| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * RTC class driver for "CMOS RTC": PCs, ACPI, etc |
| 4 | * |
| 5 | * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c) |
| 6 | * Copyright (C) 2006 David Brownell (convert to new framework) |
| 7 | */ |
| 8 | |
| 9 | /* |
| 10 | * The original "cmos clock" chip was an MC146818 chip, now obsolete. |
| 11 | * That defined the register interface now provided by all PCs, some |
| 12 | * non-PC systems, and incorporated into ACPI. Modern PC chipsets |
| 13 | * integrate an MC146818 clone in their southbridge, and boards use |
| 14 | * that instead of discrete clones like the DS12887 or M48T86. There |
| 15 | * are also clones that connect using the LPC bus. |
| 16 | * |
| 17 | * That register API is also used directly by various other drivers |
| 18 | * (notably for integrated NVRAM), infrastructure (x86 has code to |
| 19 | * bypass the RTC framework, directly reading the RTC during boot |
| 20 | * and updating minutes/seconds for systems using NTP synch) and |
| 21 | * utilities (like userspace 'hwclock', if no /dev node exists). |
| 22 | * |
| 23 | * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with |
| 24 | * interrupts disabled, holding the global rtc_lock, to exclude those |
| 25 | * other drivers and utilities on correctly configured systems. |
| 26 | */ |
| 27 | |
| 28 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 29 | |
| 30 | #include <linux/kernel.h> |
| 31 | #include <linux/module.h> |
| 32 | #include <linux/init.h> |
| 33 | #include <linux/interrupt.h> |
| 34 | #include <linux/spinlock.h> |
| 35 | #include <linux/platform_device.h> |
| 36 | #include <linux/log2.h> |
| 37 | #include <linux/pm.h> |
| 38 | #include <linux/of.h> |
| 39 | #include <linux/of_platform.h> |
| 40 | #ifdef CONFIG_X86 |
| 41 | #include <asm/i8259.h> |
| 42 | #include <asm/processor.h> |
| 43 | #include <linux/dmi.h> |
| 44 | #endif |
| 45 | |
| 46 | /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */ |
| 47 | #include <linux/mc146818rtc.h> |
| 48 | |
| 49 | #ifdef CONFIG_ACPI |
| 50 | /* |
| 51 | * Use ACPI SCI to replace HPET interrupt for RTC Alarm event |
| 52 | * |
| 53 | * If cleared, ACPI SCI is only used to wake up the system from suspend |
| 54 | * |
| 55 | * If set, ACPI SCI is used to handle UIE/AIE and system wakeup |
| 56 | */ |
| 57 | |
| 58 | static bool use_acpi_alarm; |
| 59 | module_param(use_acpi_alarm, bool, 0444); |
| 60 | |
| 61 | static inline int cmos_use_acpi_alarm(void) |
| 62 | { |
| 63 | return use_acpi_alarm; |
| 64 | } |
| 65 | #else /* !CONFIG_ACPI */ |
| 66 | |
| 67 | static inline int cmos_use_acpi_alarm(void) |
| 68 | { |
| 69 | return 0; |
| 70 | } |
| 71 | #endif |
| 72 | |
| 73 | struct cmos_rtc { |
| 74 | struct rtc_device *rtc; |
| 75 | struct device *dev; |
| 76 | int irq; |
| 77 | struct resource *iomem; |
| 78 | time64_t alarm_expires; |
| 79 | |
| 80 | void (*wake_on)(struct device *); |
| 81 | void (*wake_off)(struct device *); |
| 82 | |
| 83 | u8 enabled_wake; |
| 84 | u8 suspend_ctrl; |
| 85 | |
| 86 | /* newer hardware extends the original register set */ |
