TTY: tty_buffer, cache pointer to tty->buf
[linux-2.6-block.git] / drivers / tty / tty_io.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 */
4
5/*
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
8 *
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10 *
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
16 *
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
21 *
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
25 *
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
28 * -- TYT, 1/31/92
29 *
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33 *
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36 *
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
39 *
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
42 *
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
45 *
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49 *
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
52 *
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55 *
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58 *
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
61 *
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65 */
66
67#include <linux/types.h>
68#include <linux/major.h>
69#include <linux/errno.h>
70#include <linux/signal.h>
71#include <linux/fcntl.h>
72#include <linux/sched.h>
73#include <linux/interrupt.h>
74#include <linux/tty.h>
75#include <linux/tty_driver.h>
76#include <linux/tty_flip.h>
77#include <linux/devpts_fs.h>
78#include <linux/file.h>
79#include <linux/fdtable.h>
80#include <linux/console.h>
81#include <linux/timer.h>
82#include <linux/ctype.h>
83#include <linux/kd.h>
84#include <linux/mm.h>
85#include <linux/string.h>
86#include <linux/slab.h>
87#include <linux/poll.h>
88#include <linux/proc_fs.h>
89#include <linux/init.h>
90#include <linux/module.h>
91#include <linux/device.h>
92#include <linux/wait.h>
93#include <linux/bitops.h>
94#include <linux/delay.h>
95#include <linux/seq_file.h>
96#include <linux/serial.h>
97#include <linux/ratelimit.h>
98
99#include <linux/uaccess.h>
100
101#include <linux/kbd_kern.h>
102#include <linux/vt_kern.h>
103#include <linux/selection.h>
104
105#include <linux/kmod.h>
106#include <linux/nsproxy.h>
107
108#undef TTY_DEBUG_HANGUP
109
110#define TTY_PARANOIA_CHECK 1
111#define CHECK_TTY_COUNT 1
112
113struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
114 .c_iflag = ICRNL | IXON,
115 .c_oflag = OPOST | ONLCR,
116 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 ECHOCTL | ECHOKE | IEXTEN,
119 .c_cc = INIT_C_CC,
120 .c_ispeed = 38400,
121 .c_ospeed = 38400
122};
123
124EXPORT_SYMBOL(tty_std_termios);
125
126/* This list gets poked at by procfs and various bits of boot up code. This
127 could do with some rationalisation such as pulling the tty proc function
128 into this file */
129
130LIST_HEAD(tty_drivers); /* linked list of tty drivers */
131
132/* Mutex to protect creating and releasing a tty. This is shared with
133 vt.c for deeply disgusting hack reasons */
134DEFINE_MUTEX(tty_mutex);
135EXPORT_SYMBOL(tty_mutex);
136
137/* Spinlock to protect the tty->tty_files list */
138DEFINE_SPINLOCK(tty_files_lock);
139
140static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142ssize_t redirected_tty_write(struct file *, const char __user *,
143 size_t, loff_t *);
144static unsigned int tty_poll(struct file *, poll_table *);
145static int tty_open(struct inode *, struct file *);
146long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147#ifdef CONFIG_COMPAT
148static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 unsigned long arg);
150#else
151#define tty_compat_ioctl NULL
152#endif
153static int __tty_fasync(int fd, struct file *filp, int on);
154static int tty_fasync(int fd, struct file *filp, int on);
155static void release_tty(struct tty_struct *tty, int idx);
156static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159/**
160 * alloc_tty_struct - allocate a tty object
161 *
162 * Return a new empty tty structure. The data fields have not
163 * been initialized in any way but has been zeroed
164 *
165 * Locking: none
166 */
167
168struct tty_struct *alloc_tty_struct(void)
169{
170 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171}
172
173/**
174 * free_tty_struct - free a disused tty
175 * @tty: tty struct to free
176 *
177 * Free the write buffers, tty queue and tty memory itself.
178 *
179 * Locking: none. Must be called after tty is definitely unused
180 */
181
182void free_tty_struct(struct tty_struct *tty)
183{
184 if (!tty)
185 return;
186 if (tty->dev)
187 put_device(tty->dev);
188 kfree(tty->write_buf);
189 tty_buffer_free_all(tty);
190 tty->magic = 0xDEADDEAD;
191 kfree(tty);
192}
193
194static inline struct tty_struct *file_tty(struct file *file)
195{
196 return ((struct tty_file_private *)file->private_data)->tty;
197}
198
199int tty_alloc_file(struct file *file)
200{
201 struct tty_file_private *priv;
202
203 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
204 if (!priv)
205 return -ENOMEM;
206
207 file->private_data = priv;
208
209 return 0;
210}
211
212/* Associate a new file with the tty structure */
213void tty_add_file(struct tty_struct *tty, struct file *file)
214{
215 struct tty_file_private *priv = file->private_data;
216
217 priv->tty = tty;
218 priv->file = file;
219
220 spin_lock(&tty_files_lock);
221 list_add(&priv->list, &tty->tty_files);
222 spin_unlock(&tty_files_lock);
223}
224
225/**
226 * tty_free_file - free file->private_data
227 *
228 * This shall be used only for fail path handling when tty_add_file was not
229 * called yet.
230 */
231void tty_free_file(struct file *file)
232{
233 struct tty_file_private *priv = file->private_data;
234
235 file->private_data = NULL;
236 kfree(priv);
237}
238
239/* Delete file from its tty */
240void tty_del_file(struct file *file)
241{
242 struct tty_file_private *priv = file->private_data;
243
244 spin_lock(&tty_files_lock);
245 list_del(&priv->list);
246 spin_unlock(&tty_files_lock);
247 tty_free_file(file);
248}
249
250
251#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
252
253/**
254 * tty_name - return tty naming
255 * @tty: tty structure
256 * @buf: buffer for output
257 *
258 * Convert a tty structure into a name. The name reflects the kernel
259 * naming policy and if udev is in use may not reflect user space
260 *
261 * Locking: none
262 */
263
264char *tty_name(struct tty_struct *tty, char *buf)
265{
266 if (!tty) /* Hmm. NULL pointer. That's fun. */
267 strcpy(buf, "NULL tty");
268 else
269 strcpy(buf, tty->name);
270 return buf;
271}
272
273EXPORT_SYMBOL(tty_name);
274
275int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
276 const char *routine)
277{
278#ifdef TTY_PARANOIA_CHECK
279 if (!tty) {
280 printk(KERN_WARNING
281 "null TTY for (%d:%d) in %s\n",
282 imajor(inode), iminor(inode), routine);
283 return 1;
284 }
285 if (tty->magic != TTY_MAGIC) {
286 printk(KERN_WARNING
287 "bad magic number for tty struct (%d:%d) in %s\n",
288 imajor(inode), iminor(inode), routine);
289 return 1;
290 }
291#endif
292 return 0;
293}
294
295static int check_tty_count(struct tty_struct *tty, const char *routine)
296{
297#ifdef CHECK_TTY_COUNT
298 struct list_head *p;
299 int count = 0;
300
301 spin_lock(&tty_files_lock);
302 list_for_each(p, &tty->tty_files) {
303 count++;
304 }
305 spin_unlock(&tty_files_lock);
306 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
307 tty->driver->subtype == PTY_TYPE_SLAVE &&
308 tty->link && tty->link->count)
309 count++;
310 if (tty->count != count) {
311 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
312 "!= #fd's(%d) in %s\n",
313 tty->name, tty->count, count, routine);
314 return count;
315 }
316#endif
317 return 0;
318}
319
320/**
321 * get_tty_driver - find device of a tty
322 * @dev_t: device identifier
323 * @index: returns the index of the tty
324 *
325 * This routine returns a tty driver structure, given a device number
326 * and also passes back the index number.
327 *
328 * Locking: caller must hold tty_mutex
329 */
330
331static struct tty_driver *get_tty_driver(dev_t device, int *index)
332{
333 struct tty_driver *p;
334
335 list_for_each_entry(p, &tty_drivers, tty_drivers) {
336 dev_t base = MKDEV(p->major, p->minor_start);
337 if (device < base || device >= base + p->num)
338 continue;
339 *index = device - base;
340 return tty_driver_kref_get(p);
341 }
342 return NULL;
343}
344
345#ifdef CONFIG_CONSOLE_POLL
346
347/**
348 * tty_find_polling_driver - find device of a polled tty
349 * @name: name string to match
350 * @line: pointer to resulting tty line nr
351 *
352 * This routine returns a tty driver structure, given a name
353 * and the condition that the tty driver is capable of polled
354 * operation.
355 */
356struct tty_driver *tty_find_polling_driver(char *name, int *line)
357{
358 struct tty_driver *p, *res = NULL;
359 int tty_line = 0;
360 int len;
361 char *str, *stp;
362
363 for (str = name; *str; str++)
364 if ((*str >= '0' && *str <= '9') || *str == ',')
365 break;
366 if (!*str)
367 return NULL;
368
369 len = str - name;
370 tty_line = simple_strtoul(str, &str, 10);
371
372 mutex_lock(&tty_mutex);
373 /* Search through the tty devices to look for a match */
374 list_for_each_entry(p, &tty_drivers, tty_drivers) {
375 if (strncmp(name, p->name, len) != 0)
376 continue;
377 stp = str;
378 if (*stp == ',')
379 stp++;
380 if (*stp == '\0')
381 stp = NULL;
382
383 if (tty_line >= 0 && tty_line < p->num && p->ops &&
384 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
385 res = tty_driver_kref_get(p);
386 *line = tty_line;
387 break;
388 }
389 }
390 mutex_unlock(&tty_mutex);
391
392 return res;
393}
394EXPORT_SYMBOL_GPL(tty_find_polling_driver);
395#endif
396
397/**
398 * tty_check_change - check for POSIX terminal changes
399 * @tty: tty to check
400 *
401 * If we try to write to, or set the state of, a terminal and we're
402 * not in the foreground, send a SIGTTOU. If the signal is blocked or
403 * ignored, go ahead and perform the operation. (POSIX 7.2)
404 *
405 * Locking: ctrl_lock
406 */
407
408int tty_check_change(struct tty_struct *tty)
409{
410 unsigned long flags;
411 int ret = 0;
412
413 if (current->signal->tty != tty)
414 return 0;
415
416 spin_lock_irqsave(&tty->ctrl_lock, flags);
417
418 if (!tty->pgrp) {
419 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
420 goto out_unlock;
421 }
422 if (task_pgrp(current) == tty->pgrp)
423 goto out_unlock;
424 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
425 if (is_ignored(SIGTTOU))
426 goto out;
427 if (is_current_pgrp_orphaned()) {
428 ret = -EIO;
429 goto out;
430 }
431 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
432 set_thread_flag(TIF_SIGPENDING);
433 ret = -ERESTARTSYS;
434out:
435 return ret;
436out_unlock:
437 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
438 return ret;
439}
440
441EXPORT_SYMBOL(tty_check_change);
442
443static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
444 size_t count, loff_t *ppos)
445{
446 return 0;
447}
448
449static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
450 size_t count, loff_t *ppos)
451{
452 return -EIO;
453}
454
455/* No kernel lock held - none needed ;) */
456static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
457{
458 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
459}
460
461static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
462 unsigned long arg)
463{
464 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
465}
466
467static long hung_up_tty_compat_ioctl(struct file *file,
468 unsigned int cmd, unsigned long arg)
469{
470 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
471}
472
473static const struct file_operations tty_fops = {
474 .llseek = no_llseek,
475 .read = tty_read,
476 .write = tty_write,
477 .poll = tty_poll,
478 .unlocked_ioctl = tty_ioctl,
479 .compat_ioctl = tty_compat_ioctl,
480 .open = tty_open,
481 .release = tty_release,
482 .fasync = tty_fasync,
483};
484
485static const struct file_operations console_fops = {
486 .llseek = no_llseek,
487 .read = tty_read,
488 .write = redirected_tty_write,
489 .poll = tty_poll,
490 .unlocked_ioctl = tty_ioctl,
491 .compat_ioctl = tty_compat_ioctl,
492 .open = tty_open,
493 .release = tty_release,
494 .fasync = tty_fasync,
495};
496
497static const struct file_operations hung_up_tty_fops = {
498 .llseek = no_llseek,
499 .read = hung_up_tty_read,
500 .write = hung_up_tty_write,
501 .poll = hung_up_tty_poll,
502 .unlocked_ioctl = hung_up_tty_ioctl,
503 .compat_ioctl = hung_up_tty_compat_ioctl,
504 .release = tty_release,
505};
506
507static DEFINE_SPINLOCK(redirect_lock);
508static struct file *redirect;
509
510/**
511 * tty_wakeup - request more data
512 * @tty: terminal
513 *
514 * Internal and external helper for wakeups of tty. This function
515 * informs the line discipline if present that the driver is ready
516 * to receive more output data.
