| 1 | // SPDX-License-Identifier: GPL-2.0+ |
| 2 | // |
| 3 | // Copyright 2013 Freescale Semiconductor, Inc. |
| 4 | // Copyright 2020-2025 NXP |
| 5 | // |
| 6 | // Freescale DSPI driver |
| 7 | // This file contains a driver for the Freescale DSPI |
| 8 | |
| 9 | #include <linux/clk.h> |
| 10 | #include <linux/delay.h> |
| 11 | #include <linux/dmaengine.h> |
| 12 | #include <linux/dma-mapping.h> |
| 13 | #include <linux/interrupt.h> |
| 14 | #include <linux/kernel.h> |
| 15 | #include <linux/module.h> |
| 16 | #include <linux/of.h> |
| 17 | #include <linux/platform_device.h> |
| 18 | #include <linux/pinctrl/consumer.h> |
| 19 | #include <linux/regmap.h> |
| 20 | #include <linux/spi/spi.h> |
| 21 | #include <linux/spi/spi-fsl-dspi.h> |
| 22 | |
| 23 | #define DRIVER_NAME "fsl-dspi" |
| 24 | |
| 25 | #define SPI_MCR 0x00 |
| 26 | #define SPI_MCR_HOST BIT(31) |
| 27 | #define SPI_MCR_PCSIS(x) ((x) << 16) |
| 28 | #define SPI_MCR_CLR_TXF BIT(11) |
| 29 | #define SPI_MCR_CLR_RXF BIT(10) |
| 30 | #define SPI_MCR_XSPI BIT(3) |
| 31 | #define SPI_MCR_DIS_TXF BIT(13) |
| 32 | #define SPI_MCR_DIS_RXF BIT(12) |
| 33 | #define SPI_MCR_HALT BIT(0) |
| 34 | |
| 35 | #define SPI_TCR 0x08 |
| 36 | #define SPI_TCR_GET_TCNT(x) (((x) & GENMASK(31, 16)) >> 16) |
| 37 | |
| 38 | #define SPI_CTAR(x) (0x0c + (((x) & GENMASK(1, 0)) * 4)) |
| 39 | #define SPI_CTAR_FMSZ(x) (((x) << 27) & GENMASK(30, 27)) |
| 40 | #define SPI_CTAR_CPOL BIT(26) |
| 41 | #define SPI_CTAR_CPHA BIT(25) |
| 42 | #define SPI_CTAR_LSBFE BIT(24) |
| 43 | #define SPI_CTAR_PCSSCK(x) (((x) << 22) & GENMASK(23, 22)) |
| 44 | #define SPI_CTAR_PASC(x) (((x) << 20) & GENMASK(21, 20)) |
| 45 | #define SPI_CTAR_PDT(x) (((x) << 18) & GENMASK(19, 18)) |
| 46 | #define SPI_CTAR_PBR(x) (((x) << 16) & GENMASK(17, 16)) |
| 47 | #define SPI_CTAR_CSSCK(x) (((x) << 12) & GENMASK(15, 12)) |
| 48 | #define SPI_CTAR_ASC(x) (((x) << 8) & GENMASK(11, 8)) |
| 49 | #define SPI_CTAR_DT(x) (((x) << 4) & GENMASK(7, 4)) |
| 50 | #define SPI_CTAR_BR(x) ((x) & GENMASK(3, 0)) |
| 51 | #define SPI_CTAR_SCALE_BITS 0xf |
| 52 | |
| 53 | #define SPI_CTAR0_SLAVE 0x0c |
| 54 | |
| 55 | #define SPI_SR 0x2c |
| 56 | #define SPI_SR_TCFQF BIT(31) |
| 57 | #define SPI_SR_TFUF BIT(27) |
| 58 | #define SPI_SR_TFFF BIT(25) |
| 59 | #define SPI_SR_CMDTCF BIT(23) |
| 60 | #define SPI_SR_SPEF BIT(21) |
| 61 | #define SPI_SR_RFOF BIT(19) |
| 62 | #define SPI_SR_TFIWF BIT(18) |
| 63 | #define SPI_SR_RFDF BIT(17) |
| 64 | #define SPI_SR_CMDFFF BIT(16) |
| 65 | #define SPI_SR_TXRXS BIT(30) |
| 66 | #define SPI_SR_CLEAR (SPI_SR_TCFQF | \ |
| 67 | SPI_SR_TFUF | SPI_SR_TFFF | \ |
| 68 | SPI_SR_CMDTCF | SPI_SR_SPEF | \ |
| 69 | SPI_SR_RFOF | SPI_SR_TFIWF | \ |
| 70 | SPI_SR_RFDF | SPI_SR_CMDFFF) |
| 71 | |
| 72 | #define SPI_RSER_TFFFE BIT(25) |
| 73 | #define SPI_RSER_TFFFD BIT(24) |
| 74 | #define SPI_RSER_RFDFE BIT(17) |
| 75 | #define SPI_RSER_RFDFD BIT(16) |
| 76 | |
| 77 | #define SPI_RSER 0x30 |
| 78 | #define SPI_RSER_TCFQE BIT(31) |
| 79 | #define SPI_RSER_CMDTCFE BIT(23) |
| 80 | |
| 81 | #define SPI_PUSHR 0x34 |
| 82 | #define SPI_PUSHR_CMD_CONT BIT(15) |
| 83 | #define SPI_PUSHR_CMD_CTAS(x) (((x) << 12 & GENMASK(14, 12))) |
| 84 | #define SPI_PUSHR_CMD_EOQ BIT(11) |
| 85 | #define SPI_PUSHR_CMD_CTCNT BIT(10) |
| 86 | #define SPI_PUSHR_CMD_PCS(x) (BIT(x) & GENMASK(5, 0)) |
| 87 | |
| 88 | #define SPI_PUSHR_SLAVE 0x34 |
| 89 | |
| 90 | #define SPI_POPR 0x38 |
| 91 | |
| 92 | #define SPI_TXFR0 0x3c |
| 93 | #define SPI_TXFR1 0x40 |
| 94 | #define SPI_TXFR2 0x44 |
| 95 | #define SPI_TXFR3 0x48 |
| 96 | #define SPI_RXFR0 0x7c |
| 97 | #define SPI_RXFR1 0x80 |
| 98 | #define SPI_RXFR2 0x84 |
| 99 | #define SPI_RXFR3 0x88 |
| 100 | |
| 101 | #define SPI_CTARE(x) (0x11c + (((x) & GENMASK(1, 0)) * 4)) |
| 102 | #define SPI_CTARE_FMSZE(x) (((x) & 0x1) << 16) |
| 103 | #define SPI_CTARE_DTCP(x) ((x) & 0x7ff) |
| 104 | |
| 105 | #define SPI_SREX 0x13c |
| 106 | |
| 107 | #define SPI_FRAME_BITS(bits) SPI_CTAR_FMSZ((bits) - 1) |
| 108 | #define SPI_FRAME_EBITS(bits) SPI_CTARE_FMSZE(((bits) - 1) >> 4) |
| 109 | |
| 110 | #define DMA_COMPLETION_TIMEOUT msecs_to_jiffies(3000) |
| 111 | |
| 112 | struct chip_data { |
| 113 | u32 ctar_val; |
| 114 | }; |
| 115 | |
| 116 | enum dspi_trans_mode { |
| 117 | DSPI_XSPI_MODE, |
| 118 | DSPI_DMA_MODE, |
| 119 | }; |
| 120 | |
| 121 | struct fsl_dspi_devtype_data { |
| 122 | enum dspi_trans_mode trans_mode; |
| 123 | u8 max_clock_factor; |
| 124 | int fifo_size; |
| 125 | }; |
| 126 | |
| 127 | enum { |
| 128 | LS1021A, |
| 129 | LS1012A, |
| 130 | LS1028A, |
| 131 | LS1043A, |
| 132 | LS1046A, |
| 133 | LS2080A, |
| 134 | LS2085A, |
| 135 | LX2160A, |
| 136 | MCF5441X, |
| 137 | VF610, |
| 138 | }; |
| 139 | |
| 140 | static const struct fsl_dspi_devtype_data devtype_data[] = { |
| 141 | [VF610] = { |
| 142 | .trans_mode = DSPI_DMA_MODE, |
| 143 | .max_clock_factor = 2, |
| 144 | .fifo_size = 4, |
| 145 | }, |
| 146 | [LS1021A] = { |
| 147 | /* Has A-011218 DMA erratum */ |
| 148 | .trans_mode = DSPI_XSPI_MODE, |
| 149 | .max_clock_factor = 8, |
| 150 | .fifo_size = 4, |
| 151 | }, |
| 152 | [LS1012A] = { |
| 153 | /* Has A-011218 DMA erratum */ |
| 154 | .trans_mode = DSPI_XSPI_MODE, |
| 155 | .max_clock_factor = 8, |
| 156 | .fifo_size = 16, |
| 157 | }, |
| 158 | [LS1028A] = { |
| 159 | .trans_mode = DSPI_XSPI_MODE, |
| 160 | .max_clock_factor = 8, |
| 161 | .fifo_size = 4, |
| 162 | }, |
| 163 | [LS1043A] = { |
| 164 | /* Has A-011218 DMA erratum */ |
| 165 | .trans_mode = DSPI_XSPI_MODE, |
| 166 | .max_clock_factor = 8, |
| 167 | .fifo_size = 16, |
| 168 | }, |
| 169 | [LS1046A] = { |
| 170 | /* Has A-011218 DMA erratum */ |
| 171 | .trans_mode = DSPI_XSPI_MODE, |
| 172 | .max_clock_factor = 8, |
| 173 | .fifo_size = 16, |
| 174 | }, |
| 175 | [LS2080A] = { |
| 176 | .trans_mode = DSPI_XSPI_MODE, |
| 177 | .max_clock_factor = 8, |
| 178 | .fifo_size = 4, |
| 179 | }, |
| 180 | [LS2085A] = { |
| 181 | .trans_mode = DSPI_XSPI_MODE, |
| 182 | .max_clock_factor = 8, |
| 183 | .fifo_size = 4, |
| 184 | }, |
| 185 | [LX2160A] = { |
| 186 | .trans_mode = DSPI_XSPI_MODE, |
| 187 | .max_clock_factor = 8, |
| 188 | .fifo_size = 4, |
| 189 | }, |
| 190 | [MCF5441X] = { |
| 191 | .trans_mode = DSPI_DMA_MODE, |
| 192 | .max_clock_factor = 8, |
| 193 | .fifo_size = 16, |
| 194 | }, |
| 195 | }; |
| 196 | |
| 197 | struct fsl_dspi_dma { |
| 198 | u32 *tx_dma_buf; |
| 199 | struct dma_chan *chan_tx; |
| 200 | dma_addr_t tx_dma_phys; |
| 201 | struct completion cmd_tx_complete; |
| 202 | struct dma_async_tx_descriptor *tx_desc; |
| 203 | |
