| 1 | // SPDX-License-Identifier: GPL-2.0+ |
| 2 | /* |
| 3 | * Driver for AMBA serial ports |
| 4 | * |
| 5 | * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. |
| 6 | * |
| 7 | * Copyright 1999 ARM Limited |
| 8 | * Copyright (C) 2000 Deep Blue Solutions Ltd. |
| 9 | * Copyright (C) 2010 ST-Ericsson SA |
| 10 | * |
| 11 | * This is a generic driver for ARM AMBA-type serial ports. They |
| 12 | * have a lot of 16550-like features, but are not register compatible. |
| 13 | * Note that although they do have CTS, DCD and DSR inputs, they do |
| 14 | * not have an RI input, nor do they have DTR or RTS outputs. If |
| 15 | * required, these have to be supplied via some other means (eg, GPIO) |
| 16 | * and hooked into this driver. |
| 17 | */ |
| 18 | |
| 19 | #include <linux/module.h> |
| 20 | #include <linux/ioport.h> |
| 21 | #include <linux/init.h> |
| 22 | #include <linux/console.h> |
| 23 | #include <linux/platform_device.h> |
| 24 | #include <linux/sysrq.h> |
| 25 | #include <linux/device.h> |
| 26 | #include <linux/tty.h> |
| 27 | #include <linux/tty_flip.h> |
| 28 | #include <linux/serial_core.h> |
| 29 | #include <linux/serial.h> |
| 30 | #include <linux/amba/bus.h> |
| 31 | #include <linux/amba/serial.h> |
| 32 | #include <linux/clk.h> |
| 33 | #include <linux/slab.h> |
| 34 | #include <linux/dmaengine.h> |
| 35 | #include <linux/dma-mapping.h> |
| 36 | #include <linux/scatterlist.h> |
| 37 | #include <linux/delay.h> |
| 38 | #include <linux/types.h> |
| 39 | #include <linux/of.h> |
| 40 | #include <linux/pinctrl/consumer.h> |
| 41 | #include <linux/sizes.h> |
| 42 | #include <linux/io.h> |
| 43 | #include <linux/acpi.h> |
| 44 | |
| 45 | #define UART_NR 14 |
| 46 | |
| 47 | #define SERIAL_AMBA_MAJOR 204 |
| 48 | #define SERIAL_AMBA_MINOR 64 |
| 49 | #define SERIAL_AMBA_NR UART_NR |
| 50 | |
| 51 | #define AMBA_ISR_PASS_LIMIT 256 |
| 52 | |
| 53 | #define UART_DR_ERROR (UART011_DR_OE | UART011_DR_BE | UART011_DR_PE | UART011_DR_FE) |
| 54 | #define UART_DUMMY_DR_RX BIT(16) |
| 55 | |
| 56 | enum { |
| 57 | REG_DR, |
| 58 | REG_ST_DMAWM, |
| 59 | REG_ST_TIMEOUT, |
| 60 | REG_FR, |
| 61 | REG_LCRH_RX, |
| 62 | REG_LCRH_TX, |
| 63 | REG_IBRD, |
| 64 | REG_FBRD, |
| 65 | REG_CR, |
| 66 | REG_IFLS, |
| 67 | REG_IMSC, |
| 68 | REG_RIS, |
| 69 | REG_MIS, |
| 70 | REG_ICR, |
| 71 | REG_DMACR, |
| 72 | REG_ST_XFCR, |
| 73 | REG_ST_XON1, |
| 74 | REG_ST_XON2, |
| 75 | REG_ST_XOFF1, |
| 76 | REG_ST_XOFF2, |
| 77 | REG_ST_ITCR, |
| 78 | REG_ST_ITIP, |
| 79 | REG_ST_ABCR, |
| 80 | REG_ST_ABIMSC, |
| 81 | |
| 82 | /* The size of the array - must be last */ |
| 83 | REG_ARRAY_SIZE, |
| 84 | }; |
| 85 | |
| 86 | static u16 pl011_std_offsets[REG_ARRAY_SIZE] = { |
| 87 | [REG_DR] = UART01x_DR, |
| 88 | [REG_FR] = UART01x_FR, |
| 89 | [REG_LCRH_RX] = UART011_LCRH, |
| 90 | [REG_LCRH_TX] = UART011_LCRH, |
| 91 | [REG_IBRD] = UART011_IBRD, |
| 92 | [REG_FBRD] = UART011_FBRD, |
| 93 | [REG_CR] = UART011_CR, |
| 94 | [REG_IFLS] = UART011_IFLS, |
| 95 | [REG_IMSC] = UART011_IMSC, |
| 96 | [REG_RIS] = UART011_RIS, |
| 97 | [REG_MIS] = UART011_MIS, |
| 98 | [REG_ICR] = UART011_ICR, |
| 99 | [REG_DMACR] = UART011_DMACR, |
| 100 | }; |
| 101 | |
| 102 | /* There is by now at least one vendor with differing details, so handle it */ |
| 103 | struct vendor_data { |
| 104 | const u16 *reg_offset; |
| 105 | unsigned int ifls; |
| 106 | unsigned int fr_busy; |
| 107 | unsigned int fr_dsr; |
| 108 | unsigned int fr_cts; |
| 109 | unsigned int fr_ri; |
| 110 | unsigned int inv_fr; |
| 111 | bool access_32b; |
| 112 | bool oversampling; |
| 113 | bool dma_threshold; |
| 114 | bool cts_event_workaround; |
| 115 | bool always_enabled; |
| 116 | bool fixed_options; |
| 117 | |
| 118 | unsigned int (*get_fifosize)(struct amba_device *dev); |
| 119 | }; |
| 120 | |
| 121 | static unsigned int get_fifosize_arm(struct amba_device *dev) |
| 122 | { |
| 123 | return amba_rev(dev) < 3 ? 16 : 32; |
| 124 | } |
| 125 | |
| 126 | static struct vendor_data vendor_arm = { |
| 127 | .reg_offset = pl011_std_offsets, |
| 128 | .ifls = UART011_IFLS_RX4_8 | UART011_IFLS_TX4_8, |
| 129 | .fr_busy = UART01x_FR_BUSY, |
| 130 | .fr_dsr = UART01x_FR_DSR, |
| 131 | .fr_cts = UART01x_FR_CTS, |
| 132 | .fr_ri = UART011_FR_RI, |
| 133 | .oversampling = false, |
| 134 | .dma_threshold = false, |
| 135 | .cts_event_workaround = false, |
| 136 | .always_enabled = false, |
| 137 | .fixed_options = false, |
| 138 | .get_fifosize = get_fifosize_arm, |
| 139 | }; |
| 140 | |
| 141 | static const struct vendor_data vendor_sbsa = { |
| 142 | .reg_offset = pl011_std_offsets, |
| 143 | .fr_busy = UART01x_FR_BUSY, |
| 144 | .fr_dsr = UART01x_FR_DSR, |
| 145 | .fr_cts = UART01x_FR_CTS, |
| 146 | .fr_ri = UART011_FR_RI, |
| 147 | .access_32b = true, |
| 148 | .oversampling = false, |
| 149 | .dma_threshold = false, |
| 150 | .cts_event_workaround = false, |
| 151 | .always_enabled = true, |
| 152 | .fixed_options = true, |
| 153 | }; |
| 154 | |
| 155 | #ifdef CONFIG_ACPI_SPCR_TABLE |
| 156 | static const struct vendor_data vendor_qdt_qdf2400_e44 = { |
| 157 | .reg_offset = pl011_std_offsets, |
| 158 | .fr_busy = UART011_FR_TXFE, |
| 159 | .fr_dsr = UART01x_FR_DSR, |
| 160 | .fr_cts = UART01x_FR_CTS, |
| 161 | .fr_ri = UART011_FR_RI, |
| 162 | .inv_fr = UART011_FR_TXFE, |
| 163 | .access_32b = true, |
| 164 | .oversampling = false, |
| 165 | .dma_threshold = false, |
| 166 | .cts_event_workaround = false, |
| 167 | .always_enabled = true, |
| 168 | .fixed_options = true, |
| 169 | }; |
| 170 | #endif |
| 171 | |
| 172 | static u16 pl011_st_offsets[REG_ARRAY_SIZE] = { |
| 173 | [REG_DR] = UART01x_DR, |
| 174 | [REG_ST_DMAWM] = ST_UART011_DMAWM, |
| 175 | [REG_ST_TIMEOUT] = ST_UART011_TIMEOUT, |
| 176 | [REG_FR] = UART01x_FR, |
| 177 | [REG_LCRH_RX] = ST_UART011_LCRH_RX, |
| 178 | [REG_LCRH_TX] = ST_UART011_LCRH_TX, |
| 179 | [REG_IBRD] = UART011_IBRD, |
| 180 | [REG_FBRD] = UART011_FBRD, |
| 181 | [REG_CR] = UART011_CR, |
| 182 | [REG_IFLS] = UART011_IFLS, |
| 183 | [REG_IMSC] = UART011_IMSC, |
| 184 | [REG_RIS] = UART011_RIS, |
| 185 | [REG_MIS] = UART011_MIS, |
| 186 | [REG_ICR] = UART011_ICR, |
| 187 | [REG_DMACR] = UART011_DMACR, |
| 188 | [REG_ST_XFCR] = ST_UART011_XFCR, |
| 189 | [REG_ST_XON1] = ST_UART011_XON1, |
| 190 | [REG_ST_XON2] = ST_UART011_XON2, |
| 191 | [REG_ST_XOFF1] = ST_UART011_XOFF1, |
| 192 | [REG_ST_XOFF2] = ST_UART011_XOFF2, |
| 193 | [REG_ST_ITCR] = ST_UART011_ITCR, |
| 194 | [REG_ST_ITIP] = ST_UART011_ITIP, |
| 195 | [REG_ST_ABCR] = ST_UART011_ABCR, |
| 196 | [REG_ST_ABIMSC] = ST_UART011_ABIMSC, |
| 197 | }; |
| 198 | |
| 199 | static unsigned int get_fifosize_st(struct amba_device *dev) |
| 200 | { |
| 201 | return 64; |
| 202 | } |
| 203 | |
| 204 | static struct vendor_data vendor_st = { |
| 205 | .reg_offset = pl011_st_offsets, |
| 206 | .ifls = UART011_IFLS_RX_HALF | UART011_IFLS_TX_HALF, |
| 207 | .fr_busy = UART01x_FR_BUSY, |
| 208 | .fr_dsr = UART01x_FR_DSR, |
| 209 | .fr_cts = UART01x_FR_CTS, |
| 210 | .fr_ri = UART011_FR_RI, |
| 211 | .oversampling = true, |
| 212 | .dma_threshold = true, |
| 213 | .cts_event_workaround = true, |
| 214 | .always_enabled = false, |
| 215 | .fixed_options = false, |
| 216 | .get_fifosize = get_fifosize_st, |
| 217 | }; |
| 218 | |
| 219 | /* Deals with DMA transactions */ |
| 220 | |
| 221 | struct pl011_dmabuf { |
| 222 | dma_addr_t dma; |
| 223 | size_t len; |
| 224 | char *buf; |
| 225 | }; |
| 226 | |
| 227 | struct pl011_dmarx_data { |
| 228 | struct dma_chan *chan; |
| 229 | struct completion complete; |
| 230 | bool use_buf_b; |
| 231 | struct pl011_dmabuf dbuf_a; |
| 232 | struct pl011_dmabuf dbuf_b; |
| 233 | dma_cookie_t cookie; |
| 234 | bool running; |
| 235 | struct timer_list timer; |
| 236 | unsigned int last_residue; |
| 237 | unsigned long last_jiffies; |
| 238 | bool auto_poll_rate; |
| 239 | unsigned int poll_rate; |
| 240 | unsigned int poll_timeout; |
| 241 | }; |
| 242 | |
| 243 | struct pl011_dmatx_data { |
| 244 | struct dma_chan *chan; |
| 245 | dma_addr_t dma; |
| 246 | size_t len; |
| 247 | char *buf; |
| 248 | bool queued; |
| 249 | }; |
| 250 | |
| 251 | enum pl011_rs485_tx_state { |
| 252 | OFF, |
| 253 | WAIT_AFTER_RTS, |
| 254 | SEND, |
| 255 | WAIT_AFTER_SEND, |
| 256 | }; |
| 257 | |
| 258 | /* |
| 259 | * We wrap our port structure around the generic uart_port. |
| 260 | */ |
| 261 | struct uart_amba_port { |
| 262 | struct uart_port port; |
| 263 | const u16 *reg_offset; |
| 264 | struct clk *clk; |
| 265 | const struct vendor_data *vendor; |
| 266 | unsigned int im; /* interrupt mask */ |
| 267 | unsigned int old_status; |
| 268 | unsigned int fifosize; /* vendor-specific */ |
| 269 | unsigned int fixed_baud; /* vendor-set fixed baud rate */ |
| 270 | char type[12]; |
| 271 | ktime_t rs485_tx_drain_interval; /* nano */ |
| 272 | enum pl011_rs485_tx_state rs485_tx_state; |
| 273 | struct hrtimer trigger_start_tx; |
| 274 | struct hrtimer trigger_stop_tx; |
| 275 | bool console_line_ended; |
| 276 | #ifdef CONFIG_DMA_ENGINE |
| 277 | /* DMA stuff */ |
| 278 | unsigned int dmacr; /* dma control reg */ |
| 279 | bool using_tx_dma; |
| 280 | bool using_rx_dma; |
| 281 | struct pl011_dmarx_data dmarx; |
| 282 | struct pl011_dmatx_data dmatx; |
| 283 | bool dma_probed; |
| 284 | #endif |
| 285 | }; |
| 286 | |
| 287 | static unsigned int pl011_tx_empty(struct uart_port *port); |
| 288 | |
| 289 | static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap, |
| 290 | unsigned int reg) |
| 291 | { |
| 292 | return uap->reg_offset[reg]; |
| 293 | } |
| 294 | |
| 295 | static unsigned int pl011_read(const struct uart_amba_port *uap, |
| 296 | unsigned int reg) |
| 297 | { |
| 298 | void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg); |
| 299 | |
| 300 | return (uap->port.iotype == UPIO_MEM32) ? |
| 301 | readl_relaxed(addr) : readw_relaxed(addr); |
| 302 | } |
| 303 | |
| 304 | static void pl011_write(unsigned int val, const struct uart_amba_port *uap, |
| 305 | unsigned int reg) |
| 306 | { |
| 307 | void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg); |
| 308 | |
| 309 | if (uap->port.iotype == UPIO_MEM32) |
| 310 | writel_relaxed(val, addr); |
| 311 | else |
| 312 | writew_relaxed(val, addr); |
| 313 | } |
| 314 | |
| 315 | /* |
| 316 | * Reads up to 256 characters from the FIFO or until it's empty and |
| 317 | * inserts them into the TTY layer. Returns the number of characters |
| 318 | * read from the FIFO. |
| 319 | */ |
| 320 | static int pl011_fifo_to_tty(struct uart_amba_port *uap) |
| 321 | { |
| 322 | unsigned int ch, fifotaken; |
| 323 | int sysrq; |
| 324 | u16 status; |
| 325 | u8 flag; |
| 326 | |
| 327 | for (fifotaken = 0; fifotaken != 256; fifotaken++) { |
| 328 | status = pl011_read(uap, REG_FR); |
| 329 | if (status & UART01x_FR_RXFE) |
| 330 | break; |
| 331 | |
| 332 | /* Take chars from the FIFO and update status */ |
| 333 | ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX; |
| 334 | flag = TTY_NORMAL; |
| 335 | uap->port.icount.rx++; |
| 336 | |
| 337 | if (unlikely(ch & UART_DR_ERROR)) { |
| 338 | if (ch & UART011_DR_BE) { |
| 339 | ch &= ~(UART011_DR_FE | UART011_DR_PE); |
| 340 | uap->port.icount.brk++; |
| 341 | if (uart_handle_break(&uap->port)) |
| 342 | continue; |
| 343 | } else if (ch & UART011_DR_PE) { |
| 344 | uap->port.icount.parity++; |
| 345 | } else if (ch & UART011_DR_FE) { |
| 346 | uap->port.icount.frame++; |
| 347 | } |
| 348 | if (ch & UART011_DR_OE) |
| 349 | uap->port.icount.overrun++; |
| 350 | |
| 351 | ch &= uap->port.read_status_mask; |
| 352 | |
| 353 | if (ch & UART011_DR_BE) |
| 354 | flag = TTY_BREAK; |
| 355 | else if (ch & UART011_DR_PE) |
| 356 | flag = TTY_PARITY; |
| 357 | else if (ch & UART011_DR_FE) |
| 358 | flag = TTY_FRAME; |
| 359 | } |
| 360 | |
| 361 | sysrq = uart_prepare_sysrq_char(&uap->port, ch & 255); |
| 362 | if (!sysrq) |
| 363 | uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag); |
| 364 | } |
| 365 | |
| 366 | return fifotaken; |
| 367 | } |
| 368 | |
| 369 | /* |
| 370 | * All the DMA operation mode stuff goes inside this ifdef. |
| 371 | * This assumes that you have a generic DMA device interface, |
| 372 | * no custom DMA interfaces are supported. |
| 373 | */ |
| 374 | #ifdef CONFIG_DMA_ENGINE |
| 375 | |
| 376 | #define PL011_DMA_BUFFER_SIZE PAGE_SIZE |
| 377 | |
| 378 | static int pl011_dmabuf_init(struct dma_chan *chan, struct pl011_dmabuf *db, |
| 379 | enum dma_data_direction dir) |
| 380 | { |
| 381 | db->buf = dma_alloc_coherent(chan->device->dev, PL011_DMA_BUFFER_SIZE, |
| 382 | &db->dma, GFP_KERNEL); |
| 383 | if (!db->buf) |
| 384 | return -ENOMEM; |
| 385 | db->len = PL011_DMA_BUFFER_SIZE; |
| 386 | |
| 387 | return 0; |
| 388 | } |
| 389 | |
| 390 | static void pl011_dmabuf_free(struct dma_chan *chan, struct pl011_dmabuf *db, |
| 391 | enum dma_data_direction dir) |
| 392 | { |
| 393 | if (db->buf) { |
| 394 | dma_free_coherent(chan->device->dev, |
| 395 | PL011_DMA_BUFFER_SIZE, db->buf, db->dma); |
| 396 | } |
| 397 | } |
| 398 | |
| 399 | static void pl011_dma_probe(struct uart_amba_port *uap) |
| 400 | { |
| 401 | /* DMA is the sole user of the platform data right now */ |
| 402 | struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev); |
| 403 | struct device *dev = uap->port.dev; |
| 404 | struct dma_slave_config tx_conf = { |
| 405 | .dst_addr = uap->port.mapbase + |
| 406 | pl011_reg_to_offset(uap, REG_DR), |
| 407 | .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, |
| 408 | .direction = DMA_MEM_TO_DEV, |
| 409 | .dst_maxburst = uap->fifosize >> 1, |
