];
3223 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3224 struct ktermios *tp;
3225 struct device *dev;
3226 int retval;
3227
3228 if (index >= driver->num) {
3229 pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3230 driver->name, index);
3231 return ERR_PTR(-EINVAL);
3232 }
3233
3234 if (driver->type == TTY_DRIVER_TYPE_PTY)
3235 pty_line_name(driver, index, name);
3236 else
3237 tty_line_name(driver, index, name);
3238
3239 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3240 if (!dev)
3241 return ERR_PTR(-ENOMEM);
3242
3243 dev->devt = devt;
3244 dev->class = &tty_class;
3245 dev->parent = device;
3246 dev->release = tty_device_create_release;
3247 dev_set_name(dev, "%s", name);
3248 dev->groups = attr_grp;
3249 dev_set_drvdata(dev, drvdata);
3250
3251 dev_set_uevent_suppress(dev, 1);
3252
3253 retval = device_register(dev);
3254 if (retval)
3255 goto err_put;
3256
3257 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3258 /*
3259 * Free any saved termios data so that the termios state is
3260 * reset when reusing a minor number.
3261 */
3262 tp = driver->termios[index];
3263 if (tp) {
3264 driver->termios[index] = NULL;
3265 kfree(tp);
3266 }
3267
3268 retval = tty_cdev_add(driver, devt, index, 1);
3269 if (retval)
3270 goto err_del;
3271 }
3272
3273 dev_set_uevent_suppress(dev, 0);
3274 kobject_uevent(&dev->kobj, KOBJ_ADD);
3275
3276 return dev;
3277
3278err_del:
3279 device_del(dev);
3280err_put:
3281 put_device(dev);
3282
3283 return ERR_PTR(retval);
3284}
3285EXPORT_SYMBOL_GPL(tty_register_device_attr);
3286
3287/**
3288 * tty_unregister_device - unregister a tty device
3289 * @driver: the tty driver that describes the tty device
3290 * @index: the index in the tty driver for this tty device
3291 *
3292 * If a tty device is registered with a call to tty_register_device() then
3293 * this function must be called when the tty device is gone.
3294 *
3295 * Locking: ??
3296 */
3297void tty_unregister_device(struct tty_driver *driver, unsigned index)
3298{
3299 device_destroy(&tty_class, MKDEV(driver->major, driver->minor_start) + index);
3300 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3301 cdev_del(driver->cdevs[index]);
3302 driver->cdevs[index] = NULL;
3303 }
3304}
3305EXPORT_SYMBOL(tty_unregister_device);
3306
3307/**
3308 * __tty_alloc_driver -- allocate tty driver
3309 * @lines: count of lines this driver can handle at most
3310 * @owner: module which is responsible for this driver
3311 * @flags: some of %TTY_DRIVER_ flags, will be set in driver->flags
3312 *
3313 * This should not be called directly, some of the provided macros should be
3314 * used instead. Use IS_ERR() and friends on @retval.
3315 */
3316struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3317 unsigned long flags)
3318{
3319 struct tty_driver *driver;
3320 unsigned int cdevs = 1;
3321 int err;
3322
3323 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3324 return ERR_PTR(-EINVAL);
3325
3326 driver = kzalloc(sizeof(*driver), GFP_KERNEL);
3327 if (!driver)
3328 return ERR_PTR(-ENOMEM);
3329
3330 kref_init(&driver->kref);
3331 driver->num = lines;
3332 driver->owner = owner;
3333 driver->flags = flags;
3334
3335 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3336 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3337 GFP_KERNEL);
3338 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3339 GFP_KERNEL);
3340 if (!driver->ttys || !driver->termios) {
3341 err = -ENOMEM;
3342 goto err_free_all;
3343 }
3344 }
3345
3346 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3347 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3348 GFP_KERNEL);
3349 if (!driver->ports) {
3350 err = -ENOMEM;
3351 goto err_free_all;
3352 }
3353 cdevs = lines;
3354 }
3355
3356 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3357 if (!driver->cdevs) {
3358 err = -ENOMEM;
3359 goto err_free_all;
3360 }
3361
3362 return driver;
3363err_free_all:
3364 kfree(driver->ports);
3365 kfree(driver->ttys);
3366 kfree(driver->termios);
3367 kfree(driver->cdevs);
3368 kfree(driver);
3369 return ERR_PTR(err);
3370}
3371EXPORT_SYMBOL(__tty_alloc_driver);
3372
3373static void destruct_tty_driver(struct kref *kref)
3374{
3375 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3376 int i;
3377 struct ktermios *tp;
3378
3379 if (driver->flags & TTY_DRIVER_INSTALLED) {
3380 for (i = 0; i < driver->num; i++) {
3381 tp = driver->termios[i];
3382 if (tp) {
3383 driver->termios[i] = NULL;
3384 kfree(tp);
3385 }
3386 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3387 tty_unregister_device(driver, i);
3388 }
3389 proc_tty_unregister_driver(driver);
3390 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3391 cdev_del(driver->cdevs[0]);
3392 }
3393 kfree(driver->cdevs);
3394 kfree(driver->ports);
3395 kfree(driver->termios);
3396 kfree(driver->ttys);
3397 kfree(driver);
3398}
3399
3400/**
3401 * tty_driver_kref_put -- drop a reference to a tty driver
3402 * @driver: driver of which to drop the reference
3403 *
3404 * The final put will destroy and free up the driver.