| 204 | u32 *rx_dma_buf; |
| 205 | struct dma_chan *chan_rx; |
| 206 | dma_addr_t rx_dma_phys; |
| 207 | struct completion cmd_rx_complete; |
| 208 | struct dma_async_tx_descriptor *rx_desc; |
| 209 | }; |
| 210 | |
| 211 | struct fsl_dspi { |
| 212 | struct spi_controller *ctlr; |
| 213 | struct platform_device *pdev; |
| 214 | |
| 215 | struct regmap *regmap; |
| 216 | struct regmap *regmap_pushr; |
| 217 | int irq; |
| 218 | struct clk *clk; |
| 219 | |
| 220 | struct spi_transfer *cur_transfer; |
| 221 | struct spi_message *cur_msg; |
| 222 | struct chip_data *cur_chip; |
| 223 | size_t progress; |
| 224 | size_t len; |
| 225 | const void *tx; |
| 226 | void *rx; |
| 227 | u16 tx_cmd; |
| 228 | const struct fsl_dspi_devtype_data *devtype_data; |
| 229 | |
| 230 | struct completion xfer_done; |
| 231 | |
| 232 | struct fsl_dspi_dma *dma; |
| 233 | |
| 234 | int oper_word_size; |
| 235 | int oper_bits_per_word; |
| 236 | |
| 237 | int words_in_flight; |
| 238 | |
| 239 | /* |
| 240 | * Offsets for CMD and TXDATA within SPI_PUSHR when accessed |
| 241 | * individually (in XSPI mode) |
| 242 | */ |
| 243 | int pushr_cmd; |
| 244 | int pushr_tx; |
| 245 | |
| 246 | void (*host_to_dev)(struct fsl_dspi *dspi, u32 *txdata); |
| 247 | void (*dev_to_host)(struct fsl_dspi *dspi, u32 rxdata); |
| 248 | }; |
| 249 | |
| 250 | static void dspi_native_host_to_dev(struct fsl_dspi *dspi, u32 *txdata) |
| 251 | { |
| 252 | switch (dspi->oper_word_size) { |
| 253 | case 1: |
| 254 | *txdata = *(u8 *)dspi->tx; |
| 255 | break; |
| 256 | case 2: |
| 257 | *txdata = *(u16 *)dspi->tx; |
| 258 | break; |
| 259 | case 4: |
| 260 | *txdata = *(u32 *)dspi->tx; |
| 261 | break; |
| 262 | } |
| 263 | dspi->tx += dspi->oper_word_size; |
| 264 | } |
| 265 | |
| 266 | static void dspi_native_dev_to_host(struct fsl_dspi *dspi, u32 rxdata) |
| 267 | { |
| 268 | switch (dspi->oper_word_size) { |
| 269 | case 1: |
| 270 | *(u8 *)dspi->rx = rxdata; |
| 271 | break; |
| 272 | case 2: |
| 273 | *(u16 *)dspi->rx = rxdata; |
| 274 | break; |
| 275 | case 4: |
| 276 | *(u32 *)dspi->rx = rxdata; |
| 277 | break; |
| 278 | } |
| 279 | dspi->rx += dspi->oper_word_size; |
| 280 | } |
| 281 | |
| 282 | static void dspi_8on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata) |
| 283 | { |
| 284 | *txdata = (__force u32)cpu_to_be32(*(u32 *)dspi->tx); |
| 285 | dspi->tx += sizeof(u32); |
| 286 | } |
| 287 | |
| 288 | static void dspi_8on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata) |
| 289 | { |
| 290 | *(u32 *)dspi->rx = be32_to_cpu((__force __be32)rxdata); |
| 291 | dspi->rx += sizeof(u32); |
| 292 | } |
| 293 | |
| 294 | static void dspi_8on16_host_to_dev(struct fsl_dspi *dspi, u32 *txdata) |
| 295 | { |
| 296 | *txdata = (__force u32)cpu_to_be16(*(u16 *)dspi->tx); |
| 297 | dspi->tx += sizeof(u16); |
| 298 | } |
| 299 | |
| 300 | static void dspi_8on16_dev_to_host(struct fsl_dspi *dspi, u32 rxdata) |
| 301 | { |
| 302 | *(u16 *)dspi->rx = be16_to_cpu((__force __be16)rxdata); |
| 303 | dspi->rx += sizeof(u16); |
| 304 | } |
| 305 | |
| 306 | static void dspi_16on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata) |
| 307 | { |
| 308 | u16 hi = *(u16 *)dspi->tx; |
| 309 | u16 lo = *(u16 *)(dspi->tx + 2); |
| 310 | |
| 311 | *txdata = (u32)hi << 16 | lo; |
| 312 | dspi->tx += sizeof(u32); |
| 313 | } |
| 314 | |
| 315 | static void dspi_16on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata) |
| 316 | { |
| 317 | u16 hi = rxdata & 0xffff; |
| 318 | u16 lo = rxdata >> 16; |
| 319 | |
| 320 | *(u16 *)dspi->rx = lo; |
| 321 | *(u16 *)(dspi->rx + 2) = hi; |
| 322 | dspi->rx += sizeof(u32); |
| 323 | } |
| 324 | |
| 325 | /* |
| 326 | * Pop one word from the TX buffer for pushing into the |
| 327 | * PUSHR register (TX FIFO) |
| 328 | */ |
| 329 | static u32 dspi_pop_tx(struct fsl_dspi *dspi) |
| 330 | { |
| 331 | u32 txdata = 0; |
| 332 | |
| 333 | if (dspi->tx) |
| 334 | dspi->host_to_dev(dspi, &txdata); |
| 335 | dspi->len -= dspi->oper_word_size; |
| 336 | return txdata; |
| 337 | } |
| 338 | |
| 339 | /* Prepare one TX FIFO entry (txdata plus cmd) */ |
| 340 | static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi) |
| 341 | { |
| 342 | u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi); |
| 343 | |
| 344 | if (spi_controller_is_target(dspi->ctlr)) |
| 345 | return data; |
| 346 | |
| 347 | if (dspi->len > 0) |
| 348 | cmd |= SPI_PUSHR_CMD_CONT; |
| 349 | return cmd << 16 | data; |
| 350 | } |
| 351 | |
| 352 | /* Push one word to the RX buffer from the POPR register (RX FIFO) */ |
| 353 | static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata) |
| 354 | { |
| 355 | if (!dspi->rx) |
| 356 | return; |
| 357 | dspi->dev_to_host(dspi, rxdata); |
| 358 | } |
| 359 | |
| 360 | static void dspi_tx_dma_callback(void *arg) |
| 361 | { |
| 362 | struct fsl_dspi *dspi = arg; |
| 363 | struct fsl_dspi_dma *dma = dspi->dma; |
| 364 | |
| 365 | complete(&dma->cmd_tx_complete); |
| 366 | } |
| 367 | |
| 368 | static void dspi_rx_dma_callback(void *arg) |
| 369 | { |
| 370 | struct fsl_dspi *dspi = arg; |
| 371 | struct fsl_dspi_dma *dma = dspi->dma; |
| 372 | int i; |
| 373 | |
| 374 | if (dspi->rx) { |
| 375 | for (i = 0; i < dspi->words_in_flight; i++) |
| 376 | dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]); |
| 377 | } |
| 378 | |
| 379 | complete(&dma->cmd_rx_complete); |
| 380 | } |
| 381 | |
| 382 | static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi) |
| 383 | { |
| 384 | struct device *dev = &dspi->pdev->dev; |
| 385 | struct fsl_dspi_dma *dma = dspi->dma; |
| 386 | int time_left; |
| 387 | int i; |
| 388 | |
| 389 | for (i = 0; i < dspi->words_in_flight; i++) |
| 390 | dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi); |
| 391 | |
| 392 | dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx, |
| 393 | dma->tx_dma_phys, |
| 394 | dspi->words_in_flight * |
| 395 | DMA_SLAVE_BUSWIDTH_4_BYTES, |
| 396 | DMA_MEM_TO_DEV, |
| 397 | DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| 398 | if (!dma->tx_desc) { |
| 399 | dev_err(dev, "Not able to get desc for DMA xfer\n"); |
| 400 | return -EIO; |
| 401 | } |
| 402 | |
| 403 | dma->tx_desc->callback = dspi_tx_dma_callback; |
| 404 | dma->tx_desc->callback_param = dspi; |
| 405 | if (dma_submit_error(dmaengine_submit(dma->tx_desc))) { |
| 406 | dev_err(dev, "DMA submit failed\n"); |
| 407 | return -EINVAL; |
| 408 | } |
| 409 | |
| 410 | dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx, |
| 411 | dma->rx_dma_phys, |
| 412 | dspi->words_in_flight * |
| 413 | DMA_SLAVE_BUSWIDTH_4_BYTES, |