| 410 | .device_fc = false, |
| 411 | }; |
| 412 | struct dma_chan *chan; |
| 413 | dma_cap_mask_t mask; |
| 414 | |
| 415 | uap->dma_probed = true; |
| 416 | chan = dma_request_chan(dev, "tx"); |
| 417 | if (IS_ERR(chan)) { |
| 418 | if (PTR_ERR(chan) == -EPROBE_DEFER) { |
| 419 | uap->dma_probed = false; |
| 420 | return; |
| 421 | } |
| 422 | |
| 423 | /* We need platform data */ |
| 424 | if (!plat || !plat->dma_filter) { |
| 425 | dev_dbg(uap->port.dev, "no DMA platform data\n"); |
| 426 | return; |
| 427 | } |
| 428 | |
| 429 | /* Try to acquire a generic DMA engine slave TX channel */ |
| 430 | dma_cap_zero(mask); |
| 431 | dma_cap_set(DMA_SLAVE, mask); |
| 432 | |
| 433 | chan = dma_request_channel(mask, plat->dma_filter, |
| 434 | plat->dma_tx_param); |
| 435 | if (!chan) { |
| 436 | dev_err(uap->port.dev, "no TX DMA channel!\n"); |
| 437 | return; |
| 438 | } |
| 439 | } |
| 440 | |
| 441 | dmaengine_slave_config(chan, &tx_conf); |
| 442 | uap->dmatx.chan = chan; |
| 443 | |
| 444 | dev_info(uap->port.dev, "DMA channel TX %s\n", |
| 445 | dma_chan_name(uap->dmatx.chan)); |
| 446 | |
| 447 | /* Optionally make use of an RX channel as well */ |
| 448 | chan = dma_request_chan(dev, "rx"); |
| 449 | |
| 450 | if (IS_ERR(chan) && plat && plat->dma_rx_param) { |
| 451 | chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param); |
| 452 | |
| 453 | if (!chan) { |
| 454 | dev_err(uap->port.dev, "no RX DMA channel!\n"); |
| 455 | return; |
| 456 | } |
| 457 | } |
| 458 | |
| 459 | if (!IS_ERR(chan)) { |
| 460 | struct dma_slave_config rx_conf = { |
| 461 | .src_addr = uap->port.mapbase + |
| 462 | pl011_reg_to_offset(uap, REG_DR), |
| 463 | .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, |
| 464 | .direction = DMA_DEV_TO_MEM, |
| 465 | .src_maxburst = uap->fifosize >> 2, |
| 466 | .device_fc = false, |
| 467 | }; |
| 468 | struct dma_slave_caps caps; |
| 469 | |
| 470 | /* |
| 471 | * Some DMA controllers provide information on their capabilities. |
| 472 | * If the controller does, check for suitable residue processing |
| 473 | * otherwise assime all is well. |
| 474 | */ |
| 475 | if (dma_get_slave_caps(chan, &caps) == 0) { |
| 476 | if (caps.residue_granularity == |
| 477 | DMA_RESIDUE_GRANULARITY_DESCRIPTOR) { |
| 478 | dma_release_channel(chan); |
| 479 | dev_info(uap->port.dev, |
| 480 | "RX DMA disabled - no residue processing\n"); |
| 481 | return; |
| 482 | } |
| 483 | } |
| 484 | dmaengine_slave_config(chan, &rx_conf); |
| 485 | uap->dmarx.chan = chan; |
| 486 | |
| 487 | uap->dmarx.auto_poll_rate = false; |
| 488 | if (plat && plat->dma_rx_poll_enable) { |
| 489 | /* Set poll rate if specified. */ |
| 490 | if (plat->dma_rx_poll_rate) { |
| 491 | uap->dmarx.auto_poll_rate = false; |
| 492 | uap->dmarx.poll_rate = plat->dma_rx_poll_rate; |
| 493 | } else { |
| 494 | /* |
| 495 | * 100 ms defaults to poll rate if not |
| 496 | * specified. This will be adjusted with |
| 497 | * the baud rate at set_termios. |
| 498 | */ |
| 499 | uap->dmarx.auto_poll_rate = true; |
| 500 | uap->dmarx.poll_rate = 100; |
| 501 | } |
| 502 | /* 3 secs defaults poll_timeout if not specified. */ |
| 503 | if (plat->dma_rx_poll_timeout) |
| 504 | uap->dmarx.poll_timeout = |
| 505 | plat->dma_rx_poll_timeout; |
| 506 | else |
| 507 | uap->dmarx.poll_timeout = 3000; |
| 508 | } else if (!plat && dev->of_node) { |
| 509 | uap->dmarx.auto_poll_rate = |
| 510 | of_property_read_bool(dev->of_node, "auto-poll"); |
| 511 | if (uap->dmarx.auto_poll_rate) { |
| 512 | u32 x; |
| 513 | |
| 514 | if (of_property_read_u32(dev->of_node, "poll-rate-ms", &x) == 0) |
| 515 | uap->dmarx.poll_rate = x; |
| 516 | else |
| 517 | uap->dmarx.poll_rate = 100; |
| 518 | if (of_property_read_u32(dev->of_node, "poll-timeout-ms", &x) == 0) |
| 519 | uap->dmarx.poll_timeout = x; |
| 520 | else |
| 521 | uap->dmarx.poll_timeout = 3000; |
| 522 | } |
| 523 | } |
| 524 | dev_info(uap->port.dev, "DMA channel RX %s\n", |
| 525 | dma_chan_name(uap->dmarx.chan)); |
| 526 | } |
| 527 | } |
| 528 | |
| 529 | static void pl011_dma_remove(struct uart_amba_port *uap) |
| 530 | { |
| 531 | if (uap->dmatx.chan) |
| 532 | dma_release_channel(uap->dmatx.chan); |
| 533 | if (uap->dmarx.chan) |
| 534 | dma_release_channel(uap->dmarx.chan); |
| 535 | } |
| 536 | |
| 537 | /* Forward declare these for the refill routine */ |
| 538 | static int pl011_dma_tx_refill(struct uart_amba_port *uap); |
| 539 | static void pl011_start_tx_pio(struct uart_amba_port *uap); |
| 540 | |
| 541 | /* |
| 542 | * The current DMA TX buffer has been sent. |
| 543 | * Try to queue up another DMA buffer. |
| 544 | */ |
| 545 | static void pl011_dma_tx_callback(void *data) |
| 546 | { |
| 547 | struct uart_amba_port *uap = data; |
| 548 | struct tty_port *tport = &uap->port.state->port; |
| 549 | struct pl011_dmatx_data *dmatx = &uap->dmatx; |
| 550 | unsigned long flags; |
| 551 | u16 dmacr; |
| 552 | |
| 553 | uart_port_lock_irqsave(&uap->port, &flags); |
| 554 | if (uap->dmatx.queued) |
| 555 | dma_unmap_single(dmatx->chan->device->dev, dmatx->dma, |
| 556 | dmatx->len, DMA_TO_DEVICE); |
| 557 | |
| 558 | dmacr = uap->dmacr; |
| 559 | uap->dmacr = dmacr & ~UART011_TXDMAE; |
| 560 | pl011_write(uap->dmacr, uap, REG_DMACR); |
| 561 | |
| 562 | /* |
| 563 | * If TX DMA was disabled, it means that we've stopped the DMA for |
| 564 | * some reason (eg, XOFF received, or we want to send an X-char.) |
| 565 | * |
| 566 | * Note: we need to be careful here of a potential race between DMA |
| 567 | * and the rest of the driver - if the driver disables TX DMA while |
| 568 | * a TX buffer completing, we must update the tx queued status to |
| 569 | * get further refills (hence we check dmacr). |
| 570 | */ |
| 571 | if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) || |
| 572 | kfifo_is_empty(&tport->xmit_fifo)) { |
| 573 | uap->dmatx.queued = false; |
| 574 | uart_port_unlock_irqrestore(&uap->port, flags); |
| 575 | return; |
| 576 | } |
| 577 | |
| 578 | if (pl011_dma_tx_refill(uap) <= 0) |
| 579 | /* |
| 580 | * We didn't queue a DMA buffer for some reason, but we |
| 581 | * have data pending to be sent. Re-enable the TX IRQ. |
| 582 | */ |
| 583 | pl011_start_tx_pio(uap); |
| 584 | |
| 585 | uart_port_unlock_irqrestore(&uap->port, flags); |
| 586 | } |
| 587 | |
| 588 | /* |
| 589 | * Try to refill the TX DMA buffer. |
| 590 | * Locking: called with port lock held and IRQs disabled. |
| 591 | * Returns: |
| 592 | * 1 if we queued up a TX DMA buffer. |
| 593 | * 0 if we didn't want to handle this by DMA |
| 594 | * <0 on error |
| 595 | */ |
| 596 | static int pl011_dma_tx_refill(struct uart_amba_port *uap) |
| 597 | { |
| 598 | struct pl011_dmatx_data *dmatx = &uap->dmatx; |
| 599 | struct dma_chan *chan = dmatx->chan; |
| 600 | struct dma_device *dma_dev = chan->device; |
| 601 | struct dma_async_tx_descriptor *desc; |
| 602 | struct tty_port *tport = &uap->port.state->port; |
| 603 | unsigned int count; |
| 604 | |
| 605 | /* |
| 606 | * Try to avoid the overhead involved in using DMA if the |
| 607 | * transaction fits in the first half of the FIFO, by using |
| 608 | * the standard interrupt handling. This ensures that we |
| 609 | * issue a uart_write_wakeup() at the appropriate time. |
| 610 | */ |
| 611 | count = kfifo_len(&tport->xmit_fifo); |
| 612 | if (count < (uap->fifosize >> 1)) { |
| 613 | uap->dmatx.queued = false; |
| 614 | return 0; |
| 615 | } |
| 616 | |
| 617 | /* |
| 618 | * Bodge: don't send the last character by DMA, as this |
| 619 | * will prevent XON from notifying us to restart DMA. |
| 620 | */ |
| 621 | count -= 1; |
| 622 | |
| 623 | /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */ |
| 624 | if (count > PL011_DMA_BUFFER_SIZE) |
| 625 | count = PL011_DMA_BUFFER_SIZE; |
| 626 | |
| 627 | count = kfifo_out_peek(&tport->xmit_fifo, dmatx->buf, count); |
| 628 | dmatx->len = count; |
| 629 | dmatx->dma = dma_map_single(dma_dev->dev, dmatx->buf, count, |
| 630 | DMA_TO_DEVICE); |
| 631 | if (dmatx->dma == DMA_MAPPING_ERROR) { |
| 632 | uap->dmatx.queued = false; |
| 633 | dev_dbg(uap->port.dev, "unable to map TX DMA\n"); |
| 634 | return -EBUSY; |
| 635 | } |
| 636 | |
| 637 | desc = dmaengine_prep_slave_single(chan, dmatx->dma, dmatx->len, DMA_MEM_TO_DEV, |
| 638 | DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| 639 | if (!desc) { |
| 640 | dma_unmap_single(dma_dev->dev, dmatx->dma, dmatx->len, DMA_TO_DEVICE); |
| 641 | uap->dmatx.queued = false; |
| 642 | /* |
| 643 | * If DMA cannot be used right now, we complete this |
| 644 | * transaction via IRQ and let the TTY layer retry. |
| 645 | */ |
| 646 | dev_dbg(uap->port.dev, "TX DMA busy\n"); |
| 647 | return -EBUSY; |
| 648 | } |
| 649 | |
| 650 | /* Some data to go along to the callback */ |
| 651 | desc->callback = pl011_dma_tx_callback; |
| 652 | desc->callback_param = uap; |
| 653 | |
| 654 | /* All errors should happen at prepare time */ |
| 655 | dmaengine_submit(desc); |
| 656 | |
| 657 | /* Fire the DMA transaction */ |
| 658 | dma_dev->device_issue_pending(chan); |
| 659 | |
| 660 | uap->dmacr |= UART011_TXDMAE; |
| 661 | pl011_write(uap->dmacr, uap, REG_DMACR); |
| 662 | uap->dmatx.queued = true; |
| 663 | |
| 664 | /* |
| 665 | * Now we know that DMA will fire, so advance the ring buffer |
| 666 | * with the stuff we just dispatched. |
| 667 | */ |
| 668 | uart_xmit_advance(&uap->port, count); |
| 669 | |
| 670 | if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS) |
| 671 | uart_write_wakeup(&uap->port); |
| 672 | |
| 673 | return 1; |
| 674 | } |
| 675 | |
| 676 | /* |
| 677 | * We received a transmit interrupt without a pending X-char but with |
| 678 | * pending characters. |
| 679 | * Locking: called with port lock held and IRQs disabled. |
| 680 | * Returns: |
| 681 | * false if we want to use PIO to transmit |
| 682 | * true if we queued a DMA buffer |
| 683 | */ |
| 684 | static bool pl011_dma_tx_irq(struct uart_amba_port *uap) |
| 685 | { |
| 686 | if (!uap->using_tx_dma) |
| 687 | return false; |
| 688 | |
| 689 | /* |
| 690 | * If we already have a TX buffer queued, but received a |
| 691 | * TX interrupt, it will be because we've just sent an X-char. |
| 692 | * Ensure the TX DMA is enabled and the TX IRQ is disabled. |
| 693 | */ |
| 694 | if (uap->dmatx.queued) { |
| 695 | uap->dmacr |= UART011_TXDMAE; |
| 696 | pl011_write(uap->dmacr, uap, REG_DMACR); |
| 697 | uap->im &= ~UART011_TXIM; |
| 698 | pl011_write(uap->im, uap, REG_IMSC); |
| 699 | return true; |
| 700 | } |
| 701 | |
| 702 | /* |
| 703 | * We don't have a TX buffer queued, so try to queue one. |
| 704 | * If we successfully queued a buffer, mask the TX IRQ. |
| 705 | */ |
| 706 | if (pl011_dma_tx_refill(uap) > 0) { |
| 707 | uap->im &= ~UART011_TXIM; |
| 708 | pl011_write(uap->im, uap, REG_IMSC); |
| 709 | return true; |
| 710 | } |
| 711 | return false; |
| 712 | } |
| 713 | |
| 714 | /* |
| 715 | * Stop the DMA transmit (eg, due to received XOFF). |
| 716 | * Locking: called with port lock held and IRQs disabled. |
| 717 | */ |
| 718 | static inline void pl011_dma_tx_stop(struct uart_amba_port *uap) |
| 719 | { |
| 720 | if (uap->dmatx.queued) { |
| 721 | uap->dmacr &= ~UART011_TXDMAE; |
| 722 | pl011_write(uap->dmacr, uap, REG_DMACR); |
| 723 | } |
| 724 | } |
| 725 | |
| 726 | /* |
| 727 | * Try to start a DMA transmit, or in the case of an XON/OFF |
| 728 | * character queued for send, try to get that character out ASAP. |
| 729 | * Locking: called with port lock held and IRQs disabled. |
| 730 | * Returns: |
| 731 | * false if we want the TX IRQ to be enabled |
| 732 | * true if we have a buffer queued |
| 733 | */ |
| 734 | static inline bool pl011_dma_tx_start(struct uart_amba_port *uap) |
| 735 | { |
| 736 | u16 dmacr; |
| 737 | |
| 738 | if (!uap->using_tx_dma) |
| 739 | return false; |
| 740 | |
| 741 | if (!uap->port.x_char) { |
| 742 | /* no X-char, try to push chars out in DMA mode */ |
| 743 | bool ret = true; |
| 744 | |
| 745 | if (!uap->dmatx.queued) { |
| 746 | if (pl011_dma_tx_refill(uap) > 0) { |
| 747 | uap->im &= ~UART011_TXIM; |
| 748 | pl011_write(uap->im, uap, REG_IMSC); |
| 749 | } else { |
| 750 | ret = false; |
| 751 | } |
| 752 | } else if (!(uap->dmacr & UART011_TXDMAE)) { |
| 753 | uap->dmacr |= UART011_TXDMAE; |
| 754 | pl011_write(uap->dmacr, uap, REG_DMACR); |
| 755 | } |
| 756 | return ret; |
| 757 | } |
| 758 | |
| 759 | /* |
| 760 | * We have an X-char to send. Disable DMA to prevent it loading |
| 761 | * the TX fifo, and then see if we can stuff it into the FIFO. |
| 762 | */ |
| 763 | dmacr = uap->dmacr; |
| 764 | uap->dmacr &= ~UART011_TXDMAE; |
| 765 | pl011_write(uap->dmacr, uap, REG_DMACR); |
| 766 | |
| 767 | if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) { |
| 768 | /* |
| 769 | * No space in the FIFO, so enable the transmit interrupt |
| 770 | * so we know when there is space. Note that once we've |
| 771 | * loaded the character, we should just re-enable DMA. |
| 772 | */ |
| 773 | return false; |
| 774 | } |
| 775 | |
| 776 | pl011_write(uap->port.x_char, uap, REG_DR); |
| 777 | uap->port.icount.tx++; |
| 778 | uap->port.x_char = 0; |
| 779 | |
| 780 | /* Success - restore the DMA state */ |
| 781 | uap->dmacr = dmacr; |
| 782 | pl011_write(dmacr, uap, REG_DMACR); |
| 783 | |
| 784 | return true; |
| 785 | } |
| 786 | |
| 787 | /* |
| 788 | * Flush the transmit buffer. |
| 789 | * Locking: called with port lock held and IRQs disabled. |
| 790 | */ |
| 791 | static void pl011_dma_flush_buffer(struct uart_port *port) |
