| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs |
| 4 | * Copyright (C) 2013, 2021 Intel Corporation |
| 5 | */ |
| 6 | |
| 7 | #include <linux/atomic.h> |
| 8 | #include <linux/bitops.h> |
| 9 | #include <linux/bug.h> |
| 10 | #include <linux/clk.h> |
| 11 | #include <linux/delay.h> |
| 12 | #include <linux/device.h> |
| 13 | #include <linux/dmaengine.h> |
| 14 | #include <linux/err.h> |
| 15 | #include <linux/gpio/consumer.h> |
| 16 | #include <linux/interrupt.h> |
| 17 | #include <linux/io.h> |
| 18 | #include <linux/ioport.h> |
| 19 | #include <linux/math64.h> |
| 20 | #include <linux/minmax.h> |
| 21 | #include <linux/module.h> |
| 22 | #include <linux/pm_runtime.h> |
| 23 | #include <linux/property.h> |
| 24 | #include <linux/slab.h> |
| 25 | #include <linux/types.h> |
| 26 | |
| 27 | #include <linux/spi/spi.h> |
| 28 | |
| 29 | #include "internals.h" |
| 30 | #include "spi-pxa2xx.h" |
| 31 | |
| 32 | #define TIMOUT_DFLT 1000 |
| 33 | |
| 34 | /* |
| 35 | * For testing SSCR1 changes that require SSP restart, basically |
| 36 | * everything except the service and interrupt enables, the PXA270 developer |
| 37 | * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this |
| 38 | * list, but the PXA255 developer manual says all bits without really meaning |
| 39 | * the service and interrupt enables. |
| 40 | */ |
| 41 | #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ |
| 42 | | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ |
| 43 | | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ |
| 44 | | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ |
| 45 | | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \ |
| 46 | | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) |
| 47 | |
| 48 | #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \ |
| 49 | | QUARK_X1000_SSCR1_EFWR \ |
| 50 | | QUARK_X1000_SSCR1_RFT \ |
| 51 | | QUARK_X1000_SSCR1_TFT \ |
| 52 | | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) |
| 53 | |
| 54 | #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ |
| 55 | | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ |
| 56 | | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ |
| 57 | | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ |
| 58 | | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \ |
| 59 | | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) |
| 60 | |
| 61 | struct chip_data { |
| 62 | u32 cr1; |
| 63 | u32 dds_rate; |
| 64 | u32 threshold; |
| 65 | u16 lpss_rx_threshold; |
| 66 | u16 lpss_tx_threshold; |
| 67 | }; |
| 68 | |
| 69 | #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24) |
| 70 | #define LPSS_CS_CONTROL_SW_MODE BIT(0) |
| 71 | #define LPSS_CS_CONTROL_CS_HIGH BIT(1) |
| 72 | #define LPSS_CAPS_CS_EN_SHIFT 9 |
| 73 | #define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT) |
| 74 | |
| 75 | #define LPSS_PRIV_CLOCK_GATE 0x38 |
| 76 | #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3 |
| 77 | #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3 |
| 78 | #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_OFF 0x0 |
| 79 | |
| 80 | struct lpss_config { |
| 81 | /* LPSS offset from drv_data->ioaddr */ |
| 82 | unsigned offset; |
| 83 | /* Register offsets from drv_data->lpss_base or -1 */ |
| 84 | int reg_general; |
| 85 | int reg_ssp; |
| 86 | int reg_cs_ctrl; |
| 87 | int reg_capabilities; |
| 88 | /* FIFO thresholds */ |
| 89 | u32 rx_threshold; |
| 90 | u32 tx_threshold_lo; |
| 91 | u32 tx_threshold_hi; |
| 92 | /* Chip select control */ |
| 93 | unsigned cs_sel_shift; |
| 94 | unsigned cs_sel_mask; |
| 95 | /* Quirks */ |
| 96 | unsigned cs_clk_stays_gated : 1; |
| 97 | }; |
| 98 | |
| 99 | /* Keep these sorted with enum pxa_ssp_type */ |
| 100 | static const struct lpss_config lpss_platforms[] = { |
| 101 | { /* LPSS_LPT_SSP */ |
| 102 | .offset = 0x800, |
| 103 | .reg_general = 0x08, |
| 104 | .reg_ssp = 0x0c, |
| 105 | .reg_cs_ctrl = 0x18, |
| 106 | .reg_capabilities = -1, |
| 107 | .rx_threshold = 64, |
| 108 | .tx_threshold_lo = 160, |
| 109 | .tx_threshold_hi = 224, |
| 110 | }, |
| 111 | { /* LPSS_BYT_SSP */ |
| 112 | .offset = 0x400, |
| 113 | .reg_general = 0x08, |
| 114 | .reg_ssp = 0x0c, |
| 115 | .reg_cs_ctrl = 0x18, |
| 116 | .reg_capabilities = -1, |
| 117 | .rx_threshold = 64, |
| 118 | .tx_threshold_lo = 160, |
| 119 | .tx_threshold_hi = 224, |
| 120 | }, |
| 121 | { /* LPSS_BSW_SSP */ |
| 122 | .offset = 0x400, |
| 123 | .reg_general = 0x08, |
| 124 | .reg_ssp = 0x0c, |
| 125 | .reg_cs_ctrl = 0x18, |
| 126 | .reg_capabilities = -1, |
| 127 | .rx_threshold = 64, |
| 128 | .tx_threshold_lo = 160, |
| 129 | .tx_threshold_hi = 224, |
| 130 | .cs_sel_shift = 2, |
| 131 | .cs_sel_mask = 1 << 2, |
| 132 | }, |
| 133 | { /* LPSS_SPT_SSP */ |
| 134 | .offset = 0x200, |
| 135 | .reg_general = -1, |
| 136 | .reg_ssp = 0x20, |
| 137 | .reg_cs_ctrl = 0x24, |
| 138 | .reg_capabilities = -1, |
| 139 | .rx_threshold = 1, |
| 140 | .tx_threshold_lo = 32, |
| 141 | .tx_threshold_hi = 56, |
| 142 | }, |
| 143 | { /* LPSS_BXT_SSP */ |
| 144 | .offset = 0x200, |
| 145 | .reg_general = -1, |
| 146 | .reg_ssp = 0x20, |
| 147 | .reg_cs_ctrl = 0x24, |
| 148 | .reg_capabilities = 0xfc, |
| 149 | .rx_threshold = 1, |
| 150 | .tx_threshold_lo = 16, |
| 151 | .tx_threshold_hi = 48, |
| 152 | .cs_sel_shift = 8, |
| 153 | .cs_sel_mask = 3 << 8, |
| 154 | .cs_clk_stays_gated = true, |
| 155 | }, |
| 156 | { /* LPSS_CNL_SSP */ |
| 157 | .offset = 0x200, |
| 158 | .reg_general = -1, |
| 159 | .reg_ssp = 0x20, |
| 160 | .reg_cs_ctrl = 0x24, |
| 161 | .reg_capabilities = 0xfc, |
| 162 | .rx_threshold = 1, |
| 163 | .tx_threshold_lo = 32, |
| 164 | .tx_threshold_hi = 56, |
| 165 | .cs_sel_shift = 8, |
| 166 | .cs_sel_mask = 3 << 8, |
| 167 | .cs_clk_stays_gated = true, |
| 168 | }, |
| 169 | }; |
| 170 | |
| 171 | static inline const struct lpss_config |
| 172 | *lpss_get_config(const struct driver_data *drv_data) |
| 173 | { |
| 174 | return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP]; |
| 175 | } |
| 176 | |
| 177 | static bool is_lpss_ssp(const struct driver_data *drv_data) |
| 178 | { |
| 179 | switch (drv_data->ssp_type) { |
| 180 | case LPSS_LPT_SSP: |
| 181 | case LPSS_BYT_SSP: |
| 182 | case LPSS_BSW_SSP: |
| 183 | case LPSS_SPT_SSP: |
| 184 | case LPSS_BXT_SSP: |
| 185 | case LPSS_CNL_SSP: |
| 186 | return true; |
| 187 | default: |
| 188 | return false; |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | static bool is_quark_x1000_ssp(const struct driver_data *drv_data) |
| 193 | { |
| 194 | return drv_data->ssp_type == QUARK_X1000_SSP; |
| 195 | } |
| 196 | |
| 197 | static bool is_mmp2_ssp(const struct driver_data *drv_data) |
| 198 | { |
| 199 | return drv_data->ssp_type == MMP2_SSP; |
