tty: Combine SIGTTOU/SIGTTIN handling
[linux-2.6-block.git] / drivers / tty / tty_io.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 */
4
5/*
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
8 *
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10 *
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
16 *
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
21 *
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
25 *
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
28 * -- TYT, 1/31/92
29 *
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33 *
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36 *
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
39 *
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
42 *
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
45 *
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49 *
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
52 *
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55 *
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58 *
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
61 *
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65 */
66
67#include <linux/types.h>
68#include <linux/major.h>
69#include <linux/errno.h>
70#include <linux/signal.h>
71#include <linux/fcntl.h>
72#include <linux/sched.h>
73#include <linux/interrupt.h>
74#include <linux/tty.h>
75#include <linux/tty_driver.h>
76#include <linux/tty_flip.h>
77#include <linux/devpts_fs.h>
78#include <linux/file.h>
79#include <linux/fdtable.h>
80#include <linux/console.h>
81#include <linux/timer.h>
82#include <linux/ctype.h>
83#include <linux/kd.h>
84#include <linux/mm.h>
85#include <linux/string.h>
86#include <linux/slab.h>
87#include <linux/poll.h>
88#include <linux/proc_fs.h>
89#include <linux/init.h>
90#include <linux/module.h>
91#include <linux/device.h>
92#include <linux/wait.h>
93#include <linux/bitops.h>
94#include <linux/delay.h>
95#include <linux/seq_file.h>
96#include <linux/serial.h>
97#include <linux/ratelimit.h>
98
99#include <linux/uaccess.h>
100
101#include <linux/kbd_kern.h>
102#include <linux/vt_kern.h>
103#include <linux/selection.h>
104
105#include <linux/kmod.h>
106#include <linux/nsproxy.h>
107
108#undef TTY_DEBUG_HANGUP
109#ifdef TTY_DEBUG_HANGUP
110# define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args)
111#else
112# define tty_debug_hangup(tty, f, args...) do { } while (0)
113#endif
114
115#define TTY_PARANOIA_CHECK 1
116#define CHECK_TTY_COUNT 1
117
118struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
119 .c_iflag = ICRNL | IXON,
120 .c_oflag = OPOST | ONLCR,
121 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
122 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
123 ECHOCTL | ECHOKE | IEXTEN,
124 .c_cc = INIT_C_CC,
125 .c_ispeed = 38400,
126 .c_ospeed = 38400
127};
128
129EXPORT_SYMBOL(tty_std_termios);
130
131/* This list gets poked at by procfs and various bits of boot up code. This
132 could do with some rationalisation such as pulling the tty proc function
133 into this file */
134
135LIST_HEAD(tty_drivers); /* linked list of tty drivers */
136
137/* Mutex to protect creating and releasing a tty. This is shared with
138 vt.c for deeply disgusting hack reasons */
139DEFINE_MUTEX(tty_mutex);
140EXPORT_SYMBOL(tty_mutex);
141
142/* Spinlock to protect the tty->tty_files list */
143DEFINE_SPINLOCK(tty_files_lock);
144
145static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
146static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
147ssize_t redirected_tty_write(struct file *, const char __user *,
148 size_t, loff_t *);
149static unsigned int tty_poll(struct file *, poll_table *);
150static int tty_open(struct inode *, struct file *);
151long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
152#ifdef CONFIG_COMPAT
153static long tty_compat_ioctl(struct file *file, unsigned int cmd,
154 unsigned long arg);
155#else
156#define tty_compat_ioctl NULL
157#endif
158static int __tty_fasync(int fd, struct file *filp, int on);
159static int tty_fasync(int fd, struct file *filp, int on);
160static void release_tty(struct tty_struct *tty, int idx);
161
162/**
163 * free_tty_struct - free a disused tty
164 * @tty: tty struct to free
165 *
166 * Free the write buffers, tty queue and tty memory itself.
167 *
168 * Locking: none. Must be called after tty is definitely unused
169 */
170
171void free_tty_struct(struct tty_struct *tty)
172{
173 if (!tty)
174 return;
175 put_device(tty->dev);
176 kfree(tty->write_buf);
177 tty->magic = 0xDEADDEAD;
178 kfree(tty);
179}
180
181static inline struct tty_struct *file_tty(struct file *file)
182{
183 return ((struct tty_file_private *)file->private_data)->tty;
184}
185
186int tty_alloc_file(struct file *file)
187{
188 struct tty_file_private *priv;
189
190 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
191 if (!priv)
192 return -ENOMEM;
193
194 file->private_data = priv;
195
196 return 0;
197}
198
199/* Associate a new file with the tty structure */
200void tty_add_file(struct tty_struct *tty, struct file *file)
201{
202 struct tty_file_private *priv = file->private_data;
203
204 priv->tty = tty;
205 priv->file = file;
206
207 spin_lock(&tty_files_lock);
208 list_add(&priv->list, &tty->tty_files);
209 spin_unlock(&tty_files_lock);
210}
211
212/**
213 * tty_free_file - free file->private_data
214 *
215 * This shall be used only for fail path handling when tty_add_file was not
216 * called yet.
217 */
218void tty_free_file(struct file *file)
219{
220 struct tty_file_private *priv = file->private_data;
221
222 file->private_data = NULL;
223 kfree(priv);
224}
225
226/* Delete file from its tty */
227static void tty_del_file(struct file *file)
228{
229 struct tty_file_private *priv = file->private_data;
230
231 spin_lock(&tty_files_lock);
232 list_del(&priv->list);
233 spin_unlock(&tty_files_lock);
234 tty_free_file(file);
235}
236
237
238#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
239
240/**
241 * tty_name - return tty naming
242 * @tty: tty structure
243 *
244 * Convert a tty structure into a name. The name reflects the kernel
245 * naming policy and if udev is in use may not reflect user space
246 *
247 * Locking: none
248 */
249
250const char *tty_name(const struct tty_struct *tty)
251{
252 if (!tty) /* Hmm. NULL pointer. That's fun. */
253 return "NULL tty";
254 return tty->name;
255}
256
257EXPORT_SYMBOL(tty_name);
258
259int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
260 const char *routine)
261{
262#ifdef TTY_PARANOIA_CHECK
263 if (!tty) {
264 printk(KERN_WARNING
265 "null TTY for (%d:%d) in %s\n",
266 imajor(inode), iminor(inode), routine);
267 return 1;
268 }
269 if (tty->magic != TTY_MAGIC) {
270 printk(KERN_WARNING
271 "bad magic number for tty struct (%d:%d) in %s\n",
272 imajor(inode), iminor(inode), routine);
273 return 1;
274 }
275#endif
276 return 0;
277}
278
279/* Caller must hold tty_lock */
280static int check_tty_count(struct tty_struct *tty, const char *routine)
281{
282#ifdef CHECK_TTY_COUNT
283 struct list_head *p;
284 int count = 0;
285
286 spin_lock(&tty_files_lock);
287 list_for_each(p, &tty->tty_files) {
288 count++;
289 }
290 spin_unlock(&tty_files_lock);
291 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
292 tty->driver->subtype == PTY_TYPE_SLAVE &&
293 tty->link && tty->link->count)
294 count++;
295 if (tty->count != count) {
296 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
297 "!= #fd's(%d) in %s\n",
298 tty->name, tty->count, count, routine);
299 return count;
300 }
301#endif
302 return 0;
303}
304
305/**
306 * get_tty_driver - find device of a tty
307 * @dev_t: device identifier
308 * @index: returns the index of the tty
309 *
310 * This routine returns a tty driver structure, given a device number
311 * and also passes back the index number.
312 *
313 * Locking: caller must hold tty_mutex
314 */
315
316static struct tty_driver *get_tty_driver(dev_t device, int *index)
317{
318 struct tty_driver *p;
319
320 list_for_each_entry(p, &tty_drivers, tty_drivers) {
321 dev_t base = MKDEV(p->major, p->minor_start);
322 if (device < base || device >= base + p->num)
323 continue;
324 *index = device - base;
325 return tty_driver_kref_get(p);
326 }
327 return NULL;
328}
329
330#ifdef CONFIG_CONSOLE_POLL
331
332/**
333 * tty_find_polling_driver - find device of a polled tty
334 * @name: name string to match
335 * @line: pointer to resulting tty line nr
336 *
337 * This routine returns a tty driver structure, given a name
338 * and the condition that the tty driver is capable of polled
339 * operation.
340 */
341struct tty_driver *tty_find_polling_driver(char *name, int *line)
342{
343 struct tty_driver *p, *res = NULL;
344 int tty_line = 0;
345 int len;
346 char *str, *stp;
347
348 for (str = name; *str; str++)
349 if ((*str >= '0' && *str <= '9') || *str == ',')
350 break;
351 if (!*str)
352 return NULL;
353
354 len = str - name;
355 tty_line = simple_strtoul(str, &str, 10);
356
357 mutex_lock(&tty_mutex);
358 /* Search through the tty devices to look for a match */
359 list_for_each_entry(p, &tty_drivers, tty_drivers) {
360 if (strncmp(name, p->name, len) != 0)
361 continue;
362 stp = str;
363 if (*stp == ',')
364 stp++;
365 if (*stp == '\0')
366 stp = NULL;
367
368 if (tty_line >= 0 && tty_line < p->num && p->ops &&
369 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
370 res = tty_driver_kref_get(p);
371 *line = tty_line;
372 break;
373 }
374 }
375 mutex_unlock(&tty_mutex);
376
377 return res;
378}
379EXPORT_SYMBOL_GPL(tty_find_polling_driver);
380#endif
381
382/**
383 * tty_check_change - check for POSIX terminal changes
384 * @tty: tty to check
385 *
386 * If we try to write to, or set the state of, a terminal and we're
387 * not in the foreground, send a SIGTTOU. If the signal is blocked or
388 * ignored, go ahead and perform the operation. (POSIX 7.2)
389 *
390 * Locking: ctrl_lock
391 */
392
393int __tty_check_change(struct tty_struct *tty, int sig)
394{
395 unsigned long flags;
396 struct pid *pgrp, *tty_pgrp;
397 int ret = 0;
398
399 if (current->signal->tty != tty)
400 return 0;
401
402 rcu_read_lock();
403 pgrp = task_pgrp(current);
404
405 spin_lock_irqsave(&tty->ctrl_lock, flags);
406 tty_pgrp = tty->pgrp;
407 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
408
409 if (tty_pgrp && pgrp != tty->pgrp) {
410 if (is_ignored(sig)) {
411 if (sig == SIGTTIN)
412 ret = -EIO;
413 } else if (is_current_pgrp_orphaned())
414 ret = -EIO;
415 else {
416 kill_pgrp(pgrp, sig, 1);
417 set_thread_flag(TIF_SIGPENDING);
418 ret = -ERESTARTSYS;
419 }
420 }
421 rcu_read_unlock();
422
423 if (!tty_pgrp) {
424 pr_warn("%s: tty_check_change: sig=%d, tty->pgrp == NULL!\n",
425 tty_name(tty), sig);
426 }
427
428 return ret;
429}
430
431int tty_check_change(struct tty_struct *tty)
432{
433 return __tty_check_change(tty, SIGTTOU);
434}
435EXPORT_SYMBOL(tty_check_change);
436
437static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
438 size_t count, loff_t *ppos)
439{
440 return 0;
441}
442
443static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
444 size_t count, loff_t *ppos)
445{
446 return -EIO;
447}
448
449/* No kernel lock held - none needed ;) */
450static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
451{
452 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
453}
454
455static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
456 unsigned long arg)
457{
458 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
459}
460
461static long hung_up_tty_compat_ioctl(struct file *file,
462 unsigned int cmd, unsigned long arg)
463{
464 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
465}
466
467static const struct file_operations tty_fops = {
468 .llseek = no_llseek,
469 .read = tty_read,
470 .write = tty_write,
471 .poll = tty_poll,
472 .unlocked_ioctl = tty_ioctl,
473 .compat_ioctl = tty_compat_ioctl,
474 .open = tty_open,
475 .release = tty_release,
476 .fasync = tty_fasync,
477};
478
479static const struct file_operations console_fops = {
480 .llseek = no_llseek,
481 .read = tty_read,
482 .write = redirected_tty_write,
483 .poll = tty_poll,
484 .unlocked_ioctl = tty_ioctl,
485 .compat_ioctl = tty_compat_ioctl,
486 .open = tty_open,
487 .release = tty_release,
488 .fasync = tty_fasync,
489};
490
491static const struct file_operations hung_up_tty_fops = {
492 .llseek = no_llseek,
493 .read = hung_up_tty_read,
494 .write = hung_up_tty_write,
495 .poll = hung_up_tty_poll,
496 .unlocked_ioctl = hung_up_tty_ioctl,
497 .compat_ioctl = hung_up_tty_compat_ioctl,
498 .release = tty_release,
499};
500
501static DEFINE_SPINLOCK(redirect_lock);
502static struct file *redirect;
503
504
505void proc_clear_tty(struct task_struct *p)
506{
507 unsigned long flags;
508 struct tty_struct *tty;
509 spin_lock_irqsave(&p->sighand->siglock, flags);
510 tty = p->signal->tty;
511 p->signal->tty = NULL;
512 spin_unlock_irqrestore(&p->sighand->siglock, flags);
513 tty_kref_put(tty);
514}
515
516/**
517 * proc_set_tty - set the controlling terminal
518 *
519 * Only callable by the session leader and only if it does not already have
520 * a controlling terminal.