517 */
518
519void tty_wakeup(struct tty_struct *tty)
520{
521 struct tty_ldisc *ld;
522
523 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
524 ld = tty_ldisc_ref(tty);
525 if (ld) {
526 if (ld->ops->write_wakeup)
527 ld->ops->write_wakeup(tty);
528 tty_ldisc_deref(ld);
529 }
530 }
531 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
532}
533
534EXPORT_SYMBOL_GPL(tty_wakeup);
535
536/**
537 * __tty_hangup - actual handler for hangup events
538 * @work: tty device
539 *
540 * This can be called by the "eventd" kernel thread. That is process
541 * synchronous but doesn't hold any locks, so we need to make sure we
542 * have the appropriate locks for what we're doing.
543 *
544 * The hangup event clears any pending redirections onto the hung up
545 * device. It ensures future writes will error and it does the needed
546 * line discipline hangup and signal delivery. The tty object itself
547 * remains intact.
548 *
549 * Locking:
550 * BTM
551 * redirect lock for undoing redirection
552 * file list lock for manipulating list of ttys
553 * tty_ldisc_lock from called functions
554 * termios_mutex resetting termios data
555 * tasklist_lock to walk task list for hangup event
556 * ->siglock to protect ->signal/->sighand
557 */
558void __tty_hangup(struct tty_struct *tty)
559{
560 struct file *cons_filp = NULL;
561 struct file *filp, *f = NULL;
562 struct task_struct *p;
563 struct tty_file_private *priv;
564 int closecount = 0, n;
565 unsigned long flags;
566 int refs = 0;
567
568 if (!tty)
569 return;
570
571
572 spin_lock(&redirect_lock);
573 if (redirect && file_tty(redirect) == tty) {
574 f = redirect;
575 redirect = NULL;
576 }
577 spin_unlock(&redirect_lock);
578
579 tty_lock(tty);
580
581 /* some functions below drop BTM, so we need this bit */
582 set_bit(TTY_HUPPING, &tty->flags);
583
584 /* inuse_filps is protected by the single tty lock,
585 this really needs to change if we want to flush the
586 workqueue with the lock held */
587 check_tty_count(tty, "tty_hangup");
588
589 spin_lock(&tty_files_lock);
590 /* This breaks for file handles being sent over AF_UNIX sockets ? */
591 list_for_each_entry(priv, &tty->tty_files, list) {
592 filp = priv->file;
593 if (filp->f_op->write == redirected_tty_write)
594 cons_filp = filp;
595 if (filp->f_op->write != tty_write)
596 continue;
597 closecount++;
598 __tty_fasync(-1, filp, 0); /* can't block */
599 filp->f_op = &hung_up_tty_fops;
600 }
601 spin_unlock(&tty_files_lock);
602
603 /*
604 * it drops BTM and thus races with reopen
605 * we protect the race by TTY_HUPPING
606 */
607 tty_ldisc_hangup(tty);
608
609 read_lock(&tasklist_lock);
610 if (tty->session) {
611 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
612 spin_lock_irq(&p->sighand->siglock);
613 if (p->signal->tty == tty) {
614 p->signal->tty = NULL;
615 /* We defer the dereferences outside fo
616 the tasklist lock */
617 refs++;
618 }
619 if (!p->signal->leader) {
620 spin_unlock_irq(&p->sighand->siglock);
621 continue;
622 }
623 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
624 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
625 put_pid(p->signal->tty_old_pgrp); /* A noop */
626 spin_lock_irqsave(&tty->ctrl_lock, flags);
627 if (tty->pgrp)
628 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
629 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
630 spin_unlock_irq(&p->sighand->siglock);
631 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
632 }
633 read_unlock(&tasklist_lock);
634
635 spin_lock_irqsave(&tty->ctrl_lock, flags);
636 clear_bit(TTY_THROTTLED, &tty->flags);
637 clear_bit(TTY_PUSH, &tty->flags);
638 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
639 put_pid(tty->session);
640 put_pid(tty->pgrp);
641 tty->session = NULL;
642 tty->pgrp = NULL;
643 tty->ctrl_status = 0;
644 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
645
646 /* Account for the p->signal references we killed */
647 while (refs--)
648 tty_kref_put(tty);
649
650 /*
651 * If one of the devices matches a console pointer, we
652 * cannot just call hangup() because that will cause
653 * tty->count and state->count to go out of sync.
654 * So we just call close() the right number of times.
655 */
656 if (cons_filp) {
657 if (tty->ops->close)
658 for (n = 0; n < closecount; n++)
659 tty->ops->close(tty, cons_filp);
660 } else if (tty->ops->hangup)
661 (tty->ops->hangup)(tty);
662 /*
663 * We don't want to have driver/ldisc interactions beyond
664 * the ones we did here. The driver layer expects no
665 * calls after ->hangup() from the ldisc side. However we
666 * can't yet guarantee all that.
667 */
668 set_bit(TTY_HUPPED, &tty->flags);
669 clear_bit(TTY_HUPPING, &tty->flags);
670 tty_ldisc_enable(tty);
671
672 tty_unlock(tty);
673
674 if (f)
675 fput(f);
676}
677
678static void do_tty_hangup(struct work_struct *work)
679{
680 struct tty_struct *tty =
681 container_of(work, struct tty_struct, hangup_work);
682
683 __tty_hangup(tty);
684}
685
686/**
687 * tty_hangup - trigger a hangup event
688 * @tty: tty to hangup
689 *
690 * A carrier loss (virtual or otherwise) has occurred on this like
691 * schedule a hangup sequence to run after this event.
692 */
693
694void tty_hangup(struct tty_struct *tty)
695{
696#ifdef TTY_DEBUG_HANGUP
697 char buf[64];
698 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
699#endif
700 schedule_work(&tty->hangup_work);
701}
702
703EXPORT_SYMBOL(tty_hangup);
704
705/**
706 * tty_vhangup - process vhangup
707 * @tty: tty to hangup
708 *
709 * The user has asked via system call for the terminal to be hung up.
710 * We do this synchronously so that when the syscall returns the process
711 * is complete. That guarantee is necessary for security reasons.
712 */
713
714void tty_vhangup(struct tty_struct *tty)
715{
716#ifdef TTY_DEBUG_HANGUP
717 char buf[64];
718
719 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
720#endif
721 __tty_hangup(tty);
722}
723
724EXPORT_SYMBOL(tty_vhangup);
725
726
727/**
728 * tty_vhangup_self - process vhangup for own ctty
729 *
730 * Perform a vhangup on the current controlling tty
731 */
732
733void tty_vhangup_self(void)
734{
735 struct tty_struct *tty;
736
737 tty = get_current_tty();
738 if (tty) {
739 tty_vhangup(tty);
740 tty_kref_put(tty);
741 }
742}
743
744/**
745 * tty_hung_up_p - was tty hung up
746 * @filp: file pointer of tty
747 *
748 * Return true if the tty has been subject to a vhangup or a carrier
749 * loss
750 */
751
752int tty_hung_up_p(struct file *filp)
753{
754 return (filp->f_op == &hung_up_tty_fops);
755}
756
757EXPORT_SYMBOL(tty_hung_up_p);
758
759static void session_clear_tty(struct pid *session)
760{
761 struct task_struct *p;
762 do_each_pid_task(session, PIDTYPE_SID, p) {
763 proc_clear_tty(p);
764 } while_each_pid_task(session, PIDTYPE_SID, p);
765}
766
767/**
768 * disassociate_ctty - disconnect controlling tty
769 * @on_exit: true if exiting so need to "hang up" the session
770 *
771 * This function is typically called only by the session leader, when
772 * it wants to disassociate itself from its controlling tty.
773 *
774 * It performs the following functions:
775 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
776 * (2) Clears the tty from being controlling the session
777 * (3) Clears the controlling tty for all processes in the
778 * session group.
779 *
780 * The argument on_exit is set to 1 if called when a process is
781 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
782 *
783 * Locking:
784 * BTM is taken for hysterical raisins, and held when
785 * called from no_tty().
786 * tty_mutex is taken to protect tty
787 * ->siglock is taken to protect ->signal/->sighand
788 * tasklist_lock is taken to walk process list for sessions
789 * ->siglock is taken to protect ->signal/->sighand
790 */
791
792void disassociate_ctty(int on_exit)
793{
794 struct tty_struct *tty;
795
796 if (!current->signal->leader)
797 return;
798
799 tty = get_current_tty();
800 if (tty) {
801 struct pid *tty_pgrp = get_pid(tty->pgrp);
802 if (on_exit) {
803 if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
804 tty_vhangup(tty);
805 }
806 tty_kref_put(tty);
807 if (tty_pgrp) {
808 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
809 if (!on_exit)
810 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
811 put_pid(tty_pgrp);
812 }
813 } else if (on_exit) {
814 struct pid *old_pgrp;
815 spin_lock_irq(&current->sighand->siglock);
816 old_pgrp = current->signal->tty_old_pgrp;
817 current->signal->tty_old_pgrp = NULL;
818 spin_unlock_irq(&current->sighand->siglock);
819 if (old_pgrp) {
820 kill_pgrp(old_pgrp, SIGHUP, on_exit);
821 kill_pgrp(old_pgrp, SIGCONT, on_exit);
822 put_pid(old_pgrp);
823 }
824 return;
825 }
826
827 spin_lock_irq(&current->sighand->siglock);
828 put_pid(current->signal->tty_old_pgrp);
829 current->signal->tty_old_pgrp = NULL;
830 spin_unlock_irq(&current->sighand->siglock);
831
832 tty = get_current_tty();
833 if (tty) {
834 unsigned long flags;
835 spin_lock_irqsave(&tty->ctrl_lock, flags);
836 put_pid(tty->session);
837 put_pid(tty->pgrp);
838 tty->session = NULL;
839 tty->pgrp = NULL;
840 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
841 tty_kref_put(tty);
842 } else {
843#ifdef TTY_DEBUG_HANGUP
844 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
845 " = NULL", tty);
846#endif
847 }
848
849 /* Now clear signal->tty under the lock */
850 read_lock(&tasklist_lock);
851 session_clear_tty(task_session(current));
852 read_unlock(&tasklist_lock);
853}
854
855/**
856 *
857 * no_tty - Ensure the current process does not have a controlling tty
858 */
859void no_tty(void)
860{
861 /* FIXME: Review locking here. The tty_lock never covered any race
862 between a new association and proc_clear_tty but possible we need
863 to protect against this anyway */
864 struct task_struct *tsk = current;
865 disassociate_ctty(0);
866 proc_clear_tty(tsk);
867}
868
869
870/**
871 * stop_tty - propagate flow control
872 * @tty: tty to stop
873 *
874 * Perform flow control to the driver. For PTY/TTY pairs we
875 * must also propagate the TIOCKPKT status. May be called
876 * on an already stopped device and will not re-call the driver
877 * method.
878 *
879 * This functionality is used by both the line disciplines for
880 * halting incoming flow and by the driver. It may therefore be
881 * called from any context, may be under the tty atomic_write_lock
882 * but not always.
883 *
884 * Locking:
885 * Uses the tty control lock internally
886 */
887
888void stop_tty(struct tty_struct *tty)
889{
890 unsigned long flags;
891 spin_lock_irqsave(&tty->ctrl_lock, flags);
892 if (tty->stopped) {
893 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
894 return;
895 }
896 tty->stopped = 1;
897 if (tty->link && tty->link->packet) {
898 tty->ctrl_status &= ~TIOCPKT_START;
899 tty->ctrl_status |= TIOCPKT_STOP;
900 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
901 }
902 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
903 if (tty->ops->stop)
904 (tty->ops->stop)(tty);
905}
906
907EXPORT_SYMBOL(stop_tty);
908
909/**
910 * start_tty - propagate flow control
911 * @tty: tty to start
912 *
913 * Start a tty that has been stopped if at all possible. Perform
914 * any necessary wakeups and propagate the TIOCPKT status. If this
915 * is the tty was previous stopped and is being started then the
916 * driver start method is invoked and the line discipline woken.
917 *
918 * Locking:
919 * ctrl_lock
920 */
921
922void start_tty(struct tty_struct *tty)
923{
924 unsigned long flags;
925 spin_lock_irqsave(&tty->ctrl_lock, flags);
926 if (!tty->stopped || tty->flow_stopped) {
927 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
928 return;
929 }
930 tty->stopped = 0;
931 if (tty->link && tty->link->packet) {
932 tty->ctrl_status &= ~TIOCPKT_STOP;
933 tty->ctrl_status |= TIOCPKT_START;
934 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
935 }
936 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
937 if (tty->ops->start)
938 (tty->ops->start)(tty);
939 /* If we have a running line discipline it may need kicking */
940 tty_wakeup(tty);
941}
942
943EXPORT_SYMBOL(start_tty);
944
945/**
946 * tty_read - read method for tty device files
947 * @file: pointer to tty file
948 * @buf: user buffer
949 * @count: size of user buffer
950 * @ppos: unused
951 *
952 * Perform the read system call function on this terminal device. Checks
953 * for hung up devices before calling the line discipline method.
954 *
955 * Locking:
956 * Locks the line discipline internally while needed. Multiple
957 * read calls may be outstanding in parallel.