| 200 | } |
| 201 | |
| 202 | static bool is_mrfld_ssp(const struct driver_data *drv_data) |
| 203 | { |
| 204 | return drv_data->ssp_type == MRFLD_SSP; |
| 205 | } |
| 206 | |
| 207 | static void pxa2xx_spi_update(const struct driver_data *drv_data, u32 reg, u32 mask, u32 value) |
| 208 | { |
| 209 | if ((pxa2xx_spi_read(drv_data, reg) & mask) != value) |
| 210 | pxa2xx_spi_write(drv_data, reg, value & mask); |
| 211 | } |
| 212 | |
| 213 | static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data) |
| 214 | { |
| 215 | switch (drv_data->ssp_type) { |
| 216 | case QUARK_X1000_SSP: |
| 217 | return QUARK_X1000_SSCR1_CHANGE_MASK; |
| 218 | case CE4100_SSP: |
| 219 | return CE4100_SSCR1_CHANGE_MASK; |
| 220 | default: |
| 221 | return SSCR1_CHANGE_MASK; |
| 222 | } |
| 223 | } |
| 224 | |
| 225 | static u32 |
| 226 | pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data) |
| 227 | { |
| 228 | switch (drv_data->ssp_type) { |
| 229 | case QUARK_X1000_SSP: |
| 230 | return RX_THRESH_QUARK_X1000_DFLT; |
| 231 | case CE4100_SSP: |
| 232 | return RX_THRESH_CE4100_DFLT; |
| 233 | default: |
| 234 | return RX_THRESH_DFLT; |
| 235 | } |
| 236 | } |
| 237 | |
| 238 | static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data) |
| 239 | { |
| 240 | u32 mask; |
| 241 | |
| 242 | switch (drv_data->ssp_type) { |
| 243 | case QUARK_X1000_SSP: |
| 244 | mask = QUARK_X1000_SSSR_TFL_MASK; |
| 245 | break; |
| 246 | case CE4100_SSP: |
| 247 | mask = CE4100_SSSR_TFL_MASK; |
| 248 | break; |
| 249 | default: |
| 250 | mask = SSSR_TFL_MASK; |
| 251 | break; |
| 252 | } |
| 253 | |
| 254 | return read_SSSR_bits(drv_data, mask) == mask; |
| 255 | } |
| 256 | |
| 257 | static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data, |
| 258 | u32 *sccr1_reg) |
| 259 | { |
| 260 | u32 mask; |
| 261 | |
| 262 | switch (drv_data->ssp_type) { |
| 263 | case QUARK_X1000_SSP: |
| 264 | mask = QUARK_X1000_SSCR1_RFT; |
| 265 | break; |
| 266 | case CE4100_SSP: |
| 267 | mask = CE4100_SSCR1_RFT; |
| 268 | break; |
| 269 | default: |
| 270 | mask = SSCR1_RFT; |
| 271 | break; |
| 272 | } |
| 273 | *sccr1_reg &= ~mask; |
| 274 | } |
| 275 | |
| 276 | static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data, |
| 277 | u32 *sccr1_reg, u32 threshold) |
| 278 | { |
| 279 | switch (drv_data->ssp_type) { |
| 280 | case QUARK_X1000_SSP: |
| 281 | *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold); |
| 282 | break; |
| 283 | case CE4100_SSP: |
| 284 | *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold); |
| 285 | break; |
| 286 | default: |
| 287 | *sccr1_reg |= SSCR1_RxTresh(threshold); |
| 288 | break; |
| 289 | } |
| 290 | } |
| 291 | |
| 292 | static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data, |
| 293 | u32 clk_div, u8 bits) |
| 294 | { |
| 295 | switch (drv_data->ssp_type) { |
| 296 | case QUARK_X1000_SSP: |
| 297 | return clk_div |
| 298 | | QUARK_X1000_SSCR0_Motorola |
| 299 | | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits); |
| 300 | default: |
| 301 | return clk_div |
| 302 | | SSCR0_Motorola |
| 303 | | SSCR0_DataSize(bits > 16 ? bits - 16 : bits) |
| 304 | | (bits > 16 ? SSCR0_EDSS : 0); |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | /* |
| 309 | * Read and write LPSS SSP private registers. Caller must first check that |
| 310 | * is_lpss_ssp() returns true before these can be called. |
| 311 | */ |
| 312 | static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset) |
| 313 | { |
| 314 | WARN_ON(!drv_data->lpss_base); |
| 315 | return readl(drv_data->lpss_base + offset); |
| 316 | } |
| 317 | |
| 318 | static void __lpss_ssp_write_priv(struct driver_data *drv_data, |
| 319 | unsigned offset, u32 value) |
| 320 | { |
| 321 | WARN_ON(!drv_data->lpss_base); |
| 322 | writel(value, drv_data->lpss_base + offset); |
| 323 | } |
| 324 | |
| 325 | static bool __lpss_ssp_update_priv(struct driver_data *drv_data, unsigned int offset, |
| 326 | u32 mask, u32 value) |
| 327 | { |
| 328 | u32 new, curr; |
| 329 | |
| 330 | curr = __lpss_ssp_read_priv(drv_data, offset); |
| 331 | new = (curr & ~mask) | (value & mask); |
| 332 | if (new == curr) |
| 333 | return false; |
| 334 | |
| 335 | __lpss_ssp_write_priv(drv_data, offset, new); |
| 336 | return true; |
| 337 | } |
| 338 | |
| 339 | /* |
| 340 | * lpss_ssp_setup - perform LPSS SSP specific setup |
| 341 | * @drv_data: pointer to the driver private data |
| 342 | * |
| 343 | * Perform LPSS SSP specific setup. This function must be called first if |
| 344 | * one is going to use LPSS SSP private registers. |
| 345 | */ |
| 346 | static void lpss_ssp_setup(struct driver_data *drv_data) |
| 347 | { |
| 348 | const struct lpss_config *config; |
| 349 | u32 value; |
| 350 | |
| 351 | config = lpss_get_config(drv_data); |
| 352 | drv_data->lpss_base = drv_data->ssp->mmio_base + config->offset; |
| 353 | |
| 354 | /* Enable software chip select control */ |
| 355 | value = LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH; |
| 356 | __lpss_ssp_update_priv(drv_data, config->reg_cs_ctrl, value, value); |
| 357 | |
| 358 | /* Enable multiblock DMA transfers */ |
| 359 | if (drv_data->controller_info->enable_dma) { |
| 360 | __lpss_ssp_update_priv(drv_data, config->reg_ssp, BIT(0), BIT(0)); |
| 361 | |
| 362 | if (config->reg_general >= 0) { |
| 363 | value = LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE; |
| 364 | __lpss_ssp_update_priv(drv_data, config->reg_general, value, value); |
| 365 | } |
| 366 | } |
| 367 | } |
| 368 | |
| 369 | static void lpss_ssp_select_cs(struct spi_device *spi, |
| 370 | const struct lpss_config *config) |
| 371 | { |
| 372 | struct driver_data *drv_data = |
| 373 | spi_controller_get_devdata(spi->controller); |
| 374 | u32 cs; |
| 375 | |
| 376 | cs = spi_get_chipselect(spi, 0) << config->cs_sel_shift; |
| 377 | if (!__lpss_ssp_update_priv(drv_data, config->reg_cs_ctrl, config->cs_sel_mask, cs)) |
| 378 | return; |
| 379 | |
| 380 | /* |
| 381 | * When switching another chip select output active the output must be |
| 382 | * selected first and wait 2 ssp_clk cycles before changing state to |
| 383 | * active. Otherwise a short glitch will occur on the previous chip |
| 384 | * select since output select is latched but state control is not. |
| 385 | */ |
| 386 | ndelay(1000000000 / (drv_data->controller->max_speed_hz / 2)); |
| 387 | } |
| 388 | |
| 389 | static void lpss_ssp_cs_control(struct spi_device *spi, bool enable) |
| 390 | { |
| 391 | struct driver_data *drv_data = |
| 392 | spi_controller_get_devdata(spi->controller); |
| 393 | const struct lpss_config *config; |
| 394 | u32 mask; |
| 395 | |
| 396 | config = lpss_get_config(drv_data); |
| 397 | |
