| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Xilinx Zynq Ultrascale+ MPSoC Real Time Clock Driver |
| 4 | * |
| 5 | * Copyright (C) 2015 Xilinx, Inc. |
| 6 | * |
| 7 | */ |
| 8 | |
| 9 | #include <linux/clk.h> |
| 10 | #include <linux/delay.h> |
| 11 | #include <linux/init.h> |
| 12 | #include <linux/io.h> |
| 13 | #include <linux/module.h> |
| 14 | #include <linux/of.h> |
| 15 | #include <linux/platform_device.h> |
| 16 | #include <linux/rtc.h> |
| 17 | |
| 18 | /* RTC Registers */ |
| 19 | #define RTC_SET_TM_WR 0x00 |
| 20 | #define RTC_SET_TM_RD 0x04 |
| 21 | #define RTC_CALIB_WR 0x08 |
| 22 | #define RTC_CALIB_RD 0x0C |
| 23 | #define RTC_CUR_TM 0x10 |
| 24 | #define RTC_CUR_TICK 0x14 |
| 25 | #define RTC_ALRM 0x18 |
| 26 | #define RTC_INT_STS 0x20 |
| 27 | #define RTC_INT_MASK 0x24 |
| 28 | #define RTC_INT_EN 0x28 |
| 29 | #define RTC_INT_DIS 0x2C |
| 30 | #define RTC_CTRL 0x40 |
| 31 | |
| 32 | #define RTC_FR_EN BIT(20) |
| 33 | #define RTC_FR_DATSHIFT 16 |
| 34 | #define RTC_TICK_MASK 0xFFFF |
| 35 | #define RTC_INT_SEC BIT(0) |
| 36 | #define RTC_INT_ALRM BIT(1) |
| 37 | #define RTC_OSC_EN BIT(24) |
| 38 | #define RTC_BATT_EN BIT(31) |
| 39 | |
| 40 | #define RTC_CALIB_DEF 0x7FFF |
| 41 | #define RTC_CALIB_MASK 0x1FFFFF |
| 42 | #define RTC_ALRM_MASK BIT(1) |
| 43 | #define RTC_MSEC 1000 |
| 44 | #define RTC_FR_MASK 0xF0000 |
| 45 | #define RTC_FR_MAX_TICKS 16 |
| 46 | #define RTC_PPB 1000000000LL |
| 47 | #define RTC_MIN_OFFSET -32768000 |
| 48 | #define RTC_MAX_OFFSET 32767000 |
| 49 | |
| 50 | struct xlnx_rtc_dev { |
| 51 | struct rtc_device *rtc; |
| 52 | void __iomem *reg_base; |
| 53 | int alarm_irq; |
| 54 | int sec_irq; |
| 55 | struct clk *rtc_clk; |
| 56 | unsigned int freq; |
| 57 | }; |
| 58 | |
| 59 | static int xlnx_rtc_set_time(struct device *dev, struct rtc_time *tm) |
| 60 | { |
| 61 | struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev); |
| 62 | unsigned long new_time; |
| 63 | |
| 64 | /* |
| 65 | * The value written will be updated after 1 sec into the |
| 66 | * seconds read register, so we need to program time +1 sec |
| 67 | * to get the correct time on read. |
| 68 | */ |
| 69 | new_time = rtc_tm_to_time64(tm) + 1; |
| 70 | |
| 71 | writel(new_time, xrtcdev->reg_base + RTC_SET_TM_WR); |
| 72 | |
| 73 | /* |
| 74 | * Clear the rtc interrupt status register after setting the |
| 75 | * time. During a read_time function, the code should read the |
| 76 | * RTC_INT_STATUS register and if bit 0 is still 0, it means |
| 77 | * that one second has not elapsed yet since RTC was set and |
| 78 | * the current time should be read from SET_TIME_READ register; |
| 79 | * otherwise, CURRENT_TIME register is read to report the time |
| 80 | */ |