| 87 | u8 day_alrm; |
| 88 | u8 mon_alrm; |
| 89 | u8 century; |
| 90 | |
| 91 | struct rtc_wkalrm saved_wkalrm; |
| 92 | }; |
| 93 | |
| 94 | /* both platform and pnp busses use negative numbers for invalid irqs */ |
| 95 | #define is_valid_irq(n) ((n) > 0) |
| 96 | |
| 97 | static const char driver_name[] = "rtc_cmos"; |
| 98 | |
| 99 | /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear; |
| 100 | * always mask it against the irq enable bits in RTC_CONTROL. Bit values |
| 101 | * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both. |
| 102 | */ |
| 103 | #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF) |
| 104 | |
| 105 | static inline int is_intr(u8 rtc_intr) |
| 106 | { |
| 107 | if (!(rtc_intr & RTC_IRQF)) |
| 108 | return 0; |
| 109 | return rtc_intr & RTC_IRQMASK; |
| 110 | } |
| 111 | |
| 112 | /*----------------------------------------------------------------*/ |
| 113 | |
| 114 | /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because |
| 115 | * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly |
| 116 | * used in a broken "legacy replacement" mode. The breakage includes |
| 117 | * HPET #1 hijacking the IRQ for this RTC, and being unavailable for |
| 118 | * other (better) use. |
| 119 | * |
| 120 | * When that broken mode is in use, platform glue provides a partial |
| 121 | * emulation of hardware RTC IRQ facilities using HPET #1. We don't |
| 122 | * want to use HPET for anything except those IRQs though... |
| 123 | */ |
| 124 | #ifdef CONFIG_HPET_EMULATE_RTC |
| 125 | #include <asm/hpet.h> |
| 126 | #else |
| 127 | |
| 128 | static inline int is_hpet_enabled(void) |
| 129 | { |
| 130 | return 0; |
| 131 | } |
| 132 | |
| 133 | static inline int hpet_mask_rtc_irq_bit(unsigned long mask) |
| 134 | { |
| 135 | return 0; |
| 136 | } |
| 137 | |
| 138 | static inline int hpet_set_rtc_irq_bit(unsigned long mask) |
| 139 | { |
| 140 | return 0; |
| 141 | } |
| 142 | |
| 143 | static inline int |
| 144 | hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) |
| 145 | { |
| 146 | return 0; |
| 147 | } |
| 148 | |
| 149 | static inline int hpet_set_periodic_freq(unsigned long freq) |
| 150 | { |
| 151 | return 0; |
| 152 | } |
| 153 | |
| 154 | static inline int hpet_rtc_timer_init(void) |
| 155 | { |
| 156 | return 0; |
| 157 | } |
| 158 | |
| 159 | extern irq_handler_t hpet_rtc_interrupt; |
| 160 | |
| 161 | static inline int hpet_register_irq_handler(irq_handler_t handler) |
| 162 | { |
| 163 | return 0; |
| 164 | } |
| 165 | |
| 166 | static inline int hpet_unregister_irq_handler(irq_handler_t handler) |
| 167 | { |
| 168 | return 0; |
| 169 | } |
| 170 | |
| 171 | #endif |
| 172 | |
| 173 | /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */ |
| 174 | static inline int use_hpet_alarm(void) |
| 175 | { |
| 176 | return is_hpet_enabled() && !cmos_use_acpi_alarm(); |
| 177 | } |
| 178 | |
| 179 | /*----------------------------------------------------------------*/ |
| 180 | |
| 181 | #ifdef RTC_PORT |
| 182 | |
| 183 | /* Most newer x86 systems have two register banks, the first used |