| 398 | if (enable) |
| 399 | lpss_ssp_select_cs(spi, config); |
| 400 | |
| 401 | mask = LPSS_CS_CONTROL_CS_HIGH; |
| 402 | __lpss_ssp_update_priv(drv_data, config->reg_cs_ctrl, mask, enable ? 0 : mask); |
| 403 | if (config->cs_clk_stays_gated) { |
| 404 | /* |
| 405 | * Changing CS alone when dynamic clock gating is on won't |
| 406 | * actually flip CS at that time. This ruins SPI transfers |
| 407 | * that specify delays, or have no data. Toggle the clock mode |
| 408 | * to force on briefly to poke the CS pin to move. |
| 409 | */ |
| 410 | mask = LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK; |
| 411 | if (__lpss_ssp_update_priv(drv_data, LPSS_PRIV_CLOCK_GATE, mask, |
| 412 | LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON)) |
| 413 | __lpss_ssp_update_priv(drv_data, LPSS_PRIV_CLOCK_GATE, mask, |
| 414 | LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_OFF); |
| 415 | } |
| 416 | } |
| 417 | |
| 418 | static void cs_assert(struct spi_device *spi) |
| 419 | { |
| 420 | struct driver_data *drv_data = |
| 421 | spi_controller_get_devdata(spi->controller); |
| 422 | |
| 423 | if (drv_data->ssp_type == CE4100_SSP) { |
| 424 | pxa2xx_spi_write(drv_data, SSSR, spi_get_chipselect(spi, 0)); |
| 425 | return; |
| 426 | } |
| 427 | |
| 428 | if (is_lpss_ssp(drv_data)) |
| 429 | lpss_ssp_cs_control(spi, true); |
| 430 | } |
| 431 | |
| 432 | static void cs_deassert(struct spi_device *spi) |
| 433 | { |
| 434 | struct driver_data *drv_data = |
| 435 | spi_controller_get_devdata(spi->controller); |
| 436 | unsigned long timeout; |
| 437 | |
| 438 | if (drv_data->ssp_type == CE4100_SSP) |
| 439 | return; |
| 440 | |
| 441 | /* Wait until SSP becomes idle before deasserting the CS */ |
| 442 | timeout = jiffies + msecs_to_jiffies(10); |
| 443 | while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY && |
| 444 | !time_after(jiffies, timeout)) |
| 445 | cpu_relax(); |
| 446 | |
| 447 | if (is_lpss_ssp(drv_data)) |
| 448 | lpss_ssp_cs_control(spi, false); |
| 449 | } |
| 450 | |
| 451 | static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level) |
| 452 | { |
| 453 | if (level) |
| 454 | cs_deassert(spi); |
| 455 | else |
| 456 | cs_assert(spi); |
| 457 | } |
| 458 | |
| 459 | int pxa2xx_spi_flush(struct driver_data *drv_data) |
| 460 | { |
| 461 | unsigned long limit = loops_per_jiffy << 1; |
| 462 | |
| 463 | do { |
| 464 | while (read_SSSR_bits(drv_data, SSSR_RNE)) |
| 465 | pxa2xx_spi_read(drv_data, SSDR); |
| 466 | } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit); |
| 467 | write_SSSR_CS(drv_data, SSSR_ROR); |
| 468 | |
| 469 | return limit; |
| 470 | } |
| 471 | |
| 472 | static void pxa2xx_spi_off(struct driver_data *drv_data) |
| 473 | { |
| 474 | /* On MMP, disabling SSE seems to corrupt the Rx FIFO */ |
| 475 | if (is_mmp2_ssp(drv_data)) |
| 476 | return; |
| 477 | |
| 478 | pxa_ssp_disable(drv_data->ssp); |
| 479 | } |
| 480 | |
| 481 | static int null_writer(struct driver_data *drv_data) |
| 482 | { |
| 483 | u8 n_bytes = drv_data->n_bytes; |
| 484 | |
| 485 | if (pxa2xx_spi_txfifo_full(drv_data) |
| 486 | || (drv_data->tx == drv_data->tx_end)) |
| 487 | return 0; |
| 488 | |
| 489 | pxa2xx_spi_write(drv_data, SSDR, 0); |
| 490 | drv_data->tx += n_bytes; |
| 491 | |
| 492 | return 1; |
| 493 | } |
| 494 | |
| 495 | static int null_reader(struct driver_data *drv_data) |
| 496 | { |
| 497 | u8 n_bytes = drv_data->n_bytes; |
| 498 | |
| 499 | while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { |
| 500 | pxa2xx_spi_read(drv_data, SSDR); |
| 501 | drv_data->rx += n_bytes; |
| 502 | } |
| 503 | |
| 504 | return drv_data->rx == drv_data->rx_end; |
| 505 | } |
| 506 | |
| 507 | static int u8_writer(struct driver_data *drv_data) |
| 508 | { |
| 509 | if (pxa2xx_spi_txfifo_full(drv_data) |
| 510 | || (drv_data->tx == drv_data->tx_end)) |
| 511 | return 0; |
| 512 | |
| 513 | pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx)); |
| 514 | ++drv_data->tx; |
| 515 | |
| 516 | return 1; |
| 517 | } |
| 518 | |
| 519 | static int u8_reader(struct driver_data *drv_data) |
| 520 | { |
| 521 | while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { |
| 522 | *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); |
| 523 | ++drv_data->rx; |
| 524 | } |
| 525 | |
| 526 | return drv_data->rx == drv_data->rx_end; |
| 527 | } |
| 528 | |
| 529 | static int u16_writer(struct driver_data *drv_data) |
| 530 | { |
| 531 | if (pxa2xx_spi_txfifo_full(drv_data) |
| 532 | || (drv_data->tx == drv_data->tx_end)) |
| 533 | return 0; |
| 534 | |
| 535 | pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx)); |
| 536 | drv_data->tx += 2; |
| 537 | |
| 538 | return 1; |
| 539 | } |
| 540 | |
| 541 | static int u16_reader(struct driver_data *drv_data) |
| 542 | { |
| 543 | while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { |
| 544 | *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); |
| 545 | drv_data->rx += 2; |
| 546 | } |
| 547 | |
| 548 | return drv_data->rx == drv_data->rx_end; |
| 549 | } |
| 550 | |
| 551 | static int u32_writer(struct driver_data *drv_data) |
| 552 | { |
| 553 | if (pxa2xx_spi_txfifo_full(drv_data) |
| 554 | || (drv_data->tx == drv_data->tx_end)) |
| 555 | return 0; |
| 556 | |
| 557 | pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx)); |
| 558 | drv_data->tx += 4; |
| 559 | |
| 560 | return 1; |
| 561 | } |
| 562 | |
| 563 | static int u32_reader(struct driver_data *drv_data) |
| 564 | { |
| 565 | while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { |
| 566 | *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); |
| 567 | drv_data->rx += 4; |
| 568 | } |
| 569 | |
| 570 | return drv_data->rx == drv_data->rx_end; |
| 571 | } |
| 572 | |
| 573 | static void reset_sccr1(struct driver_data *drv_data) |
| 574 | { |
| 575 | u32 mask = drv_data->int_cr1 | drv_data->dma_cr1, threshold; |
| 576 | struct chip_data *chip; |
| 577 | |
| 578 | if (drv_data->controller->cur_msg) { |
| 579 | chip = spi_get_ctldata(drv_data->controller->cur_msg->spi); |
| 580 | threshold = chip->threshold; |
| 581 | } else { |
| 582 | threshold = 0; |
| 583 | } |
| 584 | |
| 585 | switch (drv_data->ssp_type) { |
| 586 | case QUARK_X1000_SSP: |
| 587 | mask |= QUARK_X1000_SSCR1_RFT; |
| 588 | break; |
| 589 | case CE4100_SSP: |
| 590 | mask |= CE4100_SSCR1_RFT; |
| 591 | break; |
| 592 | default: |
| 593 | mask |= SSCR1_RFT; |
| 594 | break; |
| 595 | } |
| 596 | |
| 597 | pxa2xx_spi_update(drv_data, SSCR1, mask, threshold); |
| 598 | } |
| 599 | |
| 600 | static void int_stop_and_reset(struct driver_data *drv_data) |
| 601 | { |
| 602 | /* Clear and disable interrupts */ |
| 603 | write_SSSR_CS(drv_data, drv_data->clear_sr); |
| 604 | reset_sccr1(drv_data); |