521 *
522 * Caller must hold: tty_lock()
523 * a readlock on tasklist_lock
524 * sighand lock
525 */
526static void __proc_set_tty(struct tty_struct *tty)
527{
528 unsigned long flags;
529
530 spin_lock_irqsave(&tty->ctrl_lock, flags);
531 /*
532 * The session and fg pgrp references will be non-NULL if
533 * tiocsctty() is stealing the controlling tty
534 */
535 put_pid(tty->session);
536 put_pid(tty->pgrp);
537 tty->pgrp = get_pid(task_pgrp(current));
538 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
539 tty->session = get_pid(task_session(current));
540 if (current->signal->tty) {
541 tty_debug(tty, "current tty %s not NULL!!\n",
542 current->signal->tty->name);
543 tty_kref_put(current->signal->tty);
544 }
545 put_pid(current->signal->tty_old_pgrp);
546 current->signal->tty = tty_kref_get(tty);
547 current->signal->tty_old_pgrp = NULL;
548}
549
550static void proc_set_tty(struct tty_struct *tty)
551{
552 spin_lock_irq(&current->sighand->siglock);
553 __proc_set_tty(tty);
554 spin_unlock_irq(&current->sighand->siglock);
555}
556
557struct tty_struct *get_current_tty(void)
558{
559 struct tty_struct *tty;
560 unsigned long flags;
561
562 spin_lock_irqsave(&current->sighand->siglock, flags);
563 tty = tty_kref_get(current->signal->tty);
564 spin_unlock_irqrestore(&current->sighand->siglock, flags);
565 return tty;
566}
567EXPORT_SYMBOL_GPL(get_current_tty);
568
569static void session_clear_tty(struct pid *session)
570{
571 struct task_struct *p;
572 do_each_pid_task(session, PIDTYPE_SID, p) {
573 proc_clear_tty(p);
574 } while_each_pid_task(session, PIDTYPE_SID, p);
575}
576
577/**
578 * tty_wakeup - request more data
579 * @tty: terminal
580 *
581 * Internal and external helper for wakeups of tty. This function
582 * informs the line discipline if present that the driver is ready
583 * to receive more output data.
584 */
585
586void tty_wakeup(struct tty_struct *tty)
587{
588 struct tty_ldisc *ld;
589
590 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
591 ld = tty_ldisc_ref(tty);
592 if (ld) {
593 if (ld->ops->write_wakeup)
594 ld->ops->write_wakeup(tty);
595 tty_ldisc_deref(ld);
596 }
597 }
598 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
599}
600
601EXPORT_SYMBOL_GPL(tty_wakeup);
602
603/**
604 * tty_signal_session_leader - sends SIGHUP to session leader
605 * @tty controlling tty
606 * @exit_session if non-zero, signal all foreground group processes
607 *
608 * Send SIGHUP and SIGCONT to the session leader and its process group.
609 * Optionally, signal all processes in the foreground process group.
610 *
611 * Returns the number of processes in the session with this tty
612 * as their controlling terminal. This value is used to drop
613 * tty references for those processes.
614 */
615static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
616{
617 struct task_struct *p;
618 int refs = 0;
619 struct pid *tty_pgrp = NULL;
620
621 read_lock(&tasklist_lock);
622 if (tty->session) {
623 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
624 spin_lock_irq(&p->sighand->siglock);
625 if (p->signal->tty == tty) {
626 p->signal->tty = NULL;
627 /* We defer the dereferences outside fo
628 the tasklist lock */
629 refs++;
630 }
631 if (!p->signal->leader) {
632 spin_unlock_irq(&p->sighand->siglock);
633 continue;
634 }
635 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
636 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
637 put_pid(p->signal->tty_old_pgrp); /* A noop */
638 spin_lock(&tty->ctrl_lock);
639 tty_pgrp = get_pid(tty->pgrp);
640 if (tty->pgrp)
641 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
642 spin_unlock(&tty->ctrl_lock);
643 spin_unlock_irq(&p->sighand->siglock);
644 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
645 }
646 read_unlock(&tasklist_lock);
647
648 if (tty_pgrp) {
649 if (exit_session)
650 kill_pgrp(tty_pgrp, SIGHUP, exit_session);
651 put_pid(tty_pgrp);
652 }
653
654 return refs;
655}
656
657/**
658 * __tty_hangup - actual handler for hangup events
659 * @work: tty device
660 *
661 * This can be called by a "kworker" kernel thread. That is process
662 * synchronous but doesn't hold any locks, so we need to make sure we
663 * have the appropriate locks for what we're doing.
664 *
665 * The hangup event clears any pending redirections onto the hung up
666 * device. It ensures future writes will error and it does the needed
667 * line discipline hangup and signal delivery. The tty object itself
668 * remains intact.
669 *
670 * Locking:
671 * BTM
672 * redirect lock for undoing redirection
673 * file list lock for manipulating list of ttys
674 * tty_ldiscs_lock from called functions
675 * termios_rwsem resetting termios data
676 * tasklist_lock to walk task list for hangup event
677 * ->siglock to protect ->signal/->sighand
678 */
679static void __tty_hangup(struct tty_struct *tty, int exit_session)
680{
681 struct file *cons_filp = NULL;
682 struct file *filp, *f = NULL;
683 struct tty_file_private *priv;
684 int closecount = 0, n;
685 int refs;
686
687 if (!tty)
688 return;
689
690
691 spin_lock(&redirect_lock);
692 if (redirect && file_tty(redirect) == tty) {
693 f = redirect;
694 redirect = NULL;
695 }
696 spin_unlock(&redirect_lock);
697
698 tty_lock(tty);
699
700 if (test_bit(TTY_HUPPED, &tty->flags)) {
701 tty_unlock(tty);
702 return;
703 }
704
705 /* inuse_filps is protected by the single tty lock,
706 this really needs to change if we want to flush the
707 workqueue with the lock held */
708 check_tty_count(tty, "tty_hangup");
709
710 spin_lock(&tty_files_lock);
711 /* This breaks for file handles being sent over AF_UNIX sockets ? */
712 list_for_each_entry(priv, &tty->tty_files, list) {
713 filp = priv->file;
714 if (filp->f_op->write == redirected_tty_write)
715 cons_filp = filp;
716 if (filp->f_op->write != tty_write)
717 continue;
718 closecount++;
719 __tty_fasync(-1, filp, 0); /* can't block */
720 filp->f_op = &hung_up_tty_fops;
721 }
722 spin_unlock(&tty_files_lock);
723
724 refs = tty_signal_session_leader(tty, exit_session);
725 /* Account for the p->signal references we killed */
726 while (refs--)
727 tty_kref_put(tty);
728
729 tty_ldisc_hangup(tty);
730
731 spin_lock_irq(&tty->ctrl_lock);
732 clear_bit(TTY_THROTTLED, &tty->flags);
733 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
734 put_pid(tty->session);
735 put_pid(tty->pgrp);
736 tty->session = NULL;
737 tty->pgrp = NULL;
738 tty->ctrl_status = 0;
739 spin_unlock_irq(&tty->ctrl_lock);
740
741 /*
742 * If one of the devices matches a console pointer, we
743 * cannot just call hangup() because that will cause
744 * tty->count and state->count to go out of sync.
745 * So we just call close() the right number of times.
746 */
747 if (cons_filp) {
748 if (tty->ops->close)
749 for (n = 0; n < closecount; n++)
750 tty->ops->close(tty, cons_filp);
751 } else if (tty->ops->hangup)
752 tty->ops->hangup(tty);
753 /*
754 * We don't want to have driver/ldisc interactions beyond
755 * the ones we did here. The driver layer expects no
756 * calls after ->hangup() from the ldisc side. However we
757 * can't yet guarantee all that.
758 */
759 set_bit(TTY_HUPPED, &tty->flags);
760 tty_unlock(tty);
761
762 if (f)
763 fput(f);
764}
765
766static void do_tty_hangup(struct work_struct *work)
767{
768 struct tty_struct *tty =
769 container_of(work, struct tty_struct, hangup_work);
770
771 __tty_hangup(tty, 0);
772}
773
774/**
775 * tty_hangup - trigger a hangup event
776 * @tty: tty to hangup
777 *
778 * A carrier loss (virtual or otherwise) has occurred on this like
779 * schedule a hangup sequence to run after this event.
780 */
781
782void tty_hangup(struct tty_struct *tty)
783{
784 tty_debug_hangup(tty, "\n");
785 schedule_work(&tty->hangup_work);
786}
787
788EXPORT_SYMBOL(tty_hangup);
789
790/**
791 * tty_vhangup - process vhangup
792 * @tty: tty to hangup
793 *
794 * The user has asked via system call for the terminal to be hung up.
795 * We do this synchronously so that when the syscall returns the process
796 * is complete. That guarantee is necessary for security reasons.
797 */
798
799void tty_vhangup(struct tty_struct *tty)
800{
801 tty_debug_hangup(tty, "\n");
802 __tty_hangup(tty, 0);
803}
804
805EXPORT_SYMBOL(tty_vhangup);
806
807
808/**
809 * tty_vhangup_self - process vhangup for own ctty
810 *
811 * Perform a vhangup on the current controlling tty
812 */
813
814void tty_vhangup_self(void)
815{
816 struct tty_struct *tty;
817
818 tty = get_current_tty();
819 if (tty) {
820 tty_vhangup(tty);
821 tty_kref_put(tty);
822 }
823}
824
825/**
826 * tty_vhangup_session - hangup session leader exit
827 * @tty: tty to hangup
828 *
829 * The session leader is exiting and hanging up its controlling terminal.
830 * Every process in the foreground process group is signalled SIGHUP.
831 *
832 * We do this synchronously so that when the syscall returns the process
833 * is complete. That guarantee is necessary for security reasons.
834 */
835
836static void tty_vhangup_session(struct tty_struct *tty)
837{
838 tty_debug_hangup(tty, "\n");
839 __tty_hangup(tty, 1);
840}
841
842/**
843 * tty_hung_up_p - was tty hung up
844 * @filp: file pointer of tty
845 *
846 * Return true if the tty has been subject to a vhangup or a carrier
847 * loss
848 */
849
850int tty_hung_up_p(struct file *filp)
851{
852 return (filp->f_op == &hung_up_tty_fops);
853}
854
855EXPORT_SYMBOL(tty_hung_up_p);
856
857/**
858 * disassociate_ctty - disconnect controlling tty
859 * @on_exit: true if exiting so need to "hang up" the session
860 *
861 * This function is typically called only by the session leader, when
862 * it wants to disassociate itself from its controlling tty.
863 *
864 * It performs the following functions:
865 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
866 * (2) Clears the tty from being controlling the session
867 * (3) Clears the controlling tty for all processes in the
868 * session group.
869 *
870 * The argument on_exit is set to 1 if called when a process is
871 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
872 *
873 * Locking:
874 * BTM is taken for hysterical raisins, and held when
875 * called from no_tty().
876 * tty_mutex is taken to protect tty
877 * ->siglock is taken to protect ->signal/->sighand
878 * tasklist_lock is taken to walk process list for sessions
879 * ->siglock is taken to protect ->signal/->sighand
880 */
881
882void disassociate_ctty(int on_exit)
883{
884 struct tty_struct *tty;
885
886 if (!current->signal->leader)
887 return;
888
889 tty = get_current_tty();
890 if (tty) {
891 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
892 tty_vhangup_session(tty);
893 } else {
894 struct pid *tty_pgrp = tty_get_pgrp(tty);
895 if (tty_pgrp) {
896 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
897 if (!on_exit)
898 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
899 put_pid(tty_pgrp);
900 }
901 }
902 tty_kref_put(tty);
903
904 } else if (on_exit) {
905 struct pid *old_pgrp;
906 spin_lock_irq(&current->sighand->siglock);
907 old_pgrp = current->signal->tty_old_pgrp;
908 current->signal->tty_old_pgrp = NULL;
909 spin_unlock_irq(&current->sighand->siglock);
910 if (old_pgrp) {
911 kill_pgrp(old_pgrp, SIGHUP, on_exit);
912 kill_pgrp(old_pgrp, SIGCONT, on_exit);
913 put_pid(old_pgrp);
914 }
915 return;
916 }
917
918 spin_lock_irq(&current->sighand->siglock);
919 put_pid(current->signal->tty_old_pgrp);
920 current->signal->tty_old_pgrp = NULL;
921
922 tty = tty_kref_get(current->signal->tty);
923 if (tty) {
924 unsigned long flags;
925 spin_lock_irqsave(&tty->ctrl_lock, flags);
926 put_pid(tty->session);
927 put_pid(tty->pgrp);
928 tty->session = NULL;
929 tty->pgrp = NULL;
930 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
931 tty_kref_put(tty);
932 } else
933 tty_debug_hangup(tty, "no current tty\n");
934
935 spin_unlock_irq(&current->sighand->siglock);
936 /* Now clear signal->tty under the lock */
937 read_lock(&tasklist_lock);
938 session_clear_tty(task_session(current));
939 read_unlock(&tasklist_lock);
940}
941
942/**
943 *
944 * no_tty - Ensure the current process does not have a controlling tty
945 */
946void no_tty(void)
947{
948 /* FIXME: Review locking here. The tty_lock never covered any race
949 between a new association and proc_clear_tty but possible we need
950 to protect against this anyway */
951 struct task_struct *tsk = current;
952 disassociate_ctty(0);
953 proc_clear_tty(tsk);
954}
955
956
957/**
958 * stop_tty - propagate flow control
959 * @tty: tty to stop
960 *
961 * Perform flow control to the driver. May be called
962 * on an already stopped device and will not re-call the driver
963 * method.
964 *
965 * This functionality is used by both the line disciplines for
966 * halting incoming flow and by the driver. It may therefore be
967 * called from any context, may be under the tty atomic_write_lock
968 * but not always.
