tty: n_null: remove optional ldops
[linux-2.6-block.git] / drivers / tty / tty_io.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 */
5
6/*
7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
8 * or rs-channels. It also implements echoing, cooked mode etc.
9 *
10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
11 *
12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
13 * tty_struct and tty_queue structures. Previously there was an array
14 * of 256 tty_struct's which was statically allocated, and the
15 * tty_queue structures were allocated at boot time. Both are now
16 * dynamically allocated only when the tty is open.
17 *
18 * Also restructured routines so that there is more of a separation
19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
20 * the low-level tty routines (serial.c, pty.c, console.c). This
21 * makes for cleaner and more compact code. -TYT, 9/17/92
22 *
23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
24 * which can be dynamically activated and de-activated by the line
25 * discipline handling modules (like SLIP).
26 *
27 * NOTE: pay no attention to the line discipline code (yet); its
28 * interface is still subject to change in this version...
29 * -- TYT, 1/31/92
30 *
31 * Added functionality to the OPOST tty handling. No delays, but all
32 * other bits should be there.
33 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
34 *
35 * Rewrote canonical mode and added more termios flags.
36 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
37 *
38 * Reorganized FASYNC support so mouse code can share it.
39 * -- ctm@ardi.com, 9Sep95
40 *
41 * New TIOCLINUX variants added.
42 * -- mj@k332.feld.cvut.cz, 19-Nov-95
43 *
44 * Restrict vt switching via ioctl()
45 * -- grif@cs.ucr.edu, 5-Dec-95
46 *
47 * Move console and virtual terminal code to more appropriate files,
48 * implement CONFIG_VT and generalize console device interface.
49 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
50 *
51 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
52 * -- Bill Hawes <whawes@star.net>, June 97
53 *
54 * Added devfs support.
55 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
56 *
57 * Added support for a Unix98-style ptmx device.
58 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
59 *
60 * Reduced memory usage for older ARM systems
61 * -- Russell King <rmk@arm.linux.org.uk>
62 *
63 * Move do_SAK() into process context. Less stack use in devfs functions.
64 * alloc_tty_struct() always uses kmalloc()
65 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
66 */
67
68#include <linux/types.h>
69#include <linux/major.h>
70#include <linux/errno.h>
71#include <linux/signal.h>
72#include <linux/fcntl.h>
73#include <linux/sched/signal.h>
74#include <linux/sched/task.h>
75#include <linux/interrupt.h>
76#include <linux/tty.h>
77#include <linux/tty_driver.h>
78#include <linux/tty_flip.h>
79#include <linux/devpts_fs.h>
80#include <linux/file.h>
81#include <linux/fdtable.h>
82#include <linux/console.h>
83#include <linux/timer.h>
84#include <linux/ctype.h>
85#include <linux/kd.h>
86#include <linux/mm.h>
87#include <linux/string.h>
88#include <linux/slab.h>
89#include <linux/poll.h>
90#include <linux/ppp-ioctl.h>
91#include <linux/proc_fs.h>
92#include <linux/init.h>
93#include <linux/module.h>
94#include <linux/device.h>
95#include <linux/wait.h>
96#include <linux/bitops.h>
97#include <linux/delay.h>
98#include <linux/seq_file.h>
99#include <linux/serial.h>
100#include <linux/ratelimit.h>
101#include <linux/compat.h>
102#include <linux/uaccess.h>
103#include <linux/termios_internal.h>
104#include <linux/fs.h>
105
106#include <linux/kbd_kern.h>
107#include <linux/vt_kern.h>
108#include <linux/selection.h>
109
110#include <linux/kmod.h>
111#include <linux/nsproxy.h>
112#include "tty.h"
113
114#undef TTY_DEBUG_HANGUP
115#ifdef TTY_DEBUG_HANGUP
116# define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args)
117#else
118# define tty_debug_hangup(tty, f, args...) do { } while (0)
119#endif
120
121#define TTY_PARANOIA_CHECK 1
122#define CHECK_TTY_COUNT 1
123
124struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
125 .c_iflag = ICRNL | IXON,
126 .c_oflag = OPOST | ONLCR,
127 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
128 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
129 ECHOCTL | ECHOKE | IEXTEN,
130 .c_cc = INIT_C_CC,
131 .c_ispeed = 38400,
132 .c_ospeed = 38400,
133 /* .c_line = N_TTY, */
134};
135EXPORT_SYMBOL(tty_std_termios);
136
137/* This list gets poked at by procfs and various bits of boot up code. This
138 * could do with some rationalisation such as pulling the tty proc function
139 * into this file.
140 */
141
142LIST_HEAD(tty_drivers); /* linked list of tty drivers */
143
144/* Mutex to protect creating and releasing a tty */
145DEFINE_MUTEX(tty_mutex);
146
147static ssize_t tty_read(struct kiocb *, struct iov_iter *);
148static ssize_t tty_write(struct kiocb *, struct iov_iter *);
149static __poll_t tty_poll(struct file *, poll_table *);
150static int tty_open(struct inode *, struct file *);
151#ifdef CONFIG_COMPAT
152static long tty_compat_ioctl(struct file *file, unsigned int cmd,
153 unsigned long arg);
154#else
155#define tty_compat_ioctl NULL
156#endif
157static int __tty_fasync(int fd, struct file *filp, int on);
158static int tty_fasync(int fd, struct file *filp, int on);
159static void release_tty(struct tty_struct *tty, int idx);
160
161/**
162 * free_tty_struct - free a disused tty
163 * @tty: tty struct to free
164 *
165 * Free the write buffers, tty queue and tty memory itself.
166 *
167 * Locking: none. Must be called after tty is definitely unused
168 */
169static void free_tty_struct(struct tty_struct *tty)
170{
171 tty_ldisc_deinit(tty);
172 put_device(tty->dev);
173 kvfree(tty->write_buf);
174 kfree(tty);
175}
176
177static inline struct tty_struct *file_tty(struct file *file)
178{
179 return ((struct tty_file_private *)file->private_data)->tty;
180}
181
182int tty_alloc_file(struct file *file)
183{
184 struct tty_file_private *priv;
185
186 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
187 if (!priv)
188 return -ENOMEM;
189
190 file->private_data = priv;
191
192 return 0;
193}
194
195/* Associate a new file with the tty structure */
196void tty_add_file(struct tty_struct *tty, struct file *file)
197{
198 struct tty_file_private *priv = file->private_data;
199
200 priv->tty = tty;
201 priv->file = file;
202
203 spin_lock(&tty->files_lock);
204 list_add(&priv->list, &tty->tty_files);
205 spin_unlock(&tty->files_lock);
206}
207
208/**
209 * tty_free_file - free file->private_data
210 * @file: to free private_data of
211 *
212 * This shall be used only for fail path handling when tty_add_file was not
213 * called yet.
214 */
215void tty_free_file(struct file *file)
216{
217 struct tty_file_private *priv = file->private_data;
218
219 file->private_data = NULL;
220 kfree(priv);
221}
222
223/* Delete file from its tty */
224static void tty_del_file(struct file *file)
225{
226 struct tty_file_private *priv = file->private_data;
227 struct tty_struct *tty = priv->tty;
228
229 spin_lock(&tty->files_lock);
230 list_del(&priv->list);
231 spin_unlock(&tty->files_lock);
232 tty_free_file(file);
233}
234
235/**
236 * tty_name - return tty naming
237 * @tty: tty structure
238 *
239 * Convert a tty structure into a name. The name reflects the kernel naming
240 * policy and if udev is in use may not reflect user space
241 *
242 * Locking: none
243 */
244const char *tty_name(const struct tty_struct *tty)
245{
246 if (!tty) /* Hmm. NULL pointer. That's fun. */
247 return "NULL tty";
248 return tty->name;
249}
250EXPORT_SYMBOL(tty_name);
251
252const char *tty_driver_name(const struct tty_struct *tty)
253{
254 if (!tty || !tty->driver)
255 return "";
256 return tty->driver->name;
257}
258
259static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
260 const char *routine)
261{
262#ifdef TTY_PARANOIA_CHECK
263 if (!tty) {
264 pr_warn("(%d:%d): %s: NULL tty\n",
265 imajor(inode), iminor(inode), routine);
266 return 1;
267 }
268#endif
269 return 0;
270}
271
272/* Caller must hold tty_lock */
273static void check_tty_count(struct tty_struct *tty, const char *routine)
274{
275#ifdef CHECK_TTY_COUNT
276 struct list_head *p;
277 int count = 0, kopen_count = 0;
278
279 spin_lock(&tty->files_lock);
280 list_for_each(p, &tty->tty_files) {
281 count++;
282 }
283 spin_unlock(&tty->files_lock);
284 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
285 tty->driver->subtype == PTY_TYPE_SLAVE &&
286 tty->link && tty->link->count)
287 count++;
288 if (tty_port_kopened(tty->port))
289 kopen_count++;
290 if (tty->count != (count + kopen_count)) {
291 tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
292 routine, tty->count, count, kopen_count);
293 }
294#endif
295}
296
297/**
298 * get_tty_driver - find device of a tty
299 * @device: device identifier
300 * @index: returns the index of the tty
301 *
302 * This routine returns a tty driver structure, given a device number and also
303 * passes back the index number.
304 *
305 * Locking: caller must hold tty_mutex
306 */
307static struct tty_driver *get_tty_driver(dev_t device, int *index)
308{
309 struct tty_driver *p;
310
311 list_for_each_entry(p, &tty_drivers, tty_drivers) {
312 dev_t base = MKDEV(p->major, p->minor_start);
313
314 if (device < base || device >= base + p->num)
315 continue;
316 *index = device - base;
317 return tty_driver_kref_get(p);
318 }
319 return NULL;
320}
321
322/**
323 * tty_dev_name_to_number - return dev_t for device name
324 * @name: user space name of device under /dev
325 * @number: pointer to dev_t that this function will populate
326 *
327 * This function converts device names like ttyS0 or ttyUSB1 into dev_t like
328 * (4, 64) or (188, 1). If no corresponding driver is registered then the
329 * function returns -%ENODEV.
330 *
331 * Locking: this acquires tty_mutex to protect the tty_drivers list from
332 * being modified while we are traversing it, and makes sure to
333 * release it before exiting.
334 */
335int tty_dev_name_to_number(const char *name, dev_t *number)
336{
337 struct tty_driver *p;
338 int ret;
339 int index, prefix_length = 0;
340 const char *str;
341
342 for (str = name; *str && !isdigit(*str); str++)
343 ;
344
345 if (!*str)
346 return -EINVAL;
347
348 ret = kstrtoint(str, 10, &index);
349 if (ret)
350 return ret;
351
352 prefix_length = str - name;
353 mutex_lock(&tty_mutex);
354
355 list_for_each_entry(p, &tty_drivers, tty_drivers)
356 if (prefix_length == strlen(p->name) && strncmp(name,
357 p->name, prefix_length) == 0) {
358 if (index < p->num) {
359 *number = MKDEV(p->major, p->minor_start + index);
360 goto out;
361 }
362 }
363
364 /* if here then driver wasn't found */
365 ret = -ENODEV;
366out:
367 mutex_unlock(&tty_mutex);
368 return ret;
369}
370EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
371
372#ifdef CONFIG_CONSOLE_POLL
373
374/**
375 * tty_find_polling_driver - find device of a polled tty
376 * @name: name string to match
377 * @line: pointer to resulting tty line nr
378 *
379 * This routine returns a tty driver structure, given a name and the condition
380 * that the tty driver is capable of polled operation.
381 */
382struct tty_driver *tty_find_polling_driver(char *name, int *line)
383{
384 struct tty_driver *p, *res = NULL;
385 int tty_line = 0;
386 int len;
387 char *str, *stp;
388
389 for (str = name; *str; str++)
390 if ((*str >= '0' && *str <= '9') || *str == ',')
391 break;
392 if (!*str)
393 return NULL;
394
395 len = str - name;
396 tty_line = simple_strtoul(str, &str, 10);
397
398 mutex_lock(&tty_mutex);
399 /* Search through the tty devices to look for a match */
400 list_for_each_entry(p, &tty_drivers, tty_drivers) {
401 if (!len || strncmp(name, p->name, len) != 0)
402 continue;
403 stp = str;
404 if (*stp == ',')
405 stp++;
406 if (*stp == '\0')
407 stp = NULL;
408
409 if (tty_line >= 0 && tty_line < p->num && p->ops &&
410 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
411 res = tty_driver_kref_get(p);
412 *line = tty_line;
413 break;
414 }
415 }
416 mutex_unlock(&tty_mutex);
417
418 return res;
419}
420EXPORT_SYMBOL_GPL(tty_find_polling_driver);
421#endif
422
423static ssize_t hung_up_tty_read(struct kiocb *iocb, struct iov_iter *to)
424{
425 return 0;
426}
427
428static ssize_t hung_up_tty_write(struct kiocb *iocb, struct iov_iter *from)
429{
430 return -EIO;
431}
432
433/* No kernel lock held - none needed ;) */
434static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
435{
436 return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
437}
438
439static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
440 unsigned long arg)
441{
442 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
443}
444
445static long hung_up_tty_compat_ioctl(struct file *file,
446 unsigned int cmd, unsigned long arg)
447{
448 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
449}
450
451static int hung_up_tty_fasync(int fd, struct file *file, int on)
452{
453 return -ENOTTY;
454}
455
456static void tty_show_fdinfo(struct seq_file *m, struct file *file)
457{
458 struct tty_struct *tty = file_tty(file);
459
460 if (tty && tty->ops && tty->ops->show_fdinfo)
461 tty->ops->show_fdinfo(tty, m);
462}
463
464static const struct file_operations tty_fops = {
465 .llseek = no_llseek,
466 .read_iter = tty_read,
467 .write_iter = tty_write,
468 .splice_read = copy_splice_read,
469 .splice_write = iter_file_splice_write,
470 .poll = tty_poll,
471 .unlocked_ioctl = tty_ioctl,
472 .compat_ioctl = tty_compat_ioctl,
473 .open = tty_open,
474 .release = tty_release,
475 .fasync = tty_fasync,
476 .show_fdinfo = tty_show_fdinfo,
477};
478
479static const struct file_operations console_fops = {
480 .llseek = no_llseek,
481 .read_iter = tty_read,
482 .write_iter = redirected_tty_write,
483 .splice_read = copy_splice_read,
484 .splice_write = iter_file_splice_write,
485 .poll = tty_poll,
486 .unlocked_ioctl = tty_ioctl,
487 .compat_ioctl = tty_compat_ioctl,
488 .open = tty_open,
489 .release = tty_release,
490 .fasync = tty_fasync,
491};
492
493static const struct file_operations hung_up_tty_fops = {
494 .llseek = no_llseek,
495 .read_iter = hung_up_tty_read,
496 .write_iter = hung_up_tty_write,
497 .poll = hung_up_tty_poll,
498 .unlocked_ioctl = hung_up_tty_ioctl,
499 .compat_ioctl = hung_up_tty_compat_ioctl,
500 .release = tty_release,
501 .fasync = hung_up_tty_fasync,
502};
503
504static DEFINE_SPINLOCK(redirect_lock);
505static struct file *redirect;
506
507/**
508 * tty_wakeup - request more data
509 * @tty: terminal
510 *
511 * Internal and external helper for wakeups of tty. This function informs the
512 * line discipline if present that the driver is ready to receive more output
513 * data.
