n_tty: Remove read_cnt
[linux-2.6-block.git] / drivers / tty / tty_io.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 */
4
5/*
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
8 *
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10 *
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
16 *
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
21 *
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
25 *
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
28 * -- TYT, 1/31/92
29 *
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33 *
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36 *
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
39 *
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
42 *
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
45 *
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49 *
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
52 *
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55 *
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58 *
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
61 *
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65 */
66
67#include <linux/types.h>
68#include <linux/major.h>
69#include <linux/errno.h>
70#include <linux/signal.h>
71#include <linux/fcntl.h>
72#include <linux/sched.h>
73#include <linux/interrupt.h>
74#include <linux/tty.h>
75#include <linux/tty_driver.h>
76#include <linux/tty_flip.h>
77#include <linux/devpts_fs.h>
78#include <linux/file.h>
79#include <linux/fdtable.h>
80#include <linux/console.h>
81#include <linux/timer.h>
82#include <linux/ctype.h>
83#include <linux/kd.h>
84#include <linux/mm.h>
85#include <linux/string.h>
86#include <linux/slab.h>
87#include <linux/poll.h>
88#include <linux/proc_fs.h>
89#include <linux/init.h>
90#include <linux/module.h>
91#include <linux/device.h>
92#include <linux/wait.h>
93#include <linux/bitops.h>
94#include <linux/delay.h>
95#include <linux/seq_file.h>
96#include <linux/serial.h>
97#include <linux/ratelimit.h>
98
99#include <linux/uaccess.h>
100
101#include <linux/kbd_kern.h>
102#include <linux/vt_kern.h>
103#include <linux/selection.h>
104
105#include <linux/kmod.h>
106#include <linux/nsproxy.h>
107
108#undef TTY_DEBUG_HANGUP
109
110#define TTY_PARANOIA_CHECK 1
111#define CHECK_TTY_COUNT 1
112
113struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
114 .c_iflag = ICRNL | IXON,
115 .c_oflag = OPOST | ONLCR,
116 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 ECHOCTL | ECHOKE | IEXTEN,
119 .c_cc = INIT_C_CC,
120 .c_ispeed = 38400,
121 .c_ospeed = 38400
122};
123
124EXPORT_SYMBOL(tty_std_termios);
125
126/* This list gets poked at by procfs and various bits of boot up code. This
127 could do with some rationalisation such as pulling the tty proc function
128 into this file */
129
130LIST_HEAD(tty_drivers); /* linked list of tty drivers */
131
132/* Mutex to protect creating and releasing a tty. This is shared with
133 vt.c for deeply disgusting hack reasons */
134DEFINE_MUTEX(tty_mutex);
135EXPORT_SYMBOL(tty_mutex);
136
137/* Spinlock to protect the tty->tty_files list */
138DEFINE_SPINLOCK(tty_files_lock);
139
140static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142ssize_t redirected_tty_write(struct file *, const char __user *,
143 size_t, loff_t *);
144static unsigned int tty_poll(struct file *, poll_table *);
145static int tty_open(struct inode *, struct file *);
146long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147#ifdef CONFIG_COMPAT
148static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 unsigned long arg);
150#else
151#define tty_compat_ioctl NULL
152#endif
153static int __tty_fasync(int fd, struct file *filp, int on);
154static int tty_fasync(int fd, struct file *filp, int on);
155static void release_tty(struct tty_struct *tty, int idx);
156static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159/**
160 * alloc_tty_struct - allocate a tty object
161 *
162 * Return a new empty tty structure. The data fields have not
163 * been initialized in any way but has been zeroed
164 *
165 * Locking: none
166 */
167
168struct tty_struct *alloc_tty_struct(void)
169{
170 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171}
172
173/**
174 * free_tty_struct - free a disused tty
175 * @tty: tty struct to free
176 *
177 * Free the write buffers, tty queue and tty memory itself.
178 *
179 * Locking: none. Must be called after tty is definitely unused
180 */
181
182void free_tty_struct(struct tty_struct *tty)
183{
184 if (!tty)
185 return;
186 if (tty->dev)
187 put_device(tty->dev);
188 kfree(tty->write_buf);
189 tty->magic = 0xDEADDEAD;
190 kfree(tty);
191}
192
193static inline struct tty_struct *file_tty(struct file *file)
194{
195 return ((struct tty_file_private *)file->private_data)->tty;
196}
197
198int tty_alloc_file(struct file *file)
199{
200 struct tty_file_private *priv;
201
202 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203 if (!priv)
204 return -ENOMEM;
205
206 file->private_data = priv;
207
208 return 0;
209}
210
211/* Associate a new file with the tty structure */
212void tty_add_file(struct tty_struct *tty, struct file *file)
213{
214 struct tty_file_private *priv = file->private_data;
215
216 priv->tty = tty;
217 priv->file = file;
218
219 spin_lock(&tty_files_lock);
220 list_add(&priv->list, &tty->tty_files);
221 spin_unlock(&tty_files_lock);
222}
223
224/**
225 * tty_free_file - free file->private_data
226 *
227 * This shall be used only for fail path handling when tty_add_file was not
228 * called yet.
229 */
230void tty_free_file(struct file *file)
231{
232 struct tty_file_private *priv = file->private_data;
233
234 file->private_data = NULL;
235 kfree(priv);
236}
237
238/* Delete file from its tty */
239static void tty_del_file(struct file *file)
240{
241 struct tty_file_private *priv = file->private_data;
242
243 spin_lock(&tty_files_lock);
244 list_del(&priv->list);
245 spin_unlock(&tty_files_lock);
246 tty_free_file(file);
247}
248
249
250#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
251
252/**
253 * tty_name - return tty naming
254 * @tty: tty structure
255 * @buf: buffer for output
256 *
257 * Convert a tty structure into a name. The name reflects the kernel
258 * naming policy and if udev is in use may not reflect user space
259 *
260 * Locking: none
261 */
262
263char *tty_name(struct tty_struct *tty, char *buf)
264{
265 if (!tty) /* Hmm. NULL pointer. That's fun. */
266 strcpy(buf, "NULL tty");
267 else
268 strcpy(buf, tty->name);
269 return buf;
270}
271
272EXPORT_SYMBOL(tty_name);
273
274int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
275 const char *routine)
276{
277#ifdef TTY_PARANOIA_CHECK
278 if (!tty) {
279 printk(KERN_WARNING
280 "null TTY for (%d:%d) in %s\n",
281 imajor(inode), iminor(inode), routine);
282 return 1;
283 }
284 if (tty->magic != TTY_MAGIC) {
285 printk(KERN_WARNING
286 "bad magic number for tty struct (%d:%d) in %s\n",
287 imajor(inode), iminor(inode), routine);
288 return 1;
289 }
290#endif
291 return 0;
292}
293
294static int check_tty_count(struct tty_struct *tty, const char *routine)
295{
296#ifdef CHECK_TTY_COUNT
297 struct list_head *p;
298 int count = 0;
299
300 spin_lock(&tty_files_lock);
301 list_for_each(p, &tty->tty_files) {
302 count++;
303 }
304 spin_unlock(&tty_files_lock);
305 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
306 tty->driver->subtype == PTY_TYPE_SLAVE &&
307 tty->link && tty->link->count)
308 count++;
309 if (tty->count != count) {
310 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
311 "!= #fd's(%d) in %s\n",
312 tty->name, tty->count, count, routine);
313 return count;
314 }
315#endif
316 return 0;
317}
318
319/**
320 * get_tty_driver - find device of a tty
321 * @dev_t: device identifier
322 * @index: returns the index of the tty
323 *
324 * This routine returns a tty driver structure, given a device number
325 * and also passes back the index number.
326 *
327 * Locking: caller must hold tty_mutex
328 */
329
330static struct tty_driver *get_tty_driver(dev_t device, int *index)
331{
332 struct tty_driver *p;
333
334 list_for_each_entry(p, &tty_drivers, tty_drivers) {
335 dev_t base = MKDEV(p->major, p->minor_start);
336 if (device < base || device >= base + p->num)
337 continue;
338 *index = device - base;
339 return tty_driver_kref_get(p);
340 }
341 return NULL;
342}
343
344#ifdef CONFIG_CONSOLE_POLL
345
346/**
347 * tty_find_polling_driver - find device of a polled tty
348 * @name: name string to match
349 * @line: pointer to resulting tty line nr
350 *
351 * This routine returns a tty driver structure, given a name
352 * and the condition that the tty driver is capable of polled
353 * operation.
354 */
355struct tty_driver *tty_find_polling_driver(char *name, int *line)
356{
357 struct tty_driver *p, *res = NULL;
358 int tty_line = 0;
359 int len;
360 char *str, *stp;
361
362 for (str = name; *str; str++)
363 if ((*str >= '0' && *str <= '9') || *str == ',')
364 break;
365 if (!*str)
366 return NULL;
367
368 len = str - name;
369 tty_line = simple_strtoul(str, &str, 10);
370
371 mutex_lock(&tty_mutex);
372 /* Search through the tty devices to look for a match */
373 list_for_each_entry(p, &tty_drivers, tty_drivers) {
374 if (strncmp(name, p->name, len) != 0)
375 continue;
376 stp = str;
377 if (*stp == ',')
378 stp++;
379 if (*stp == '\0')
380 stp = NULL;
381
382 if (tty_line >= 0 && tty_line < p->num && p->ops &&
383 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
384 res = tty_driver_kref_get(p);
385 *line = tty_line;
386 break;
387 }
388 }
389 mutex_unlock(&tty_mutex);
390
391 return res;
392}
393EXPORT_SYMBOL_GPL(tty_find_polling_driver);
394#endif
395
396/**
397 * tty_check_change - check for POSIX terminal changes
398 * @tty: tty to check
399 *
400 * If we try to write to, or set the state of, a terminal and we're
401 * not in the foreground, send a SIGTTOU. If the signal is blocked or
402 * ignored, go ahead and perform the operation. (POSIX 7.2)
403 *
404 * Locking: ctrl_lock
405 */
406
407int tty_check_change(struct tty_struct *tty)
408{
409 unsigned long flags;
410 int ret = 0;
411
412 if (current->signal->tty != tty)
413 return 0;
414
415 spin_lock_irqsave(&tty->ctrl_lock, flags);
416
417 if (!tty->pgrp) {
418 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
419 goto out_unlock;
420 }
421 if (task_pgrp(current) == tty->pgrp)
422 goto out_unlock;
423 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
424 if (is_ignored(SIGTTOU))
425 goto out;
426 if (is_current_pgrp_orphaned()) {
427 ret = -EIO;
428 goto out;
429 }
430 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
431 set_thread_flag(TIF_SIGPENDING);
432 ret = -ERESTARTSYS;
433out:
434 return ret;
435out_unlock:
436 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
437 return ret;
438}
439
440EXPORT_SYMBOL(tty_check_change);
441
442static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
443 size_t count, loff_t *ppos)
444{
445 return 0;
446}
447
448static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
449 size_t count, loff_t *ppos)
450{
451 return -EIO;
452}
453
454/* No kernel lock held - none needed ;) */
455static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
456{
457 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
458}
459
460static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
461 unsigned long arg)
462{
463 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
464}
465
466static long hung_up_tty_compat_ioctl(struct file *file,
467 unsigned int cmd, unsigned long arg)
468{
469 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
470}
471
472static const struct file_operations tty_fops = {
473 .llseek = no_llseek,
474 .read = tty_read,
475 .write = tty_write,
476 .poll = tty_poll,
477 .unlocked_ioctl = tty_ioctl,
478 .compat_ioctl = tty_compat_ioctl,
479 .open = tty_open,
480 .release = tty_release,
481 .fasync = tty_fasync,
482};
483
484static const struct file_operations console_fops = {
485 .llseek = no_llseek,
486 .read = tty_read,
487 .write = redirected_tty_write,
488 .poll = tty_poll,
489 .unlocked_ioctl = tty_ioctl,
490 .compat_ioctl = tty_compat_ioctl,
491 .open = tty_open,
492 .release = tty_release,
493 .fasync = tty_fasync,
494};
495
496static const struct file_operations hung_up_tty_fops = {
497 .llseek = no_llseek,
498 .read = hung_up_tty_read,
499 .write = hung_up_tty_write,
500 .poll = hung_up_tty_poll,
501 .unlocked_ioctl = hung_up_tty_ioctl,
502 .compat_ioctl = hung_up_tty_compat_ioctl,
503 .release = tty_release,
504};
505
506static DEFINE_SPINLOCK(redirect_lock);
507static struct file *redirect;
508
509/**
510 * tty_wakeup - request more data
511 * @tty: terminal
512 *
513 * Internal and external helper for wakeups of tty. This function
514 * informs the line discipline if present that the driver is ready
515 * to receive more output data.
516 */
517
518void tty_wakeup(struct tty_struct *tty)
519{
520 struct tty_ldisc *ld;
521
522 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
523 ld = tty_ldisc_ref(tty);
524 if (ld) {
525 if (ld->ops->write_wakeup)
526 ld->ops->write_wakeup(tty);
527 tty_ldisc_deref(ld);
528 }
529 }
530 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
531}
532
533EXPORT_SYMBOL_GPL(tty_wakeup);
534
535/**
536 * tty_signal_session_leader - sends SIGHUP to session leader
537 * @tty controlling tty
538 * @exit_session if non-zero, signal all foreground group processes
539 *
540 * Send SIGHUP and SIGCONT to the session leader and its process group.