969 *
970 * Locking:
971 * flow_lock
972 */
973
974void __stop_tty(struct tty_struct *tty)
975{
976 if (tty->stopped)
977 return;
978 tty->stopped = 1;
979 if (tty->ops->stop)
980 tty->ops->stop(tty);
981}
982
983void stop_tty(struct tty_struct *tty)
984{
985 unsigned long flags;
986
987 spin_lock_irqsave(&tty->flow_lock, flags);
988 __stop_tty(tty);
989 spin_unlock_irqrestore(&tty->flow_lock, flags);
990}
991EXPORT_SYMBOL(stop_tty);
992
993/**
994 * start_tty - propagate flow control
995 * @tty: tty to start
996 *
997 * Start a tty that has been stopped if at all possible. If this
998 * tty was previous stopped and is now being started, the driver
999 * start method is invoked and the line discipline woken.
1000 *
1001 * Locking:
1002 * flow_lock
1003 */
1004
1005void __start_tty(struct tty_struct *tty)
1006{
1007 if (!tty->stopped || tty->flow_stopped)
1008 return;
1009 tty->stopped = 0;
1010 if (tty->ops->start)
1011 tty->ops->start(tty);
1012 tty_wakeup(tty);
1013}
1014
1015void start_tty(struct tty_struct *tty)
1016{
1017 unsigned long flags;
1018
1019 spin_lock_irqsave(&tty->flow_lock, flags);
1020 __start_tty(tty);
1021 spin_unlock_irqrestore(&tty->flow_lock, flags);
1022}
1023EXPORT_SYMBOL(start_tty);
1024
1025static void tty_update_time(struct timespec *time)
1026{
1027 unsigned long sec = get_seconds();
1028
1029 /*
1030 * We only care if the two values differ in anything other than the
1031 * lower three bits (i.e every 8 seconds). If so, then we can update
1032 * the time of the tty device, otherwise it could be construded as a
1033 * security leak to let userspace know the exact timing of the tty.
1034 */
1035 if ((sec ^ time->tv_sec) & ~7)
1036 time->tv_sec = sec;
1037}
1038
1039/**
1040 * tty_read - read method for tty device files
1041 * @file: pointer to tty file
1042 * @buf: user buffer
1043 * @count: size of user buffer
1044 * @ppos: unused
1045 *
1046 * Perform the read system call function on this terminal device. Checks
1047 * for hung up devices before calling the line discipline method.
1048 *
1049 * Locking:
1050 * Locks the line discipline internally while needed. Multiple
1051 * read calls may be outstanding in parallel.
1052 */
1053
1054static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1055 loff_t *ppos)
1056{
1057 int i;
1058 struct inode *inode = file_inode(file);
1059 struct tty_struct *tty = file_tty(file);
1060 struct tty_ldisc *ld;
1061
1062 if (tty_paranoia_check(tty, inode, "tty_read"))
1063 return -EIO;
1064 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1065 return -EIO;
1066
1067 /* We want to wait for the line discipline to sort out in this
1068 situation */
1069 ld = tty_ldisc_ref_wait(tty);
1070 if (ld->ops->read)
1071 i = ld->ops->read(tty, file, buf, count);
1072 else
1073 i = -EIO;
1074 tty_ldisc_deref(ld);
1075
1076 if (i > 0)
1077 tty_update_time(&inode->i_atime);
1078
1079 return i;
1080}
1081
1082static void tty_write_unlock(struct tty_struct *tty)
1083{
1084 mutex_unlock(&tty->atomic_write_lock);
1085 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1086}
1087
1088static int tty_write_lock(struct tty_struct *tty, int ndelay)
1089{
1090 if (!mutex_trylock(&tty->atomic_write_lock)) {
1091 if (ndelay)
1092 return -EAGAIN;
1093 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1094 return -ERESTARTSYS;
1095 }
1096 return 0;
1097}
1098
1099/*
1100 * Split writes up in sane blocksizes to avoid
1101 * denial-of-service type attacks
1102 */
1103static inline ssize_t do_tty_write(
1104 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1105 struct tty_struct *tty,
1106 struct file *file,
1107 const char __user *buf,
1108 size_t count)
1109{
1110 ssize_t ret, written = 0;
1111 unsigned int chunk;
1112
1113 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1114 if (ret < 0)
1115 return ret;
1116
1117 /*
1118 * We chunk up writes into a temporary buffer. This
1119 * simplifies low-level drivers immensely, since they
1120 * don't have locking issues and user mode accesses.
1121 *
1122 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1123 * big chunk-size..
1124 *
1125 * The default chunk-size is 2kB, because the NTTY
1126 * layer has problems with bigger chunks. It will
1127 * claim to be able to handle more characters than
1128 * it actually does.
1129 *
1130 * FIXME: This can probably go away now except that 64K chunks
1131 * are too likely to fail unless switched to vmalloc...
1132 */
1133 chunk = 2048;
1134 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1135 chunk = 65536;
1136 if (count < chunk)
1137 chunk = count;
1138
1139 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1140 if (tty->write_cnt < chunk) {
1141 unsigned char *buf_chunk;
1142
1143 if (chunk < 1024)
1144 chunk = 1024;
1145
1146 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1147 if (!buf_chunk) {
1148 ret = -ENOMEM;
1149 goto out;
1150 }
1151 kfree(tty->write_buf);
1152 tty->write_cnt = chunk;
1153 tty->write_buf = buf_chunk;
1154 }
1155
1156 /* Do the write .. */
1157 for (;;) {
1158 size_t size = count;
1159 if (size > chunk)
1160 size = chunk;
1161 ret = -EFAULT;
1162 if (copy_from_user(tty->write_buf, buf, size))
1163 break;
1164 ret = write(tty, file, tty->write_buf, size);
1165 if (ret <= 0)
1166 break;
1167 written += ret;
1168 buf += ret;
1169 count -= ret;
1170 if (!count)
1171 break;
1172 ret = -ERESTARTSYS;
1173 if (signal_pending(current))
1174 break;
1175 cond_resched();
1176 }
1177 if (written) {
1178 tty_update_time(&file_inode(file)->i_mtime);
1179 ret = written;
1180 }
1181out:
1182 tty_write_unlock(tty);
1183 return ret;
1184}
1185
1186/**
1187 * tty_write_message - write a message to a certain tty, not just the console.
1188 * @tty: the destination tty_struct
1189 * @msg: the message to write
1190 *
1191 * This is used for messages that need to be redirected to a specific tty.
1192 * We don't put it into the syslog queue right now maybe in the future if
1193 * really needed.
1194 *
1195 * We must still hold the BTM and test the CLOSING flag for the moment.
1196 */
1197
1198void tty_write_message(struct tty_struct *tty, char *msg)
1199{
1200 if (tty) {
1201 mutex_lock(&tty->atomic_write_lock);
1202 tty_lock(tty);
1203 if (tty->ops->write && tty->count > 0) {
1204 tty_unlock(tty);
1205 tty->ops->write(tty, msg, strlen(msg));
1206 } else
1207 tty_unlock(tty);
1208 tty_write_unlock(tty);
1209 }
1210 return;
1211}
1212
1213
1214/**
1215 * tty_write - write method for tty device file
1216 * @file: tty file pointer
1217 * @buf: user data to write
1218 * @count: bytes to write
1219 * @ppos: unused
1220 *
1221 * Write data to a tty device via the line discipline.
1222 *
1223 * Locking:
1224 * Locks the line discipline as required
1225 * Writes to the tty driver are serialized by the atomic_write_lock
1226 * and are then processed in chunks to the device. The line discipline
1227 * write method will not be invoked in parallel for each device.
1228 */
1229
1230static ssize_t tty_write(struct file *file, const char __user *buf,
1231 size_t count, loff_t *ppos)
1232{
1233 struct tty_struct *tty = file_tty(file);
1234 struct tty_ldisc *ld;
1235 ssize_t ret;
1236
1237 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1238 return -EIO;
1239 if (!tty || !tty->ops->write ||
1240 (test_bit(TTY_IO_ERROR, &tty->flags)))
1241 return -EIO;
1242 /* Short term debug to catch buggy drivers */
1243 if (tty->ops->write_room == NULL)
1244 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1245 tty->driver->name);
1246 ld = tty_ldisc_ref_wait(tty);
1247 if (!ld->ops->write)
1248 ret = -EIO;
1249 else
1250 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1251 tty_ldisc_deref(ld);
1252 return ret;
1253}
1254
1255ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1256 size_t count, loff_t *ppos)
1257{
1258 struct file *p = NULL;
1259
1260 spin_lock(&redirect_lock);
1261 if (redirect)
1262 p = get_file(redirect);
1263 spin_unlock(&redirect_lock);
1264
1265 if (p) {
1266 ssize_t res;
1267 res = vfs_write(p, buf, count, &p->f_pos);
1268 fput(p);
1269 return res;
1270 }
1271 return tty_write(file, buf, count, ppos);
1272}
1273
1274/**
1275 * tty_send_xchar - send priority character
1276 *
1277 * Send a high priority character to the tty even if stopped
1278 *
1279 * Locking: none for xchar method, write ordering for write method.
1280 */
1281
1282int tty_send_xchar(struct tty_struct *tty, char ch)
1283{
1284 int was_stopped = tty->stopped;
1285
1286 if (tty->ops->send_xchar) {
1287 tty->ops->send_xchar(tty, ch);
1288 return 0;
1289 }
1290
1291 if (tty_write_lock(tty, 0) < 0)
1292 return -ERESTARTSYS;
1293
1294 if (was_stopped)
1295 start_tty(tty);
1296 tty->ops->write(tty, &ch, 1);
1297 if (was_stopped)
1298 stop_tty(tty);
1299 tty_write_unlock(tty);
1300 return 0;
1301}
1302
1303static char ptychar[] = "pqrstuvwxyzabcde";
1304
1305/**
1306 * pty_line_name - generate name for a pty
1307 * @driver: the tty driver in use
1308 * @index: the minor number
1309 * @p: output buffer of at least 6 bytes
1310 *
1311 * Generate a name from a driver reference and write it to the output
1312 * buffer.
1313 *
1314 * Locking: None
1315 */
1316static void pty_line_name(struct tty_driver *driver, int index, char *p)
1317{
1318 int i = index + driver->name_base;
1319 /* ->name is initialized to "ttyp", but "tty" is expected */
1320 sprintf(p, "%s%c%x",
1321 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1322 ptychar[i >> 4 & 0xf], i & 0xf);
1323}
1324
1325/**
1326 * tty_line_name - generate name for a tty
1327 * @driver: the tty driver in use
1328 * @index: the minor number
1329 * @p: output buffer of at least 7 bytes
1330 *
1331 * Generate a name from a driver reference and write it to the output
1332 * buffer.
1333 *
1334 * Locking: None
1335 */
1336static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1337{
1338 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1339 return sprintf(p, "%s", driver->name);
1340 else
1341 return sprintf(p, "%s%d", driver->name,
1342 index + driver->name_base);
1343}
1344
1345/**
1346 * tty_driver_lookup_tty() - find an existing tty, if any
1347 * @driver: the driver for the tty
1348 * @idx: the minor number
1349 *
1350 * Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1351 * driver lookup() method returns an error.
1352 *
1353 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1354 */
1355static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1356 struct inode *inode, int idx)
1357{
1358 struct tty_struct *tty;
1359
1360 if (driver->ops->lookup)
1361 tty = driver->ops->lookup(driver, inode, idx);
1362 else
1363 tty = driver->ttys[idx];
1364
1365 if (!IS_ERR(tty))
1366 tty_kref_get(tty);
1367 return tty;
1368}
1369
1370/**
1371 * tty_init_termios - helper for termios setup
1372 * @tty: the tty to set up
1373 *
1374 * Initialise the termios structures for this tty. Thus runs under
1375 * the tty_mutex currently so we can be relaxed about ordering.
1376 */
1377
1378int tty_init_termios(struct tty_struct *tty)
1379{
1380 struct ktermios *tp;
1381 int idx = tty->index;
1382
1383 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1384 tty->termios = tty->driver->init_termios;
1385 else {
1386 /* Check for lazy saved data */
1387 tp = tty->driver->termios[idx];
1388 if (tp != NULL)
1389 tty->termios = *tp;
1390 else
1391 tty->termios = tty->driver->init_termios;
1392 }
1393 /* Compatibility until drivers always set this */
1394 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1395 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1396 return 0;
1397}
1398EXPORT_SYMBOL_GPL(tty_init_termios);
1399
1400int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1401{
1402 int ret = tty_init_termios(tty);
1403 if (ret)
1404 return ret;
1405
1406 tty_driver_kref_get(driver);
1407 tty->count++;
1408 driver->ttys[tty->index] = tty;
1409 return 0;
1410}
1411EXPORT_SYMBOL_GPL(tty_standard_install);
1412
1413/**
1414 * tty_driver_install_tty() - install a tty entry in the driver
1415 * @driver: the driver for the tty
1416 * @tty: the tty
1417 *
1418 * Install a tty object into the driver tables. The tty->index field
1419 * will be set by the time this is called. This method is responsible
1420 * for ensuring any need additional structures are allocated and
1421 * configured.
1422 *
1423 * Locking: tty_mutex for now
1424 */
1425static int tty_driver_install_tty(struct tty_driver *driver,
1426 struct tty_struct *tty)
1427{
1428 return driver->ops->install ? driver->ops->install(driver, tty) :
1429 tty_standard_install(driver, tty);
1430}
1431
1432/**
1433 * tty_driver_remove_tty() - remove a tty from the driver tables
1434 * @driver: the driver for the tty
1435 * @idx: the minor number
1436 *
1437 * Remvoe a tty object from the driver tables. The tty->index field
1438 * will be set by the time this is called.