| 414 | DMA_DEV_TO_MEM, |
| 415 | DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| 416 | if (!dma->rx_desc) { |
| 417 | dev_err(dev, "Not able to get desc for DMA xfer\n"); |
| 418 | return -EIO; |
| 419 | } |
| 420 | |
| 421 | dma->rx_desc->callback = dspi_rx_dma_callback; |
| 422 | dma->rx_desc->callback_param = dspi; |
| 423 | if (dma_submit_error(dmaengine_submit(dma->rx_desc))) { |
| 424 | dev_err(dev, "DMA submit failed\n"); |
| 425 | return -EINVAL; |
| 426 | } |
| 427 | |
| 428 | reinit_completion(&dspi->dma->cmd_rx_complete); |
| 429 | reinit_completion(&dspi->dma->cmd_tx_complete); |
| 430 | |
| 431 | dma_async_issue_pending(dma->chan_rx); |
| 432 | dma_async_issue_pending(dma->chan_tx); |
| 433 | |
| 434 | if (spi_controller_is_target(dspi->ctlr)) { |
| 435 | wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete); |
| 436 | return 0; |
| 437 | } |
| 438 | |
| 439 | time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete, |
| 440 | DMA_COMPLETION_TIMEOUT); |
| 441 | if (time_left == 0) { |
| 442 | dev_err(dev, "DMA tx timeout\n"); |
| 443 | dmaengine_terminate_all(dma->chan_tx); |
| 444 | dmaengine_terminate_all(dma->chan_rx); |
| 445 | return -ETIMEDOUT; |
| 446 | } |
| 447 | |
| 448 | time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete, |
| 449 | DMA_COMPLETION_TIMEOUT); |
| 450 | if (time_left == 0) { |
| 451 | dev_err(dev, "DMA rx timeout\n"); |
| 452 | dmaengine_terminate_all(dma->chan_tx); |
| 453 | dmaengine_terminate_all(dma->chan_rx); |
| 454 | return -ETIMEDOUT; |
| 455 | } |
| 456 | |
| 457 | return 0; |
| 458 | } |
| 459 | |
| 460 | static void dspi_setup_accel(struct fsl_dspi *dspi); |
| 461 | |
| 462 | static int dspi_dma_xfer(struct fsl_dspi *dspi) |
| 463 | { |
| 464 | struct spi_message *message = dspi->cur_msg; |
| 465 | struct device *dev = &dspi->pdev->dev; |
| 466 | int ret = 0; |
| 467 | |
| 468 | /* |
| 469 | * dspi->len gets decremented by dspi_pop_tx_pushr in |
| 470 | * dspi_next_xfer_dma_submit |
| 471 | */ |
| 472 | while (dspi->len) { |
| 473 | /* Figure out operational bits-per-word for this chunk */ |
| 474 | dspi_setup_accel(dspi); |
| 475 | |
| 476 | dspi->words_in_flight = dspi->len / dspi->oper_word_size; |
| 477 | if (dspi->words_in_flight > dspi->devtype_data->fifo_size) |
| 478 | dspi->words_in_flight = dspi->devtype_data->fifo_size; |
| 479 | |
| 480 | message->actual_length += dspi->words_in_flight * |
| 481 | dspi->oper_word_size; |
| 482 | |
| 483 | ret = dspi_next_xfer_dma_submit(dspi); |
| 484 | if (ret) { |
| 485 | dev_err(dev, "DMA transfer failed\n"); |
| 486 | break; |
| 487 | } |
| 488 | } |
| 489 | |
| 490 | return ret; |
| 491 | } |
| 492 | |
| 493 | static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr) |
| 494 | { |
| 495 | int dma_bufsize = dspi->devtype_data->fifo_size * 2; |
| 496 | struct device *dev = &dspi->pdev->dev; |
| 497 | struct dma_slave_config cfg; |
| 498 | struct fsl_dspi_dma *dma; |
| 499 | int ret; |
| 500 | |
| 501 | dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL); |
| 502 | if (!dma) |
| 503 | return -ENOMEM; |
| 504 | |
| 505 | dma->chan_rx = dma_request_chan(dev, "rx"); |
| 506 | if (IS_ERR(dma->chan_rx)) |
| 507 | return dev_err_probe(dev, PTR_ERR(dma->chan_rx), "rx dma channel not available\n"); |
| 508 | |
| 509 | dma->chan_tx = dma_request_chan(dev, "tx"); |
| 510 | if (IS_ERR(dma->chan_tx)) { |
| 511 | ret = dev_err_probe(dev, PTR_ERR(dma->chan_tx), "tx dma channel not available\n"); |
| 512 | goto err_tx_channel; |
| 513 | } |
| 514 | |
| 515 | dma->tx_dma_buf = dma_alloc_coherent(dma->chan_tx->device->dev, |
| 516 | dma_bufsize, &dma->tx_dma_phys, |
| 517 | GFP_KERNEL); |
| 518 | if (!dma->tx_dma_buf) { |
| 519 | ret = -ENOMEM; |
| 520 | goto err_tx_dma_buf; |
| 521 | } |
| 522 | |
| 523 | dma->rx_dma_buf = dma_alloc_coherent(dma->chan_rx->device->dev, |
| 524 | dma_bufsize, &dma->rx_dma_phys, |
| 525 | GFP_KERNEL); |
| 526 | if (!dma->rx_dma_buf) { |
| 527 | ret = -ENOMEM; |
| 528 | goto err_rx_dma_buf; |
| 529 | } |
| 530 | |
| 531 | memset(&cfg, 0, sizeof(cfg)); |
| 532 | cfg.src_addr = phy_addr + SPI_POPR; |
| 533 | cfg.dst_addr = phy_addr + SPI_PUSHR; |
| 534 | cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| 535 | cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| 536 | cfg.src_maxburst = 1; |
| 537 | cfg.dst_maxburst = 1; |
| 538 | |
| 539 | cfg.direction = DMA_DEV_TO_MEM; |
| 540 | ret = dmaengine_slave_config(dma->chan_rx, &cfg); |
| 541 | if (ret) { |
| 542 | dev_err_probe(dev, ret, "can't configure rx dma channel\n"); |
| 543 | goto err_slave_config; |
| 544 | } |
| 545 | |
| 546 | cfg.direction = DMA_MEM_TO_DEV; |
| 547 | ret = dmaengine_slave_config(dma->chan_tx, &cfg); |
| 548 | if (ret) { |
| 549 | dev_err_probe(dev, ret, "can't configure tx dma channel\n"); |
| 550 | goto err_slave_config; |
| 551 | } |
| 552 | |
| 553 | dspi->dma = dma; |
| 554 | init_completion(&dma->cmd_tx_complete); |
| 555 | init_completion(&dma->cmd_rx_complete); |
| 556 | |
| 557 | return 0; |
| 558 | |
| 559 | err_slave_config: |
| 560 | dma_free_coherent(dma->chan_rx->device->dev, |
| 561 | dma_bufsize, dma->rx_dma_buf, dma->rx_dma_phys); |
| 562 | err_rx_dma_buf: |
| 563 | dma_free_coherent(dma->chan_tx->device->dev, |
| 564 | dma_bufsize, dma->tx_dma_buf, dma->tx_dma_phys); |
| 565 | err_tx_dma_buf: |
| 566 | dma_release_channel(dma->chan_tx); |
| 567 | err_tx_channel: |
| 568 | dma_release_channel(dma->chan_rx); |
| 569 | |
| 570 | devm_kfree(dev, dma); |
| 571 | dspi->dma = NULL; |
| 572 | |
| 573 | return ret; |
| 574 | } |
| 575 | |
| 576 | static void dspi_release_dma(struct fsl_dspi *dspi) |
| 577 | { |
| 578 | int dma_bufsize = dspi->devtype_data->fifo_size * 2; |
| 579 | struct fsl_dspi_dma *dma = dspi->dma; |
| 580 | |
| 581 | if (!dma) |
| 582 | return; |
| 583 | |
| 584 | if (dma->chan_tx) { |
| 585 | dma_free_coherent(dma->chan_tx->device->dev, dma_bufsize, |
| 586 | dma->tx_dma_buf, dma->tx_dma_phys); |
| 587 | dma_release_channel(dma->chan_tx); |
| 588 | } |
| 589 | |
| 590 | if (dma->chan_rx) { |
| 591 | dma_free_coherent(dma->chan_rx->device->dev, dma_bufsize, |
| 592 | dma->rx_dma_buf, dma->rx_dma_phys); |
| 593 | dma_release_channel(dma->chan_rx); |
| 594 | } |
| 595 | } |
| 596 | |
| 597 | static void hz_to_spi_baud(char *pbr, char *br, int speed_hz, |
| 598 | unsigned long clkrate) |
| 599 | { |
| 600 | /* Valid baud rate pre-scaler values */ |
| 601 | int pbr_tbl[4] = {2, 3, 5, 7}; |
| 602 | int brs[16] = { 2, 4, 6, 8, |
| 603 | 16, 32, 64, 128, |
| 604 | 256, 512, 1024, 2048, |
| 605 | 4096, 8192, 16384, 32768 }; |