541 * Optionally, signal all processes in the foreground process group.
542 *
543 * Returns the number of processes in the session with this tty
544 * as their controlling terminal. This value is used to drop
545 * tty references for those processes.
546 */
547static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
548{
549 struct task_struct *p;
550 int refs = 0;
551 struct pid *tty_pgrp = NULL;
552
553 read_lock(&tasklist_lock);
554 if (tty->session) {
555 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
556 spin_lock_irq(&p->sighand->siglock);
557 if (p->signal->tty == tty) {
558 p->signal->tty = NULL;
559 /* We defer the dereferences outside fo
560 the tasklist lock */
561 refs++;
562 }
563 if (!p->signal->leader) {
564 spin_unlock_irq(&p->sighand->siglock);
565 continue;
566 }
567 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
568 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
569 put_pid(p->signal->tty_old_pgrp); /* A noop */
570 spin_lock(&tty->ctrl_lock);
571 tty_pgrp = get_pid(tty->pgrp);
572 if (tty->pgrp)
573 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
574 spin_unlock(&tty->ctrl_lock);
575 spin_unlock_irq(&p->sighand->siglock);
576 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
577 }
578 read_unlock(&tasklist_lock);
579
580 if (tty_pgrp) {
581 if (exit_session)
582 kill_pgrp(tty_pgrp, SIGHUP, exit_session);
583 put_pid(tty_pgrp);
584 }
585
586 return refs;
587}
588
589/**
590 * __tty_hangup - actual handler for hangup events
591 * @work: tty device
592 *
593 * This can be called by a "kworker" kernel thread. That is process
594 * synchronous but doesn't hold any locks, so we need to make sure we
595 * have the appropriate locks for what we're doing.
596 *
597 * The hangup event clears any pending redirections onto the hung up
598 * device. It ensures future writes will error and it does the needed
599 * line discipline hangup and signal delivery. The tty object itself
600 * remains intact.
601 *
602 * Locking:
603 * BTM
604 * redirect lock for undoing redirection
605 * file list lock for manipulating list of ttys
606 * tty_ldiscs_lock from called functions
607 * termios_mutex resetting termios data
608 * tasklist_lock to walk task list for hangup event
609 * ->siglock to protect ->signal/->sighand
610 */
611static void __tty_hangup(struct tty_struct *tty, int exit_session)
612{
613 struct file *cons_filp = NULL;
614 struct file *filp, *f = NULL;
615 struct tty_file_private *priv;
616 int closecount = 0, n;
617 int refs;
618
619 if (!tty)
620 return;
621
622
623 spin_lock(&redirect_lock);
624 if (redirect && file_tty(redirect) == tty) {
625 f = redirect;
626 redirect = NULL;
627 }
628 spin_unlock(&redirect_lock);
629
630 tty_lock(tty);
631
632 /* some functions below drop BTM, so we need this bit */
633 set_bit(TTY_HUPPING, &tty->flags);
634
635 /* inuse_filps is protected by the single tty lock,
636 this really needs to change if we want to flush the
637 workqueue with the lock held */
638 check_tty_count(tty, "tty_hangup");
639
640 spin_lock(&tty_files_lock);
641 /* This breaks for file handles being sent over AF_UNIX sockets ? */
642 list_for_each_entry(priv, &tty->tty_files, list) {
643 filp = priv->file;
644 if (filp->f_op->write == redirected_tty_write)
645 cons_filp = filp;
646 if (filp->f_op->write != tty_write)
647 continue;
648 closecount++;
649 __tty_fasync(-1, filp, 0); /* can't block */
650 filp->f_op = &hung_up_tty_fops;
651 }
652 spin_unlock(&tty_files_lock);
653
654 refs = tty_signal_session_leader(tty, exit_session);
655 /* Account for the p->signal references we killed */
656 while (refs--)
657 tty_kref_put(tty);
658
659 /*
660 * it drops BTM and thus races with reopen
661 * we protect the race by TTY_HUPPING
662 */
663 tty_ldisc_hangup(tty);
664
665 spin_lock_irq(&tty->ctrl_lock);
666 clear_bit(TTY_THROTTLED, &tty->flags);
667 clear_bit(TTY_PUSH, &tty->flags);
668 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
669 put_pid(tty->session);
670 put_pid(tty->pgrp);
671 tty->session = NULL;
672 tty->pgrp = NULL;
673 tty->ctrl_status = 0;
674 spin_unlock_irq(&tty->ctrl_lock);
675
676 /*
677 * If one of the devices matches a console pointer, we
678 * cannot just call hangup() because that will cause
679 * tty->count and state->count to go out of sync.
680 * So we just call close() the right number of times.
681 */
682 if (cons_filp) {
683 if (tty->ops->close)
684 for (n = 0; n < closecount; n++)
685 tty->ops->close(tty, cons_filp);
686 } else if (tty->ops->hangup)
687 (tty->ops->hangup)(tty);
688 /*
689 * We don't want to have driver/ldisc interactions beyond
690 * the ones we did here. The driver layer expects no
691 * calls after ->hangup() from the ldisc side. However we
692 * can't yet guarantee all that.
693 */
694 set_bit(TTY_HUPPED, &tty->flags);
695 clear_bit(TTY_HUPPING, &tty->flags);
696
697 tty_unlock(tty);
698
699 if (f)
700 fput(f);
701}
702
703static void do_tty_hangup(struct work_struct *work)
704{
705 struct tty_struct *tty =
706 container_of(work, struct tty_struct, hangup_work);
707
708 __tty_hangup(tty, 0);
709}
710
711/**
712 * tty_hangup - trigger a hangup event
713 * @tty: tty to hangup
714 *
715 * A carrier loss (virtual or otherwise) has occurred on this like
716 * schedule a hangup sequence to run after this event.
717 */
718
719void tty_hangup(struct tty_struct *tty)
720{
721#ifdef TTY_DEBUG_HANGUP
722 char buf[64];
723 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
724#endif
725 schedule_work(&tty->hangup_work);
726}
727
728EXPORT_SYMBOL(tty_hangup);
729
730/**
731 * tty_vhangup - process vhangup
732 * @tty: tty to hangup
733 *
734 * The user has asked via system call for the terminal to be hung up.
735 * We do this synchronously so that when the syscall returns the process
736 * is complete. That guarantee is necessary for security reasons.
737 */
738
739void tty_vhangup(struct tty_struct *tty)
740{
741#ifdef TTY_DEBUG_HANGUP
742 char buf[64];
743
744 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
745#endif
746 __tty_hangup(tty, 0);
747}
748
749EXPORT_SYMBOL(tty_vhangup);
750
751
752/**
753 * tty_vhangup_self - process vhangup for own ctty
754 *
755 * Perform a vhangup on the current controlling tty
756 */
757
758void tty_vhangup_self(void)
759{
760 struct tty_struct *tty;
761
762 tty = get_current_tty();
763 if (tty) {
764 tty_vhangup(tty);
765 tty_kref_put(tty);
766 }
767}
768
769/**
770 * tty_vhangup_session - hangup session leader exit
771 * @tty: tty to hangup
772 *
773 * The session leader is exiting and hanging up its controlling terminal.
774 * Every process in the foreground process group is signalled SIGHUP.
775 *
776 * We do this synchronously so that when the syscall returns the process
777 * is complete. That guarantee is necessary for security reasons.
778 */
779
780static void tty_vhangup_session(struct tty_struct *tty)
781{
782#ifdef TTY_DEBUG_HANGUP
783 char buf[64];
784
785 printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
786#endif
787 __tty_hangup(tty, 1);
788}
789
790/**
791 * tty_hung_up_p - was tty hung up
792 * @filp: file pointer of tty
793 *
794 * Return true if the tty has been subject to a vhangup or a carrier
795 * loss
796 */
797
798int tty_hung_up_p(struct file *filp)
799{
800 return (filp->f_op == &hung_up_tty_fops);
801}
802
803EXPORT_SYMBOL(tty_hung_up_p);
804
805static void session_clear_tty(struct pid *session)
806{
807 struct task_struct *p;
808 do_each_pid_task(session, PIDTYPE_SID, p) {
809 proc_clear_tty(p);
810 } while_each_pid_task(session, PIDTYPE_SID, p);
811}
812
813/**
814 * disassociate_ctty - disconnect controlling tty
815 * @on_exit: true if exiting so need to "hang up" the session
816 *
817 * This function is typically called only by the session leader, when
818 * it wants to disassociate itself from its controlling tty.
819 *
820 * It performs the following functions:
821 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
822 * (2) Clears the tty from being controlling the session
823 * (3) Clears the controlling tty for all processes in the
824 * session group.
825 *
826 * The argument on_exit is set to 1 if called when a process is
827 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
828 *
829 * Locking:
830 * BTM is taken for hysterical raisins, and held when
831 * called from no_tty().
832 * tty_mutex is taken to protect tty
833 * ->siglock is taken to protect ->signal/->sighand
834 * tasklist_lock is taken to walk process list for sessions
835 * ->siglock is taken to protect ->signal/->sighand
836 */
837
838void disassociate_ctty(int on_exit)
839{
840 struct tty_struct *tty;
841
842 if (!current->signal->leader)
843 return;
844
845 tty = get_current_tty();
846 if (tty) {
847 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
848 tty_vhangup_session(tty);
849 } else {
850 struct pid *tty_pgrp = tty_get_pgrp(tty);
851 if (tty_pgrp) {
852 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
853 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
854 put_pid(tty_pgrp);
855 }
856 }
857 tty_kref_put(tty);
858
859 } else if (on_exit) {
860 struct pid *old_pgrp;
861 spin_lock_irq(&current->sighand->siglock);
862 old_pgrp = current->signal->tty_old_pgrp;
863 current->signal->tty_old_pgrp = NULL;
864 spin_unlock_irq(&current->sighand->siglock);
865 if (old_pgrp) {
866 kill_pgrp(old_pgrp, SIGHUP, on_exit);
867 kill_pgrp(old_pgrp, SIGCONT, on_exit);
868 put_pid(old_pgrp);
869 }
870 return;
871 }
872
873 spin_lock_irq(&current->sighand->siglock);
874 put_pid(current->signal->tty_old_pgrp);
875 current->signal->tty_old_pgrp = NULL;
876 spin_unlock_irq(&current->sighand->siglock);
877
878 tty = get_current_tty();
879 if (tty) {
880 unsigned long flags;
881 spin_lock_irqsave(&tty->ctrl_lock, flags);
882 put_pid(tty->session);
883 put_pid(tty->pgrp);
884 tty->session = NULL;
885 tty->pgrp = NULL;
886 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
887 tty_kref_put(tty);
888 } else {
889#ifdef TTY_DEBUG_HANGUP
890 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
891 " = NULL", tty);
892#endif
893 }
894
895 /* Now clear signal->tty under the lock */
896 read_lock(&tasklist_lock);
897 session_clear_tty(task_session(current));
898 read_unlock(&tasklist_lock);
899}
900
901/**
902 *
903 * no_tty - Ensure the current process does not have a controlling tty
904 */
905void no_tty(void)
906{
907 /* FIXME: Review locking here. The tty_lock never covered any race
908 between a new association and proc_clear_tty but possible we need
909 to protect against this anyway */
910 struct task_struct *tsk = current;
911 disassociate_ctty(0);
912 proc_clear_tty(tsk);
913}
914
915
916/**
917 * stop_tty - propagate flow control
918 * @tty: tty to stop
919 *
920 * Perform flow control to the driver. For PTY/TTY pairs we
921 * must also propagate the TIOCKPKT status. May be called
922 * on an already stopped device and will not re-call the driver
923 * method.
924 *
925 * This functionality is used by both the line disciplines for
926 * halting incoming flow and by the driver. It may therefore be
927 * called from any context, may be under the tty atomic_write_lock
928 * but not always.
929 *
930 * Locking:
931 * Uses the tty control lock internally
932 */
933
934void stop_tty(struct tty_struct *tty)
935{
936 unsigned long flags;
937 spin_lock_irqsave(&tty->ctrl_lock, flags);
938 if (tty->stopped) {
939 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
940 return;
941 }
942 tty->stopped = 1;
943 if (tty->link && tty->link->packet) {
944 tty->ctrl_status &= ~TIOCPKT_START;
945 tty->ctrl_status |= TIOCPKT_STOP;
946 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
947 }
948 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
949 if (tty->ops->stop)
950 (tty->ops->stop)(tty);
951}
952
953EXPORT_SYMBOL(stop_tty);
954
955/**
956 * start_tty - propagate flow control
957 * @tty: tty to start
958 *
959 * Start a tty that has been stopped if at all possible. Perform
960 * any necessary wakeups and propagate the TIOCPKT status. If this
961 * is the tty was previous stopped and is being started then the
962 * driver start method is invoked and the line discipline woken.