1439 *
1440 * Locking: tty_mutex for now
1441 */
1442void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1443{
1444 if (driver->ops->remove)
1445 driver->ops->remove(driver, tty);
1446 else
1447 driver->ttys[tty->index] = NULL;
1448}
1449
1450/*
1451 * tty_reopen() - fast re-open of an open tty
1452 * @tty - the tty to open
1453 *
1454 * Return 0 on success, -errno on error.
1455 * Re-opens on master ptys are not allowed and return -EIO.
1456 *
1457 * Locking: Caller must hold tty_lock
1458 */
1459static int tty_reopen(struct tty_struct *tty)
1460{
1461 struct tty_driver *driver = tty->driver;
1462
1463 if (!tty->count)
1464 return -EIO;
1465
1466 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1467 driver->subtype == PTY_TYPE_MASTER)
1468 return -EIO;
1469
1470 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1471 return -EBUSY;
1472
1473 tty->count++;
1474
1475 WARN_ON(!tty->ldisc);
1476
1477 return 0;
1478}
1479
1480/**
1481 * tty_init_dev - initialise a tty device
1482 * @driver: tty driver we are opening a device on
1483 * @idx: device index
1484 * @ret_tty: returned tty structure
1485 *
1486 * Prepare a tty device. This may not be a "new" clean device but
1487 * could also be an active device. The pty drivers require special
1488 * handling because of this.
1489 *
1490 * Locking:
1491 * The function is called under the tty_mutex, which
1492 * protects us from the tty struct or driver itself going away.
1493 *
1494 * On exit the tty device has the line discipline attached and
1495 * a reference count of 1. If a pair was created for pty/tty use
1496 * and the other was a pty master then it too has a reference count of 1.
1497 *
1498 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1499 * failed open. The new code protects the open with a mutex, so it's
1500 * really quite straightforward. The mutex locking can probably be
1501 * relaxed for the (most common) case of reopening a tty.
1502 */
1503
1504struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1505{
1506 struct tty_struct *tty;
1507 int retval;
1508
1509 /*
1510 * First time open is complex, especially for PTY devices.
1511 * This code guarantees that either everything succeeds and the
1512 * TTY is ready for operation, or else the table slots are vacated
1513 * and the allocated memory released. (Except that the termios
1514 * and locked termios may be retained.)
1515 */
1516
1517 if (!try_module_get(driver->owner))
1518 return ERR_PTR(-ENODEV);
1519
1520 tty = alloc_tty_struct(driver, idx);
1521 if (!tty) {
1522 retval = -ENOMEM;
1523 goto err_module_put;
1524 }
1525
1526 tty_lock(tty);
1527 retval = tty_driver_install_tty(driver, tty);
1528 if (retval < 0)
1529 goto err_deinit_tty;
1530
1531 if (!tty->port)
1532 tty->port = driver->ports[idx];
1533
1534 WARN_RATELIMIT(!tty->port,
1535 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1536 __func__, tty->driver->name);
1537
1538 tty->port->itty = tty;
1539
1540 /*
1541 * Structures all installed ... call the ldisc open routines.
1542 * If we fail here just call release_tty to clean up. No need
1543 * to decrement the use counts, as release_tty doesn't care.
1544 */
1545 retval = tty_ldisc_setup(tty, tty->link);
1546 if (retval)
1547 goto err_release_tty;
1548 /* Return the tty locked so that it cannot vanish under the caller */
1549 return tty;
1550
1551err_deinit_tty:
1552 tty_unlock(tty);
1553 deinitialize_tty_struct(tty);
1554 free_tty_struct(tty);
1555err_module_put:
1556 module_put(driver->owner);
1557 return ERR_PTR(retval);
1558
1559 /* call the tty release_tty routine to clean out this slot */
1560err_release_tty:
1561 tty_unlock(tty);
1562 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1563 "clearing slot %d\n", idx);
1564 release_tty(tty, idx);
1565 return ERR_PTR(retval);
1566}
1567
1568void tty_free_termios(struct tty_struct *tty)
1569{
1570 struct ktermios *tp;
1571 int idx = tty->index;
1572
1573 /* If the port is going to reset then it has no termios to save */
1574 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1575 return;
1576
1577 /* Stash the termios data */
1578 tp = tty->driver->termios[idx];
1579 if (tp == NULL) {
1580 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1581 if (tp == NULL) {
1582 pr_warn("tty: no memory to save termios state.\n");
1583 return;
1584 }
1585 tty->driver->termios[idx] = tp;
1586 }
1587 *tp = tty->termios;
1588}
1589EXPORT_SYMBOL(tty_free_termios);
1590
1591/**
1592 * tty_flush_works - flush all works of a tty/pty pair
1593 * @tty: tty device to flush works for (or either end of a pty pair)
1594 *
1595 * Sync flush all works belonging to @tty (and the 'other' tty).
1596 */
1597static void tty_flush_works(struct tty_struct *tty)
1598{
1599 flush_work(&tty->SAK_work);
1600 flush_work(&tty->hangup_work);
1601 if (tty->link) {
1602 flush_work(&tty->link->SAK_work);
1603 flush_work(&tty->link->hangup_work);
1604 }
1605}
1606
1607/**
1608 * release_one_tty - release tty structure memory
1609 * @kref: kref of tty we are obliterating
1610 *
1611 * Releases memory associated with a tty structure, and clears out the
1612 * driver table slots. This function is called when a device is no longer
1613 * in use. It also gets called when setup of a device fails.
1614 *
1615 * Locking:
1616 * takes the file list lock internally when working on the list
1617 * of ttys that the driver keeps.
1618 *
1619 * This method gets called from a work queue so that the driver private
1620 * cleanup ops can sleep (needed for USB at least)
1621 */
1622static void release_one_tty(struct work_struct *work)
1623{
1624 struct tty_struct *tty =
1625 container_of(work, struct tty_struct, hangup_work);
1626 struct tty_driver *driver = tty->driver;
1627 struct module *owner = driver->owner;
1628
1629 if (tty->ops->cleanup)
1630 tty->ops->cleanup(tty);
1631
1632 tty->magic = 0;
1633 tty_driver_kref_put(driver);
1634 module_put(owner);
1635
1636 spin_lock(&tty_files_lock);
1637 list_del_init(&tty->tty_files);
1638 spin_unlock(&tty_files_lock);
1639
1640 put_pid(tty->pgrp);
1641 put_pid(tty->session);
1642 free_tty_struct(tty);
1643}
1644
1645static void queue_release_one_tty(struct kref *kref)
1646{
1647 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1648
1649 /* The hangup queue is now free so we can reuse it rather than
1650 waste a chunk of memory for each port */
1651 INIT_WORK(&tty->hangup_work, release_one_tty);
1652 schedule_work(&tty->hangup_work);
1653}
1654
1655/**
1656 * tty_kref_put - release a tty kref
1657 * @tty: tty device
1658 *
1659 * Release a reference to a tty device and if need be let the kref
1660 * layer destruct the object for us
1661 */
1662
1663void tty_kref_put(struct tty_struct *tty)
1664{
1665 if (tty)
1666 kref_put(&tty->kref, queue_release_one_tty);
1667}
1668EXPORT_SYMBOL(tty_kref_put);
1669
1670/**
1671 * release_tty - release tty structure memory
1672 *
1673 * Release both @tty and a possible linked partner (think pty pair),
1674 * and decrement the refcount of the backing module.
1675 *
1676 * Locking:
1677 * tty_mutex
1678 * takes the file list lock internally when working on the list
1679 * of ttys that the driver keeps.
1680 *
1681 */
1682static void release_tty(struct tty_struct *tty, int idx)
1683{
1684 /* This should always be true but check for the moment */
1685 WARN_ON(tty->index != idx);
1686 WARN_ON(!mutex_is_locked(&tty_mutex));
1687 if (tty->ops->shutdown)
1688 tty->ops->shutdown(tty);
1689 tty_free_termios(tty);
1690 tty_driver_remove_tty(tty->driver, tty);
1691 tty->port->itty = NULL;
1692 if (tty->link)
1693 tty->link->port->itty = NULL;
1694 cancel_work_sync(&tty->port->buf.work);
1695
1696 tty_kref_put(tty->link);
1697 tty_kref_put(tty);
1698}
1699
1700/**
1701 * tty_release_checks - check a tty before real release
1702 * @tty: tty to check
1703 * @o_tty: link of @tty (if any)
1704 * @idx: index of the tty
1705 *
1706 * Performs some paranoid checking before true release of the @tty.
1707 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1708 */
1709static int tty_release_checks(struct tty_struct *tty, int idx)
1710{
1711#ifdef TTY_PARANOIA_CHECK
1712 if (idx < 0 || idx >= tty->driver->num) {
1713 tty_debug(tty, "bad idx %d\n", idx);
1714 return -1;
1715 }
1716
1717 /* not much to check for devpts */
1718 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1719 return 0;
1720
1721 if (tty != tty->driver->ttys[idx]) {
1722 tty_debug(tty, "bad driver table[%d] = %p\n",
1723 idx, tty->driver->ttys[idx]);
1724 return -1;
1725 }
1726 if (tty->driver->other) {
1727 struct tty_struct *o_tty = tty->link;
1728
1729 if (o_tty != tty->driver->other->ttys[idx]) {
1730 tty_debug(tty, "bad other table[%d] = %p\n",
1731 idx, tty->driver->other->ttys[idx]);
1732 return -1;
1733 }
1734 if (o_tty->link != tty) {
1735 tty_debug(tty, "bad link = %p\n", o_tty->link);
1736 return -1;
1737 }
1738 }
1739#endif
1740 return 0;
1741}
1742
1743/**
1744 * tty_release - vfs callback for close
1745 * @inode: inode of tty
1746 * @filp: file pointer for handle to tty
1747 *
1748 * Called the last time each file handle is closed that references
1749 * this tty. There may however be several such references.
1750 *
1751 * Locking:
1752 * Takes bkl. See tty_release_dev
1753 *
1754 * Even releasing the tty structures is a tricky business.. We have
1755 * to be very careful that the structures are all released at the
1756 * same time, as interrupts might otherwise get the wrong pointers.
1757 *
1758 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1759 * lead to double frees or releasing memory still in use.
1760 */
1761
1762int tty_release(struct inode *inode, struct file *filp)
1763{
1764 struct tty_struct *tty = file_tty(filp);
1765 struct tty_struct *o_tty = NULL;
1766 int do_sleep, final;
1767 int idx;
1768 long timeout = 0;
1769 int once = 1;
1770
1771 if (tty_paranoia_check(tty, inode, __func__))
1772 return 0;
1773
1774 tty_lock(tty);
1775 check_tty_count(tty, __func__);
1776
1777 __tty_fasync(-1, filp, 0);
1778
1779 idx = tty->index;
1780 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1781 tty->driver->subtype == PTY_TYPE_MASTER)
1782 o_tty = tty->link;
1783
1784 if (tty_release_checks(tty, idx)) {
1785 tty_unlock(tty);
1786 return 0;
1787 }
1788
1789 tty_debug_hangup(tty, "(tty count=%d)...\n", tty->count);
1790
1791 if (tty->ops->close)
1792 tty->ops->close(tty, filp);
1793
1794 /* If tty is pty master, lock the slave pty (stable lock order) */
1795 tty_lock_slave(o_tty);
1796
1797 /*
1798 * Sanity check: if tty->count is going to zero, there shouldn't be
1799 * any waiters on tty->read_wait or tty->write_wait. We test the
1800 * wait queues and kick everyone out _before_ actually starting to
1801 * close. This ensures that we won't block while releasing the tty
1802 * structure.
1803 *
1804 * The test for the o_tty closing is necessary, since the master and
1805 * slave sides may close in any order. If the slave side closes out
1806 * first, its count will be one, since the master side holds an open.
1807 * Thus this test wouldn't be triggered at the time the slave closed,
1808 * so we do it now.
1809 */
1810 while (1) {
1811 do_sleep = 0;
1812
1813 if (tty->count <= 1) {
1814 if (waitqueue_active(&tty->read_wait)) {
1815 wake_up_poll(&tty->read_wait, POLLIN);
1816 do_sleep++;
1817 }
1818 if (waitqueue_active(&tty->write_wait)) {
1819 wake_up_poll(&tty->write_wait, POLLOUT);
1820 do_sleep++;
1821 }
1822 }
1823 if (o_tty && o_tty->count <= 1) {
1824 if (waitqueue_active(&o_tty->read_wait)) {
1825 wake_up_poll(&o_tty->read_wait, POLLIN);
1826 do_sleep++;
1827 }
1828 if (waitqueue_active(&o_tty->write_wait)) {
1829 wake_up_poll(&o_tty->write_wait, POLLOUT);
1830 do_sleep++;
1831 }
1832 }
1833 if (!do_sleep)
1834 break;
1835
1836 if (once) {
1837 once = 0;
1838 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1839 __func__, tty_name(tty));
1840 }
1841 schedule_timeout_killable(timeout);
1842 if (timeout < 120 * HZ)
1843 timeout = 2 * timeout + 1;
1844 else
1845 timeout = MAX_SCHEDULE_TIMEOUT;
1846 }
1847
1848 if (o_tty) {
1849 if (--o_tty->count < 0) {
1850 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1851 __func__, o_tty->count, tty_name(o_tty));
1852 o_tty->count = 0;
1853 }
1854 }
1855 if (--tty->count < 0) {
1856 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1857 __func__, tty->count, tty_name(tty));
1858 tty->count = 0;
1859 }
1860
1861 /*
1862 * We've decremented tty->count, so we need to remove this file
1863 * descriptor off the tty->tty_files list; this serves two
1864 * purposes:
1865 * - check_tty_count sees the correct number of file descriptors
1866 * associated with this tty.