| 792 | __releases(&uap->port.lock) |
| 793 | __acquires(&uap->port.lock) |
| 794 | { |
| 795 | struct uart_amba_port *uap = |
| 796 | container_of(port, struct uart_amba_port, port); |
| 797 | |
| 798 | if (!uap->using_tx_dma) |
| 799 | return; |
| 800 | |
| 801 | dmaengine_terminate_async(uap->dmatx.chan); |
| 802 | |
| 803 | if (uap->dmatx.queued) { |
| 804 | dma_unmap_single(uap->dmatx.chan->device->dev, uap->dmatx.dma, |
| 805 | uap->dmatx.len, DMA_TO_DEVICE); |
| 806 | uap->dmatx.queued = false; |
| 807 | uap->dmacr &= ~UART011_TXDMAE; |
| 808 | pl011_write(uap->dmacr, uap, REG_DMACR); |
| 809 | } |
| 810 | } |
| 811 | |
| 812 | static void pl011_dma_rx_callback(void *data); |
| 813 | |
| 814 | static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap) |
| 815 | { |
| 816 | struct dma_chan *rxchan = uap->dmarx.chan; |
| 817 | struct pl011_dmarx_data *dmarx = &uap->dmarx; |
| 818 | struct dma_async_tx_descriptor *desc; |
| 819 | struct pl011_dmabuf *dbuf; |
| 820 | |
| 821 | if (!rxchan) |
| 822 | return -EIO; |
| 823 | |
| 824 | /* Start the RX DMA job */ |
| 825 | dbuf = uap->dmarx.use_buf_b ? |
| 826 | &uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a; |
| 827 | desc = dmaengine_prep_slave_single(rxchan, dbuf->dma, dbuf->len, |
| 828 | DMA_DEV_TO_MEM, |
| 829 | DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| 830 | /* |
| 831 | * If the DMA engine is busy and cannot prepare a |
| 832 | * channel, no big deal, the driver will fall back |
| 833 | * to interrupt mode as a result of this error code. |
| 834 | */ |
| 835 | if (!desc) { |
| 836 | uap->dmarx.running = false; |
| 837 | dmaengine_terminate_all(rxchan); |
| 838 | return -EBUSY; |
| 839 | } |
| 840 | |
| 841 | /* Some data to go along to the callback */ |
| 842 | desc->callback = pl011_dma_rx_callback; |
| 843 | desc->callback_param = uap; |
| 844 | dmarx->cookie = dmaengine_submit(desc); |
| 845 | dma_async_issue_pending(rxchan); |
| 846 | |
| 847 | uap->dmacr |= UART011_RXDMAE; |
| 848 | pl011_write(uap->dmacr, uap, REG_DMACR); |
| 849 | uap->dmarx.running = true; |
| 850 | |
| 851 | uap->im &= ~UART011_RXIM; |
| 852 | pl011_write(uap->im, uap, REG_IMSC); |
| 853 | |
| 854 | return 0; |
| 855 | } |
| 856 | |
| 857 | /* |
| 858 | * This is called when either the DMA job is complete, or |
| 859 | * the FIFO timeout interrupt occurred. This must be called |
| 860 | * with the port spinlock uap->port.lock held. |
| 861 | */ |
| 862 | static void pl011_dma_rx_chars(struct uart_amba_port *uap, |
| 863 | u32 pending, bool use_buf_b, |
| 864 | bool readfifo) |
| 865 | { |
| 866 | struct tty_port *port = &uap->port.state->port; |
| 867 | struct pl011_dmabuf *dbuf = use_buf_b ? |
| 868 | &uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a; |
| 869 | int dma_count = 0; |
| 870 | u32 fifotaken = 0; /* only used for vdbg() */ |
| 871 | |
| 872 | struct pl011_dmarx_data *dmarx = &uap->dmarx; |
| 873 | int dmataken = 0; |
| 874 | |
| 875 | if (uap->dmarx.poll_rate) { |
| 876 | /* The data can be taken by polling */ |
| 877 | dmataken = dbuf->len - dmarx->last_residue; |
| 878 | /* Recalculate the pending size */ |
| 879 | if (pending >= dmataken) |
| 880 | pending -= dmataken; |
| 881 | } |
| 882 | |
| 883 | /* Pick the remain data from the DMA */ |
| 884 | if (pending) { |
| 885 | /* |
| 886 | * First take all chars in the DMA pipe, then look in the FIFO. |
| 887 | * Note that tty_insert_flip_buf() tries to take as many chars |
| 888 | * as it can. |
| 889 | */ |
| 890 | dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken, pending); |
| 891 | |
| 892 | uap->port.icount.rx += dma_count; |
| 893 | if (dma_count < pending) |
| 894 | dev_warn(uap->port.dev, |
| 895 | "couldn't insert all characters (TTY is full?)\n"); |
| 896 | } |
| 897 | |
| 898 | /* Reset the last_residue for Rx DMA poll */ |
| 899 | if (uap->dmarx.poll_rate) |
| 900 | dmarx->last_residue = dbuf->len; |
| 901 | |
| 902 | /* |
| 903 | * Only continue with trying to read the FIFO if all DMA chars have |
| 904 | * been taken first. |
| 905 | */ |
| 906 | if (dma_count == pending && readfifo) { |
| 907 | /* Clear any error flags */ |
| 908 | pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS | |
| 909 | UART011_FEIS, uap, REG_ICR); |
| 910 | |
| 911 | /* |
| 912 | * If we read all the DMA'd characters, and we had an |
| 913 | * incomplete buffer, that could be due to an rx error, or |
| 914 | * maybe we just timed out. Read any pending chars and check |
| 915 | * the error status. |
| 916 | * |
| 917 | * Error conditions will only occur in the FIFO, these will |
| 918 | * trigger an immediate interrupt and stop the DMA job, so we |
| 919 | * will always find the error in the FIFO, never in the DMA |
| 920 | * buffer. |
| 921 | */ |
| 922 | fifotaken = pl011_fifo_to_tty(uap); |
| 923 | } |
| 924 | |
| 925 | dev_vdbg(uap->port.dev, |
| 926 | "Took %d chars from DMA buffer and %d chars from the FIFO\n", |
| 927 | dma_count, fifotaken); |
| 928 | tty_flip_buffer_push(port); |
| 929 | } |
| 930 | |
| 931 | static void pl011_dma_rx_irq(struct uart_amba_port *uap) |
| 932 | { |
| 933 | struct pl011_dmarx_data *dmarx = &uap->dmarx; |
| 934 | struct dma_chan *rxchan = dmarx->chan; |
| 935 | struct pl011_dmabuf *dbuf = dmarx->use_buf_b ? |
| 936 | &dmarx->dbuf_b : &dmarx->dbuf_a; |
| 937 | size_t pending; |
| 938 | struct dma_tx_state state; |
| 939 | enum dma_status dmastat; |
| 940 | |
| 941 | /* |
| 942 | * Pause the transfer so we can trust the current counter, |
| 943 | * do this before we pause the PL011 block, else we may |
| 944 | * overflow the FIFO. |
| 945 | */ |
| 946 | if (dmaengine_pause(rxchan)) |
| 947 | dev_err(uap->port.dev, "unable to pause DMA transfer\n"); |
| 948 | dmastat = rxchan->device->device_tx_status(rxchan, |
| 949 | dmarx->cookie, &state); |
| 950 | if (dmastat != DMA_PAUSED) |
| 951 | dev_err(uap->port.dev, "unable to pause DMA transfer\n"); |
| 952 | |
| 953 | /* Disable RX DMA - incoming data will wait in the FIFO */ |
| 954 | uap->dmacr &= ~UART011_RXDMAE; |
| 955 | pl011_write(uap->dmacr, uap, REG_DMACR); |
| 956 | uap->dmarx.running = false; |
| 957 | |
| 958 | pending = dbuf->len - state.residue; |
| 959 | BUG_ON(pending > PL011_DMA_BUFFER_SIZE); |
| 960 | /* Then we terminate the transfer - we now know our residue */ |
| 961 | dmaengine_terminate_all(rxchan); |
| 962 | |
| 963 | /* |
| 964 | * This will take the chars we have so far and insert |
| 965 | * into the framework. |
| 966 | */ |
| 967 | pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true); |
| 968 | |
| 969 | /* Switch buffer & re-trigger DMA job */ |
| 970 | dmarx->use_buf_b = !dmarx->use_buf_b; |
| 971 | if (pl011_dma_rx_trigger_dma(uap)) { |
| 972 | dev_dbg(uap->port.dev, |
| 973 | "could not retrigger RX DMA job fall back to interrupt mode\n"); |
| 974 | uap->im |= UART011_RXIM; |
| 975 | pl011_write(uap->im, uap, REG_IMSC); |
| 976 | } |
| 977 | } |
| 978 | |
| 979 | static void pl011_dma_rx_callback(void *data) |
| 980 | { |
| 981 | struct uart_amba_port *uap = data; |
| 982 | struct pl011_dmarx_data *dmarx = &uap->dmarx; |
| 983 | struct dma_chan *rxchan = dmarx->chan; |
| 984 | bool lastbuf = dmarx->use_buf_b; |
| 985 | struct pl011_dmabuf *dbuf = dmarx->use_buf_b ? |
| 986 | &dmarx->dbuf_b : &dmarx->dbuf_a; |
| 987 | size_t pending; |
| 988 | struct dma_tx_state state; |
| 989 | int ret; |
| 990 | |
| 991 | /* |
| 992 | * This completion interrupt occurs typically when the |
| 993 | * RX buffer is totally stuffed but no timeout has yet |
| 994 | * occurred. When that happens, we just want the RX |
| 995 | * routine to flush out the secondary DMA buffer while |
| 996 | * we immediately trigger the next DMA job. |
| 997 | */ |
| 998 | uart_port_lock_irq(&uap->port); |
| 999 | /* |
| 1000 | * Rx data can be taken by the UART interrupts during |
| 1001 | * the DMA irq handler. So we check the residue here. |
| 1002 | */ |
| 1003 | rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state); |
| 1004 | pending = dbuf->len - state.residue; |
| 1005 | BUG_ON(pending > PL011_DMA_BUFFER_SIZE); |
| 1006 | /* Then we terminate the transfer - we now know our residue */ |
| 1007 | dmaengine_terminate_all(rxchan); |
| 1008 | |
| 1009 | uap->dmarx.running = false; |
| 1010 | dmarx->use_buf_b = !lastbuf; |
| 1011 | ret = pl011_dma_rx_trigger_dma(uap); |
| 1012 | |
| 1013 | pl011_dma_rx_chars(uap, pending, lastbuf, false); |
| 1014 | uart_unlock_and_check_sysrq(&uap->port); |
| 1015 | /* |
| 1016 | * Do this check after we picked the DMA chars so we don't |
| 1017 | * get some IRQ immediately from RX. |
| 1018 | */ |
| 1019 | if (ret) { |
| 1020 | dev_dbg(uap->port.dev, |
| 1021 | "could not retrigger RX DMA job fall back to interrupt mode\n"); |
| 1022 | uap->im |= UART011_RXIM; |
| 1023 | pl011_write(uap->im, uap, REG_IMSC); |
| 1024 | } |
| 1025 | } |
| 1026 | |
| 1027 | /* |
| 1028 | * Stop accepting received characters, when we're shutting down or |
| 1029 | * suspending this port. |
| 1030 | * Locking: called with port lock held and IRQs disabled. |
| 1031 | */ |
| 1032 | static inline void pl011_dma_rx_stop(struct uart_amba_port *uap) |
| 1033 | { |
| 1034 | if (!uap->using_rx_dma) |
| 1035 | return; |
| 1036 | |
| 1037 | /* FIXME. Just disable the DMA enable */ |
| 1038 | uap->dmacr &= ~UART011_RXDMAE; |
| 1039 | pl011_write(uap->dmacr, uap, REG_DMACR); |
| 1040 | } |
| 1041 | |
| 1042 | /* |
| 1043 | * Timer handler for Rx DMA polling. |
| 1044 | * Every polling, It checks the residue in the dma buffer and transfer |
| 1045 | * data to the tty. Also, last_residue is updated for the next polling. |
| 1046 | */ |
| 1047 | static void pl011_dma_rx_poll(struct timer_list *t) |
| 1048 | { |
| 1049 | struct uart_amba_port *uap = timer_container_of(uap, t, dmarx.timer); |
| 1050 | struct tty_port *port = &uap->port.state->port; |
| 1051 | struct pl011_dmarx_data *dmarx = &uap->dmarx; |
| 1052 | struct dma_chan *rxchan = uap->dmarx.chan; |
| 1053 | unsigned long flags; |
| 1054 | unsigned int dmataken = 0; |
| 1055 | unsigned int size = 0; |
| 1056 | struct pl011_dmabuf *dbuf; |
| 1057 | int dma_count; |
| 1058 | struct dma_tx_state state; |
| 1059 | |
| 1060 | dbuf = dmarx->use_buf_b ? &uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a; |
| 1061 | rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state); |
| 1062 | if (likely(state.residue < dmarx->last_residue)) { |
| 1063 | dmataken = dbuf->len - dmarx->last_residue; |
| 1064 | size = dmarx->last_residue - state.residue; |
| 1065 | dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken, |
| 1066 | size); |
| 1067 | if (dma_count == size) |
| 1068 | dmarx->last_residue = state.residue; |
| 1069 | dmarx->last_jiffies = jiffies; |
| 1070 | } |
| 1071 | tty_flip_buffer_push(port); |
| 1072 | |
| 1073 | /* |
| 1074 | * If no data is received in poll_timeout, the driver will fall back |
| 1075 | * to interrupt mode. We will retrigger DMA at the first interrupt. |
| 1076 | */ |
| 1077 | if (jiffies_to_msecs(jiffies - dmarx->last_jiffies) |
| 1078 | > uap->dmarx.poll_timeout) { |
| 1079 | uart_port_lock_irqsave(&uap->port, &flags); |
| 1080 | pl011_dma_rx_stop(uap); |
| 1081 | uap->im |= UART011_RXIM; |
| 1082 | pl011_write(uap->im, uap, REG_IMSC); |
| 1083 | uart_port_unlock_irqrestore(&uap->port, flags); |
| 1084 | |
| 1085 | uap->dmarx.running = false; |
| 1086 | dmaengine_terminate_all(rxchan); |
| 1087 | timer_delete(&uap->dmarx.timer); |
| 1088 | } else { |
| 1089 | mod_timer(&uap->dmarx.timer, |
| 1090 | jiffies + msecs_to_jiffies(uap->dmarx.poll_rate)); |
| 1091 | } |
| 1092 | } |
| 1093 | |
| 1094 | static void pl011_dma_startup(struct uart_amba_port *uap) |
| 1095 | { |
| 1096 | int ret; |
| 1097 | |
| 1098 | if (!uap->dma_probed) |
| 1099 | pl011_dma_probe(uap); |
| 1100 | |
| 1101 | if (!uap->dmatx.chan) |
| 1102 | return; |
| 1103 | |
| 1104 | uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA); |
| 1105 | if (!uap->dmatx.buf) { |
| 1106 | uap->port.fifosize = uap->fifosize; |
| 1107 | return; |
| 1108 | } |
| 1109 | |
| 1110 | uap->dmatx.len = PL011_DMA_BUFFER_SIZE; |
| 1111 | |
| 1112 | /* The DMA buffer is now the FIFO the TTY subsystem can use */ |
| 1113 | uap->port.fifosize = PL011_DMA_BUFFER_SIZE; |
| 1114 | uap->using_tx_dma = true; |
| 1115 | |
| 1116 | if (!uap->dmarx.chan) |
| 1117 | goto skip_rx; |
| 1118 | |
| 1119 | /* Allocate and map DMA RX buffers */ |
| 1120 | ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_a, |
| 1121 | DMA_FROM_DEVICE); |
| 1122 | if (ret) { |
| 1123 | dev_err(uap->port.dev, "failed to init DMA %s: %d\n", |
| 1124 | "RX buffer A", ret); |
| 1125 | goto skip_rx; |
| 1126 | } |
| 1127 | |
| 1128 | ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_b, |
| 1129 | DMA_FROM_DEVICE); |
| 1130 | if (ret) { |
| 1131 | dev_err(uap->port.dev, "failed to init DMA %s: %d\n", |
| 1132 | "RX buffer B", ret); |
| 1133 | pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a, |
| 1134 | DMA_FROM_DEVICE); |
| 1135 | goto skip_rx; |
| 1136 | } |
| 1137 | |
| 1138 | uap->using_rx_dma = true; |
| 1139 | |
| 1140 | skip_rx: |
| 1141 | /* Turn on DMA error (RX/TX will be enabled on demand) */ |
| 1142 | uap->dmacr |= UART011_DMAONERR; |
| 1143 | pl011_write(uap->dmacr, uap, REG_DMACR); |
| 1144 | |
| 1145 | /* |
| 1146 | * ST Micro variants has some specific dma burst threshold |
| 1147 | * compensation. Set this to 16 bytes, so burst will only |
| 1148 | * be issued above/below 16 bytes. |
| 1149 | */ |
| 1150 | if (uap->vendor->dma_threshold) |