| 606 | int scale_needed, scale, minscale = INT_MAX; |
| 607 | int i, j; |
| 608 | |
| 609 | scale_needed = clkrate / speed_hz; |
| 610 | if (clkrate % speed_hz) |
| 611 | scale_needed++; |
| 612 | |
| 613 | for (i = 0; i < ARRAY_SIZE(brs); i++) |
| 614 | for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) { |
| 615 | scale = brs[i] * pbr_tbl[j]; |
| 616 | if (scale >= scale_needed) { |
| 617 | if (scale < minscale) { |
| 618 | minscale = scale; |
| 619 | *br = i; |
| 620 | *pbr = j; |
| 621 | } |
| 622 | break; |
| 623 | } |
| 624 | } |
| 625 | |
| 626 | if (minscale == INT_MAX) { |
| 627 | pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n", |
| 628 | speed_hz, clkrate); |
| 629 | *pbr = ARRAY_SIZE(pbr_tbl) - 1; |
| 630 | *br = ARRAY_SIZE(brs) - 1; |
| 631 | } |
| 632 | } |
| 633 | |
| 634 | static void ns_delay_scale(char *psc, char *sc, int delay_ns, |
| 635 | unsigned long clkrate) |
| 636 | { |
| 637 | int scale_needed, scale, minscale = INT_MAX; |
| 638 | int pscale_tbl[4] = {1, 3, 5, 7}; |
| 639 | u32 remainder; |
| 640 | int i, j; |
| 641 | |
| 642 | scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC, |
| 643 | &remainder); |
| 644 | if (remainder) |
| 645 | scale_needed++; |
| 646 | |
| 647 | for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++) |
| 648 | for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) { |
| 649 | scale = pscale_tbl[i] * (2 << j); |
| 650 | if (scale >= scale_needed) { |
| 651 | if (scale < minscale) { |
| 652 | minscale = scale; |
| 653 | *psc = i; |
| 654 | *sc = j; |
| 655 | } |
| 656 | break; |
| 657 | } |
| 658 | } |
| 659 | |
| 660 | if (minscale == INT_MAX) { |
| 661 | pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value", |
| 662 | delay_ns, clkrate); |
| 663 | *psc = ARRAY_SIZE(pscale_tbl) - 1; |
| 664 | *sc = SPI_CTAR_SCALE_BITS; |
| 665 | } |
| 666 | } |
| 667 | |
| 668 | static void dspi_pushr_cmd_write(struct fsl_dspi *dspi, u16 cmd) |
| 669 | { |
| 670 | /* |
| 671 | * The only time when the PCS doesn't need continuation after this word |
| 672 | * is when it's last. We need to look ahead, because we actually call |
| 673 | * dspi_pop_tx (the function that decrements dspi->len) _after_ |
| 674 | * dspi_pushr_cmd_write with XSPI mode. As for how much in advance? One |
| 675 | * word is enough. If there's more to transmit than that, |
| 676 | * dspi_xspi_write will know to split the FIFO writes in 2, and |
| 677 | * generate a new PUSHR command with the final word that will have PCS |
| 678 | * deasserted (not continued) here. |
| 679 | */ |
| 680 | if (dspi->len > dspi->oper_word_size) |
| 681 | cmd |= SPI_PUSHR_CMD_CONT; |
| 682 | regmap_write(dspi->regmap_pushr, dspi->pushr_cmd, cmd); |
| 683 | } |
| 684 | |
| 685 | static void dspi_pushr_txdata_write(struct fsl_dspi *dspi, u16 txdata) |
| 686 | { |
| 687 | regmap_write(dspi->regmap_pushr, dspi->pushr_tx, txdata); |
| 688 | } |
| 689 | |
| 690 | static void dspi_xspi_fifo_write(struct fsl_dspi *dspi, int num_words) |
| 691 | { |
| 692 | int num_bytes = num_words * dspi->oper_word_size; |
| 693 | u16 tx_cmd = dspi->tx_cmd; |
| 694 | |
| 695 | /* |
| 696 | * If the PCS needs to de-assert (i.e. we're at the end of the buffer |
| 697 | * and cs_change does not want the PCS to stay on), then we need a new |
| 698 | * PUSHR command, since this one (for the body of the buffer) |
| 699 | * necessarily has the CONT bit set. |
| 700 | * So send one word less during this go, to force a split and a command |
| 701 | * with a single word next time, when CONT will be unset. |
| 702 | */ |
| 703 | if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT) && num_bytes == dspi->len) |
| 704 | tx_cmd |= SPI_PUSHR_CMD_EOQ; |
| 705 | |
| 706 | /* Update CTARE */ |
| 707 | regmap_write(dspi->regmap, SPI_CTARE(0), |
| 708 | SPI_FRAME_EBITS(dspi->oper_bits_per_word) | |
| 709 | SPI_CTARE_DTCP(num_words)); |
| 710 | |
| 711 | /* |
| 712 | * Write the CMD FIFO entry first, and then the two |
| 713 | * corresponding TX FIFO entries (or one...). |
| 714 | */ |
| 715 | dspi_pushr_cmd_write(dspi, tx_cmd); |
| 716 | |
| 717 | /* Fill TX FIFO with as many transfers as possible */ |
| 718 | while (num_words--) { |
| 719 | u32 data = dspi_pop_tx(dspi); |
| 720 | |
| 721 | dspi_pushr_txdata_write(dspi, data & 0xFFFF); |
| 722 | if (dspi->oper_bits_per_word > 16) |
| 723 | dspi_pushr_txdata_write(dspi, data >> 16); |
| 724 | } |
| 725 | } |
| 726 | |
| 727 | static u32 dspi_popr_read(struct fsl_dspi *dspi) |
| 728 | { |
| 729 | u32 rxdata = 0; |
| 730 | |
| 731 | regmap_read(dspi->regmap, SPI_POPR, &rxdata); |
| 732 | return rxdata; |
| 733 | } |
| 734 | |
| 735 | static void dspi_fifo_read(struct fsl_dspi *dspi) |
| 736 | { |
| 737 | int num_fifo_entries = dspi->words_in_flight; |
| 738 | |
| 739 | /* Read one FIFO entry and push to rx buffer */ |
| 740 | while (num_fifo_entries--) |
| 741 | dspi_push_rx(dspi, dspi_popr_read(dspi)); |
| 742 | } |
| 743 | |
| 744 | static void dspi_setup_accel(struct fsl_dspi *dspi) |
| 745 | { |
| 746 | struct spi_transfer *xfer = dspi->cur_transfer; |
| 747 | bool odd = !!(dspi->len & 1); |
| 748 | |
| 749 | /* No accel for frames not multiple of 8 bits at the moment */ |
| 750 | if (xfer->bits_per_word % 8) |
| 751 | goto no_accel; |
| 752 | |
| 753 | if (!odd && dspi->len <= dspi->devtype_data->fifo_size * 2) { |
| 754 | dspi->oper_bits_per_word = 16; |
| 755 | } else if (odd && dspi->len <= dspi->devtype_data->fifo_size) { |
| 756 | dspi->oper_bits_per_word = 8; |
| 757 | } else { |
| 758 | /* Start off with maximum supported by hardware */ |
| 759 | if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) |
| 760 | dspi->oper_bits_per_word = 32; |
| 761 | else |
| 762 | dspi->oper_bits_per_word = 16; |
| 763 | |
| 764 | /* |
| 765 | * And go down only if the buffer can't be sent with |
| 766 | * words this big |
| 767 | */ |
| 768 | do { |
| 769 | if (dspi->len >= DIV_ROUND_UP(dspi->oper_bits_per_word, 8)) |
| 770 | break; |
| 771 | |
| 772 | dspi->oper_bits_per_word /= 2; |
| 773 | } while (dspi->oper_bits_per_word > 8); |
| 774 | } |
| 775 | |
| 776 | if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 32) { |
| 777 | dspi->dev_to_host = dspi_8on32_dev_to_host; |
| 778 | dspi->host_to_dev = dspi_8on32_host_to_dev; |
| 779 | } else if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 16) { |
| 780 | dspi->dev_to_host = dspi_8on16_dev_to_host; |
| 781 | dspi->host_to_dev = dspi_8on16_host_to_dev; |
| 782 | } else if (xfer->bits_per_word == 16 && dspi->oper_bits_per_word == 32) { |
| 783 | dspi->dev_to_host = dspi_16on32_dev_to_host; |