963 *
964 * Locking:
965 * ctrl_lock
966 */
967
968void start_tty(struct tty_struct *tty)
969{
970 unsigned long flags;
971 spin_lock_irqsave(&tty->ctrl_lock, flags);
972 if (!tty->stopped || tty->flow_stopped) {
973 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
974 return;
975 }
976 tty->stopped = 0;
977 if (tty->link && tty->link->packet) {
978 tty->ctrl_status &= ~TIOCPKT_STOP;
979 tty->ctrl_status |= TIOCPKT_START;
980 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
981 }
982 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
983 if (tty->ops->start)
984 (tty->ops->start)(tty);
985 /* If we have a running line discipline it may need kicking */
986 tty_wakeup(tty);
987}
988
989EXPORT_SYMBOL(start_tty);
990
991/* We limit tty time update visibility to every 8 seconds or so. */
992static void tty_update_time(struct timespec *time)
993{
994 unsigned long sec = get_seconds() & ~7;
995 if ((long)(sec - time->tv_sec) > 0)
996 time->tv_sec = sec;
997}
998
999/**
1000 * tty_read - read method for tty device files
1001 * @file: pointer to tty file
1002 * @buf: user buffer
1003 * @count: size of user buffer
1004 * @ppos: unused
1005 *
1006 * Perform the read system call function on this terminal device. Checks
1007 * for hung up devices before calling the line discipline method.
1008 *
1009 * Locking:
1010 * Locks the line discipline internally while needed. Multiple
1011 * read calls may be outstanding in parallel.
1012 */
1013
1014static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1015 loff_t *ppos)
1016{
1017 int i;
1018 struct inode *inode = file_inode(file);
1019 struct tty_struct *tty = file_tty(file);
1020 struct tty_ldisc *ld;
1021
1022 if (tty_paranoia_check(tty, inode, "tty_read"))
1023 return -EIO;
1024 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1025 return -EIO;
1026
1027 /* We want to wait for the line discipline to sort out in this
1028 situation */
1029 ld = tty_ldisc_ref_wait(tty);
1030 if (ld->ops->read)
1031 i = (ld->ops->read)(tty, file, buf, count);
1032 else
1033 i = -EIO;
1034 tty_ldisc_deref(ld);
1035
1036 if (i > 0)
1037 tty_update_time(&inode->i_atime);
1038
1039 return i;
1040}
1041
1042void tty_write_unlock(struct tty_struct *tty)
1043 __releases(&tty->atomic_write_lock)
1044{
1045 mutex_unlock(&tty->atomic_write_lock);
1046 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1047}
1048
1049int tty_write_lock(struct tty_struct *tty, int ndelay)
1050 __acquires(&tty->atomic_write_lock)
1051{
1052 if (!mutex_trylock(&tty->atomic_write_lock)) {
1053 if (ndelay)
1054 return -EAGAIN;
1055 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1056 return -ERESTARTSYS;
1057 }
1058 return 0;
1059}
1060
1061/*
1062 * Split writes up in sane blocksizes to avoid
1063 * denial-of-service type attacks
1064 */
1065static inline ssize_t do_tty_write(
1066 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1067 struct tty_struct *tty,
1068 struct file *file,
1069 const char __user *buf,
1070 size_t count)
1071{
1072 ssize_t ret, written = 0;
1073 unsigned int chunk;
1074
1075 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1076 if (ret < 0)
1077 return ret;
1078
1079 /*
1080 * We chunk up writes into a temporary buffer. This
1081 * simplifies low-level drivers immensely, since they
1082 * don't have locking issues and user mode accesses.
1083 *
1084 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1085 * big chunk-size..
1086 *
1087 * The default chunk-size is 2kB, because the NTTY
1088 * layer has problems with bigger chunks. It will
1089 * claim to be able to handle more characters than
1090 * it actually does.
1091 *
1092 * FIXME: This can probably go away now except that 64K chunks
1093 * are too likely to fail unless switched to vmalloc...
1094 */
1095 chunk = 2048;
1096 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1097 chunk = 65536;
1098 if (count < chunk)
1099 chunk = count;
1100
1101 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1102 if (tty->write_cnt < chunk) {
1103 unsigned char *buf_chunk;
1104
1105 if (chunk < 1024)
1106 chunk = 1024;
1107
1108 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1109 if (!buf_chunk) {
1110 ret = -ENOMEM;
1111 goto out;
1112 }
1113 kfree(tty->write_buf);
1114 tty->write_cnt = chunk;
1115 tty->write_buf = buf_chunk;
1116 }
1117
1118 /* Do the write .. */
1119 for (;;) {
1120 size_t size = count;
1121 if (size > chunk)
1122 size = chunk;
1123 ret = -EFAULT;
1124 if (copy_from_user(tty->write_buf, buf, size))
1125 break;
1126 ret = write(tty, file, tty->write_buf, size);
1127 if (ret <= 0)
1128 break;
1129 written += ret;
1130 buf += ret;
1131 count -= ret;
1132 if (!count)
1133 break;
1134 ret = -ERESTARTSYS;
1135 if (signal_pending(current))
1136 break;
1137 cond_resched();
1138 }
1139 if (written) {
1140 tty_update_time(&file_inode(file)->i_mtime);
1141 ret = written;
1142 }
1143out:
1144 tty_write_unlock(tty);
1145 return ret;
1146}
1147
1148/**
1149 * tty_write_message - write a message to a certain tty, not just the console.
1150 * @tty: the destination tty_struct
1151 * @msg: the message to write
1152 *
1153 * This is used for messages that need to be redirected to a specific tty.
1154 * We don't put it into the syslog queue right now maybe in the future if
1155 * really needed.
1156 *
1157 * We must still hold the BTM and test the CLOSING flag for the moment.
1158 */
1159
1160void tty_write_message(struct tty_struct *tty, char *msg)
1161{
1162 if (tty) {
1163 mutex_lock(&tty->atomic_write_lock);
1164 tty_lock(tty);
1165 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1166 tty_unlock(tty);
1167 tty->ops->write(tty, msg, strlen(msg));
1168 } else
1169 tty_unlock(tty);
1170 tty_write_unlock(tty);
1171 }
1172 return;
1173}
1174
1175
1176/**
1177 * tty_write - write method for tty device file
1178 * @file: tty file pointer
1179 * @buf: user data to write
1180 * @count: bytes to write
1181 * @ppos: unused
1182 *
1183 * Write data to a tty device via the line discipline.
1184 *
1185 * Locking:
1186 * Locks the line discipline as required
1187 * Writes to the tty driver are serialized by the atomic_write_lock
1188 * and are then processed in chunks to the device. The line discipline
1189 * write method will not be invoked in parallel for each device.
1190 */
1191
1192static ssize_t tty_write(struct file *file, const char __user *buf,
1193 size_t count, loff_t *ppos)
1194{
1195 struct tty_struct *tty = file_tty(file);
1196 struct tty_ldisc *ld;
1197 ssize_t ret;
1198
1199 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1200 return -EIO;
1201 if (!tty || !tty->ops->write ||
1202 (test_bit(TTY_IO_ERROR, &tty->flags)))
1203 return -EIO;
1204 /* Short term debug to catch buggy drivers */
1205 if (tty->ops->write_room == NULL)
1206 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1207 tty->driver->name);
1208 ld = tty_ldisc_ref_wait(tty);
1209 if (!ld->ops->write)
1210 ret = -EIO;
1211 else
1212 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1213 tty_ldisc_deref(ld);
1214 return ret;
1215}
1216
1217ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1218 size_t count, loff_t *ppos)
1219{
1220 struct file *p = NULL;
1221
1222 spin_lock(&redirect_lock);
1223 if (redirect)
1224 p = get_file(redirect);
1225 spin_unlock(&redirect_lock);
1226
1227 if (p) {
1228 ssize_t res;
1229 res = vfs_write(p, buf, count, &p->f_pos);
1230 fput(p);
1231 return res;
1232 }
1233 return tty_write(file, buf, count, ppos);
1234}
1235
1236static char ptychar[] = "pqrstuvwxyzabcde";
1237
1238/**
1239 * pty_line_name - generate name for a pty
1240 * @driver: the tty driver in use
1241 * @index: the minor number
1242 * @p: output buffer of at least 6 bytes
1243 *
1244 * Generate a name from a driver reference and write it to the output
1245 * buffer.
1246 *
1247 * Locking: None
1248 */
1249static void pty_line_name(struct tty_driver *driver, int index, char *p)
1250{
1251 int i = index + driver->name_base;
1252 /* ->name is initialized to "ttyp", but "tty" is expected */
1253 sprintf(p, "%s%c%x",
1254 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1255 ptychar[i >> 4 & 0xf], i & 0xf);
1256}
1257
1258/**
1259 * tty_line_name - generate name for a tty
1260 * @driver: the tty driver in use
1261 * @index: the minor number
1262 * @p: output buffer of at least 7 bytes
1263 *
1264 * Generate a name from a driver reference and write it to the output
1265 * buffer.
1266 *
1267 * Locking: None
1268 */
1269static void tty_line_name(struct tty_driver *driver, int index, char *p)
1270{
1271 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1272 strcpy(p, driver->name);
1273 else
1274 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1275}
1276
1277/**
1278 * tty_driver_lookup_tty() - find an existing tty, if any
1279 * @driver: the driver for the tty
1280 * @idx: the minor number
1281 *
1282 * Return the tty, if found or ERR_PTR() otherwise.
1283 *
1284 * Locking: tty_mutex must be held. If tty is found, the mutex must
1285 * be held until the 'fast-open' is also done. Will change once we
1286 * have refcounting in the driver and per driver locking
1287 */
1288static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1289 struct inode *inode, int idx)
1290{
1291 if (driver->ops->lookup)
1292 return driver->ops->lookup(driver, inode, idx);
1293
1294 return driver->ttys[idx];
1295}
1296
1297/**
1298 * tty_init_termios - helper for termios setup
1299 * @tty: the tty to set up
1300 *
1301 * Initialise the termios structures for this tty. Thus runs under
1302 * the tty_mutex currently so we can be relaxed about ordering.
1303 */
1304
1305int tty_init_termios(struct tty_struct *tty)
1306{
1307 struct ktermios *tp;
1308 int idx = tty->index;
1309
1310 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1311 tty->termios = tty->driver->init_termios;
1312 else {
1313 /* Check for lazy saved data */
1314 tp = tty->driver->termios[idx];
1315 if (tp != NULL)
1316 tty->termios = *tp;
1317 else
1318 tty->termios = tty->driver->init_termios;
1319 }
1320 /* Compatibility until drivers always set this */
1321 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1322 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1323 return 0;
1324}
1325EXPORT_SYMBOL_GPL(tty_init_termios);
1326
1327int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1328{
1329 int ret = tty_init_termios(tty);
1330 if (ret)
1331 return ret;
1332
1333 tty_driver_kref_get(driver);
1334 tty->count++;
1335 driver->ttys[tty->index] = tty;
1336 return 0;
1337}
1338EXPORT_SYMBOL_GPL(tty_standard_install);
1339
1340/**
1341 * tty_driver_install_tty() - install a tty entry in the driver
1342 * @driver: the driver for the tty
1343 * @tty: the tty
1344 *
1345 * Install a tty object into the driver tables. The tty->index field
1346 * will be set by the time this is called. This method is responsible
1347 * for ensuring any need additional structures are allocated and
1348 * configured.
1349 *
1350 * Locking: tty_mutex for now
1351 */
1352static int tty_driver_install_tty(struct tty_driver *driver,
1353 struct tty_struct *tty)
1354{
1355 return driver->ops->install ? driver->ops->install(driver, tty) :
1356 tty_standard_install(driver, tty);
1357}
1358
1359/**
1360 * tty_driver_remove_tty() - remove a tty from the driver tables
1361 * @driver: the driver for the tty
1362 * @idx: the minor number
1363 *
1364 * Remvoe a tty object from the driver tables. The tty->index field
1365 * will be set by the time this is called.
1366 *
1367 * Locking: tty_mutex for now
1368 */
1369void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1370{
1371 if (driver->ops->remove)
1372 driver->ops->remove(driver, tty);
1373 else
1374 driver->ttys[tty->index] = NULL;
1375}
1376
1377/*
1378 * tty_reopen() - fast re-open of an open tty
1379 * @tty - the tty to open
1380 *
1381 * Return 0 on success, -errno on error.
1382 *
1383 * Locking: tty_mutex must be held from the time the tty was found
1384 * till this open completes.
1385 */
1386static int tty_reopen(struct tty_struct *tty)
1387{
1388 struct tty_driver *driver = tty->driver;
1389
1390 if (test_bit(TTY_CLOSING, &tty->flags) ||
1391 test_bit(TTY_HUPPING, &tty->flags))
1392 return -EIO;
1393
1394 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1395 driver->subtype == PTY_TYPE_MASTER) {
1396 /*
1397 * special case for PTY masters: only one open permitted,
1398 * and the slave side open count is incremented as well.
1399 */
1400 if (tty->count)
1401 return -EIO;
1402
1403 tty->link->count++;
1404 }
1405 tty->count++;
1406
1407 WARN_ON(!tty->ldisc);
1408
1409 return 0;
1410}
1411
1412/**
1413 * tty_init_dev - initialise a tty device
1414 * @driver: tty driver we are opening a device on
1415 * @idx: device index
1416 * @ret_tty: returned tty structure
1417 *
1418 * Prepare a tty device. This may not be a "new" clean device but
1419 * could also be an active device. The pty drivers require special
1420 * handling because of this.
1421 *
1422 * Locking:
1423 * The function is called under the tty_mutex, which
1424 * protects us from the tty struct or driver itself going away.