| 1151 | pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16, |
| 1152 | uap, REG_ST_DMAWM); |
| 1153 | |
| 1154 | if (uap->using_rx_dma) { |
| 1155 | if (pl011_dma_rx_trigger_dma(uap)) |
| 1156 | dev_dbg(uap->port.dev, |
| 1157 | "could not trigger initial RX DMA job, fall back to interrupt mode\n"); |
| 1158 | if (uap->dmarx.poll_rate) { |
| 1159 | timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0); |
| 1160 | mod_timer(&uap->dmarx.timer, |
| 1161 | jiffies + msecs_to_jiffies(uap->dmarx.poll_rate)); |
| 1162 | uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE; |
| 1163 | uap->dmarx.last_jiffies = jiffies; |
| 1164 | } |
| 1165 | } |
| 1166 | } |
| 1167 | |
| 1168 | static void pl011_dma_shutdown(struct uart_amba_port *uap) |
| 1169 | { |
| 1170 | if (!(uap->using_tx_dma || uap->using_rx_dma)) |
| 1171 | return; |
| 1172 | |
| 1173 | /* Disable RX and TX DMA */ |
| 1174 | while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy) |
| 1175 | cpu_relax(); |
| 1176 | |
| 1177 | uart_port_lock_irq(&uap->port); |
| 1178 | uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE); |
| 1179 | pl011_write(uap->dmacr, uap, REG_DMACR); |
| 1180 | uart_port_unlock_irq(&uap->port); |
| 1181 | |
| 1182 | if (uap->using_tx_dma) { |
| 1183 | /* In theory, this should already be done by pl011_dma_flush_buffer */ |
| 1184 | dmaengine_terminate_all(uap->dmatx.chan); |
| 1185 | if (uap->dmatx.queued) { |
| 1186 | dma_unmap_single(uap->dmatx.chan->device->dev, |
| 1187 | uap->dmatx.dma, uap->dmatx.len, |
| 1188 | DMA_TO_DEVICE); |
| 1189 | uap->dmatx.queued = false; |
| 1190 | } |
| 1191 | |
| 1192 | kfree(uap->dmatx.buf); |
| 1193 | uap->using_tx_dma = false; |
| 1194 | } |
| 1195 | |
| 1196 | if (uap->using_rx_dma) { |
| 1197 | dmaengine_terminate_all(uap->dmarx.chan); |
| 1198 | /* Clean up the RX DMA */ |
| 1199 | pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a, DMA_FROM_DEVICE); |
| 1200 | pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_b, DMA_FROM_DEVICE); |
| 1201 | if (uap->dmarx.poll_rate) |
| 1202 | timer_delete_sync(&uap->dmarx.timer); |
| 1203 | uap->using_rx_dma = false; |
| 1204 | } |
| 1205 | } |
| 1206 | |
| 1207 | static inline bool pl011_dma_rx_available(struct uart_amba_port *uap) |
| 1208 | { |
| 1209 | return uap->using_rx_dma; |
| 1210 | } |
| 1211 | |
| 1212 | static inline bool pl011_dma_rx_running(struct uart_amba_port *uap) |
| 1213 | { |
| 1214 | return uap->using_rx_dma && uap->dmarx.running; |
| 1215 | } |
| 1216 | |
| 1217 | #else |
| 1218 | /* Blank functions if the DMA engine is not available */ |
| 1219 | static inline void pl011_dma_remove(struct uart_amba_port *uap) |
| 1220 | { |
| 1221 | } |
| 1222 | |
| 1223 | static inline void pl011_dma_startup(struct uart_amba_port *uap) |
| 1224 | { |
| 1225 | } |
| 1226 | |
| 1227 | static inline void pl011_dma_shutdown(struct uart_amba_port *uap) |
| 1228 | { |
| 1229 | } |
| 1230 | |
| 1231 | static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap) |
| 1232 | { |
| 1233 | return false; |
| 1234 | } |
| 1235 | |
| 1236 | static inline void pl011_dma_tx_stop(struct uart_amba_port *uap) |
| 1237 | { |
| 1238 | } |
| 1239 | |
| 1240 | static inline bool pl011_dma_tx_start(struct uart_amba_port *uap) |
| 1241 | { |
| 1242 | return false; |
| 1243 | } |
| 1244 | |
| 1245 | static inline void pl011_dma_rx_irq(struct uart_amba_port *uap) |
| 1246 | { |
| 1247 | } |
| 1248 | |
| 1249 | static inline void pl011_dma_rx_stop(struct uart_amba_port *uap) |
| 1250 | { |
| 1251 | } |
| 1252 | |
| 1253 | static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap) |
| 1254 | { |
| 1255 | return -EIO; |
| 1256 | } |
| 1257 | |
| 1258 | static inline bool pl011_dma_rx_available(struct uart_amba_port *uap) |
| 1259 | { |
| 1260 | return false; |
| 1261 | } |
| 1262 | |
| 1263 | static inline bool pl011_dma_rx_running(struct uart_amba_port *uap) |
| 1264 | { |
| 1265 | return false; |
| 1266 | } |
| 1267 | |
| 1268 | #define pl011_dma_flush_buffer NULL |
| 1269 | #endif |
| 1270 | |
| 1271 | static void pl011_rs485_tx_stop(struct uart_amba_port *uap) |
| 1272 | { |
| 1273 | struct uart_port *port = &uap->port; |
| 1274 | u32 cr; |
| 1275 | |
| 1276 | if (uap->rs485_tx_state == SEND) |
| 1277 | uap->rs485_tx_state = WAIT_AFTER_SEND; |
| 1278 | |
| 1279 | if (uap->rs485_tx_state == WAIT_AFTER_SEND) { |
| 1280 | /* Schedule hrtimer if tx queue not empty */ |
| 1281 | if (!pl011_tx_empty(port)) { |
| 1282 | hrtimer_start(&uap->trigger_stop_tx, |
| 1283 | uap->rs485_tx_drain_interval, |
| 1284 | HRTIMER_MODE_REL); |
| 1285 | return; |
| 1286 | } |
| 1287 | if (port->rs485.delay_rts_after_send > 0) { |
| 1288 | hrtimer_start(&uap->trigger_stop_tx, |
| 1289 | ms_to_ktime(port->rs485.delay_rts_after_send), |
| 1290 | HRTIMER_MODE_REL); |
| 1291 | return; |
| 1292 | } |
| 1293 | /* Continue without any delay */ |
| 1294 | } else if (uap->rs485_tx_state == WAIT_AFTER_RTS) { |
| 1295 | hrtimer_try_to_cancel(&uap->trigger_start_tx); |
| 1296 | } |
| 1297 | |
| 1298 | cr = pl011_read(uap, REG_CR); |
| 1299 | |
| 1300 | if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) |
| 1301 | cr &= ~UART011_CR_RTS; |
| 1302 | else |
| 1303 | cr |= UART011_CR_RTS; |
| 1304 | |
| 1305 | /* Disable the transmitter and reenable the transceiver */ |
| 1306 | cr &= ~UART011_CR_TXE; |
| 1307 | cr |= UART011_CR_RXE; |
| 1308 | pl011_write(cr, uap, REG_CR); |
| 1309 | |
| 1310 | uap->rs485_tx_state = OFF; |
| 1311 | } |
| 1312 | |
| 1313 | static void pl011_stop_tx(struct uart_port *port) |
| 1314 | { |
| 1315 | struct uart_amba_port *uap = |
| 1316 | container_of(port, struct uart_amba_port, port); |
| 1317 | |
| 1318 | if (port->rs485.flags & SER_RS485_ENABLED && |
| 1319 | uap->rs485_tx_state == WAIT_AFTER_RTS) { |
| 1320 | pl011_rs485_tx_stop(uap); |
| 1321 | return; |
| 1322 | } |
| 1323 | |
| 1324 | uap->im &= ~UART011_TXIM; |
| 1325 | pl011_write(uap->im, uap, REG_IMSC); |
| 1326 | pl011_dma_tx_stop(uap); |
| 1327 | |
| 1328 | if (port->rs485.flags & SER_RS485_ENABLED && |
| 1329 | uap->rs485_tx_state != OFF) |
| 1330 | pl011_rs485_tx_stop(uap); |
| 1331 | } |
| 1332 | |
| 1333 | static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq); |
| 1334 | |
| 1335 | /* Start TX with programmed I/O only (no DMA) */ |
| 1336 | static void pl011_start_tx_pio(struct uart_amba_port *uap) |
| 1337 | { |
| 1338 | if (pl011_tx_chars(uap, false)) { |
| 1339 | uap->im |= UART011_TXIM; |
| 1340 | pl011_write(uap->im, uap, REG_IMSC); |
| 1341 | } |
| 1342 | } |
| 1343 | |
| 1344 | static void pl011_rs485_tx_start(struct uart_amba_port *uap) |
| 1345 | { |
| 1346 | struct uart_port *port = &uap->port; |
| 1347 | u32 cr; |
| 1348 | |
| 1349 | if (uap->rs485_tx_state == WAIT_AFTER_RTS) { |
| 1350 | uap->rs485_tx_state = SEND; |
| 1351 | return; |
| 1352 | } |
| 1353 | if (uap->rs485_tx_state == WAIT_AFTER_SEND) { |
| 1354 | hrtimer_try_to_cancel(&uap->trigger_stop_tx); |
| 1355 | uap->rs485_tx_state = SEND; |
| 1356 | return; |
| 1357 | } |
| 1358 | /* uap->rs485_tx_state == OFF */ |
| 1359 | /* Enable transmitter */ |
| 1360 | cr = pl011_read(uap, REG_CR); |
| 1361 | cr |= UART011_CR_TXE; |
| 1362 | /* Disable receiver if half-duplex */ |
| 1363 | if (!(port->rs485.flags & SER_RS485_RX_DURING_TX)) |
| 1364 | cr &= ~UART011_CR_RXE; |
| 1365 | |
| 1366 | if (port->rs485.flags & SER_RS485_RTS_ON_SEND) |
| 1367 | cr &= ~UART011_CR_RTS; |
| 1368 | else |
| 1369 | cr |= UART011_CR_RTS; |
| 1370 | |
| 1371 | pl011_write(cr, uap, REG_CR); |
| 1372 | |
| 1373 | if (port->rs485.delay_rts_before_send > 0) { |
| 1374 | uap->rs485_tx_state = WAIT_AFTER_RTS; |
| 1375 | hrtimer_start(&uap->trigger_start_tx, |
| 1376 | ms_to_ktime(port->rs485.delay_rts_before_send), |
| 1377 | HRTIMER_MODE_REL); |
| 1378 | } else { |
| 1379 | uap->rs485_tx_state = SEND; |
| 1380 | } |
| 1381 | } |
| 1382 | |
| 1383 | static void pl011_start_tx(struct uart_port *port) |
| 1384 | { |
| 1385 | struct uart_amba_port *uap = |
| 1386 | container_of(port, struct uart_amba_port, port); |
| 1387 | |
| 1388 | if ((uap->port.rs485.flags & SER_RS485_ENABLED) && |
| 1389 | uap->rs485_tx_state != SEND) { |
| 1390 | pl011_rs485_tx_start(uap); |
| 1391 | if (uap->rs485_tx_state == WAIT_AFTER_RTS) |
| 1392 | return; |
| 1393 | } |
| 1394 | |
| 1395 | if (!pl011_dma_tx_start(uap)) |
| 1396 | pl011_start_tx_pio(uap); |
| 1397 | } |
| 1398 | |
| 1399 | static enum hrtimer_restart pl011_trigger_start_tx(struct hrtimer *t) |
| 1400 | { |
| 1401 | struct uart_amba_port *uap = |
| 1402 | container_of(t, struct uart_amba_port, trigger_start_tx); |
| 1403 | unsigned long flags; |
| 1404 | |
| 1405 | uart_port_lock_irqsave(&uap->port, &flags); |
| 1406 | if (uap->rs485_tx_state == WAIT_AFTER_RTS) |
| 1407 | pl011_start_tx(&uap->port); |
| 1408 | uart_port_unlock_irqrestore(&uap->port, flags); |
| 1409 | |
| 1410 | return HRTIMER_NORESTART; |
| 1411 | } |
| 1412 | |
| 1413 | static enum hrtimer_restart pl011_trigger_stop_tx(struct hrtimer *t) |
| 1414 | { |
| 1415 | struct uart_amba_port *uap = |
| 1416 | container_of(t, struct uart_amba_port, trigger_stop_tx); |
| 1417 | unsigned long flags; |
| 1418 | |
| 1419 | uart_port_lock_irqsave(&uap->port, &flags); |
| 1420 | if (uap->rs485_tx_state == WAIT_AFTER_SEND) |
| 1421 | pl011_rs485_tx_stop(uap); |
| 1422 | uart_port_unlock_irqrestore(&uap->port, flags); |
| 1423 | |
| 1424 | return HRTIMER_NORESTART; |
| 1425 | } |
| 1426 | |
| 1427 | static void pl011_stop_rx(struct uart_port *port) |
| 1428 | { |
| 1429 | struct uart_amba_port *uap = |
| 1430 | container_of(port, struct uart_amba_port, port); |
| 1431 | |
| 1432 | uap->im &= ~(UART011_RXIM | UART011_RTIM | UART011_FEIM | |
| 1433 | UART011_PEIM | UART011_BEIM | UART011_OEIM); |
| 1434 | pl011_write(uap->im, uap, REG_IMSC); |
| 1435 | |
| 1436 | pl011_dma_rx_stop(uap); |
| 1437 | } |
| 1438 | |
| 1439 | static void pl011_throttle_rx(struct uart_port *port) |
| 1440 | { |
| 1441 | unsigned long flags; |
| 1442 | |
| 1443 | uart_port_lock_irqsave(port, &flags); |
| 1444 | pl011_stop_rx(port); |
| 1445 | uart_port_unlock_irqrestore(port, flags); |
| 1446 | } |
| 1447 | |
| 1448 | static void pl011_enable_ms(struct uart_port *port) |
| 1449 | { |
| 1450 | struct uart_amba_port *uap = |
| 1451 | container_of(port, struct uart_amba_port, port); |
| 1452 | |
| 1453 | uap->im |= UART011_RIMIM | UART011_CTSMIM | UART011_DCDMIM | UART011_DSRMIM; |
| 1454 | pl011_write(uap->im, uap, REG_IMSC); |
| 1455 | } |
| 1456 | |
| 1457 | static void pl011_rx_chars(struct uart_amba_port *uap) |
| 1458 | __releases(&uap->port.lock) |
| 1459 | __acquires(&uap->port.lock) |
| 1460 | { |
| 1461 | pl011_fifo_to_tty(uap); |
| 1462 | |
| 1463 | uart_port_unlock(&uap->port); |
| 1464 | tty_flip_buffer_push(&uap->port.state->port); |
| 1465 | /* |
| 1466 | * If we were temporarily out of DMA mode for a while, |
| 1467 | * attempt to switch back to DMA mode again. |
| 1468 | */ |
| 1469 | if (pl011_dma_rx_available(uap)) { |
| 1470 | if (pl011_dma_rx_trigger_dma(uap)) { |
| 1471 | dev_dbg(uap->port.dev, |
| 1472 | "could not trigger RX DMA job fall back to interrupt mode again\n"); |
| 1473 | uap->im |= UART011_RXIM; |
| 1474 | pl011_write(uap->im, uap, REG_IMSC); |
| 1475 | } else { |
| 1476 | #ifdef CONFIG_DMA_ENGINE |
| 1477 | /* Start Rx DMA poll */ |
| 1478 | if (uap->dmarx.poll_rate) { |
| 1479 | uap->dmarx.last_jiffies = jiffies; |
| 1480 | uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE; |
| 1481 | mod_timer(&uap->dmarx.timer, |
| 1482 | jiffies + msecs_to_jiffies(uap->dmarx.poll_rate)); |
| 1483 | } |
| 1484 | #endif |
| 1485 | } |
| 1486 | } |
| 1487 | uart_port_lock(&uap->port); |
| 1488 | } |
| 1489 | |
| 1490 | static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c, |
| 1491 | bool from_irq) |
| 1492 | { |
| 1493 | if (unlikely(!from_irq) && |
| 1494 | pl011_read(uap, REG_FR) & UART01x_FR_TXFF) |
| 1495 | return false; /* unable to transmit character */ |
| 1496 | |
| 1497 | pl011_write(c, uap, REG_DR); |
| 1498 | uap->port.icount.tx++; |
| 1499 | |
| 1500 | return true; |
| 1501 | } |
| 1502 | |
| 1503 | /* Returns true if tx interrupts have to be (kept) enabled */ |
| 1504 | static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq) |
| 1505 | { |
| 1506 | struct tty_port *tport = &uap->port.state->port; |
| 1507 | int count = uap->fifosize >> 1; |
| 1508 | |
| 1509 | if (uap->port.x_char) { |
| 1510 | if (!pl011_tx_char(uap, uap->port.x_char, from_irq)) |
| 1511 | return true; |
| 1512 | uap->port.x_char = 0; |
| 1513 | --count; |
| 1514 | } |
| 1515 | if (kfifo_is_empty(&tport->xmit_fifo) || uart_tx_stopped(&uap->port)) { |
| 1516 | pl011_stop_tx(&uap->port); |
| 1517 | return false; |
| 1518 | } |
| 1519 | |
| 1520 | /* If we are using DMA mode, try to send some characters. */ |
| 1521 | if (pl011_dma_tx_irq(uap)) |
| 1522 | return true; |
| 1523 | |
| 1524 | while (1) { |
| 1525 | unsigned char c; |
| 1526 | |
| 1527 | if (likely(from_irq) && count-- == 0) |
| 1528 | break; |
| 1529 | |
| 1530 | if (!kfifo_peek(&tport->xmit_fifo, &c)) |
| 1531 | break; |
| 1532 | |
| 1533 | if (!pl011_tx_char(uap, c, from_irq)) |
| 1534 | break; |
| 1535 | |
| 1536 | kfifo_skip(&tport->xmit_fifo); |
| 1537 | } |
| 1538 | |
| 1539 | if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS) |
| 1540 | uart_write_wakeup(&uap->port); |
| 1541 | |
| 1542 | if (kfifo_is_empty(&tport->xmit_fifo)) { |
| 1543 | pl011_stop_tx(&uap->port); |
| 1544 | return false; |
| 1545 | } |
| 1546 | return true; |
| 1547 | } |
| 1548 | |
| 1549 | static void pl011_modem_status(struct uart_amba_port *uap) |