| 784 | dspi->host_to_dev = dspi_16on32_host_to_dev; |
| 785 | } else { |
| 786 | no_accel: |
| 787 | dspi->dev_to_host = dspi_native_dev_to_host; |
| 788 | dspi->host_to_dev = dspi_native_host_to_dev; |
| 789 | dspi->oper_bits_per_word = xfer->bits_per_word; |
| 790 | } |
| 791 | |
| 792 | dspi->oper_word_size = DIV_ROUND_UP(dspi->oper_bits_per_word, 8); |
| 793 | |
| 794 | /* |
| 795 | * Update CTAR here (code is common for XSPI and DMA modes). |
| 796 | * We will update CTARE in the portion specific to XSPI, when we |
| 797 | * also know the preload value (DTCP). |
| 798 | */ |
| 799 | regmap_write(dspi->regmap, SPI_CTAR(0), |
| 800 | dspi->cur_chip->ctar_val | |
| 801 | SPI_FRAME_BITS(dspi->oper_bits_per_word)); |
| 802 | } |
| 803 | |
| 804 | static void dspi_fifo_write(struct fsl_dspi *dspi) |
| 805 | { |
| 806 | int num_fifo_entries = dspi->devtype_data->fifo_size; |
| 807 | struct spi_transfer *xfer = dspi->cur_transfer; |
| 808 | struct spi_message *msg = dspi->cur_msg; |
| 809 | int num_words, num_bytes; |
| 810 | |
| 811 | dspi_setup_accel(dspi); |
| 812 | |
| 813 | /* In XSPI mode each 32-bit word occupies 2 TX FIFO entries */ |
| 814 | if (dspi->oper_word_size == 4) |
| 815 | num_fifo_entries /= 2; |
| 816 | |
| 817 | /* |
| 818 | * Integer division intentionally trims off odd (or non-multiple of 4) |
| 819 | * numbers of bytes at the end of the buffer, which will be sent next |
| 820 | * time using a smaller oper_word_size. |
| 821 | */ |
| 822 | num_words = dspi->len / dspi->oper_word_size; |
| 823 | if (num_words > num_fifo_entries) |
| 824 | num_words = num_fifo_entries; |
| 825 | |
| 826 | /* Update total number of bytes that were transferred */ |
| 827 | num_bytes = num_words * dspi->oper_word_size; |
| 828 | msg->actual_length += num_bytes; |
| 829 | dspi->progress += num_bytes / DIV_ROUND_UP(xfer->bits_per_word, 8); |
| 830 | |
| 831 | /* |
| 832 | * Update shared variable for use in the next interrupt (both in |
| 833 | * dspi_fifo_read and in dspi_fifo_write). |
| 834 | */ |
| 835 | dspi->words_in_flight = num_words; |
| 836 | |
| 837 | spi_take_timestamp_pre(dspi->ctlr, xfer, dspi->progress, !dspi->irq); |
| 838 | |
| 839 | dspi_xspi_fifo_write(dspi, num_words); |
| 840 | /* |
| 841 | * Everything after this point is in a potential race with the next |
| 842 | * interrupt, so we must never use dspi->words_in_flight again since it |
| 843 | * might already be modified by the next dspi_fifo_write. |
| 844 | */ |
| 845 | |
| 846 | spi_take_timestamp_post(dspi->ctlr, dspi->cur_transfer, |
| 847 | dspi->progress, !dspi->irq); |
| 848 | } |
| 849 | |
| 850 | static int dspi_rxtx(struct fsl_dspi *dspi) |
| 851 | { |
| 852 | dspi_fifo_read(dspi); |
| 853 | |
| 854 | if (!dspi->len) |
| 855 | /* Success! */ |
| 856 | return 0; |
| 857 | |
| 858 | dspi_fifo_write(dspi); |
| 859 | |
| 860 | return -EINPROGRESS; |
| 861 | } |
| 862 | |
| 863 | static int dspi_poll(struct fsl_dspi *dspi) |
| 864 | { |
| 865 | int tries = 1000; |
| 866 | u32 spi_sr; |
| 867 | |
| 868 | do { |
| 869 | regmap_read(dspi->regmap, SPI_SR, &spi_sr); |
| 870 | regmap_write(dspi->regmap, SPI_SR, spi_sr); |
| 871 | |
| 872 | if (spi_sr & SPI_SR_CMDTCF) |
| 873 | break; |
| 874 | } while (--tries); |
| 875 | |
| 876 | if (!tries) |
| 877 | return -ETIMEDOUT; |
| 878 | |
| 879 | return dspi_rxtx(dspi); |
| 880 | } |
| 881 | |
| 882 | static irqreturn_t dspi_interrupt(int irq, void *dev_id) |
| 883 | { |
| 884 | struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id; |
| 885 | u32 spi_sr; |
| 886 | |
| 887 | regmap_read(dspi->regmap, SPI_SR, &spi_sr); |
| 888 | regmap_write(dspi->regmap, SPI_SR, spi_sr); |
| 889 | |
| 890 | if (!(spi_sr & SPI_SR_CMDTCF)) |
| 891 | return IRQ_NONE; |
| 892 | |
| 893 | if (dspi_rxtx(dspi) == 0) |
| 894 | complete(&dspi->xfer_done); |
| 895 | |
| 896 | return IRQ_HANDLED; |
| 897 | } |
| 898 | |
| 899 | static void dspi_assert_cs(struct spi_device *spi, bool *cs) |
| 900 | { |
| 901 | if (!spi_get_csgpiod(spi, 0) || *cs) |
| 902 | return; |
| 903 | |
| 904 | gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), true); |
| 905 | *cs = true; |
| 906 | } |
| 907 | |
| 908 | static void dspi_deassert_cs(struct spi_device *spi, bool *cs) |
| 909 | { |
| 910 | if (!spi_get_csgpiod(spi, 0) || !*cs) |
| 911 | return; |
| 912 | |
| 913 | gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), false); |
| 914 | *cs = false; |
| 915 | } |
| 916 | |
| 917 | static int dspi_transfer_one_message(struct spi_controller *ctlr, |
| 918 | struct spi_message *message) |
| 919 | { |
| 920 | struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr); |
| 921 | struct spi_device *spi = message->spi; |
| 922 | struct spi_transfer *transfer; |
| 923 | bool cs = false; |
| 924 | int status = 0; |
| 925 | u32 val = 0; |
| 926 | bool cs_change = false; |
| 927 | |
| 928 | message->actual_length = 0; |
| 929 | |
| 930 | /* Put DSPI in running mode if halted. */ |
| 931 | regmap_read(dspi->regmap, SPI_MCR, &val); |
| 932 | if (val & SPI_MCR_HALT) { |
| 933 | regmap_update_bits(dspi->regmap, SPI_MCR, SPI_MCR_HALT, 0); |
| 934 | while (regmap_read(dspi->regmap, SPI_SR, &val) >= 0 && |
| 935 | !(val & SPI_SR_TXRXS)) |
| 936 | ; |
| 937 | } |
| 938 | |
| 939 | list_for_each_entry(transfer, &message->transfers, transfer_list) { |
| 940 | dspi->cur_transfer = transfer; |
| 941 | dspi->cur_msg = message; |
| 942 | dspi->cur_chip = spi_get_ctldata(spi); |
| 943 | |
| 944 | dspi_assert_cs(spi, &cs); |
| 945 | |
| 946 | /* Prepare command word for CMD FIFO */ |
| 947 | dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0); |
| 948 | if (!spi_get_csgpiod(spi, 0)) |
| 949 | dspi->tx_cmd |= SPI_PUSHR_CMD_PCS(spi_get_chipselect(spi, 0)); |
| 950 | |
| 951 | if (list_is_last(&dspi->cur_transfer->transfer_list, |
| 952 | &dspi->cur_msg->transfers)) { |
| 953 | /* Leave PCS activated after last transfer when |
| 954 | * cs_change is set. |
| 955 | */ |
| 956 | if (transfer->cs_change) |
| 957 | dspi->tx_cmd |= SPI_PUSHR_CMD_CONT; |
| 958 | } else { |
| 959 | /* Keep PCS active between transfers in same message |
| 960 | * when cs_change is not set, and de-activate PCS |
| 961 | * between transfers in the same message when |
| 962 | * cs_change is set. |
| 963 | */ |
| 964 | if (!transfer->cs_change) |
| 965 | dspi->tx_cmd |= SPI_PUSHR_CMD_CONT; |
| 966 | } |
| 967 | |
| 968 | cs_change = transfer->cs_change; |
| 969 | dspi->tx = transfer->tx_buf; |
| 970 | dspi->rx = transfer->rx_buf; |
| 971 | dspi->len = transfer->len; |
| 972 | dspi->progress = 0; |
| 973 | |