514 */
515void tty_wakeup(struct tty_struct *tty)
516{
517 struct tty_ldisc *ld;
518
519 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
520 ld = tty_ldisc_ref(tty);
521 if (ld) {
522 if (ld->ops->write_wakeup)
523 ld->ops->write_wakeup(tty);
524 tty_ldisc_deref(ld);
525 }
526 }
527 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
528}
529EXPORT_SYMBOL_GPL(tty_wakeup);
530
531/**
532 * tty_release_redirect - Release a redirect on a pty if present
533 * @tty: tty device
534 *
535 * This is available to the pty code so if the master closes, if the slave is a
536 * redirect it can release the redirect.
537 */
538static struct file *tty_release_redirect(struct tty_struct *tty)
539{
540 struct file *f = NULL;
541
542 spin_lock(&redirect_lock);
543 if (redirect && file_tty(redirect) == tty) {
544 f = redirect;
545 redirect = NULL;
546 }
547 spin_unlock(&redirect_lock);
548
549 return f;
550}
551
552/**
553 * __tty_hangup - actual handler for hangup events
554 * @tty: tty device
555 * @exit_session: if non-zero, signal all foreground group processes
556 *
557 * This can be called by a "kworker" kernel thread. That is process synchronous
558 * but doesn't hold any locks, so we need to make sure we have the appropriate
559 * locks for what we're doing.
560 *
561 * The hangup event clears any pending redirections onto the hung up device. It
562 * ensures future writes will error and it does the needed line discipline
563 * hangup and signal delivery. The tty object itself remains intact.
564 *
565 * Locking:
566 * * BTM
567 *
568 * * redirect lock for undoing redirection
569 * * file list lock for manipulating list of ttys
570 * * tty_ldiscs_lock from called functions
571 * * termios_rwsem resetting termios data
572 * * tasklist_lock to walk task list for hangup event
573 *
574 * * ->siglock to protect ->signal/->sighand
575 *
576 */
577static void __tty_hangup(struct tty_struct *tty, int exit_session)
578{
579 struct file *cons_filp = NULL;
580 struct file *filp, *f;
581 struct tty_file_private *priv;
582 int closecount = 0, n;
583 int refs;
584
585 if (!tty)
586 return;
587
588 f = tty_release_redirect(tty);
589
590 tty_lock(tty);
591
592 if (test_bit(TTY_HUPPED, &tty->flags)) {
593 tty_unlock(tty);
594 return;
595 }
596
597 /*
598 * Some console devices aren't actually hung up for technical and
599 * historical reasons, which can lead to indefinite interruptible
600 * sleep in n_tty_read(). The following explicitly tells
601 * n_tty_read() to abort readers.
602 */
603 set_bit(TTY_HUPPING, &tty->flags);
604
605 /* inuse_filps is protected by the single tty lock,
606 * this really needs to change if we want to flush the
607 * workqueue with the lock held.
608 */
609 check_tty_count(tty, "tty_hangup");
610
611 spin_lock(&tty->files_lock);
612 /* This breaks for file handles being sent over AF_UNIX sockets ? */
613 list_for_each_entry(priv, &tty->tty_files, list) {
614 filp = priv->file;
615 if (filp->f_op->write_iter == redirected_tty_write)
616 cons_filp = filp;
617 if (filp->f_op->write_iter != tty_write)
618 continue;
619 closecount++;
620 __tty_fasync(-1, filp, 0); /* can't block */
621 filp->f_op = &hung_up_tty_fops;
622 }
623 spin_unlock(&tty->files_lock);
624
625 refs = tty_signal_session_leader(tty, exit_session);
626 /* Account for the p->signal references we killed */
627 while (refs--)
628 tty_kref_put(tty);
629
630 tty_ldisc_hangup(tty, cons_filp != NULL);
631
632 spin_lock_irq(&tty->ctrl.lock);
633 clear_bit(TTY_THROTTLED, &tty->flags);
634 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
635 put_pid(tty->ctrl.session);
636 put_pid(tty->ctrl.pgrp);
637 tty->ctrl.session = NULL;
638 tty->ctrl.pgrp = NULL;
639 tty->ctrl.pktstatus = 0;
640 spin_unlock_irq(&tty->ctrl.lock);
641
642 /*
643 * If one of the devices matches a console pointer, we
644 * cannot just call hangup() because that will cause
645 * tty->count and state->count to go out of sync.
646 * So we just call close() the right number of times.
647 */
648 if (cons_filp) {
649 if (tty->ops->close)
650 for (n = 0; n < closecount; n++)
651 tty->ops->close(tty, cons_filp);
652 } else if (tty->ops->hangup)
653 tty->ops->hangup(tty);
654 /*
655 * We don't want to have driver/ldisc interactions beyond the ones
656 * we did here. The driver layer expects no calls after ->hangup()
657 * from the ldisc side, which is now guaranteed.
658 */
659 set_bit(TTY_HUPPED, &tty->flags);
660 clear_bit(TTY_HUPPING, &tty->flags);
661 tty_unlock(tty);
662
663 if (f)
664 fput(f);
665}
666
667static void do_tty_hangup(struct work_struct *work)
668{
669 struct tty_struct *tty =
670 container_of(work, struct tty_struct, hangup_work);
671
672 __tty_hangup(tty, 0);
673}
674
675/**
676 * tty_hangup - trigger a hangup event
677 * @tty: tty to hangup
678 *
679 * A carrier loss (virtual or otherwise) has occurred on @tty. Schedule a
680 * hangup sequence to run after this event.
681 */
682void tty_hangup(struct tty_struct *tty)
683{
684 tty_debug_hangup(tty, "hangup\n");
685 schedule_work(&tty->hangup_work);
686}
687EXPORT_SYMBOL(tty_hangup);
688
689/**
690 * tty_vhangup - process vhangup
691 * @tty: tty to hangup
692 *
693 * The user has asked via system call for the terminal to be hung up. We do
694 * this synchronously so that when the syscall returns the process is complete.
695 * That guarantee is necessary for security reasons.
696 */
697void tty_vhangup(struct tty_struct *tty)
698{
699 tty_debug_hangup(tty, "vhangup\n");
700 __tty_hangup(tty, 0);
701}
702EXPORT_SYMBOL(tty_vhangup);
703
704
705/**
706 * tty_vhangup_self - process vhangup for own ctty
707 *
708 * Perform a vhangup on the current controlling tty
709 */
710void tty_vhangup_self(void)
711{
712 struct tty_struct *tty;
713
714 tty = get_current_tty();
715 if (tty) {
716 tty_vhangup(tty);
717 tty_kref_put(tty);
718 }
719}
720
721/**
722 * tty_vhangup_session - hangup session leader exit
723 * @tty: tty to hangup
724 *
725 * The session leader is exiting and hanging up its controlling terminal.
726 * Every process in the foreground process group is signalled %SIGHUP.
727 *
728 * We do this synchronously so that when the syscall returns the process is
729 * complete. That guarantee is necessary for security reasons.
730 */
731void tty_vhangup_session(struct tty_struct *tty)
732{
733 tty_debug_hangup(tty, "session hangup\n");
734 __tty_hangup(tty, 1);
735}
736
737/**
738 * tty_hung_up_p - was tty hung up
739 * @filp: file pointer of tty
740 *
741 * Return: true if the tty has been subject to a vhangup or a carrier loss
742 */
743int tty_hung_up_p(struct file *filp)
744{
745 return (filp && filp->f_op == &hung_up_tty_fops);
746}
747EXPORT_SYMBOL(tty_hung_up_p);
748
749void __stop_tty(struct tty_struct *tty)
750{
751 if (tty->flow.stopped)
752 return;
753 tty->flow.stopped = true;
754 if (tty->ops->stop)
755 tty->ops->stop(tty);
756}
757
758/**
759 * stop_tty - propagate flow control
760 * @tty: tty to stop
761 *
762 * Perform flow control to the driver. May be called on an already stopped
763 * device and will not re-call the &tty_driver->stop() method.
764 *
765 * This functionality is used by both the line disciplines for halting incoming
766 * flow and by the driver. It may therefore be called from any context, may be
767 * under the tty %atomic_write_lock but not always.
768 *
769 * Locking:
770 * flow.lock
771 */
772void stop_tty(struct tty_struct *tty)
773{
774 unsigned long flags;
775
776 spin_lock_irqsave(&tty->flow.lock, flags);
777 __stop_tty(tty);
778 spin_unlock_irqrestore(&tty->flow.lock, flags);
779}
780EXPORT_SYMBOL(stop_tty);
781
782void __start_tty(struct tty_struct *tty)
783{
784 if (!tty->flow.stopped || tty->flow.tco_stopped)
785 return;
786 tty->flow.stopped = false;
787 if (tty->ops->start)
788 tty->ops->start(tty);
789 tty_wakeup(tty);
790}
791
792/**
793 * start_tty - propagate flow control
794 * @tty: tty to start
795 *
796 * Start a tty that has been stopped if at all possible. If @tty was previously
797 * stopped and is now being started, the &tty_driver->start() method is invoked
798 * and the line discipline woken.
799 *
800 * Locking:
801 * flow.lock
802 */
803void start_tty(struct tty_struct *tty)
804{
805 unsigned long flags;
806
807 spin_lock_irqsave(&tty->flow.lock, flags);
808 __start_tty(tty);
809 spin_unlock_irqrestore(&tty->flow.lock, flags);
810}
811EXPORT_SYMBOL(start_tty);
812
813static void tty_update_time(struct tty_struct *tty, bool mtime)
814{
815 time64_t sec = ktime_get_real_seconds();
816 struct tty_file_private *priv;
817
818 spin_lock(&tty->files_lock);
819 list_for_each_entry(priv, &tty->tty_files, list) {
820 struct inode *inode = file_inode(priv->file);
821 struct timespec64 *time = mtime ? &inode->i_mtime : &inode->i_atime;
822
823 /*
824 * We only care if the two values differ in anything other than the
825 * lower three bits (i.e every 8 seconds). If so, then we can update
826 * the time of the tty device, otherwise it could be construded as a
827 * security leak to let userspace know the exact timing of the tty.
828 */
829 if ((sec ^ time->tv_sec) & ~7)
830 time->tv_sec = sec;
831 }
832 spin_unlock(&tty->files_lock);
833}
834
835/*
836 * Iterate on the ldisc ->read() function until we've gotten all
837 * the data the ldisc has for us.
838 *
839 * The "cookie" is something that the ldisc read function can fill
840 * in to let us know that there is more data to be had.
841 *
842 * We promise to continue to call the ldisc until it stops returning
843 * data or clears the cookie. The cookie may be something that the
844 * ldisc maintains state for and needs to free.
845 */
846static int iterate_tty_read(struct tty_ldisc *ld, struct tty_struct *tty,
847 struct file *file, struct iov_iter *to)
848{
849 int retval = 0;
850 void *cookie = NULL;
851 unsigned long offset = 0;
852 char kernel_buf[64];
853 size_t count = iov_iter_count(to);
854
855 do {
856 int size, copied;
857
858 size = count > sizeof(kernel_buf) ? sizeof(kernel_buf) : count;
859 size = ld->ops->read(tty, file, kernel_buf, size, &cookie, offset);
860 if (!size)
861 break;
862
863 if (size < 0) {
864 /* Did we have an earlier error (ie -EFAULT)? */
865 if (retval)
866 break;
867 retval = size;
868
869 /*
870 * -EOVERFLOW means we didn't have enough space
871 * for a whole packet, and we shouldn't return
872 * a partial result.
873 */
874 if (retval == -EOVERFLOW)
875 offset = 0;
876 break;
877 }
878
879 copied = copy_to_iter(kernel_buf, size, to);
880 offset += copied;
881 count -= copied;
882
883 /*
884 * If the user copy failed, we still need to do another ->read()
885 * call if we had a cookie to let the ldisc clear up.
886 *
887 * But make sure size is zeroed.
888 */
889 if (unlikely(copied != size)) {
890 count = 0;
891 retval = -EFAULT;
892 }
893 } while (cookie);
894
895 /* We always clear tty buffer in case they contained passwords */
896 memzero_explicit(kernel_buf, sizeof(kernel_buf));
897 return offset ? offset : retval;
898}
899
900
901/**
902 * tty_read - read method for tty device files
903 * @iocb: kernel I/O control block
904 * @to: destination for the data read
905 *
906 * Perform the read system call function on this terminal device. Checks
907 * for hung up devices before calling the line discipline method.
908 *
909 * Locking:
910 * Locks the line discipline internally while needed. Multiple read calls
911 * may be outstanding in parallel.
912 */
913static ssize_t tty_read(struct kiocb *iocb, struct iov_iter *to)
914{
915 int i;
916 struct file *file = iocb->ki_filp;
917 struct inode *inode = file_inode(file);
918 struct tty_struct *tty = file_tty(file);
919 struct tty_ldisc *ld;
920
921 if (tty_paranoia_check(tty, inode, "tty_read"))
922 return -EIO;
923 if (!tty || tty_io_error(tty))
924 return -EIO;
925
926 /* We want to wait for the line discipline to sort out in this
927 * situation.