| 1550 | { |
| 1551 | unsigned int status, delta; |
| 1552 | |
| 1553 | status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY; |
| 1554 | |
| 1555 | delta = status ^ uap->old_status; |
| 1556 | uap->old_status = status; |
| 1557 | |
| 1558 | if (!delta) |
| 1559 | return; |
| 1560 | |
| 1561 | if (delta & UART01x_FR_DCD) |
| 1562 | uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD); |
| 1563 | |
| 1564 | if (delta & uap->vendor->fr_dsr) |
| 1565 | uap->port.icount.dsr++; |
| 1566 | |
| 1567 | if (delta & uap->vendor->fr_cts) |
| 1568 | uart_handle_cts_change(&uap->port, |
| 1569 | status & uap->vendor->fr_cts); |
| 1570 | |
| 1571 | wake_up_interruptible(&uap->port.state->port.delta_msr_wait); |
| 1572 | } |
| 1573 | |
| 1574 | static void check_apply_cts_event_workaround(struct uart_amba_port *uap) |
| 1575 | { |
| 1576 | if (!uap->vendor->cts_event_workaround) |
| 1577 | return; |
| 1578 | |
| 1579 | /* workaround to make sure that all bits are unlocked.. */ |
| 1580 | pl011_write(0x00, uap, REG_ICR); |
| 1581 | |
| 1582 | /* |
| 1583 | * WA: introduce 26ns(1 uart clk) delay before W1C; |
| 1584 | * single apb access will incur 2 pclk(133.12Mhz) delay, |
| 1585 | * so add 2 dummy reads |
| 1586 | */ |
| 1587 | pl011_read(uap, REG_ICR); |
| 1588 | pl011_read(uap, REG_ICR); |
| 1589 | } |
| 1590 | |
| 1591 | static irqreturn_t pl011_int(int irq, void *dev_id) |
| 1592 | { |
| 1593 | struct uart_amba_port *uap = dev_id; |
| 1594 | unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT; |
| 1595 | int handled = 0; |
| 1596 | |
| 1597 | uart_port_lock(&uap->port); |
| 1598 | status = pl011_read(uap, REG_RIS) & uap->im; |
| 1599 | if (status) { |
| 1600 | do { |
| 1601 | check_apply_cts_event_workaround(uap); |
| 1602 | |
| 1603 | pl011_write(status & ~(UART011_TXIS | UART011_RTIS | UART011_RXIS), |
| 1604 | uap, REG_ICR); |
| 1605 | |
| 1606 | if (status & (UART011_RTIS | UART011_RXIS)) { |
| 1607 | if (pl011_dma_rx_running(uap)) |
| 1608 | pl011_dma_rx_irq(uap); |
| 1609 | else |
| 1610 | pl011_rx_chars(uap); |
| 1611 | } |
| 1612 | if (status & (UART011_DSRMIS | UART011_DCDMIS | |
| 1613 | UART011_CTSMIS | UART011_RIMIS)) |
| 1614 | pl011_modem_status(uap); |
| 1615 | if (status & UART011_TXIS) |
| 1616 | pl011_tx_chars(uap, true); |
| 1617 | |
| 1618 | if (pass_counter-- == 0) |
| 1619 | break; |
| 1620 | |
| 1621 | status = pl011_read(uap, REG_RIS) & uap->im; |
| 1622 | } while (status != 0); |
| 1623 | handled = 1; |
| 1624 | } |
| 1625 | |
| 1626 | uart_unlock_and_check_sysrq(&uap->port); |
| 1627 | |
| 1628 | return IRQ_RETVAL(handled); |
| 1629 | } |
| 1630 | |
| 1631 | static unsigned int pl011_tx_empty(struct uart_port *port) |
| 1632 | { |
| 1633 | struct uart_amba_port *uap = |
| 1634 | container_of(port, struct uart_amba_port, port); |
| 1635 | |
| 1636 | /* Allow feature register bits to be inverted to work around errata */ |
| 1637 | unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr; |
| 1638 | |
| 1639 | return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ? |
| 1640 | 0 : TIOCSER_TEMT; |
| 1641 | } |
| 1642 | |
| 1643 | static void pl011_maybe_set_bit(bool cond, unsigned int *ptr, unsigned int mask) |
| 1644 | { |
| 1645 | if (cond) |
| 1646 | *ptr |= mask; |
| 1647 | } |
| 1648 | |
| 1649 | static unsigned int pl011_get_mctrl(struct uart_port *port) |
| 1650 | { |
| 1651 | struct uart_amba_port *uap = |
| 1652 | container_of(port, struct uart_amba_port, port); |
| 1653 | unsigned int result = 0; |
| 1654 | unsigned int status = pl011_read(uap, REG_FR); |
| 1655 | |
| 1656 | pl011_maybe_set_bit(status & UART01x_FR_DCD, &result, TIOCM_CAR); |
| 1657 | pl011_maybe_set_bit(status & uap->vendor->fr_dsr, &result, TIOCM_DSR); |
| 1658 | pl011_maybe_set_bit(status & uap->vendor->fr_cts, &result, TIOCM_CTS); |
| 1659 | pl011_maybe_set_bit(status & uap->vendor->fr_ri, &result, TIOCM_RNG); |
| 1660 | |
| 1661 | return result; |
| 1662 | } |
| 1663 | |
| 1664 | static void pl011_assign_bit(bool cond, unsigned int *ptr, unsigned int mask) |
| 1665 | { |
| 1666 | if (cond) |
| 1667 | *ptr |= mask; |
| 1668 | else |
| 1669 | *ptr &= ~mask; |
| 1670 | } |
| 1671 | |
| 1672 | static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl) |
| 1673 | { |
| 1674 | struct uart_amba_port *uap = |
| 1675 | container_of(port, struct uart_amba_port, port); |
| 1676 | unsigned int cr; |
| 1677 | |
| 1678 | cr = pl011_read(uap, REG_CR); |
| 1679 | |
| 1680 | pl011_assign_bit(mctrl & TIOCM_RTS, &cr, UART011_CR_RTS); |
| 1681 | pl011_assign_bit(mctrl & TIOCM_DTR, &cr, UART011_CR_DTR); |
| 1682 | pl011_assign_bit(mctrl & TIOCM_OUT1, &cr, UART011_CR_OUT1); |
| 1683 | pl011_assign_bit(mctrl & TIOCM_OUT2, &cr, UART011_CR_OUT2); |
| 1684 | pl011_assign_bit(mctrl & TIOCM_LOOP, &cr, UART011_CR_LBE); |
| 1685 | |
| 1686 | if (port->status & UPSTAT_AUTORTS) { |
| 1687 | /* We need to disable auto-RTS if we want to turn RTS off */ |
| 1688 | pl011_assign_bit(mctrl & TIOCM_RTS, &cr, UART011_CR_RTSEN); |
| 1689 | } |
| 1690 | |
| 1691 | pl011_write(cr, uap, REG_CR); |
| 1692 | } |
| 1693 | |
| 1694 | static void pl011_break_ctl(struct uart_port *port, int break_state) |
| 1695 | { |
| 1696 | struct uart_amba_port *uap = |
| 1697 | container_of(port, struct uart_amba_port, port); |
| 1698 | unsigned long flags; |
| 1699 | unsigned int lcr_h; |
| 1700 | |
| 1701 | uart_port_lock_irqsave(&uap->port, &flags); |
| 1702 | lcr_h = pl011_read(uap, REG_LCRH_TX); |
| 1703 | if (break_state == -1) |
| 1704 | lcr_h |= UART01x_LCRH_BRK; |
| 1705 | else |
| 1706 | lcr_h &= ~UART01x_LCRH_BRK; |
| 1707 | pl011_write(lcr_h, uap, REG_LCRH_TX); |
| 1708 | uart_port_unlock_irqrestore(&uap->port, flags); |
| 1709 | } |
| 1710 | |
| 1711 | #ifdef CONFIG_CONSOLE_POLL |
| 1712 | |
| 1713 | static void pl011_quiesce_irqs(struct uart_port *port) |
| 1714 | { |
| 1715 | struct uart_amba_port *uap = |
| 1716 | container_of(port, struct uart_amba_port, port); |
| 1717 | |
| 1718 | pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR); |
| 1719 | /* |
| 1720 | * There is no way to clear TXIM as this is "ready to transmit IRQ", so |
| 1721 | * we simply mask it. start_tx() will unmask it. |
| 1722 | * |
| 1723 | * Note we can race with start_tx(), and if the race happens, the |
| 1724 | * polling user might get another interrupt just after we clear it. |
| 1725 | * But it should be OK and can happen even w/o the race, e.g. |
| 1726 | * controller immediately got some new data and raised the IRQ. |
| 1727 | * |
| 1728 | * And whoever uses polling routines assumes that it manages the device |
| 1729 | * (including tx queue), so we're also fine with start_tx()'s caller |
| 1730 | * side. |
| 1731 | */ |
| 1732 | pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap, |
| 1733 | REG_IMSC); |
| 1734 | } |
| 1735 | |
| 1736 | static int pl011_get_poll_char(struct uart_port *port) |
| 1737 | { |
| 1738 | struct uart_amba_port *uap = |
| 1739 | container_of(port, struct uart_amba_port, port); |
| 1740 | unsigned int status; |
| 1741 | |
| 1742 | /* |
| 1743 | * The caller might need IRQs lowered, e.g. if used with KDB NMI |
| 1744 | * debugger. |
| 1745 | */ |
| 1746 | pl011_quiesce_irqs(port); |
| 1747 | |
| 1748 | status = pl011_read(uap, REG_FR); |
| 1749 | if (status & UART01x_FR_RXFE) |
| 1750 | return NO_POLL_CHAR; |
| 1751 | |
| 1752 | return pl011_read(uap, REG_DR); |
| 1753 | } |
| 1754 | |
| 1755 | static void pl011_put_poll_char(struct uart_port *port, unsigned char ch) |
| 1756 | { |
| 1757 | struct uart_amba_port *uap = |
| 1758 | container_of(port, struct uart_amba_port, port); |
| 1759 | |
| 1760 | while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) |
| 1761 | cpu_relax(); |
| 1762 | |
| 1763 | pl011_write(ch, uap, REG_DR); |
| 1764 | } |
| 1765 | |
| 1766 | #endif /* CONFIG_CONSOLE_POLL */ |
| 1767 | |
| 1768 | static int pl011_hwinit(struct uart_port *port) |
| 1769 | { |
| 1770 | struct uart_amba_port *uap = |
| 1771 | container_of(port, struct uart_amba_port, port); |
| 1772 | int retval; |
| 1773 | |
| 1774 | /* Optionaly enable pins to be muxed in and configured */ |
| 1775 | pinctrl_pm_select_default_state(port->dev); |
| 1776 | |
| 1777 | /* |
| 1778 | * Try to enable the clock producer. |
| 1779 | */ |
| 1780 | retval = clk_prepare_enable(uap->clk); |
| 1781 | if (retval) |
| 1782 | return retval; |
| 1783 | |
| 1784 | uap->port.uartclk = clk_get_rate(uap->clk); |
| 1785 | |
| 1786 | /* Clear pending error and receive interrupts */ |
| 1787 | pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS | |
| 1788 | UART011_FEIS | UART011_RTIS | UART011_RXIS, |
| 1789 | uap, REG_ICR); |
| 1790 | |
| 1791 | /* |
| 1792 | * Save interrupts enable mask, and enable RX interrupts in case if |
| 1793 | * the interrupt is used for NMI entry. |
| 1794 | */ |
| 1795 | uap->im = pl011_read(uap, REG_IMSC); |
| 1796 | pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC); |
| 1797 | |
| 1798 | if (dev_get_platdata(uap->port.dev)) { |
| 1799 | struct amba_pl011_data *plat; |
| 1800 | |
| 1801 | plat = dev_get_platdata(uap->port.dev); |
| 1802 | if (plat->init) |
| 1803 | plat->init(); |
| 1804 | } |
| 1805 | return 0; |
| 1806 | } |
| 1807 | |
| 1808 | static bool pl011_split_lcrh(const struct uart_amba_port *uap) |
| 1809 | { |
| 1810 | return pl011_reg_to_offset(uap, REG_LCRH_RX) != |
| 1811 | pl011_reg_to_offset(uap, REG_LCRH_TX); |
| 1812 | } |
| 1813 | |
| 1814 | static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h) |
| 1815 | { |
| 1816 | pl011_write(lcr_h, uap, REG_LCRH_RX); |
| 1817 | if (pl011_split_lcrh(uap)) { |
| 1818 | int i; |
| 1819 | /* |
| 1820 | * Wait 10 PCLKs before writing LCRH_TX register, |
| 1821 | * to get this delay write read only register 10 times |
| 1822 | */ |
| 1823 | for (i = 0; i < 10; ++i) |
| 1824 | pl011_write(0xff, uap, REG_MIS); |
| 1825 | pl011_write(lcr_h, uap, REG_LCRH_TX); |
| 1826 | } |
| 1827 | } |
| 1828 | |
| 1829 | static int pl011_allocate_irq(struct uart_amba_port *uap) |
| 1830 | { |
| 1831 | pl011_write(uap->im, uap, REG_IMSC); |
| 1832 | |
| 1833 | return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap); |
| 1834 | } |
| 1835 | |
| 1836 | /* |
| 1837 | * Enable interrupts, only timeouts when using DMA |
| 1838 | * if initial RX DMA job failed, start in interrupt mode |
| 1839 | * as well. |
| 1840 | */ |
| 1841 | static void pl011_enable_interrupts(struct uart_amba_port *uap) |
| 1842 | { |
| 1843 | unsigned long flags; |
| 1844 | unsigned int i; |
| 1845 | |
| 1846 | uart_port_lock_irqsave(&uap->port, &flags); |
| 1847 | |
| 1848 | /* Clear out any spuriously appearing RX interrupts */ |
| 1849 | pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR); |
| 1850 | |
| 1851 | /* |
| 1852 | * RXIS is asserted only when the RX FIFO transitions from below |
| 1853 | * to above the trigger threshold. If the RX FIFO is already |
| 1854 | * full to the threshold this can't happen and RXIS will now be |
| 1855 | * stuck off. Drain the RX FIFO explicitly to fix this: |
| 1856 | */ |
| 1857 | for (i = 0; i < uap->fifosize * 2; ++i) { |
| 1858 | if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE) |
| 1859 | break; |
| 1860 | |
| 1861 | pl011_read(uap, REG_DR); |
| 1862 | } |
| 1863 | |
| 1864 | uap->im = UART011_RTIM; |
| 1865 | if (!pl011_dma_rx_running(uap)) |
| 1866 | uap->im |= UART011_RXIM; |
| 1867 | pl011_write(uap->im, uap, REG_IMSC); |
| 1868 | uart_port_unlock_irqrestore(&uap->port, flags); |
| 1869 | } |
| 1870 | |
| 1871 | static void pl011_unthrottle_rx(struct uart_port *port) |
| 1872 | { |
| 1873 | struct uart_amba_port *uap = container_of(port, struct uart_amba_port, port); |
| 1874 | unsigned long flags; |
| 1875 | |
| 1876 | uart_port_lock_irqsave(&uap->port, &flags); |
| 1877 | |
| 1878 | uap->im = UART011_RTIM; |
| 1879 | if (!pl011_dma_rx_running(uap)) |
| 1880 | uap->im |= UART011_RXIM; |
| 1881 | |
| 1882 | pl011_write(uap->im, uap, REG_IMSC); |
| 1883 | |
| 1884 | #ifdef CONFIG_DMA_ENGINE |
| 1885 | if (uap->using_rx_dma) { |
| 1886 | uap->dmacr |= UART011_RXDMAE; |
| 1887 | pl011_write(uap->dmacr, uap, REG_DMACR); |
| 1888 | } |
| 1889 | #endif |
| 1890 | |
| 1891 | uart_port_unlock_irqrestore(&uap->port, flags); |
| 1892 | } |
| 1893 | |
| 1894 | static int pl011_startup(struct uart_port *port) |
| 1895 | { |
| 1896 | struct uart_amba_port *uap = |
| 1897 | container_of(port, struct uart_amba_port, port); |
| 1898 | unsigned int cr; |
| 1899 | int retval; |
| 1900 | |
| 1901 | retval = pl011_hwinit(port); |
| 1902 | if (retval) |
| 1903 | goto clk_dis; |
| 1904 | |
| 1905 | retval = pl011_allocate_irq(uap); |
| 1906 | if (retval) |
| 1907 | goto clk_dis; |
| 1908 | |
| 1909 | pl011_write(uap->vendor->ifls, uap, REG_IFLS); |
| 1910 | |
| 1911 | uart_port_lock_irq(&uap->port); |
| 1912 | |
| 1913 | cr = pl011_read(uap, REG_CR); |
| 1914 | cr &= UART011_CR_RTS | UART011_CR_DTR; |
| 1915 | cr |= UART01x_CR_UARTEN | UART011_CR_RXE; |
| 1916 | |
| 1917 | if (!(port->rs485.flags & SER_RS485_ENABLED)) |
| 1918 | cr |= UART011_CR_TXE; |
| 1919 | |
| 1920 | pl011_write(cr, uap, REG_CR); |
| 1921 | |
| 1922 | uart_port_unlock_irq(&uap->port); |
| 1923 | |
| 1924 | /* |
| 1925 | * initialise the old status of the modem signals |
| 1926 | */ |
| 1927 | uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY; |
| 1928 | |
| 1929 | /* Startup DMA */ |
| 1930 | pl011_dma_startup(uap); |
| 1931 | |
| 1932 | pl011_enable_interrupts(uap); |
| 1933 | |
| 1934 | return 0; |
| 1935 | |
| 1936 | clk_dis: |
| 1937 | clk_disable_unprepare(uap->clk); |