958 */
959
960static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
961 loff_t *ppos)
962{
963 int i;
964 struct inode *inode = file->f_path.dentry->d_inode;
965 struct tty_struct *tty = file_tty(file);
966 struct tty_ldisc *ld;
967
968 if (tty_paranoia_check(tty, inode, "tty_read"))
969 return -EIO;
970 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
971 return -EIO;
972
973 /* We want to wait for the line discipline to sort out in this
974 situation */
975 ld = tty_ldisc_ref_wait(tty);
976 if (ld->ops->read)
977 i = (ld->ops->read)(tty, file, buf, count);
978 else
979 i = -EIO;
980 tty_ldisc_deref(ld);
981 if (i > 0)
982 inode->i_atime = current_fs_time(inode->i_sb);
983 return i;
984}
985
986void tty_write_unlock(struct tty_struct *tty)
987 __releases(&tty->atomic_write_lock)
988{
989 mutex_unlock(&tty->atomic_write_lock);
990 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
991}
992
993int tty_write_lock(struct tty_struct *tty, int ndelay)
994 __acquires(&tty->atomic_write_lock)
995{
996 if (!mutex_trylock(&tty->atomic_write_lock)) {
997 if (ndelay)
998 return -EAGAIN;
999 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1000 return -ERESTARTSYS;
1001 }
1002 return 0;
1003}
1004
1005/*
1006 * Split writes up in sane blocksizes to avoid
1007 * denial-of-service type attacks
1008 */
1009static inline ssize_t do_tty_write(
1010 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1011 struct tty_struct *tty,
1012 struct file *file,
1013 const char __user *buf,
1014 size_t count)
1015{
1016 ssize_t ret, written = 0;
1017 unsigned int chunk;
1018
1019 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1020 if (ret < 0)
1021 return ret;
1022
1023 /*
1024 * We chunk up writes into a temporary buffer. This
1025 * simplifies low-level drivers immensely, since they
1026 * don't have locking issues and user mode accesses.
1027 *
1028 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1029 * big chunk-size..
1030 *
1031 * The default chunk-size is 2kB, because the NTTY
1032 * layer has problems with bigger chunks. It will
1033 * claim to be able to handle more characters than
1034 * it actually does.
1035 *
1036 * FIXME: This can probably go away now except that 64K chunks
1037 * are too likely to fail unless switched to vmalloc...
1038 */
1039 chunk = 2048;
1040 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1041 chunk = 65536;
1042 if (count < chunk)
1043 chunk = count;
1044
1045 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1046 if (tty->write_cnt < chunk) {
1047 unsigned char *buf_chunk;
1048
1049 if (chunk < 1024)
1050 chunk = 1024;
1051
1052 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1053 if (!buf_chunk) {
1054 ret = -ENOMEM;
1055 goto out;
1056 }
1057 kfree(tty->write_buf);
1058 tty->write_cnt = chunk;
1059 tty->write_buf = buf_chunk;
1060 }
1061
1062 /* Do the write .. */
1063 for (;;) {
1064 size_t size = count;
1065 if (size > chunk)
1066 size = chunk;
1067 ret = -EFAULT;
1068 if (copy_from_user(tty->write_buf, buf, size))
1069 break;
1070 ret = write(tty, file, tty->write_buf, size);
1071 if (ret <= 0)
1072 break;
1073 written += ret;
1074 buf += ret;
1075 count -= ret;
1076 if (!count)
1077 break;
1078 ret = -ERESTARTSYS;
1079 if (signal_pending(current))
1080 break;
1081 cond_resched();
1082 }
1083 if (written) {
1084 struct inode *inode = file->f_path.dentry->d_inode;
1085 inode->i_mtime = current_fs_time(inode->i_sb);
1086 ret = written;
1087 }
1088out:
1089 tty_write_unlock(tty);
1090 return ret;
1091}
1092
1093/**
1094 * tty_write_message - write a message to a certain tty, not just the console.
1095 * @tty: the destination tty_struct
1096 * @msg: the message to write
1097 *
1098 * This is used for messages that need to be redirected to a specific tty.
1099 * We don't put it into the syslog queue right now maybe in the future if
1100 * really needed.
1101 *
1102 * We must still hold the BTM and test the CLOSING flag for the moment.
1103 */
1104
1105void tty_write_message(struct tty_struct *tty, char *msg)
1106{
1107 if (tty) {
1108 mutex_lock(&tty->atomic_write_lock);
1109 tty_lock(tty);
1110 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1111 tty_unlock(tty);
1112 tty->ops->write(tty, msg, strlen(msg));
1113 } else
1114 tty_unlock(tty);
1115 tty_write_unlock(tty);
1116 }
1117 return;
1118}
1119
1120
1121/**
1122 * tty_write - write method for tty device file
1123 * @file: tty file pointer
1124 * @buf: user data to write
1125 * @count: bytes to write
1126 * @ppos: unused
1127 *
1128 * Write data to a tty device via the line discipline.
1129 *
1130 * Locking:
1131 * Locks the line discipline as required
1132 * Writes to the tty driver are serialized by the atomic_write_lock
1133 * and are then processed in chunks to the device. The line discipline
1134 * write method will not be invoked in parallel for each device.
1135 */
1136
1137static ssize_t tty_write(struct file *file, const char __user *buf,
1138 size_t count, loff_t *ppos)
1139{
1140 struct inode *inode = file->f_path.dentry->d_inode;
1141 struct tty_struct *tty = file_tty(file);
1142 struct tty_ldisc *ld;
1143 ssize_t ret;
1144
1145 if (tty_paranoia_check(tty, inode, "tty_write"))
1146 return -EIO;
1147 if (!tty || !tty->ops->write ||
1148 (test_bit(TTY_IO_ERROR, &tty->flags)))
1149 return -EIO;
1150 /* Short term debug to catch buggy drivers */
1151 if (tty->ops->write_room == NULL)
1152 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1153 tty->driver->name);
1154 ld = tty_ldisc_ref_wait(tty);
1155 if (!ld->ops->write)
1156 ret = -EIO;
1157 else
1158 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1159 tty_ldisc_deref(ld);
1160 return ret;
1161}
1162
1163ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1164 size_t count, loff_t *ppos)
1165{
1166 struct file *p = NULL;
1167
1168 spin_lock(&redirect_lock);
1169 if (redirect)
1170 p = get_file(redirect);
1171 spin_unlock(&redirect_lock);
1172
1173 if (p) {
1174 ssize_t res;
1175 res = vfs_write(p, buf, count, &p->f_pos);
1176 fput(p);
1177 return res;
1178 }
1179 return tty_write(file, buf, count, ppos);
1180}
1181
1182static char ptychar[] = "pqrstuvwxyzabcde";
1183
1184/**
1185 * pty_line_name - generate name for a pty
1186 * @driver: the tty driver in use
1187 * @index: the minor number
1188 * @p: output buffer of at least 6 bytes
1189 *
1190 * Generate a name from a driver reference and write it to the output
1191 * buffer.
1192 *
1193 * Locking: None
1194 */
1195static void pty_line_name(struct tty_driver *driver, int index, char *p)
1196{
1197 int i = index + driver->name_base;
1198 /* ->name is initialized to "ttyp", but "tty" is expected */
1199 sprintf(p, "%s%c%x",
1200 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1201 ptychar[i >> 4 & 0xf], i & 0xf);
1202}
1203
1204/**
1205 * tty_line_name - generate name for a tty
1206 * @driver: the tty driver in use
1207 * @index: the minor number
1208 * @p: output buffer of at least 7 bytes
1209 *
1210 * Generate a name from a driver reference and write it to the output
1211 * buffer.
1212 *
1213 * Locking: None
1214 */
1215static void tty_line_name(struct tty_driver *driver, int index, char *p)
1216{
1217 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1218 strcpy(p, driver->name);
1219 else
1220 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1221}
1222
1223/**
1224 * tty_driver_lookup_tty() - find an existing tty, if any
1225 * @driver: the driver for the tty
1226 * @idx: the minor number
1227 *
1228 * Return the tty, if found or ERR_PTR() otherwise.
1229 *
1230 * Locking: tty_mutex must be held. If tty is found, the mutex must
1231 * be held until the 'fast-open' is also done. Will change once we
1232 * have refcounting in the driver and per driver locking
1233 */
1234static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1235 struct inode *inode, int idx)
1236{
1237 if (driver->ops->lookup)
1238 return driver->ops->lookup(driver, inode, idx);
1239
1240 return driver->ttys[idx];
1241}
1242
1243/**
1244 * tty_init_termios - helper for termios setup
1245 * @tty: the tty to set up
1246 *
1247 * Initialise the termios structures for this tty. Thus runs under
1248 * the tty_mutex currently so we can be relaxed about ordering.
1249 */
1250
1251int tty_init_termios(struct tty_struct *tty)
1252{
1253 struct ktermios *tp;
1254 int idx = tty->index;
1255
1256 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1257 tty->termios = tty->driver->init_termios;
1258 else {
1259 /* Check for lazy saved data */
1260 tp = tty->driver->termios[idx];
1261 if (tp != NULL)
1262 tty->termios = *tp;
1263 else
1264 tty->termios = tty->driver->init_termios;
1265 }
1266 /* Compatibility until drivers always set this */
1267 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1268 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1269 return 0;
1270}
1271EXPORT_SYMBOL_GPL(tty_init_termios);
1272
1273int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1274{
1275 int ret = tty_init_termios(tty);
1276 if (ret)
1277 return ret;
1278
1279 tty_driver_kref_get(driver);
1280 tty->count++;
1281 driver->ttys[tty->index] = tty;
1282 return 0;
1283}
1284EXPORT_SYMBOL_GPL(tty_standard_install);
1285
1286/**
1287 * tty_driver_install_tty() - install a tty entry in the driver
1288 * @driver: the driver for the tty
1289 * @tty: the tty
1290 *
1291 * Install a tty object into the driver tables. The tty->index field
1292 * will be set by the time this is called. This method is responsible
1293 * for ensuring any need additional structures are allocated and
1294 * configured.
1295 *
1296 * Locking: tty_mutex for now
1297 */
1298static int tty_driver_install_tty(struct tty_driver *driver,
1299 struct tty_struct *tty)
1300{
1301 return driver->ops->install ? driver->ops->install(driver, tty) :
1302 tty_standard_install(driver, tty);
1303}
1304
1305/**
1306 * tty_driver_remove_tty() - remove a tty from the driver tables
1307 * @driver: the driver for the tty
1308 * @idx: the minor number
1309 *
1310 * Remvoe a tty object from the driver tables. The tty->index field
1311 * will be set by the time this is called.
1312 *
1313 * Locking: tty_mutex for now
1314 */
1315void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1316{
1317 if (driver->ops->remove)
1318 driver->ops->remove(driver, tty);
1319 else
1320 driver->ttys[tty->index] = NULL;
1321}
1322
1323/*
1324 * tty_reopen() - fast re-open of an open tty
1325 * @tty - the tty to open
1326 *
1327 * Return 0 on success, -errno on error.
1328 *
1329 * Locking: tty_mutex must be held from the time the tty was found
1330 * till this open completes.
1331 */
1332static int tty_reopen(struct tty_struct *tty)
1333{
1334 struct tty_driver *driver = tty->driver;
1335
1336 if (test_bit(TTY_CLOSING, &tty->flags) ||
1337 test_bit(TTY_HUPPING, &tty->flags) ||
1338 test_bit(TTY_LDISC_CHANGING, &tty->flags))
1339 return -EIO;
1340
1341 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1342 driver->subtype == PTY_TYPE_MASTER) {
1343 /*
1344 * special case for PTY masters: only one open permitted,
1345 * and the slave side open count is incremented as well.
1346 */
1347 if (tty->count)
1348 return -EIO;
1349
1350 tty->link->count++;
1351 }
1352 tty->count++;
1353
1354 mutex_lock(&tty->ldisc_mutex);
1355 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1356 mutex_unlock(&tty->ldisc_mutex);
1357
1358 return 0;
1359}
1360
1361/**
1362 * tty_init_dev - initialise a tty device
1363 * @driver: tty driver we are opening a device on
1364 * @idx: device index
1365 * @ret_tty: returned tty structure
1366 *
1367 * Prepare a tty device. This may not be a "new" clean device but
1368 * could also be an active device. The pty drivers require special
1369 * handling because of this.
1370 *
1371 * Locking:
1372 * The function is called under the tty_mutex, which
1373 * protects us from the tty struct or driver itself going away.
1374 *
1375 * On exit the tty device has the line discipline attached and
1376 * a reference count of 1. If a pair was created for pty/tty use
1377 * and the other was a pty master then it too has a reference count of 1.
1378 *
1379 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1380 * failed open. The new code protects the open with a mutex, so it's
1381 * really quite straightforward. The mutex locking can probably be
1382 * relaxed for the (most common) case of reopening a tty.
1383 */
1384
1385struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1386{
1387 struct tty_struct *tty;
1388 int retval;
1389
1390 /*
1391 * First time open is complex, especially for PTY devices.