3405 */
3406void tty_driver_kref_put(struct tty_driver *driver)
3407{
3408 kref_put(&driver->kref, destruct_tty_driver);
3409}
3410EXPORT_SYMBOL(tty_driver_kref_put);
3411
3412/**
3413 * tty_register_driver -- register a tty driver
3414 * @driver: driver to register
3415 *
3416 * Called by a tty driver to register itself.
3417 */
3418int tty_register_driver(struct tty_driver *driver)
3419{
3420 int error;
3421 int i;
3422 dev_t dev;
3423 struct device *d;
3424
3425 if (!driver->major) {
3426 error = alloc_chrdev_region(&dev, driver->minor_start,
3427 driver->num, driver->name);
3428 if (!error) {
3429 driver->major = MAJOR(dev);
3430 driver->minor_start = MINOR(dev);
3431 }
3432 } else {
3433 dev = MKDEV(driver->major, driver->minor_start);
3434 error = register_chrdev_region(dev, driver->num, driver->name);
3435 }
3436 if (error < 0)
3437 goto err;
3438
3439 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3440 error = tty_cdev_add(driver, dev, 0, driver->num);
3441 if (error)
3442 goto err_unreg_char;
3443 }
3444
3445 mutex_lock(&tty_mutex);
3446 list_add(&driver->tty_drivers, &tty_drivers);
3447 mutex_unlock(&tty_mutex);
3448
3449 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3450 for (i = 0; i < driver->num; i++) {
3451 d = tty_register_device(driver, i, NULL);
3452 if (IS_ERR(d)) {
3453 error = PTR_ERR(d);
3454 goto err_unreg_devs;
3455 }
3456 }
3457 }
3458 proc_tty_register_driver(driver);
3459 driver->flags |= TTY_DRIVER_INSTALLED;
3460 return 0;
3461
3462err_unreg_devs:
3463 for (i--; i >= 0; i--)
3464 tty_unregister_device(driver, i);
3465
3466 mutex_lock(&tty_mutex);
3467 list_del(&driver->tty_drivers);
3468 mutex_unlock(&tty_mutex);
3469
3470err_unreg_char:
3471 unregister_chrdev_region(dev, driver->num);
3472err:
3473 return error;
3474}
3475EXPORT_SYMBOL(tty_register_driver);
3476
3477/**
3478 * tty_unregister_driver -- unregister a tty driver
3479 * @driver: driver to unregister
3480 *
3481 * Called by a tty driver to unregister itself.