| 1938 | return retval; |
| 1939 | } |
| 1940 | |
| 1941 | static int sbsa_uart_startup(struct uart_port *port) |
| 1942 | { |
| 1943 | struct uart_amba_port *uap = |
| 1944 | container_of(port, struct uart_amba_port, port); |
| 1945 | int retval; |
| 1946 | |
| 1947 | retval = pl011_hwinit(port); |
| 1948 | if (retval) |
| 1949 | return retval; |
| 1950 | |
| 1951 | retval = pl011_allocate_irq(uap); |
| 1952 | if (retval) |
| 1953 | return retval; |
| 1954 | |
| 1955 | /* The SBSA UART does not support any modem status lines. */ |
| 1956 | uap->old_status = 0; |
| 1957 | |
| 1958 | pl011_enable_interrupts(uap); |
| 1959 | |
| 1960 | return 0; |
| 1961 | } |
| 1962 | |
| 1963 | static void pl011_shutdown_channel(struct uart_amba_port *uap, unsigned int lcrh) |
| 1964 | { |
| 1965 | unsigned long val; |
| 1966 | |
| 1967 | val = pl011_read(uap, lcrh); |
| 1968 | val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN); |
| 1969 | pl011_write(val, uap, lcrh); |
| 1970 | } |
| 1971 | |
| 1972 | /* |
| 1973 | * disable the port. It should not disable RTS and DTR. |
| 1974 | * Also RTS and DTR state should be preserved to restore |
| 1975 | * it during startup(). |
| 1976 | */ |
| 1977 | static void pl011_disable_uart(struct uart_amba_port *uap) |
| 1978 | { |
| 1979 | unsigned int cr; |
| 1980 | |
| 1981 | uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS); |
| 1982 | uart_port_lock_irq(&uap->port); |
| 1983 | cr = pl011_read(uap, REG_CR); |
| 1984 | cr &= UART011_CR_RTS | UART011_CR_DTR; |
| 1985 | cr |= UART01x_CR_UARTEN | UART011_CR_TXE; |
| 1986 | pl011_write(cr, uap, REG_CR); |
| 1987 | uart_port_unlock_irq(&uap->port); |
| 1988 | |
| 1989 | /* |
| 1990 | * disable break condition and fifos |
| 1991 | */ |
| 1992 | pl011_shutdown_channel(uap, REG_LCRH_RX); |
| 1993 | if (pl011_split_lcrh(uap)) |
| 1994 | pl011_shutdown_channel(uap, REG_LCRH_TX); |
| 1995 | } |
| 1996 | |
| 1997 | static void pl011_disable_interrupts(struct uart_amba_port *uap) |
| 1998 | { |
| 1999 | uart_port_lock_irq(&uap->port); |
| 2000 | |
| 2001 | /* mask all interrupts and clear all pending ones */ |
| 2002 | uap->im = 0; |
| 2003 | pl011_write(uap->im, uap, REG_IMSC); |
| 2004 | pl011_write(0xffff, uap, REG_ICR); |
| 2005 | |
| 2006 | uart_port_unlock_irq(&uap->port); |
| 2007 | } |
| 2008 | |
| 2009 | static void pl011_shutdown(struct uart_port *port) |
| 2010 | { |
| 2011 | struct uart_amba_port *uap = |
| 2012 | container_of(port, struct uart_amba_port, port); |
| 2013 | |
| 2014 | pl011_disable_interrupts(uap); |
| 2015 | |
| 2016 | pl011_dma_shutdown(uap); |
| 2017 | |
| 2018 | if ((port->rs485.flags & SER_RS485_ENABLED && uap->rs485_tx_state != OFF)) |
| 2019 | pl011_rs485_tx_stop(uap); |
| 2020 | |
| 2021 | free_irq(uap->port.irq, uap); |
| 2022 | |
| 2023 | pl011_disable_uart(uap); |
| 2024 | |
| 2025 | /* |
| 2026 | * Shut down the clock producer |
| 2027 | */ |
| 2028 | clk_disable_unprepare(uap->clk); |
| 2029 | /* Optionally let pins go into sleep states */ |
| 2030 | pinctrl_pm_select_sleep_state(port->dev); |
| 2031 | |
| 2032 | if (dev_get_platdata(uap->port.dev)) { |
| 2033 | struct amba_pl011_data *plat; |
| 2034 | |
| 2035 | plat = dev_get_platdata(uap->port.dev); |
| 2036 | if (plat->exit) |
| 2037 | plat->exit(); |
| 2038 | } |
| 2039 | |
| 2040 | if (uap->port.ops->flush_buffer) |
| 2041 | uap->port.ops->flush_buffer(port); |
| 2042 | } |
| 2043 | |
| 2044 | static void sbsa_uart_shutdown(struct uart_port *port) |
| 2045 | { |
| 2046 | struct uart_amba_port *uap = |
| 2047 | container_of(port, struct uart_amba_port, port); |
| 2048 | |
| 2049 | pl011_disable_interrupts(uap); |
| 2050 | |
| 2051 | free_irq(uap->port.irq, uap); |
| 2052 | |
| 2053 | if (uap->port.ops->flush_buffer) |
| 2054 | uap->port.ops->flush_buffer(port); |
| 2055 | } |
| 2056 | |
| 2057 | static void |
| 2058 | pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios) |
| 2059 | { |
| 2060 | port->read_status_mask = UART011_DR_OE | 255; |
| 2061 | if (termios->c_iflag & INPCK) |
| 2062 | port->read_status_mask |= UART011_DR_FE | UART011_DR_PE; |
| 2063 | if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK)) |
| 2064 | port->read_status_mask |= UART011_DR_BE; |
| 2065 | |
| 2066 | /* |
| 2067 | * Characters to ignore |
| 2068 | */ |
| 2069 | port->ignore_status_mask = 0; |
| 2070 | if (termios->c_iflag & IGNPAR) |
| 2071 | port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE; |
| 2072 | if (termios->c_iflag & IGNBRK) { |
| 2073 | port->ignore_status_mask |= UART011_DR_BE; |
| 2074 | /* |
| 2075 | * If we're ignoring parity and break indicators, |
| 2076 | * ignore overruns too (for real raw support). |
| 2077 | */ |
| 2078 | if (termios->c_iflag & IGNPAR) |
| 2079 | port->ignore_status_mask |= UART011_DR_OE; |
| 2080 | } |
| 2081 | |
| 2082 | /* |
| 2083 | * Ignore all characters if CREAD is not set. |
| 2084 | */ |
| 2085 | if ((termios->c_cflag & CREAD) == 0) |
| 2086 | port->ignore_status_mask |= UART_DUMMY_DR_RX; |
| 2087 | } |
| 2088 | |
| 2089 | static void |
| 2090 | pl011_set_termios(struct uart_port *port, struct ktermios *termios, |
| 2091 | const struct ktermios *old) |
| 2092 | { |
| 2093 | struct uart_amba_port *uap = |
| 2094 | container_of(port, struct uart_amba_port, port); |
| 2095 | unsigned int lcr_h, old_cr; |
| 2096 | unsigned long flags; |
| 2097 | unsigned int baud, quot, clkdiv; |
| 2098 | unsigned int bits; |
| 2099 | |
| 2100 | if (uap->vendor->oversampling) |
| 2101 | clkdiv = 8; |
| 2102 | else |
| 2103 | clkdiv = 16; |
| 2104 | |
| 2105 | /* |
| 2106 | * Ask the core to calculate the divisor for us. |
| 2107 | */ |
| 2108 | baud = uart_get_baud_rate(port, termios, old, 0, |
| 2109 | port->uartclk / clkdiv); |
| 2110 | #ifdef CONFIG_DMA_ENGINE |
| 2111 | /* |
| 2112 | * Adjust RX DMA polling rate with baud rate if not specified. |
| 2113 | */ |
| 2114 | if (uap->dmarx.auto_poll_rate) |
| 2115 | uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud); |
| 2116 | #endif |
| 2117 | |
| 2118 | if (baud > port->uartclk / 16) |
| 2119 | quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud); |
| 2120 | else |
| 2121 | quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud); |
| 2122 | |
| 2123 | switch (termios->c_cflag & CSIZE) { |
| 2124 | case CS5: |
| 2125 | lcr_h = UART01x_LCRH_WLEN_5; |
| 2126 | break; |
| 2127 | case CS6: |
| 2128 | lcr_h = UART01x_LCRH_WLEN_6; |
| 2129 | break; |
| 2130 | case CS7: |
| 2131 | lcr_h = UART01x_LCRH_WLEN_7; |
| 2132 | break; |
| 2133 | default: // CS8 |
| 2134 | lcr_h = UART01x_LCRH_WLEN_8; |
| 2135 | break; |
| 2136 | } |
| 2137 | if (termios->c_cflag & CSTOPB) |
| 2138 | lcr_h |= UART01x_LCRH_STP2; |
| 2139 | if (termios->c_cflag & PARENB) { |
| 2140 | lcr_h |= UART01x_LCRH_PEN; |
| 2141 | if (!(termios->c_cflag & PARODD)) |
| 2142 | lcr_h |= UART01x_LCRH_EPS; |
| 2143 | if (termios->c_cflag & CMSPAR) |
| 2144 | lcr_h |= UART011_LCRH_SPS; |
| 2145 | } |
| 2146 | if (uap->fifosize > 1) |
| 2147 | lcr_h |= UART01x_LCRH_FEN; |
| 2148 | |
| 2149 | bits = tty_get_frame_size(termios->c_cflag); |
| 2150 | |
| 2151 | uart_port_lock_irqsave(port, &flags); |
| 2152 | |
| 2153 | /* |
| 2154 | * Update the per-port timeout. |
| 2155 | */ |
| 2156 | uart_update_timeout(port, termios->c_cflag, baud); |
| 2157 | |
| 2158 | /* |
| 2159 | * Calculate the approximated time it takes to transmit one character |
| 2160 | * with the given baud rate. We use this as the poll interval when we |
| 2161 | * wait for the tx queue to empty. |
| 2162 | */ |
| 2163 | uap->rs485_tx_drain_interval = ns_to_ktime(DIV_ROUND_UP(bits * NSEC_PER_SEC, baud)); |
| 2164 | |
| 2165 | pl011_setup_status_masks(port, termios); |
| 2166 | |
| 2167 | if (UART_ENABLE_MS(port, termios->c_cflag)) |
| 2168 | pl011_enable_ms(port); |
| 2169 | |
| 2170 | if (port->rs485.flags & SER_RS485_ENABLED) |
| 2171 | termios->c_cflag &= ~CRTSCTS; |
| 2172 | |
| 2173 | old_cr = pl011_read(uap, REG_CR); |
| 2174 | |
| 2175 | if (termios->c_cflag & CRTSCTS) { |
| 2176 | if (old_cr & UART011_CR_RTS) |
| 2177 | old_cr |= UART011_CR_RTSEN; |
| 2178 | |
| 2179 | old_cr |= UART011_CR_CTSEN; |
| 2180 | port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS; |
| 2181 | } else { |
| 2182 | old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN); |
| 2183 | port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS); |
| 2184 | } |
| 2185 | |
| 2186 | if (uap->vendor->oversampling) { |
| 2187 | if (baud > port->uartclk / 16) |
| 2188 | old_cr |= ST_UART011_CR_OVSFACT; |
| 2189 | else |
| 2190 | old_cr &= ~ST_UART011_CR_OVSFACT; |
| 2191 | } |
| 2192 | |
| 2193 | /* |
| 2194 | * Workaround for the ST Micro oversampling variants to |
| 2195 | * increase the bitrate slightly, by lowering the divisor, |
| 2196 | * to avoid delayed sampling of start bit at high speeds, |
| 2197 | * else we see data corruption. |
| 2198 | */ |
| 2199 | if (uap->vendor->oversampling) { |
| 2200 | if (baud >= 3000000 && baud < 3250000 && quot > 1) |
| 2201 | quot -= 1; |
| 2202 | else if (baud > 3250000 && quot > 2) |
| 2203 | quot -= 2; |
| 2204 | } |
| 2205 | /* Set baud rate */ |
| 2206 | pl011_write(quot & 0x3f, uap, REG_FBRD); |
| 2207 | pl011_write(quot >> 6, uap, REG_IBRD); |
| 2208 | |
| 2209 | /* |
| 2210 | * ----------v----------v----------v----------v----- |
| 2211 | * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER |
| 2212 | * REG_FBRD & REG_IBRD. |
| 2213 | * ----------^----------^----------^----------^----- |
| 2214 | */ |
| 2215 | pl011_write_lcr_h(uap, lcr_h); |
| 2216 | |
| 2217 | /* |
| 2218 | * Receive was disabled by pl011_disable_uart during shutdown. |
| 2219 | * Need to reenable receive if you need to use a tty_driver |
| 2220 | * returns from tty_find_polling_driver() after a port shutdown. |
| 2221 | */ |
| 2222 | old_cr |= UART011_CR_RXE; |
| 2223 | pl011_write(old_cr, uap, REG_CR); |
| 2224 | |
| 2225 | uart_port_unlock_irqrestore(port, flags); |
| 2226 | } |
| 2227 | |
| 2228 | static void |
| 2229 | sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios, |
| 2230 | const struct ktermios *old) |
| 2231 | { |
| 2232 | struct uart_amba_port *uap = |
| 2233 | container_of(port, struct uart_amba_port, port); |
| 2234 | unsigned long flags; |
| 2235 | |
| 2236 | tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud); |
| 2237 | |
| 2238 | /* The SBSA UART only supports 8n1 without hardware flow control. */ |
| 2239 | termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD); |
| 2240 | termios->c_cflag &= ~(CMSPAR | CRTSCTS); |
| 2241 | termios->c_cflag |= CS8 | CLOCAL; |
| 2242 | |
| 2243 | uart_port_lock_irqsave(port, &flags); |
| 2244 | uart_update_timeout(port, CS8, uap->fixed_baud); |
| 2245 | pl011_setup_status_masks(port, termios); |
| 2246 | uart_port_unlock_irqrestore(port, flags); |
| 2247 | } |
| 2248 | |
| 2249 | static const char *pl011_type(struct uart_port *port) |
| 2250 | { |
| 2251 | struct uart_amba_port *uap = |
| 2252 | container_of(port, struct uart_amba_port, port); |
| 2253 | return uap->port.type == PORT_AMBA ? uap->type : NULL; |
| 2254 | } |
| 2255 | |
| 2256 | /* |
| 2257 | * Configure/autoconfigure the port. |
| 2258 | */ |
| 2259 | static void pl011_config_port(struct uart_port *port, int flags) |
| 2260 | { |
| 2261 | if (flags & UART_CONFIG_TYPE) |
| 2262 | port->type = PORT_AMBA; |
| 2263 | } |
| 2264 | |
| 2265 | /* |
| 2266 | * verify the new serial_struct (for TIOCSSERIAL). |
| 2267 | */ |
| 2268 | static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser) |
| 2269 | { |
| 2270 | int ret = 0; |
| 2271 | |
| 2272 | if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA) |
| 2273 | ret = -EINVAL; |
| 2274 | if (ser->irq < 0 || ser->irq >= irq_get_nr_irqs()) |
| 2275 | ret = -EINVAL; |
| 2276 | if (ser->baud_base < 9600) |
| 2277 | ret = -EINVAL; |
| 2278 | if (port->mapbase != (unsigned long)ser->iomem_base) |
| 2279 | ret = -EINVAL; |
| 2280 | return ret; |
| 2281 | } |
| 2282 | |
| 2283 | static int pl011_rs485_config(struct uart_port *port, struct ktermios *termios, |
| 2284 | struct serial_rs485 *rs485) |
| 2285 | { |
| 2286 | struct uart_amba_port *uap = |
| 2287 | container_of(port, struct uart_amba_port, port); |
| 2288 | |
| 2289 | if (port->rs485.flags & SER_RS485_ENABLED) |
| 2290 | pl011_rs485_tx_stop(uap); |
| 2291 | |
| 2292 | /* Make sure auto RTS is disabled */ |
| 2293 | if (rs485->flags & SER_RS485_ENABLED) { |
| 2294 | u32 cr = pl011_read(uap, REG_CR); |
| 2295 | |
| 2296 | cr &= ~UART011_CR_RTSEN; |
| 2297 | pl011_write(cr, uap, REG_CR); |
| 2298 | port->status &= ~UPSTAT_AUTORTS; |
| 2299 | } |
| 2300 | |
| 2301 | return 0; |
| 2302 | } |
| 2303 | |
| 2304 | static const struct uart_ops amba_pl011_pops = { |
| 2305 | .tx_empty = pl011_tx_empty, |
| 2306 | .set_mctrl = pl011_set_mctrl, |
| 2307 | .get_mctrl = pl011_get_mctrl, |
| 2308 | .stop_tx = pl011_stop_tx, |
| 2309 | .start_tx = pl011_start_tx, |
| 2310 | .stop_rx = pl011_stop_rx, |
| 2311 | .throttle = pl011_throttle_rx, |
| 2312 | .unthrottle = pl011_unthrottle_rx, |
| 2313 | .enable_ms = pl011_enable_ms, |
| 2314 | .break_ctl = pl011_break_ctl, |
| 2315 | .startup = pl011_startup, |
| 2316 | .shutdown = pl011_shutdown, |
| 2317 | .flush_buffer = pl011_dma_flush_buffer, |
| 2318 | .set_termios = pl011_set_termios, |
| 2319 | .type = pl011_type, |
| 2320 | .config_port = pl011_config_port, |
| 2321 | .verify_port = pl011_verify_port, |
| 2322 | #ifdef CONFIG_CONSOLE_POLL |
| 2323 | .poll_init = pl011_hwinit, |
| 2324 | .poll_get_char = pl011_get_poll_char, |
| 2325 | .poll_put_char = pl011_put_poll_char, |