928 */
929 ld = tty_ldisc_ref_wait(tty);
930 if (!ld)
931 return hung_up_tty_read(iocb, to);
932 i = -EIO;
933 if (ld->ops->read)
934 i = iterate_tty_read(ld, tty, file, to);
935 tty_ldisc_deref(ld);
936
937 if (i > 0)
938 tty_update_time(tty, false);
939
940 return i;
941}
942
943void tty_write_unlock(struct tty_struct *tty)
944{
945 mutex_unlock(&tty->atomic_write_lock);
946 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
947}
948
949int tty_write_lock(struct tty_struct *tty, int ndelay)
950{
951 if (!mutex_trylock(&tty->atomic_write_lock)) {
952 if (ndelay)
953 return -EAGAIN;
954 if (mutex_lock_interruptible(&tty->atomic_write_lock))
955 return -ERESTARTSYS;
956 }
957 return 0;
958}
959
960/*
961 * Split writes up in sane blocksizes to avoid
962 * denial-of-service type attacks
963 */
964static inline ssize_t do_tty_write(
965 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
966 struct tty_struct *tty,
967 struct file *file,
968 struct iov_iter *from)
969{
970 size_t count = iov_iter_count(from);
971 ssize_t ret, written = 0;
972 unsigned int chunk;
973
974 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
975 if (ret < 0)
976 return ret;
977
978 /*
979 * We chunk up writes into a temporary buffer. This
980 * simplifies low-level drivers immensely, since they
981 * don't have locking issues and user mode accesses.
982 *
983 * But if TTY_NO_WRITE_SPLIT is set, we should use a
984 * big chunk-size..
985 *
986 * The default chunk-size is 2kB, because the NTTY
987 * layer has problems with bigger chunks. It will
988 * claim to be able to handle more characters than
989 * it actually does.
990 */
991 chunk = 2048;
992 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
993 chunk = 65536;
994 if (count < chunk)
995 chunk = count;
996
997 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
998 if (tty->write_cnt < chunk) {
999 unsigned char *buf_chunk;
1000
1001 if (chunk < 1024)
1002 chunk = 1024;
1003
1004 buf_chunk = kvmalloc(chunk, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1005 if (!buf_chunk) {
1006 ret = -ENOMEM;
1007 goto out;
1008 }
1009 kvfree(tty->write_buf);
1010 tty->write_cnt = chunk;
1011 tty->write_buf = buf_chunk;
1012 }
1013
1014 /* Do the write .. */
1015 for (;;) {
1016 size_t size = count;
1017
1018 if (size > chunk)
1019 size = chunk;
1020
1021 ret = -EFAULT;
1022 if (copy_from_iter(tty->write_buf, size, from) != size)
1023 break;
1024
1025 ret = write(tty, file, tty->write_buf, size);
1026 if (ret <= 0)
1027 break;
1028
1029 written += ret;
1030 if (ret > size)
1031 break;
1032
1033 /* FIXME! Have Al check this! */
1034 if (ret != size)
1035 iov_iter_revert(from, size-ret);
1036
1037 count -= ret;
1038 if (!count)
1039 break;
1040 ret = -ERESTARTSYS;
1041 if (signal_pending(current))
1042 break;
1043 cond_resched();
1044 }
1045 if (written) {
1046 tty_update_time(tty, true);
1047 ret = written;
1048 }
1049out:
1050 tty_write_unlock(tty);
1051 return ret;
1052}
1053
1054/**
1055 * tty_write_message - write a message to a certain tty, not just the console.
1056 * @tty: the destination tty_struct
1057 * @msg: the message to write
1058 *
1059 * This is used for messages that need to be redirected to a specific tty. We
1060 * don't put it into the syslog queue right now maybe in the future if really
1061 * needed.
1062 *
1063 * We must still hold the BTM and test the CLOSING flag for the moment.
1064 */
1065void tty_write_message(struct tty_struct *tty, char *msg)
1066{
1067 if (tty) {
1068 mutex_lock(&tty->atomic_write_lock);
1069 tty_lock(tty);
1070 if (tty->ops->write && tty->count > 0)
1071 tty->ops->write(tty, msg, strlen(msg));
1072 tty_unlock(tty);
1073 tty_write_unlock(tty);
1074 }
1075}
1076
1077static ssize_t file_tty_write(struct file *file, struct kiocb *iocb, struct iov_iter *from)
1078{
1079 struct tty_struct *tty = file_tty(file);
1080 struct tty_ldisc *ld;
1081 ssize_t ret;
1082
1083 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1084 return -EIO;
1085 if (!tty || !tty->ops->write || tty_io_error(tty))
1086 return -EIO;
1087 /* Short term debug to catch buggy drivers */
1088 if (tty->ops->write_room == NULL)
1089 tty_err(tty, "missing write_room method\n");
1090 ld = tty_ldisc_ref_wait(tty);
1091 if (!ld)
1092 return hung_up_tty_write(iocb, from);
1093 if (!ld->ops->write)
1094 ret = -EIO;
1095 else
1096 ret = do_tty_write(ld->ops->write, tty, file, from);
1097 tty_ldisc_deref(ld);
1098 return ret;
1099}
1100
1101/**
1102 * tty_write - write method for tty device file
1103 * @iocb: kernel I/O control block
1104 * @from: iov_iter with data to write
1105 *
1106 * Write data to a tty device via the line discipline.
1107 *
1108 * Locking:
1109 * Locks the line discipline as required
1110 * Writes to the tty driver are serialized by the atomic_write_lock
1111 * and are then processed in chunks to the device. The line
1112 * discipline write method will not be invoked in parallel for
1113 * each device.
1114 */
1115static ssize_t tty_write(struct kiocb *iocb, struct iov_iter *from)
1116{
1117 return file_tty_write(iocb->ki_filp, iocb, from);
1118}
1119
1120ssize_t redirected_tty_write(struct kiocb *iocb, struct iov_iter *iter)
1121{
1122 struct file *p = NULL;
1123
1124 spin_lock(&redirect_lock);
1125 if (redirect)
1126 p = get_file(redirect);
1127 spin_unlock(&redirect_lock);
1128
1129 /*
1130 * We know the redirected tty is just another tty, we can
1131 * call file_tty_write() directly with that file pointer.
1132 */
1133 if (p) {
1134 ssize_t res;
1135
1136 res = file_tty_write(p, iocb, iter);
1137 fput(p);
1138 return res;
1139 }
1140 return tty_write(iocb, iter);
1141}
1142
1143/**
1144 * tty_send_xchar - send priority character
1145 * @tty: the tty to send to
1146 * @ch: xchar to send
1147 *
1148 * Send a high priority character to the tty even if stopped.
1149 *
1150 * Locking: none for xchar method, write ordering for write method.
1151 */
1152int tty_send_xchar(struct tty_struct *tty, char ch)
1153{
1154 bool was_stopped = tty->flow.stopped;
1155
1156 if (tty->ops->send_xchar) {
1157 down_read(&tty->termios_rwsem);
1158 tty->ops->send_xchar(tty, ch);
1159 up_read(&tty->termios_rwsem);
1160 return 0;
1161 }
1162
1163 if (tty_write_lock(tty, 0) < 0)
1164 return -ERESTARTSYS;
1165
1166 down_read(&tty->termios_rwsem);
1167 if (was_stopped)
1168 start_tty(tty);
1169 tty->ops->write(tty, &ch, 1);
1170 if (was_stopped)
1171 stop_tty(tty);
1172 up_read(&tty->termios_rwsem);
1173 tty_write_unlock(tty);
1174 return 0;
1175}
1176
1177/**
1178 * pty_line_name - generate name for a pty
1179 * @driver: the tty driver in use
1180 * @index: the minor number
1181 * @p: output buffer of at least 6 bytes
1182 *
1183 * Generate a name from a @driver reference and write it to the output buffer
1184 * @p.
1185 *
1186 * Locking: None
1187 */
1188static void pty_line_name(struct tty_driver *driver, int index, char *p)
1189{
1190 static const char ptychar[] = "pqrstuvwxyzabcde";
1191 int i = index + driver->name_base;
1192 /* ->name is initialized to "ttyp", but "tty" is expected */
1193 sprintf(p, "%s%c%x",
1194 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1195 ptychar[i >> 4 & 0xf], i & 0xf);
1196}
1197
1198/**
1199 * tty_line_name - generate name for a tty
1200 * @driver: the tty driver in use
1201 * @index: the minor number
1202 * @p: output buffer of at least 7 bytes
1203 *
1204 * Generate a name from a @driver reference and write it to the output buffer
1205 * @p.
1206 *
1207 * Locking: None
1208 */
1209static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1210{
1211 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1212 return sprintf(p, "%s", driver->name);
1213 else
1214 return sprintf(p, "%s%d", driver->name,
1215 index + driver->name_base);
1216}
1217
1218/**
1219 * tty_driver_lookup_tty() - find an existing tty, if any
1220 * @driver: the driver for the tty
1221 * @file: file object
1222 * @idx: the minor number
1223 *
1224 * Return: the tty, if found. If not found, return %NULL or ERR_PTR() if the
1225 * driver lookup() method returns an error.
1226 *
1227 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1228 */
1229static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1230 struct file *file, int idx)
1231{
1232 struct tty_struct *tty;
1233
1234 if (driver->ops->lookup) {
1235 if (!file)
1236 tty = ERR_PTR(-EIO);
1237 else
1238 tty = driver->ops->lookup(driver, file, idx);
1239 } else {
1240 if (idx >= driver->num)
1241 return ERR_PTR(-EINVAL);
1242 tty = driver->ttys[idx];
1243 }
1244 if (!IS_ERR(tty))
1245 tty_kref_get(tty);
1246 return tty;
1247}
1248
1249/**
1250 * tty_init_termios - helper for termios setup
1251 * @tty: the tty to set up
1252 *
1253 * Initialise the termios structure for this tty. This runs under the
1254 * %tty_mutex currently so we can be relaxed about ordering.
1255 */
1256void tty_init_termios(struct tty_struct *tty)
1257{
1258 struct ktermios *tp;
1259 int idx = tty->index;
1260
1261 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1262 tty->termios = tty->driver->init_termios;
1263 else {
1264 /* Check for lazy saved data */
1265 tp = tty->driver->termios[idx];
1266 if (tp != NULL) {
1267 tty->termios = *tp;
1268 tty->termios.c_line = tty->driver->init_termios.c_line;
1269 } else
1270 tty->termios = tty->driver->init_termios;
1271 }
1272 /* Compatibility until drivers always set this */
1273 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1274 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1275}
1276EXPORT_SYMBOL_GPL(tty_init_termios);
1277
1278/**
1279 * tty_standard_install - usual tty->ops->install
1280 * @driver: the driver for the tty
1281 * @tty: the tty
1282 *
1283 * If the @driver overrides @tty->ops->install, it still can call this function
1284 * to perform the standard install operations.
1285 */
1286int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1287{
1288 tty_init_termios(tty);
1289 tty_driver_kref_get(driver);
1290 tty->count++;
1291 driver->ttys[tty->index] = tty;
1292 return 0;
1293}
1294EXPORT_SYMBOL_GPL(tty_standard_install);
1295
1296/**
1297 * tty_driver_install_tty() - install a tty entry in the driver
1298 * @driver: the driver for the tty
1299 * @tty: the tty
1300 *
1301 * Install a tty object into the driver tables. The @tty->index field will be
1302 * set by the time this is called. This method is responsible for ensuring any
1303 * need additional structures are allocated and configured.
1304 *
1305 * Locking: tty_mutex for now
1306 */
1307static int tty_driver_install_tty(struct tty_driver *driver,
1308 struct tty_struct *tty)
1309{
1310 return driver->ops->install ? driver->ops->install(driver, tty) :
1311 tty_standard_install(driver, tty);
1312}
1313
1314/**
1315 * tty_driver_remove_tty() - remove a tty from the driver tables
1316 * @driver: the driver for the tty
1317 * @tty: tty to remove
1318 *
1319 * Remove a tty object from the driver tables. The tty->index field will be set
1320 * by the time this is called.
1321 *
1322 * Locking: tty_mutex for now
1323 */
1324static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1325{
1326 if (driver->ops->remove)
1327 driver->ops->remove(driver, tty);
1328 else
1329 driver->ttys[tty->index] = NULL;
1330}
1331
1332/**
1333 * tty_reopen() - fast re-open of an open tty
1334 * @tty: the tty to open
1335 *
1336 * Re-opens on master ptys are not allowed and return -%EIO.
1337 *
1338 * Locking: Caller must hold tty_lock
1339 * Return: 0 on success, -errno on error.
1340 */
1341static int tty_reopen(struct tty_struct *tty)
1342{
1343 struct tty_driver *driver = tty->driver;
1344 struct tty_ldisc *ld;
1345 int retval = 0;
1346
1347 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1348 driver->subtype == PTY_TYPE_MASTER)
1349 return -EIO;
1350
1351 if (!tty->count)
1352 return -EAGAIN;
1353
1354 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1355 return -EBUSY;
1356
1357 ld = tty_ldisc_ref_wait(tty);
1358 if (ld) {
1359 tty_ldisc_deref(ld);
1360 } else {
1361 retval = tty_ldisc_lock(tty, 5 * HZ);
1362 if (retval)
1363 return retval;
1364
1365 if (!tty->ldisc)
1366 retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1367 tty_ldisc_unlock(tty);
1368 }
1369
1370 if (retval == 0)
1371 tty->count++;
1372
1373 return retval;
1374}
1375
1376/**
1377 * tty_init_dev - initialise a tty device
1378 * @driver: tty driver we are opening a device on
1379 * @idx: device index
1380 *
1381 * Prepare a tty device. This may not be a "new" clean device but could also be
1382 * an active device. The pty drivers require special handling because of this.
1383 *
1384 * Locking:
1385 * The function is called under the tty_mutex, which protects us from the
1386 * tty struct or driver itself going away.
1387 *
1388 * On exit the tty device has the line discipline attached and a reference
1389 * count of 1. If a pair was created for pty/tty use and the other was a pty
1390 * master then it too has a reference count of 1.
1391 *
1392 * WSH 06/09/97: Rewritten to remove races and properly clean up after a failed
1393 * open. The new code protects the open with a mutex, so it's really quite
1394 * straightforward. The mutex locking can probably be relaxed for the (most
1395 * common) case of reopening a tty.
1396 *
1397 * Return: new tty structure
1398 */
1399struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1400{
1401 struct tty_struct *tty;
1402 int retval;
1403
1404 /*
1405 * First time open is complex, especially for PTY devices.