1425 *
1426 * On exit the tty device has the line discipline attached and
1427 * a reference count of 1. If a pair was created for pty/tty use
1428 * and the other was a pty master then it too has a reference count of 1.
1429 *
1430 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1431 * failed open. The new code protects the open with a mutex, so it's
1432 * really quite straightforward. The mutex locking can probably be
1433 * relaxed for the (most common) case of reopening a tty.
1434 */
1435
1436struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1437{
1438 struct tty_struct *tty;
1439 int retval;
1440
1441 /*
1442 * First time open is complex, especially for PTY devices.
1443 * This code guarantees that either everything succeeds and the
1444 * TTY is ready for operation, or else the table slots are vacated
1445 * and the allocated memory released. (Except that the termios
1446 * and locked termios may be retained.)
1447 */
1448
1449 if (!try_module_get(driver->owner))
1450 return ERR_PTR(-ENODEV);
1451
1452 tty = alloc_tty_struct();
1453 if (!tty) {
1454 retval = -ENOMEM;
1455 goto err_module_put;
1456 }
1457 initialize_tty_struct(tty, driver, idx);
1458
1459 tty_lock(tty);
1460 retval = tty_driver_install_tty(driver, tty);
1461 if (retval < 0)
1462 goto err_deinit_tty;
1463
1464 if (!tty->port)
1465 tty->port = driver->ports[idx];
1466
1467 WARN_RATELIMIT(!tty->port,
1468 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1469 __func__, tty->driver->name);
1470
1471 tty->port->itty = tty;
1472
1473 /*
1474 * Structures all installed ... call the ldisc open routines.
1475 * If we fail here just call release_tty to clean up. No need
1476 * to decrement the use counts, as release_tty doesn't care.
1477 */
1478 retval = tty_ldisc_setup(tty, tty->link);
1479 if (retval)
1480 goto err_release_tty;
1481 /* Return the tty locked so that it cannot vanish under the caller */
1482 return tty;
1483
1484err_deinit_tty:
1485 tty_unlock(tty);
1486 deinitialize_tty_struct(tty);
1487 free_tty_struct(tty);
1488err_module_put:
1489 module_put(driver->owner);
1490 return ERR_PTR(retval);
1491
1492 /* call the tty release_tty routine to clean out this slot */
1493err_release_tty:
1494 tty_unlock(tty);
1495 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1496 "clearing slot %d\n", idx);
1497 release_tty(tty, idx);
1498 return ERR_PTR(retval);
1499}
1500
1501void tty_free_termios(struct tty_struct *tty)
1502{
1503 struct ktermios *tp;
1504 int idx = tty->index;
1505
1506 /* If the port is going to reset then it has no termios to save */
1507 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1508 return;
1509
1510 /* Stash the termios data */
1511 tp = tty->driver->termios[idx];
1512 if (tp == NULL) {
1513 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1514 if (tp == NULL) {
1515 pr_warn("tty: no memory to save termios state.\n");
1516 return;
1517 }
1518 tty->driver->termios[idx] = tp;
1519 }
1520 *tp = tty->termios;
1521}
1522EXPORT_SYMBOL(tty_free_termios);
1523
1524/**
1525 * tty_flush_works - flush all works of a tty
1526 * @tty: tty device to flush works for
1527 *
1528 * Sync flush all works belonging to @tty.
1529 */
1530static void tty_flush_works(struct tty_struct *tty)
1531{
1532 flush_work(&tty->SAK_work);
1533 flush_work(&tty->hangup_work);
1534}
1535
1536/**
1537 * release_one_tty - release tty structure memory
1538 * @kref: kref of tty we are obliterating
1539 *
1540 * Releases memory associated with a tty structure, and clears out the
1541 * driver table slots. This function is called when a device is no longer
1542 * in use. It also gets called when setup of a device fails.
1543 *
1544 * Locking:
1545 * takes the file list lock internally when working on the list
1546 * of ttys that the driver keeps.
1547 *
1548 * This method gets called from a work queue so that the driver private
1549 * cleanup ops can sleep (needed for USB at least)
1550 */
1551static void release_one_tty(struct work_struct *work)
1552{
1553 struct tty_struct *tty =
1554 container_of(work, struct tty_struct, hangup_work);
1555 struct tty_driver *driver = tty->driver;
1556
1557 if (tty->ops->cleanup)
1558 tty->ops->cleanup(tty);
1559
1560 tty->magic = 0;
1561 tty_driver_kref_put(driver);
1562 module_put(driver->owner);
1563
1564 spin_lock(&tty_files_lock);
1565 list_del_init(&tty->tty_files);
1566 spin_unlock(&tty_files_lock);
1567
1568 put_pid(tty->pgrp);
1569 put_pid(tty->session);
1570 free_tty_struct(tty);
1571}
1572
1573static void queue_release_one_tty(struct kref *kref)
1574{
1575 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1576
1577 /* The hangup queue is now free so we can reuse it rather than
1578 waste a chunk of memory for each port */
1579 INIT_WORK(&tty->hangup_work, release_one_tty);
1580 schedule_work(&tty->hangup_work);
1581}
1582
1583/**
1584 * tty_kref_put - release a tty kref
1585 * @tty: tty device
1586 *
1587 * Release a reference to a tty device and if need be let the kref
1588 * layer destruct the object for us
1589 */
1590
1591void tty_kref_put(struct tty_struct *tty)
1592{
1593 if (tty)
1594 kref_put(&tty->kref, queue_release_one_tty);
1595}
1596EXPORT_SYMBOL(tty_kref_put);
1597
1598/**
1599 * release_tty - release tty structure memory
1600 *
1601 * Release both @tty and a possible linked partner (think pty pair),
1602 * and decrement the refcount of the backing module.
1603 *
1604 * Locking:
1605 * tty_mutex
1606 * takes the file list lock internally when working on the list
1607 * of ttys that the driver keeps.
1608 *
1609 */
1610static void release_tty(struct tty_struct *tty, int idx)
1611{
1612 /* This should always be true but check for the moment */
1613 WARN_ON(tty->index != idx);
1614 WARN_ON(!mutex_is_locked(&tty_mutex));
1615 if (tty->ops->shutdown)
1616 tty->ops->shutdown(tty);
1617 tty_free_termios(tty);
1618 tty_driver_remove_tty(tty->driver, tty);
1619 tty->port->itty = NULL;
1620 if (tty->link)
1621 tty->link->port->itty = NULL;
1622 cancel_work_sync(&tty->port->buf.work);
1623
1624 if (tty->link)
1625 tty_kref_put(tty->link);
1626 tty_kref_put(tty);
1627}
1628
1629/**
1630 * tty_release_checks - check a tty before real release
1631 * @tty: tty to check
1632 * @o_tty: link of @tty (if any)
1633 * @idx: index of the tty
1634 *
1635 * Performs some paranoid checking before true release of the @tty.
1636 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1637 */
1638static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1639 int idx)
1640{
1641#ifdef TTY_PARANOIA_CHECK
1642 if (idx < 0 || idx >= tty->driver->num) {
1643 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1644 __func__, tty->name);
1645 return -1;
1646 }
1647
1648 /* not much to check for devpts */
1649 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1650 return 0;
1651
1652 if (tty != tty->driver->ttys[idx]) {
1653 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1654 __func__, idx, tty->name);
1655 return -1;
1656 }
1657 if (tty->driver->other) {
1658 if (o_tty != tty->driver->other->ttys[idx]) {
1659 printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1660 __func__, idx, tty->name);
1661 return -1;
1662 }
1663 if (o_tty->link != tty) {
1664 printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1665 return -1;
1666 }
1667 }
1668#endif
1669 return 0;
1670}
1671
1672/**
1673 * tty_release - vfs callback for close
1674 * @inode: inode of tty
1675 * @filp: file pointer for handle to tty
1676 *
1677 * Called the last time each file handle is closed that references
1678 * this tty. There may however be several such references.
1679 *
1680 * Locking:
1681 * Takes bkl. See tty_release_dev
1682 *
1683 * Even releasing the tty structures is a tricky business.. We have
1684 * to be very careful that the structures are all released at the
1685 * same time, as interrupts might otherwise get the wrong pointers.
1686 *
1687 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1688 * lead to double frees or releasing memory still in use.
1689 */
1690
1691int tty_release(struct inode *inode, struct file *filp)
1692{
1693 struct tty_struct *tty = file_tty(filp);
1694 struct tty_struct *o_tty;
1695 int pty_master, tty_closing, o_tty_closing, do_sleep;
1696 int idx;
1697 char buf[64];
1698
1699 if (tty_paranoia_check(tty, inode, __func__))
1700 return 0;
1701
1702 tty_lock(tty);
1703 check_tty_count(tty, __func__);
1704
1705 __tty_fasync(-1, filp, 0);
1706
1707 idx = tty->index;
1708 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1709 tty->driver->subtype == PTY_TYPE_MASTER);
1710 /* Review: parallel close */
1711 o_tty = tty->link;
1712
1713 if (tty_release_checks(tty, o_tty, idx)) {
1714 tty_unlock(tty);
1715 return 0;
1716 }
1717
1718#ifdef TTY_DEBUG_HANGUP
1719 printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1720 tty_name(tty, buf), tty->count);
1721#endif
1722
1723 if (tty->ops->close)
1724 tty->ops->close(tty, filp);
1725
1726 tty_unlock(tty);
1727 /*
1728 * Sanity check: if tty->count is going to zero, there shouldn't be
1729 * any waiters on tty->read_wait or tty->write_wait. We test the
1730 * wait queues and kick everyone out _before_ actually starting to
1731 * close. This ensures that we won't block while releasing the tty
1732 * structure.
1733 *
1734 * The test for the o_tty closing is necessary, since the master and
1735 * slave sides may close in any order. If the slave side closes out
1736 * first, its count will be one, since the master side holds an open.
1737 * Thus this test wouldn't be triggered at the time the slave closes,
1738 * so we do it now.
1739 *
1740 * Note that it's possible for the tty to be opened again while we're
1741 * flushing out waiters. By recalculating the closing flags before
1742 * each iteration we avoid any problems.
1743 */
1744 while (1) {
1745 /* Guard against races with tty->count changes elsewhere and
1746 opens on /dev/tty */
1747
1748 mutex_lock(&tty_mutex);
1749 tty_lock_pair(tty, o_tty);
1750 tty_closing = tty->count <= 1;
1751 o_tty_closing = o_tty &&
1752 (o_tty->count <= (pty_master ? 1 : 0));
1753 do_sleep = 0;
1754
1755 if (tty_closing) {
1756 if (waitqueue_active(&tty->read_wait)) {
1757 wake_up_poll(&tty->read_wait, POLLIN);
1758 do_sleep++;
1759 }
1760 if (waitqueue_active(&tty->write_wait)) {
1761 wake_up_poll(&tty->write_wait, POLLOUT);
1762 do_sleep++;
1763 }
1764 }
1765 if (o_tty_closing) {
1766 if (waitqueue_active(&o_tty->read_wait)) {
1767 wake_up_poll(&o_tty->read_wait, POLLIN);
1768 do_sleep++;
1769 }
1770 if (waitqueue_active(&o_tty->write_wait)) {
1771 wake_up_poll(&o_tty->write_wait, POLLOUT);
1772 do_sleep++;
1773 }
1774 }
1775 if (!do_sleep)
1776 break;
1777
1778 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1779 __func__, tty_name(tty, buf));
1780 tty_unlock_pair(tty, o_tty);
1781 mutex_unlock(&tty_mutex);
1782 schedule();
1783 }
1784
1785 /*
1786 * The closing flags are now consistent with the open counts on
1787 * both sides, and we've completed the last operation that could
1788 * block, so it's safe to proceed with closing.
1789 *
1790 * We must *not* drop the tty_mutex until we ensure that a further
1791 * entry into tty_open can not pick up this tty.
1792 */
1793 if (pty_master) {
1794 if (--o_tty->count < 0) {
1795 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1796 __func__, o_tty->count, tty_name(o_tty, buf));
1797 o_tty->count = 0;
1798 }
1799 }
1800 if (--tty->count < 0) {
1801 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1802 __func__, tty->count, tty_name(tty, buf));
1803 tty->count = 0;
1804 }
1805
1806 /*
1807 * We've decremented tty->count, so we need to remove this file
1808 * descriptor off the tty->tty_files list; this serves two
1809 * purposes:
1810 * - check_tty_count sees the correct number of file descriptors
1811 * associated with this tty.
1812 * - do_tty_hangup no longer sees this file descriptor as
1813 * something that needs to be handled for hangups.
1814 */
1815 tty_del_file(filp);
1816
1817 /*
1818 * Perform some housekeeping before deciding whether to return.
1819 *
1820 * Set the TTY_CLOSING flag if this was the last open. In the
1821 * case of a pty we may have to wait around for the other side
1822 * to close, and TTY_CLOSING makes sure we can't be reopened.
1823 */
1824 if (tty_closing)
1825 set_bit(TTY_CLOSING, &tty->flags);
1826 if (o_tty_closing)
1827 set_bit(TTY_CLOSING, &o_tty->flags);
1828
1829 /*
1830 * If _either_ side is closing, make sure there aren't any
1831 * processes that still think tty or o_tty is their controlling
1832 * tty.