| 974 | regmap_update_bits(dspi->regmap, SPI_MCR, |
| 975 | SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF, |
| 976 | SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF); |
| 977 | |
| 978 | regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR); |
| 979 | |
| 980 | spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer, |
| 981 | dspi->progress, !dspi->irq); |
| 982 | |
| 983 | if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) { |
| 984 | status = dspi_dma_xfer(dspi); |
| 985 | } else { |
| 986 | /* |
| 987 | * Reinitialize the completion before transferring data |
| 988 | * to avoid the case where it might remain in the done |
| 989 | * state due to a spurious interrupt from a previous |
| 990 | * transfer. This could falsely signal that the current |
| 991 | * transfer has completed. |
| 992 | */ |
| 993 | if (dspi->irq) |
| 994 | reinit_completion(&dspi->xfer_done); |
| 995 | |
| 996 | dspi_fifo_write(dspi); |
| 997 | |
| 998 | if (dspi->irq) { |
| 999 | wait_for_completion(&dspi->xfer_done); |
| 1000 | } else { |
| 1001 | do { |
| 1002 | status = dspi_poll(dspi); |
| 1003 | } while (status == -EINPROGRESS); |
| 1004 | } |
| 1005 | } |
| 1006 | if (status) |
| 1007 | break; |
| 1008 | |
| 1009 | spi_transfer_delay_exec(transfer); |
| 1010 | |
| 1011 | if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT)) |
| 1012 | dspi_deassert_cs(spi, &cs); |
| 1013 | } |
| 1014 | |
| 1015 | if (status || !cs_change) { |
| 1016 | /* Put DSPI in stop mode */ |
| 1017 | regmap_update_bits(dspi->regmap, SPI_MCR, |
| 1018 | SPI_MCR_HALT, SPI_MCR_HALT); |
| 1019 | while (regmap_read(dspi->regmap, SPI_SR, &val) >= 0 && |
| 1020 | val & SPI_SR_TXRXS) |
| 1021 | ; |
| 1022 | } |
| 1023 | |
| 1024 | message->status = status; |
| 1025 | spi_finalize_current_message(ctlr); |
| 1026 | |
| 1027 | return status; |
| 1028 | } |
| 1029 | |
| 1030 | static int dspi_setup(struct spi_device *spi) |
| 1031 | { |
| 1032 | struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller); |
| 1033 | u32 period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->max_speed_hz); |
| 1034 | unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0; |
| 1035 | u32 quarter_period_ns = DIV_ROUND_UP(period_ns, 4); |
| 1036 | u32 cs_sck_delay = 0, sck_cs_delay = 0; |
| 1037 | struct fsl_dspi_platform_data *pdata; |
| 1038 | unsigned char pasc = 0, asc = 0; |
| 1039 | struct gpio_desc *gpio_cs; |
| 1040 | struct chip_data *chip; |
| 1041 | unsigned long clkrate; |
| 1042 | bool cs = true; |
| 1043 | int val; |
| 1044 | |
| 1045 | /* Only alloc on first setup */ |
| 1046 | chip = spi_get_ctldata(spi); |
| 1047 | if (chip == NULL) { |
| 1048 | chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); |
| 1049 | if (!chip) |
| 1050 | return -ENOMEM; |
| 1051 | } |
| 1052 | |
| 1053 | pdata = dev_get_platdata(&dspi->pdev->dev); |
| 1054 | |
| 1055 | if (!pdata) { |
| 1056 | val = spi_delay_to_ns(&spi->cs_setup, NULL); |
| 1057 | cs_sck_delay = val >= 0 ? val : 0; |
| 1058 | if (!cs_sck_delay) |
| 1059 | of_property_read_u32(spi->dev.of_node, |
| 1060 | "fsl,spi-cs-sck-delay", |
| 1061 | &cs_sck_delay); |
| 1062 | |
| 1063 | val = spi_delay_to_ns(&spi->cs_hold, NULL); |
| 1064 | sck_cs_delay = val >= 0 ? val : 0; |
| 1065 | if (!sck_cs_delay) |
| 1066 | of_property_read_u32(spi->dev.of_node, |
| 1067 | "fsl,spi-sck-cs-delay", |
| 1068 | &sck_cs_delay); |
| 1069 | } else { |
| 1070 | cs_sck_delay = pdata->cs_sck_delay; |
| 1071 | sck_cs_delay = pdata->sck_cs_delay; |
| 1072 | } |
| 1073 | |
| 1074 | /* Since tCSC and tASC apply to continuous transfers too, avoid SCK |
| 1075 | * glitches of half a cycle by never allowing tCSC + tASC to go below |
| 1076 | * half a SCK period. |
| 1077 | */ |
| 1078 | if (cs_sck_delay < quarter_period_ns) |
| 1079 | cs_sck_delay = quarter_period_ns; |
| 1080 | if (sck_cs_delay < quarter_period_ns) |
| 1081 | sck_cs_delay = quarter_period_ns; |
| 1082 | |
| 1083 | dev_dbg(&spi->dev, |
| 1084 | "DSPI controller timing params: CS-to-SCK delay %u ns, SCK-to-CS delay %u ns\n", |
| 1085 | cs_sck_delay, sck_cs_delay); |
| 1086 | |
| 1087 | clkrate = clk_get_rate(dspi->clk); |
| 1088 | hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate); |
| 1089 | |
| 1090 | /* Set PCS to SCK delay scale values */ |
| 1091 | ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate); |
| 1092 | |
| 1093 | /* Set After SCK delay scale values */ |
| 1094 | ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate); |
| 1095 | |
| 1096 | chip->ctar_val = 0; |
| 1097 | if (spi->mode & SPI_CPOL) |
| 1098 | chip->ctar_val |= SPI_CTAR_CPOL; |
| 1099 | if (spi->mode & SPI_CPHA) |
| 1100 | chip->ctar_val |= SPI_CTAR_CPHA; |
| 1101 | |
| 1102 | if (!spi_controller_is_target(dspi->ctlr)) { |
| 1103 | chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) | |
| 1104 | SPI_CTAR_CSSCK(cssck) | |
| 1105 | SPI_CTAR_PASC(pasc) | |
| 1106 | SPI_CTAR_ASC(asc) | |
| 1107 | SPI_CTAR_PBR(pbr) | |
| 1108 | SPI_CTAR_BR(br); |
| 1109 | |
| 1110 | if (spi->mode & SPI_LSB_FIRST) |
| 1111 | chip->ctar_val |= SPI_CTAR_LSBFE; |
| 1112 | } |
| 1113 | |
| 1114 | gpio_cs = spi_get_csgpiod(spi, 0); |
| 1115 | if (gpio_cs) |
| 1116 | gpiod_direction_output(gpio_cs, false); |
| 1117 | |
| 1118 | dspi_deassert_cs(spi, &cs); |
| 1119 | |
| 1120 | spi_set_ctldata(spi, chip); |
| 1121 | |
| 1122 | return 0; |
| 1123 | } |
| 1124 | |
| 1125 | static void dspi_cleanup(struct spi_device *spi) |
| 1126 | { |
| 1127 | struct chip_data *chip = spi_get_ctldata(spi); |
| 1128 | |
| 1129 | dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n", |
| 1130 | spi->controller->bus_num, spi_get_chipselect(spi, 0)); |
| 1131 | |
| 1132 | kfree(chip); |
| 1133 | } |
| 1134 | |
| 1135 | static const struct of_device_id fsl_dspi_dt_ids[] = { |
| 1136 | { |
| 1137 | .compatible = "fsl,vf610-dspi", |
| 1138 | .data = &devtype_data[VF610], |
| 1139 | }, { |
| 1140 | .compatible = "fsl,ls1021a-v1.0-dspi", |
| 1141 | .data = &devtype_data[LS1021A], |
| 1142 | }, { |
| 1143 | .compatible = "fsl,ls1012a-dspi", |
| 1144 | .data = &devtype_data[LS1012A], |
| 1145 | }, { |
| 1146 | .compatible = "fsl,ls1028a-dspi", |
| 1147 | .data = &devtype_data[LS1028A], |
| 1148 | }, { |
| 1149 | .compatible = "fsl,ls1043a-dspi", |
| 1150 | .data = &devtype_data[LS1043A], |
| 1151 | }, { |
| 1152 | .compatible = "fsl,ls1046a-dspi", |
| 1153 | .data = &devtype_data[LS1046A], |
| 1154 | }, { |
| 1155 | .compatible = "fsl,ls2080a-dspi", |
| 1156 | .data = &devtype_data[LS2080A], |
| 1157 | }, { |
| 1158 | .compatible = "fsl,ls2085a-dspi", |