1406 * This code guarantees that either everything succeeds and the
1407 * TTY is ready for operation, or else the table slots are vacated
1408 * and the allocated memory released. (Except that the termios
1409 * may be retained.)
1410 */
1411
1412 if (!try_module_get(driver->owner))
1413 return ERR_PTR(-ENODEV);
1414
1415 tty = alloc_tty_struct(driver, idx);
1416 if (!tty) {
1417 retval = -ENOMEM;
1418 goto err_module_put;
1419 }
1420
1421 tty_lock(tty);
1422 retval = tty_driver_install_tty(driver, tty);
1423 if (retval < 0)
1424 goto err_free_tty;
1425
1426 if (!tty->port)
1427 tty->port = driver->ports[idx];
1428
1429 if (WARN_RATELIMIT(!tty->port,
1430 "%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n",
1431 __func__, tty->driver->name)) {
1432 retval = -EINVAL;
1433 goto err_release_lock;
1434 }
1435
1436 retval = tty_ldisc_lock(tty, 5 * HZ);
1437 if (retval)
1438 goto err_release_lock;
1439 tty->port->itty = tty;
1440
1441 /*
1442 * Structures all installed ... call the ldisc open routines.
1443 * If we fail here just call release_tty to clean up. No need
1444 * to decrement the use counts, as release_tty doesn't care.
1445 */
1446 retval = tty_ldisc_setup(tty, tty->link);
1447 if (retval)
1448 goto err_release_tty;
1449 tty_ldisc_unlock(tty);
1450 /* Return the tty locked so that it cannot vanish under the caller */
1451 return tty;
1452
1453err_free_tty:
1454 tty_unlock(tty);
1455 free_tty_struct(tty);
1456err_module_put:
1457 module_put(driver->owner);
1458 return ERR_PTR(retval);
1459
1460 /* call the tty release_tty routine to clean out this slot */
1461err_release_tty:
1462 tty_ldisc_unlock(tty);
1463 tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1464 retval, idx);
1465err_release_lock:
1466 tty_unlock(tty);
1467 release_tty(tty, idx);
1468 return ERR_PTR(retval);
1469}
1470
1471/**
1472 * tty_save_termios() - save tty termios data in driver table
1473 * @tty: tty whose termios data to save
1474 *
1475 * Locking: Caller guarantees serialisation with tty_init_termios().
1476 */
1477void tty_save_termios(struct tty_struct *tty)
1478{
1479 struct ktermios *tp;
1480 int idx = tty->index;
1481
1482 /* If the port is going to reset then it has no termios to save */
1483 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1484 return;
1485
1486 /* Stash the termios data */
1487 tp = tty->driver->termios[idx];
1488 if (tp == NULL) {
1489 tp = kmalloc(sizeof(*tp), GFP_KERNEL);
1490 if (tp == NULL)
1491 return;
1492 tty->driver->termios[idx] = tp;
1493 }
1494 *tp = tty->termios;
1495}
1496EXPORT_SYMBOL_GPL(tty_save_termios);
1497
1498/**
1499 * tty_flush_works - flush all works of a tty/pty pair
1500 * @tty: tty device to flush works for (or either end of a pty pair)
1501 *
1502 * Sync flush all works belonging to @tty (and the 'other' tty).
1503 */
1504static void tty_flush_works(struct tty_struct *tty)
1505{
1506 flush_work(&tty->SAK_work);
1507 flush_work(&tty->hangup_work);
1508 if (tty->link) {
1509 flush_work(&tty->link->SAK_work);
1510 flush_work(&tty->link->hangup_work);
1511 }
1512}
1513
1514/**
1515 * release_one_tty - release tty structure memory
1516 * @work: work of tty we are obliterating
1517 *
1518 * Releases memory associated with a tty structure, and clears out the
1519 * driver table slots. This function is called when a device is no longer
1520 * in use. It also gets called when setup of a device fails.
1521 *
1522 * Locking:
1523 * takes the file list lock internally when working on the list of ttys
1524 * that the driver keeps.
1525 *
1526 * This method gets called from a work queue so that the driver private
1527 * cleanup ops can sleep (needed for USB at least)
1528 */
1529static void release_one_tty(struct work_struct *work)
1530{
1531 struct tty_struct *tty =
1532 container_of(work, struct tty_struct, hangup_work);
1533 struct tty_driver *driver = tty->driver;
1534 struct module *owner = driver->owner;
1535
1536 if (tty->ops->cleanup)
1537 tty->ops->cleanup(tty);
1538
1539 tty_driver_kref_put(driver);
1540 module_put(owner);
1541
1542 spin_lock(&tty->files_lock);
1543 list_del_init(&tty->tty_files);
1544 spin_unlock(&tty->files_lock);
1545
1546 put_pid(tty->ctrl.pgrp);
1547 put_pid(tty->ctrl.session);
1548 free_tty_struct(tty);
1549}
1550
1551static void queue_release_one_tty(struct kref *kref)
1552{
1553 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1554
1555 /* The hangup queue is now free so we can reuse it rather than
1556 * waste a chunk of memory for each port.
1557 */
1558 INIT_WORK(&tty->hangup_work, release_one_tty);
1559 schedule_work(&tty->hangup_work);
1560}
1561
1562/**
1563 * tty_kref_put - release a tty kref
1564 * @tty: tty device
1565 *
1566 * Release a reference to the @tty device and if need be let the kref layer
1567 * destruct the object for us.
1568 */
1569void tty_kref_put(struct tty_struct *tty)
1570{
1571 if (tty)
1572 kref_put(&tty->kref, queue_release_one_tty);
1573}
1574EXPORT_SYMBOL(tty_kref_put);
1575
1576/**
1577 * release_tty - release tty structure memory
1578 * @tty: tty device release
1579 * @idx: index of the tty device release
1580 *
1581 * Release both @tty and a possible linked partner (think pty pair),
1582 * and decrement the refcount of the backing module.
1583 *
1584 * Locking:
1585 * tty_mutex
1586 * takes the file list lock internally when working on the list of ttys
1587 * that the driver keeps.
1588 */
1589static void release_tty(struct tty_struct *tty, int idx)
1590{
1591 /* This should always be true but check for the moment */
1592 WARN_ON(tty->index != idx);
1593 WARN_ON(!mutex_is_locked(&tty_mutex));
1594 if (tty->ops->shutdown)
1595 tty->ops->shutdown(tty);
1596 tty_save_termios(tty);
1597 tty_driver_remove_tty(tty->driver, tty);
1598 if (tty->port)
1599 tty->port->itty = NULL;
1600 if (tty->link)
1601 tty->link->port->itty = NULL;
1602 if (tty->port)
1603 tty_buffer_cancel_work(tty->port);
1604 if (tty->link)
1605 tty_buffer_cancel_work(tty->link->port);
1606
1607 tty_kref_put(tty->link);
1608 tty_kref_put(tty);
1609}
1610
1611/**
1612 * tty_release_checks - check a tty before real release
1613 * @tty: tty to check
1614 * @idx: index of the tty
1615 *
1616 * Performs some paranoid checking before true release of the @tty. This is a
1617 * no-op unless %TTY_PARANOIA_CHECK is defined.
1618 */
1619static int tty_release_checks(struct tty_struct *tty, int idx)
1620{
1621#ifdef TTY_PARANOIA_CHECK
1622 if (idx < 0 || idx >= tty->driver->num) {
1623 tty_debug(tty, "bad idx %d\n", idx);
1624 return -1;
1625 }
1626
1627 /* not much to check for devpts */
1628 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1629 return 0;
1630
1631 if (tty != tty->driver->ttys[idx]) {
1632 tty_debug(tty, "bad driver table[%d] = %p\n",
1633 idx, tty->driver->ttys[idx]);
1634 return -1;
1635 }
1636 if (tty->driver->other) {
1637 struct tty_struct *o_tty = tty->link;
1638
1639 if (o_tty != tty->driver->other->ttys[idx]) {
1640 tty_debug(tty, "bad other table[%d] = %p\n",
1641 idx, tty->driver->other->ttys[idx]);
1642 return -1;
1643 }
1644 if (o_tty->link != tty) {
1645 tty_debug(tty, "bad link = %p\n", o_tty->link);
1646 return -1;
1647 }
1648 }
1649#endif
1650 return 0;
1651}
1652
1653/**
1654 * tty_kclose - closes tty opened by tty_kopen
1655 * @tty: tty device
1656 *
1657 * Performs the final steps to release and free a tty device. It is the same as
1658 * tty_release_struct() except that it also resets %TTY_PORT_KOPENED flag on
1659 * @tty->port.
1660 */
1661void tty_kclose(struct tty_struct *tty)
1662{
1663 /*
1664 * Ask the line discipline code to release its structures
1665 */
1666 tty_ldisc_release(tty);
1667
1668 /* Wait for pending work before tty destruction commences */
1669 tty_flush_works(tty);
1670
1671 tty_debug_hangup(tty, "freeing structure\n");
1672 /*
1673 * The release_tty function takes care of the details of clearing
1674 * the slots and preserving the termios structure.
1675 */
1676 mutex_lock(&tty_mutex);
1677 tty_port_set_kopened(tty->port, 0);
1678 release_tty(tty, tty->index);
1679 mutex_unlock(&tty_mutex);
1680}
1681EXPORT_SYMBOL_GPL(tty_kclose);
1682
1683/**
1684 * tty_release_struct - release a tty struct
1685 * @tty: tty device
1686 * @idx: index of the tty
1687 *
1688 * Performs the final steps to release and free a tty device. It is roughly the
1689 * reverse of tty_init_dev().
1690 */
1691void tty_release_struct(struct tty_struct *tty, int idx)
1692{
1693 /*
1694 * Ask the line discipline code to release its structures
1695 */
1696 tty_ldisc_release(tty);
1697
1698 /* Wait for pending work before tty destruction commmences */
1699 tty_flush_works(tty);
1700
1701 tty_debug_hangup(tty, "freeing structure\n");
1702 /*
1703 * The release_tty function takes care of the details of clearing
1704 * the slots and preserving the termios structure.
1705 */
1706 mutex_lock(&tty_mutex);
1707 release_tty(tty, idx);
1708 mutex_unlock(&tty_mutex);
1709}
1710EXPORT_SYMBOL_GPL(tty_release_struct);
1711
1712/**
1713 * tty_release - vfs callback for close
1714 * @inode: inode of tty
1715 * @filp: file pointer for handle to tty
1716 *
1717 * Called the last time each file handle is closed that references this tty.
1718 * There may however be several such references.
1719 *
1720 * Locking:
1721 * Takes BKL. See tty_release_dev().
1722 *
1723 * Even releasing the tty structures is a tricky business. We have to be very
1724 * careful that the structures are all released at the same time, as interrupts
1725 * might otherwise get the wrong pointers.
1726 *
1727 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1728 * lead to double frees or releasing memory still in use.
1729 */
1730int tty_release(struct inode *inode, struct file *filp)
1731{
1732 struct tty_struct *tty = file_tty(filp);
1733 struct tty_struct *o_tty = NULL;
1734 int do_sleep, final;
1735 int idx;
1736 long timeout = 0;
1737 int once = 1;
1738
1739 if (tty_paranoia_check(tty, inode, __func__))
1740 return 0;
1741
1742 tty_lock(tty);
1743 check_tty_count(tty, __func__);
1744
1745 __tty_fasync(-1, filp, 0);
1746
1747 idx = tty->index;
1748 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1749 tty->driver->subtype == PTY_TYPE_MASTER)
1750 o_tty = tty->link;
1751
1752 if (tty_release_checks(tty, idx)) {
1753 tty_unlock(tty);
1754 return 0;
1755 }
1756
1757 tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1758
1759 if (tty->ops->close)
1760 tty->ops->close(tty, filp);
1761
1762 /* If tty is pty master, lock the slave pty (stable lock order) */
1763 tty_lock_slave(o_tty);
1764
1765 /*
1766 * Sanity check: if tty->count is going to zero, there shouldn't be
1767 * any waiters on tty->read_wait or tty->write_wait. We test the
1768 * wait queues and kick everyone out _before_ actually starting to
1769 * close. This ensures that we won't block while releasing the tty
1770 * structure.
1771 *
1772 * The test for the o_tty closing is necessary, since the master and
1773 * slave sides may close in any order. If the slave side closes out
1774 * first, its count will be one, since the master side holds an open.
1775 * Thus this test wouldn't be triggered at the time the slave closed,
1776 * so we do it now.
1777 */
1778 while (1) {
1779 do_sleep = 0;
1780
1781 if (tty->count <= 1) {
1782 if (waitqueue_active(&tty->read_wait)) {
1783 wake_up_poll(&tty->read_wait, EPOLLIN);
1784 do_sleep++;
1785 }
1786 if (waitqueue_active(&tty->write_wait)) {
1787 wake_up_poll(&tty->write_wait, EPOLLOUT);
1788 do_sleep++;
1789 }
1790 }
1791 if (o_tty && o_tty->count <= 1) {
1792 if (waitqueue_active(&o_tty->read_wait)) {
1793 wake_up_poll(&o_tty->read_wait, EPOLLIN);
1794 do_sleep++;
1795 }
1796 if (waitqueue_active(&o_tty->write_wait)) {
1797 wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1798 do_sleep++;
1799 }
1800 }
1801 if (!do_sleep)
1802 break;
1803
1804 if (once) {
1805 once = 0;
1806 tty_warn(tty, "read/write wait queue active!\n");
1807 }
1808 schedule_timeout_killable(timeout);
1809 if (timeout < 120 * HZ)
1810 timeout = 2 * timeout + 1;
1811 else
1812 timeout = MAX_SCHEDULE_TIMEOUT;
1813 }
1814
1815 if (o_tty) {
1816 if (--o_tty->count < 0) {
1817 tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1818 o_tty->count = 0;
1819 }
1820 }
1821 if (--tty->count < 0) {
1822 tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1823 tty->count = 0;
1824 }
1825
1826 /*
1827 * We've decremented tty->count, so we need to remove this file
1828 * descriptor off the tty->tty_files list; this serves two
1829 * purposes:
1830 * - check_tty_count sees the correct number of file descriptors
1831 * associated with this tty.
1832 * - do_tty_hangup no longer sees this file descriptor as
1833 * something that needs to be handled for hangups.