| 605 | if (pxa25x_ssp_comp(drv_data)) |
| 606 | return; |
| 607 | |
| 608 | pxa2xx_spi_write(drv_data, SSTO, 0); |
| 609 | } |
| 610 | |
| 611 | static void int_error_stop(struct driver_data *drv_data, const char *msg, int err) |
| 612 | { |
| 613 | int_stop_and_reset(drv_data); |
| 614 | pxa2xx_spi_flush(drv_data); |
| 615 | pxa2xx_spi_off(drv_data); |
| 616 | |
| 617 | dev_err(drv_data->ssp->dev, "%s\n", msg); |
| 618 | |
| 619 | drv_data->controller->cur_msg->status = err; |
| 620 | spi_finalize_current_transfer(drv_data->controller); |
| 621 | } |
| 622 | |
| 623 | static void int_transfer_complete(struct driver_data *drv_data) |
| 624 | { |
| 625 | int_stop_and_reset(drv_data); |
| 626 | |
| 627 | spi_finalize_current_transfer(drv_data->controller); |
| 628 | } |
| 629 | |
| 630 | static irqreturn_t interrupt_transfer(struct driver_data *drv_data) |
| 631 | { |
| 632 | u32 irq_status; |
| 633 | |
| 634 | irq_status = read_SSSR_bits(drv_data, drv_data->mask_sr); |
| 635 | if (!(pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE)) |
| 636 | irq_status &= ~SSSR_TFS; |
| 637 | |
| 638 | if (irq_status & SSSR_ROR) { |
| 639 | int_error_stop(drv_data, "interrupt_transfer: FIFO overrun", -EIO); |
| 640 | return IRQ_HANDLED; |
| 641 | } |
| 642 | |
| 643 | if (irq_status & SSSR_TUR) { |
| 644 | int_error_stop(drv_data, "interrupt_transfer: FIFO underrun", -EIO); |
| 645 | return IRQ_HANDLED; |
| 646 | } |
| 647 | |
| 648 | if (irq_status & SSSR_TINT) { |
| 649 | pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT); |
| 650 | if (drv_data->read(drv_data)) { |
| 651 | int_transfer_complete(drv_data); |
| 652 | return IRQ_HANDLED; |
| 653 | } |
| 654 | } |
| 655 | |
| 656 | /* Drain Rx FIFO, Fill Tx FIFO and prevent overruns */ |
| 657 | do { |
| 658 | if (drv_data->read(drv_data)) { |
| 659 | int_transfer_complete(drv_data); |
| 660 | return IRQ_HANDLED; |
| 661 | } |
| 662 | } while (drv_data->write(drv_data)); |
| 663 | |
| 664 | if (drv_data->read(drv_data)) { |
| 665 | int_transfer_complete(drv_data); |
| 666 | return IRQ_HANDLED; |
| 667 | } |
| 668 | |
| 669 | if (drv_data->tx == drv_data->tx_end) { |
| 670 | u32 bytes_left; |
| 671 | u32 sccr1_reg; |
| 672 | |
| 673 | sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); |
| 674 | sccr1_reg &= ~SSCR1_TIE; |
| 675 | |
| 676 | /* |
| 677 | * PXA25x_SSP has no timeout, set up Rx threshold for |
| 678 | * the remaining Rx bytes. |
| 679 | */ |
| 680 | if (pxa25x_ssp_comp(drv_data)) { |
| 681 | u32 rx_thre; |
| 682 | |
| 683 | pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg); |
| 684 | |
| 685 | bytes_left = drv_data->rx_end - drv_data->rx; |
| 686 | switch (drv_data->n_bytes) { |
| 687 | case 4: |
| 688 | bytes_left >>= 2; |
| 689 | break; |
| 690 | case 2: |
| 691 | bytes_left >>= 1; |
| 692 | break; |
| 693 | } |
| 694 | |
| 695 | rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data); |
| 696 | if (rx_thre > bytes_left) |
| 697 | rx_thre = bytes_left; |
| 698 | |
| 699 | pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre); |
| 700 | } |
| 701 | pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); |
| 702 | } |
| 703 | |
| 704 | /* We did something */ |
| 705 | return IRQ_HANDLED; |
| 706 | } |
| 707 | |
| 708 | static void handle_bad_msg(struct driver_data *drv_data) |
| 709 | { |
| 710 | int_stop_and_reset(drv_data); |
| 711 | pxa2xx_spi_off(drv_data); |
| 712 | |
| 713 | dev_err(drv_data->ssp->dev, "bad message state in interrupt handler\n"); |
| 714 | } |
| 715 | |
| 716 | static irqreturn_t ssp_int(int irq, void *dev_id) |
| 717 | { |
| 718 | struct driver_data *drv_data = dev_id; |
| 719 | u32 sccr1_reg; |
| 720 | u32 mask = drv_data->mask_sr; |
| 721 | u32 status; |
| 722 | |
| 723 | /* |
| 724 | * The IRQ might be shared with other peripherals so we must first |
| 725 | * check that are we RPM suspended or not. If we are we assume that |
| 726 | * the IRQ was not for us (we shouldn't be RPM suspended when the |
| 727 | * interrupt is enabled). |
| 728 | */ |
| 729 | if (pm_runtime_suspended(drv_data->ssp->dev)) |
| 730 | return IRQ_NONE; |
| 731 | |
| 732 | /* |
| 733 | * If the device is not yet in RPM suspended state and we get an |
| 734 | * interrupt that is meant for another device, check if status bits |
| 735 | * are all set to one. That means that the device is already |
| 736 | * powered off. |
| 737 | */ |
| 738 | status = pxa2xx_spi_read(drv_data, SSSR); |
| 739 | if (status == ~0) |
| 740 | return IRQ_NONE; |
| 741 | |
| 742 | sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); |
| 743 | |
| 744 | /* Ignore possible writes if we don't need to write */ |
| 745 | if (!(sccr1_reg & SSCR1_TIE)) |
| 746 | mask &= ~SSSR_TFS; |
| 747 | |
| 748 | /* Ignore RX timeout interrupt if it is disabled */ |
| 749 | if (!(sccr1_reg & SSCR1_TINTE)) |
| 750 | mask &= ~SSSR_TINT; |
| 751 | |
| 752 | if (!(status & mask)) |
| 753 | return IRQ_NONE; |
| 754 | |
| 755 | pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1); |
| 756 | pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); |
| 757 | |
| 758 | if (!drv_data->controller->cur_msg) { |
| 759 | handle_bad_msg(drv_data); |
| 760 | /* Never fail */ |
| 761 | return IRQ_HANDLED; |
| 762 | } |
| 763 | |
| 764 | return drv_data->transfer_handler(drv_data); |
| 765 | } |
| 766 | |
| 767 | /* |
| 768 | * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply |
| 769 | * input frequency by fractions of 2^24. It also has a divider by 5. |
| 770 | * |
| 771 | * There are formulas to get baud rate value for given input frequency and |
| 772 | * divider parameters, such as DDS_CLK_RATE and SCR: |
| 773 | * |
| 774 | * Fsys = 200MHz |
| 775 | * |
| 776 | * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1) |
| 777 | * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2) |
| 778 | * |
| 779 | * DDS_CLK_RATE either 2^n or 2^n / 5. |
| 780 | * SCR is in range 0 .. 255 |
| 781 | * |
| 782 | * Divisor = 5^i * 2^j * 2 * k |
| 783 | * i = [0, 1] i = 1 iff j = 0 or j > 3 |
| 784 | * j = [0, 23] j = 0 iff i = 1 |
| 785 | * k = [1, 256] |
| 786 | * Special case: j = 0, i = 1: Divisor = 2 / 5 |
| 787 | * |
| 788 | * Accordingly to the specification the recommended values for DDS_CLK_RATE |
| 789 | * are: |
| 790 | * Case 1: 2^n, n = [0, 23] |
| 791 | * Case 2: 2^24 * 2 / 5 (0x666666) |
| 792 | * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333) |
| 793 | * |
| 794 | * In all cases the lowest possible value is better. |
| 795 | * |
| 796 | * The function calculates parameters for all cases and chooses the one closest |
| 797 | * to the asked baud rate. |
| 798 | */ |
| 799 | static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds) |