1392 * This code guarantees that either everything succeeds and the
1393 * TTY is ready for operation, or else the table slots are vacated
1394 * and the allocated memory released. (Except that the termios
1395 * and locked termios may be retained.)
1396 */
1397
1398 if (!try_module_get(driver->owner))
1399 return ERR_PTR(-ENODEV);
1400
1401 tty = alloc_tty_struct();
1402 if (!tty) {
1403 retval = -ENOMEM;
1404 goto err_module_put;
1405 }
1406 initialize_tty_struct(tty, driver, idx);
1407
1408 tty_lock(tty);
1409 retval = tty_driver_install_tty(driver, tty);
1410 if (retval < 0)
1411 goto err_deinit_tty;
1412
1413 if (!tty->port)
1414 tty->port = driver->ports[idx];
1415
1416 WARN_RATELIMIT(!tty->port,
1417 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1418 __func__, tty->driver->name);
1419
1420 /*
1421 * Structures all installed ... call the ldisc open routines.
1422 * If we fail here just call release_tty to clean up. No need
1423 * to decrement the use counts, as release_tty doesn't care.
1424 */
1425 retval = tty_ldisc_setup(tty, tty->link);
1426 if (retval)
1427 goto err_release_tty;
1428 /* Return the tty locked so that it cannot vanish under the caller */
1429 return tty;
1430
1431err_deinit_tty:
1432 tty_unlock(tty);
1433 deinitialize_tty_struct(tty);
1434 free_tty_struct(tty);
1435err_module_put:
1436 module_put(driver->owner);
1437 return ERR_PTR(retval);
1438
1439 /* call the tty release_tty routine to clean out this slot */
1440err_release_tty:
1441 tty_unlock(tty);
1442 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1443 "clearing slot %d\n", idx);
1444 release_tty(tty, idx);
1445 return ERR_PTR(retval);
1446}
1447
1448void tty_free_termios(struct tty_struct *tty)
1449{
1450 struct ktermios *tp;
1451 int idx = tty->index;
1452
1453 /* If the port is going to reset then it has no termios to save */
1454 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1455 return;
1456
1457 /* Stash the termios data */
1458 tp = tty->driver->termios[idx];
1459 if (tp == NULL) {
1460 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1461 if (tp == NULL) {
1462 pr_warn("tty: no memory to save termios state.\n");
1463 return;
1464 }
1465 tty->driver->termios[idx] = tp;
1466 }
1467 *tp = tty->termios;
1468}
1469EXPORT_SYMBOL(tty_free_termios);
1470
1471
1472/**
1473 * release_one_tty - release tty structure memory
1474 * @kref: kref of tty we are obliterating
1475 *
1476 * Releases memory associated with a tty structure, and clears out the
1477 * driver table slots. This function is called when a device is no longer
1478 * in use. It also gets called when setup of a device fails.
1479 *
1480 * Locking:
1481 * takes the file list lock internally when working on the list
1482 * of ttys that the driver keeps.
1483 *
1484 * This method gets called from a work queue so that the driver private
1485 * cleanup ops can sleep (needed for USB at least)
1486 */
1487static void release_one_tty(struct work_struct *work)
1488{
1489 struct tty_struct *tty =
1490 container_of(work, struct tty_struct, hangup_work);
1491 struct tty_driver *driver = tty->driver;
1492
1493 if (tty->ops->cleanup)
1494 tty->ops->cleanup(tty);
1495
1496 tty->magic = 0;
1497 tty_driver_kref_put(driver);
1498 module_put(driver->owner);
1499
1500 spin_lock(&tty_files_lock);
1501 list_del_init(&tty->tty_files);
1502 spin_unlock(&tty_files_lock);
1503
1504 put_pid(tty->pgrp);
1505 put_pid(tty->session);
1506 free_tty_struct(tty);
1507}
1508
1509static void queue_release_one_tty(struct kref *kref)
1510{
1511 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1512
1513 /* The hangup queue is now free so we can reuse it rather than
1514 waste a chunk of memory for each port */
1515 INIT_WORK(&tty->hangup_work, release_one_tty);
1516 schedule_work(&tty->hangup_work);
1517}
1518
1519/**
1520 * tty_kref_put - release a tty kref
1521 * @tty: tty device
1522 *
1523 * Release a reference to a tty device and if need be let the kref
1524 * layer destruct the object for us
1525 */
1526
1527void tty_kref_put(struct tty_struct *tty)
1528{
1529 if (tty)
1530 kref_put(&tty->kref, queue_release_one_tty);
1531}
1532EXPORT_SYMBOL(tty_kref_put);
1533
1534/**
1535 * release_tty - release tty structure memory
1536 *
1537 * Release both @tty and a possible linked partner (think pty pair),
1538 * and decrement the refcount of the backing module.
1539 *
1540 * Locking:
1541 * tty_mutex
1542 * takes the file list lock internally when working on the list
1543 * of ttys that the driver keeps.
1544 *
1545 */
1546static void release_tty(struct tty_struct *tty, int idx)
1547{
1548 /* This should always be true but check for the moment */
1549 WARN_ON(tty->index != idx);
1550 WARN_ON(!mutex_is_locked(&tty_mutex));
1551 if (tty->ops->shutdown)
1552 tty->ops->shutdown(tty);
1553 tty_free_termios(tty);
1554 tty_driver_remove_tty(tty->driver, tty);
1555
1556 if (tty->link)
1557 tty_kref_put(tty->link);
1558 tty_kref_put(tty);
1559}
1560
1561/**
1562 * tty_release_checks - check a tty before real release
1563 * @tty: tty to check
1564 * @o_tty: link of @tty (if any)
1565 * @idx: index of the tty
1566 *
1567 * Performs some paranoid checking before true release of the @tty.
1568 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1569 */
1570static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1571 int idx)
1572{
1573#ifdef TTY_PARANOIA_CHECK
1574 if (idx < 0 || idx >= tty->driver->num) {
1575 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1576 __func__, tty->name);
1577 return -1;
1578 }
1579
1580 /* not much to check for devpts */
1581 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1582 return 0;
1583
1584 if (tty != tty->driver->ttys[idx]) {
1585 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1586 __func__, idx, tty->name);
1587 return -1;
1588 }
1589 if (tty->driver->other) {
1590 if (o_tty != tty->driver->other->ttys[idx]) {
1591 printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1592 __func__, idx, tty->name);
1593 return -1;
1594 }
1595 if (o_tty->link != tty) {
1596 printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1597 return -1;
1598 }
1599 }
1600#endif
1601 return 0;
1602}
1603
1604/**
1605 * tty_release - vfs callback for close
1606 * @inode: inode of tty
1607 * @filp: file pointer for handle to tty
1608 *
1609 * Called the last time each file handle is closed that references
1610 * this tty. There may however be several such references.
1611 *
1612 * Locking:
1613 * Takes bkl. See tty_release_dev
1614 *
1615 * Even releasing the tty structures is a tricky business.. We have
1616 * to be very careful that the structures are all released at the
1617 * same time, as interrupts might otherwise get the wrong pointers.
1618 *
1619 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1620 * lead to double frees or releasing memory still in use.
1621 */
1622
1623int tty_release(struct inode *inode, struct file *filp)
1624{
1625 struct tty_struct *tty = file_tty(filp);
1626 struct tty_struct *o_tty;
1627 int pty_master, tty_closing, o_tty_closing, do_sleep;
1628 int idx;
1629 char buf[64];
1630
1631 if (tty_paranoia_check(tty, inode, __func__))
1632 return 0;
1633
1634 tty_lock(tty);
1635 check_tty_count(tty, __func__);
1636
1637 __tty_fasync(-1, filp, 0);
1638
1639 idx = tty->index;
1640 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1641 tty->driver->subtype == PTY_TYPE_MASTER);
1642 /* Review: parallel close */
1643 o_tty = tty->link;
1644
1645 if (tty_release_checks(tty, o_tty, idx)) {
1646 tty_unlock(tty);
1647 return 0;
1648 }
1649
1650#ifdef TTY_DEBUG_HANGUP
1651 printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1652 tty_name(tty, buf), tty->count);
1653#endif
1654
1655 if (tty->ops->close)
1656 tty->ops->close(tty, filp);
1657
1658 tty_unlock(tty);
1659 /*
1660 * Sanity check: if tty->count is going to zero, there shouldn't be
1661 * any waiters on tty->read_wait or tty->write_wait. We test the
1662 * wait queues and kick everyone out _before_ actually starting to
1663 * close. This ensures that we won't block while releasing the tty
1664 * structure.
1665 *
1666 * The test for the o_tty closing is necessary, since the master and
1667 * slave sides may close in any order. If the slave side closes out
1668 * first, its count will be one, since the master side holds an open.
1669 * Thus this test wouldn't be triggered at the time the slave closes,
1670 * so we do it now.
1671 *
1672 * Note that it's possible for the tty to be opened again while we're
1673 * flushing out waiters. By recalculating the closing flags before
1674 * each iteration we avoid any problems.
1675 */
1676 while (1) {
1677 /* Guard against races with tty->count changes elsewhere and
1678 opens on /dev/tty */
1679
1680 mutex_lock(&tty_mutex);
1681 tty_lock_pair(tty, o_tty);
1682 tty_closing = tty->count <= 1;
1683 o_tty_closing = o_tty &&
1684 (o_tty->count <= (pty_master ? 1 : 0));
1685 do_sleep = 0;
1686
1687 if (tty_closing) {
1688 if (waitqueue_active(&tty->read_wait)) {
1689 wake_up_poll(&tty->read_wait, POLLIN);
1690 do_sleep++;
1691 }
1692 if (waitqueue_active(&tty->write_wait)) {
1693 wake_up_poll(&tty->write_wait, POLLOUT);
1694 do_sleep++;
1695 }
1696 }
1697 if (o_tty_closing) {
1698 if (waitqueue_active(&o_tty->read_wait)) {
1699 wake_up_poll(&o_tty->read_wait, POLLIN);
1700 do_sleep++;
1701 }
1702 if (waitqueue_active(&o_tty->write_wait)) {
1703 wake_up_poll(&o_tty->write_wait, POLLOUT);
1704 do_sleep++;
1705 }
1706 }
1707 if (!do_sleep)
1708 break;
1709
1710 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1711 __func__, tty_name(tty, buf));
1712 tty_unlock_pair(tty, o_tty);
1713 mutex_unlock(&tty_mutex);
1714 schedule();
1715 }
1716
1717 /*
1718 * The closing flags are now consistent with the open counts on
1719 * both sides, and we've completed the last operation that could
1720 * block, so it's safe to proceed with closing.
1721 *
1722 * We must *not* drop the tty_mutex until we ensure that a further
1723 * entry into tty_open can not pick up this tty.
1724 */
1725 if (pty_master) {
1726 if (--o_tty->count < 0) {
1727 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1728 __func__, o_tty->count, tty_name(o_tty, buf));
1729 o_tty->count = 0;
1730 }
1731 }
1732 if (--tty->count < 0) {
1733 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1734 __func__, tty->count, tty_name(tty, buf));
1735 tty->count = 0;
1736 }
1737
1738 /*
1739 * We've decremented tty->count, so we need to remove this file
1740 * descriptor off the tty->tty_files list; this serves two
1741 * purposes:
1742 * - check_tty_count sees the correct number of file descriptors
1743 * associated with this tty.
1744 * - do_tty_hangup no longer sees this file descriptor as
1745 * something that needs to be handled for hangups.
1746 */
1747 tty_del_file(filp);
1748
1749 /*
1750 * Perform some housekeeping before deciding whether to return.
1751 *
1752 * Set the TTY_CLOSING flag if this was the last open. In the
1753 * case of a pty we may have to wait around for the other side
1754 * to close, and TTY_CLOSING makes sure we can't be reopened.
1755 */
1756 if (tty_closing)
1757 set_bit(TTY_CLOSING, &tty->flags);
1758 if (o_tty_closing)
1759 set_bit(TTY_CLOSING, &o_tty->flags);
1760
1761 /*
1762 * If _either_ side is closing, make sure there aren't any
1763 * processes that still think tty or o_tty is their controlling
1764 * tty.
1765 */
1766 if (tty_closing || o_tty_closing) {
1767 read_lock(&tasklist_lock);
1768 session_clear_tty(tty->session);
1769 if (o_tty)
1770 session_clear_tty(o_tty->session);
1771 read_unlock(&tasklist_lock);
1772 }
1773
1774 mutex_unlock(&tty_mutex);
1775 tty_unlock_pair(tty, o_tty);
1776 /* At this point the TTY_CLOSING flag should ensure a dead tty
1777 cannot be re-opened by a racing opener */
1778
1779 /* check whether both sides are closing ... */
1780 if (!tty_closing || (o_tty && !o_tty_closing))
1781 return 0;
1782
1783#ifdef TTY_DEBUG_HANGUP
1784 printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1785#endif
1786 /*
1787 * Ask the line discipline code to release its structures
1788 */
1789 tty_ldisc_release(tty, o_tty);
1790 /*
1791 * The release_tty function takes care of the details of clearing
1792 * the slots and preserving the termios structure. The tty_unlock_pair
1793 * should be safe as we keep a kref while the tty is locked (so the
1794 * unlock never unlocks a freed tty).