| 81 | writel(RTC_INT_SEC, xrtcdev->reg_base + RTC_INT_STS); |
| 82 | |
| 83 | return 0; |
| 84 | } |
| 85 | |
| 86 | static int xlnx_rtc_read_time(struct device *dev, struct rtc_time *tm) |
| 87 | { |
| 88 | u32 status; |
| 89 | unsigned long read_time; |
| 90 | struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev); |
| 91 | |
| 92 | status = readl(xrtcdev->reg_base + RTC_INT_STS); |
| 93 | |
| 94 | if (status & RTC_INT_SEC) { |
| 95 | /* |
| 96 | * RTC has updated the CURRENT_TIME with the time written into |
| 97 | * SET_TIME_WRITE register. |
| 98 | */ |
| 99 | read_time = readl(xrtcdev->reg_base + RTC_CUR_TM); |
| 100 | } else { |
| 101 | /* |
| 102 | * Time written in SET_TIME_WRITE has not yet updated into |
| 103 | * the seconds read register, so read the time from the |
| 104 | * SET_TIME_WRITE instead of CURRENT_TIME register. |
| 105 | * Since we add +1 sec while writing, we need to -1 sec while |
| 106 | * reading. |
| 107 | */ |
| 108 | read_time = readl(xrtcdev->reg_base + RTC_SET_TM_RD) - 1; |
| 109 | } |
| 110 | rtc_time64_to_tm(read_time, tm); |
| 111 | |
| 112 | return 0; |
| 113 | } |
| 114 | |
| 115 | static int xlnx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) |
| 116 | { |
| 117 | struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev); |
| 118 | |
| 119 | rtc_time64_to_tm(readl(xrtcdev->reg_base + RTC_ALRM), &alrm->time); |
| 120 | alrm->enabled = readl(xrtcdev->reg_base + RTC_INT_MASK) & RTC_INT_ALRM; |
| 121 | |
| 122 | return 0; |
| 123 | } |
| 124 | |
| 125 | static int xlnx_rtc_alarm_irq_enable(struct device *dev, u32 enabled) |
| 126 | { |
| 127 | struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev); |
| 128 | unsigned int status; |
| 129 | ulong timeout; |
| 130 | |
| 131 | timeout = jiffies + msecs_to_jiffies(RTC_MSEC); |
| 132 | |
| 133 | if (enabled) { |
| 134 | while (1) { |
| 135 | status = readl(xrtcdev->reg_base + RTC_INT_STS); |
| 136 | if (!((status & RTC_ALRM_MASK) == RTC_ALRM_MASK)) |
| 137 | break; |
| 138 | |
| 139 | if (time_after_eq(jiffies, timeout)) { |
| 140 | dev_err(dev, "Time out occur, while clearing alarm status bit\n"); |
| 141 | return -ETIMEDOUT; |
| 142 | } |
| 143 | writel(RTC_INT_ALRM, xrtcdev->reg_base + RTC_INT_STS); |
| 144 | } |
| 145 | |
| 146 | writel(RTC_INT_ALRM, xrtcdev->reg_base + RTC_INT_EN); |
| 147 | } else { |
| 148 | writel(RTC_INT_ALRM, xrtcdev->reg_base + RTC_INT_DIS); |
| 149 | } |
| 150 | |
| 151 | return 0; |
| 152 | } |
| 153 | |
| 154 | static int xlnx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) |
| 155 | { |
| 156 | struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev); |
| 157 | unsigned long alarm_time; |
| 158 | |
| 159 | alarm_time = rtc_tm_to_time64(&alrm->time); |
| 160 | |