| 184 | * for RTC and NVRAM and the second only for NVRAM. Caller must |
| 185 | * own rtc_lock ... and we won't worry about access during NMI. |
| 186 | */ |
| 187 | #define can_bank2 true |
| 188 | |
| 189 | static inline unsigned char cmos_read_bank2(unsigned char addr) |
| 190 | { |
| 191 | outb(addr, RTC_PORT(2)); |
| 192 | return inb(RTC_PORT(3)); |
| 193 | } |
| 194 | |
| 195 | static inline void cmos_write_bank2(unsigned char val, unsigned char addr) |
| 196 | { |
| 197 | outb(addr, RTC_PORT(2)); |
| 198 | outb(val, RTC_PORT(3)); |
| 199 | } |
| 200 | |
| 201 | #else |
| 202 | |
| 203 | #define can_bank2 false |
| 204 | |
| 205 | static inline unsigned char cmos_read_bank2(unsigned char addr) |
| 206 | { |
| 207 | return 0; |
| 208 | } |
| 209 | |
| 210 | static inline void cmos_write_bank2(unsigned char val, unsigned char addr) |
| 211 | { |
| 212 | } |
| 213 | |
| 214 | #endif |
| 215 | |
| 216 | /*----------------------------------------------------------------*/ |
| 217 | |
| 218 | static int cmos_read_time(struct device *dev, struct rtc_time *t) |
| 219 | { |
| 220 | int ret; |
| 221 | |
| 222 | /* |
| 223 | * If pm_trace abused the RTC for storage, set the timespec to 0, |
| 224 | * which tells the caller that this RTC value is unusable. |
| 225 | */ |
| 226 | if (!pm_trace_rtc_valid()) |
| 227 | return -EIO; |
| 228 | |
| 229 | ret = mc146818_get_time(t, 1000); |
| 230 | if (ret < 0) { |
| 231 | dev_err_ratelimited(dev, "unable to read current time\n"); |
| 232 | return ret; |
| 233 | } |
| 234 | |
| 235 | return 0; |
| 236 | } |
| 237 | |
| 238 | static int cmos_set_time(struct device *dev, struct rtc_time *t) |
| 239 | { |
| 240 | /* NOTE: this ignores the issue whereby updating the seconds |
| 241 | * takes effect exactly 500ms after we write the register. |
| 242 | * (Also queueing and other delays before we get this far.) |
| 243 | */ |
| 244 | return mc146818_set_time(t); |
| 245 | } |
| 246 | |
| 247 | struct cmos_read_alarm_callback_param { |
| 248 | struct cmos_rtc *cmos; |
| 249 | struct rtc_time *time; |
| 250 | unsigned char rtc_control; |
| 251 | }; |
| 252 | |
| 253 | static void cmos_read_alarm_callback(unsigned char __always_unused seconds, |
| 254 | void *param_in) |
| 255 | { |
| 256 | struct cmos_read_alarm_callback_param *p = |
| 257 | (struct cmos_read_alarm_callback_param *)param_in; |
| 258 | struct rtc_time *time = p->time; |
| 259 | |
| 260 | time->tm_sec = CMOS_READ(RTC_SECONDS_ALARM); |
| 261 | time->tm_min = CMOS_READ(RTC_MINUTES_ALARM); |
| 262 | time->tm_hour = CMOS_READ(RTC_HOURS_ALARM); |
| 263 | |
| 264 | if (p->cmos->day_alrm) { |
| 265 | /* ignore upper bits on readback per ACPI spec */ |
| 266 | time->tm_mday = CMOS_READ(p->cmos->day_alrm) & 0x3f; |
| 267 | if (!time->tm_mday) |
| 268 | time->tm_mday = -1; |
| 269 | |
| 270 | if (p->cmos->mon_alrm) { |
| 271 | time->tm_mon = CMOS_READ(p->cmos->mon_alrm); |
| 272 | if (!time->tm_mon) |
| 273 | time->tm_mon = -1; |
| 274 | } |
| 275 | } |
| 276 | |
| 277 | p->rtc_control = CMOS_READ(RTC_CONTROL); |
| 278 | } |
| 279 | |
| 280 | static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t) |