1834 */
1835 tty_del_file(filp);
1836
1837 /*
1838 * Perform some housekeeping before deciding whether to return.
1839 *
1840 * If _either_ side is closing, make sure there aren't any
1841 * processes that still think tty or o_tty is their controlling
1842 * tty.
1843 */
1844 if (!tty->count) {
1845 read_lock(&tasklist_lock);
1846 session_clear_tty(tty->ctrl.session);
1847 if (o_tty)
1848 session_clear_tty(o_tty->ctrl.session);
1849 read_unlock(&tasklist_lock);
1850 }
1851
1852 /* check whether both sides are closing ... */
1853 final = !tty->count && !(o_tty && o_tty->count);
1854
1855 tty_unlock_slave(o_tty);
1856 tty_unlock(tty);
1857
1858 /* At this point, the tty->count == 0 should ensure a dead tty
1859 * cannot be re-opened by a racing opener.
1860 */
1861
1862 if (!final)
1863 return 0;
1864
1865 tty_debug_hangup(tty, "final close\n");
1866
1867 tty_release_struct(tty, idx);
1868 return 0;
1869}
1870
1871/**
1872 * tty_open_current_tty - get locked tty of current task
1873 * @device: device number
1874 * @filp: file pointer to tty
1875 * @return: locked tty of the current task iff @device is /dev/tty
1876 *
1877 * Performs a re-open of the current task's controlling tty.
1878 *
1879 * We cannot return driver and index like for the other nodes because devpts
1880 * will not work then. It expects inodes to be from devpts FS.
1881 */
1882static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1883{
1884 struct tty_struct *tty;
1885 int retval;
1886
1887 if (device != MKDEV(TTYAUX_MAJOR, 0))
1888 return NULL;
1889
1890 tty = get_current_tty();
1891 if (!tty)
1892 return ERR_PTR(-ENXIO);
1893
1894 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1895 /* noctty = 1; */
1896 tty_lock(tty);
1897 tty_kref_put(tty); /* safe to drop the kref now */
1898
1899 retval = tty_reopen(tty);
1900 if (retval < 0) {
1901 tty_unlock(tty);
1902 tty = ERR_PTR(retval);
1903 }
1904 return tty;
1905}
1906
1907/**
1908 * tty_lookup_driver - lookup a tty driver for a given device file
1909 * @device: device number
1910 * @filp: file pointer to tty
1911 * @index: index for the device in the @return driver
1912 *
1913 * If returned value is not erroneous, the caller is responsible to decrement
1914 * the refcount by tty_driver_kref_put().
1915 *
1916 * Locking: %tty_mutex protects get_tty_driver()
1917 *
1918 * Return: driver for this inode (with increased refcount)
1919 */
1920static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1921 int *index)
1922{
1923 struct tty_driver *driver = NULL;
1924
1925 switch (device) {
1926#ifdef CONFIG_VT
1927 case MKDEV(TTY_MAJOR, 0): {
1928 extern struct tty_driver *console_driver;
1929
1930 driver = tty_driver_kref_get(console_driver);
1931 *index = fg_console;
1932 break;
1933 }
1934#endif
1935 case MKDEV(TTYAUX_MAJOR, 1): {
1936 struct tty_driver *console_driver = console_device(index);
1937
1938 if (console_driver) {
1939 driver = tty_driver_kref_get(console_driver);
1940 if (driver && filp) {
1941 /* Don't let /dev/console block */
1942 filp->f_flags |= O_NONBLOCK;
1943 break;
1944 }
1945 }
1946 if (driver)
1947 tty_driver_kref_put(driver);
1948 return ERR_PTR(-ENODEV);
1949 }
1950 default:
1951 driver = get_tty_driver(device, index);
1952 if (!driver)
1953 return ERR_PTR(-ENODEV);
1954 break;
1955 }
1956 return driver;
1957}
1958
1959static struct tty_struct *tty_kopen(dev_t device, int shared)
1960{
1961 struct tty_struct *tty;
1962 struct tty_driver *driver;
1963 int index = -1;
1964
1965 mutex_lock(&tty_mutex);
1966 driver = tty_lookup_driver(device, NULL, &index);
1967 if (IS_ERR(driver)) {
1968 mutex_unlock(&tty_mutex);
1969 return ERR_CAST(driver);
1970 }
1971
1972 /* check whether we're reopening an existing tty */
1973 tty = tty_driver_lookup_tty(driver, NULL, index);
1974 if (IS_ERR(tty) || shared)
1975 goto out;
1976
1977 if (tty) {
1978 /* drop kref from tty_driver_lookup_tty() */
1979 tty_kref_put(tty);
1980 tty = ERR_PTR(-EBUSY);
1981 } else { /* tty_init_dev returns tty with the tty_lock held */
1982 tty = tty_init_dev(driver, index);
1983 if (IS_ERR(tty))
1984 goto out;
1985 tty_port_set_kopened(tty->port, 1);
1986 }
1987out:
1988 mutex_unlock(&tty_mutex);
1989 tty_driver_kref_put(driver);
1990 return tty;
1991}
1992
1993/**
1994 * tty_kopen_exclusive - open a tty device for kernel
1995 * @device: dev_t of device to open
1996 *
1997 * Opens tty exclusively for kernel. Performs the driver lookup, makes sure
1998 * it's not already opened and performs the first-time tty initialization.
1999 *
2000 * Claims the global %tty_mutex to serialize:
2001 * * concurrent first-time tty initialization
2002 * * concurrent tty driver removal w/ lookup
2003 * * concurrent tty removal from driver table
2004 *
2005 * Return: the locked initialized &tty_struct
2006 */
2007struct tty_struct *tty_kopen_exclusive(dev_t device)
2008{
2009 return tty_kopen(device, 0);
2010}
2011EXPORT_SYMBOL_GPL(tty_kopen_exclusive);
2012
2013/**
2014 * tty_kopen_shared - open a tty device for shared in-kernel use
2015 * @device: dev_t of device to open
2016 *
2017 * Opens an already existing tty for in-kernel use. Compared to
2018 * tty_kopen_exclusive() above it doesn't ensure to be the only user.
2019 *
2020 * Locking: identical to tty_kopen() above.
2021 */
2022struct tty_struct *tty_kopen_shared(dev_t device)
2023{
2024 return tty_kopen(device, 1);
2025}
2026EXPORT_SYMBOL_GPL(tty_kopen_shared);
2027
2028/**
2029 * tty_open_by_driver - open a tty device
2030 * @device: dev_t of device to open
2031 * @filp: file pointer to tty
2032 *
2033 * Performs the driver lookup, checks for a reopen, or otherwise performs the
2034 * first-time tty initialization.
2035 *
2036 *
2037 * Claims the global tty_mutex to serialize:
2038 * * concurrent first-time tty initialization
2039 * * concurrent tty driver removal w/ lookup
2040 * * concurrent tty removal from driver table
2041 *
2042 * Return: the locked initialized or re-opened &tty_struct
2043 */
2044static struct tty_struct *tty_open_by_driver(dev_t device,
2045 struct file *filp)
2046{
2047 struct tty_struct *tty;
2048 struct tty_driver *driver = NULL;
2049 int index = -1;
2050 int retval;
2051
2052 mutex_lock(&tty_mutex);
2053 driver = tty_lookup_driver(device, filp, &index);
2054 if (IS_ERR(driver)) {
2055 mutex_unlock(&tty_mutex);
2056 return ERR_CAST(driver);
2057 }
2058
2059 /* check whether we're reopening an existing tty */
2060 tty = tty_driver_lookup_tty(driver, filp, index);
2061 if (IS_ERR(tty)) {
2062 mutex_unlock(&tty_mutex);
2063 goto out;
2064 }
2065
2066 if (tty) {
2067 if (tty_port_kopened(tty->port)) {
2068 tty_kref_put(tty);
2069 mutex_unlock(&tty_mutex);
2070 tty = ERR_PTR(-EBUSY);
2071 goto out;
2072 }
2073 mutex_unlock(&tty_mutex);
2074 retval = tty_lock_interruptible(tty);
2075 tty_kref_put(tty); /* drop kref from tty_driver_lookup_tty() */
2076 if (retval) {
2077 if (retval == -EINTR)
2078 retval = -ERESTARTSYS;
2079 tty = ERR_PTR(retval);
2080 goto out;
2081 }
2082 retval = tty_reopen(tty);
2083 if (retval < 0) {
2084 tty_unlock(tty);
2085 tty = ERR_PTR(retval);
2086 }
2087 } else { /* Returns with the tty_lock held for now */
2088 tty = tty_init_dev(driver, index);
2089 mutex_unlock(&tty_mutex);
2090 }
2091out:
2092 tty_driver_kref_put(driver);
2093 return tty;
2094}
2095
2096/**
2097 * tty_open - open a tty device
2098 * @inode: inode of device file
2099 * @filp: file pointer to tty
2100 *
2101 * tty_open() and tty_release() keep up the tty count that contains the number
2102 * of opens done on a tty. We cannot use the inode-count, as different inodes
2103 * might point to the same tty.
2104 *
2105 * Open-counting is needed for pty masters, as well as for keeping track of
2106 * serial lines: DTR is dropped when the last close happens.
2107 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2108 *
2109 * The termios state of a pty is reset on the first open so that settings don't
2110 * persist across reuse.
2111 *
2112 * Locking:
2113 * * %tty_mutex protects tty, tty_lookup_driver() and tty_init_dev().
2114 * * @tty->count should protect the rest.
2115 * * ->siglock protects ->signal/->sighand
2116 *
2117 * Note: the tty_unlock/lock cases without a ref are only safe due to %tty_mutex
2118 */
2119static int tty_open(struct inode *inode, struct file *filp)
2120{
2121 struct tty_struct *tty;
2122 int noctty, retval;
2123 dev_t device = inode->i_rdev;
2124 unsigned saved_flags = filp->f_flags;
2125
2126 nonseekable_open(inode, filp);
2127
2128retry_open:
2129 retval = tty_alloc_file(filp);
2130 if (retval)
2131 return -ENOMEM;
2132
2133 tty = tty_open_current_tty(device, filp);
2134 if (!tty)
2135 tty = tty_open_by_driver(device, filp);
2136
2137 if (IS_ERR(tty)) {
2138 tty_free_file(filp);
2139 retval = PTR_ERR(tty);
2140 if (retval != -EAGAIN || signal_pending(current))
2141 return retval;
2142 schedule();
2143 goto retry_open;
2144 }
2145
2146 tty_add_file(tty, filp);
2147
2148 check_tty_count(tty, __func__);
2149 tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2150
2151 if (tty->ops->open)
2152 retval = tty->ops->open(tty, filp);
2153 else
2154 retval = -ENODEV;
2155 filp->f_flags = saved_flags;
2156
2157 if (retval) {
2158 tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2159
2160 tty_unlock(tty); /* need to call tty_release without BTM */
2161 tty_release(inode, filp);
2162 if (retval != -ERESTARTSYS)
2163 return retval;
2164
2165 if (signal_pending(current))
2166 return retval;
2167
2168 schedule();
2169 /*
2170 * Need to reset f_op in case a hangup happened.
2171 */
2172 if (tty_hung_up_p(filp))
2173 filp->f_op = &tty_fops;
2174 goto retry_open;
2175 }
2176 clear_bit(TTY_HUPPED, &tty->flags);
2177
2178 noctty = (filp->f_flags & O_NOCTTY) ||
2179 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2180 device == MKDEV(TTYAUX_MAJOR, 1) ||
2181 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2182 tty->driver->subtype == PTY_TYPE_MASTER);
2183 if (!noctty)
2184 tty_open_proc_set_tty(filp, tty);
2185 tty_unlock(tty);
2186 return 0;
2187}
2188
2189
2190/**
2191 * tty_poll - check tty status
2192 * @filp: file being polled
2193 * @wait: poll wait structures to update
2194 *
2195 * Call the line discipline polling method to obtain the poll status of the
2196 * device.
2197 *
2198 * Locking: locks called line discipline but ldisc poll method may be
2199 * re-entered freely by other callers.
2200 */
2201static __poll_t tty_poll(struct file *filp, poll_table *wait)
2202{
2203 struct tty_struct *tty = file_tty(filp);
2204 struct tty_ldisc *ld;
2205 __poll_t ret = 0;
2206
2207 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2208 return 0;
2209
2210 ld = tty_ldisc_ref_wait(tty);
2211 if (!ld)
2212 return hung_up_tty_poll(filp, wait);
2213 if (ld->ops->poll)
2214 ret = ld->ops->poll(tty, filp, wait);
2215 tty_ldisc_deref(ld);
2216 return ret;
2217}
2218
2219static int __tty_fasync(int fd, struct file *filp, int on)
2220{
2221 struct tty_struct *tty = file_tty(filp);
2222 unsigned long flags;
2223 int retval = 0;
2224
2225 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2226 goto out;
2227
2228 retval = fasync_helper(fd, filp, on, &tty->fasync);
2229 if (retval <= 0)
2230 goto out;
2231
2232 if (on) {
2233 enum pid_type type;
2234 struct pid *pid;
2235
2236 spin_lock_irqsave(&tty->ctrl.lock, flags);
2237 if (tty->ctrl.pgrp) {
2238 pid = tty->ctrl.pgrp;
2239 type = PIDTYPE_PGID;
2240 } else {
2241 pid = task_pid(current);
2242 type = PIDTYPE_TGID;
2243 }
2244 get_pid(pid);
2245 spin_unlock_irqrestore(&tty->ctrl.lock, flags);
2246 __f_setown(filp, pid, type, 0);
2247 put_pid(pid);
2248 retval = 0;
2249 }
2250out:
2251 return retval;
2252}
2253
2254static int tty_fasync(int fd, struct file *filp, int on)
2255{
2256 struct tty_struct *tty = file_tty(filp);
2257 int retval = -ENOTTY;
2258
2259 tty_lock(tty);
2260 if (!tty_hung_up_p(filp))
2261 retval = __tty_fasync(fd, filp, on);
2262 tty_unlock(tty);
2263
2264 return retval;
2265}
2266
2267static bool tty_legacy_tiocsti __read_mostly = IS_ENABLED(CONFIG_LEGACY_TIOCSTI);
2268/**
2269 * tiocsti - fake input character
2270 * @tty: tty to fake input into
2271 * @p: pointer to character
2272 *
2273 * Fake input to a tty device. Does the necessary locking and input management.