1795 */
1796 mutex_lock(&tty_mutex);
1797 release_tty(tty, idx);
1798 mutex_unlock(&tty_mutex);
1799
1800 return 0;
1801}
1802
1803/**
1804 * tty_open_current_tty - get tty of current task for open
1805 * @device: device number
1806 * @filp: file pointer to tty
1807 * @return: tty of the current task iff @device is /dev/tty
1808 *
1809 * We cannot return driver and index like for the other nodes because
1810 * devpts will not work then. It expects inodes to be from devpts FS.
1811 *
1812 * We need to move to returning a refcounted object from all the lookup
1813 * paths including this one.
1814 */
1815static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1816{
1817 struct tty_struct *tty;
1818
1819 if (device != MKDEV(TTYAUX_MAJOR, 0))
1820 return NULL;
1821
1822 tty = get_current_tty();
1823 if (!tty)
1824 return ERR_PTR(-ENXIO);
1825
1826 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1827 /* noctty = 1; */
1828 tty_kref_put(tty);
1829 /* FIXME: we put a reference and return a TTY! */
1830 /* This is only safe because the caller holds tty_mutex */
1831 return tty;
1832}
1833
1834/**
1835 * tty_lookup_driver - lookup a tty driver for a given device file
1836 * @device: device number
1837 * @filp: file pointer to tty
1838 * @noctty: set if the device should not become a controlling tty
1839 * @index: index for the device in the @return driver
1840 * @return: driver for this inode (with increased refcount)
1841 *
1842 * If @return is not erroneous, the caller is responsible to decrement the
1843 * refcount by tty_driver_kref_put.
1844 *
1845 * Locking: tty_mutex protects get_tty_driver
1846 */
1847static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1848 int *noctty, int *index)
1849{
1850 struct tty_driver *driver;
1851
1852 switch (device) {
1853#ifdef CONFIG_VT
1854 case MKDEV(TTY_MAJOR, 0): {
1855 extern struct tty_driver *console_driver;
1856 driver = tty_driver_kref_get(console_driver);
1857 *index = fg_console;
1858 *noctty = 1;
1859 break;
1860 }
1861#endif
1862 case MKDEV(TTYAUX_MAJOR, 1): {
1863 struct tty_driver *console_driver = console_device(index);
1864 if (console_driver) {
1865 driver = tty_driver_kref_get(console_driver);
1866 if (driver) {
1867 /* Don't let /dev/console block */
1868 filp->f_flags |= O_NONBLOCK;
1869 *noctty = 1;
1870 break;
1871 }
1872 }
1873 return ERR_PTR(-ENODEV);
1874 }
1875 default:
1876 driver = get_tty_driver(device, index);
1877 if (!driver)
1878 return ERR_PTR(-ENODEV);
1879 break;
1880 }
1881 return driver;
1882}
1883
1884/**
1885 * tty_open - open a tty device
1886 * @inode: inode of device file
1887 * @filp: file pointer to tty
1888 *
1889 * tty_open and tty_release keep up the tty count that contains the
1890 * number of opens done on a tty. We cannot use the inode-count, as
1891 * different inodes might point to the same tty.
1892 *
1893 * Open-counting is needed for pty masters, as well as for keeping
1894 * track of serial lines: DTR is dropped when the last close happens.
1895 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1896 *
1897 * The termios state of a pty is reset on first open so that
1898 * settings don't persist across reuse.
1899 *
1900 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1901 * tty->count should protect the rest.
1902 * ->siglock protects ->signal/->sighand
1903 *
1904 * Note: the tty_unlock/lock cases without a ref are only safe due to
1905 * tty_mutex
1906 */
1907
1908static int tty_open(struct inode *inode, struct file *filp)
1909{
1910 struct tty_struct *tty;
1911 int noctty, retval;
1912 struct tty_driver *driver = NULL;
1913 int index;
1914 dev_t device = inode->i_rdev;
1915 unsigned saved_flags = filp->f_flags;
1916
1917 nonseekable_open(inode, filp);
1918
1919retry_open:
1920 retval = tty_alloc_file(filp);
1921 if (retval)
1922 return -ENOMEM;
1923
1924 noctty = filp->f_flags & O_NOCTTY;
1925 index = -1;
1926 retval = 0;
1927
1928 mutex_lock(&tty_mutex);
1929 /* This is protected by the tty_mutex */
1930 tty = tty_open_current_tty(device, filp);
1931 if (IS_ERR(tty)) {
1932 retval = PTR_ERR(tty);
1933 goto err_unlock;
1934 } else if (!tty) {
1935 driver = tty_lookup_driver(device, filp, &noctty, &index);
1936 if (IS_ERR(driver)) {
1937 retval = PTR_ERR(driver);
1938 goto err_unlock;
1939 }
1940
1941 /* check whether we're reopening an existing tty */
1942 tty = tty_driver_lookup_tty(driver, inode, index);
1943 if (IS_ERR(tty)) {
1944 retval = PTR_ERR(tty);
1945 goto err_unlock;
1946 }
1947 }
1948
1949 if (tty) {
1950 tty_lock(tty);
1951 retval = tty_reopen(tty);
1952 if (retval < 0) {
1953 tty_unlock(tty);
1954 tty = ERR_PTR(retval);
1955 }
1956 } else /* Returns with the tty_lock held for now */
1957 tty = tty_init_dev(driver, index);
1958
1959 mutex_unlock(&tty_mutex);
1960 if (driver)
1961 tty_driver_kref_put(driver);
1962 if (IS_ERR(tty)) {
1963 retval = PTR_ERR(tty);
1964 goto err_file;
1965 }
1966
1967 tty_add_file(tty, filp);
1968
1969 check_tty_count(tty, __func__);
1970 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1971 tty->driver->subtype == PTY_TYPE_MASTER)
1972 noctty = 1;
1973#ifdef TTY_DEBUG_HANGUP
1974 printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1975#endif
1976 if (tty->ops->open)
1977 retval = tty->ops->open(tty, filp);
1978 else
1979 retval = -ENODEV;
1980 filp->f_flags = saved_flags;
1981
1982 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1983 !capable(CAP_SYS_ADMIN))
1984 retval = -EBUSY;
1985
1986 if (retval) {
1987#ifdef TTY_DEBUG_HANGUP
1988 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1989 retval, tty->name);
1990#endif
1991 tty_unlock(tty); /* need to call tty_release without BTM */
1992 tty_release(inode, filp);
1993 if (retval != -ERESTARTSYS)
1994 return retval;
1995
1996 if (signal_pending(current))
1997 return retval;
1998
1999 schedule();
2000 /*
2001 * Need to reset f_op in case a hangup happened.
2002 */
2003 if (filp->f_op == &hung_up_tty_fops)
2004 filp->f_op = &tty_fops;
2005 goto retry_open;
2006 }
2007 tty_unlock(tty);
2008
2009
2010 mutex_lock(&tty_mutex);
2011 tty_lock(tty);
2012 spin_lock_irq(&current->sighand->siglock);
2013 if (!noctty &&
2014 current->signal->leader &&
2015 !current->signal->tty &&
2016 tty->session == NULL)
2017 __proc_set_tty(current, tty);
2018 spin_unlock_irq(&current->sighand->siglock);
2019 tty_unlock(tty);
2020 mutex_unlock(&tty_mutex);
2021 return 0;
2022err_unlock:
2023 mutex_unlock(&tty_mutex);
2024 /* after locks to avoid deadlock */
2025 if (!IS_ERR_OR_NULL(driver))
2026 tty_driver_kref_put(driver);
2027err_file:
2028 tty_free_file(filp);
2029 return retval;
2030}
2031
2032
2033
2034/**
2035 * tty_poll - check tty status
2036 * @filp: file being polled
2037 * @wait: poll wait structures to update
2038 *
2039 * Call the line discipline polling method to obtain the poll
2040 * status of the device.
2041 *
2042 * Locking: locks called line discipline but ldisc poll method
2043 * may be re-entered freely by other callers.
2044 */
2045
2046static unsigned int tty_poll(struct file *filp, poll_table *wait)
2047{
2048 struct tty_struct *tty = file_tty(filp);
2049 struct tty_ldisc *ld;
2050 int ret = 0;
2051
2052 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2053 return 0;
2054
2055 ld = tty_ldisc_ref_wait(tty);
2056 if (ld->ops->poll)
2057 ret = (ld->ops->poll)(tty, filp, wait);
2058 tty_ldisc_deref(ld);
2059 return ret;
2060}
2061
2062static int __tty_fasync(int fd, struct file *filp, int on)
2063{
2064 struct tty_struct *tty = file_tty(filp);
2065 unsigned long flags;
2066 int retval = 0;
2067
2068 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2069 goto out;
2070
2071 retval = fasync_helper(fd, filp, on, &tty->fasync);
2072 if (retval <= 0)
2073 goto out;
2074
2075 if (on) {
2076 enum pid_type type;
2077 struct pid *pid;
2078 if (!waitqueue_active(&tty->read_wait))
2079 tty->minimum_to_wake = 1;
2080 spin_lock_irqsave(&tty->ctrl_lock, flags);
2081 if (tty->pgrp) {
2082 pid = tty->pgrp;
2083 type = PIDTYPE_PGID;
2084 } else {
2085 pid = task_pid(current);
2086 type = PIDTYPE_PID;
2087 }
2088 get_pid(pid);
2089 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2090 retval = __f_setown(filp, pid, type, 0);
2091 put_pid(pid);
2092 if (retval)
2093 goto out;
2094 } else {
2095 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2096 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2097 }
2098 retval = 0;
2099out:
2100 return retval;
2101}
2102
2103static int tty_fasync(int fd, struct file *filp, int on)
2104{
2105 struct tty_struct *tty = file_tty(filp);
2106 int retval;
2107
2108 tty_lock(tty);
2109 retval = __tty_fasync(fd, filp, on);
2110 tty_unlock(tty);
2111
2112 return retval;
2113}
2114
2115/**
2116 * tiocsti - fake input character
2117 * @tty: tty to fake input into
2118 * @p: pointer to character
2119 *
2120 * Fake input to a tty device. Does the necessary locking and
2121 * input management.
2122 *
2123 * FIXME: does not honour flow control ??
2124 *
2125 * Locking:
2126 * Called functions take tty_ldisc_lock
2127 * current->signal->tty check is safe without locks
2128 *
2129 * FIXME: may race normal receive processing
2130 */
2131
2132static int tiocsti(struct tty_struct *tty, char __user *p)
2133{
2134 char ch, mbz = 0;
2135 struct tty_ldisc *ld;
2136
2137 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2138 return -EPERM;
2139 if (get_user(ch, p))
2140 return -EFAULT;
2141 tty_audit_tiocsti(tty, ch);
2142 ld = tty_ldisc_ref_wait(tty);
2143 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2144 tty_ldisc_deref(ld);
2145 return 0;
2146}
2147
2148/**
2149 * tiocgwinsz - implement window query ioctl
2150 * @tty; tty
2151 * @arg: user buffer for result
2152 *
2153 * Copies the kernel idea of the window size into the user buffer.
2154 *
2155 * Locking: tty->termios_mutex is taken to ensure the winsize data
2156 * is consistent.
2157 */
2158
2159static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2160{
2161 int err;
2162
2163 mutex_lock(&tty->termios_mutex);
2164 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2165 mutex_unlock(&tty->termios_mutex);
2166
2167 return err ? -EFAULT: 0;
2168}
2169
2170/**
2171 * tty_do_resize - resize event
2172 * @tty: tty being resized
2173 * @rows: rows (character)
2174 * @cols: cols (character)
2175 *
2176 * Update the termios variables and send the necessary signals to
2177 * peform a terminal resize correctly
2178 */
2179
2180int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2181{
2182 struct pid *pgrp;
2183 unsigned long flags;
2184
2185 /* Lock the tty */
2186 mutex_lock(&tty->termios_mutex);
2187 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2188 goto done;
2189 /* Get the PID values and reference them so we can
2190 avoid holding the tty ctrl lock while sending signals */
2191 spin_lock_irqsave(&tty->ctrl_lock, flags);
2192 pgrp = get_pid(tty->pgrp);
2193 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2194
2195 if (pgrp)
2196 kill_pgrp(pgrp, SIGWINCH, 1);
2197 put_pid(pgrp);
2198
2199 tty->winsize = *ws;
2200done:
2201 mutex_unlock(&tty->termios_mutex);
2202 return 0;
2203}
2204
2205/**
2206 * tiocswinsz - implement window size set ioctl
2207 * @tty; tty side of tty
2208 * @arg: user buffer for result
2209 *
2210 * Copies the user idea of the window size to the kernel. Traditionally
2211 * this is just advisory information but for the Linux console it
2212 * actually has driver level meaning and triggers a VC resize.
2213 *
2214 * Locking:
2215 * Driver dependent. The default do_resize method takes the
2216 * tty termios mutex and ctrl_lock. The console takes its own lock
2217 * then calls into the default method.