| 2326 | #endif |
| 2327 | }; |
| 2328 | |
| 2329 | static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) |
| 2330 | { |
| 2331 | } |
| 2332 | |
| 2333 | static unsigned int sbsa_uart_get_mctrl(struct uart_port *port) |
| 2334 | { |
| 2335 | return 0; |
| 2336 | } |
| 2337 | |
| 2338 | static const struct uart_ops sbsa_uart_pops = { |
| 2339 | .tx_empty = pl011_tx_empty, |
| 2340 | .set_mctrl = sbsa_uart_set_mctrl, |
| 2341 | .get_mctrl = sbsa_uart_get_mctrl, |
| 2342 | .stop_tx = pl011_stop_tx, |
| 2343 | .start_tx = pl011_start_tx, |
| 2344 | .stop_rx = pl011_stop_rx, |
| 2345 | .startup = sbsa_uart_startup, |
| 2346 | .shutdown = sbsa_uart_shutdown, |
| 2347 | .set_termios = sbsa_uart_set_termios, |
| 2348 | .type = pl011_type, |
| 2349 | .config_port = pl011_config_port, |
| 2350 | .verify_port = pl011_verify_port, |
| 2351 | #ifdef CONFIG_CONSOLE_POLL |
| 2352 | .poll_init = pl011_hwinit, |
| 2353 | .poll_get_char = pl011_get_poll_char, |
| 2354 | .poll_put_char = pl011_put_poll_char, |
| 2355 | #endif |
| 2356 | }; |
| 2357 | |
| 2358 | static struct uart_amba_port *amba_ports[UART_NR]; |
| 2359 | |
| 2360 | #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE |
| 2361 | |
| 2362 | static void pl011_console_putchar(struct uart_port *port, unsigned char ch) |
| 2363 | { |
| 2364 | struct uart_amba_port *uap = |
| 2365 | container_of(port, struct uart_amba_port, port); |
| 2366 | |
| 2367 | while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) |
| 2368 | cpu_relax(); |
| 2369 | pl011_write(ch, uap, REG_DR); |
| 2370 | uap->console_line_ended = (ch == '\n'); |
| 2371 | } |
| 2372 | |
| 2373 | static void pl011_console_get_options(struct uart_amba_port *uap, int *baud, |
| 2374 | int *parity, int *bits) |
| 2375 | { |
| 2376 | unsigned int lcr_h, ibrd, fbrd; |
| 2377 | |
| 2378 | if (!(pl011_read(uap, REG_CR) & UART01x_CR_UARTEN)) |
| 2379 | return; |
| 2380 | |
| 2381 | lcr_h = pl011_read(uap, REG_LCRH_TX); |
| 2382 | |
| 2383 | *parity = 'n'; |
| 2384 | if (lcr_h & UART01x_LCRH_PEN) { |
| 2385 | if (lcr_h & UART01x_LCRH_EPS) |
| 2386 | *parity = 'e'; |
| 2387 | else |
| 2388 | *parity = 'o'; |
| 2389 | } |
| 2390 | |
| 2391 | if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7) |
| 2392 | *bits = 7; |
| 2393 | else |
| 2394 | *bits = 8; |
| 2395 | |
| 2396 | ibrd = pl011_read(uap, REG_IBRD); |
| 2397 | fbrd = pl011_read(uap, REG_FBRD); |
| 2398 | |
| 2399 | *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd); |
| 2400 | |
| 2401 | if (uap->vendor->oversampling && |
| 2402 | (pl011_read(uap, REG_CR) & ST_UART011_CR_OVSFACT)) |
| 2403 | *baud *= 2; |
| 2404 | } |
| 2405 | |
| 2406 | static int pl011_console_setup(struct console *co, char *options) |
| 2407 | { |
| 2408 | struct uart_amba_port *uap; |
| 2409 | int baud = 38400; |
| 2410 | int bits = 8; |
| 2411 | int parity = 'n'; |
| 2412 | int flow = 'n'; |
| 2413 | int ret; |
| 2414 | |
| 2415 | /* |
| 2416 | * Check whether an invalid uart number has been specified, and |
| 2417 | * if so, search for the first available port that does have |
| 2418 | * console support. |
| 2419 | */ |
| 2420 | if (co->index >= UART_NR) |
| 2421 | co->index = 0; |
| 2422 | uap = amba_ports[co->index]; |
| 2423 | if (!uap) |
| 2424 | return -ENODEV; |
| 2425 | |
| 2426 | /* Allow pins to be muxed in and configured */ |
| 2427 | pinctrl_pm_select_default_state(uap->port.dev); |
| 2428 | |
| 2429 | ret = clk_prepare(uap->clk); |
| 2430 | if (ret) |
| 2431 | return ret; |
| 2432 | |
| 2433 | uap->console_line_ended = true; |
| 2434 | |
| 2435 | if (dev_get_platdata(uap->port.dev)) { |
| 2436 | struct amba_pl011_data *plat; |
| 2437 | |
| 2438 | plat = dev_get_platdata(uap->port.dev); |
| 2439 | if (plat->init) |
| 2440 | plat->init(); |
| 2441 | } |
| 2442 | |
| 2443 | uap->port.uartclk = clk_get_rate(uap->clk); |
| 2444 | |
| 2445 | if (uap->vendor->fixed_options) { |
| 2446 | baud = uap->fixed_baud; |
| 2447 | } else { |
| 2448 | if (options) |
| 2449 | uart_parse_options(options, |
| 2450 | &baud, &parity, &bits, &flow); |
| 2451 | else |
| 2452 | pl011_console_get_options(uap, &baud, &parity, &bits); |
| 2453 | } |
| 2454 | |
| 2455 | return uart_set_options(&uap->port, co, baud, parity, bits, flow); |
| 2456 | } |
| 2457 | |
| 2458 | /** |
| 2459 | * pl011_console_match - non-standard console matching |
| 2460 | * @co: registering console |
| 2461 | * @name: name from console command line |
| 2462 | * @idx: index from console command line |
| 2463 | * @options: ptr to option string from console command line |
| 2464 | * |
| 2465 | * Only attempts to match console command lines of the form: |
| 2466 | * console=pl011,mmio|mmio32,<addr>[,<options>] |
| 2467 | * console=pl011,0x<addr>[,<options>] |
| 2468 | * This form is used to register an initial earlycon boot console and |
| 2469 | * replace it with the amba_console at pl011 driver init. |
| 2470 | * |
| 2471 | * Performs console setup for a match (as required by interface) |
| 2472 | * If no <options> are specified, then assume the h/w is already setup. |
| 2473 | * |
| 2474 | * Returns 0 if console matches; otherwise non-zero to use default matching |
| 2475 | */ |
| 2476 | static int pl011_console_match(struct console *co, char *name, int idx, |
| 2477 | char *options) |
| 2478 | { |
| 2479 | enum uart_iotype iotype; |
| 2480 | resource_size_t addr; |
| 2481 | int i; |
| 2482 | |
| 2483 | /* |
| 2484 | * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum |
| 2485 | * have a distinct console name, so make sure we check for that. |
| 2486 | * The actual implementation of the erratum occurs in the probe |
| 2487 | * function. |
| 2488 | */ |
| 2489 | if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0)) |
| 2490 | return -ENODEV; |
| 2491 | |
| 2492 | if (uart_parse_earlycon(options, &iotype, &addr, &options)) |
| 2493 | return -ENODEV; |
| 2494 | |
| 2495 | if (iotype != UPIO_MEM && iotype != UPIO_MEM32) |
| 2496 | return -ENODEV; |
| 2497 | |
| 2498 | /* try to match the port specified on the command line */ |
| 2499 | for (i = 0; i < ARRAY_SIZE(amba_ports); i++) { |
| 2500 | struct uart_port *port; |
| 2501 | |
| 2502 | if (!amba_ports[i]) |
| 2503 | continue; |
| 2504 | |
| 2505 | port = &amba_ports[i]->port; |
| 2506 | |
| 2507 | if (port->mapbase != addr) |
| 2508 | continue; |
| 2509 | |
| 2510 | co->index = i; |
| 2511 | uart_port_set_cons(port, co); |
| 2512 | return pl011_console_setup(co, options); |
| 2513 | } |
| 2514 | |
| 2515 | return -ENODEV; |
| 2516 | } |
| 2517 | |
| 2518 | static void |
| 2519 | pl011_console_write_atomic(struct console *co, struct nbcon_write_context *wctxt) |
| 2520 | { |
| 2521 | struct uart_amba_port *uap = amba_ports[co->index]; |
| 2522 | unsigned int old_cr = 0; |
| 2523 | |
| 2524 | if (!nbcon_enter_unsafe(wctxt)) |
| 2525 | return; |
| 2526 | |
| 2527 | clk_enable(uap->clk); |
| 2528 | |
| 2529 | if (!uap->vendor->always_enabled) { |
| 2530 | old_cr = pl011_read(uap, REG_CR); |
| 2531 | pl011_write((old_cr & ~UART011_CR_CTSEN) | (UART01x_CR_UARTEN | UART011_CR_TXE), |
| 2532 | uap, REG_CR); |
| 2533 | } |
| 2534 | |
| 2535 | if (!uap->console_line_ended) |
| 2536 | uart_console_write(&uap->port, "\n", 1, pl011_console_putchar); |
| 2537 | uart_console_write(&uap->port, wctxt->outbuf, wctxt->len, pl011_console_putchar); |
| 2538 | |
| 2539 | while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr) & uap->vendor->fr_busy) |
| 2540 | cpu_relax(); |
| 2541 | |
| 2542 | if (!uap->vendor->always_enabled) |
| 2543 | pl011_write(old_cr, uap, REG_CR); |
| 2544 | |
| 2545 | clk_disable(uap->clk); |
| 2546 | |
| 2547 | nbcon_exit_unsafe(wctxt); |
| 2548 | } |
| 2549 | |
| 2550 | static void |
| 2551 | pl011_console_write_thread(struct console *co, struct nbcon_write_context *wctxt) |
| 2552 | { |
| 2553 | struct uart_amba_port *uap = amba_ports[co->index]; |
| 2554 | unsigned int old_cr = 0; |
| 2555 | |
| 2556 | if (!nbcon_enter_unsafe(wctxt)) |
| 2557 | return; |
| 2558 | |
| 2559 | clk_enable(uap->clk); |
| 2560 | |
| 2561 | if (!uap->vendor->always_enabled) { |
| 2562 | old_cr = pl011_read(uap, REG_CR); |
| 2563 | pl011_write((old_cr & ~UART011_CR_CTSEN) | (UART01x_CR_UARTEN | UART011_CR_TXE), |
| 2564 | uap, REG_CR); |
| 2565 | } |
| 2566 | |
| 2567 | if (nbcon_exit_unsafe(wctxt)) { |
| 2568 | int i; |
| 2569 | unsigned int len = READ_ONCE(wctxt->len); |
| 2570 | |
| 2571 | for (i = 0; i < len; i++) { |
| 2572 | if (!nbcon_enter_unsafe(wctxt)) |
| 2573 | break; |
| 2574 | uart_console_write(&uap->port, wctxt->outbuf + i, 1, pl011_console_putchar); |
| 2575 | if (!nbcon_exit_unsafe(wctxt)) |
| 2576 | break; |
| 2577 | } |
| 2578 | } |
| 2579 | |
| 2580 | while (!nbcon_enter_unsafe(wctxt)) |
| 2581 | nbcon_reacquire_nobuf(wctxt); |
| 2582 | |
| 2583 | while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr) & uap->vendor->fr_busy) |
| 2584 | cpu_relax(); |
| 2585 | |
| 2586 | if (!uap->vendor->always_enabled) |
| 2587 | pl011_write(old_cr, uap, REG_CR); |
| 2588 | |
| 2589 | clk_disable(uap->clk); |
| 2590 | |
| 2591 | nbcon_exit_unsafe(wctxt); |
| 2592 | } |
| 2593 | |
| 2594 | static void |
| 2595 | pl011_console_device_lock(struct console *co, unsigned long *flags) |
| 2596 | { |
| 2597 | __uart_port_lock_irqsave(&amba_ports[co->index]->port, flags); |
| 2598 | } |
| 2599 | |
| 2600 | static void |
| 2601 | pl011_console_device_unlock(struct console *co, unsigned long flags) |
| 2602 | { |
| 2603 | __uart_port_unlock_irqrestore(&amba_ports[co->index]->port, flags); |
| 2604 | } |
| 2605 | |
| 2606 | static struct uart_driver amba_reg; |
| 2607 | static struct console amba_console = { |
| 2608 | .name = "ttyAMA", |
| 2609 | .device = uart_console_device, |
| 2610 | .setup = pl011_console_setup, |
| 2611 | .match = pl011_console_match, |
| 2612 | .write_atomic = pl011_console_write_atomic, |
| 2613 | .write_thread = pl011_console_write_thread, |
| 2614 | .device_lock = pl011_console_device_lock, |
| 2615 | .device_unlock = pl011_console_device_unlock, |
| 2616 | .flags = CON_PRINTBUFFER | CON_ANYTIME | CON_NBCON, |
| 2617 | .index = -1, |
| 2618 | .data = &amba_reg, |
| 2619 | }; |
| 2620 | |
| 2621 | #define AMBA_CONSOLE (&amba_console) |
| 2622 | |
| 2623 | static void qdf2400_e44_putc(struct uart_port *port, unsigned char c) |
| 2624 | { |
| 2625 | while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF) |
| 2626 | cpu_relax(); |
| 2627 | writel(c, port->membase + UART01x_DR); |
| 2628 | while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE)) |
| 2629 | cpu_relax(); |
| 2630 | } |
| 2631 | |
| 2632 | static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned int n) |
| 2633 | { |
| 2634 | struct earlycon_device *dev = con->data; |
| 2635 | |
| 2636 | uart_console_write(&dev->port, s, n, qdf2400_e44_putc); |
| 2637 | } |
| 2638 | |
| 2639 | static void pl011_putc(struct uart_port *port, unsigned char c) |
| 2640 | { |
| 2641 | while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF) |
| 2642 | cpu_relax(); |
| 2643 | if (port->iotype == UPIO_MEM32) |
| 2644 | writel(c, port->membase + UART01x_DR); |
| 2645 | else |
| 2646 | writeb(c, port->membase + UART01x_DR); |
| 2647 | while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY) |
| 2648 | cpu_relax(); |
| 2649 | } |
| 2650 | |
| 2651 | static void pl011_early_write(struct console *con, const char *s, unsigned int n) |
| 2652 | { |
| 2653 | struct earlycon_device *dev = con->data; |
| 2654 | |
| 2655 | uart_console_write(&dev->port, s, n, pl011_putc); |
| 2656 | } |
| 2657 | |
| 2658 | #ifdef CONFIG_CONSOLE_POLL |
| 2659 | static int pl011_getc(struct uart_port *port) |
| 2660 | { |
| 2661 | if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE) |
| 2662 | return NO_POLL_CHAR; |
| 2663 | |
| 2664 | if (port->iotype == UPIO_MEM32) |
| 2665 | return readl(port->membase + UART01x_DR); |
| 2666 | else |
| 2667 | return readb(port->membase + UART01x_DR); |
| 2668 | } |
| 2669 | |
| 2670 | static int pl011_early_read(struct console *con, char *s, unsigned int n) |
| 2671 | { |
| 2672 | struct earlycon_device *dev = con->data; |
| 2673 | int ch, num_read = 0; |
| 2674 | |
| 2675 | while (num_read < n) { |
| 2676 | ch = pl011_getc(&dev->port); |
| 2677 | if (ch == NO_POLL_CHAR) |
| 2678 | break; |
| 2679 | |
| 2680 | s[num_read++] = ch; |
| 2681 | } |
| 2682 | |
| 2683 | return num_read; |
| 2684 | } |
| 2685 | #else |
| 2686 | #define pl011_early_read NULL |
| 2687 | #endif |
| 2688 | |
| 2689 | /* |
| 2690 | * On non-ACPI systems, earlycon is enabled by specifying |
| 2691 | * "earlycon=pl011,<address>" on the kernel command line. |
| 2692 | * |
| 2693 | * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table, |
| 2694 | * by specifying only "earlycon" on the command line. Because it requires |
| 2695 | * SPCR, the console starts after ACPI is parsed, which is later than a |
| 2696 | * traditional early console. |
| 2697 | * |
| 2698 | * To get the traditional early console that starts before ACPI is parsed, |
| 2699 | * specify the full "earlycon=pl011,<address>" option. |
| 2700 | */ |
| 2701 | static int __init pl011_early_console_setup(struct earlycon_device *device, |
| 2702 | const char *opt) |
| 2703 | { |
| 2704 | if (!device->port.membase) |
| 2705 | return -ENODEV; |
| 2706 | |
| 2707 | device->con->write = pl011_early_write; |
| 2708 | device->con->read = pl011_early_read; |
| 2709 | |
| 2710 | return 0; |
| 2711 | } |
| 2712 | |
| 2713 | OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup); |
| 2714 | |