2274 *
2275 * FIXME: does not honour flow control ??
2276 *
2277 * Locking:
2278 * * Called functions take tty_ldiscs_lock
2279 * * current->signal->tty check is safe without locks
2280 */
2281static int tiocsti(struct tty_struct *tty, char __user *p)
2282{
2283 char ch, mbz = 0;
2284 struct tty_ldisc *ld;
2285
2286 if (!tty_legacy_tiocsti && !capable(CAP_SYS_ADMIN))
2287 return -EIO;
2288
2289 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2290 return -EPERM;
2291 if (get_user(ch, p))
2292 return -EFAULT;
2293 tty_audit_tiocsti(tty, ch);
2294 ld = tty_ldisc_ref_wait(tty);
2295 if (!ld)
2296 return -EIO;
2297 tty_buffer_lock_exclusive(tty->port);
2298 if (ld->ops->receive_buf)
2299 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2300 tty_buffer_unlock_exclusive(tty->port);
2301 tty_ldisc_deref(ld);
2302 return 0;
2303}
2304
2305/**
2306 * tiocgwinsz - implement window query ioctl
2307 * @tty: tty
2308 * @arg: user buffer for result
2309 *
2310 * Copies the kernel idea of the window size into the user buffer.
2311 *
2312 * Locking: @tty->winsize_mutex is taken to ensure the winsize data is
2313 * consistent.
2314 */
2315static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2316{
2317 int err;
2318
2319 mutex_lock(&tty->winsize_mutex);
2320 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2321 mutex_unlock(&tty->winsize_mutex);
2322
2323 return err ? -EFAULT : 0;
2324}
2325
2326/**
2327 * tty_do_resize - resize event
2328 * @tty: tty being resized
2329 * @ws: new dimensions
2330 *
2331 * Update the termios variables and send the necessary signals to peform a
2332 * terminal resize correctly.
2333 */
2334int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2335{
2336 struct pid *pgrp;
2337
2338 /* Lock the tty */
2339 mutex_lock(&tty->winsize_mutex);
2340 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2341 goto done;
2342
2343 /* Signal the foreground process group */
2344 pgrp = tty_get_pgrp(tty);
2345 if (pgrp)
2346 kill_pgrp(pgrp, SIGWINCH, 1);
2347 put_pid(pgrp);
2348
2349 tty->winsize = *ws;
2350done:
2351 mutex_unlock(&tty->winsize_mutex);
2352 return 0;
2353}
2354EXPORT_SYMBOL(tty_do_resize);
2355
2356/**
2357 * tiocswinsz - implement window size set ioctl
2358 * @tty: tty side of tty
2359 * @arg: user buffer for result
2360 *
2361 * Copies the user idea of the window size to the kernel. Traditionally this is
2362 * just advisory information but for the Linux console it actually has driver
2363 * level meaning and triggers a VC resize.
2364 *
2365 * Locking:
2366 * Driver dependent. The default do_resize method takes the tty termios
2367 * mutex and ctrl.lock. The console takes its own lock then calls into the
2368 * default method.
2369 */
2370static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2371{
2372 struct winsize tmp_ws;
2373
2374 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2375 return -EFAULT;
2376
2377 if (tty->ops->resize)
2378 return tty->ops->resize(tty, &tmp_ws);
2379 else
2380 return tty_do_resize(tty, &tmp_ws);
2381}
2382
2383/**
2384 * tioccons - allow admin to move logical console
2385 * @file: the file to become console
2386 *
2387 * Allow the administrator to move the redirected console device.
2388 *
2389 * Locking: uses redirect_lock to guard the redirect information
2390 */
2391static int tioccons(struct file *file)
2392{
2393 if (!capable(CAP_SYS_ADMIN))
2394 return -EPERM;
2395 if (file->f_op->write_iter == redirected_tty_write) {
2396 struct file *f;
2397
2398 spin_lock(&redirect_lock);
2399 f = redirect;
2400 redirect = NULL;
2401 spin_unlock(&redirect_lock);
2402 if (f)
2403 fput(f);
2404 return 0;
2405 }
2406 if (file->f_op->write_iter != tty_write)
2407 return -ENOTTY;
2408 if (!(file->f_mode & FMODE_WRITE))
2409 return -EBADF;
2410 if (!(file->f_mode & FMODE_CAN_WRITE))
2411 return -EINVAL;
2412 spin_lock(&redirect_lock);
2413 if (redirect) {
2414 spin_unlock(&redirect_lock);
2415 return -EBUSY;
2416 }
2417 redirect = get_file(file);
2418 spin_unlock(&redirect_lock);
2419 return 0;
2420}
2421
2422/**
2423 * tiocsetd - set line discipline
2424 * @tty: tty device
2425 * @p: pointer to user data
2426 *
2427 * Set the line discipline according to user request.
2428 *
2429 * Locking: see tty_set_ldisc(), this function is just a helper
2430 */
2431static int tiocsetd(struct tty_struct *tty, int __user *p)
2432{
2433 int disc;
2434 int ret;
2435
2436 if (get_user(disc, p))
2437 return -EFAULT;
2438
2439 ret = tty_set_ldisc(tty, disc);
2440
2441 return ret;
2442}
2443
2444/**
2445 * tiocgetd - get line discipline
2446 * @tty: tty device
2447 * @p: pointer to user data
2448 *
2449 * Retrieves the line discipline id directly from the ldisc.
2450 *
2451 * Locking: waits for ldisc reference (in case the line discipline is changing
2452 * or the @tty is being hungup)
2453 */
2454static int tiocgetd(struct tty_struct *tty, int __user *p)
2455{
2456 struct tty_ldisc *ld;
2457 int ret;
2458
2459 ld = tty_ldisc_ref_wait(tty);
2460 if (!ld)
2461 return -EIO;
2462 ret = put_user(ld->ops->num, p);
2463 tty_ldisc_deref(ld);
2464 return ret;
2465}
2466
2467/**
2468 * send_break - performed time break
2469 * @tty: device to break on
2470 * @duration: timeout in mS
2471 *
2472 * Perform a timed break on hardware that lacks its own driver level timed
2473 * break functionality.
2474 *
2475 * Locking:
2476 * @tty->atomic_write_lock serializes
2477 */
2478static int send_break(struct tty_struct *tty, unsigned int duration)
2479{
2480 int retval;
2481
2482 if (tty->ops->break_ctl == NULL)
2483 return 0;
2484
2485 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2486 retval = tty->ops->break_ctl(tty, duration);
2487 else {
2488 /* Do the work ourselves */
2489 if (tty_write_lock(tty, 0) < 0)
2490 return -EINTR;
2491 retval = tty->ops->break_ctl(tty, -1);
2492 if (retval)
2493 goto out;
2494 if (!signal_pending(current))
2495 msleep_interruptible(duration);
2496 retval = tty->ops->break_ctl(tty, 0);
2497out:
2498 tty_write_unlock(tty);
2499 if (signal_pending(current))
2500 retval = -EINTR;
2501 }
2502 return retval;
2503}
2504
2505/**
2506 * tty_tiocmget - get modem status
2507 * @tty: tty device
2508 * @p: pointer to result
2509 *
2510 * Obtain the modem status bits from the tty driver if the feature is
2511 * supported. Return -%ENOTTY if it is not available.
2512 *
2513 * Locking: none (up to the driver)
2514 */
2515static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2516{
2517 int retval = -ENOTTY;
2518
2519 if (tty->ops->tiocmget) {
2520 retval = tty->ops->tiocmget(tty);
2521
2522 if (retval >= 0)
2523 retval = put_user(retval, p);
2524 }
2525 return retval;
2526}
2527
2528/**
2529 * tty_tiocmset - set modem status
2530 * @tty: tty device
2531 * @cmd: command - clear bits, set bits or set all
2532 * @p: pointer to desired bits
2533 *
2534 * Set the modem status bits from the tty driver if the feature
2535 * is supported. Return -%ENOTTY if it is not available.
2536 *
2537 * Locking: none (up to the driver)
2538 */
2539static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2540 unsigned __user *p)
2541{
2542 int retval;
2543 unsigned int set, clear, val;
2544
2545 if (tty->ops->tiocmset == NULL)
2546 return -ENOTTY;
2547
2548 retval = get_user(val, p);
2549 if (retval)
2550 return retval;
2551 set = clear = 0;
2552 switch (cmd) {
2553 case TIOCMBIS:
2554 set = val;
2555 break;
2556 case TIOCMBIC:
2557 clear = val;
2558 break;
2559 case TIOCMSET:
2560 set = val;
2561 clear = ~val;
2562 break;
2563 }
2564 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2565 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2566 return tty->ops->tiocmset(tty, set, clear);
2567}
2568
2569/**
2570 * tty_get_icount - get tty statistics
2571 * @tty: tty device
2572 * @icount: output parameter
2573 *
2574 * Gets a copy of the @tty's icount statistics.
2575 *
2576 * Locking: none (up to the driver)
2577 */
2578int tty_get_icount(struct tty_struct *tty,
2579 struct serial_icounter_struct *icount)
2580{
2581 memset(icount, 0, sizeof(*icount));
2582
2583 if (tty->ops->get_icount)
2584 return tty->ops->get_icount(tty, icount);
2585 else
2586 return -ENOTTY;
2587}
2588EXPORT_SYMBOL_GPL(tty_get_icount);
2589
2590static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2591{
2592 struct serial_icounter_struct icount;
2593 int retval;
2594
2595 retval = tty_get_icount(tty, &icount);
2596 if (retval != 0)
2597 return retval;
2598
2599 if (copy_to_user(arg, &icount, sizeof(icount)))
2600 return -EFAULT;
2601 return 0;
2602}
2603
2604static int tty_set_serial(struct tty_struct *tty, struct serial_struct *ss)
2605{
2606 char comm[TASK_COMM_LEN];
2607 int flags;
2608
2609 flags = ss->flags & ASYNC_DEPRECATED;
2610
2611 if (flags)
2612 pr_warn_ratelimited("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2613 __func__, get_task_comm(comm, current), flags);
2614
2615 if (!tty->ops->set_serial)
2616 return -ENOTTY;
2617
2618 return tty->ops->set_serial(tty, ss);
2619}
2620
2621static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss)
2622{
2623 struct serial_struct v;
2624
2625 if (copy_from_user(&v, ss, sizeof(*ss)))
2626 return -EFAULT;
2627
2628 return tty_set_serial(tty, &v);
2629}
2630
2631static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss)
2632{
2633 struct serial_struct v;
2634 int err;
2635
2636 memset(&v, 0, sizeof(v));
2637 if (!tty->ops->get_serial)
2638 return -ENOTTY;
2639 err = tty->ops->get_serial(tty, &v);
2640 if (!err && copy_to_user(ss, &v, sizeof(v)))
2641 err = -EFAULT;
2642 return err;
2643}
2644
2645/*
2646 * if pty, return the slave side (real_tty)
2647 * otherwise, return self
2648 */
2649static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2650{
2651 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2652 tty->driver->subtype == PTY_TYPE_MASTER)
2653 tty = tty->link;
2654 return tty;
2655}
2656
2657/*
2658 * Split this up, as gcc can choke on it otherwise..
2659 */
2660long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2661{
2662 struct tty_struct *tty = file_tty(file);
2663 struct tty_struct *real_tty;
2664 void __user *p = (void __user *)arg;
2665 int retval;
2666 struct tty_ldisc *ld;
2667
2668 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2669 return -EINVAL;
2670
2671 real_tty = tty_pair_get_tty(tty);
2672
2673 /*
2674 * Factor out some common prep work
2675 */
2676 switch (cmd) {
2677 case TIOCSETD:
2678 case TIOCSBRK:
2679 case TIOCCBRK:
2680 case TCSBRK:
2681 case TCSBRKP:
2682 retval = tty_check_change(tty);
2683 if (retval)
2684 return retval;
2685 if (cmd != TIOCCBRK) {
2686 tty_wait_until_sent(tty, 0);
2687 if (signal_pending(current))
2688 return -EINTR;
2689 }
2690 break;
2691 }
2692
2693 /*
2694 * Now do the stuff.
2695 */
2696 switch (cmd) {
2697 case TIOCSTI:
2698 return tiocsti(tty, p);
2699 case TIOCGWINSZ:
2700 return tiocgwinsz(real_tty, p);
2701 case TIOCSWINSZ:
2702 return tiocswinsz(real_tty, p);
2703 case TIOCCONS:
2704 return real_tty != tty ? -EINVAL : tioccons(file);
2705 case TIOCEXCL:
2706 set_bit(TTY_EXCLUSIVE, &tty->flags);
2707 return 0;
2708 case TIOCNXCL:
2709 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2710 return 0;
2711 case TIOCGEXCL:
2712 {
2713 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2714
2715 return put_user(excl, (int __user *)p);
2716 }
2717 case TIOCGETD:
2718 return tiocgetd(tty, p);
2719 case TIOCSETD:
2720 return tiocsetd(tty, p);
2721 case TIOCVHANGUP:
2722 if (!capable(CAP_SYS_ADMIN))
2723 return -EPERM;
2724 tty_vhangup(tty);
2725 return 0;
2726 case TIOCGDEV:
2727 {
2728 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2729
2730 return put_user(ret, (unsigned int __user *)p);
2731 }
2732 /*
2733 * Break handling
2734 */
2735 case TIOCSBRK: /* Turn break on, unconditionally */
2736 if (tty->ops->break_ctl)
2737 return tty->ops->break_ctl(tty, -1);
2738 return 0;
2739 case TIOCCBRK: /* Turn break off, unconditionally */
2740 if (tty->ops->break_ctl)
2741 return tty->ops->break_ctl(tty, 0);
2742 return 0;
2743 case TCSBRK: /* SVID version: non-zero arg --> no break */
2744 /* non-zero arg means wait for all output data
2745 * to be sent (performed above) but don't send break.
2746 * This is used by the tcdrain() termios function.