1867 * - do_tty_hangup no longer sees this file descriptor as
1868 * something that needs to be handled for hangups.
1869 */
1870 tty_del_file(filp);
1871
1872 /*
1873 * Perform some housekeeping before deciding whether to return.
1874 *
1875 * If _either_ side is closing, make sure there aren't any
1876 * processes that still think tty or o_tty is their controlling
1877 * tty.
1878 */
1879 if (!tty->count) {
1880 read_lock(&tasklist_lock);
1881 session_clear_tty(tty->session);
1882 if (o_tty)
1883 session_clear_tty(o_tty->session);
1884 read_unlock(&tasklist_lock);
1885 }
1886
1887 /* check whether both sides are closing ... */
1888 final = !tty->count && !(o_tty && o_tty->count);
1889
1890 tty_unlock_slave(o_tty);
1891 tty_unlock(tty);
1892
1893 /* At this point, the tty->count == 0 should ensure a dead tty
1894 cannot be re-opened by a racing opener */
1895
1896 if (!final)
1897 return 0;
1898
1899 tty_debug_hangup(tty, "final close\n");
1900 /*
1901 * Ask the line discipline code to release its structures
1902 */
1903 tty_ldisc_release(tty);
1904
1905 /* Wait for pending work before tty destruction commmences */
1906 tty_flush_works(tty);
1907
1908 tty_debug_hangup(tty, "freeing structure...\n");
1909 /*
1910 * The release_tty function takes care of the details of clearing
1911 * the slots and preserving the termios structure. The tty_unlock_pair
1912 * should be safe as we keep a kref while the tty is locked (so the
1913 * unlock never unlocks a freed tty).
1914 */
1915 mutex_lock(&tty_mutex);
1916 release_tty(tty, idx);
1917 mutex_unlock(&tty_mutex);
1918
1919 return 0;
1920}
1921
1922/**
1923 * tty_open_current_tty - get locked tty of current task
1924 * @device: device number
1925 * @filp: file pointer to tty
1926 * @return: locked tty of the current task iff @device is /dev/tty
1927 *
1928 * Performs a re-open of the current task's controlling tty.
1929 *
1930 * We cannot return driver and index like for the other nodes because
1931 * devpts will not work then. It expects inodes to be from devpts FS.
1932 */
1933static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1934{
1935 struct tty_struct *tty;
1936 int retval;
1937
1938 if (device != MKDEV(TTYAUX_MAJOR, 0))
1939 return NULL;
1940
1941 tty = get_current_tty();
1942 if (!tty)
1943 return ERR_PTR(-ENXIO);
1944
1945 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1946 /* noctty = 1; */
1947 tty_lock(tty);
1948 tty_kref_put(tty); /* safe to drop the kref now */
1949
1950 retval = tty_reopen(tty);
1951 if (retval < 0) {
1952 tty_unlock(tty);
1953 tty = ERR_PTR(retval);
1954 }
1955 return tty;
1956}
1957
1958/**
1959 * tty_lookup_driver - lookup a tty driver for a given device file
1960 * @device: device number
1961 * @filp: file pointer to tty
1962 * @noctty: set if the device should not become a controlling tty
1963 * @index: index for the device in the @return driver
1964 * @return: driver for this inode (with increased refcount)
1965 *
1966 * If @return is not erroneous, the caller is responsible to decrement the
1967 * refcount by tty_driver_kref_put.
1968 *
1969 * Locking: tty_mutex protects get_tty_driver
1970 */
1971static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1972 int *noctty, int *index)
1973{
1974 struct tty_driver *driver;
1975
1976 switch (device) {
1977#ifdef CONFIG_VT
1978 case MKDEV(TTY_MAJOR, 0): {
1979 extern struct tty_driver *console_driver;
1980 driver = tty_driver_kref_get(console_driver);
1981 *index = fg_console;
1982 *noctty = 1;
1983 break;
1984 }
1985#endif
1986 case MKDEV(TTYAUX_MAJOR, 1): {
1987 struct tty_driver *console_driver = console_device(index);
1988 if (console_driver) {
1989 driver = tty_driver_kref_get(console_driver);
1990 if (driver) {
1991 /* Don't let /dev/console block */
1992 filp->f_flags |= O_NONBLOCK;
1993 *noctty = 1;
1994 break;
1995 }
1996 }
1997 return ERR_PTR(-ENODEV);
1998 }
1999 default:
2000 driver = get_tty_driver(device, index);
2001 if (!driver)
2002 return ERR_PTR(-ENODEV);
2003 break;
2004 }
2005 return driver;
2006}
2007
2008/**
2009 * tty_open - open a tty device
2010 * @inode: inode of device file
2011 * @filp: file pointer to tty
2012 *
2013 * tty_open and tty_release keep up the tty count that contains the
2014 * number of opens done on a tty. We cannot use the inode-count, as
2015 * different inodes might point to the same tty.
2016 *
2017 * Open-counting is needed for pty masters, as well as for keeping
2018 * track of serial lines: DTR is dropped when the last close happens.
2019 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2020 *
2021 * The termios state of a pty is reset on first open so that
2022 * settings don't persist across reuse.
2023 *
2024 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2025 * tty->count should protect the rest.
2026 * ->siglock protects ->signal/->sighand
2027 *
2028 * Note: the tty_unlock/lock cases without a ref are only safe due to
2029 * tty_mutex
2030 */
2031
2032static int tty_open(struct inode *inode, struct file *filp)
2033{
2034 struct tty_struct *tty;
2035 int noctty, retval;
2036 struct tty_driver *driver = NULL;
2037 int index;
2038 dev_t device = inode->i_rdev;
2039 unsigned saved_flags = filp->f_flags;
2040
2041 nonseekable_open(inode, filp);
2042
2043retry_open:
2044 retval = tty_alloc_file(filp);
2045 if (retval)
2046 return -ENOMEM;
2047
2048 noctty = filp->f_flags & O_NOCTTY;
2049 index = -1;
2050 retval = 0;
2051
2052 tty = tty_open_current_tty(device, filp);
2053 if (!tty) {
2054 mutex_lock(&tty_mutex);
2055 driver = tty_lookup_driver(device, filp, &noctty, &index);
2056 if (IS_ERR(driver)) {
2057 retval = PTR_ERR(driver);
2058 goto err_unlock;
2059 }
2060
2061 /* check whether we're reopening an existing tty */
2062 tty = tty_driver_lookup_tty(driver, inode, index);
2063 if (IS_ERR(tty)) {
2064 retval = PTR_ERR(tty);
2065 goto err_unlock;
2066 }
2067
2068 if (tty) {
2069 mutex_unlock(&tty_mutex);
2070 tty_lock(tty);
2071 /* safe to drop the kref from tty_driver_lookup_tty() */
2072 tty_kref_put(tty);
2073 retval = tty_reopen(tty);
2074 if (retval < 0) {
2075 tty_unlock(tty);
2076 tty = ERR_PTR(retval);
2077 }
2078 } else { /* Returns with the tty_lock held for now */
2079 tty = tty_init_dev(driver, index);
2080 mutex_unlock(&tty_mutex);
2081 }
2082
2083 tty_driver_kref_put(driver);
2084 }
2085
2086 if (IS_ERR(tty)) {
2087 retval = PTR_ERR(tty);
2088 goto err_file;
2089 }
2090
2091 tty_add_file(tty, filp);
2092
2093 check_tty_count(tty, __func__);
2094 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2095 tty->driver->subtype == PTY_TYPE_MASTER)
2096 noctty = 1;
2097
2098 tty_debug_hangup(tty, "(tty count=%d)\n", tty->count);
2099
2100 if (tty->ops->open)
2101 retval = tty->ops->open(tty, filp);
2102 else
2103 retval = -ENODEV;
2104 filp->f_flags = saved_flags;
2105
2106 if (retval) {
2107 tty_debug_hangup(tty, "error %d, releasing...\n", retval);
2108
2109 tty_unlock(tty); /* need to call tty_release without BTM */
2110 tty_release(inode, filp);
2111 if (retval != -ERESTARTSYS)
2112 return retval;
2113
2114 if (signal_pending(current))
2115 return retval;
2116
2117 schedule();
2118 /*
2119 * Need to reset f_op in case a hangup happened.
2120 */
2121 if (tty_hung_up_p(filp))
2122 filp->f_op = &tty_fops;
2123 goto retry_open;
2124 }
2125 clear_bit(TTY_HUPPED, &tty->flags);
2126
2127
2128 read_lock(&tasklist_lock);
2129 spin_lock_irq(&current->sighand->siglock);
2130 if (!noctty &&
2131 current->signal->leader &&
2132 !current->signal->tty &&
2133 tty->session == NULL) {
2134 /*
2135 * Don't let a process that only has write access to the tty
2136 * obtain the privileges associated with having a tty as
2137 * controlling terminal (being able to reopen it with full
2138 * access through /dev/tty, being able to perform pushback).
2139 * Many distributions set the group of all ttys to "tty" and
2140 * grant write-only access to all terminals for setgid tty
2141 * binaries, which should not imply full privileges on all ttys.
2142 *
2143 * This could theoretically break old code that performs open()
2144 * on a write-only file descriptor. In that case, it might be
2145 * necessary to also permit this if
2146 * inode_permission(inode, MAY_READ) == 0.
2147 */
2148 if (filp->f_mode & FMODE_READ)
2149 __proc_set_tty(tty);
2150 }
2151 spin_unlock_irq(&current->sighand->siglock);
2152 read_unlock(&tasklist_lock);
2153 tty_unlock(tty);
2154 return 0;
2155err_unlock:
2156 mutex_unlock(&tty_mutex);
2157 /* after locks to avoid deadlock */
2158 if (!IS_ERR_OR_NULL(driver))
2159 tty_driver_kref_put(driver);
2160err_file:
2161 tty_free_file(filp);
2162 return retval;
2163}
2164
2165
2166
2167/**
2168 * tty_poll - check tty status
2169 * @filp: file being polled
2170 * @wait: poll wait structures to update
2171 *
2172 * Call the line discipline polling method to obtain the poll
2173 * status of the device.
2174 *
2175 * Locking: locks called line discipline but ldisc poll method
2176 * may be re-entered freely by other callers.
2177 */
2178
2179static unsigned int tty_poll(struct file *filp, poll_table *wait)
2180{
2181 struct tty_struct *tty = file_tty(filp);
2182 struct tty_ldisc *ld;
2183 int ret = 0;
2184
2185 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2186 return 0;
2187
2188 ld = tty_ldisc_ref_wait(tty);
2189 if (ld->ops->poll)
2190 ret = ld->ops->poll(tty, filp, wait);
2191 tty_ldisc_deref(ld);
2192 return ret;
2193}
2194
2195static int __tty_fasync(int fd, struct file *filp, int on)
2196{
2197 struct tty_struct *tty = file_tty(filp);
2198 struct tty_ldisc *ldisc;
2199 unsigned long flags;
2200 int retval = 0;
2201
2202 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2203 goto out;
2204
2205 retval = fasync_helper(fd, filp, on, &tty->fasync);
2206 if (retval <= 0)
2207 goto out;
2208
2209 ldisc = tty_ldisc_ref(tty);
2210 if (ldisc) {
2211 if (ldisc->ops->fasync)
2212 ldisc->ops->fasync(tty, on);
2213 tty_ldisc_deref(ldisc);
2214 }
2215
2216 if (on) {
2217 enum pid_type type;
2218 struct pid *pid;
2219
2220 spin_lock_irqsave(&tty->ctrl_lock, flags);
2221 if (tty->pgrp) {
2222 pid = tty->pgrp;
2223 type = PIDTYPE_PGID;
2224 } else {
2225 pid = task_pid(current);
2226 type = PIDTYPE_PID;
2227 }
2228 get_pid(pid);
2229 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2230 __f_setown(filp, pid, type, 0);
2231 put_pid(pid);
2232 retval = 0;
2233 }
2234out:
2235 return retval;
2236}
2237
2238static int tty_fasync(int fd, struct file *filp, int on)
2239{
2240 struct tty_struct *tty = file_tty(filp);
2241 int retval;
2242
2243 tty_lock(tty);
2244 retval = __tty_fasync(fd, filp, on);
2245 tty_unlock(tty);
2246
2247 return retval;
2248}
2249
2250/**
2251 * tiocsti - fake input character
2252 * @tty: tty to fake input into
2253 * @p: pointer to character
2254 *
2255 * Fake input to a tty device. Does the necessary locking and
2256 * input management.
2257 *
2258 * FIXME: does not honour flow control ??
2259 *
2260 * Locking:
2261 * Called functions take tty_ldiscs_lock
2262 * current->signal->tty check is safe without locks
2263 *
2264 * FIXME: may race normal receive processing
2265 */
2266
2267static int tiocsti(struct tty_struct *tty, char __user *p)
2268{
2269 char ch, mbz = 0;
2270 struct tty_ldisc *ld;
2271
2272 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2273 return -EPERM;
2274 if (get_user(ch, p))
2275 return -EFAULT;
2276 tty_audit_tiocsti(tty, ch);
2277 ld = tty_ldisc_ref_wait(tty);
2278 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2279 tty_ldisc_deref(ld);
2280 return 0;
2281}
2282
2283/**
2284 * tiocgwinsz - implement window query ioctl
2285 * @tty; tty
2286 * @arg: user buffer for result
2287 *
2288 * Copies the kernel idea of the window size into the user buffer.
2289 *
2290 * Locking: tty->winsize_mutex is taken to ensure the winsize data
2291 * is consistent.