| 281 | { |
| 282 | struct cmos_rtc *cmos = dev_get_drvdata(dev); |
| 283 | struct cmos_read_alarm_callback_param p = { |
| 284 | .cmos = cmos, |
| 285 | .time = &t->time, |
| 286 | }; |
| 287 | |
| 288 | /* This not only a rtc_op, but also called directly */ |
| 289 | if (!is_valid_irq(cmos->irq)) |
| 290 | return -ETIMEDOUT; |
| 291 | |
| 292 | /* Basic alarms only support hour, minute, and seconds fields. |
| 293 | * Some also support day and month, for alarms up to a year in |
| 294 | * the future. |
| 295 | */ |
| 296 | |
| 297 | /* Some Intel chipsets disconnect the alarm registers when the clock |
| 298 | * update is in progress - during this time reads return bogus values |
| 299 | * and writes may fail silently. See for example "7th Generation IntelĀ® |
| 300 | * Processor Family I/O for U/Y Platforms [...] Datasheet", section |
| 301 | * 27.7.1 |
| 302 | * |
| 303 | * Use the mc146818_avoid_UIP() function to avoid this. |
| 304 | */ |
| 305 | if (!mc146818_avoid_UIP(cmos_read_alarm_callback, 10, &p)) |
| 306 | return -EIO; |
| 307 | |
| 308 | if (!(p.rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { |
| 309 | if (((unsigned)t->time.tm_sec) < 0x60) |
| 310 | t->time.tm_sec = bcd2bin(t->time.tm_sec); |
| 311 | else |
| 312 | t->time.tm_sec = -1; |
| 313 | if (((unsigned)t->time.tm_min) < 0x60) |
| 314 | t->time.tm_min = bcd2bin(t->time.tm_min); |
| 315 | else |
| 316 | t->time.tm_min = -1; |
| 317 | if (((unsigned)t->time.tm_hour) < 0x24) |
| 318 | t->time.tm_hour = bcd2bin(t->time.tm_hour); |
| 319 | else |
| 320 | t->time.tm_hour = -1; |
| 321 | |
| 322 | if (cmos->day_alrm) { |
| 323 | if (((unsigned)t->time.tm_mday) <= 0x31) |
| 324 | t->time.tm_mday = bcd2bin(t->time.tm_mday); |
| 325 | else |
| 326 | t->time.tm_mday = -1; |
| 327 | |
| 328 | if (cmos->mon_alrm) { |
| 329 | if (((unsigned)t->time.tm_mon) <= 0x12) |
| 330 | t->time.tm_mon = bcd2bin(t->time.tm_mon)-1; |
| 331 | else |
| 332 | t->time.tm_mon = -1; |
| 333 | } |
| 334 | } |
| 335 | } |
| 336 | |
| 337 | t->enabled = !!(p.rtc_control & RTC_AIE); |
| 338 | t->pending = 0; |
| 339 | |
| 340 | return 0; |
| 341 | } |
| 342 | |
| 343 | static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control) |
| 344 | { |
| 345 | unsigned char rtc_intr; |
| 346 | |
| 347 | /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS; |
| 348 | * allegedly some older rtcs need that to handle irqs properly |
| 349 | */ |
| 350 | rtc_intr = CMOS_READ(RTC_INTR_FLAGS); |
| 351 | |
| 352 | if (use_hpet_alarm()) |
| 353 | return; |
| 354 | |
| 355 | rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; |
| 356 | if (is_intr(rtc_intr)) |
| 357 | rtc_update_irq(cmos->rtc, 1, rtc_intr); |
| 358 | } |
| 359 | |
| 360 | static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask) |
| 361 | { |
| 362 | unsigned char rtc_control; |
| 363 | |
| 364 | /* flush any pending IRQ status, notably for update irqs, |
| 365 | * before we enable new IRQs |
| 366 | */ |
| 367 | rtc_control = CMOS_READ(RTC_CONTROL); |
| 368 | cmos_checkintr(cmos, rtc_control); |
| 369 | |