| 800 | { |
| 801 | unsigned long xtal = 200000000; |
| 802 | unsigned long fref = xtal / 2; /* mandatory division by 2, |
| 803 | see (2) */ |
| 804 | /* case 3 */ |
| 805 | unsigned long fref1 = fref / 2; /* case 1 */ |
| 806 | unsigned long fref2 = fref * 2 / 5; /* case 2 */ |
| 807 | unsigned long scale; |
| 808 | unsigned long q, q1, q2; |
| 809 | long r, r1, r2; |
| 810 | u32 mul; |
| 811 | |
| 812 | /* Case 1 */ |
| 813 | |
| 814 | /* Set initial value for DDS_CLK_RATE */ |
| 815 | mul = (1 << 24) >> 1; |
| 816 | |
| 817 | /* Calculate initial quot */ |
| 818 | q1 = DIV_ROUND_UP(fref1, rate); |
| 819 | |
| 820 | /* Scale q1 if it's too big */ |
| 821 | if (q1 > 256) { |
| 822 | /* Scale q1 to range [1, 512] */ |
| 823 | scale = fls_long(q1 - 1); |
| 824 | if (scale > 9) { |
| 825 | q1 >>= scale - 9; |
| 826 | mul >>= scale - 9; |
| 827 | } |
| 828 | |
| 829 | /* Round the result if we have a remainder */ |
| 830 | q1 += q1 & 1; |
| 831 | } |
| 832 | |
| 833 | /* Decrease DDS_CLK_RATE as much as we can without loss in precision */ |
| 834 | scale = __ffs(q1); |
| 835 | q1 >>= scale; |
| 836 | mul >>= scale; |
| 837 | |
| 838 | /* Get the remainder */ |
| 839 | r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate); |
| 840 | |
| 841 | /* Case 2 */ |
| 842 | |
| 843 | q2 = DIV_ROUND_UP(fref2, rate); |
| 844 | r2 = abs(fref2 / q2 - rate); |
| 845 | |
| 846 | /* |
| 847 | * Choose the best between two: less remainder we have the better. We |
| 848 | * can't go case 2 if q2 is greater than 256 since SCR register can |
| 849 | * hold only values 0 .. 255. |
| 850 | */ |
| 851 | if (r2 >= r1 || q2 > 256) { |
| 852 | /* case 1 is better */ |
| 853 | r = r1; |
| 854 | q = q1; |
| 855 | } else { |
| 856 | /* case 2 is better */ |
| 857 | r = r2; |
| 858 | q = q2; |
| 859 | mul = (1 << 24) * 2 / 5; |
| 860 | } |
| 861 | |
| 862 | /* Check case 3 only if the divisor is big enough */ |
| 863 | if (fref / rate >= 80) { |
| 864 | u64 fssp; |
| 865 | u32 m; |
| 866 | |
| 867 | /* Calculate initial quot */ |
| 868 | q1 = DIV_ROUND_UP(fref, rate); |
| 869 | m = (1 << 24) / q1; |
| 870 | |
| 871 | /* Get the remainder */ |
| 872 | fssp = (u64)fref * m; |
| 873 | do_div(fssp, 1 << 24); |
| 874 | r1 = abs(fssp - rate); |
| 875 | |
| 876 | /* Choose this one if it suits better */ |
| 877 | if (r1 < r) { |
| 878 | /* case 3 is better */ |
| 879 | q = 1; |
| 880 | mul = m; |
| 881 | } |
| 882 | } |
| 883 | |
| 884 | *dds = mul; |
| 885 | return q - 1; |
| 886 | } |
| 887 | |
| 888 | static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate) |
| 889 | { |
| 890 | unsigned long ssp_clk = drv_data->controller->max_speed_hz; |
| 891 | const struct ssp_device *ssp = drv_data->ssp; |
| 892 | |
| 893 | rate = min_t(int, ssp_clk, rate); |
| 894 | |
| 895 | /* |
| 896 | * Calculate the divisor for the SCR (Serial Clock Rate), avoiding |
| 897 | * that the SSP transmission rate can be greater than the device rate. |
| 898 | */ |
| 899 | if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP) |
| 900 | return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff; |
| 901 | else |
| 902 | return (DIV_ROUND_UP(ssp_clk, rate) - 1) & 0xfff; |
| 903 | } |
| 904 | |
| 905 | static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data, |
| 906 | int rate) |
| 907 | { |
| 908 | struct chip_data *chip = |
| 909 | spi_get_ctldata(drv_data->controller->cur_msg->spi); |
| 910 | unsigned int clk_div; |
| 911 | |
| 912 | switch (drv_data->ssp_type) { |
| 913 | case QUARK_X1000_SSP: |
| 914 | clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate); |
| 915 | break; |
| 916 | default: |
| 917 | clk_div = ssp_get_clk_div(drv_data, rate); |
| 918 | break; |
| 919 | } |
| 920 | return clk_div << 8; |
| 921 | } |
| 922 | |
| 923 | static bool pxa2xx_spi_can_dma(struct spi_controller *controller, |
| 924 | struct spi_device *spi, |
| 925 | struct spi_transfer *xfer) |
| 926 | { |
| 927 | struct driver_data *drv_data = spi_controller_get_devdata(controller); |
| 928 | |
| 929 | return drv_data->controller_info->enable_dma && |
| 930 | xfer->len <= MAX_DMA_LEN && |
| 931 | xfer->len >= drv_data->controller_info->dma_burst_size; |
| 932 | } |
| 933 | |
| 934 | static int pxa2xx_spi_transfer_one(struct spi_controller *controller, |
| 935 | struct spi_device *spi, |
| 936 | struct spi_transfer *transfer) |
| 937 | { |
| 938 | struct driver_data *drv_data = spi_controller_get_devdata(controller); |
| 939 | struct chip_data *chip = spi_get_ctldata(spi); |
| 940 | u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data); |
| 941 | u32 dma_thresh; |
| 942 | u32 clk_div; |
| 943 | u8 bits; |
| 944 | u32 speed; |
| 945 | u32 cr0; |
| 946 | u32 cr1; |
| 947 | int err; |
| 948 | int dma_mapped; |
| 949 | |
| 950 | /* Check if we can DMA this transfer */ |
| 951 | if (transfer->len > MAX_DMA_LEN && drv_data->controller_info->enable_dma) { |
| 952 | /* Warn ... we force this to PIO mode */ |
| 953 | dev_warn_ratelimited(&spi->dev, |
| 954 | "DMA disabled for transfer length %u greater than %d\n", |
| 955 | transfer->len, MAX_DMA_LEN); |
| 956 | } |
| 957 | |
| 958 | /* Setup the transfer state based on the type of transfer */ |
| 959 | if (pxa2xx_spi_flush(drv_data) == 0) { |
| 960 | dev_err(&spi->dev, "Flush failed\n"); |
| 961 | return -EIO; |
| 962 | } |
| 963 | drv_data->tx = (void *)transfer->tx_buf; |
| 964 | drv_data->tx_end = drv_data->tx + transfer->len; |
| 965 | drv_data->rx = transfer->rx_buf; |
| 966 | drv_data->rx_end = drv_data->rx + transfer->len; |
| 967 | |
| 968 | /* Change speed and bit per word on a per transfer */ |
| 969 | bits = transfer->bits_per_word; |
| 970 | speed = transfer->speed_hz; |
| 971 | |
| 972 | clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed); |
| 973 | |
| 974 | if (bits <= 8) { |
| 975 | drv_data->n_bytes = 1; |
| 976 | drv_data->read = drv_data->rx ? u8_reader : null_reader; |
| 977 | drv_data->write = drv_data->tx ? u8_writer : null_writer; |
| 978 | } else if (bits <= 16) { |
| 979 | drv_data->n_bytes = 2; |
| 980 | drv_data->read = drv_data->rx ? u16_reader : null_reader; |
| 981 | drv_data->write = drv_data->tx ? u16_writer : null_writer; |
| 982 | } else if (bits <= 32) { |
| 983 | drv_data->n_bytes = 4; |
| 984 | drv_data->read = drv_data->rx ? u32_reader : null_reader; |
| 985 | drv_data->write = drv_data->tx ? u32_writer : null_writer; |
| 986 | } |
| 987 | |
| 988 | dma_thresh = SSCR1_RxTresh(RX_THRESH_DFLT) | SSCR1_TxTresh(TX_THRESH_DFLT); |
| 989 | dma_mapped = spi_xfer_is_dma_mapped(controller, spi, transfer); |
| 990 | if (dma_mapped) { |
| 991 | /* Ensure we have the correct interrupt handler */ |
| 992 | drv_data->transfer_handler = pxa2xx_spi_dma_transfer; |
| 993 | |