2747 */
2748 if (!arg)
2749 return send_break(tty, 250);
2750 return 0;
2751 case TCSBRKP: /* support for POSIX tcsendbreak() */
2752 return send_break(tty, arg ? arg*100 : 250);
2753
2754 case TIOCMGET:
2755 return tty_tiocmget(tty, p);
2756 case TIOCMSET:
2757 case TIOCMBIC:
2758 case TIOCMBIS:
2759 return tty_tiocmset(tty, cmd, p);
2760 case TIOCGICOUNT:
2761 return tty_tiocgicount(tty, p);
2762 case TCFLSH:
2763 switch (arg) {
2764 case TCIFLUSH:
2765 case TCIOFLUSH:
2766 /* flush tty buffer and allow ldisc to process ioctl */
2767 tty_buffer_flush(tty, NULL);
2768 break;
2769 }
2770 break;
2771 case TIOCSSERIAL:
2772 return tty_tiocsserial(tty, p);
2773 case TIOCGSERIAL:
2774 return tty_tiocgserial(tty, p);
2775 case TIOCGPTPEER:
2776 /* Special because the struct file is needed */
2777 return ptm_open_peer(file, tty, (int)arg);
2778 default:
2779 retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2780 if (retval != -ENOIOCTLCMD)
2781 return retval;
2782 }
2783 if (tty->ops->ioctl) {
2784 retval = tty->ops->ioctl(tty, cmd, arg);
2785 if (retval != -ENOIOCTLCMD)
2786 return retval;
2787 }
2788 ld = tty_ldisc_ref_wait(tty);
2789 if (!ld)
2790 return hung_up_tty_ioctl(file, cmd, arg);
2791 retval = -EINVAL;
2792 if (ld->ops->ioctl) {
2793 retval = ld->ops->ioctl(tty, cmd, arg);
2794 if (retval == -ENOIOCTLCMD)
2795 retval = -ENOTTY;
2796 }
2797 tty_ldisc_deref(ld);
2798 return retval;
2799}
2800
2801#ifdef CONFIG_COMPAT
2802
2803struct serial_struct32 {
2804 compat_int_t type;
2805 compat_int_t line;
2806 compat_uint_t port;
2807 compat_int_t irq;
2808 compat_int_t flags;
2809 compat_int_t xmit_fifo_size;
2810 compat_int_t custom_divisor;
2811 compat_int_t baud_base;
2812 unsigned short close_delay;
2813 char io_type;
2814 char reserved_char;
2815 compat_int_t hub6;
2816 unsigned short closing_wait; /* time to wait before closing */
2817 unsigned short closing_wait2; /* no longer used... */
2818 compat_uint_t iomem_base;
2819 unsigned short iomem_reg_shift;
2820 unsigned int port_high;
2821 /* compat_ulong_t iomap_base FIXME */
2822 compat_int_t reserved;
2823};
2824
2825static int compat_tty_tiocsserial(struct tty_struct *tty,
2826 struct serial_struct32 __user *ss)
2827{
2828 struct serial_struct32 v32;
2829 struct serial_struct v;
2830
2831 if (copy_from_user(&v32, ss, sizeof(*ss)))
2832 return -EFAULT;
2833
2834 memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base));
2835 v.iomem_base = compat_ptr(v32.iomem_base);
2836 v.iomem_reg_shift = v32.iomem_reg_shift;
2837 v.port_high = v32.port_high;
2838 v.iomap_base = 0;
2839
2840 return tty_set_serial(tty, &v);
2841}
2842
2843static int compat_tty_tiocgserial(struct tty_struct *tty,
2844 struct serial_struct32 __user *ss)
2845{
2846 struct serial_struct32 v32;
2847 struct serial_struct v;
2848 int err;
2849
2850 memset(&v, 0, sizeof(v));
2851 memset(&v32, 0, sizeof(v32));
2852
2853 if (!tty->ops->get_serial)
2854 return -ENOTTY;
2855 err = tty->ops->get_serial(tty, &v);
2856 if (!err) {
2857 memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base));
2858 v32.iomem_base = (unsigned long)v.iomem_base >> 32 ?
2859 0xfffffff : ptr_to_compat(v.iomem_base);
2860 v32.iomem_reg_shift = v.iomem_reg_shift;
2861 v32.port_high = v.port_high;
2862 if (copy_to_user(ss, &v32, sizeof(v32)))
2863 err = -EFAULT;
2864 }
2865 return err;
2866}
2867static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2868 unsigned long arg)
2869{
2870 struct tty_struct *tty = file_tty(file);
2871 struct tty_ldisc *ld;
2872 int retval = -ENOIOCTLCMD;
2873
2874 switch (cmd) {
2875 case TIOCOUTQ:
2876 case TIOCSTI:
2877 case TIOCGWINSZ:
2878 case TIOCSWINSZ:
2879 case TIOCGEXCL:
2880 case TIOCGETD:
2881 case TIOCSETD:
2882 case TIOCGDEV:
2883 case TIOCMGET:
2884 case TIOCMSET:
2885 case TIOCMBIC:
2886 case TIOCMBIS:
2887 case TIOCGICOUNT:
2888 case TIOCGPGRP:
2889 case TIOCSPGRP:
2890 case TIOCGSID:
2891 case TIOCSERGETLSR:
2892 case TIOCGRS485:
2893 case TIOCSRS485:
2894#ifdef TIOCGETP
2895 case TIOCGETP:
2896 case TIOCSETP:
2897 case TIOCSETN:
2898#endif
2899#ifdef TIOCGETC
2900 case TIOCGETC:
2901 case TIOCSETC:
2902#endif
2903#ifdef TIOCGLTC
2904 case TIOCGLTC:
2905 case TIOCSLTC:
2906#endif
2907 case TCSETSF:
2908 case TCSETSW:
2909 case TCSETS:
2910 case TCGETS:
2911#ifdef TCGETS2
2912 case TCGETS2:
2913 case TCSETSF2:
2914 case TCSETSW2:
2915 case TCSETS2:
2916#endif
2917 case TCGETA:
2918 case TCSETAF:
2919 case TCSETAW:
2920 case TCSETA:
2921 case TIOCGLCKTRMIOS:
2922 case TIOCSLCKTRMIOS:
2923#ifdef TCGETX
2924 case TCGETX:
2925 case TCSETX:
2926 case TCSETXW:
2927 case TCSETXF:
2928#endif
2929 case TIOCGSOFTCAR:
2930 case TIOCSSOFTCAR:
2931
2932 case PPPIOCGCHAN:
2933 case PPPIOCGUNIT:
2934 return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2935 case TIOCCONS:
2936 case TIOCEXCL:
2937 case TIOCNXCL:
2938 case TIOCVHANGUP:
2939 case TIOCSBRK:
2940 case TIOCCBRK:
2941 case TCSBRK:
2942 case TCSBRKP:
2943 case TCFLSH:
2944 case TIOCGPTPEER:
2945 case TIOCNOTTY:
2946 case TIOCSCTTY:
2947 case TCXONC:
2948 case TIOCMIWAIT:
2949 case TIOCSERCONFIG:
2950 return tty_ioctl(file, cmd, arg);
2951 }
2952
2953 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2954 return -EINVAL;
2955
2956 switch (cmd) {
2957 case TIOCSSERIAL:
2958 return compat_tty_tiocsserial(tty, compat_ptr(arg));
2959 case TIOCGSERIAL:
2960 return compat_tty_tiocgserial(tty, compat_ptr(arg));
2961 }
2962 if (tty->ops->compat_ioctl) {
2963 retval = tty->ops->compat_ioctl(tty, cmd, arg);
2964 if (retval != -ENOIOCTLCMD)
2965 return retval;
2966 }
2967
2968 ld = tty_ldisc_ref_wait(tty);
2969 if (!ld)
2970 return hung_up_tty_compat_ioctl(file, cmd, arg);
2971 if (ld->ops->compat_ioctl)
2972 retval = ld->ops->compat_ioctl(tty, cmd, arg);
2973 if (retval == -ENOIOCTLCMD && ld->ops->ioctl)
2974 retval = ld->ops->ioctl(tty, (unsigned long)compat_ptr(cmd),
2975 arg);
2976 tty_ldisc_deref(ld);
2977
2978 return retval;
2979}
2980#endif
2981
2982static int this_tty(const void *t, struct file *file, unsigned fd)
2983{
2984 if (likely(file->f_op->read_iter != tty_read))
2985 return 0;
2986 return file_tty(file) != t ? 0 : fd + 1;
2987}
2988
2989/*
2990 * This implements the "Secure Attention Key" --- the idea is to
2991 * prevent trojan horses by killing all processes associated with this
2992 * tty when the user hits the "Secure Attention Key". Required for
2993 * super-paranoid applications --- see the Orange Book for more details.
2994 *
2995 * This code could be nicer; ideally it should send a HUP, wait a few
2996 * seconds, then send a INT, and then a KILL signal. But you then
2997 * have to coordinate with the init process, since all processes associated
2998 * with the current tty must be dead before the new getty is allowed
2999 * to spawn.
3000 *
3001 * Now, if it would be correct ;-/ The current code has a nasty hole -
3002 * it doesn't catch files in flight. We may send the descriptor to ourselves
3003 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3004 *
3005 * Nasty bug: do_SAK is being called in interrupt context. This can
3006 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3007 */
3008void __do_SAK(struct tty_struct *tty)
3009{
3010 struct task_struct *g, *p;
3011 struct pid *session;
3012 int i;
3013 unsigned long flags;
3014
3015 spin_lock_irqsave(&tty->ctrl.lock, flags);
3016 session = get_pid(tty->ctrl.session);
3017 spin_unlock_irqrestore(&tty->ctrl.lock, flags);
3018
3019 tty_ldisc_flush(tty);
3020
3021 tty_driver_flush_buffer(tty);
3022
3023 read_lock(&tasklist_lock);
3024 /* Kill the entire session */
3025 do_each_pid_task(session, PIDTYPE_SID, p) {
3026 tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3027 task_pid_nr(p), p->comm);
3028 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3029 } while_each_pid_task(session, PIDTYPE_SID, p);
3030
3031 /* Now kill any processes that happen to have the tty open */
3032 do_each_thread(g, p) {
3033 if (p->signal->tty == tty) {
3034 tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3035 task_pid_nr(p), p->comm);
3036 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3037 PIDTYPE_SID);
3038 continue;
3039 }
3040 task_lock(p);
3041 i = iterate_fd(p->files, 0, this_tty, tty);
3042 if (i != 0) {
3043 tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3044 task_pid_nr(p), p->comm, i - 1);
3045 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3046 PIDTYPE_SID);
3047 }
3048 task_unlock(p);
3049 } while_each_thread(g, p);
3050 read_unlock(&tasklist_lock);
3051 put_pid(session);
3052}
3053
3054static void do_SAK_work(struct work_struct *work)
3055{
3056 struct tty_struct *tty =
3057 container_of(work, struct tty_struct, SAK_work);
3058 __do_SAK(tty);
3059}
3060
3061/*
3062 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3063 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3064 * the values which we write to it will be identical to the values which it
3065 * already has. --akpm
3066 */
3067void do_SAK(struct tty_struct *tty)
3068{
3069 if (!tty)
3070 return;
3071 schedule_work(&tty->SAK_work);
3072}
3073EXPORT_SYMBOL(do_SAK);
3074
3075/* Must put_device() after it's unused! */
3076static struct device *tty_get_device(struct tty_struct *tty)
3077{
3078 dev_t devt = tty_devnum(tty);
3079
3080 return class_find_device_by_devt(&tty_class, devt);
3081}
3082
3083
3084/**
3085 * alloc_tty_struct - allocate a new tty
3086 * @driver: driver which will handle the returned tty
3087 * @idx: minor of the tty
3088 *
3089 * This subroutine allocates and initializes a tty structure.
3090 *
3091 * Locking: none - @tty in question is not exposed at this point
3092 */
3093struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3094{
3095 struct tty_struct *tty;
3096
3097 tty = kzalloc(sizeof(*tty), GFP_KERNEL_ACCOUNT);
3098 if (!tty)
3099 return NULL;
3100
3101 kref_init(&tty->kref);
3102 if (tty_ldisc_init(tty)) {
3103 kfree(tty);
3104 return NULL;
3105 }
3106 tty->ctrl.session = NULL;
3107 tty->ctrl.pgrp = NULL;
3108 mutex_init(&tty->legacy_mutex);
3109 mutex_init(&tty->throttle_mutex);
3110 init_rwsem(&tty->termios_rwsem);
3111 mutex_init(&tty->winsize_mutex);
3112 init_ldsem(&tty->ldisc_sem);
3113 init_waitqueue_head(&tty->write_wait);
3114 init_waitqueue_head(&tty->read_wait);
3115 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3116 mutex_init(&tty->atomic_write_lock);
3117 spin_lock_init(&tty->ctrl.lock);
3118 spin_lock_init(&tty->flow.lock);
3119 spin_lock_init(&tty->files_lock);
3120 INIT_LIST_HEAD(&tty->tty_files);
3121 INIT_WORK(&tty->SAK_work, do_SAK_work);
3122
3123 tty->driver = driver;
3124 tty->ops = driver->ops;
3125 tty->index = idx;
3126 tty_line_name(driver, idx, tty->name);
3127 tty->dev = tty_get_device(tty);
3128
3129 return tty;
3130}
3131
3132/**
3133 * tty_put_char - write one character to a tty
3134 * @tty: tty
3135 * @ch: character to write
3136 *
3137 * Write one byte to the @tty using the provided @tty->ops->put_char() method
3138 * if present.
3139 *
3140 * Note: the specific put_char operation in the driver layer may go
3141 * away soon. Don't call it directly, use this method
3142 *
3143 * Return: the number of characters successfully output.
3144 */
3145int tty_put_char(struct tty_struct *tty, unsigned char ch)
3146{
3147 if (tty->ops->put_char)
3148 return tty->ops->put_char(tty, ch);
3149 return tty->ops->write(tty, &ch, 1);
3150}
3151EXPORT_SYMBOL_GPL(tty_put_char);
3152
3153static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3154 unsigned int index, unsigned int count)
3155{
3156 int err;
3157
3158 /* init here, since reused cdevs cause crashes */
3159 driver->cdevs[index] = cdev_alloc();
3160 if (!driver->cdevs[index])
3161 return -ENOMEM;
3162 driver->cdevs[index]->ops = &tty_fops;
3163 driver->cdevs[index]->owner = driver->owner;
3164 err = cdev_add(driver->cdevs[index], dev, count);
3165 if (err)
3166 kobject_put(&driver->cdevs[index]->kobj);
3167 return err;
3168}
3169
3170/**
3171 * tty_register_device - register a tty device
3172 * @driver: the tty driver that describes the tty device
3173 * @index: the index in the tty driver for this tty device
3174 * @device: a struct device that is associated with this tty device.