1833 */
1834 if (tty_closing || o_tty_closing) {
1835 read_lock(&tasklist_lock);
1836 session_clear_tty(tty->session);
1837 if (o_tty)
1838 session_clear_tty(o_tty->session);
1839 read_unlock(&tasklist_lock);
1840 }
1841
1842 mutex_unlock(&tty_mutex);
1843 tty_unlock_pair(tty, o_tty);
1844 /* At this point the TTY_CLOSING flag should ensure a dead tty
1845 cannot be re-opened by a racing opener */
1846
1847 /* check whether both sides are closing ... */
1848 if (!tty_closing || (o_tty && !o_tty_closing))
1849 return 0;
1850
1851#ifdef TTY_DEBUG_HANGUP
1852 printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1853#endif
1854 /*
1855 * Ask the line discipline code to release its structures
1856 */
1857 tty_ldisc_release(tty, o_tty);
1858
1859 /* Wait for pending work before tty destruction commmences */
1860 tty_flush_works(tty);
1861 if (o_tty)
1862 tty_flush_works(o_tty);
1863
1864#ifdef TTY_DEBUG_HANGUP
1865 printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1866#endif
1867 /*
1868 * The release_tty function takes care of the details of clearing
1869 * the slots and preserving the termios structure. The tty_unlock_pair
1870 * should be safe as we keep a kref while the tty is locked (so the
1871 * unlock never unlocks a freed tty).
1872 */
1873 mutex_lock(&tty_mutex);
1874 release_tty(tty, idx);
1875 mutex_unlock(&tty_mutex);
1876
1877 return 0;
1878}
1879
1880/**
1881 * tty_open_current_tty - get tty of current task for open
1882 * @device: device number
1883 * @filp: file pointer to tty
1884 * @return: tty of the current task iff @device is /dev/tty
1885 *
1886 * We cannot return driver and index like for the other nodes because
1887 * devpts will not work then. It expects inodes to be from devpts FS.
1888 *
1889 * We need to move to returning a refcounted object from all the lookup
1890 * paths including this one.
1891 */
1892static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1893{
1894 struct tty_struct *tty;
1895
1896 if (device != MKDEV(TTYAUX_MAJOR, 0))
1897 return NULL;
1898
1899 tty = get_current_tty();
1900 if (!tty)
1901 return ERR_PTR(-ENXIO);
1902
1903 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1904 /* noctty = 1; */
1905 tty_kref_put(tty);
1906 /* FIXME: we put a reference and return a TTY! */
1907 /* This is only safe because the caller holds tty_mutex */
1908 return tty;
1909}
1910
1911/**
1912 * tty_lookup_driver - lookup a tty driver for a given device file
1913 * @device: device number
1914 * @filp: file pointer to tty
1915 * @noctty: set if the device should not become a controlling tty
1916 * @index: index for the device in the @return driver
1917 * @return: driver for this inode (with increased refcount)
1918 *
1919 * If @return is not erroneous, the caller is responsible to decrement the
1920 * refcount by tty_driver_kref_put.
1921 *
1922 * Locking: tty_mutex protects get_tty_driver
1923 */
1924static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1925 int *noctty, int *index)
1926{
1927 struct tty_driver *driver;
1928
1929 switch (device) {
1930#ifdef CONFIG_VT
1931 case MKDEV(TTY_MAJOR, 0): {
1932 extern struct tty_driver *console_driver;
1933 driver = tty_driver_kref_get(console_driver);
1934 *index = fg_console;
1935 *noctty = 1;
1936 break;
1937 }
1938#endif
1939 case MKDEV(TTYAUX_MAJOR, 1): {
1940 struct tty_driver *console_driver = console_device(index);
1941 if (console_driver) {
1942 driver = tty_driver_kref_get(console_driver);
1943 if (driver) {
1944 /* Don't let /dev/console block */
1945 filp->f_flags |= O_NONBLOCK;
1946 *noctty = 1;
1947 break;
1948 }
1949 }
1950 return ERR_PTR(-ENODEV);
1951 }
1952 default:
1953 driver = get_tty_driver(device, index);
1954 if (!driver)
1955 return ERR_PTR(-ENODEV);
1956 break;
1957 }
1958 return driver;
1959}
1960
1961/**
1962 * tty_open - open a tty device
1963 * @inode: inode of device file
1964 * @filp: file pointer to tty
1965 *
1966 * tty_open and tty_release keep up the tty count that contains the
1967 * number of opens done on a tty. We cannot use the inode-count, as
1968 * different inodes might point to the same tty.
1969 *
1970 * Open-counting is needed for pty masters, as well as for keeping
1971 * track of serial lines: DTR is dropped when the last close happens.
1972 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1973 *
1974 * The termios state of a pty is reset on first open so that
1975 * settings don't persist across reuse.
1976 *
1977 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1978 * tty->count should protect the rest.
1979 * ->siglock protects ->signal/->sighand
1980 *
1981 * Note: the tty_unlock/lock cases without a ref are only safe due to
1982 * tty_mutex
1983 */
1984
1985static int tty_open(struct inode *inode, struct file *filp)
1986{
1987 struct tty_struct *tty;
1988 int noctty, retval;
1989 struct tty_driver *driver = NULL;
1990 int index;
1991 dev_t device = inode->i_rdev;
1992 unsigned saved_flags = filp->f_flags;
1993
1994 nonseekable_open(inode, filp);
1995
1996retry_open:
1997 retval = tty_alloc_file(filp);
1998 if (retval)
1999 return -ENOMEM;
2000
2001 noctty = filp->f_flags & O_NOCTTY;
2002 index = -1;
2003 retval = 0;
2004
2005 mutex_lock(&tty_mutex);
2006 /* This is protected by the tty_mutex */
2007 tty = tty_open_current_tty(device, filp);
2008 if (IS_ERR(tty)) {
2009 retval = PTR_ERR(tty);
2010 goto err_unlock;
2011 } else if (!tty) {
2012 driver = tty_lookup_driver(device, filp, &noctty, &index);
2013 if (IS_ERR(driver)) {
2014 retval = PTR_ERR(driver);
2015 goto err_unlock;
2016 }
2017
2018 /* check whether we're reopening an existing tty */
2019 tty = tty_driver_lookup_tty(driver, inode, index);
2020 if (IS_ERR(tty)) {
2021 retval = PTR_ERR(tty);
2022 goto err_unlock;
2023 }
2024 }
2025
2026 if (tty) {
2027 tty_lock(tty);
2028 retval = tty_reopen(tty);
2029 if (retval < 0) {
2030 tty_unlock(tty);
2031 tty = ERR_PTR(retval);
2032 }
2033 } else /* Returns with the tty_lock held for now */
2034 tty = tty_init_dev(driver, index);
2035
2036 mutex_unlock(&tty_mutex);
2037 if (driver)
2038 tty_driver_kref_put(driver);
2039 if (IS_ERR(tty)) {
2040 retval = PTR_ERR(tty);
2041 goto err_file;
2042 }
2043
2044 tty_add_file(tty, filp);
2045
2046 check_tty_count(tty, __func__);
2047 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2048 tty->driver->subtype == PTY_TYPE_MASTER)
2049 noctty = 1;
2050#ifdef TTY_DEBUG_HANGUP
2051 printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2052#endif
2053 if (tty->ops->open)
2054 retval = tty->ops->open(tty, filp);
2055 else
2056 retval = -ENODEV;
2057 filp->f_flags = saved_flags;
2058
2059 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2060 !capable(CAP_SYS_ADMIN))
2061 retval = -EBUSY;
2062
2063 if (retval) {
2064#ifdef TTY_DEBUG_HANGUP
2065 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2066 retval, tty->name);
2067#endif
2068 tty_unlock(tty); /* need to call tty_release without BTM */
2069 tty_release(inode, filp);
2070 if (retval != -ERESTARTSYS)
2071 return retval;
2072
2073 if (signal_pending(current))
2074 return retval;
2075
2076 schedule();
2077 /*
2078 * Need to reset f_op in case a hangup happened.
2079 */
2080 if (filp->f_op == &hung_up_tty_fops)
2081 filp->f_op = &tty_fops;
2082 goto retry_open;
2083 }
2084 tty_unlock(tty);
2085
2086
2087 mutex_lock(&tty_mutex);
2088 tty_lock(tty);
2089 spin_lock_irq(&current->sighand->siglock);
2090 if (!noctty &&
2091 current->signal->leader &&
2092 !current->signal->tty &&
2093 tty->session == NULL)
2094 __proc_set_tty(current, tty);
2095 spin_unlock_irq(&current->sighand->siglock);
2096 tty_unlock(tty);
2097 mutex_unlock(&tty_mutex);
2098 return 0;
2099err_unlock:
2100 mutex_unlock(&tty_mutex);
2101 /* after locks to avoid deadlock */
2102 if (!IS_ERR_OR_NULL(driver))
2103 tty_driver_kref_put(driver);
2104err_file:
2105 tty_free_file(filp);
2106 return retval;
2107}
2108
2109
2110
2111/**
2112 * tty_poll - check tty status
2113 * @filp: file being polled
2114 * @wait: poll wait structures to update
2115 *
2116 * Call the line discipline polling method to obtain the poll
2117 * status of the device.
2118 *
2119 * Locking: locks called line discipline but ldisc poll method
2120 * may be re-entered freely by other callers.
2121 */
2122
2123static unsigned int tty_poll(struct file *filp, poll_table *wait)
2124{
2125 struct tty_struct *tty = file_tty(filp);
2126 struct tty_ldisc *ld;
2127 int ret = 0;
2128
2129 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2130 return 0;
2131
2132 ld = tty_ldisc_ref_wait(tty);
2133 if (ld->ops->poll)
2134 ret = (ld->ops->poll)(tty, filp, wait);
2135 tty_ldisc_deref(ld);
2136 return ret;
2137}
2138
2139static int __tty_fasync(int fd, struct file *filp, int on)
2140{
2141 struct tty_struct *tty = file_tty(filp);
2142 struct tty_ldisc *ldisc;
2143 unsigned long flags;
2144 int retval = 0;
2145
2146 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2147 goto out;
2148
2149 retval = fasync_helper(fd, filp, on, &tty->fasync);
2150 if (retval <= 0)
2151 goto out;
2152
2153 ldisc = tty_ldisc_ref(tty);
2154 if (ldisc) {
2155 if (ldisc->ops->fasync)
2156 ldisc->ops->fasync(tty, on);
2157 tty_ldisc_deref(ldisc);
2158 }
2159
2160 if (on) {
2161 enum pid_type type;
2162 struct pid *pid;
2163
2164 spin_lock_irqsave(&tty->ctrl_lock, flags);
2165 if (tty->pgrp) {
2166 pid = tty->pgrp;
2167 type = PIDTYPE_PGID;
2168 } else {
2169 pid = task_pid(current);
2170 type = PIDTYPE_PID;
2171 }
2172 get_pid(pid);
2173 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2174 retval = __f_setown(filp, pid, type, 0);
2175 put_pid(pid);
2176 }
2177out:
2178 return retval;
2179}
2180
2181static int tty_fasync(int fd, struct file *filp, int on)
2182{
2183 struct tty_struct *tty = file_tty(filp);
2184 int retval;
2185
2186 tty_lock(tty);
2187 retval = __tty_fasync(fd, filp, on);
2188 tty_unlock(tty);
2189
2190 return retval;
2191}
2192
2193/**
2194 * tiocsti - fake input character
2195 * @tty: tty to fake input into
2196 * @p: pointer to character
2197 *
2198 * Fake input to a tty device. Does the necessary locking and
2199 * input management.
2200 *
2201 * FIXME: does not honour flow control ??
2202 *
2203 * Locking:
2204 * Called functions take tty_ldiscs_lock
2205 * current->signal->tty check is safe without locks
2206 *
2207 * FIXME: may race normal receive processing
2208 */
2209
2210static int tiocsti(struct tty_struct *tty, char __user *p)
2211{
2212 char ch, mbz = 0;
2213 struct tty_ldisc *ld;
2214
2215 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2216 return -EPERM;
2217 if (get_user(ch, p))
2218 return -EFAULT;
2219 tty_audit_tiocsti(tty, ch);
2220 ld = tty_ldisc_ref_wait(tty);
2221 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2222 tty_ldisc_deref(ld);
2223 return 0;
2224}
2225
2226/**
2227 * tiocgwinsz - implement window query ioctl
2228 * @tty; tty
2229 * @arg: user buffer for result
2230 *
2231 * Copies the kernel idea of the window size into the user buffer.
2232 *
2233 * Locking: tty->termios_mutex is taken to ensure the winsize data
2234 * is consistent.
2235 */
2236
2237static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2238{
2239 int err;
2240
2241 mutex_lock(&tty->termios_mutex);
2242 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2243 mutex_unlock(&tty->termios_mutex);
2244
2245 return err ? -EFAULT: 0;
2246}
2247
2248/**
2249 * tty_do_resize - resize event
2250 * @tty: tty being resized
2251 * @rows: rows (character)
2252 * @cols: cols (character)
2253 *
2254 * Update the termios variables and send the necessary signals to
2255 * peform a terminal resize correctly
2256 */
2257
2258int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2259{
2260 struct pid *pgrp;
2261 unsigned long flags;
2262
2263 /* Lock the tty */
2264 mutex_lock(&tty->termios_mutex);
2265 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2266 goto done;
2267 /* Get the PID values and reference them so we can
2268 avoid holding the tty ctrl lock while sending signals */
2269 spin_lock_irqsave(&tty->ctrl_lock, flags);
2270 pgrp = get_pid(tty->pgrp);
2271 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2272
2273 if (pgrp)
2274 kill_pgrp(pgrp, SIGWINCH, 1);
2275 put_pid(pgrp);
2276
2277 tty->winsize = *ws;
2278done:
2279 mutex_unlock(&tty->termios_mutex);
2280 return 0;
2281}
2282EXPORT_SYMBOL(tty_do_resize);
2283
2284/**
2285 * tiocswinsz - implement window size set ioctl
2286 * @tty; tty side of tty
2287 * @arg: user buffer for result
2288 *
2289 * Copies the user idea of the window size to the kernel. Traditionally
2290 * this is just advisory information but for the Linux console it
2291 * actually has driver level meaning and triggers a VC resize.