| 2715 | OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup); |
| 2716 | |
| 2717 | /* |
| 2718 | * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by |
| 2719 | * Erratum 44, traditional earlycon can be enabled by specifying |
| 2720 | * "earlycon=qdf2400_e44,<address>". Any options are ignored. |
| 2721 | * |
| 2722 | * Alternatively, you can just specify "earlycon", and the early console |
| 2723 | * will be enabled with the information from the SPCR table. In this |
| 2724 | * case, the SPCR code will detect the need for the E44 work-around, |
| 2725 | * and set the console name to "qdf2400_e44". |
| 2726 | */ |
| 2727 | static int __init |
| 2728 | qdf2400_e44_early_console_setup(struct earlycon_device *device, |
| 2729 | const char *opt) |
| 2730 | { |
| 2731 | if (!device->port.membase) |
| 2732 | return -ENODEV; |
| 2733 | |
| 2734 | device->con->write = qdf2400_e44_early_write; |
| 2735 | return 0; |
| 2736 | } |
| 2737 | |
| 2738 | EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup); |
| 2739 | |
| 2740 | #else |
| 2741 | #define AMBA_CONSOLE NULL |
| 2742 | #endif |
| 2743 | |
| 2744 | static struct uart_driver amba_reg = { |
| 2745 | .owner = THIS_MODULE, |
| 2746 | .driver_name = "ttyAMA", |
| 2747 | .dev_name = "ttyAMA", |
| 2748 | .major = SERIAL_AMBA_MAJOR, |
| 2749 | .minor = SERIAL_AMBA_MINOR, |
| 2750 | .nr = UART_NR, |
| 2751 | .cons = AMBA_CONSOLE, |
| 2752 | }; |
| 2753 | |
| 2754 | static int pl011_probe_dt_alias(int index, struct device *dev) |
| 2755 | { |
| 2756 | struct device_node *np; |
| 2757 | static bool seen_dev_with_alias; |
| 2758 | static bool seen_dev_without_alias; |
| 2759 | int ret = index; |
| 2760 | |
| 2761 | if (!IS_ENABLED(CONFIG_OF)) |
| 2762 | return ret; |
| 2763 | |
| 2764 | np = dev->of_node; |
| 2765 | if (!np) |
| 2766 | return ret; |
| 2767 | |
| 2768 | ret = of_alias_get_id(np, "serial"); |
| 2769 | if (ret < 0) { |
| 2770 | seen_dev_without_alias = true; |
| 2771 | ret = index; |
| 2772 | } else { |
| 2773 | seen_dev_with_alias = true; |
| 2774 | if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret]) { |
| 2775 | dev_warn(dev, "requested serial port %d not available.\n", ret); |
| 2776 | ret = index; |
| 2777 | } |
| 2778 | } |
| 2779 | |
| 2780 | if (seen_dev_with_alias && seen_dev_without_alias) |
| 2781 | dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n"); |
| 2782 | |
| 2783 | return ret; |
| 2784 | } |
| 2785 | |
| 2786 | /* unregisters the driver also if no more ports are left */ |
| 2787 | static void pl011_unregister_port(struct uart_amba_port *uap) |
| 2788 | { |
| 2789 | int i; |
| 2790 | bool busy = false; |
| 2791 | |
| 2792 | for (i = 0; i < ARRAY_SIZE(amba_ports); i++) { |
| 2793 | if (amba_ports[i] == uap) |
| 2794 | amba_ports[i] = NULL; |
| 2795 | else if (amba_ports[i]) |
| 2796 | busy = true; |
| 2797 | } |
| 2798 | pl011_dma_remove(uap); |
| 2799 | if (!busy) |
| 2800 | uart_unregister_driver(&amba_reg); |
| 2801 | } |
| 2802 | |
| 2803 | static int pl011_find_free_port(void) |
| 2804 | { |
| 2805 | int i; |
| 2806 | |
| 2807 | for (i = 0; i < ARRAY_SIZE(amba_ports); i++) |
| 2808 | if (!amba_ports[i]) |
| 2809 | return i; |
| 2810 | |
| 2811 | return -EBUSY; |
| 2812 | } |
| 2813 | |
| 2814 | static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap, |
| 2815 | struct resource *mmiobase, int index) |
| 2816 | { |
| 2817 | void __iomem *base; |
| 2818 | int ret; |
| 2819 | |
| 2820 | base = devm_ioremap_resource(dev, mmiobase); |
| 2821 | if (IS_ERR(base)) |
| 2822 | return PTR_ERR(base); |
| 2823 | |
| 2824 | index = pl011_probe_dt_alias(index, dev); |
| 2825 | |
| 2826 | uap->port.dev = dev; |
| 2827 | uap->port.mapbase = mmiobase->start; |
| 2828 | uap->port.membase = base; |
| 2829 | uap->port.fifosize = uap->fifosize; |
| 2830 | uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE); |
| 2831 | uap->port.flags = UPF_BOOT_AUTOCONF; |
| 2832 | uap->port.line = index; |
| 2833 | |
| 2834 | ret = uart_get_rs485_mode(&uap->port); |
| 2835 | if (ret) |
| 2836 | return ret; |
| 2837 | |
| 2838 | amba_ports[index] = uap; |
| 2839 | |
| 2840 | return 0; |
| 2841 | } |
| 2842 | |
| 2843 | static int pl011_register_port(struct uart_amba_port *uap) |
| 2844 | { |
| 2845 | int ret, i; |
| 2846 | |
| 2847 | /* Ensure interrupts from this UART are masked and cleared */ |
| 2848 | pl011_write(0, uap, REG_IMSC); |
| 2849 | pl011_write(0xffff, uap, REG_ICR); |
| 2850 | |
| 2851 | if (!amba_reg.state) { |
| 2852 | ret = uart_register_driver(&amba_reg); |
| 2853 | if (ret < 0) { |
| 2854 | dev_err(uap->port.dev, |
| 2855 | "Failed to register AMBA-PL011 driver\n"); |
| 2856 | for (i = 0; i < ARRAY_SIZE(amba_ports); i++) |
| 2857 | if (amba_ports[i] == uap) |
| 2858 | amba_ports[i] = NULL; |
| 2859 | return ret; |
| 2860 | } |
| 2861 | } |
| 2862 | |
| 2863 | ret = uart_add_one_port(&amba_reg, &uap->port); |
| 2864 | if (ret) |
| 2865 | pl011_unregister_port(uap); |
| 2866 | |
| 2867 | return ret; |
| 2868 | } |
| 2869 | |
| 2870 | static const struct serial_rs485 pl011_rs485_supported = { |
| 2871 | .flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND | |
| 2872 | SER_RS485_RX_DURING_TX, |
| 2873 | .delay_rts_before_send = 1, |
| 2874 | .delay_rts_after_send = 1, |
| 2875 | }; |
| 2876 | |
| 2877 | static int pl011_probe(struct amba_device *dev, const struct amba_id *id) |
| 2878 | { |
| 2879 | struct uart_amba_port *uap; |
| 2880 | struct vendor_data *vendor = id->data; |
| 2881 | int portnr, ret; |
| 2882 | u32 val; |
| 2883 | |
| 2884 | portnr = pl011_find_free_port(); |
| 2885 | if (portnr < 0) |
| 2886 | return portnr; |
| 2887 | |
| 2888 | uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port), |
| 2889 | GFP_KERNEL); |
| 2890 | if (!uap) |
| 2891 | return -ENOMEM; |
| 2892 | |
| 2893 | uap->clk = devm_clk_get(&dev->dev, NULL); |
| 2894 | if (IS_ERR(uap->clk)) |
| 2895 | return PTR_ERR(uap->clk); |
| 2896 | |
| 2897 | uap->reg_offset = vendor->reg_offset; |
| 2898 | uap->vendor = vendor; |
| 2899 | uap->fifosize = vendor->get_fifosize(dev); |
| 2900 | uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM; |
| 2901 | uap->port.irq = dev->irq[0]; |
| 2902 | uap->port.ops = &amba_pl011_pops; |
| 2903 | uap->port.rs485_config = pl011_rs485_config; |
| 2904 | uap->port.rs485_supported = pl011_rs485_supported; |
| 2905 | snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev)); |
| 2906 | |
| 2907 | if (device_property_read_u32(&dev->dev, "reg-io-width", &val) == 0) { |
| 2908 | switch (val) { |
| 2909 | case 1: |
| 2910 | uap->port.iotype = UPIO_MEM; |
| 2911 | break; |
| 2912 | case 4: |
| 2913 | uap->port.iotype = UPIO_MEM32; |
| 2914 | break; |
| 2915 | default: |
| 2916 | dev_warn(&dev->dev, "unsupported reg-io-width (%d)\n", |
| 2917 | val); |
| 2918 | return -EINVAL; |
| 2919 | } |
| 2920 | } |
| 2921 | hrtimer_setup(&uap->trigger_start_tx, pl011_trigger_start_tx, CLOCK_MONOTONIC, |
| 2922 | HRTIMER_MODE_REL); |
| 2923 | hrtimer_setup(&uap->trigger_stop_tx, pl011_trigger_stop_tx, CLOCK_MONOTONIC, |
| 2924 | HRTIMER_MODE_REL); |
| 2925 | |
| 2926 | ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr); |
| 2927 | if (ret) |
| 2928 | return ret; |
| 2929 | |
| 2930 | amba_set_drvdata(dev, uap); |
| 2931 | |
| 2932 | return pl011_register_port(uap); |
| 2933 | } |
| 2934 | |
| 2935 | static void pl011_remove(struct amba_device *dev) |
| 2936 | { |
| 2937 | struct uart_amba_port *uap = amba_get_drvdata(dev); |
| 2938 | |
| 2939 | uart_remove_one_port(&amba_reg, &uap->port); |
| 2940 | pl011_unregister_port(uap); |
| 2941 | } |
| 2942 | |
| 2943 | #ifdef CONFIG_PM_SLEEP |
| 2944 | static int pl011_suspend(struct device *dev) |
| 2945 | { |
| 2946 | struct uart_amba_port *uap = dev_get_drvdata(dev); |
| 2947 | |
| 2948 | if (!uap) |
| 2949 | return -EINVAL; |
| 2950 | |
| 2951 | return uart_suspend_port(&amba_reg, &uap->port); |
| 2952 | } |
| 2953 | |
| 2954 | static int pl011_resume(struct device *dev) |
| 2955 | { |
| 2956 | struct uart_amba_port *uap = dev_get_drvdata(dev); |
| 2957 | |
| 2958 | if (!uap) |
| 2959 | return -EINVAL; |
| 2960 | |
| 2961 | return uart_resume_port(&amba_reg, &uap->port); |
| 2962 | } |
| 2963 | #endif |
| 2964 | |
| 2965 | static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume); |
| 2966 | |
| 2967 | #ifdef CONFIG_ACPI_SPCR_TABLE |
| 2968 | static void qpdf2400_erratum44_workaround(struct device *dev, |
| 2969 | struct uart_amba_port *uap) |
| 2970 | { |
| 2971 | if (!qdf2400_e44_present) |
| 2972 | return; |
| 2973 | |
| 2974 | dev_info(dev, "working around QDF2400 SoC erratum 44\n"); |
| 2975 | uap->vendor = &vendor_qdt_qdf2400_e44; |
| 2976 | } |
| 2977 | #else |
| 2978 | static void qpdf2400_erratum44_workaround(struct device *dev, |
| 2979 | struct uart_amba_port *uap) |
| 2980 | { /* empty */ } |
| 2981 | #endif |
| 2982 | |
| 2983 | static int sbsa_uart_probe(struct platform_device *pdev) |
| 2984 | { |
| 2985 | struct uart_amba_port *uap; |
| 2986 | struct resource *r; |
| 2987 | int portnr, ret; |
| 2988 | int baudrate; |
| 2989 | |
| 2990 | /* |
| 2991 | * Check the mandatory baud rate parameter in the DT node early |
| 2992 | * so that we can easily exit with the error. |
| 2993 | */ |
| 2994 | if (pdev->dev.of_node) { |
| 2995 | struct device_node *np = pdev->dev.of_node; |
| 2996 | |
| 2997 | ret = of_property_read_u32(np, "current-speed", &baudrate); |
| 2998 | if (ret) |
| 2999 | return ret; |
| 3000 | } else { |
| 3001 | baudrate = 115200; |
| 3002 | } |
| 3003 | |
| 3004 | portnr = pl011_find_free_port(); |
| 3005 | if (portnr < 0) |
| 3006 | return portnr; |
| 3007 | |
| 3008 | uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port), |
| 3009 | GFP_KERNEL); |
| 3010 | if (!uap) |
| 3011 | return -ENOMEM; |
| 3012 | |
| 3013 | ret = platform_get_irq(pdev, 0); |
| 3014 | if (ret < 0) |
| 3015 | return ret; |
| 3016 | uap->port.irq = ret; |
| 3017 | |
| 3018 | uap->vendor = &vendor_sbsa; |
| 3019 | qpdf2400_erratum44_workaround(&pdev->dev, uap); |
| 3020 | |
| 3021 | uap->reg_offset = uap->vendor->reg_offset; |
| 3022 | uap->fifosize = 32; |
| 3023 | uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM; |
| 3024 | uap->port.ops = &sbsa_uart_pops; |
| 3025 | uap->fixed_baud = baudrate; |
| 3026 | |
| 3027 | snprintf(uap->type, sizeof(uap->type), "SBSA"); |
| 3028 | |
| 3029 | r = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 3030 | |
| 3031 | ret = pl011_setup_port(&pdev->dev, uap, r, portnr); |
| 3032 | if (ret) |
| 3033 | return ret; |
| 3034 | |
| 3035 | platform_set_drvdata(pdev, uap); |
| 3036 | |
| 3037 | return pl011_register_port(uap); |
| 3038 | } |
| 3039 | |
| 3040 | static void sbsa_uart_remove(struct platform_device *pdev) |
| 3041 | { |
| 3042 | struct uart_amba_port *uap = platform_get_drvdata(pdev); |
| 3043 | |
| 3044 | uart_remove_one_port(&amba_reg, &uap->port); |
| 3045 | pl011_unregister_port(uap); |
| 3046 | } |
| 3047 | |
| 3048 | static const struct of_device_id sbsa_uart_of_match[] = { |
| 3049 | { .compatible = "arm,sbsa-uart", }, |
| 3050 | {}, |
| 3051 | }; |
| 3052 | MODULE_DEVICE_TABLE(of, sbsa_uart_of_match); |
| 3053 | |
| 3054 | static const struct acpi_device_id sbsa_uart_acpi_match[] = { |
| 3055 | { "ARMH0011", 0 }, |
| 3056 | { "ARMHB000", 0 }, |
| 3057 | {}, |
| 3058 | }; |
| 3059 | MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match); |
| 3060 | |
| 3061 | static struct platform_driver arm_sbsa_uart_platform_driver = { |
| 3062 | .probe = sbsa_uart_probe, |
| 3063 | .remove = sbsa_uart_remove, |
| 3064 | .driver = { |
| 3065 | .name = "sbsa-uart", |
| 3066 | .pm = &pl011_dev_pm_ops, |
| 3067 | .of_match_table = sbsa_uart_of_match, |
| 3068 | .acpi_match_table = sbsa_uart_acpi_match, |
| 3069 | .suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011), |
| 3070 | }, |
| 3071 | }; |
| 3072 | |
| 3073 | static const struct amba_id pl011_ids[] = { |
| 3074 | { |
| 3075 | .id = 0x00041011, |
| 3076 | .mask = 0x000fffff, |
| 3077 | .data = &vendor_arm, |
| 3078 | }, |
| 3079 | { |
| 3080 | .id = 0x00380802, |
| 3081 | .mask = 0x00ffffff, |
| 3082 | .data = &vendor_st, |
| 3083 | }, |
| 3084 | { 0, 0 }, |
| 3085 | }; |
| 3086 | |
| 3087 | MODULE_DEVICE_TABLE(amba, pl011_ids); |
| 3088 | |
| 3089 | static struct amba_driver pl011_driver = { |
| 3090 | .drv = { |
| 3091 | .name = "uart-pl011", |
| 3092 | .pm = &pl011_dev_pm_ops, |
| 3093 | .suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011), |
| 3094 | }, |
| 3095 | .id_table = pl011_ids, |
| 3096 | .probe = pl011_probe, |
| 3097 | .remove = pl011_remove, |
| 3098 | }; |
| 3099 | |
| 3100 | static int __init pl011_init(void) |
| 3101 | { |
| 3102 | pr_info("Serial: AMBA PL011 UART driver\n"); |
| 3103 | |
| 3104 | if (platform_driver_register(&arm_sbsa_uart_platform_driver)) |
| 3105 | pr_warn("could not register SBSA UART platform driver\n"); |
| 3106 | return amba_driver_register(&pl011_driver); |
| 3107 | } |
| 3108 | |
| 3109 | static void __exit pl011_exit(void) |
| 3110 | { |
| 3111 | platform_driver_unregister(&arm_sbsa_uart_platform_driver); |
| 3112 | amba_driver_unregister(&pl011_driver); |
| 3113 | } |
| 3114 | |
| 3115 | /* |
| 3116 | * While this can be a module, if builtin it's most likely the console |
| 3117 | * So let's leave module_exit but move module_init to an earlier place |
| 3118 | */ |
| 3119 | arch_initcall(pl011_init); |
| 3120 | module_exit(pl011_exit); |
| 3121 | |
| 3122 | MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd"); |
| 3123 | MODULE_DESCRIPTION("ARM AMBA serial port driver"); |
| 3124 | MODULE_LICENSE("GPL"); |