| 161 | writel((u32)alarm_time, (xrtcdev->reg_base + RTC_ALRM)); |
| 162 | |
| 163 | xlnx_rtc_alarm_irq_enable(dev, alrm->enabled); |
| 164 | |
| 165 | return 0; |
| 166 | } |
| 167 | |
| 168 | static void xlnx_init_rtc(struct xlnx_rtc_dev *xrtcdev) |
| 169 | { |
| 170 | u32 rtc_ctrl; |
| 171 | |
| 172 | /* Enable RTC switch to battery when VCC_PSAUX is not available */ |
| 173 | rtc_ctrl = readl(xrtcdev->reg_base + RTC_CTRL); |
| 174 | rtc_ctrl |= RTC_BATT_EN; |
| 175 | writel(rtc_ctrl, xrtcdev->reg_base + RTC_CTRL); |
| 176 | } |
| 177 | |
| 178 | static int xlnx_rtc_read_offset(struct device *dev, long *offset) |
| 179 | { |
| 180 | struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev); |
| 181 | unsigned long long rtc_ppb = RTC_PPB; |
| 182 | unsigned int tick_mult = do_div(rtc_ppb, xrtcdev->freq); |
| 183 | unsigned int calibval; |
| 184 | long offset_val; |
| 185 | |
| 186 | calibval = readl(xrtcdev->reg_base + RTC_CALIB_RD); |
| 187 | /* Offset with seconds ticks */ |
| 188 | offset_val = calibval & RTC_TICK_MASK; |
| 189 | offset_val = offset_val - RTC_CALIB_DEF; |
| 190 | offset_val = offset_val * tick_mult; |
| 191 | |
| 192 | /* Offset with fractional ticks */ |
| 193 | if (calibval & RTC_FR_EN) |
| 194 | offset_val += ((calibval & RTC_FR_MASK) >> RTC_FR_DATSHIFT) |
| 195 | * (tick_mult / RTC_FR_MAX_TICKS); |
| 196 | *offset = offset_val; |
| 197 | |
| 198 | return 0; |
| 199 | } |
| 200 | |
| 201 | static int xlnx_rtc_set_offset(struct device *dev, long offset) |
| 202 | { |
| 203 | struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev); |
| 204 | unsigned long long rtc_ppb = RTC_PPB; |
| 205 | unsigned int tick_mult = do_div(rtc_ppb, xrtcdev->freq); |
| 206 | unsigned char fract_tick = 0; |
| 207 | unsigned int calibval; |
| 208 | short int max_tick; |
| 209 | int fract_offset; |
| 210 | |
| 211 | if (offset < RTC_MIN_OFFSET || offset > RTC_MAX_OFFSET) |
| 212 | return -ERANGE; |
| 213 | |
| 214 | /* Number ticks for given offset */ |
| 215 | max_tick = div_s64_rem(offset, tick_mult, &fract_offset); |
| 216 | |
| 217 | /* Number fractional ticks for given offset */ |
| 218 | if (fract_offset) { |
| 219 | if (fract_offset < 0) { |
| 220 | fract_offset = fract_offset + tick_mult; |
| 221 | max_tick--; |
| 222 | } |
| 223 | if (fract_offset > (tick_mult / RTC_FR_MAX_TICKS)) { |
| 224 | for (fract_tick = 1; fract_tick < 16; fract_tick++) { |
| 225 | if (fract_offset <= |
| 226 | (fract_tick * |
| 227 | (tick_mult / RTC_FR_MAX_TICKS))) |
| 228 | break; |
| 229 | } |
| 230 | } |
| 231 | } |
| 232 | |
| 233 | /* Zynqmp RTC uses second and fractional tick |
| 234 | * counters for compensation |
| 235 | */ |
| 236 | calibval = max_tick + RTC_CALIB_DEF; |
| 237 | |
| 238 | if (fract_tick) |