2292 *
2293 * Locking:
2294 * Driver dependent. The default do_resize method takes the
2295 * tty termios mutex and ctrl_lock. The console takes its own lock
2296 * then calls into the default method.
2297 */
2298
2299static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2300{
2301 struct winsize tmp_ws;
2302 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2303 return -EFAULT;
2304
2305 if (tty->ops->resize)
2306 return tty->ops->resize(tty, &tmp_ws);
2307 else
2308 return tty_do_resize(tty, &tmp_ws);
2309}
2310
2311/**
2312 * tioccons - allow admin to move logical console
2313 * @file: the file to become console
2314 *
2315 * Allow the administrator to move the redirected console device
2316 *
2317 * Locking: uses redirect_lock to guard the redirect information
2318 */
2319
2320static int tioccons(struct file *file)
2321{
2322 if (!capable(CAP_SYS_ADMIN))
2323 return -EPERM;
2324 if (file->f_op->write == redirected_tty_write) {
2325 struct file *f;
2326 spin_lock(&redirect_lock);
2327 f = redirect;
2328 redirect = NULL;
2329 spin_unlock(&redirect_lock);
2330 if (f)
2331 fput(f);
2332 return 0;
2333 }
2334 spin_lock(&redirect_lock);
2335 if (redirect) {
2336 spin_unlock(&redirect_lock);
2337 return -EBUSY;
2338 }
2339 redirect = get_file(file);
2340 spin_unlock(&redirect_lock);
2341 return 0;
2342}
2343
2344/**
2345 * fionbio - non blocking ioctl
2346 * @file: file to set blocking value
2347 * @p: user parameter
2348 *
2349 * Historical tty interfaces had a blocking control ioctl before
2350 * the generic functionality existed. This piece of history is preserved
2351 * in the expected tty API of posix OS's.
2352 *
2353 * Locking: none, the open file handle ensures it won't go away.
2354 */
2355
2356static int fionbio(struct file *file, int __user *p)
2357{
2358 int nonblock;
2359
2360 if (get_user(nonblock, p))
2361 return -EFAULT;
2362
2363 spin_lock(&file->f_lock);
2364 if (nonblock)
2365 file->f_flags |= O_NONBLOCK;
2366 else
2367 file->f_flags &= ~O_NONBLOCK;
2368 spin_unlock(&file->f_lock);
2369 return 0;
2370}
2371
2372/**
2373 * tiocsctty - set controlling tty
2374 * @tty: tty structure
2375 * @arg: user argument
2376 *
2377 * This ioctl is used to manage job control. It permits a session
2378 * leader to set this tty as the controlling tty for the session.
2379 *
2380 * Locking:
2381 * Takes tty_mutex() to protect tty instance
2382 * Takes tasklist_lock internally to walk sessions
2383 * Takes ->siglock() when updating signal->tty
2384 */
2385
2386static int tiocsctty(struct tty_struct *tty, int arg)
2387{
2388 int ret = 0;
2389 if (current->signal->leader && (task_session(current) == tty->session))
2390 return ret;
2391
2392 mutex_lock(&tty_mutex);
2393 /*
2394 * The process must be a session leader and
2395 * not have a controlling tty already.
2396 */
2397 if (!current->signal->leader || current->signal->tty) {
2398 ret = -EPERM;
2399 goto unlock;
2400 }
2401
2402 if (tty->session) {
2403 /*
2404 * This tty is already the controlling
2405 * tty for another session group!
2406 */
2407 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2408 /*
2409 * Steal it away
2410 */
2411 read_lock(&tasklist_lock);
2412 session_clear_tty(tty->session);
2413 read_unlock(&tasklist_lock);
2414 } else {
2415 ret = -EPERM;
2416 goto unlock;
2417 }
2418 }
2419 proc_set_tty(current, tty);
2420unlock:
2421 mutex_unlock(&tty_mutex);
2422 return ret;
2423}
2424
2425/**
2426 * tty_get_pgrp - return a ref counted pgrp pid
2427 * @tty: tty to read
2428 *
2429 * Returns a refcounted instance of the pid struct for the process
2430 * group controlling the tty.
2431 */
2432
2433struct pid *tty_get_pgrp(struct tty_struct *tty)
2434{
2435 unsigned long flags;
2436 struct pid *pgrp;
2437
2438 spin_lock_irqsave(&tty->ctrl_lock, flags);
2439 pgrp = get_pid(tty->pgrp);
2440 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2441
2442 return pgrp;
2443}
2444EXPORT_SYMBOL_GPL(tty_get_pgrp);
2445
2446/**
2447 * tiocgpgrp - get process group
2448 * @tty: tty passed by user
2449 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2450 * @p: returned pid
2451 *
2452 * Obtain the process group of the tty. If there is no process group
2453 * return an error.
2454 *
2455 * Locking: none. Reference to current->signal->tty is safe.
2456 */
2457
2458static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2459{
2460 struct pid *pid;
2461 int ret;
2462 /*
2463 * (tty == real_tty) is a cheap way of
2464 * testing if the tty is NOT a master pty.
2465 */
2466 if (tty == real_tty && current->signal->tty != real_tty)
2467 return -ENOTTY;
2468 pid = tty_get_pgrp(real_tty);
2469 ret = put_user(pid_vnr(pid), p);
2470 put_pid(pid);
2471 return ret;
2472}
2473
2474/**
2475 * tiocspgrp - attempt to set process group
2476 * @tty: tty passed by user
2477 * @real_tty: tty side device matching tty passed by user
2478 * @p: pid pointer
2479 *
2480 * Set the process group of the tty to the session passed. Only
2481 * permitted where the tty session is our session.
2482 *
2483 * Locking: RCU, ctrl lock
2484 */
2485
2486static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2487{
2488 struct pid *pgrp;
2489 pid_t pgrp_nr;
2490 int retval = tty_check_change(real_tty);
2491 unsigned long flags;
2492
2493 if (retval == -EIO)
2494 return -ENOTTY;
2495 if (retval)
2496 return retval;
2497 if (!current->signal->tty ||
2498 (current->signal->tty != real_tty) ||
2499 (real_tty->session != task_session(current)))
2500 return -ENOTTY;
2501 if (get_user(pgrp_nr, p))
2502 return -EFAULT;
2503 if (pgrp_nr < 0)
2504 return -EINVAL;
2505 rcu_read_lock();
2506 pgrp = find_vpid(pgrp_nr);
2507 retval = -ESRCH;
2508 if (!pgrp)
2509 goto out_unlock;
2510 retval = -EPERM;
2511 if (session_of_pgrp(pgrp) != task_session(current))
2512 goto out_unlock;
2513 retval = 0;
2514 spin_lock_irqsave(&tty->ctrl_lock, flags);
2515 put_pid(real_tty->pgrp);
2516 real_tty->pgrp = get_pid(pgrp);
2517 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2518out_unlock:
2519 rcu_read_unlock();
2520 return retval;
2521}
2522
2523/**
2524 * tiocgsid - get session id
2525 * @tty: tty passed by user
2526 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2527 * @p: pointer to returned session id
2528 *
2529 * Obtain the session id of the tty. If there is no session
2530 * return an error.
2531 *
2532 * Locking: none. Reference to current->signal->tty is safe.
2533 */
2534
2535static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2536{
2537 /*
2538 * (tty == real_tty) is a cheap way of
2539 * testing if the tty is NOT a master pty.
2540 */
2541 if (tty == real_tty && current->signal->tty != real_tty)
2542 return -ENOTTY;
2543 if (!real_tty->session)
2544 return -ENOTTY;
2545 return put_user(pid_vnr(real_tty->session), p);
2546}
2547
2548/**
2549 * tiocsetd - set line discipline
2550 * @tty: tty device
2551 * @p: pointer to user data
2552 *
2553 * Set the line discipline according to user request.
2554 *
2555 * Locking: see tty_set_ldisc, this function is just a helper
2556 */
2557
2558static int tiocsetd(struct tty_struct *tty, int __user *p)
2559{
2560 int ldisc;
2561 int ret;
2562
2563 if (get_user(ldisc, p))
2564 return -EFAULT;
2565
2566 ret = tty_set_ldisc(tty, ldisc);
2567
2568 return ret;
2569}
2570
2571/**
2572 * send_break - performed time break
2573 * @tty: device to break on
2574 * @duration: timeout in mS
2575 *
2576 * Perform a timed break on hardware that lacks its own driver level
2577 * timed break functionality.
2578 *
2579 * Locking:
2580 * atomic_write_lock serializes
2581 *
2582 */
2583
2584static int send_break(struct tty_struct *tty, unsigned int duration)
2585{
2586 int retval;
2587
2588 if (tty->ops->break_ctl == NULL)
2589 return 0;
2590
2591 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2592 retval = tty->ops->break_ctl(tty, duration);
2593 else {
2594 /* Do the work ourselves */
2595 if (tty_write_lock(tty, 0) < 0)
2596 return -EINTR;
2597 retval = tty->ops->break_ctl(tty, -1);
2598 if (retval)
2599 goto out;
2600 if (!signal_pending(current))
2601 msleep_interruptible(duration);
2602 retval = tty->ops->break_ctl(tty, 0);
2603out:
2604 tty_write_unlock(tty);
2605 if (signal_pending(current))
2606 retval = -EINTR;
2607 }
2608 return retval;
2609}
2610
2611/**
2612 * tty_tiocmget - get modem status
2613 * @tty: tty device
2614 * @file: user file pointer
2615 * @p: pointer to result
2616 *
2617 * Obtain the modem status bits from the tty driver if the feature
2618 * is supported. Return -EINVAL if it is not available.
2619 *
2620 * Locking: none (up to the driver)
2621 */
2622
2623static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2624{
2625 int retval = -EINVAL;
2626
2627 if (tty->ops->tiocmget) {
2628 retval = tty->ops->tiocmget(tty);
2629
2630 if (retval >= 0)
2631 retval = put_user(retval, p);
2632 }
2633 return retval;
2634}
2635
2636/**
2637 * tty_tiocmset - set modem status
2638 * @tty: tty device
2639 * @cmd: command - clear bits, set bits or set all
2640 * @p: pointer to desired bits
2641 *
2642 * Set the modem status bits from the tty driver if the feature
2643 * is supported. Return -EINVAL if it is not available.
2644 *
2645 * Locking: none (up to the driver)
2646 */
2647
2648static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2649 unsigned __user *p)
2650{
2651 int retval;
2652 unsigned int set, clear, val;
2653
2654 if (tty->ops->tiocmset == NULL)
2655 return -EINVAL;
2656
2657 retval = get_user(val, p);
2658 if (retval)
2659 return retval;
2660 set = clear = 0;
2661 switch (cmd) {
2662 case TIOCMBIS:
2663 set = val;
2664 break;
2665 case TIOCMBIC:
2666 clear = val;
2667 break;
2668 case TIOCMSET:
2669 set = val;
2670 clear = ~val;
2671 break;
2672 }
2673 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2674 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2675 return tty->ops->tiocmset(tty, set, clear);
2676}
2677
2678static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2679{
2680 int retval = -EINVAL;
2681 struct serial_icounter_struct icount;
2682 memset(&icount, 0, sizeof(icount));
2683 if (tty->ops->get_icount)
2684 retval = tty->ops->get_icount(tty, &icount);
2685 if (retval != 0)
2686 return retval;
2687 if (copy_to_user(arg, &icount, sizeof(icount)))
2688 return -EFAULT;
2689 return 0;
2690}
2691
2692struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2693{
2694 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2695 tty->driver->subtype == PTY_TYPE_MASTER)
2696 tty = tty->link;
2697 return tty;
2698}
2699EXPORT_SYMBOL(tty_pair_get_tty);
2700
2701struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2702{
2703 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2704 tty->driver->subtype == PTY_TYPE_MASTER)
2705 return tty;
2706 return tty->link;
2707}
2708EXPORT_SYMBOL(tty_pair_get_pty);
2709
2710/*
2711 * Split this up, as gcc can choke on it otherwise..
2712 */
2713long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2714{
2715 struct tty_struct *tty = file_tty(file);
2716 struct tty_struct *real_tty;
2717 void __user *p = (void __user *)arg;
2718 int retval;
2719 struct tty_ldisc *ld;
2720
2721 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2722 return -EINVAL;
2723
2724 real_tty = tty_pair_get_tty(tty);
2725
2726 /*
2727 * Factor out some common prep work
2728 */
2729 switch (cmd) {
2730 case TIOCSETD:
2731 case TIOCSBRK:
2732 case TIOCCBRK:
2733 case TCSBRK:
2734 case TCSBRKP:
2735 retval = tty_check_change(tty);
2736 if (retval)
2737 return retval;
2738 if (cmd != TIOCCBRK) {
2739 tty_wait_until_sent(tty, 0);
2740 if (signal_pending(current))
2741 return -EINTR;
2742 }
2743 break;
2744 }
2745
2746 /*
2747 * Now do the stuff.