2218 */
2219
2220static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2221{
2222 struct winsize tmp_ws;
2223 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2224 return -EFAULT;
2225
2226 if (tty->ops->resize)
2227 return tty->ops->resize(tty, &tmp_ws);
2228 else
2229 return tty_do_resize(tty, &tmp_ws);
2230}
2231
2232/**
2233 * tioccons - allow admin to move logical console
2234 * @file: the file to become console
2235 *
2236 * Allow the administrator to move the redirected console device
2237 *
2238 * Locking: uses redirect_lock to guard the redirect information
2239 */
2240
2241static int tioccons(struct file *file)
2242{
2243 if (!capable(CAP_SYS_ADMIN))
2244 return -EPERM;
2245 if (file->f_op->write == redirected_tty_write) {
2246 struct file *f;
2247 spin_lock(&redirect_lock);
2248 f = redirect;
2249 redirect = NULL;
2250 spin_unlock(&redirect_lock);
2251 if (f)
2252 fput(f);
2253 return 0;
2254 }
2255 spin_lock(&redirect_lock);
2256 if (redirect) {
2257 spin_unlock(&redirect_lock);
2258 return -EBUSY;
2259 }
2260 redirect = get_file(file);
2261 spin_unlock(&redirect_lock);
2262 return 0;
2263}
2264
2265/**
2266 * fionbio - non blocking ioctl
2267 * @file: file to set blocking value
2268 * @p: user parameter
2269 *
2270 * Historical tty interfaces had a blocking control ioctl before
2271 * the generic functionality existed. This piece of history is preserved
2272 * in the expected tty API of posix OS's.
2273 *
2274 * Locking: none, the open file handle ensures it won't go away.
2275 */
2276
2277static int fionbio(struct file *file, int __user *p)
2278{
2279 int nonblock;
2280
2281 if (get_user(nonblock, p))
2282 return -EFAULT;
2283
2284 spin_lock(&file->f_lock);
2285 if (nonblock)
2286 file->f_flags |= O_NONBLOCK;
2287 else
2288 file->f_flags &= ~O_NONBLOCK;
2289 spin_unlock(&file->f_lock);
2290 return 0;
2291}
2292
2293/**
2294 * tiocsctty - set controlling tty
2295 * @tty: tty structure
2296 * @arg: user argument
2297 *
2298 * This ioctl is used to manage job control. It permits a session
2299 * leader to set this tty as the controlling tty for the session.
2300 *
2301 * Locking:
2302 * Takes tty_mutex() to protect tty instance
2303 * Takes tasklist_lock internally to walk sessions
2304 * Takes ->siglock() when updating signal->tty
2305 */
2306
2307static int tiocsctty(struct tty_struct *tty, int arg)
2308{
2309 int ret = 0;
2310 if (current->signal->leader && (task_session(current) == tty->session))
2311 return ret;
2312
2313 mutex_lock(&tty_mutex);
2314 /*
2315 * The process must be a session leader and
2316 * not have a controlling tty already.
2317 */
2318 if (!current->signal->leader || current->signal->tty) {
2319 ret = -EPERM;
2320 goto unlock;
2321 }
2322
2323 if (tty->session) {
2324 /*
2325 * This tty is already the controlling
2326 * tty for another session group!
2327 */
2328 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2329 /*
2330 * Steal it away
2331 */
2332 read_lock(&tasklist_lock);
2333 session_clear_tty(tty->session);
2334 read_unlock(&tasklist_lock);
2335 } else {
2336 ret = -EPERM;
2337 goto unlock;
2338 }
2339 }
2340 proc_set_tty(current, tty);
2341unlock:
2342 mutex_unlock(&tty_mutex);
2343 return ret;
2344}
2345
2346/**
2347 * tty_get_pgrp - return a ref counted pgrp pid
2348 * @tty: tty to read
2349 *
2350 * Returns a refcounted instance of the pid struct for the process
2351 * group controlling the tty.
2352 */
2353
2354struct pid *tty_get_pgrp(struct tty_struct *tty)
2355{
2356 unsigned long flags;
2357 struct pid *pgrp;
2358
2359 spin_lock_irqsave(&tty->ctrl_lock, flags);
2360 pgrp = get_pid(tty->pgrp);
2361 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2362
2363 return pgrp;
2364}
2365EXPORT_SYMBOL_GPL(tty_get_pgrp);
2366
2367/**
2368 * tiocgpgrp - get process group
2369 * @tty: tty passed by user
2370 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2371 * @p: returned pid
2372 *
2373 * Obtain the process group of the tty. If there is no process group
2374 * return an error.
2375 *
2376 * Locking: none. Reference to current->signal->tty is safe.
2377 */
2378
2379static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2380{
2381 struct pid *pid;
2382 int ret;
2383 /*
2384 * (tty == real_tty) is a cheap way of
2385 * testing if the tty is NOT a master pty.
2386 */
2387 if (tty == real_tty && current->signal->tty != real_tty)
2388 return -ENOTTY;
2389 pid = tty_get_pgrp(real_tty);
2390 ret = put_user(pid_vnr(pid), p);
2391 put_pid(pid);
2392 return ret;
2393}
2394
2395/**
2396 * tiocspgrp - attempt to set process group
2397 * @tty: tty passed by user
2398 * @real_tty: tty side device matching tty passed by user
2399 * @p: pid pointer
2400 *
2401 * Set the process group of the tty to the session passed. Only
2402 * permitted where the tty session is our session.
2403 *
2404 * Locking: RCU, ctrl lock
2405 */
2406
2407static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2408{
2409 struct pid *pgrp;
2410 pid_t pgrp_nr;
2411 int retval = tty_check_change(real_tty);
2412 unsigned long flags;
2413
2414 if (retval == -EIO)
2415 return -ENOTTY;
2416 if (retval)
2417 return retval;
2418 if (!current->signal->tty ||
2419 (current->signal->tty != real_tty) ||
2420 (real_tty->session != task_session(current)))
2421 return -ENOTTY;
2422 if (get_user(pgrp_nr, p))
2423 return -EFAULT;
2424 if (pgrp_nr < 0)
2425 return -EINVAL;
2426 rcu_read_lock();
2427 pgrp = find_vpid(pgrp_nr);
2428 retval = -ESRCH;
2429 if (!pgrp)
2430 goto out_unlock;
2431 retval = -EPERM;
2432 if (session_of_pgrp(pgrp) != task_session(current))
2433 goto out_unlock;
2434 retval = 0;
2435 spin_lock_irqsave(&tty->ctrl_lock, flags);
2436 put_pid(real_tty->pgrp);
2437 real_tty->pgrp = get_pid(pgrp);
2438 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2439out_unlock:
2440 rcu_read_unlock();
2441 return retval;
2442}
2443
2444/**
2445 * tiocgsid - get session id
2446 * @tty: tty passed by user
2447 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2448 * @p: pointer to returned session id
2449 *
2450 * Obtain the session id of the tty. If there is no session
2451 * return an error.
2452 *
2453 * Locking: none. Reference to current->signal->tty is safe.
2454 */
2455
2456static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2457{
2458 /*
2459 * (tty == real_tty) is a cheap way of
2460 * testing if the tty is NOT a master pty.
2461 */
2462 if (tty == real_tty && current->signal->tty != real_tty)
2463 return -ENOTTY;
2464 if (!real_tty->session)
2465 return -ENOTTY;
2466 return put_user(pid_vnr(real_tty->session), p);
2467}
2468
2469/**
2470 * tiocsetd - set line discipline
2471 * @tty: tty device
2472 * @p: pointer to user data
2473 *
2474 * Set the line discipline according to user request.
2475 *
2476 * Locking: see tty_set_ldisc, this function is just a helper
2477 */
2478
2479static int tiocsetd(struct tty_struct *tty, int __user *p)
2480{
2481 int ldisc;
2482 int ret;
2483
2484 if (get_user(ldisc, p))
2485 return -EFAULT;
2486
2487 ret = tty_set_ldisc(tty, ldisc);
2488
2489 return ret;
2490}
2491
2492/**
2493 * send_break - performed time break
2494 * @tty: device to break on
2495 * @duration: timeout in mS
2496 *
2497 * Perform a timed break on hardware that lacks its own driver level
2498 * timed break functionality.
2499 *
2500 * Locking:
2501 * atomic_write_lock serializes
2502 *
2503 */
2504
2505static int send_break(struct tty_struct *tty, unsigned int duration)
2506{
2507 int retval;
2508
2509 if (tty->ops->break_ctl == NULL)
2510 return 0;
2511
2512 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2513 retval = tty->ops->break_ctl(tty, duration);
2514 else {
2515 /* Do the work ourselves */
2516 if (tty_write_lock(tty, 0) < 0)
2517 return -EINTR;
2518 retval = tty->ops->break_ctl(tty, -1);
2519 if (retval)
2520 goto out;
2521 if (!signal_pending(current))
2522 msleep_interruptible(duration);
2523 retval = tty->ops->break_ctl(tty, 0);
2524out:
2525 tty_write_unlock(tty);
2526 if (signal_pending(current))
2527 retval = -EINTR;
2528 }
2529 return retval;
2530}
2531
2532/**
2533 * tty_tiocmget - get modem status
2534 * @tty: tty device
2535 * @file: user file pointer
2536 * @p: pointer to result
2537 *
2538 * Obtain the modem status bits from the tty driver if the feature
2539 * is supported. Return -EINVAL if it is not available.
2540 *
2541 * Locking: none (up to the driver)
2542 */
2543
2544static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2545{
2546 int retval = -EINVAL;
2547
2548 if (tty->ops->tiocmget) {
2549 retval = tty->ops->tiocmget(tty);
2550
2551 if (retval >= 0)
2552 retval = put_user(retval, p);
2553 }
2554 return retval;
2555}
2556
2557/**
2558 * tty_tiocmset - set modem status
2559 * @tty: tty device
2560 * @cmd: command - clear bits, set bits or set all
2561 * @p: pointer to desired bits
2562 *
2563 * Set the modem status bits from the tty driver if the feature
2564 * is supported. Return -EINVAL if it is not available.
2565 *
2566 * Locking: none (up to the driver)
2567 */
2568
2569static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2570 unsigned __user *p)
2571{
2572 int retval;
2573 unsigned int set, clear, val;
2574
2575 if (tty->ops->tiocmset == NULL)
2576 return -EINVAL;
2577
2578 retval = get_user(val, p);
2579 if (retval)
2580 return retval;
2581 set = clear = 0;
2582 switch (cmd) {
2583 case TIOCMBIS:
2584 set = val;
2585 break;
2586 case TIOCMBIC:
2587 clear = val;
2588 break;
2589 case TIOCMSET:
2590 set = val;
2591 clear = ~val;
2592 break;
2593 }
2594 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2595 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2596 return tty->ops->tiocmset(tty, set, clear);
2597}
2598
2599static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2600{
2601 int retval = -EINVAL;
2602 struct serial_icounter_struct icount;
2603 memset(&icount, 0, sizeof(icount));
2604 if (tty->ops->get_icount)
2605 retval = tty->ops->get_icount(tty, &icount);
2606 if (retval != 0)
2607 return retval;
2608 if (copy_to_user(arg, &icount, sizeof(icount)))
2609 return -EFAULT;
2610 return 0;
2611}
2612
2613struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2614{
2615 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2616 tty->driver->subtype == PTY_TYPE_MASTER)
2617 tty = tty->link;
2618 return tty;
2619}
2620EXPORT_SYMBOL(tty_pair_get_tty);
2621
2622struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2623{
2624 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2625 tty->driver->subtype == PTY_TYPE_MASTER)
2626 return tty;
2627 return tty->link;
2628}
2629EXPORT_SYMBOL(tty_pair_get_pty);
2630
2631/*
2632 * Split this up, as gcc can choke on it otherwise..
2633 */
2634long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2635{
2636 struct tty_struct *tty = file_tty(file);
2637 struct tty_struct *real_tty;
2638 void __user *p = (void __user *)arg;
2639 int retval;
2640 struct tty_ldisc *ld;
2641 struct inode *inode = file->f_dentry->d_inode;
2642
2643 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2644 return -EINVAL;
2645
2646 real_tty = tty_pair_get_tty(tty);
2647
2648 /*
2649 * Factor out some common prep work
2650 */
2651 switch (cmd) {
2652 case TIOCSETD:
2653 case TIOCSBRK:
2654 case TIOCCBRK:
2655 case TCSBRK:
2656 case TCSBRKP:
2657 retval = tty_check_change(tty);
2658 if (retval)
2659 return retval;
2660 if (cmd != TIOCCBRK) {
2661 tty_wait_until_sent(tty, 0);
2662 if (signal_pending(current))
2663 return -EINTR;
2664 }
2665 break;
2666 }
2667
2668 /*
2669 * Now do the stuff.