3482 */
3483void tty_unregister_driver(struct tty_driver *driver)
3484{
3485 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3486 driver->num);
3487 mutex_lock(&tty_mutex);
3488 list_del(&driver->tty_drivers);
3489 mutex_unlock(&tty_mutex);
3490}
3491EXPORT_SYMBOL(tty_unregister_driver);
3492
3493dev_t tty_devnum(struct tty_struct *tty)
3494{
3495 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3496}
3497EXPORT_SYMBOL(tty_devnum);
3498
3499void tty_default_fops(struct file_operations *fops)
3500{
3501 *fops = tty_fops;
3502}
3503
3504static char *tty_devnode(const struct device *dev, umode_t *mode)
3505{
3506 if (!mode)
3507 return NULL;
3508 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3509 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3510 *mode = 0666;
3511 return NULL;
3512}
3513
3514const struct class tty_class = {
3515 .name = "tty",
3516 .devnode = tty_devnode,
3517};
3518
3519static int __init tty_class_init(void)
3520{
3521 return class_register(&tty_class);
3522}
3523
3524postcore_initcall(tty_class_init);
3525
3526/* 3/2004 jmc: why do these devices exist? */
3527static struct cdev tty_cdev, console_cdev;
3528
3529static ssize_t show_cons_active(struct device *dev,
3530 struct device_attribute *attr, char *buf)
3531{
3532 struct console *cs[16];
3533 int i = 0;
3534 struct console *c;
3535 ssize_t count = 0;
3536
3537 /*
3538 * Hold the console_list_lock to guarantee that no consoles are
3539 * unregistered until all console processing is complete.
3540 * This also allows safe traversal of the console list and
3541 * race-free reading of @flags.
3542 */
3543 console_list_lock();
3544
3545 for_each_console(c) {
3546 if (!c->device)
3547 continue;
3548 if (!c->write)
3549 continue;
3550 if ((c->flags & CON_ENABLED) == 0)
3551 continue;
3552 cs[i++] = c;
3553 if (i >= ARRAY_SIZE(cs))
3554 break;
3555 }
3556
3557 /*
3558 * Take console_lock to serialize device() callback with
3559 * other console operations. For example, fg_console is
3560 * modified under console_lock when switching vt.
3561 */
3562 console_lock();
3563 while (i--) {
3564 int index = cs[i]->index;
3565 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3566
3567 /* don't resolve tty0 as some programs depend on it */
3568 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3569 count += tty_line_name(drv, index, buf + count);
3570 else
3571 count += sprintf(buf + count, "%s%d",
3572 cs[i]->name, cs[i]->index);
3573
3574 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3575 }
3576 console_unlock();
3577
3578 console_list_unlock();
3579
3580 return count;
3581}
3582static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3583
3584static struct attribute *cons_dev_attrs[] = {
3585 &dev_attr_active.attr,
3586 NULL
3587};
3588
3589ATTRIBUTE_GROUPS(cons_dev);
3590
3591static struct device *consdev;
3592
3593void console_sysfs_notify(void)
3594{
3595 if (consdev)
3596 sysfs_notify(&consdev->kobj, NULL, "active");
3597}
3598
3599static struct ctl_table tty_table[] = {
3600 {
3601 .procname = "legacy_tiocsti",
3602 .data = &tty_legacy_tiocsti,
3603 .maxlen = sizeof(tty_legacy_tiocsti),
3604 .mode = 0644,
3605 .proc_handler = proc_dobool,
3606 },
3607 {
3608 .procname = "ldisc_autoload",
3609 .data = &tty_ldisc_autoload,
3610 .maxlen = sizeof(tty_ldisc_autoload),
3611 .mode = 0644,
3612 .proc_handler = proc_dointvec,
3613 .extra1 = SYSCTL_ZERO,
3614 .extra2 = SYSCTL_ONE,
3615 },
3616 { }
3617};
3618
3619/*
3620 * Ok, now we can initialize the rest of the tty devices and can count
3621 * on memory allocations, interrupts etc..
3622 */
3623int __init tty_init(void)
3624{
3625 register_sysctl_init("dev/tty", tty_table);
3626 cdev_init(&tty_cdev, &tty_fops);
3627 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3628 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3629 panic("Couldn't register /dev/tty driver\n");
3630 device_create(&tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3631
3632 cdev_init(&console_cdev, &console_fops);
3633 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3634 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3635 panic("Couldn't register /dev/console driver\n");
3636 consdev = device_create_with_groups(&tty_class, NULL,
3637 MKDEV(TTYAUX_MAJOR, 1), NULL,
3638 cons_dev_groups, "console");
3639 if (IS_ERR(consdev))
3640 consdev = NULL;
3641
3642#ifdef CONFIG_VT
3643 vty_init(&console_fops);
3644#endif
3645 return 0;
3646}