3175 * This field is optional, if there is no known struct device
3176 * for this tty device it can be set to NULL safely.
3177 *
3178 * This call is required to be made to register an individual tty device
3179 * if the tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set. If
3180 * that bit is not set, this function should not be called by a tty
3181 * driver.
3182 *
3183 * Locking: ??
3184 *
3185 * Return: A pointer to the struct device for this tty device (or
3186 * ERR_PTR(-EFOO) on error).
3187 */
3188struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3189 struct device *device)
3190{
3191 return tty_register_device_attr(driver, index, device, NULL, NULL);
3192}
3193EXPORT_SYMBOL(tty_register_device);
3194
3195static void tty_device_create_release(struct device *dev)
3196{
3197 dev_dbg(dev, "releasing...\n");
3198 kfree(dev);
3199}
3200
3201/**
3202 * tty_register_device_attr - register a tty device
3203 * @driver: the tty driver that describes the tty device
3204 * @index: the index in the tty driver for this tty device
3205 * @device: a struct device that is associated with this tty device.
3206 * This field is optional, if there is no known struct device
3207 * for this tty device it can be set to %NULL safely.
3208 * @drvdata: Driver data to be set to device.
3209 * @attr_grp: Attribute group to be set on device.
3210 *
3211 * This call is required to be made to register an individual tty device if the
3212 * tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set. If that bit is
3213 * not set, this function should not be called by a tty driver.
3214 *
3215 * Locking: ??
3216 *
3217 * Return: A pointer to the struct device for this tty device (or
3218 * ERR_PTR(-EFOO) on error).
3219 */
3220struct device *tty_register_device_attr(struct tty_driver *driver,
3221 unsigned index, struct device *device,
3222 void *drvdata,
3223 const struct attribute_group **attr_grp)
3224{
3225 char name[64];
3226 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3227 struct ktermios *tp;
3228 struct device *dev;
3229 int retval;
3230
3231 if (index >= driver->num) {
3232 pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3233 driver->name, index);
3234 return ERR_PTR(-EINVAL);
3235 }
3236
3237 if (driver->type == TTY_DRIVER_TYPE_PTY)
3238 pty_line_name(driver, index, name);
3239 else
3240 tty_line_name(driver, index, name);
3241
3242 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3243 if (!dev)
3244 return ERR_PTR(-ENOMEM);
3245
3246 dev->devt = devt;
3247 dev->class = &tty_class;
3248 dev->parent = device;
3249 dev->release = tty_device_create_release;
3250 dev_set_name(dev, "%s", name);
3251 dev->groups = attr_grp;
3252 dev_set_drvdata(dev, drvdata);
3253
3254 dev_set_uevent_suppress(dev, 1);
3255
3256 retval = device_register(dev);
3257 if (retval)
3258 goto err_put;
3259
3260 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3261 /*
3262 * Free any saved termios data so that the termios state is
3263 * reset when reusing a minor number.
3264 */
3265 tp = driver->termios[index];
3266 if (tp) {
3267 driver->termios[index] = NULL;
3268 kfree(tp);
3269 }
3270
3271 retval = tty_cdev_add(driver, devt, index, 1);
3272 if (retval)
3273 goto err_del;
3274 }
3275
3276 dev_set_uevent_suppress(dev, 0);
3277 kobject_uevent(&dev->kobj, KOBJ_ADD);
3278
3279 return dev;
3280
3281err_del:
3282 device_del(dev);
3283err_put:
3284 put_device(dev);
3285
3286 return ERR_PTR(retval);
3287}
3288EXPORT_SYMBOL_GPL(tty_register_device_attr);
3289
3290/**
3291 * tty_unregister_device - unregister a tty device
3292 * @driver: the tty driver that describes the tty device
3293 * @index: the index in the tty driver for this tty device
3294 *
3295 * If a tty device is registered with a call to tty_register_device() then
3296 * this function must be called when the tty device is gone.
3297 *
3298 * Locking: ??
3299 */
3300void tty_unregister_device(struct tty_driver *driver, unsigned index)
3301{
3302 device_destroy(&tty_class, MKDEV(driver->major, driver->minor_start) + index);
3303 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3304 cdev_del(driver->cdevs[index]);
3305 driver->cdevs[index] = NULL;
3306 }
3307}
3308EXPORT_SYMBOL(tty_unregister_device);
3309
3310/**
3311 * __tty_alloc_driver -- allocate tty driver
3312 * @lines: count of lines this driver can handle at most
3313 * @owner: module which is responsible for this driver
3314 * @flags: some of %TTY_DRIVER_ flags, will be set in driver->flags
3315 *
3316 * This should not be called directly, some of the provided macros should be
3317 * used instead. Use IS_ERR() and friends on @retval.
3318 */
3319struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3320 unsigned long flags)
3321{
3322 struct tty_driver *driver;
3323 unsigned int cdevs = 1;
3324 int err;
3325
3326 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3327 return ERR_PTR(-EINVAL);
3328
3329 driver = kzalloc(sizeof(*driver), GFP_KERNEL);
3330 if (!driver)
3331 return ERR_PTR(-ENOMEM);
3332
3333 kref_init(&driver->kref);
3334 driver->num = lines;
3335 driver->owner = owner;
3336 driver->flags = flags;
3337
3338 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3339 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3340 GFP_KERNEL);
3341 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3342 GFP_KERNEL);
3343 if (!driver->ttys || !driver->termios) {
3344 err = -ENOMEM;
3345 goto err_free_all;
3346 }
3347 }
3348
3349 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3350 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3351 GFP_KERNEL);
3352 if (!driver->ports) {
3353 err = -ENOMEM;
3354 goto err_free_all;
3355 }
3356 cdevs = lines;
3357 }
3358
3359 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3360 if (!driver->cdevs) {
3361 err = -ENOMEM;
3362 goto err_free_all;
3363 }
3364
3365 return driver;
3366err_free_all:
3367 kfree(driver->ports);
3368 kfree(driver->ttys);
3369 kfree(driver->termios);
3370 kfree(driver->cdevs);
3371 kfree(driver);
3372 return ERR_PTR(err);
3373}
3374EXPORT_SYMBOL(__tty_alloc_driver);
3375
3376static void destruct_tty_driver(struct kref *kref)
3377{
3378 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3379 int i;
3380 struct ktermios *tp;
3381
3382 if (driver->flags & TTY_DRIVER_INSTALLED) {
3383 for (i = 0; i < driver->num; i++) {
3384 tp = driver->termios[i];
3385 if (tp) {
3386 driver->termios[i] = NULL;
3387 kfree(tp);
3388 }
3389 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3390 tty_unregister_device(driver, i);
3391 }
3392 proc_tty_unregister_driver(driver);
3393 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3394 cdev_del(driver->cdevs[0]);
3395 }
3396 kfree(driver->cdevs);
3397 kfree(driver->ports);
3398 kfree(driver->termios);
3399 kfree(driver->ttys);
3400 kfree(driver);
3401}
3402
3403/**
3404 * tty_driver_kref_put -- drop a reference to a tty driver
3405 * @driver: driver of which to drop the reference
3406 *
3407 * The final put will destroy and free up the driver.
3408 */
3409void tty_driver_kref_put(struct tty_driver *driver)
3410{
3411 kref_put(&driver->kref, destruct_tty_driver);
3412}
3413EXPORT_SYMBOL(tty_driver_kref_put);
3414
3415/**
3416 * tty_register_driver -- register a tty driver
3417 * @driver: driver to register
3418 *
3419 * Called by a tty driver to register itself.
3420 */
3421int tty_register_driver(struct tty_driver *driver)
3422{
3423 int error;
3424 int i;
3425 dev_t dev;
3426 struct device *d;
3427
3428 if (!driver->major) {
3429 error = alloc_chrdev_region(&dev, driver->minor_start,
3430 driver->num, driver->name);
3431 if (!error) {
3432 driver->major = MAJOR(dev);
3433 driver->minor_start = MINOR(dev);
3434 }
3435 } else {
3436 dev = MKDEV(driver->major, driver->minor_start);
3437 error = register_chrdev_region(dev, driver->num, driver->name);
3438 }
3439 if (error < 0)
3440 goto err;
3441
3442 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3443 error = tty_cdev_add(driver, dev, 0, driver->num);
3444 if (error)
3445 goto err_unreg_char;
3446 }
3447
3448 mutex_lock(&tty_mutex);
3449 list_add(&driver->tty_drivers, &tty_drivers);
3450 mutex_unlock(&tty_mutex);
3451
3452 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3453 for (i = 0; i < driver->num; i++) {
3454 d = tty_register_device(driver, i, NULL);
3455 if (IS_ERR(d)) {
3456 error = PTR_ERR(d);
3457 goto err_unreg_devs;
3458 }
3459 }
3460 }
3461 proc_tty_register_driver(driver);
3462 driver->flags |= TTY_DRIVER_INSTALLED;
3463 return 0;
3464
3465err_unreg_devs:
3466 for (i--; i >= 0; i--)
3467 tty_unregister_device(driver, i);
3468
3469 mutex_lock(&tty_mutex);
3470 list_del(&driver->tty_drivers);
3471 mutex_unlock(&tty_mutex);
3472
3473err_unreg_char:
3474 unregister_chrdev_region(dev, driver->num);
3475err:
3476 return error;
3477}
3478EXPORT_SYMBOL(tty_register_driver);
3479
3480/**
3481 * tty_unregister_driver -- unregister a tty driver
3482 * @driver: driver to unregister
3483 *
3484 * Called by a tty driver to unregister itself.
3485 */
3486void tty_unregister_driver(struct tty_driver *driver)
3487{
3488 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3489 driver->num);
3490 mutex_lock(&tty_mutex);
3491 list_del(&driver->tty_drivers);
3492 mutex_unlock(&tty_mutex);
3493}
3494EXPORT_SYMBOL(tty_unregister_driver);
3495
3496dev_t tty_devnum(struct tty_struct *tty)
3497{
3498 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3499}
3500EXPORT_SYMBOL(tty_devnum);
3501
3502void tty_default_fops(struct file_operations *fops)
3503{
3504 *fops = tty_fops;
3505}
3506
3507static char *tty_devnode(const struct device *dev, umode_t *mode)
3508{
3509 if (!mode)
3510 return NULL;
3511 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3512 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3513 *mode = 0666;
3514 return NULL;
3515}
3516
3517const struct class tty_class = {
3518 .name = "tty",
3519 .devnode = tty_devnode,
3520};
3521
3522static int __init tty_class_init(void)
3523{
3524 return class_register(&tty_class);
3525}
3526
3527postcore_initcall(tty_class_init);
3528
3529/* 3/2004 jmc: why do these devices exist? */
3530static struct cdev tty_cdev, console_cdev;
3531
3532static ssize_t show_cons_active(struct device *dev,
3533 struct device_attribute *attr, char *buf)
3534{
3535 struct console *cs[16];
3536 int i = 0;
3537 struct console *c;
3538 ssize_t count = 0;
3539
3540 /*
3541 * Hold the console_list_lock to guarantee that no consoles are
3542 * unregistered until all console processing is complete.
3543 * This also allows safe traversal of the console list and
3544 * race-free reading of @flags.
3545 */
3546 console_list_lock();
3547
3548 for_each_console(c) {
3549 if (!c->device)
3550 continue;
3551 if (!c->write)
3552 continue;
3553 if ((c->flags & CON_ENABLED) == 0)
3554 continue;
3555 cs[i++] = c;
3556 if (i >= ARRAY_SIZE(cs))
3557 break;
3558 }
3559
3560 /*
3561 * Take console_lock to serialize device() callback with
3562 * other console operations. For example, fg_console is
3563 * modified under console_lock when switching vt.
3564 */
3565 console_lock();
3566 while (i--) {
3567 int index = cs[i]->index;
3568 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3569
3570 /* don't resolve tty0 as some programs depend on it */
3571 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3572 count += tty_line_name(drv, index, buf + count);
3573 else
3574 count += sprintf(buf + count, "%s%d",
3575 cs[i]->name, cs[i]->index);
3576
3577 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3578 }
3579 console_unlock();
3580
3581 console_list_unlock();
3582
3583 return count;
3584}
3585static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3586
3587static struct attribute *cons_dev_attrs[] = {
3588 &dev_attr_active.attr,
3589 NULL
3590};
3591
3592ATTRIBUTE_GROUPS(cons_dev);
3593
3594static struct device *consdev;
3595
3596void console_sysfs_notify(void)
3597{
3598 if (consdev)
3599 sysfs_notify(&consdev->kobj, NULL, "active");
3600}
3601
3602static struct ctl_table tty_table[] = {
3603 {
3604 .procname = "legacy_tiocsti",
3605 .data = &tty_legacy_tiocsti,
3606 .maxlen = sizeof(tty_legacy_tiocsti),
3607 .mode = 0644,
3608 .proc_handler = proc_dobool,
3609 },
3610 {
3611 .procname = "ldisc_autoload",
3612 .data = &tty_ldisc_autoload,
3613 .maxlen = sizeof(tty_ldisc_autoload),
3614 .mode = 0644,
3615 .proc_handler = proc_dointvec,
3616 .extra1 = SYSCTL_ZERO,
3617 .extra2 = SYSCTL_ONE,
3618 },
3619 { }
3620};
3621
3622/*
3623 * Ok, now we can initialize the rest of the tty devices and can count
3624 * on memory allocations, interrupts etc..
3625 */
3626int __init tty_init(void)
3627{
3628 register_sysctl_init("dev/tty", tty_table);
3629 cdev_init(&tty_cdev, &tty_fops);
3630 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3631 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3632 panic("Couldn't register /dev/tty driver\n");
3633 device_create(&tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3634
3635 cdev_init(&console_cdev, &console_fops);
3636 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3637 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3638 panic("Couldn't register /dev/console driver\n");
3639 consdev = device_create_with_groups(&tty_class, NULL,
3640 MKDEV(TTYAUX_MAJOR, 1), NULL,
3641 cons_dev_groups, "console");
3642 if (IS_ERR(consdev))
3643 consdev = NULL;
3644
3645#ifdef CONFIG_VT
3646 vty_init(&console_fops);
3647#endif
3648 return 0;
3649}