| 1159 | .data = &devtype_data[LS2085A], |
| 1160 | }, { |
| 1161 | .compatible = "fsl,lx2160a-dspi", |
| 1162 | .data = &devtype_data[LX2160A], |
| 1163 | }, |
| 1164 | { /* sentinel */ } |
| 1165 | }; |
| 1166 | MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids); |
| 1167 | |
| 1168 | #ifdef CONFIG_PM_SLEEP |
| 1169 | static int dspi_suspend(struct device *dev) |
| 1170 | { |
| 1171 | struct fsl_dspi *dspi = dev_get_drvdata(dev); |
| 1172 | |
| 1173 | if (dspi->irq) |
| 1174 | disable_irq(dspi->irq); |
| 1175 | spi_controller_suspend(dspi->ctlr); |
| 1176 | clk_disable_unprepare(dspi->clk); |
| 1177 | |
| 1178 | pinctrl_pm_select_sleep_state(dev); |
| 1179 | |
| 1180 | return 0; |
| 1181 | } |
| 1182 | |
| 1183 | static int dspi_resume(struct device *dev) |
| 1184 | { |
| 1185 | struct fsl_dspi *dspi = dev_get_drvdata(dev); |
| 1186 | int ret; |
| 1187 | |
| 1188 | pinctrl_pm_select_default_state(dev); |
| 1189 | |
| 1190 | ret = clk_prepare_enable(dspi->clk); |
| 1191 | if (ret) |
| 1192 | return ret; |
| 1193 | spi_controller_resume(dspi->ctlr); |
| 1194 | if (dspi->irq) |
| 1195 | enable_irq(dspi->irq); |
| 1196 | |
| 1197 | return 0; |
| 1198 | } |
| 1199 | #endif /* CONFIG_PM_SLEEP */ |
| 1200 | |
| 1201 | static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume); |
| 1202 | |
| 1203 | static const struct regmap_range dspi_yes_ranges[] = { |
| 1204 | regmap_reg_range(SPI_MCR, SPI_MCR), |
| 1205 | regmap_reg_range(SPI_TCR, SPI_CTAR(3)), |
| 1206 | regmap_reg_range(SPI_SR, SPI_TXFR3), |
| 1207 | regmap_reg_range(SPI_RXFR0, SPI_RXFR3), |
| 1208 | regmap_reg_range(SPI_CTARE(0), SPI_CTARE(3)), |
| 1209 | regmap_reg_range(SPI_SREX, SPI_SREX), |
| 1210 | }; |
| 1211 | |
| 1212 | static const struct regmap_access_table dspi_access_table = { |
| 1213 | .yes_ranges = dspi_yes_ranges, |
| 1214 | .n_yes_ranges = ARRAY_SIZE(dspi_yes_ranges), |
| 1215 | }; |
| 1216 | |
| 1217 | static const struct regmap_range dspi_volatile_ranges[] = { |
| 1218 | regmap_reg_range(SPI_MCR, SPI_TCR), |
| 1219 | regmap_reg_range(SPI_SR, SPI_SR), |
| 1220 | regmap_reg_range(SPI_PUSHR, SPI_RXFR3), |
| 1221 | }; |
| 1222 | |
| 1223 | static const struct regmap_access_table dspi_volatile_table = { |
| 1224 | .yes_ranges = dspi_volatile_ranges, |
| 1225 | .n_yes_ranges = ARRAY_SIZE(dspi_volatile_ranges), |
| 1226 | }; |
| 1227 | |
| 1228 | static const struct regmap_config dspi_regmap_config = { |
| 1229 | .reg_bits = 32, |
| 1230 | .val_bits = 32, |
| 1231 | .reg_stride = 4, |
| 1232 | .max_register = 0x88, |
| 1233 | .volatile_table = &dspi_volatile_table, |
| 1234 | .rd_table = &dspi_access_table, |
| 1235 | .wr_table = &dspi_access_table, |
| 1236 | }; |
| 1237 | |
| 1238 | static const struct regmap_range dspi_xspi_volatile_ranges[] = { |
| 1239 | regmap_reg_range(SPI_MCR, SPI_TCR), |
| 1240 | regmap_reg_range(SPI_SR, SPI_SR), |
| 1241 | regmap_reg_range(SPI_PUSHR, SPI_RXFR3), |
| 1242 | regmap_reg_range(SPI_SREX, SPI_SREX), |
| 1243 | }; |
| 1244 | |
| 1245 | static const struct regmap_access_table dspi_xspi_volatile_table = { |
| 1246 | .yes_ranges = dspi_xspi_volatile_ranges, |
| 1247 | .n_yes_ranges = ARRAY_SIZE(dspi_xspi_volatile_ranges), |
| 1248 | }; |
| 1249 | |
| 1250 | static const struct regmap_config dspi_xspi_regmap_config[] = { |
| 1251 | { |
| 1252 | .reg_bits = 32, |
| 1253 | .val_bits = 32, |
| 1254 | .reg_stride = 4, |
| 1255 | .max_register = 0x13c, |
| 1256 | .volatile_table = &dspi_xspi_volatile_table, |
| 1257 | .rd_table = &dspi_access_table, |
| 1258 | .wr_table = &dspi_access_table, |
| 1259 | }, |
| 1260 | { |
| 1261 | .name = "pushr", |
| 1262 | .reg_bits = 16, |
| 1263 | .val_bits = 16, |
| 1264 | .reg_stride = 2, |
| 1265 | .max_register = 0x2, |
| 1266 | }, |
| 1267 | }; |
| 1268 | |
| 1269 | static int dspi_init(struct fsl_dspi *dspi) |
| 1270 | { |
| 1271 | unsigned int mcr; |
| 1272 | |
| 1273 | /* Set idle states for all chip select signals to high */ |
| 1274 | mcr = SPI_MCR_PCSIS(GENMASK(dspi->ctlr->max_native_cs - 1, 0)); |
| 1275 | |
| 1276 | if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) |
| 1277 | mcr |= SPI_MCR_XSPI; |
| 1278 | if (!spi_controller_is_target(dspi->ctlr)) |
| 1279 | mcr |= SPI_MCR_HOST; |
| 1280 | |
| 1281 | mcr |= SPI_MCR_HALT; |
| 1282 | |
| 1283 | regmap_write(dspi->regmap, SPI_MCR, mcr); |
| 1284 | regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR); |
| 1285 | |
| 1286 | switch (dspi->devtype_data->trans_mode) { |
| 1287 | case DSPI_XSPI_MODE: |
| 1288 | regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_CMDTCFE); |
| 1289 | break; |
| 1290 | case DSPI_DMA_MODE: |
| 1291 | regmap_write(dspi->regmap, SPI_RSER, |
| 1292 | SPI_RSER_TFFFE | SPI_RSER_TFFFD | |
| 1293 | SPI_RSER_RFDFE | SPI_RSER_RFDFD); |
| 1294 | break; |
| 1295 | default: |
| 1296 | dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n", |
| 1297 | dspi->devtype_data->trans_mode); |
| 1298 | return -EINVAL; |
| 1299 | } |
| 1300 | |
| 1301 | return 0; |
| 1302 | } |
| 1303 | |
| 1304 | static int dspi_target_abort(struct spi_controller *host) |
| 1305 | { |
| 1306 | struct fsl_dspi *dspi = spi_controller_get_devdata(host); |
| 1307 | |
| 1308 | /* |
| 1309 | * Terminate all pending DMA transactions for the SPI working |
| 1310 | * in TARGET mode. |
| 1311 | */ |
| 1312 | if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) { |
| 1313 | dmaengine_terminate_sync(dspi->dma->chan_rx); |
| 1314 | dmaengine_terminate_sync(dspi->dma->chan_tx); |
| 1315 | } |
| 1316 | |
| 1317 | /* Clear the internal DSPI RX and TX FIFO buffers */ |
| 1318 | regmap_update_bits(dspi->regmap, SPI_MCR, |
| 1319 | SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF, |
| 1320 | SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF); |
| 1321 | |
| 1322 | return 0; |
| 1323 | } |
| 1324 | |
| 1325 | static int dspi_probe(struct platform_device *pdev) |
| 1326 | { |
| 1327 | struct device_node *np = pdev->dev.of_node; |
| 1328 | const struct regmap_config *regmap_config; |
| 1329 | struct fsl_dspi_platform_data *pdata; |
| 1330 | struct spi_controller *ctlr; |
| 1331 | int ret, cs_num, bus_num = -1; |
| 1332 | struct fsl_dspi *dspi; |
| 1333 | struct resource *res; |
| 1334 | void __iomem *base; |
| 1335 | bool big_endian; |
| 1336 | |
| 1337 | dspi = devm_kzalloc(&pdev->dev, sizeof(*dspi), GFP_KERNEL); |
| 1338 | if (!dspi) |
| 1339 | return -ENOMEM; |
| 1340 | |
| 1341 | ctlr = spi_alloc_host(&pdev->dev, 0); |
| 1342 | if (!ctlr) |
| 1343 | return -ENOMEM; |
| 1344 | |
| 1345 | spi_controller_set_devdata(ctlr, dspi); |
| 1346 | platform_set_drvdata(pdev, dspi); |