2292 */
2293
2294static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2295{
2296 int err;
2297
2298 mutex_lock(&tty->winsize_mutex);
2299 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2300 mutex_unlock(&tty->winsize_mutex);
2301
2302 return err ? -EFAULT: 0;
2303}
2304
2305/**
2306 * tty_do_resize - resize event
2307 * @tty: tty being resized
2308 * @rows: rows (character)
2309 * @cols: cols (character)
2310 *
2311 * Update the termios variables and send the necessary signals to
2312 * peform a terminal resize correctly
2313 */
2314
2315int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2316{
2317 struct pid *pgrp;
2318
2319 /* Lock the tty */
2320 mutex_lock(&tty->winsize_mutex);
2321 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2322 goto done;
2323
2324 /* Signal the foreground process group */
2325 pgrp = tty_get_pgrp(tty);
2326 if (pgrp)
2327 kill_pgrp(pgrp, SIGWINCH, 1);
2328 put_pid(pgrp);
2329
2330 tty->winsize = *ws;
2331done:
2332 mutex_unlock(&tty->winsize_mutex);
2333 return 0;
2334}
2335EXPORT_SYMBOL(tty_do_resize);
2336
2337/**
2338 * tiocswinsz - implement window size set ioctl
2339 * @tty; tty side of tty
2340 * @arg: user buffer for result
2341 *
2342 * Copies the user idea of the window size to the kernel. Traditionally
2343 * this is just advisory information but for the Linux console it
2344 * actually has driver level meaning and triggers a VC resize.
2345 *
2346 * Locking:
2347 * Driver dependent. The default do_resize method takes the
2348 * tty termios mutex and ctrl_lock. The console takes its own lock
2349 * then calls into the default method.
2350 */
2351
2352static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2353{
2354 struct winsize tmp_ws;
2355 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2356 return -EFAULT;
2357
2358 if (tty->ops->resize)
2359 return tty->ops->resize(tty, &tmp_ws);
2360 else
2361 return tty_do_resize(tty, &tmp_ws);
2362}
2363
2364/**
2365 * tioccons - allow admin to move logical console
2366 * @file: the file to become console
2367 *
2368 * Allow the administrator to move the redirected console device
2369 *
2370 * Locking: uses redirect_lock to guard the redirect information
2371 */
2372
2373static int tioccons(struct file *file)
2374{
2375 if (!capable(CAP_SYS_ADMIN))
2376 return -EPERM;
2377 if (file->f_op->write == redirected_tty_write) {
2378 struct file *f;
2379 spin_lock(&redirect_lock);
2380 f = redirect;
2381 redirect = NULL;
2382 spin_unlock(&redirect_lock);
2383 if (f)
2384 fput(f);
2385 return 0;
2386 }
2387 spin_lock(&redirect_lock);
2388 if (redirect) {
2389 spin_unlock(&redirect_lock);
2390 return -EBUSY;
2391 }
2392 redirect = get_file(file);
2393 spin_unlock(&redirect_lock);
2394 return 0;
2395}
2396
2397/**
2398 * fionbio - non blocking ioctl
2399 * @file: file to set blocking value
2400 * @p: user parameter
2401 *
2402 * Historical tty interfaces had a blocking control ioctl before
2403 * the generic functionality existed. This piece of history is preserved
2404 * in the expected tty API of posix OS's.
2405 *
2406 * Locking: none, the open file handle ensures it won't go away.
2407 */
2408
2409static int fionbio(struct file *file, int __user *p)
2410{
2411 int nonblock;
2412
2413 if (get_user(nonblock, p))
2414 return -EFAULT;
2415
2416 spin_lock(&file->f_lock);
2417 if (nonblock)
2418 file->f_flags |= O_NONBLOCK;
2419 else
2420 file->f_flags &= ~O_NONBLOCK;
2421 spin_unlock(&file->f_lock);
2422 return 0;
2423}
2424
2425/**
2426 * tiocsctty - set controlling tty
2427 * @tty: tty structure
2428 * @arg: user argument
2429 *
2430 * This ioctl is used to manage job control. It permits a session
2431 * leader to set this tty as the controlling tty for the session.
2432 *
2433 * Locking:
2434 * Takes tty_lock() to serialize proc_set_tty() for this tty
2435 * Takes tasklist_lock internally to walk sessions
2436 * Takes ->siglock() when updating signal->tty
2437 */
2438
2439static int tiocsctty(struct tty_struct *tty, struct file *file, int arg)
2440{
2441 int ret = 0;
2442
2443 tty_lock(tty);
2444 read_lock(&tasklist_lock);
2445
2446 if (current->signal->leader && (task_session(current) == tty->session))
2447 goto unlock;
2448
2449 /*
2450 * The process must be a session leader and
2451 * not have a controlling tty already.
2452 */
2453 if (!current->signal->leader || current->signal->tty) {
2454 ret = -EPERM;
2455 goto unlock;
2456 }
2457
2458 if (tty->session) {
2459 /*
2460 * This tty is already the controlling
2461 * tty for another session group!
2462 */
2463 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2464 /*
2465 * Steal it away
2466 */
2467 session_clear_tty(tty->session);
2468 } else {
2469 ret = -EPERM;
2470 goto unlock;
2471 }
2472 }
2473
2474 /* See the comment in tty_open(). */
2475 if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) {
2476 ret = -EPERM;
2477 goto unlock;
2478 }
2479
2480 proc_set_tty(tty);
2481unlock:
2482 read_unlock(&tasklist_lock);
2483 tty_unlock(tty);
2484 return ret;
2485}
2486
2487/**
2488 * tty_get_pgrp - return a ref counted pgrp pid
2489 * @tty: tty to read
2490 *
2491 * Returns a refcounted instance of the pid struct for the process
2492 * group controlling the tty.
2493 */
2494
2495struct pid *tty_get_pgrp(struct tty_struct *tty)
2496{
2497 unsigned long flags;
2498 struct pid *pgrp;
2499
2500 spin_lock_irqsave(&tty->ctrl_lock, flags);
2501 pgrp = get_pid(tty->pgrp);
2502 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2503
2504 return pgrp;
2505}
2506EXPORT_SYMBOL_GPL(tty_get_pgrp);
2507
2508/*
2509 * This checks not only the pgrp, but falls back on the pid if no
2510 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2511 * without this...
2512 *
2513 * The caller must hold rcu lock or the tasklist lock.
2514 */
2515static struct pid *session_of_pgrp(struct pid *pgrp)
2516{
2517 struct task_struct *p;
2518 struct pid *sid = NULL;
2519
2520 p = pid_task(pgrp, PIDTYPE_PGID);
2521 if (p == NULL)
2522 p = pid_task(pgrp, PIDTYPE_PID);
2523 if (p != NULL)
2524 sid = task_session(p);
2525
2526 return sid;
2527}
2528
2529/**
2530 * tiocgpgrp - get process group
2531 * @tty: tty passed by user
2532 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2533 * @p: returned pid
2534 *
2535 * Obtain the process group of the tty. If there is no process group
2536 * return an error.
2537 *
2538 * Locking: none. Reference to current->signal->tty is safe.
2539 */
2540
2541static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2542{
2543 struct pid *pid;
2544 int ret;
2545 /*
2546 * (tty == real_tty) is a cheap way of
2547 * testing if the tty is NOT a master pty.
2548 */
2549 if (tty == real_tty && current->signal->tty != real_tty)
2550 return -ENOTTY;
2551 pid = tty_get_pgrp(real_tty);
2552 ret = put_user(pid_vnr(pid), p);
2553 put_pid(pid);
2554 return ret;
2555}
2556
2557/**
2558 * tiocspgrp - attempt to set process group
2559 * @tty: tty passed by user
2560 * @real_tty: tty side device matching tty passed by user
2561 * @p: pid pointer
2562 *
2563 * Set the process group of the tty to the session passed. Only
2564 * permitted where the tty session is our session.
2565 *
2566 * Locking: RCU, ctrl lock
2567 */
2568
2569static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2570{
2571 struct pid *pgrp;
2572 pid_t pgrp_nr;
2573 int retval = tty_check_change(real_tty);
2574 unsigned long flags;
2575
2576 if (retval == -EIO)
2577 return -ENOTTY;
2578 if (retval)
2579 return retval;
2580 if (!current->signal->tty ||
2581 (current->signal->tty != real_tty) ||
2582 (real_tty->session != task_session(current)))
2583 return -ENOTTY;
2584 if (get_user(pgrp_nr, p))
2585 return -EFAULT;
2586 if (pgrp_nr < 0)
2587 return -EINVAL;
2588 rcu_read_lock();
2589 pgrp = find_vpid(pgrp_nr);
2590 retval = -ESRCH;
2591 if (!pgrp)
2592 goto out_unlock;
2593 retval = -EPERM;
2594 if (session_of_pgrp(pgrp) != task_session(current))
2595 goto out_unlock;
2596 retval = 0;
2597 spin_lock_irqsave(&tty->ctrl_lock, flags);
2598 put_pid(real_tty->pgrp);
2599 real_tty->pgrp = get_pid(pgrp);
2600 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2601out_unlock:
2602 rcu_read_unlock();
2603 return retval;
2604}
2605
2606/**
2607 * tiocgsid - get session id
2608 * @tty: tty passed by user
2609 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2610 * @p: pointer to returned session id
2611 *
2612 * Obtain the session id of the tty. If there is no session
2613 * return an error.
2614 *
2615 * Locking: none. Reference to current->signal->tty is safe.
2616 */
2617
2618static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2619{
2620 /*
2621 * (tty == real_tty) is a cheap way of
2622 * testing if the tty is NOT a master pty.
2623 */
2624 if (tty == real_tty && current->signal->tty != real_tty)
2625 return -ENOTTY;
2626 if (!real_tty->session)
2627 return -ENOTTY;
2628 return put_user(pid_vnr(real_tty->session), p);
2629}
2630
2631/**
2632 * tiocsetd - set line discipline
2633 * @tty: tty device
2634 * @p: pointer to user data
2635 *
2636 * Set the line discipline according to user request.
2637 *
2638 * Locking: see tty_set_ldisc, this function is just a helper
2639 */
2640
2641static int tiocsetd(struct tty_struct *tty, int __user *p)
2642{
2643 int ldisc;
2644 int ret;
2645
2646 if (get_user(ldisc, p))
2647 return -EFAULT;
2648
2649 ret = tty_set_ldisc(tty, ldisc);
2650
2651 return ret;
2652}
2653
2654/**
2655 * send_break - performed time break
2656 * @tty: device to break on
2657 * @duration: timeout in mS
2658 *
2659 * Perform a timed break on hardware that lacks its own driver level
2660 * timed break functionality.
2661 *
2662 * Locking:
2663 * atomic_write_lock serializes
2664 *
2665 */
2666
2667static int send_break(struct tty_struct *tty, unsigned int duration)
2668{
2669 int retval;
2670
2671 if (tty->ops->break_ctl == NULL)
2672 return 0;
2673
2674 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2675 retval = tty->ops->break_ctl(tty, duration);
2676 else {
2677 /* Do the work ourselves */
2678 if (tty_write_lock(tty, 0) < 0)
2679 return -EINTR;
2680 retval = tty->ops->break_ctl(tty, -1);
2681 if (retval)
2682 goto out;
2683 if (!signal_pending(current))
2684 msleep_interruptible(duration);
2685 retval = tty->ops->break_ctl(tty, 0);
2686out:
2687 tty_write_unlock(tty);
2688 if (signal_pending(current))
2689 retval = -EINTR;
2690 }
2691 return retval;
2692}
2693
2694/**
2695 * tty_tiocmget - get modem status
2696 * @tty: tty device
2697 * @file: user file pointer
2698 * @p: pointer to result
2699 *
2700 * Obtain the modem status bits from the tty driver if the feature
2701 * is supported. Return -EINVAL if it is not available.
2702 *
2703 * Locking: none (up to the driver)
2704 */
2705
2706static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2707{
2708 int retval = -EINVAL;
2709
2710 if (tty->ops->tiocmget) {
2711 retval = tty->ops->tiocmget(tty);
2712
2713 if (retval >= 0)
2714 retval = put_user(retval, p);
2715 }
2716 return retval;
2717}
2718
2719/**
2720 * tty_tiocmset - set modem status
2721 * @tty: tty device
2722 * @cmd: command - clear bits, set bits or set all
2723 * @p: pointer to desired bits
2724 *
2725 * Set the modem status bits from the tty driver if the feature
2726 * is supported. Return -EINVAL if it is not available.
2727 *
2728 * Locking: none (up to the driver)
2729 */
2730
2731static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2732 unsigned __user *p)
2733{
2734 int retval;
2735 unsigned int set, clear, val;
2736
2737 if (tty->ops->tiocmset == NULL)
2738 return -EINVAL;
2739
2740 retval = get_user(val, p);
2741 if (retval)
2742 return retval;
2743 set = clear = 0;
2744 switch (cmd) {
2745 case TIOCMBIS:
2746 set = val;
2747 break;
2748 case TIOCMBIC:
2749 clear = val;
2750 break;
2751 case TIOCMSET:
2752 set = val;
2753 clear = ~val;
2754 break;
2755 }
2756 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2757 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2758 return tty->ops->tiocmset(tty, set, clear);
2759}
2760
2761static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2762{
2763 int retval = -EINVAL;
2764 struct serial_icounter_struct icount;
2765 memset(&icount, 0, sizeof(icount));
2766 if (tty->ops->get_icount)
2767 retval = tty->ops->get_icount(tty, &icount);
2768 if (retval != 0)
2769 return retval;
2770 if (copy_to_user(arg, &icount, sizeof(icount)))
2771 return -EFAULT;
2772 return 0;
2773}
2774
2775static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2776{
2777 static DEFINE_RATELIMIT_STATE(depr_flags,
2778 DEFAULT_RATELIMIT_INTERVAL,
2779 DEFAULT_RATELIMIT_BURST);
2780 char comm[TASK_COMM_LEN];
2781 int flags;
2782
2783 if (get_user(flags, &ss->flags))
2784 return;
2785
2786 flags &= ASYNC_DEPRECATED;
2787
2788 if (flags && __ratelimit(&depr_flags))
2789 pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2790 __func__, get_task_comm(comm, current), flags);
2791}
2792
2793/*
2794 * if pty, return the slave side (real_tty)
2795 * otherwise, return self
2796 */
2797static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2798{
2799 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2800 tty->driver->subtype == PTY_TYPE_MASTER)
2801 tty = tty->link;
2802 return tty;
2803}
2804
2805/*
2806 * Split this up, as gcc can choke on it otherwise..