2670 */
2671 switch (cmd) {
2672 case TIOCSTI:
2673 return tiocsti(tty, p);
2674 case TIOCGWINSZ:
2675 return tiocgwinsz(real_tty, p);
2676 case TIOCSWINSZ:
2677 return tiocswinsz(real_tty, p);
2678 case TIOCCONS:
2679 return real_tty != tty ? -EINVAL : tioccons(file);
2680 case FIONBIO:
2681 return fionbio(file, p);
2682 case TIOCEXCL:
2683 set_bit(TTY_EXCLUSIVE, &tty->flags);
2684 return 0;
2685 case TIOCNXCL:
2686 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2687 return 0;
2688 case TIOCNOTTY:
2689 if (current->signal->tty != tty)
2690 return -ENOTTY;
2691 no_tty();
2692 return 0;
2693 case TIOCSCTTY:
2694 return tiocsctty(tty, arg);
2695 case TIOCGPGRP:
2696 return tiocgpgrp(tty, real_tty, p);
2697 case TIOCSPGRP:
2698 return tiocspgrp(tty, real_tty, p);
2699 case TIOCGSID:
2700 return tiocgsid(tty, real_tty, p);
2701 case TIOCGETD:
2702 return put_user(tty->ldisc->ops->num, (int __user *)p);
2703 case TIOCSETD:
2704 return tiocsetd(tty, p);
2705 case TIOCVHANGUP:
2706 if (!capable(CAP_SYS_ADMIN))
2707 return -EPERM;
2708 tty_vhangup(tty);
2709 return 0;
2710 case TIOCGDEV:
2711 {
2712 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2713 return put_user(ret, (unsigned int __user *)p);
2714 }
2715 /*
2716 * Break handling
2717 */
2718 case TIOCSBRK: /* Turn break on, unconditionally */
2719 if (tty->ops->break_ctl)
2720 return tty->ops->break_ctl(tty, -1);
2721 return 0;
2722 case TIOCCBRK: /* Turn break off, unconditionally */
2723 if (tty->ops->break_ctl)
2724 return tty->ops->break_ctl(tty, 0);
2725 return 0;
2726 case TCSBRK: /* SVID version: non-zero arg --> no break */
2727 /* non-zero arg means wait for all output data
2728 * to be sent (performed above) but don't send break.
2729 * This is used by the tcdrain() termios function.
2730 */
2731 if (!arg)
2732 return send_break(tty, 250);
2733 return 0;
2734 case TCSBRKP: /* support for POSIX tcsendbreak() */
2735 return send_break(tty, arg ? arg*100 : 250);
2736
2737 case TIOCMGET:
2738 return tty_tiocmget(tty, p);
2739 case TIOCMSET:
2740 case TIOCMBIC:
2741 case TIOCMBIS:
2742 return tty_tiocmset(tty, cmd, p);
2743 case TIOCGICOUNT:
2744 retval = tty_tiocgicount(tty, p);
2745 /* For the moment allow fall through to the old method */
2746 if (retval != -EINVAL)
2747 return retval;
2748 break;
2749 case TCFLSH:
2750 switch (arg) {
2751 case TCIFLUSH:
2752 case TCIOFLUSH:
2753 /* flush tty buffer and allow ldisc to process ioctl */
2754 tty_buffer_flush(tty);
2755 break;
2756 }
2757 break;
2758 }
2759 if (tty->ops->ioctl) {
2760 retval = (tty->ops->ioctl)(tty, cmd, arg);
2761 if (retval != -ENOIOCTLCMD)
2762 return retval;
2763 }
2764 ld = tty_ldisc_ref_wait(tty);
2765 retval = -EINVAL;
2766 if (ld->ops->ioctl) {
2767 retval = ld->ops->ioctl(tty, file, cmd, arg);
2768 if (retval == -ENOIOCTLCMD)
2769 retval = -ENOTTY;
2770 }
2771 tty_ldisc_deref(ld);
2772 return retval;
2773}
2774
2775#ifdef CONFIG_COMPAT
2776static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2777 unsigned long arg)
2778{
2779 struct inode *inode = file->f_dentry->d_inode;
2780 struct tty_struct *tty = file_tty(file);
2781 struct tty_ldisc *ld;
2782 int retval = -ENOIOCTLCMD;
2783
2784 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2785 return -EINVAL;
2786
2787 if (tty->ops->compat_ioctl) {
2788 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2789 if (retval != -ENOIOCTLCMD)
2790 return retval;
2791 }
2792
2793 ld = tty_ldisc_ref_wait(tty);
2794 if (ld->ops->compat_ioctl)
2795 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2796 else
2797 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2798 tty_ldisc_deref(ld);
2799
2800 return retval;
2801}
2802#endif
2803
2804static int this_tty(const void *t, struct file *file, unsigned fd)
2805{
2806 if (likely(file->f_op->read != tty_read))
2807 return 0;
2808 return file_tty(file) != t ? 0 : fd + 1;
2809}
2810
2811/*
2812 * This implements the "Secure Attention Key" --- the idea is to
2813 * prevent trojan horses by killing all processes associated with this
2814 * tty when the user hits the "Secure Attention Key". Required for
2815 * super-paranoid applications --- see the Orange Book for more details.
2816 *
2817 * This code could be nicer; ideally it should send a HUP, wait a few
2818 * seconds, then send a INT, and then a KILL signal. But you then
2819 * have to coordinate with the init process, since all processes associated
2820 * with the current tty must be dead before the new getty is allowed
2821 * to spawn.
2822 *
2823 * Now, if it would be correct ;-/ The current code has a nasty hole -
2824 * it doesn't catch files in flight. We may send the descriptor to ourselves
2825 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2826 *
2827 * Nasty bug: do_SAK is being called in interrupt context. This can
2828 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2829 */
2830void __do_SAK(struct tty_struct *tty)
2831{
2832#ifdef TTY_SOFT_SAK
2833 tty_hangup(tty);
2834#else
2835 struct task_struct *g, *p;
2836 struct pid *session;
2837 int i;
2838
2839 if (!tty)
2840 return;
2841 session = tty->session;
2842
2843 tty_ldisc_flush(tty);
2844
2845 tty_driver_flush_buffer(tty);
2846
2847 read_lock(&tasklist_lock);
2848 /* Kill the entire session */
2849 do_each_pid_task(session, PIDTYPE_SID, p) {
2850 printk(KERN_NOTICE "SAK: killed process %d"
2851 " (%s): task_session(p)==tty->session\n",
2852 task_pid_nr(p), p->comm);
2853 send_sig(SIGKILL, p, 1);
2854 } while_each_pid_task(session, PIDTYPE_SID, p);
2855 /* Now kill any processes that happen to have the
2856 * tty open.
2857 */
2858 do_each_thread(g, p) {
2859 if (p->signal->tty == tty) {
2860 printk(KERN_NOTICE "SAK: killed process %d"
2861 " (%s): task_session(p)==tty->session\n",
2862 task_pid_nr(p), p->comm);
2863 send_sig(SIGKILL, p, 1);
2864 continue;
2865 }
2866 task_lock(p);
2867 i = iterate_fd(p->files, 0, this_tty, tty);
2868 if (i != 0) {
2869 printk(KERN_NOTICE "SAK: killed process %d"
2870 " (%s): fd#%d opened to the tty\n",
2871 task_pid_nr(p), p->comm, i - 1);
2872 force_sig(SIGKILL, p);
2873 }
2874 task_unlock(p);
2875 } while_each_thread(g, p);
2876 read_unlock(&tasklist_lock);
2877#endif
2878}
2879
2880static void do_SAK_work(struct work_struct *work)
2881{
2882 struct tty_struct *tty =
2883 container_of(work, struct tty_struct, SAK_work);
2884 __do_SAK(tty);
2885}
2886
2887/*
2888 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2889 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2890 * the values which we write to it will be identical to the values which it
2891 * already has. --akpm
2892 */
2893void do_SAK(struct tty_struct *tty)
2894{
2895 if (!tty)
2896 return;
2897 schedule_work(&tty->SAK_work);
2898}
2899
2900EXPORT_SYMBOL(do_SAK);
2901
2902static int dev_match_devt(struct device *dev, void *data)
2903{
2904 dev_t *devt = data;
2905 return dev->devt == *devt;
2906}
2907
2908/* Must put_device() after it's unused! */
2909static struct device *tty_get_device(struct tty_struct *tty)
2910{
2911 dev_t devt = tty_devnum(tty);
2912 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2913}
2914
2915
2916/**
2917 * initialize_tty_struct
2918 * @tty: tty to initialize
2919 *
2920 * This subroutine initializes a tty structure that has been newly
2921 * allocated.
2922 *
2923 * Locking: none - tty in question must not be exposed at this point
2924 */
2925
2926void initialize_tty_struct(struct tty_struct *tty,
2927 struct tty_driver *driver, int idx)
2928{
2929 memset(tty, 0, sizeof(struct tty_struct));
2930 kref_init(&tty->kref);
2931 tty->magic = TTY_MAGIC;
2932 tty_ldisc_init(tty);
2933 tty->session = NULL;
2934 tty->pgrp = NULL;
2935 tty_buffer_init(tty);
2936 mutex_init(&tty->legacy_mutex);
2937 mutex_init(&tty->termios_mutex);
2938 mutex_init(&tty->ldisc_mutex);
2939 init_waitqueue_head(&tty->write_wait);
2940 init_waitqueue_head(&tty->read_wait);
2941 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2942 mutex_init(&tty->atomic_write_lock);
2943 spin_lock_init(&tty->ctrl_lock);
2944 INIT_LIST_HEAD(&tty->tty_files);
2945 INIT_WORK(&tty->SAK_work, do_SAK_work);
2946
2947 tty->driver = driver;
2948 tty->ops = driver->ops;
2949 tty->index = idx;
2950 tty_line_name(driver, idx, tty->name);
2951 tty->dev = tty_get_device(tty);
2952}
2953
2954/**
2955 * deinitialize_tty_struct
2956 * @tty: tty to deinitialize
2957 *
2958 * This subroutine deinitializes a tty structure that has been newly
2959 * allocated but tty_release cannot be called on that yet.
2960 *
2961 * Locking: none - tty in question must not be exposed at this point
2962 */
2963void deinitialize_tty_struct(struct tty_struct *tty)
2964{
2965 tty_ldisc_deinit(tty);
2966}
2967
2968/**
2969 * tty_put_char - write one character to a tty
2970 * @tty: tty
2971 * @ch: character
2972 *
2973 * Write one byte to the tty using the provided put_char method
2974 * if present. Returns the number of characters successfully output.
2975 *
2976 * Note: the specific put_char operation in the driver layer may go
2977 * away soon. Don't call it directly, use this method
2978 */
2979
2980int tty_put_char(struct tty_struct *tty, unsigned char ch)
2981{
2982 if (tty->ops->put_char)
2983 return tty->ops->put_char(tty, ch);
2984 return tty->ops->write(tty, &ch, 1);
2985}
2986EXPORT_SYMBOL_GPL(tty_put_char);
2987
2988struct class *tty_class;
2989
2990static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
2991 unsigned int index, unsigned int count)
2992{
2993 /* init here, since reused cdevs cause crashes */
2994 cdev_init(&driver->cdevs[index], &tty_fops);
2995 driver->cdevs[index].owner = driver->owner;
2996 return cdev_add(&driver->cdevs[index], dev, count);
2997}
2998
2999/**
3000 * tty_register_device - register a tty device
3001 * @driver: the tty driver that describes the tty device
3002 * @index: the index in the tty driver for this tty device
3003 * @device: a struct device that is associated with this tty device.
3004 * This field is optional, if there is no known struct device
3005 * for this tty device it can be set to NULL safely.
3006 *
3007 * Returns a pointer to the struct device for this tty device
3008 * (or ERR_PTR(-EFOO) on error).
3009 *
3010 * This call is required to be made to register an individual tty device
3011 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3012 * that bit is not set, this function should not be called by a tty
3013 * driver.
3014 *
3015 * Locking: ??
3016 */
3017
3018struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3019 struct device *device)
3020{
3021 return tty_register_device_attr(driver, index, device, NULL, NULL);
3022}
3023EXPORT_SYMBOL(tty_register_device);
3024
3025static void tty_device_create_release(struct device *dev)
3026{
3027 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3028 kfree(dev);
3029}
3030
3031/**
3032 * tty_register_device_attr - register a tty device
3033 * @driver: the tty driver that describes the tty device
3034 * @index: the index in the tty driver for this tty device
3035 * @device: a struct device that is associated with this tty device.
3036 * This field is optional, if there is no known struct device
3037 * for this tty device it can be set to NULL safely.
3038 * @drvdata: Driver data to be set to device.
3039 * @attr_grp: Attribute group to be set on device.
3040 *
3041 * Returns a pointer to the struct device for this tty device
3042 * (or ERR_PTR(-EFOO) on error).
3043 *
3044 * This call is required to be made to register an individual tty device
3045 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3046 * that bit is not set, this function should not be called by a tty
3047 * driver.
3048 *
3049 * Locking: ??