| 1347 | |
| 1348 | dspi->pdev = pdev; |
| 1349 | dspi->ctlr = ctlr; |
| 1350 | |
| 1351 | ctlr->setup = dspi_setup; |
| 1352 | ctlr->transfer_one_message = dspi_transfer_one_message; |
| 1353 | ctlr->dev.of_node = pdev->dev.of_node; |
| 1354 | |
| 1355 | ctlr->cleanup = dspi_cleanup; |
| 1356 | ctlr->target_abort = dspi_target_abort; |
| 1357 | ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST; |
| 1358 | ctlr->use_gpio_descriptors = true; |
| 1359 | |
| 1360 | pdata = dev_get_platdata(&pdev->dev); |
| 1361 | if (pdata) { |
| 1362 | ctlr->num_chipselect = ctlr->max_native_cs = pdata->cs_num; |
| 1363 | ctlr->bus_num = pdata->bus_num; |
| 1364 | |
| 1365 | /* Only Coldfire uses platform data */ |
| 1366 | dspi->devtype_data = &devtype_data[MCF5441X]; |
| 1367 | big_endian = true; |
| 1368 | } else { |
| 1369 | |
| 1370 | ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num); |
| 1371 | if (ret < 0) { |
| 1372 | dev_err(&pdev->dev, "can't get spi-num-chipselects\n"); |
| 1373 | goto out_ctlr_put; |
| 1374 | } |
| 1375 | ctlr->num_chipselect = ctlr->max_native_cs = cs_num; |
| 1376 | |
| 1377 | of_property_read_u32(np, "bus-num", &bus_num); |
| 1378 | ctlr->bus_num = bus_num; |
| 1379 | |
| 1380 | if (of_property_read_bool(np, "spi-slave")) |
| 1381 | ctlr->target = true; |
| 1382 | |
| 1383 | dspi->devtype_data = of_device_get_match_data(&pdev->dev); |
| 1384 | if (!dspi->devtype_data) { |
| 1385 | dev_err(&pdev->dev, "can't get devtype_data\n"); |
| 1386 | ret = -EFAULT; |
| 1387 | goto out_ctlr_put; |
| 1388 | } |
| 1389 | |
| 1390 | big_endian = of_device_is_big_endian(np); |
| 1391 | } |
| 1392 | if (big_endian) { |
| 1393 | dspi->pushr_cmd = 0; |
| 1394 | dspi->pushr_tx = 2; |
| 1395 | } else { |
| 1396 | dspi->pushr_cmd = 2; |
| 1397 | dspi->pushr_tx = 0; |
| 1398 | } |
| 1399 | |
| 1400 | if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) |
| 1401 | ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); |
| 1402 | else |
| 1403 | ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); |
| 1404 | |
| 1405 | base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); |
| 1406 | if (IS_ERR(base)) { |
| 1407 | ret = PTR_ERR(base); |
| 1408 | goto out_ctlr_put; |
| 1409 | } |
| 1410 | |
| 1411 | if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) |
| 1412 | regmap_config = &dspi_xspi_regmap_config[0]; |
| 1413 | else |
| 1414 | regmap_config = &dspi_regmap_config; |
| 1415 | dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config); |
| 1416 | if (IS_ERR(dspi->regmap)) { |
| 1417 | dev_err(&pdev->dev, "failed to init regmap: %ld\n", |
| 1418 | PTR_ERR(dspi->regmap)); |
| 1419 | ret = PTR_ERR(dspi->regmap); |
| 1420 | goto out_ctlr_put; |
| 1421 | } |
| 1422 | |
| 1423 | if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) { |
| 1424 | dspi->regmap_pushr = devm_regmap_init_mmio( |
| 1425 | &pdev->dev, base + SPI_PUSHR, |
| 1426 | &dspi_xspi_regmap_config[1]); |
| 1427 | if (IS_ERR(dspi->regmap_pushr)) { |
| 1428 | dev_err(&pdev->dev, |
| 1429 | "failed to init pushr regmap: %ld\n", |
| 1430 | PTR_ERR(dspi->regmap_pushr)); |
| 1431 | ret = PTR_ERR(dspi->regmap_pushr); |
| 1432 | goto out_ctlr_put; |
| 1433 | } |
| 1434 | } |
| 1435 | |
| 1436 | dspi->clk = devm_clk_get_enabled(&pdev->dev, "dspi"); |
| 1437 | if (IS_ERR(dspi->clk)) { |
| 1438 | ret = PTR_ERR(dspi->clk); |
| 1439 | dev_err(&pdev->dev, "unable to get clock\n"); |
| 1440 | goto out_ctlr_put; |
| 1441 | } |
| 1442 | |
| 1443 | ret = dspi_init(dspi); |
| 1444 | if (ret) |
| 1445 | goto out_ctlr_put; |
| 1446 | |
| 1447 | dspi->irq = platform_get_irq(pdev, 0); |
| 1448 | if (dspi->irq <= 0) { |
| 1449 | dev_info(&pdev->dev, |
| 1450 | "can't get platform irq, using poll mode\n"); |
| 1451 | dspi->irq = 0; |
| 1452 | goto poll_mode; |
| 1453 | } |
| 1454 | |
| 1455 | init_completion(&dspi->xfer_done); |
| 1456 | |
| 1457 | ret = request_threaded_irq(dspi->irq, dspi_interrupt, NULL, |
| 1458 | IRQF_SHARED, pdev->name, dspi); |
| 1459 | if (ret < 0) { |
| 1460 | dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n"); |
| 1461 | goto out_ctlr_put; |
| 1462 | } |
| 1463 | |
| 1464 | poll_mode: |
| 1465 | |
| 1466 | if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) { |
| 1467 | ret = dspi_request_dma(dspi, res->start); |
| 1468 | if (ret < 0) { |
| 1469 | dev_err(&pdev->dev, "can't get dma channels\n"); |
| 1470 | goto out_free_irq; |
| 1471 | } |
| 1472 | } |
| 1473 | |
| 1474 | ctlr->max_speed_hz = |
| 1475 | clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor; |
| 1476 | |
| 1477 | if (dspi->devtype_data->trans_mode != DSPI_DMA_MODE) |
| 1478 | ctlr->ptp_sts_supported = true; |
| 1479 | |
| 1480 | ret = spi_register_controller(ctlr); |
| 1481 | if (ret != 0) { |
| 1482 | dev_err(&pdev->dev, "Problem registering DSPI ctlr\n"); |
| 1483 | goto out_release_dma; |
| 1484 | } |
| 1485 | |
| 1486 | return ret; |
| 1487 | |
| 1488 | out_release_dma: |
| 1489 | dspi_release_dma(dspi); |
| 1490 | out_free_irq: |
| 1491 | if (dspi->irq) |
| 1492 | free_irq(dspi->irq, dspi); |
| 1493 | out_ctlr_put: |
| 1494 | spi_controller_put(ctlr); |
| 1495 | |
| 1496 | return ret; |
| 1497 | } |
| 1498 | |
| 1499 | static void dspi_remove(struct platform_device *pdev) |
| 1500 | { |
| 1501 | struct fsl_dspi *dspi = platform_get_drvdata(pdev); |
| 1502 | |
| 1503 | /* Disconnect from the SPI framework */ |
| 1504 | spi_unregister_controller(dspi->ctlr); |
| 1505 | |
| 1506 | /* Disable RX and TX */ |
| 1507 | regmap_update_bits(dspi->regmap, SPI_MCR, |
| 1508 | SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF, |
| 1509 | SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF); |
| 1510 | |
| 1511 | /* Stop Running */ |
| 1512 | regmap_update_bits(dspi->regmap, SPI_MCR, SPI_MCR_HALT, SPI_MCR_HALT); |
| 1513 | |
| 1514 | dspi_release_dma(dspi); |
| 1515 | if (dspi->irq) |
| 1516 | free_irq(dspi->irq, dspi); |
| 1517 | } |
| 1518 | |
| 1519 | static void dspi_shutdown(struct platform_device *pdev) |
| 1520 | { |
| 1521 | dspi_remove(pdev); |
| 1522 | } |
| 1523 | |
| 1524 | static struct platform_driver fsl_dspi_driver = { |
| 1525 | .driver.name = DRIVER_NAME, |
| 1526 | .driver.of_match_table = fsl_dspi_dt_ids, |
| 1527 | .driver.pm = &dspi_pm, |
| 1528 | .probe = dspi_probe, |
| 1529 | .remove = dspi_remove, |
| 1530 | .shutdown = dspi_shutdown, |
| 1531 | }; |
| 1532 | module_platform_driver(fsl_dspi_driver); |
| 1533 | |
| 1534 | MODULE_DESCRIPTION("Freescale DSPI Controller Driver"); |
| 1535 | MODULE_LICENSE("GPL"); |
| 1536 | MODULE_ALIAS("platform:" DRIVER_NAME); |