| 239 | calibval |= RTC_FR_EN; |
| 240 | |
| 241 | calibval |= (fract_tick << RTC_FR_DATSHIFT); |
| 242 | |
| 243 | writel(calibval, (xrtcdev->reg_base + RTC_CALIB_WR)); |
| 244 | |
| 245 | return 0; |
| 246 | } |
| 247 | |
| 248 | static const struct rtc_class_ops xlnx_rtc_ops = { |
| 249 | .set_time = xlnx_rtc_set_time, |
| 250 | .read_time = xlnx_rtc_read_time, |
| 251 | .read_alarm = xlnx_rtc_read_alarm, |
| 252 | .set_alarm = xlnx_rtc_set_alarm, |
| 253 | .alarm_irq_enable = xlnx_rtc_alarm_irq_enable, |
| 254 | .read_offset = xlnx_rtc_read_offset, |
| 255 | .set_offset = xlnx_rtc_set_offset, |
| 256 | }; |
| 257 | |
| 258 | static irqreturn_t xlnx_rtc_interrupt(int irq, void *id) |
| 259 | { |
| 260 | struct xlnx_rtc_dev *xrtcdev = (struct xlnx_rtc_dev *)id; |
| 261 | unsigned int status; |
| 262 | |
| 263 | status = readl(xrtcdev->reg_base + RTC_INT_STS); |
| 264 | /* Check if interrupt asserted */ |
| 265 | if (!(status & (RTC_INT_SEC | RTC_INT_ALRM))) |
| 266 | return IRQ_NONE; |
| 267 | |
| 268 | /* Disable RTC_INT_ALRM interrupt only */ |
| 269 | writel(RTC_INT_ALRM, xrtcdev->reg_base + RTC_INT_DIS); |
| 270 | |
| 271 | if (status & RTC_INT_ALRM) |
| 272 | rtc_update_irq(xrtcdev->rtc, 1, RTC_IRQF | RTC_AF); |
| 273 | |
| 274 | return IRQ_HANDLED; |
| 275 | } |
| 276 | |
| 277 | static int xlnx_rtc_probe(struct platform_device *pdev) |
| 278 | { |
| 279 | struct xlnx_rtc_dev *xrtcdev; |
| 280 | int ret; |
| 281 | |
| 282 | xrtcdev = devm_kzalloc(&pdev->dev, sizeof(*xrtcdev), GFP_KERNEL); |
| 283 | if (!xrtcdev) |
| 284 | return -ENOMEM; |
| 285 | |
| 286 | platform_set_drvdata(pdev, xrtcdev); |
| 287 | |
| 288 | xrtcdev->rtc = devm_rtc_allocate_device(&pdev->dev); |
| 289 | if (IS_ERR(xrtcdev->rtc)) |
| 290 | return PTR_ERR(xrtcdev->rtc); |
| 291 | |
| 292 | xrtcdev->rtc->ops = &xlnx_rtc_ops; |
| 293 | xrtcdev->rtc->range_max = U32_MAX; |
| 294 | |
| 295 | xrtcdev->reg_base = devm_platform_ioremap_resource(pdev, 0); |
| 296 | if (IS_ERR(xrtcdev->reg_base)) |
| 297 | return PTR_ERR(xrtcdev->reg_base); |
| 298 | |
| 299 | xrtcdev->alarm_irq = platform_get_irq_byname(pdev, "alarm"); |
| 300 | if (xrtcdev->alarm_irq < 0) |
| 301 | return xrtcdev->alarm_irq; |
| 302 | ret = devm_request_irq(&pdev->dev, xrtcdev->alarm_irq, |
| 303 | xlnx_rtc_interrupt, 0, |
| 304 | dev_name(&pdev->dev), xrtcdev); |
| 305 | if (ret) { |
| 306 | dev_err(&pdev->dev, "request irq failed\n"); |
| 307 | return ret; |
| 308 | } |
| 309 | |
| 310 | xrtcdev->sec_irq = platform_get_irq_byname(pdev, "sec"); |
| 311 | if (xrtcdev->sec_irq < 0) |
| 312 | return xrtcdev->sec_irq; |
| 313 | ret = devm_request_irq(&pdev->dev, xrtcdev->sec_irq, |
| 314 | xlnx_rtc_interrupt, 0, |
| 315 | dev_name(&pdev->dev), xrtcdev); |