| 994 | err = pxa2xx_spi_dma_prepare(drv_data, transfer); |
| 995 | if (err) |
| 996 | return err; |
| 997 | |
| 998 | /* Clear status and start DMA engine */ |
| 999 | cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1; |
| 1000 | pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr); |
| 1001 | |
| 1002 | pxa2xx_spi_dma_start(drv_data); |
| 1003 | } else { |
| 1004 | /* Ensure we have the correct interrupt handler */ |
| 1005 | drv_data->transfer_handler = interrupt_transfer; |
| 1006 | |
| 1007 | /* Clear status */ |
| 1008 | cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1; |
| 1009 | write_SSSR_CS(drv_data, drv_data->clear_sr); |
| 1010 | } |
| 1011 | |
| 1012 | /* NOTE: PXA25x_SSP _could_ use external clocking ... */ |
| 1013 | cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits); |
| 1014 | if (!pxa25x_ssp_comp(drv_data)) |
| 1015 | dev_dbg(&spi->dev, "%u Hz actual, %s\n", |
| 1016 | controller->max_speed_hz |
| 1017 | / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)), |
| 1018 | dma_mapped ? "DMA" : "PIO"); |
| 1019 | else |
| 1020 | dev_dbg(&spi->dev, "%u Hz actual, %s\n", |
| 1021 | controller->max_speed_hz / 2 |
| 1022 | / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)), |
| 1023 | dma_mapped ? "DMA" : "PIO"); |
| 1024 | |
| 1025 | if (is_lpss_ssp(drv_data)) { |
| 1026 | pxa2xx_spi_update(drv_data, SSIRF, GENMASK(7, 0), chip->lpss_rx_threshold); |
| 1027 | pxa2xx_spi_update(drv_data, SSITF, GENMASK(15, 0), chip->lpss_tx_threshold); |
| 1028 | } |
| 1029 | |
| 1030 | if (is_mrfld_ssp(drv_data)) { |
| 1031 | u32 mask = SFIFOTT_RFT | SFIFOTT_TFT; |
| 1032 | u32 thresh = 0; |
| 1033 | |
| 1034 | thresh |= SFIFOTT_RxThresh(chip->lpss_rx_threshold); |
| 1035 | thresh |= SFIFOTT_TxThresh(chip->lpss_tx_threshold); |
| 1036 | |
| 1037 | pxa2xx_spi_update(drv_data, SFIFOTT, mask, thresh); |
| 1038 | } |
| 1039 | |
| 1040 | if (is_quark_x1000_ssp(drv_data)) |
| 1041 | pxa2xx_spi_update(drv_data, DDS_RATE, GENMASK(23, 0), chip->dds_rate); |
| 1042 | |
| 1043 | /* Stop the SSP */ |
| 1044 | if (!is_mmp2_ssp(drv_data)) |
| 1045 | pxa_ssp_disable(drv_data->ssp); |
| 1046 | |
| 1047 | if (!pxa25x_ssp_comp(drv_data)) |
| 1048 | pxa2xx_spi_write(drv_data, SSTO, TIMOUT_DFLT); |
| 1049 | |
| 1050 | /* First set CR1 without interrupt and service enables */ |
| 1051 | pxa2xx_spi_update(drv_data, SSCR1, change_mask, cr1); |
| 1052 | |
| 1053 | /* See if we need to reload the configuration registers */ |
| 1054 | pxa2xx_spi_update(drv_data, SSCR0, GENMASK(31, 0), cr0); |
| 1055 | |
| 1056 | /* Restart the SSP */ |
| 1057 | pxa_ssp_enable(drv_data->ssp); |
| 1058 | |
| 1059 | if (is_mmp2_ssp(drv_data)) { |
| 1060 | u8 tx_level = read_SSSR_bits(drv_data, SSSR_TFL_MASK) >> 8; |
| 1061 | |
| 1062 | if (tx_level) { |
| 1063 | /* On MMP2, flipping SSE doesn't to empty Tx FIFO. */ |
| 1064 | dev_warn(&spi->dev, "%u bytes of garbage in Tx FIFO!\n", tx_level); |
| 1065 | if (tx_level > transfer->len) |
| 1066 | tx_level = transfer->len; |
| 1067 | drv_data->tx += tx_level; |
| 1068 | } |
| 1069 | } |
| 1070 | |
| 1071 | if (spi_controller_is_target(controller)) { |
| 1072 | while (drv_data->write(drv_data)) |
| 1073 | ; |
| 1074 | if (drv_data->gpiod_ready) { |
| 1075 | gpiod_set_value(drv_data->gpiod_ready, 1); |
| 1076 | udelay(1); |
| 1077 | gpiod_set_value(drv_data->gpiod_ready, 0); |
| 1078 | } |
| 1079 | } |
| 1080 | |
| 1081 | /* |
| 1082 | * Release the data by enabling service requests and interrupts, |
| 1083 | * without changing any mode bits. |
| 1084 | */ |
| 1085 | pxa2xx_spi_write(drv_data, SSCR1, cr1); |
| 1086 | |
| 1087 | return 1; |
| 1088 | } |
| 1089 | |
| 1090 | static int pxa2xx_spi_target_abort(struct spi_controller *controller) |
| 1091 | { |
| 1092 | struct driver_data *drv_data = spi_controller_get_devdata(controller); |
| 1093 | |
| 1094 | int_error_stop(drv_data, "transfer aborted", -EINTR); |
| 1095 | |
| 1096 | return 0; |
| 1097 | } |
| 1098 | |
| 1099 | static void pxa2xx_spi_handle_err(struct spi_controller *controller, |
| 1100 | struct spi_message *msg) |
| 1101 | { |
| 1102 | struct driver_data *drv_data = spi_controller_get_devdata(controller); |
| 1103 | |
| 1104 | int_stop_and_reset(drv_data); |
| 1105 | |
| 1106 | /* Disable the SSP */ |
| 1107 | pxa2xx_spi_off(drv_data); |
| 1108 | |
| 1109 | /* |
| 1110 | * Stop the DMA if running. Note DMA callback handler may have unset |
| 1111 | * the dma_running already, which is fine as stopping is not needed |
| 1112 | * then but we shouldn't rely this flag for anything else than |
| 1113 | * stopping. For instance to differentiate between PIO and DMA |
| 1114 | * transfers. |
| 1115 | */ |
| 1116 | if (atomic_read(&drv_data->dma_running)) |
| 1117 | pxa2xx_spi_dma_stop(drv_data); |
| 1118 | } |
| 1119 | |
| 1120 | static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller) |
| 1121 | { |
| 1122 | struct driver_data *drv_data = spi_controller_get_devdata(controller); |
| 1123 | |
| 1124 | /* Disable the SSP now */ |
| 1125 | pxa2xx_spi_off(drv_data); |
| 1126 | |
| 1127 | return 0; |
| 1128 | } |
| 1129 | |
| 1130 | static int setup(struct spi_device *spi) |
| 1131 | { |
| 1132 | struct chip_data *chip; |
| 1133 | const struct lpss_config *config; |
| 1134 | struct driver_data *drv_data = |
| 1135 | spi_controller_get_devdata(spi->controller); |
| 1136 | uint tx_thres, tx_hi_thres, rx_thres; |
| 1137 | |
| 1138 | switch (drv_data->ssp_type) { |
| 1139 | case QUARK_X1000_SSP: |
| 1140 | tx_thres = TX_THRESH_QUARK_X1000_DFLT; |
| 1141 | tx_hi_thres = 0; |
| 1142 | rx_thres = RX_THRESH_QUARK_X1000_DFLT; |
| 1143 | break; |
| 1144 | case MRFLD_SSP: |
| 1145 | tx_thres = TX_THRESH_MRFLD_DFLT; |
| 1146 | tx_hi_thres = 0; |
| 1147 | rx_thres = RX_THRESH_MRFLD_DFLT; |
| 1148 | break; |
| 1149 | case CE4100_SSP: |
| 1150 | tx_thres = TX_THRESH_CE4100_DFLT; |
| 1151 | tx_hi_thres = 0; |
| 1152 | rx_thres = RX_THRESH_CE4100_DFLT; |
| 1153 | break; |
| 1154 | case LPSS_LPT_SSP: |
| 1155 | case LPSS_BYT_SSP: |
| 1156 | case LPSS_BSW_SSP: |
| 1157 | case LPSS_SPT_SSP: |
| 1158 | case LPSS_BXT_SSP: |
| 1159 | case LPSS_CNL_SSP: |
| 1160 | config = lpss_get_config(drv_data); |
| 1161 | tx_thres = config->tx_threshold_lo; |
| 1162 | tx_hi_thres = config->tx_threshold_hi; |
| 1163 | rx_thres = config->rx_threshold; |
| 1164 | break; |
| 1165 | default: |
| 1166 | tx_hi_thres = 0; |
| 1167 | if (spi_controller_is_target(drv_data->controller)) { |
| 1168 | tx_thres = 1; |
| 1169 | rx_thres = 2; |
| 1170 | } else { |
| 1171 | tx_thres = TX_THRESH_DFLT; |
| 1172 | rx_thres = RX_THRESH_DFLT; |
| 1173 | } |
| 1174 | break; |
| 1175 | } |
| 1176 | |
| 1177 | if (drv_data->ssp_type == CE4100_SSP) { |
| 1178 | if (spi_get_chipselect(spi, 0) > 4) { |