| 370 | rtc_control |= mask; |
| 371 | CMOS_WRITE(rtc_control, RTC_CONTROL); |
| 372 | if (use_hpet_alarm()) |
| 373 | hpet_set_rtc_irq_bit(mask); |
| 374 | |
| 375 | if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) { |
| 376 | if (cmos->wake_on) |
| 377 | cmos->wake_on(cmos->dev); |
| 378 | } |
| 379 | |
| 380 | cmos_checkintr(cmos, rtc_control); |
| 381 | } |
| 382 | |
| 383 | static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask) |
| 384 | { |
| 385 | unsigned char rtc_control; |
| 386 | |
| 387 | rtc_control = CMOS_READ(RTC_CONTROL); |
| 388 | rtc_control &= ~mask; |
| 389 | CMOS_WRITE(rtc_control, RTC_CONTROL); |
| 390 | if (use_hpet_alarm()) |
| 391 | hpet_mask_rtc_irq_bit(mask); |
| 392 | |
| 393 | if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) { |
| 394 | if (cmos->wake_off) |
| 395 | cmos->wake_off(cmos->dev); |
| 396 | } |
| 397 | |
| 398 | cmos_checkintr(cmos, rtc_control); |
| 399 | } |
| 400 | |
| 401 | static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t) |
| 402 | { |
| 403 | struct cmos_rtc *cmos = dev_get_drvdata(dev); |
| 404 | struct rtc_time now; |
| 405 | |
| 406 | cmos_read_time(dev, &now); |
| 407 | |
| 408 | if (!cmos->day_alrm) { |
| 409 | time64_t t_max_date; |
| 410 | time64_t t_alrm; |
| 411 | |
| 412 | t_max_date = rtc_tm_to_time64(&now); |
| 413 | t_max_date += 24 * 60 * 60 - 1; |
| 414 | t_alrm = rtc_tm_to_time64(&t->time); |
| 415 | if (t_alrm > t_max_date) { |
| 416 | dev_err(dev, |
| 417 | "Alarms can be up to one day in the future\n"); |
| 418 | return -EINVAL; |
| 419 | } |
| 420 | } else if (!cmos->mon_alrm) { |
| 421 | struct rtc_time max_date = now; |
| 422 | time64_t t_max_date; |
| 423 | time64_t t_alrm; |
| 424 | int max_mday; |
| 425 | |
| 426 | if (max_date.tm_mon == 11) { |
| 427 | max_date.tm_mon = 0; |
| 428 | max_date.tm_year += 1; |
| 429 | } else { |
| 430 | max_date.tm_mon += 1; |
| 431 | } |
| 432 | max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year); |
| 433 | if (max_date.tm_mday > max_mday) |
| 434 | max_date.tm_mday = max_mday; |
| 435 | |
| 436 | t_max_date = rtc_tm_to_time64(&max_date); |
| 437 | t_max_date -= 1; |
| 438 | t_alrm = rtc_tm_to_time64(&t->time); |
| 439 | if (t_alrm > t_max_date) { |
| 440 | dev_err(dev, |
| 441 | "Alarms can be up to one month in the future\n"); |
| 442 | return -EINVAL; |
| 443 | } |
| 444 | } else { |
| 445 | struct rtc_time max_date = now; |
| 446 | time64_t t_max_date; |
| 447 | time64_t t_alrm; |
| 448 | int max_mday; |
| 449 | |
| 450 | max_date.tm_year += 1; |
| 451 | max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year); |
| 452 | if (max_date.tm_mday > max_mday) |
| 453 | max_date.tm_mday = max_mday; |
| 454 | |
| 455 | t_max_date = rtc_tm_to_time64(&max_date); |
| 456 | t_max_date -= 1; |
| 457 | t_alrm = rtc_tm_to_time64(&t->time); |
| 458 | if (t_alrm > t_max_date) { |
| 459 | dev_err(dev, |
| 460 | "Alarms can be up to one year in the future\n"); |
| 461 | return -EINVAL; |
| 462 | } |
| 463 | } |
| 464 | |
| 465 | return 0; |
| 466 | } |
| 467 | |
| 468 | struct cmos_set_alarm_callback_param { |