| 316 | if (ret) { |
| 317 | dev_err(&pdev->dev, "request irq failed\n"); |
| 318 | return ret; |
| 319 | } |
| 320 | |
| 321 | /* Getting the rtc info */ |
| 322 | xrtcdev->rtc_clk = devm_clk_get_optional(&pdev->dev, "rtc"); |
| 323 | if (IS_ERR(xrtcdev->rtc_clk)) { |
| 324 | if (PTR_ERR(xrtcdev->rtc_clk) != -EPROBE_DEFER) |
| 325 | dev_warn(&pdev->dev, "Device clock not found.\n"); |
| 326 | } |
| 327 | xrtcdev->freq = clk_get_rate(xrtcdev->rtc_clk); |
| 328 | if (!xrtcdev->freq) { |
| 329 | ret = of_property_read_u32(pdev->dev.of_node, "calibration", |
| 330 | &xrtcdev->freq); |
| 331 | if (ret) |
| 332 | xrtcdev->freq = RTC_CALIB_DEF; |
| 333 | } |
| 334 | ret = readl(xrtcdev->reg_base + RTC_CALIB_RD); |
| 335 | if (!ret) |
| 336 | writel(xrtcdev->freq, (xrtcdev->reg_base + RTC_CALIB_WR)); |
| 337 | |
| 338 | xlnx_init_rtc(xrtcdev); |
| 339 | |
| 340 | device_init_wakeup(&pdev->dev, true); |
| 341 | |
| 342 | return devm_rtc_register_device(xrtcdev->rtc); |
| 343 | } |
| 344 | |
| 345 | static void xlnx_rtc_remove(struct platform_device *pdev) |
| 346 | { |
| 347 | xlnx_rtc_alarm_irq_enable(&pdev->dev, 0); |
| 348 | device_init_wakeup(&pdev->dev, false); |
| 349 | } |
| 350 | |
| 351 | static int __maybe_unused xlnx_rtc_suspend(struct device *dev) |
| 352 | { |
| 353 | struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev); |
| 354 | |
| 355 | if (device_may_wakeup(dev)) |
| 356 | enable_irq_wake(xrtcdev->alarm_irq); |
| 357 | else |
| 358 | xlnx_rtc_alarm_irq_enable(dev, 0); |
| 359 | |
| 360 | return 0; |
| 361 | } |
| 362 | |
| 363 | static int __maybe_unused xlnx_rtc_resume(struct device *dev) |
| 364 | { |
| 365 | struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev); |
| 366 | |
| 367 | if (device_may_wakeup(dev)) |
| 368 | disable_irq_wake(xrtcdev->alarm_irq); |
| 369 | else |
| 370 | xlnx_rtc_alarm_irq_enable(dev, 1); |
| 371 | |
| 372 | return 0; |
| 373 | } |
| 374 | |
| 375 | static SIMPLE_DEV_PM_OPS(xlnx_rtc_pm_ops, xlnx_rtc_suspend, xlnx_rtc_resume); |
| 376 | |
| 377 | static const struct of_device_id xlnx_rtc_of_match[] = { |
| 378 | {.compatible = "xlnx,zynqmp-rtc" }, |
| 379 | { } |
| 380 | }; |
| 381 | MODULE_DEVICE_TABLE(of, xlnx_rtc_of_match); |
| 382 | |
| 383 | static struct platform_driver xlnx_rtc_driver = { |
| 384 | .probe = xlnx_rtc_probe, |
| 385 | .remove = xlnx_rtc_remove, |
| 386 | .driver = { |
| 387 | .name = KBUILD_MODNAME, |
| 388 | .pm = &xlnx_rtc_pm_ops, |
| 389 | .of_match_table = xlnx_rtc_of_match, |
| 390 | }, |
| 391 | }; |
| 392 | |
| 393 | module_platform_driver(xlnx_rtc_driver); |
| 394 | |
| 395 | MODULE_DESCRIPTION("Xilinx Zynq MPSoC RTC driver"); |
| 396 | MODULE_AUTHOR("Xilinx Inc."); |
| 397 | MODULE_LICENSE("GPL v2"); |