| 1179 | dev_err(&spi->dev, "failed setup: cs number must not be > 4.\n"); |
| 1180 | return -EINVAL; |
| 1181 | } |
| 1182 | } |
| 1183 | |
| 1184 | /* Only allocate on the first setup */ |
| 1185 | chip = spi_get_ctldata(spi); |
| 1186 | if (!chip) { |
| 1187 | chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); |
| 1188 | if (!chip) |
| 1189 | return -ENOMEM; |
| 1190 | } |
| 1191 | |
| 1192 | chip->cr1 = 0; |
| 1193 | if (spi_controller_is_target(drv_data->controller)) { |
| 1194 | chip->cr1 |= SSCR1_SCFR; |
| 1195 | chip->cr1 |= SSCR1_SCLKDIR; |
| 1196 | chip->cr1 |= SSCR1_SFRMDIR; |
| 1197 | chip->cr1 |= SSCR1_SPH; |
| 1198 | } |
| 1199 | |
| 1200 | if (is_lpss_ssp(drv_data)) { |
| 1201 | chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres); |
| 1202 | chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) | |
| 1203 | SSITF_TxHiThresh(tx_hi_thres); |
| 1204 | } |
| 1205 | |
| 1206 | if (is_mrfld_ssp(drv_data)) { |
| 1207 | chip->lpss_rx_threshold = rx_thres; |
| 1208 | chip->lpss_tx_threshold = tx_thres; |
| 1209 | } |
| 1210 | |
| 1211 | switch (drv_data->ssp_type) { |
| 1212 | case QUARK_X1000_SSP: |
| 1213 | chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres) |
| 1214 | & QUARK_X1000_SSCR1_RFT) |
| 1215 | | (QUARK_X1000_SSCR1_TxTresh(tx_thres) |
| 1216 | & QUARK_X1000_SSCR1_TFT); |
| 1217 | break; |
| 1218 | case CE4100_SSP: |
| 1219 | chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) | |
| 1220 | (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT); |
| 1221 | break; |
| 1222 | default: |
| 1223 | chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) | |
| 1224 | (SSCR1_TxTresh(tx_thres) & SSCR1_TFT); |
| 1225 | break; |
| 1226 | } |
| 1227 | |
| 1228 | chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH); |
| 1229 | chip->cr1 |= ((spi->mode & SPI_CPHA) ? SSCR1_SPH : 0) | |
| 1230 | ((spi->mode & SPI_CPOL) ? SSCR1_SPO : 0); |
| 1231 | |
| 1232 | if (spi->mode & SPI_LOOP) |
| 1233 | chip->cr1 |= SSCR1_LBM; |
| 1234 | |
| 1235 | spi_set_ctldata(spi, chip); |
| 1236 | |
| 1237 | return 0; |
| 1238 | } |
| 1239 | |
| 1240 | static void cleanup(struct spi_device *spi) |
| 1241 | { |
| 1242 | struct chip_data *chip = spi_get_ctldata(spi); |
| 1243 | |
| 1244 | kfree(chip); |
| 1245 | } |
| 1246 | |
| 1247 | static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller, |
| 1248 | unsigned int cs) |
| 1249 | { |
| 1250 | struct driver_data *drv_data = spi_controller_get_devdata(controller); |
| 1251 | |
| 1252 | switch (drv_data->ssp_type) { |
| 1253 | /* |
| 1254 | * For some of Intel Atoms the ACPI DeviceSelection used by the Windows |
| 1255 | * driver starts from 1 instead of 0 so translate it here to match what |
| 1256 | * Linux expects. |
| 1257 | */ |
| 1258 | case LPSS_BYT_SSP: |
| 1259 | case LPSS_BSW_SSP: |
| 1260 | return cs - 1; |
| 1261 | |
| 1262 | default: |
| 1263 | return cs; |
| 1264 | } |
| 1265 | } |
| 1266 | |
| 1267 | static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi) |
| 1268 | { |
| 1269 | return MAX_DMA_LEN; |
| 1270 | } |
| 1271 | |
| 1272 | int pxa2xx_spi_probe(struct device *dev, struct ssp_device *ssp, |
| 1273 | struct pxa2xx_spi_controller *platform_info) |
| 1274 | { |
| 1275 | struct spi_controller *controller; |
| 1276 | struct driver_data *drv_data; |
| 1277 | const struct lpss_config *config; |
| 1278 | int status; |
| 1279 | u32 tmp; |
| 1280 | |
| 1281 | if (platform_info->is_target) |
| 1282 | controller = devm_spi_alloc_target(dev, sizeof(*drv_data)); |
| 1283 | else |
| 1284 | controller = devm_spi_alloc_host(dev, sizeof(*drv_data)); |
| 1285 | if (!controller) |
| 1286 | return dev_err_probe(dev, -ENOMEM, "cannot alloc spi_controller\n"); |
| 1287 | |
| 1288 | drv_data = spi_controller_get_devdata(controller); |
| 1289 | drv_data->controller = controller; |
| 1290 | drv_data->controller_info = platform_info; |
| 1291 | drv_data->ssp = ssp; |
| 1292 | |
| 1293 | device_set_node(&controller->dev, dev_fwnode(dev)); |
| 1294 | |
| 1295 | /* The spi->mode bits understood by this driver: */ |
| 1296 | controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP; |
| 1297 | |
| 1298 | controller->bus_num = ssp->port_id; |
| 1299 | controller->dma_alignment = DMA_ALIGNMENT; |
| 1300 | controller->cleanup = cleanup; |
| 1301 | controller->setup = setup; |
| 1302 | controller->set_cs = pxa2xx_spi_set_cs; |
| 1303 | controller->transfer_one = pxa2xx_spi_transfer_one; |
| 1304 | controller->target_abort = pxa2xx_spi_target_abort; |
| 1305 | controller->handle_err = pxa2xx_spi_handle_err; |
| 1306 | controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer; |
| 1307 | controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs; |
| 1308 | controller->auto_runtime_pm = true; |
| 1309 | controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX; |
| 1310 | |
| 1311 | drv_data->ssp_type = ssp->type; |
| 1312 | |
| 1313 | if (pxa25x_ssp_comp(drv_data)) { |
| 1314 | switch (drv_data->ssp_type) { |
| 1315 | case QUARK_X1000_SSP: |
| 1316 | controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); |
| 1317 | break; |
| 1318 | default: |
| 1319 | controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); |
| 1320 | break; |
| 1321 | } |
| 1322 | |
| 1323 | drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE; |
| 1324 | drv_data->dma_cr1 = 0; |
| 1325 | drv_data->clear_sr = SSSR_ROR; |
| 1326 | drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR; |
| 1327 | } else { |
| 1328 | controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); |
| 1329 | drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE; |
| 1330 | drv_data->dma_cr1 = DEFAULT_DMA_CR1; |
| 1331 | drv_data->clear_sr = SSSR_ROR | SSSR_TINT; |
| 1332 | drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS |
| 1333 | | SSSR_ROR | SSSR_TUR; |
| 1334 | } |
| 1335 | |
| 1336 | status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev), |
| 1337 | drv_data); |
| 1338 | if (status < 0) |
| 1339 | return dev_err_probe(dev, status, "cannot get IRQ %d\n", ssp->irq); |
| 1340 | |
| 1341 | /* Setup DMA if requested */ |
| 1342 | if (platform_info->enable_dma) { |
| 1343 | status = pxa2xx_spi_dma_setup(drv_data); |
| 1344 | if (status) { |
| 1345 | dev_warn(dev, "no DMA channels available, using PIO\n"); |
| 1346 | platform_info->enable_dma = false; |
| 1347 | } else { |
| 1348 | controller->can_dma = pxa2xx_spi_can_dma; |
| 1349 | controller->max_dma_len = MAX_DMA_LEN; |
| 1350 | controller->max_transfer_size = |
| 1351 | pxa2xx_spi_max_dma_transfer_size; |
| 1352 | |
| 1353 | dev_dbg(dev, "DMA burst size set to %u\n", platform_info->dma_burst_size); |
| 1354 | } |
| 1355 | } |
| 1356 | |
| 1357 | /* Enable SOC clock */ |