3050 */
3051struct device *tty_register_device_attr(struct tty_driver *driver,
3052 unsigned index, struct device *device,
3053 void *drvdata,
3054 const struct attribute_group **attr_grp)
3055{
3056 char name[64];
3057 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3058 struct device *dev = NULL;
3059 int retval = -ENODEV;
3060 bool cdev = false;
3061
3062 if (index >= driver->num) {
3063 printk(KERN_ERR "Attempt to register invalid tty line number "
3064 " (%d).\n", index);
3065 return ERR_PTR(-EINVAL);
3066 }
3067
3068 if (driver->type == TTY_DRIVER_TYPE_PTY)
3069 pty_line_name(driver, index, name);
3070 else
3071 tty_line_name(driver, index, name);
3072
3073 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3074 retval = tty_cdev_add(driver, devt, index, 1);
3075 if (retval)
3076 goto error;
3077 cdev = true;
3078 }
3079
3080 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3081 if (!dev) {
3082 retval = -ENOMEM;
3083 goto error;
3084 }
3085
3086 dev->devt = devt;
3087 dev->class = tty_class;
3088 dev->parent = device;
3089 dev->release = tty_device_create_release;
3090 dev_set_name(dev, "%s", name);
3091 dev->groups = attr_grp;
3092 dev_set_drvdata(dev, drvdata);
3093
3094 retval = device_register(dev);
3095 if (retval)
3096 goto error;
3097
3098 return dev;
3099
3100error:
3101 put_device(dev);
3102 if (cdev)
3103 cdev_del(&driver->cdevs[index]);
3104 return ERR_PTR(retval);
3105}
3106EXPORT_SYMBOL_GPL(tty_register_device_attr);
3107
3108/**
3109 * tty_unregister_device - unregister a tty device
3110 * @driver: the tty driver that describes the tty device
3111 * @index: the index in the tty driver for this tty device
3112 *
3113 * If a tty device is registered with a call to tty_register_device() then
3114 * this function must be called when the tty device is gone.
3115 *
3116 * Locking: ??
3117 */
3118
3119void tty_unregister_device(struct tty_driver *driver, unsigned index)
3120{
3121 device_destroy(tty_class,
3122 MKDEV(driver->major, driver->minor_start) + index);
3123 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3124 cdev_del(&driver->cdevs[index]);
3125}
3126EXPORT_SYMBOL(tty_unregister_device);
3127
3128/**
3129 * __tty_alloc_driver -- allocate tty driver
3130 * @lines: count of lines this driver can handle at most
3131 * @owner: module which is repsonsible for this driver
3132 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3133 *
3134 * This should not be called directly, some of the provided macros should be
3135 * used instead. Use IS_ERR and friends on @retval.
3136 */
3137struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3138 unsigned long flags)
3139{
3140 struct tty_driver *driver;
3141 unsigned int cdevs = 1;
3142 int err;
3143
3144 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3145 return ERR_PTR(-EINVAL);
3146
3147 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3148 if (!driver)
3149 return ERR_PTR(-ENOMEM);
3150
3151 kref_init(&driver->kref);
3152 driver->magic = TTY_DRIVER_MAGIC;
3153 driver->num = lines;
3154 driver->owner = owner;
3155 driver->flags = flags;
3156
3157 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3158 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3159 GFP_KERNEL);
3160 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3161 GFP_KERNEL);
3162 if (!driver->ttys || !driver->termios) {
3163 err = -ENOMEM;
3164 goto err_free_all;
3165 }
3166 }
3167
3168 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3169 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3170 GFP_KERNEL);
3171 if (!driver->ports) {
3172 err = -ENOMEM;
3173 goto err_free_all;
3174 }
3175 cdevs = lines;
3176 }
3177
3178 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3179 if (!driver->cdevs) {
3180 err = -ENOMEM;
3181 goto err_free_all;
3182 }
3183
3184 return driver;
3185err_free_all:
3186 kfree(driver->ports);
3187 kfree(driver->ttys);
3188 kfree(driver->termios);
3189 kfree(driver);
3190 return ERR_PTR(err);
3191}
3192EXPORT_SYMBOL(__tty_alloc_driver);
3193
3194static void destruct_tty_driver(struct kref *kref)
3195{
3196 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3197 int i;
3198 struct ktermios *tp;
3199
3200 if (driver->flags & TTY_DRIVER_INSTALLED) {
3201 /*
3202 * Free the termios and termios_locked structures because
3203 * we don't want to get memory leaks when modular tty
3204 * drivers are removed from the kernel.
3205 */
3206 for (i = 0; i < driver->num; i++) {
3207 tp = driver->termios[i];
3208 if (tp) {
3209 driver->termios[i] = NULL;
3210 kfree(tp);
3211 }
3212 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3213 tty_unregister_device(driver, i);
3214 }
3215 proc_tty_unregister_driver(driver);
3216 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3217 cdev_del(&driver->cdevs[0]);
3218 }
3219 kfree(driver->cdevs);
3220 kfree(driver->ports);
3221 kfree(driver->termios);
3222 kfree(driver->ttys);
3223 kfree(driver);
3224}
3225
3226void tty_driver_kref_put(struct tty_driver *driver)
3227{
3228 kref_put(&driver->kref, destruct_tty_driver);
3229}
3230EXPORT_SYMBOL(tty_driver_kref_put);
3231
3232void tty_set_operations(struct tty_driver *driver,
3233 const struct tty_operations *op)
3234{
3235 driver->ops = op;
3236};
3237EXPORT_SYMBOL(tty_set_operations);
3238
3239void put_tty_driver(struct tty_driver *d)
3240{
3241 tty_driver_kref_put(d);
3242}
3243EXPORT_SYMBOL(put_tty_driver);
3244
3245/*
3246 * Called by a tty driver to register itself.
3247 */
3248int tty_register_driver(struct tty_driver *driver)
3249{
3250 int error;
3251 int i;
3252 dev_t dev;
3253 struct device *d;
3254
3255 if (!driver->major) {
3256 error = alloc_chrdev_region(&dev, driver->minor_start,
3257 driver->num, driver->name);
3258 if (!error) {
3259 driver->major = MAJOR(dev);
3260 driver->minor_start = MINOR(dev);
3261 }
3262 } else {
3263 dev = MKDEV(driver->major, driver->minor_start);
3264 error = register_chrdev_region(dev, driver->num, driver->name);
3265 }
3266 if (error < 0)
3267 goto err;
3268
3269 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3270 error = tty_cdev_add(driver, dev, 0, driver->num);
3271 if (error)
3272 goto err_unreg_char;
3273 }
3274
3275 mutex_lock(&tty_mutex);
3276 list_add(&driver->tty_drivers, &tty_drivers);
3277 mutex_unlock(&tty_mutex);
3278
3279 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3280 for (i = 0; i < driver->num; i++) {
3281 d = tty_register_device(driver, i, NULL);
3282 if (IS_ERR(d)) {
3283 error = PTR_ERR(d);
3284 goto err_unreg_devs;
3285 }
3286 }
3287 }
3288 proc_tty_register_driver(driver);
3289 driver->flags |= TTY_DRIVER_INSTALLED;
3290 return 0;
3291
3292err_unreg_devs:
3293 for (i--; i >= 0; i--)
3294 tty_unregister_device(driver, i);
3295
3296 mutex_lock(&tty_mutex);
3297 list_del(&driver->tty_drivers);
3298 mutex_unlock(&tty_mutex);
3299
3300err_unreg_char:
3301 unregister_chrdev_region(dev, driver->num);
3302err:
3303 return error;
3304}
3305EXPORT_SYMBOL(tty_register_driver);
3306
3307/*
3308 * Called by a tty driver to unregister itself.
3309 */
3310int tty_unregister_driver(struct tty_driver *driver)
3311{
3312#if 0
3313 /* FIXME */
3314 if (driver->refcount)
3315 return -EBUSY;
3316#endif
3317 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3318 driver->num);
3319 mutex_lock(&tty_mutex);
3320 list_del(&driver->tty_drivers);
3321 mutex_unlock(&tty_mutex);
3322 return 0;
3323}
3324
3325EXPORT_SYMBOL(tty_unregister_driver);
3326
3327dev_t tty_devnum(struct tty_struct *tty)
3328{
3329 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3330}
3331EXPORT_SYMBOL(tty_devnum);
3332
3333void proc_clear_tty(struct task_struct *p)
3334{
3335 unsigned long flags;
3336 struct tty_struct *tty;
3337 spin_lock_irqsave(&p->sighand->siglock, flags);
3338 tty = p->signal->tty;
3339 p->signal->tty = NULL;
3340 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3341 tty_kref_put(tty);
3342}
3343
3344/* Called under the sighand lock */
3345
3346static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3347{
3348 if (tty) {
3349 unsigned long flags;
3350 /* We should not have a session or pgrp to put here but.... */
3351 spin_lock_irqsave(&tty->ctrl_lock, flags);
3352 put_pid(tty->session);
3353 put_pid(tty->pgrp);
3354 tty->pgrp = get_pid(task_pgrp(tsk));
3355 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3356 tty->session = get_pid(task_session(tsk));
3357 if (tsk->signal->tty) {
3358 printk(KERN_DEBUG "tty not NULL!!\n");
3359 tty_kref_put(tsk->signal->tty);
3360 }
3361 }
3362 put_pid(tsk->signal->tty_old_pgrp);
3363 tsk->signal->tty = tty_kref_get(tty);
3364 tsk->signal->tty_old_pgrp = NULL;
3365}
3366
3367static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3368{
3369 spin_lock_irq(&tsk->sighand->siglock);
3370 __proc_set_tty(tsk, tty);
3371 spin_unlock_irq(&tsk->sighand->siglock);
3372}
3373
3374struct tty_struct *get_current_tty(void)
3375{
3376 struct tty_struct *tty;
3377 unsigned long flags;
3378
3379 spin_lock_irqsave(&current->sighand->siglock, flags);
3380 tty = tty_kref_get(current->signal->tty);
3381 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3382 return tty;
3383}
3384EXPORT_SYMBOL_GPL(get_current_tty);
3385
3386void tty_default_fops(struct file_operations *fops)
3387{
3388 *fops = tty_fops;
3389}
3390
3391/*
3392 * Initialize the console device. This is called *early*, so
3393 * we can't necessarily depend on lots of kernel help here.
3394 * Just do some early initializations, and do the complex setup
3395 * later.
3396 */
3397void __init console_init(void)
3398{
3399 initcall_t *call;
3400
3401 /* Setup the default TTY line discipline. */
3402 tty_ldisc_begin();
3403
3404 /*
3405 * set up the console device so that later boot sequences can
3406 * inform about problems etc..
3407 */
3408 call = __con_initcall_start;
3409 while (call < __con_initcall_end) {
3410 (*call)();
3411 call++;
3412 }
3413}
3414
3415static char *tty_devnode(struct device *dev, umode_t *mode)
3416{
3417 if (!mode)
3418 return NULL;
3419 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3420 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3421 *mode = 0666;
3422 return NULL;
3423}
3424
3425static int __init tty_class_init(void)
3426{
3427 tty_class = class_create(THIS_MODULE, "tty");
3428 if (IS_ERR(tty_class))
3429 return PTR_ERR(tty_class);
3430 tty_class->devnode = tty_devnode;
3431 return 0;
3432}
3433
3434postcore_initcall(tty_class_init);
3435
3436/* 3/2004 jmc: why do these devices exist? */
3437static struct cdev tty_cdev, console_cdev;
3438
3439static ssize_t show_cons_active(struct device *dev,
3440 struct device_attribute *attr, char *buf)
3441{
3442 struct console *cs[16];
3443 int i = 0;
3444 struct console *c;
3445 ssize_t count = 0;
3446
3447 console_lock();
3448 for_each_console(c) {
3449 if (!c->device)
3450 continue;
3451 if (!c->write)
3452 continue;
3453 if ((c->flags & CON_ENABLED) == 0)
3454 continue;
3455 cs[i++] = c;
3456 if (i >= ARRAY_SIZE(cs))
3457 break;
3458 }
3459 while (i--)
3460 count += sprintf(buf + count, "%s%d%c",
3461 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3462 console_unlock();
3463
3464 return count;
3465}
3466static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3467
3468static struct device *consdev;
3469
3470void console_sysfs_notify(void)
3471{
3472 if (consdev)
3473 sysfs_notify(&consdev->kobj, NULL, "active");
3474}
3475
3476/*
3477 * Ok, now we can initialize the rest of the tty devices and can count
3478 * on memory allocations, interrupts etc..
3479 */
3480int __init tty_init(void)
3481{
3482 cdev_init(&tty_cdev, &tty_fops);
3483 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3484 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3485 panic("Couldn't register /dev/tty driver\n");
3486 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3487
3488 cdev_init(&console_cdev, &console_fops);
3489 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3490 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3491 panic("Couldn't register /dev/console driver\n");
3492 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3493 "console");
3494 if (IS_ERR(consdev))
3495 consdev = NULL;
3496 else
3497 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3498
3499#ifdef CONFIG_VT
3500 vty_init(&console_fops);
3501#endif
3502 return 0;
3503}
3504