2748 */
2749 switch (cmd) {
2750 case TIOCSTI:
2751 return tiocsti(tty, p);
2752 case TIOCGWINSZ:
2753 return tiocgwinsz(real_tty, p);
2754 case TIOCSWINSZ:
2755 return tiocswinsz(real_tty, p);
2756 case TIOCCONS:
2757 return real_tty != tty ? -EINVAL : tioccons(file);
2758 case FIONBIO:
2759 return fionbio(file, p);
2760 case TIOCEXCL:
2761 set_bit(TTY_EXCLUSIVE, &tty->flags);
2762 return 0;
2763 case TIOCNXCL:
2764 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2765 return 0;
2766 case TIOCGEXCL:
2767 {
2768 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2769 return put_user(excl, (int __user *)p);
2770 }
2771 case TIOCNOTTY:
2772 if (current->signal->tty != tty)
2773 return -ENOTTY;
2774 no_tty();
2775 return 0;
2776 case TIOCSCTTY:
2777 return tiocsctty(tty, arg);
2778 case TIOCGPGRP:
2779 return tiocgpgrp(tty, real_tty, p);
2780 case TIOCSPGRP:
2781 return tiocspgrp(tty, real_tty, p);
2782 case TIOCGSID:
2783 return tiocgsid(tty, real_tty, p);
2784 case TIOCGETD:
2785 return put_user(tty->ldisc->ops->num, (int __user *)p);
2786 case TIOCSETD:
2787 return tiocsetd(tty, p);
2788 case TIOCVHANGUP:
2789 if (!capable(CAP_SYS_ADMIN))
2790 return -EPERM;
2791 tty_vhangup(tty);
2792 return 0;
2793 case TIOCGDEV:
2794 {
2795 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2796 return put_user(ret, (unsigned int __user *)p);
2797 }
2798 /*
2799 * Break handling
2800 */
2801 case TIOCSBRK: /* Turn break on, unconditionally */
2802 if (tty->ops->break_ctl)
2803 return tty->ops->break_ctl(tty, -1);
2804 return 0;
2805 case TIOCCBRK: /* Turn break off, unconditionally */
2806 if (tty->ops->break_ctl)
2807 return tty->ops->break_ctl(tty, 0);
2808 return 0;
2809 case TCSBRK: /* SVID version: non-zero arg --> no break */
2810 /* non-zero arg means wait for all output data
2811 * to be sent (performed above) but don't send break.
2812 * This is used by the tcdrain() termios function.
2813 */
2814 if (!arg)
2815 return send_break(tty, 250);
2816 return 0;
2817 case TCSBRKP: /* support for POSIX tcsendbreak() */
2818 return send_break(tty, arg ? arg*100 : 250);
2819
2820 case TIOCMGET:
2821 return tty_tiocmget(tty, p);
2822 case TIOCMSET:
2823 case TIOCMBIC:
2824 case TIOCMBIS:
2825 return tty_tiocmset(tty, cmd, p);
2826 case TIOCGICOUNT:
2827 retval = tty_tiocgicount(tty, p);
2828 /* For the moment allow fall through to the old method */
2829 if (retval != -EINVAL)
2830 return retval;
2831 break;
2832 case TCFLSH:
2833 switch (arg) {
2834 case TCIFLUSH:
2835 case TCIOFLUSH:
2836 /* flush tty buffer and allow ldisc to process ioctl */
2837 tty_buffer_flush(tty);
2838 break;
2839 }
2840 break;
2841 }
2842 if (tty->ops->ioctl) {
2843 retval = (tty->ops->ioctl)(tty, cmd, arg);
2844 if (retval != -ENOIOCTLCMD)
2845 return retval;
2846 }
2847 ld = tty_ldisc_ref_wait(tty);
2848 retval = -EINVAL;
2849 if (ld->ops->ioctl) {
2850 retval = ld->ops->ioctl(tty, file, cmd, arg);
2851 if (retval == -ENOIOCTLCMD)
2852 retval = -ENOTTY;
2853 }
2854 tty_ldisc_deref(ld);
2855 return retval;
2856}
2857
2858#ifdef CONFIG_COMPAT
2859static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2860 unsigned long arg)
2861{
2862 struct tty_struct *tty = file_tty(file);
2863 struct tty_ldisc *ld;
2864 int retval = -ENOIOCTLCMD;
2865
2866 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2867 return -EINVAL;
2868
2869 if (tty->ops->compat_ioctl) {
2870 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2871 if (retval != -ENOIOCTLCMD)
2872 return retval;
2873 }
2874
2875 ld = tty_ldisc_ref_wait(tty);
2876 if (ld->ops->compat_ioctl)
2877 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2878 else
2879 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2880 tty_ldisc_deref(ld);
2881
2882 return retval;
2883}
2884#endif
2885
2886static int this_tty(const void *t, struct file *file, unsigned fd)
2887{
2888 if (likely(file->f_op->read != tty_read))
2889 return 0;
2890 return file_tty(file) != t ? 0 : fd + 1;
2891}
2892
2893/*
2894 * This implements the "Secure Attention Key" --- the idea is to
2895 * prevent trojan horses by killing all processes associated with this
2896 * tty when the user hits the "Secure Attention Key". Required for
2897 * super-paranoid applications --- see the Orange Book for more details.
2898 *
2899 * This code could be nicer; ideally it should send a HUP, wait a few
2900 * seconds, then send a INT, and then a KILL signal. But you then
2901 * have to coordinate with the init process, since all processes associated
2902 * with the current tty must be dead before the new getty is allowed
2903 * to spawn.
2904 *
2905 * Now, if it would be correct ;-/ The current code has a nasty hole -
2906 * it doesn't catch files in flight. We may send the descriptor to ourselves
2907 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2908 *
2909 * Nasty bug: do_SAK is being called in interrupt context. This can
2910 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2911 */
2912void __do_SAK(struct tty_struct *tty)
2913{
2914#ifdef TTY_SOFT_SAK
2915 tty_hangup(tty);
2916#else
2917 struct task_struct *g, *p;
2918 struct pid *session;
2919 int i;
2920
2921 if (!tty)
2922 return;
2923 session = tty->session;
2924
2925 tty_ldisc_flush(tty);
2926
2927 tty_driver_flush_buffer(tty);
2928
2929 read_lock(&tasklist_lock);
2930 /* Kill the entire session */
2931 do_each_pid_task(session, PIDTYPE_SID, p) {
2932 printk(KERN_NOTICE "SAK: killed process %d"
2933 " (%s): task_session(p)==tty->session\n",
2934 task_pid_nr(p), p->comm);
2935 send_sig(SIGKILL, p, 1);
2936 } while_each_pid_task(session, PIDTYPE_SID, p);
2937 /* Now kill any processes that happen to have the
2938 * tty open.
2939 */
2940 do_each_thread(g, p) {
2941 if (p->signal->tty == tty) {
2942 printk(KERN_NOTICE "SAK: killed process %d"
2943 " (%s): task_session(p)==tty->session\n",
2944 task_pid_nr(p), p->comm);
2945 send_sig(SIGKILL, p, 1);
2946 continue;
2947 }
2948 task_lock(p);
2949 i = iterate_fd(p->files, 0, this_tty, tty);
2950 if (i != 0) {
2951 printk(KERN_NOTICE "SAK: killed process %d"
2952 " (%s): fd#%d opened to the tty\n",
2953 task_pid_nr(p), p->comm, i - 1);
2954 force_sig(SIGKILL, p);
2955 }
2956 task_unlock(p);
2957 } while_each_thread(g, p);
2958 read_unlock(&tasklist_lock);
2959#endif
2960}
2961
2962static void do_SAK_work(struct work_struct *work)
2963{
2964 struct tty_struct *tty =
2965 container_of(work, struct tty_struct, SAK_work);
2966 __do_SAK(tty);
2967}
2968
2969/*
2970 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2971 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2972 * the values which we write to it will be identical to the values which it
2973 * already has. --akpm
2974 */
2975void do_SAK(struct tty_struct *tty)
2976{
2977 if (!tty)
2978 return;
2979 schedule_work(&tty->SAK_work);
2980}
2981
2982EXPORT_SYMBOL(do_SAK);
2983
2984static int dev_match_devt(struct device *dev, const void *data)
2985{
2986 const dev_t *devt = data;
2987 return dev->devt == *devt;
2988}
2989
2990/* Must put_device() after it's unused! */
2991static struct device *tty_get_device(struct tty_struct *tty)
2992{
2993 dev_t devt = tty_devnum(tty);
2994 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2995}
2996
2997
2998/**
2999 * initialize_tty_struct
3000 * @tty: tty to initialize
3001 *
3002 * This subroutine initializes a tty structure that has been newly
3003 * allocated.
3004 *
3005 * Locking: none - tty in question must not be exposed at this point
3006 */
3007
3008void initialize_tty_struct(struct tty_struct *tty,
3009 struct tty_driver *driver, int idx)
3010{
3011 memset(tty, 0, sizeof(struct tty_struct));
3012 kref_init(&tty->kref);
3013 tty->magic = TTY_MAGIC;
3014 tty_ldisc_init(tty);
3015 tty->session = NULL;
3016 tty->pgrp = NULL;
3017 mutex_init(&tty->legacy_mutex);
3018 mutex_init(&tty->termios_mutex);
3019 init_ldsem(&tty->ldisc_sem);
3020 init_waitqueue_head(&tty->write_wait);
3021 init_waitqueue_head(&tty->read_wait);
3022 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3023 mutex_init(&tty->atomic_write_lock);
3024 spin_lock_init(&tty->ctrl_lock);
3025 INIT_LIST_HEAD(&tty->tty_files);
3026 INIT_WORK(&tty->SAK_work, do_SAK_work);
3027
3028 tty->driver = driver;
3029 tty->ops = driver->ops;
3030 tty->index = idx;
3031 tty_line_name(driver, idx, tty->name);
3032 tty->dev = tty_get_device(tty);
3033}
3034
3035/**
3036 * deinitialize_tty_struct
3037 * @tty: tty to deinitialize
3038 *
3039 * This subroutine deinitializes a tty structure that has been newly
3040 * allocated but tty_release cannot be called on that yet.
3041 *
3042 * Locking: none - tty in question must not be exposed at this point
3043 */
3044void deinitialize_tty_struct(struct tty_struct *tty)
3045{
3046 tty_ldisc_deinit(tty);
3047}
3048
3049/**
3050 * tty_put_char - write one character to a tty
3051 * @tty: tty
3052 * @ch: character
3053 *
3054 * Write one byte to the tty using the provided put_char method
3055 * if present. Returns the number of characters successfully output.
3056 *
3057 * Note: the specific put_char operation in the driver layer may go
3058 * away soon. Don't call it directly, use this method
3059 */
3060
3061int tty_put_char(struct tty_struct *tty, unsigned char ch)
3062{
3063 if (tty->ops->put_char)
3064 return tty->ops->put_char(tty, ch);
3065 return tty->ops->write(tty, &ch, 1);
3066}
3067EXPORT_SYMBOL_GPL(tty_put_char);
3068
3069struct class *tty_class;
3070
3071static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3072 unsigned int index, unsigned int count)
3073{
3074 /* init here, since reused cdevs cause crashes */
3075 cdev_init(&driver->cdevs[index], &tty_fops);
3076 driver->cdevs[index].owner = driver->owner;
3077 return cdev_add(&driver->cdevs[index], dev, count);
3078}
3079
3080/**
3081 * tty_register_device - register a tty device
3082 * @driver: the tty driver that describes the tty device
3083 * @index: the index in the tty driver for this tty device
3084 * @device: a struct device that is associated with this tty device.
3085 * This field is optional, if there is no known struct device
3086 * for this tty device it can be set to NULL safely.
3087 *
3088 * Returns a pointer to the struct device for this tty device
3089 * (or ERR_PTR(-EFOO) on error).
3090 *
3091 * This call is required to be made to register an individual tty device
3092 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3093 * that bit is not set, this function should not be called by a tty
3094 * driver.
3095 *
3096 * Locking: ??
3097 */
3098
3099struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3100 struct device *device)
3101{
3102 return tty_register_device_attr(driver, index, device, NULL, NULL);
3103}
3104EXPORT_SYMBOL(tty_register_device);
3105
3106static void tty_device_create_release(struct device *dev)
3107{
3108 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3109 kfree(dev);
3110}
3111
3112/**
3113 * tty_register_device_attr - register a tty device
3114 * @driver: the tty driver that describes the tty device
3115 * @index: the index in the tty driver for this tty device
3116 * @device: a struct device that is associated with this tty device.
3117 * This field is optional, if there is no known struct device
3118 * for this tty device it can be set to NULL safely.
3119 * @drvdata: Driver data to be set to device.
3120 * @attr_grp: Attribute group to be set on device.
3121 *
3122 * Returns a pointer to the struct device for this tty device
3123 * (or ERR_PTR(-EFOO) on error).