2807 */
2808long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2809{
2810 struct tty_struct *tty = file_tty(file);
2811 struct tty_struct *real_tty;
2812 void __user *p = (void __user *)arg;
2813 int retval;
2814 struct tty_ldisc *ld;
2815
2816 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2817 return -EINVAL;
2818
2819 real_tty = tty_pair_get_tty(tty);
2820
2821 /*
2822 * Factor out some common prep work
2823 */
2824 switch (cmd) {
2825 case TIOCSETD:
2826 case TIOCSBRK:
2827 case TIOCCBRK:
2828 case TCSBRK:
2829 case TCSBRKP:
2830 retval = tty_check_change(tty);
2831 if (retval)
2832 return retval;
2833 if (cmd != TIOCCBRK) {
2834 tty_wait_until_sent(tty, 0);
2835 if (signal_pending(current))
2836 return -EINTR;
2837 }
2838 break;
2839 }
2840
2841 /*
2842 * Now do the stuff.
2843 */
2844 switch (cmd) {
2845 case TIOCSTI:
2846 return tiocsti(tty, p);
2847 case TIOCGWINSZ:
2848 return tiocgwinsz(real_tty, p);
2849 case TIOCSWINSZ:
2850 return tiocswinsz(real_tty, p);
2851 case TIOCCONS:
2852 return real_tty != tty ? -EINVAL : tioccons(file);
2853 case FIONBIO:
2854 return fionbio(file, p);
2855 case TIOCEXCL:
2856 set_bit(TTY_EXCLUSIVE, &tty->flags);
2857 return 0;
2858 case TIOCNXCL:
2859 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2860 return 0;
2861 case TIOCGEXCL:
2862 {
2863 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2864 return put_user(excl, (int __user *)p);
2865 }
2866 case TIOCNOTTY:
2867 if (current->signal->tty != tty)
2868 return -ENOTTY;
2869 no_tty();
2870 return 0;
2871 case TIOCSCTTY:
2872 return tiocsctty(tty, file, arg);
2873 case TIOCGPGRP:
2874 return tiocgpgrp(tty, real_tty, p);
2875 case TIOCSPGRP:
2876 return tiocspgrp(tty, real_tty, p);
2877 case TIOCGSID:
2878 return tiocgsid(tty, real_tty, p);
2879 case TIOCGETD:
2880 return put_user(tty->ldisc->ops->num, (int __user *)p);
2881 case TIOCSETD:
2882 return tiocsetd(tty, p);
2883 case TIOCVHANGUP:
2884 if (!capable(CAP_SYS_ADMIN))
2885 return -EPERM;
2886 tty_vhangup(tty);
2887 return 0;
2888 case TIOCGDEV:
2889 {
2890 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2891 return put_user(ret, (unsigned int __user *)p);
2892 }
2893 /*
2894 * Break handling
2895 */
2896 case TIOCSBRK: /* Turn break on, unconditionally */
2897 if (tty->ops->break_ctl)
2898 return tty->ops->break_ctl(tty, -1);
2899 return 0;
2900 case TIOCCBRK: /* Turn break off, unconditionally */
2901 if (tty->ops->break_ctl)
2902 return tty->ops->break_ctl(tty, 0);
2903 return 0;
2904 case TCSBRK: /* SVID version: non-zero arg --> no break */
2905 /* non-zero arg means wait for all output data
2906 * to be sent (performed above) but don't send break.
2907 * This is used by the tcdrain() termios function.
2908 */
2909 if (!arg)
2910 return send_break(tty, 250);
2911 return 0;
2912 case TCSBRKP: /* support for POSIX tcsendbreak() */
2913 return send_break(tty, arg ? arg*100 : 250);
2914
2915 case TIOCMGET:
2916 return tty_tiocmget(tty, p);
2917 case TIOCMSET:
2918 case TIOCMBIC:
2919 case TIOCMBIS:
2920 return tty_tiocmset(tty, cmd, p);
2921 case TIOCGICOUNT:
2922 retval = tty_tiocgicount(tty, p);
2923 /* For the moment allow fall through to the old method */
2924 if (retval != -EINVAL)
2925 return retval;
2926 break;
2927 case TCFLSH:
2928 switch (arg) {
2929 case TCIFLUSH:
2930 case TCIOFLUSH:
2931 /* flush tty buffer and allow ldisc to process ioctl */
2932 tty_buffer_flush(tty, NULL);
2933 break;
2934 }
2935 break;
2936 case TIOCSSERIAL:
2937 tty_warn_deprecated_flags(p);
2938 break;
2939 }
2940 if (tty->ops->ioctl) {
2941 retval = tty->ops->ioctl(tty, cmd, arg);
2942 if (retval != -ENOIOCTLCMD)
2943 return retval;
2944 }
2945 ld = tty_ldisc_ref_wait(tty);
2946 retval = -EINVAL;
2947 if (ld->ops->ioctl) {
2948 retval = ld->ops->ioctl(tty, file, cmd, arg);
2949 if (retval == -ENOIOCTLCMD)
2950 retval = -ENOTTY;
2951 }
2952 tty_ldisc_deref(ld);
2953 return retval;
2954}
2955
2956#ifdef CONFIG_COMPAT
2957static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2958 unsigned long arg)
2959{
2960 struct tty_struct *tty = file_tty(file);
2961 struct tty_ldisc *ld;
2962 int retval = -ENOIOCTLCMD;
2963
2964 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2965 return -EINVAL;
2966
2967 if (tty->ops->compat_ioctl) {
2968 retval = tty->ops->compat_ioctl(tty, cmd, arg);
2969 if (retval != -ENOIOCTLCMD)
2970 return retval;
2971 }
2972
2973 ld = tty_ldisc_ref_wait(tty);
2974 if (ld->ops->compat_ioctl)
2975 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2976 else
2977 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2978 tty_ldisc_deref(ld);
2979
2980 return retval;
2981}
2982#endif
2983
2984static int this_tty(const void *t, struct file *file, unsigned fd)
2985{
2986 if (likely(file->f_op->read != tty_read))
2987 return 0;
2988 return file_tty(file) != t ? 0 : fd + 1;
2989}
2990
2991/*
2992 * This implements the "Secure Attention Key" --- the idea is to
2993 * prevent trojan horses by killing all processes associated with this
2994 * tty when the user hits the "Secure Attention Key". Required for
2995 * super-paranoid applications --- see the Orange Book for more details.
2996 *
2997 * This code could be nicer; ideally it should send a HUP, wait a few
2998 * seconds, then send a INT, and then a KILL signal. But you then
2999 * have to coordinate with the init process, since all processes associated
3000 * with the current tty must be dead before the new getty is allowed
3001 * to spawn.
3002 *
3003 * Now, if it would be correct ;-/ The current code has a nasty hole -
3004 * it doesn't catch files in flight. We may send the descriptor to ourselves
3005 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3006 *
3007 * Nasty bug: do_SAK is being called in interrupt context. This can
3008 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3009 */
3010void __do_SAK(struct tty_struct *tty)
3011{
3012#ifdef TTY_SOFT_SAK
3013 tty_hangup(tty);
3014#else
3015 struct task_struct *g, *p;
3016 struct pid *session;
3017 int i;
3018
3019 if (!tty)
3020 return;
3021 session = tty->session;
3022
3023 tty_ldisc_flush(tty);
3024
3025 tty_driver_flush_buffer(tty);
3026
3027 read_lock(&tasklist_lock);
3028 /* Kill the entire session */
3029 do_each_pid_task(session, PIDTYPE_SID, p) {
3030 printk(KERN_NOTICE "SAK: killed process %d"
3031 " (%s): task_session(p)==tty->session\n",
3032 task_pid_nr(p), p->comm);
3033 send_sig(SIGKILL, p, 1);
3034 } while_each_pid_task(session, PIDTYPE_SID, p);
3035 /* Now kill any processes that happen to have the
3036 * tty open.
3037 */
3038 do_each_thread(g, p) {
3039 if (p->signal->tty == tty) {
3040 printk(KERN_NOTICE "SAK: killed process %d"
3041 " (%s): task_session(p)==tty->session\n",
3042 task_pid_nr(p), p->comm);
3043 send_sig(SIGKILL, p, 1);
3044 continue;
3045 }
3046 task_lock(p);
3047 i = iterate_fd(p->files, 0, this_tty, tty);
3048 if (i != 0) {
3049 printk(KERN_NOTICE "SAK: killed process %d"
3050 " (%s): fd#%d opened to the tty\n",
3051 task_pid_nr(p), p->comm, i - 1);
3052 force_sig(SIGKILL, p);
3053 }
3054 task_unlock(p);
3055 } while_each_thread(g, p);
3056 read_unlock(&tasklist_lock);
3057#endif
3058}
3059
3060static void do_SAK_work(struct work_struct *work)
3061{
3062 struct tty_struct *tty =
3063 container_of(work, struct tty_struct, SAK_work);
3064 __do_SAK(tty);
3065}
3066
3067/*
3068 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3069 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3070 * the values which we write to it will be identical to the values which it
3071 * already has. --akpm
3072 */
3073void do_SAK(struct tty_struct *tty)
3074{
3075 if (!tty)
3076 return;
3077 schedule_work(&tty->SAK_work);
3078}
3079
3080EXPORT_SYMBOL(do_SAK);
3081
3082static int dev_match_devt(struct device *dev, const void *data)
3083{
3084 const dev_t *devt = data;
3085 return dev->devt == *devt;
3086}
3087
3088/* Must put_device() after it's unused! */
3089static struct device *tty_get_device(struct tty_struct *tty)
3090{
3091 dev_t devt = tty_devnum(tty);
3092 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3093}
3094
3095
3096/**
3097 * alloc_tty_struct
3098 *
3099 * This subroutine allocates and initializes a tty structure.
3100 *
3101 * Locking: none - tty in question is not exposed at this point
3102 */
3103
3104struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3105{
3106 struct tty_struct *tty;
3107
3108 tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3109 if (!tty)
3110 return NULL;
3111
3112 kref_init(&tty->kref);
3113 tty->magic = TTY_MAGIC;
3114 tty_ldisc_init(tty);
3115 tty->session = NULL;
3116 tty->pgrp = NULL;
3117 mutex_init(&tty->legacy_mutex);
3118 mutex_init(&tty->throttle_mutex);
3119 init_rwsem(&tty->termios_rwsem);
3120 mutex_init(&tty->winsize_mutex);
3121 init_ldsem(&tty->ldisc_sem);
3122 init_waitqueue_head(&tty->write_wait);
3123 init_waitqueue_head(&tty->read_wait);
3124 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3125 mutex_init(&tty->atomic_write_lock);
3126 spin_lock_init(&tty->ctrl_lock);
3127 spin_lock_init(&tty->flow_lock);
3128 INIT_LIST_HEAD(&tty->tty_files);
3129 INIT_WORK(&tty->SAK_work, do_SAK_work);
3130
3131 tty->driver = driver;
3132 tty->ops = driver->ops;
3133 tty->index = idx;
3134 tty_line_name(driver, idx, tty->name);
3135 tty->dev = tty_get_device(tty);
3136
3137 return tty;
3138}
3139
3140/**
3141 * deinitialize_tty_struct
3142 * @tty: tty to deinitialize
3143 *
3144 * This subroutine deinitializes a tty structure that has been newly
3145 * allocated but tty_release cannot be called on that yet.
3146 *
3147 * Locking: none - tty in question must not be exposed at this point
3148 */
3149void deinitialize_tty_struct(struct tty_struct *tty)
3150{
3151 tty_ldisc_deinit(tty);
3152}
3153
3154/**
3155 * tty_put_char - write one character to a tty
3156 * @tty: tty
3157 * @ch: character
3158 *
3159 * Write one byte to the tty using the provided put_char method
3160 * if present. Returns the number of characters successfully output.
3161 *
3162 * Note: the specific put_char operation in the driver layer may go
3163 * away soon. Don't call it directly, use this method
3164 */
3165
3166int tty_put_char(struct tty_struct *tty, unsigned char ch)
3167{
3168 if (tty->ops->put_char)
3169 return tty->ops->put_char(tty, ch);
3170 return tty->ops->write(tty, &ch, 1);
3171}
3172EXPORT_SYMBOL_GPL(tty_put_char);
3173
3174struct class *tty_class;
3175
3176static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3177 unsigned int index, unsigned int count)
3178{
3179 int err;
3180
3181 /* init here, since reused cdevs cause crashes */
3182 driver->cdevs[index] = cdev_alloc();
3183 if (!driver->cdevs[index])
3184 return -ENOMEM;
3185 driver->cdevs[index]->ops = &tty_fops;
3186 driver->cdevs[index]->owner = driver->owner;
3187 err = cdev_add(driver->cdevs[index], dev, count);
3188 if (err)
3189 kobject_put(&driver->cdevs[index]->kobj);
3190 return err;
3191}
3192
3193/**
3194 * tty_register_device - register a tty device
3195 * @driver: the tty driver that describes the tty device
3196 * @index: the index in the tty driver for this tty device
3197 * @device: a struct device that is associated with this tty device.