| 1358 | status = clk_prepare_enable(ssp->clk); |
| 1359 | if (status) |
| 1360 | goto out_error_dma_irq_alloc; |
| 1361 | |
| 1362 | controller->max_speed_hz = clk_get_rate(ssp->clk); |
| 1363 | /* |
| 1364 | * Set minimum speed for all other platforms than Intel Quark which is |
| 1365 | * able do under 1 Hz transfers. |
| 1366 | */ |
| 1367 | if (!pxa25x_ssp_comp(drv_data)) |
| 1368 | controller->min_speed_hz = |
| 1369 | DIV_ROUND_UP(controller->max_speed_hz, 4096); |
| 1370 | else if (!is_quark_x1000_ssp(drv_data)) |
| 1371 | controller->min_speed_hz = |
| 1372 | DIV_ROUND_UP(controller->max_speed_hz, 512); |
| 1373 | |
| 1374 | pxa_ssp_disable(ssp); |
| 1375 | |
| 1376 | /* Load default SSP configuration */ |
| 1377 | switch (drv_data->ssp_type) { |
| 1378 | case QUARK_X1000_SSP: |
| 1379 | tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) | |
| 1380 | QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT); |
| 1381 | pxa2xx_spi_write(drv_data, SSCR1, tmp); |
| 1382 | |
| 1383 | /* Using the Motorola SPI protocol and use 8 bit frame */ |
| 1384 | tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8); |
| 1385 | pxa2xx_spi_write(drv_data, SSCR0, tmp); |
| 1386 | break; |
| 1387 | case CE4100_SSP: |
| 1388 | tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) | |
| 1389 | CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT); |
| 1390 | pxa2xx_spi_write(drv_data, SSCR1, tmp); |
| 1391 | tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8); |
| 1392 | pxa2xx_spi_write(drv_data, SSCR0, tmp); |
| 1393 | break; |
| 1394 | default: |
| 1395 | |
| 1396 | if (spi_controller_is_target(controller)) { |
| 1397 | tmp = SSCR1_SCFR | |
| 1398 | SSCR1_SCLKDIR | |
| 1399 | SSCR1_SFRMDIR | |
| 1400 | SSCR1_RxTresh(2) | |
| 1401 | SSCR1_TxTresh(1) | |
| 1402 | SSCR1_SPH; |
| 1403 | } else { |
| 1404 | tmp = SSCR1_RxTresh(RX_THRESH_DFLT) | |
| 1405 | SSCR1_TxTresh(TX_THRESH_DFLT); |
| 1406 | } |
| 1407 | pxa2xx_spi_write(drv_data, SSCR1, tmp); |
| 1408 | tmp = SSCR0_Motorola | SSCR0_DataSize(8); |
| 1409 | if (!spi_controller_is_target(controller)) |
| 1410 | tmp |= SSCR0_SCR(2); |
| 1411 | pxa2xx_spi_write(drv_data, SSCR0, tmp); |
| 1412 | break; |
| 1413 | } |
| 1414 | |
| 1415 | if (!pxa25x_ssp_comp(drv_data)) |
| 1416 | pxa2xx_spi_write(drv_data, SSTO, 0); |
| 1417 | |
| 1418 | if (!is_quark_x1000_ssp(drv_data)) |
| 1419 | pxa2xx_spi_write(drv_data, SSPSP, 0); |
| 1420 | |
| 1421 | if (is_lpss_ssp(drv_data)) { |
| 1422 | lpss_ssp_setup(drv_data); |
| 1423 | config = lpss_get_config(drv_data); |
| 1424 | if (config->reg_capabilities >= 0) { |
| 1425 | tmp = __lpss_ssp_read_priv(drv_data, |
| 1426 | config->reg_capabilities); |
| 1427 | tmp &= LPSS_CAPS_CS_EN_MASK; |
| 1428 | tmp >>= LPSS_CAPS_CS_EN_SHIFT; |
| 1429 | platform_info->num_chipselect = ffz(tmp); |
| 1430 | } |
| 1431 | } |
| 1432 | controller->num_chipselect = platform_info->num_chipselect; |
| 1433 | controller->use_gpio_descriptors = true; |
| 1434 | |
| 1435 | if (platform_info->is_target) { |
| 1436 | drv_data->gpiod_ready = devm_gpiod_get_optional(dev, |
| 1437 | "ready", GPIOD_OUT_LOW); |
| 1438 | if (IS_ERR(drv_data->gpiod_ready)) { |
| 1439 | status = PTR_ERR(drv_data->gpiod_ready); |
| 1440 | goto out_error_clock_enabled; |
| 1441 | } |
| 1442 | } |
| 1443 | |
| 1444 | /* Register with the SPI framework */ |
| 1445 | dev_set_drvdata(dev, drv_data); |
| 1446 | status = spi_register_controller(controller); |
| 1447 | if (status) { |
| 1448 | dev_err_probe(dev, status, "problem registering SPI controller\n"); |
| 1449 | goto out_error_clock_enabled; |
| 1450 | } |
| 1451 | |
| 1452 | return status; |
| 1453 | |
| 1454 | out_error_clock_enabled: |
| 1455 | clk_disable_unprepare(ssp->clk); |
| 1456 | |
| 1457 | out_error_dma_irq_alloc: |
| 1458 | pxa2xx_spi_dma_release(drv_data); |
| 1459 | free_irq(ssp->irq, drv_data); |
| 1460 | |
| 1461 | return status; |
| 1462 | } |
| 1463 | EXPORT_SYMBOL_NS_GPL(pxa2xx_spi_probe, "SPI_PXA2xx"); |
| 1464 | |
| 1465 | void pxa2xx_spi_remove(struct device *dev) |
| 1466 | { |
| 1467 | struct driver_data *drv_data = dev_get_drvdata(dev); |
| 1468 | struct ssp_device *ssp = drv_data->ssp; |
| 1469 | |
| 1470 | spi_unregister_controller(drv_data->controller); |
| 1471 | |
| 1472 | /* Disable the SSP at the peripheral and SOC level */ |
| 1473 | pxa_ssp_disable(ssp); |
| 1474 | clk_disable_unprepare(ssp->clk); |
| 1475 | |
| 1476 | /* Release DMA */ |
| 1477 | if (drv_data->controller_info->enable_dma) |
| 1478 | pxa2xx_spi_dma_release(drv_data); |
| 1479 | |
| 1480 | /* Release IRQ */ |
| 1481 | free_irq(ssp->irq, drv_data); |
| 1482 | } |
| 1483 | EXPORT_SYMBOL_NS_GPL(pxa2xx_spi_remove, "SPI_PXA2xx"); |
| 1484 | |
| 1485 | static int pxa2xx_spi_suspend(struct device *dev) |
| 1486 | { |
| 1487 | struct driver_data *drv_data = dev_get_drvdata(dev); |
| 1488 | struct ssp_device *ssp = drv_data->ssp; |
| 1489 | int status; |
| 1490 | |
| 1491 | status = spi_controller_suspend(drv_data->controller); |
| 1492 | if (status) |
| 1493 | return status; |
| 1494 | |
| 1495 | pxa_ssp_disable(ssp); |
| 1496 | |
| 1497 | if (!pm_runtime_suspended(dev)) |
| 1498 | clk_disable_unprepare(ssp->clk); |
| 1499 | |
| 1500 | return 0; |
| 1501 | } |
| 1502 | |
| 1503 | static int pxa2xx_spi_resume(struct device *dev) |
| 1504 | { |
| 1505 | struct driver_data *drv_data = dev_get_drvdata(dev); |
| 1506 | struct ssp_device *ssp = drv_data->ssp; |
| 1507 | int status; |
| 1508 | |
| 1509 | /* Enable the SSP clock */ |
| 1510 | if (!pm_runtime_suspended(dev)) { |
| 1511 | status = clk_prepare_enable(ssp->clk); |
| 1512 | if (status) |
| 1513 | return status; |
| 1514 | } |
| 1515 | |
| 1516 | /* Start the queue running */ |
| 1517 | return spi_controller_resume(drv_data->controller); |
| 1518 | } |
| 1519 | |
| 1520 | static int pxa2xx_spi_runtime_suspend(struct device *dev) |
| 1521 | { |
| 1522 | struct driver_data *drv_data = dev_get_drvdata(dev); |
| 1523 | |
| 1524 | clk_disable_unprepare(drv_data->ssp->clk); |
| 1525 | return 0; |
| 1526 | } |
| 1527 | |
| 1528 | static int pxa2xx_spi_runtime_resume(struct device *dev) |
| 1529 | { |
| 1530 | struct driver_data *drv_data = dev_get_drvdata(dev); |
| 1531 | |
| 1532 | return clk_prepare_enable(drv_data->ssp->clk); |
| 1533 | } |
| 1534 | |
| 1535 | EXPORT_NS_GPL_DEV_PM_OPS(pxa2xx_spi_pm_ops, SPI_PXA2xx) = { |
| 1536 | SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume) |
| 1537 | RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend, pxa2xx_spi_runtime_resume, NULL) |
| 1538 | }; |
| 1539 | |
| 1540 | MODULE_AUTHOR("Stephen Street"); |
| 1541 | MODULE_DESCRIPTION("PXA2xx SSP SPI Controller core driver"); |
| 1542 | MODULE_LICENSE("GPL"); |