3124 *
3125 * This call is required to be made to register an individual tty device
3126 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3127 * that bit is not set, this function should not be called by a tty
3128 * driver.
3129 *
3130 * Locking: ??
3131 */
3132struct device *tty_register_device_attr(struct tty_driver *driver,
3133 unsigned index, struct device *device,
3134 void *drvdata,
3135 const struct attribute_group **attr_grp)
3136{
3137 char name[64];
3138 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3139 struct device *dev = NULL;
3140 int retval = -ENODEV;
3141 bool cdev = false;
3142
3143 if (index >= driver->num) {
3144 printk(KERN_ERR "Attempt to register invalid tty line number "
3145 " (%d).\n", index);
3146 return ERR_PTR(-EINVAL);
3147 }
3148
3149 if (driver->type == TTY_DRIVER_TYPE_PTY)
3150 pty_line_name(driver, index, name);
3151 else
3152 tty_line_name(driver, index, name);
3153
3154 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3155 retval = tty_cdev_add(driver, devt, index, 1);
3156 if (retval)
3157 goto error;
3158 cdev = true;
3159 }
3160
3161 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3162 if (!dev) {
3163 retval = -ENOMEM;
3164 goto error;
3165 }
3166
3167 dev->devt = devt;
3168 dev->class = tty_class;
3169 dev->parent = device;
3170 dev->release = tty_device_create_release;
3171 dev_set_name(dev, "%s", name);
3172 dev->groups = attr_grp;
3173 dev_set_drvdata(dev, drvdata);
3174
3175 retval = device_register(dev);
3176 if (retval)
3177 goto error;
3178
3179 return dev;
3180
3181error:
3182 put_device(dev);
3183 if (cdev)
3184 cdev_del(&driver->cdevs[index]);
3185 return ERR_PTR(retval);
3186}
3187EXPORT_SYMBOL_GPL(tty_register_device_attr);
3188
3189/**
3190 * tty_unregister_device - unregister a tty device
3191 * @driver: the tty driver that describes the tty device
3192 * @index: the index in the tty driver for this tty device
3193 *
3194 * If a tty device is registered with a call to tty_register_device() then
3195 * this function must be called when the tty device is gone.
3196 *
3197 * Locking: ??
3198 */
3199
3200void tty_unregister_device(struct tty_driver *driver, unsigned index)
3201{
3202 device_destroy(tty_class,
3203 MKDEV(driver->major, driver->minor_start) + index);
3204 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3205 cdev_del(&driver->cdevs[index]);
3206}
3207EXPORT_SYMBOL(tty_unregister_device);
3208
3209/**
3210 * __tty_alloc_driver -- allocate tty driver
3211 * @lines: count of lines this driver can handle at most
3212 * @owner: module which is repsonsible for this driver
3213 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3214 *
3215 * This should not be called directly, some of the provided macros should be
3216 * used instead. Use IS_ERR and friends on @retval.
3217 */
3218struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3219 unsigned long flags)
3220{
3221 struct tty_driver *driver;
3222 unsigned int cdevs = 1;
3223 int err;
3224
3225 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3226 return ERR_PTR(-EINVAL);
3227
3228 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3229 if (!driver)
3230 return ERR_PTR(-ENOMEM);
3231
3232 kref_init(&driver->kref);
3233 driver->magic = TTY_DRIVER_MAGIC;
3234 driver->num = lines;
3235 driver->owner = owner;
3236 driver->flags = flags;
3237
3238 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3239 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3240 GFP_KERNEL);
3241 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3242 GFP_KERNEL);
3243 if (!driver->ttys || !driver->termios) {
3244 err = -ENOMEM;
3245 goto err_free_all;
3246 }
3247 }
3248
3249 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3250 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3251 GFP_KERNEL);
3252 if (!driver->ports) {
3253 err = -ENOMEM;
3254 goto err_free_all;
3255 }
3256 cdevs = lines;
3257 }
3258
3259 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3260 if (!driver->cdevs) {
3261 err = -ENOMEM;
3262 goto err_free_all;
3263 }
3264
3265 return driver;
3266err_free_all:
3267 kfree(driver->ports);
3268 kfree(driver->ttys);
3269 kfree(driver->termios);
3270 kfree(driver);
3271 return ERR_PTR(err);
3272}
3273EXPORT_SYMBOL(__tty_alloc_driver);
3274
3275static void destruct_tty_driver(struct kref *kref)
3276{
3277 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3278 int i;
3279 struct ktermios *tp;
3280
3281 if (driver->flags & TTY_DRIVER_INSTALLED) {
3282 /*
3283 * Free the termios and termios_locked structures because
3284 * we don't want to get memory leaks when modular tty
3285 * drivers are removed from the kernel.
3286 */
3287 for (i = 0; i < driver->num; i++) {
3288 tp = driver->termios[i];
3289 if (tp) {
3290 driver->termios[i] = NULL;
3291 kfree(tp);
3292 }
3293 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3294 tty_unregister_device(driver, i);
3295 }
3296 proc_tty_unregister_driver(driver);
3297 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3298 cdev_del(&driver->cdevs[0]);
3299 }
3300 kfree(driver->cdevs);
3301 kfree(driver->ports);
3302 kfree(driver->termios);
3303 kfree(driver->ttys);
3304 kfree(driver);
3305}
3306
3307void tty_driver_kref_put(struct tty_driver *driver)
3308{
3309 kref_put(&driver->kref, destruct_tty_driver);
3310}
3311EXPORT_SYMBOL(tty_driver_kref_put);
3312
3313void tty_set_operations(struct tty_driver *driver,
3314 const struct tty_operations *op)
3315{
3316 driver->ops = op;
3317};
3318EXPORT_SYMBOL(tty_set_operations);
3319
3320void put_tty_driver(struct tty_driver *d)
3321{
3322 tty_driver_kref_put(d);
3323}
3324EXPORT_SYMBOL(put_tty_driver);
3325
3326/*
3327 * Called by a tty driver to register itself.
3328 */
3329int tty_register_driver(struct tty_driver *driver)
3330{
3331 int error;
3332 int i;
3333 dev_t dev;
3334 struct device *d;
3335
3336 if (!driver->major) {
3337 error = alloc_chrdev_region(&dev, driver->minor_start,
3338 driver->num, driver->name);
3339 if (!error) {
3340 driver->major = MAJOR(dev);
3341 driver->minor_start = MINOR(dev);
3342 }
3343 } else {
3344 dev = MKDEV(driver->major, driver->minor_start);
3345 error = register_chrdev_region(dev, driver->num, driver->name);
3346 }
3347 if (error < 0)
3348 goto err;
3349
3350 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3351 error = tty_cdev_add(driver, dev, 0, driver->num);
3352 if (error)
3353 goto err_unreg_char;
3354 }
3355
3356 mutex_lock(&tty_mutex);
3357 list_add(&driver->tty_drivers, &tty_drivers);
3358 mutex_unlock(&tty_mutex);
3359
3360 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3361 for (i = 0; i < driver->num; i++) {
3362 d = tty_register_device(driver, i, NULL);
3363 if (IS_ERR(d)) {
3364 error = PTR_ERR(d);
3365 goto err_unreg_devs;
3366 }
3367 }
3368 }
3369 proc_tty_register_driver(driver);
3370 driver->flags |= TTY_DRIVER_INSTALLED;
3371 return 0;
3372
3373err_unreg_devs:
3374 for (i--; i >= 0; i--)
3375 tty_unregister_device(driver, i);
3376
3377 mutex_lock(&tty_mutex);
3378 list_del(&driver->tty_drivers);
3379 mutex_unlock(&tty_mutex);
3380
3381err_unreg_char:
3382 unregister_chrdev_region(dev, driver->num);
3383err:
3384 return error;
3385}
3386EXPORT_SYMBOL(tty_register_driver);
3387
3388/*
3389 * Called by a tty driver to unregister itself.
3390 */
3391int tty_unregister_driver(struct tty_driver *driver)
3392{
3393#if 0
3394 /* FIXME */
3395 if (driver->refcount)
3396 return -EBUSY;
3397#endif
3398 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3399 driver->num);
3400 mutex_lock(&tty_mutex);
3401 list_del(&driver->tty_drivers);
3402 mutex_unlock(&tty_mutex);
3403 return 0;
3404}
3405
3406EXPORT_SYMBOL(tty_unregister_driver);
3407
3408dev_t tty_devnum(struct tty_struct *tty)
3409{
3410 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3411}
3412EXPORT_SYMBOL(tty_devnum);
3413
3414void proc_clear_tty(struct task_struct *p)
3415{
3416 unsigned long flags;
3417 struct tty_struct *tty;
3418 spin_lock_irqsave(&p->sighand->siglock, flags);
3419 tty = p->signal->tty;
3420 p->signal->tty = NULL;
3421 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3422 tty_kref_put(tty);
3423}
3424
3425/* Called under the sighand lock */
3426
3427static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3428{
3429 if (tty) {
3430 unsigned long flags;
3431 /* We should not have a session or pgrp to put here but.... */
3432 spin_lock_irqsave(&tty->ctrl_lock, flags);
3433 put_pid(tty->session);
3434 put_pid(tty->pgrp);
3435 tty->pgrp = get_pid(task_pgrp(tsk));
3436 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3437 tty->session = get_pid(task_session(tsk));
3438 if (tsk->signal->tty) {
3439 printk(KERN_DEBUG "tty not NULL!!\n");
3440 tty_kref_put(tsk->signal->tty);
3441 }
3442 }
3443 put_pid(tsk->signal->tty_old_pgrp);
3444 tsk->signal->tty = tty_kref_get(tty);
3445 tsk->signal->tty_old_pgrp = NULL;
3446}
3447
3448static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3449{
3450 spin_lock_irq(&tsk->sighand->siglock);
3451 __proc_set_tty(tsk, tty);
3452 spin_unlock_irq(&tsk->sighand->siglock);
3453}
3454
3455struct tty_struct *get_current_tty(void)
3456{
3457 struct tty_struct *tty;
3458 unsigned long flags;
3459
3460 spin_lock_irqsave(&current->sighand->siglock, flags);
3461 tty = tty_kref_get(current->signal->tty);
3462 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3463 return tty;
3464}
3465EXPORT_SYMBOL_GPL(get_current_tty);
3466
3467void tty_default_fops(struct file_operations *fops)
3468{
3469 *fops = tty_fops;
3470}
3471
3472/*
3473 * Initialize the console device. This is called *early*, so
3474 * we can't necessarily depend on lots of kernel help here.
3475 * Just do some early initializations, and do the complex setup
3476 * later.
3477 */
3478void __init console_init(void)
3479{
3480 initcall_t *call;
3481
3482 /* Setup the default TTY line discipline. */
3483 tty_ldisc_begin();
3484
3485 /*
3486 * set up the console device so that later boot sequences can
3487 * inform about problems etc..
3488 */
3489 call = __con_initcall_start;
3490 while (call < __con_initcall_end) {
3491 (*call)();
3492 call++;
3493 }
3494}
3495
3496static char *tty_devnode(struct device *dev, umode_t *mode)
3497{
3498 if (!mode)
3499 return NULL;
3500 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3501 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3502 *mode = 0666;
3503 return NULL;
3504}
3505
3506static int __init tty_class_init(void)
3507{
3508 tty_class = class_create(THIS_MODULE, "tty");
3509 if (IS_ERR(tty_class))
3510 return PTR_ERR(tty_class);
3511 tty_class->devnode = tty_devnode;
3512 return 0;
3513}
3514
3515postcore_initcall(tty_class_init);
3516
3517/* 3/2004 jmc: why do these devices exist? */
3518static struct cdev tty_cdev, console_cdev;
3519
3520static ssize_t show_cons_active(struct device *dev,
3521 struct device_attribute *attr, char *buf)
3522{
3523 struct console *cs[16];
3524 int i = 0;
3525 struct console *c;
3526 ssize_t count = 0;
3527
3528 console_lock();
3529 for_each_console(c) {
3530 if (!c->device)
3531 continue;
3532 if (!c->write)
3533 continue;
3534 if ((c->flags & CON_ENABLED) == 0)
3535 continue;
3536 cs[i++] = c;
3537 if (i >= ARRAY_SIZE(cs))
3538 break;
3539 }
3540 while (i--)
3541 count += sprintf(buf + count, "%s%d%c",
3542 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3543 console_unlock();
3544
3545 return count;
3546}
3547static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3548
3549static struct device *consdev;
3550
3551void console_sysfs_notify(void)
3552{
3553 if (consdev)
3554 sysfs_notify(&consdev->kobj, NULL, "active");
3555}
3556
3557/*
3558 * Ok, now we can initialize the rest of the tty devices and can count
3559 * on memory allocations, interrupts etc..
3560 */
3561int __init tty_init(void)
3562{
3563 cdev_init(&tty_cdev, &tty_fops);
3564 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3565 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3566 panic("Couldn't register /dev/tty driver\n");
3567 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3568
3569 cdev_init(&console_cdev, &console_fops);
3570 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3571 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3572 panic("Couldn't register /dev/console driver\n");
3573 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3574 "console");
3575 if (IS_ERR(consdev))
3576 consdev = NULL;
3577 else
3578 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3579
3580#ifdef CONFIG_VT
3581 vty_init(&console_fops);
3582#endif
3583 return 0;
3584}
3585