3198 * This field is optional, if there is no known struct device
3199 * for this tty device it can be set to NULL safely.
3200 *
3201 * Returns a pointer to the struct device for this tty device
3202 * (or ERR_PTR(-EFOO) on error).
3203 *
3204 * This call is required to be made to register an individual tty device
3205 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3206 * that bit is not set, this function should not be called by a tty
3207 * driver.
3208 *
3209 * Locking: ??
3210 */
3211
3212struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3213 struct device *device)
3214{
3215 return tty_register_device_attr(driver, index, device, NULL, NULL);
3216}
3217EXPORT_SYMBOL(tty_register_device);
3218
3219static void tty_device_create_release(struct device *dev)
3220{
3221 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3222 kfree(dev);
3223}
3224
3225/**
3226 * tty_register_device_attr - register a tty device
3227 * @driver: the tty driver that describes the tty device
3228 * @index: the index in the tty driver for this tty device
3229 * @device: a struct device that is associated with this tty device.
3230 * This field is optional, if there is no known struct device
3231 * for this tty device it can be set to NULL safely.
3232 * @drvdata: Driver data to be set to device.
3233 * @attr_grp: Attribute group to be set on device.
3234 *
3235 * Returns a pointer to the struct device for this tty device
3236 * (or ERR_PTR(-EFOO) on error).
3237 *
3238 * This call is required to be made to register an individual tty device
3239 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3240 * that bit is not set, this function should not be called by a tty
3241 * driver.
3242 *
3243 * Locking: ??
3244 */
3245struct device *tty_register_device_attr(struct tty_driver *driver,
3246 unsigned index, struct device *device,
3247 void *drvdata,
3248 const struct attribute_group **attr_grp)
3249{
3250 char name[64];
3251 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3252 struct device *dev = NULL;
3253 int retval = -ENODEV;
3254 bool cdev = false;
3255
3256 if (index >= driver->num) {
3257 printk(KERN_ERR "Attempt to register invalid tty line number "
3258 " (%d).\n", index);
3259 return ERR_PTR(-EINVAL);
3260 }
3261
3262 if (driver->type == TTY_DRIVER_TYPE_PTY)
3263 pty_line_name(driver, index, name);
3264 else
3265 tty_line_name(driver, index, name);
3266
3267 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3268 retval = tty_cdev_add(driver, devt, index, 1);
3269 if (retval)
3270 goto error;
3271 cdev = true;
3272 }
3273
3274 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3275 if (!dev) {
3276 retval = -ENOMEM;
3277 goto error;
3278 }
3279
3280 dev->devt = devt;
3281 dev->class = tty_class;
3282 dev->parent = device;
3283 dev->release = tty_device_create_release;
3284 dev_set_name(dev, "%s", name);
3285 dev->groups = attr_grp;
3286 dev_set_drvdata(dev, drvdata);
3287
3288 retval = device_register(dev);
3289 if (retval)
3290 goto error;
3291
3292 return dev;
3293
3294error:
3295 put_device(dev);
3296 if (cdev) {
3297 cdev_del(driver->cdevs[index]);
3298 driver->cdevs[index] = NULL;
3299 }
3300 return ERR_PTR(retval);
3301}
3302EXPORT_SYMBOL_GPL(tty_register_device_attr);
3303
3304/**
3305 * tty_unregister_device - unregister a tty device
3306 * @driver: the tty driver that describes the tty device
3307 * @index: the index in the tty driver for this tty device
3308 *
3309 * If a tty device is registered with a call to tty_register_device() then
3310 * this function must be called when the tty device is gone.
3311 *
3312 * Locking: ??
3313 */
3314
3315void tty_unregister_device(struct tty_driver *driver, unsigned index)
3316{
3317 device_destroy(tty_class,
3318 MKDEV(driver->major, driver->minor_start) + index);
3319 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3320 cdev_del(driver->cdevs[index]);
3321 driver->cdevs[index] = NULL;
3322 }
3323}
3324EXPORT_SYMBOL(tty_unregister_device);
3325
3326/**
3327 * __tty_alloc_driver -- allocate tty driver
3328 * @lines: count of lines this driver can handle at most
3329 * @owner: module which is repsonsible for this driver
3330 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3331 *
3332 * This should not be called directly, some of the provided macros should be
3333 * used instead. Use IS_ERR and friends on @retval.
3334 */
3335struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3336 unsigned long flags)
3337{
3338 struct tty_driver *driver;
3339 unsigned int cdevs = 1;
3340 int err;
3341
3342 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3343 return ERR_PTR(-EINVAL);
3344
3345 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3346 if (!driver)
3347 return ERR_PTR(-ENOMEM);
3348
3349 kref_init(&driver->kref);
3350 driver->magic = TTY_DRIVER_MAGIC;
3351 driver->num = lines;
3352 driver->owner = owner;
3353 driver->flags = flags;
3354
3355 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3356 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3357 GFP_KERNEL);
3358 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3359 GFP_KERNEL);
3360 if (!driver->ttys || !driver->termios) {
3361 err = -ENOMEM;
3362 goto err_free_all;
3363 }
3364 }
3365
3366 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3367 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3368 GFP_KERNEL);
3369 if (!driver->ports) {
3370 err = -ENOMEM;
3371 goto err_free_all;
3372 }
3373 cdevs = lines;
3374 }
3375
3376 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3377 if (!driver->cdevs) {
3378 err = -ENOMEM;
3379 goto err_free_all;
3380 }
3381
3382 return driver;
3383err_free_all:
3384 kfree(driver->ports);
3385 kfree(driver->ttys);
3386 kfree(driver->termios);
3387 kfree(driver->cdevs);
3388 kfree(driver);
3389 return ERR_PTR(err);
3390}
3391EXPORT_SYMBOL(__tty_alloc_driver);
3392
3393static void destruct_tty_driver(struct kref *kref)
3394{
3395 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3396 int i;
3397 struct ktermios *tp;
3398
3399 if (driver->flags & TTY_DRIVER_INSTALLED) {
3400 /*
3401 * Free the termios and termios_locked structures because
3402 * we don't want to get memory leaks when modular tty
3403 * drivers are removed from the kernel.
3404 */
3405 for (i = 0; i < driver->num; i++) {
3406 tp = driver->termios[i];
3407 if (tp) {
3408 driver->termios[i] = NULL;
3409 kfree(tp);
3410 }
3411 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3412 tty_unregister_device(driver, i);
3413 }
3414 proc_tty_unregister_driver(driver);
3415 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3416 cdev_del(driver->cdevs[0]);
3417 }
3418 kfree(driver->cdevs);
3419 kfree(driver->ports);
3420 kfree(driver->termios);
3421 kfree(driver->ttys);
3422 kfree(driver);
3423}
3424
3425void tty_driver_kref_put(struct tty_driver *driver)
3426{
3427 kref_put(&driver->kref, destruct_tty_driver);
3428}
3429EXPORT_SYMBOL(tty_driver_kref_put);
3430
3431void tty_set_operations(struct tty_driver *driver,
3432 const struct tty_operations *op)
3433{
3434 driver->ops = op;
3435};
3436EXPORT_SYMBOL(tty_set_operations);
3437
3438void put_tty_driver(struct tty_driver *d)
3439{
3440 tty_driver_kref_put(d);
3441}
3442EXPORT_SYMBOL(put_tty_driver);
3443
3444/*
3445 * Called by a tty driver to register itself.
3446 */
3447int tty_register_driver(struct tty_driver *driver)
3448{
3449 int error;
3450 int i;
3451 dev_t dev;
3452 struct device *d;
3453
3454 if (!driver->major) {
3455 error = alloc_chrdev_region(&dev, driver->minor_start,
3456 driver->num, driver->name);
3457 if (!error) {
3458 driver->major = MAJOR(dev);
3459 driver->minor_start = MINOR(dev);
3460 }
3461 } else {
3462 dev = MKDEV(driver->major, driver->minor_start);
3463 error = register_chrdev_region(dev, driver->num, driver->name);
3464 }
3465 if (error < 0)
3466 goto err;
3467
3468 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3469 error = tty_cdev_add(driver, dev, 0, driver->num);
3470 if (error)
3471 goto err_unreg_char;
3472 }
3473
3474 mutex_lock(&tty_mutex);
3475 list_add(&driver->tty_drivers, &tty_drivers);
3476 mutex_unlock(&tty_mutex);
3477
3478 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3479 for (i = 0; i < driver->num; i++) {
3480 d = tty_register_device(driver, i, NULL);
3481 if (IS_ERR(d)) {
3482 error = PTR_ERR(d);
3483 goto err_unreg_devs;
3484 }
3485 }
3486 }
3487 proc_tty_register_driver(driver);
3488 driver->flags |= TTY_DRIVER_INSTALLED;
3489 return 0;
3490
3491err_unreg_devs:
3492 for (i--; i >= 0; i--)
3493 tty_unregister_device(driver, i);
3494
3495 mutex_lock(&tty_mutex);
3496 list_del(&driver->tty_drivers);
3497 mutex_unlock(&tty_mutex);
3498
3499err_unreg_char:
3500 unregister_chrdev_region(dev, driver->num);
3501err:
3502 return error;
3503}
3504EXPORT_SYMBOL(tty_register_driver);
3505
3506/*
3507 * Called by a tty driver to unregister itself.
3508 */
3509int tty_unregister_driver(struct tty_driver *driver)
3510{
3511#if 0
3512 /* FIXME */
3513 if (driver->refcount)
3514 return -EBUSY;
3515#endif
3516 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3517 driver->num);
3518 mutex_lock(&tty_mutex);
3519 list_del(&driver->tty_drivers);
3520 mutex_unlock(&tty_mutex);
3521 return 0;
3522}
3523
3524EXPORT_SYMBOL(tty_unregister_driver);
3525
3526dev_t tty_devnum(struct tty_struct *tty)
3527{
3528 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3529}
3530EXPORT_SYMBOL(tty_devnum);
3531
3532void tty_default_fops(struct file_operations *fops)
3533{
3534 *fops = tty_fops;
3535}
3536
3537/*
3538 * Initialize the console device. This is called *early*, so
3539 * we can't necessarily depend on lots of kernel help here.
3540 * Just do some early initializations, and do the complex setup
3541 * later.
3542 */
3543void __init console_init(void)
3544{
3545 initcall_t *call;
3546
3547 /* Setup the default TTY line discipline. */
3548 tty_ldisc_begin();
3549
3550 /*
3551 * set up the console device so that later boot sequences can
3552 * inform about problems etc..
3553 */
3554 call = __con_initcall_start;
3555 while (call < __con_initcall_end) {
3556 (*call)();
3557 call++;
3558 }
3559}
3560
3561static char *tty_devnode(struct device *dev, umode_t *mode)
3562{
3563 if (!mode)
3564 return NULL;
3565 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3566 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3567 *mode = 0666;
3568 return NULL;
3569}
3570
3571static int __init tty_class_init(void)
3572{
3573 tty_class = class_create(THIS_MODULE, "tty");
3574 if (IS_ERR(tty_class))
3575 return PTR_ERR(tty_class);
3576 tty_class->devnode = tty_devnode;
3577 return 0;
3578}
3579
3580postcore_initcall(tty_class_init);
3581
3582/* 3/2004 jmc: why do these devices exist? */
3583static struct cdev tty_cdev, console_cdev;
3584
3585static ssize_t show_cons_active(struct device *dev,
3586 struct device_attribute *attr, char *buf)
3587{
3588 struct console *cs[16];
3589 int i = 0;
3590 struct console *c;
3591 ssize_t count = 0;
3592
3593 console_lock();
3594 for_each_console(c) {
3595 if (!c->device)
3596 continue;
3597 if (!c->write)
3598 continue;
3599 if ((c->flags & CON_ENABLED) == 0)
3600 continue;
3601 cs[i++] = c;
3602 if (i >= ARRAY_SIZE(cs))
3603 break;
3604 }
3605 while (i--) {
3606 int index = cs[i]->index;
3607 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3608
3609 /* don't resolve tty0 as some programs depend on it */
3610 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3611 count += tty_line_name(drv, index, buf + count);
3612 else
3613 count += sprintf(buf + count, "%s%d",
3614 cs[i]->name, cs[i]->index);
3615
3616 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3617 }
3618 console_unlock();
3619
3620 return count;
3621}
3622static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3623
3624static struct attribute *cons_dev_attrs[] = {
3625 &dev_attr_active.attr,
3626 NULL
3627};
3628
3629ATTRIBUTE_GROUPS(cons_dev);
3630
3631static struct device *consdev;
3632
3633void console_sysfs_notify(void)
3634{
3635 if (consdev)
3636 sysfs_notify(&consdev->kobj, NULL, "active");
3637}
3638
3639/*
3640 * Ok, now we can initialize the rest of the tty devices and can count
3641 * on memory allocations, interrupts etc..
3642 */
3643int __init tty_init(void)
3644{
3645 cdev_init(&tty_cdev, &tty_fops);
3646 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3647 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3648 panic("Couldn't register /dev/tty driver\n");
3649 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3650
3651 cdev_init(&console_cdev, &console_fops);
3652 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3653 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3654 panic("Couldn't register /dev/console driver\n");
3655 consdev = device_create_with_groups(tty_class, NULL,
3656 MKDEV(TTYAUX_MAJOR, 1), NULL,
3657 cons_dev_groups, "console");
3658 if (IS_ERR(consdev))
3659 consdev = NULL;
3660
3661#ifdef CONFIG_VT
3662 vty_init(&console_fops);
3663#endif
3664 return 0;
3665}
3666