| 469 | struct cmos_rtc *cmos; |
| 470 | unsigned char mon, mday, hrs, min, sec; |
| 471 | struct rtc_wkalrm *t; |
| 472 | }; |
| 473 | |
| 474 | /* Note: this function may be executed by mc146818_avoid_UIP() more then |
| 475 | * once |
| 476 | */ |
| 477 | static void cmos_set_alarm_callback(unsigned char __always_unused seconds, |
| 478 | void *param_in) |
| 479 | { |
| 480 | struct cmos_set_alarm_callback_param *p = |
| 481 | (struct cmos_set_alarm_callback_param *)param_in; |
| 482 | |
| 483 | /* next rtc irq must not be from previous alarm setting */ |
| 484 | cmos_irq_disable(p->cmos, RTC_AIE); |
| 485 | |
| 486 | /* update alarm */ |
| 487 | CMOS_WRITE(p->hrs, RTC_HOURS_ALARM); |
| 488 | CMOS_WRITE(p->min, RTC_MINUTES_ALARM); |
| 489 | CMOS_WRITE(p->sec, RTC_SECONDS_ALARM); |
| 490 | |
| 491 | /* the system may support an "enhanced" alarm */ |
| 492 | if (p->cmos->day_alrm) { |
| 493 | CMOS_WRITE(p->mday, p->cmos->day_alrm); |
| 494 | if (p->cmos->mon_alrm) |
| 495 | CMOS_WRITE(p->mon, p->cmos->mon_alrm); |
| 496 | } |
| 497 | |
| 498 | if (use_hpet_alarm()) { |
| 499 | /* |
| 500 | * FIXME the HPET alarm glue currently ignores day_alrm |
| 501 | * and mon_alrm ... |
| 502 | */ |
| 503 | hpet_set_alarm_time(p->t->time.tm_hour, p->t->time.tm_min, |
| 504 | p->t->time.tm_sec); |
| 505 | } |
| 506 | |
| 507 | if (p->t->enabled) |
| 508 | cmos_irq_enable(p->cmos, RTC_AIE); |
| 509 | } |
| 510 | |
| 511 | static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t) |
| 512 | { |
| 513 | struct cmos_rtc *cmos = dev_get_drvdata(dev); |
| 514 | struct cmos_set_alarm_callback_param p = { |
| 515 | .cmos = cmos, |
| 516 | .t = t |
| 517 | }; |
| 518 | unsigned char rtc_control; |
| 519 | int ret; |
| 520 | |
| 521 | /* This not only a rtc_op, but also called directly */ |
| 522 | if (!is_valid_irq(cmos->irq)) |
| 523 | return -EIO; |
| 524 | |
| 525 | ret = cmos_validate_alarm(dev, t); |
| 526 | if (ret < 0) |
| 527 | return ret; |
| 528 | |
| 529 | p.mon = t->time.tm_mon + 1; |
| 530 | p.mday = t->time.tm_mday; |
| 531 | p.hrs = t->time.tm_hour; |
| 532 | p.min = t->time.tm_min; |
| 533 | p.sec = t->time.tm_sec; |
| 534 | |
| 535 | spin_lock_irq(&rtc_lock); |
| 536 | rtc_control = CMOS_READ(RTC_CONTROL); |
| 537 | spin_unlock_irq(&rtc_lock); |
| 538 | |
| 539 | if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { |
| 540 | /* Writing 0xff means "don't care" or "match all". */ |
| 541 | p.mon = (p.mon <= 12) ? bin2bcd(p.mon) : 0xff; |
| 542 | p.mday = (p.mday >= 1 && p.mday <= 31) ? bin2bcd(p.mday) : 0xff; |
| 543 | p.hrs = (p.hrs < 24) ? bin2bcd(p.hrs) : 0xff; |
| 544 | p.min = (p.min < 60) ? bin2bcd(p.min) : 0xff; |
| 545 | p.sec = (p.sec < 60) ? bin2bcd(p.sec) : 0xff; |
| 546 | } |
| 547 | |
| 548 | /* |
| 549 | * Some Intel chipsets disconnect the alarm registers when the clock |
| 550 | * update is in progress - during this time writes fail silently. |
| 551 | * |
| 552 | * Use mc146818_avoid_UIP() to avoid this. |
| 553 | */ |
| 554 | if (!mc146818_avoid_UIP(cmos_set_alarm_callback, 10, &p)) |
| 555 | return -ETIMEDOUT; |
| 556 | |
| 557 | cmos->alarm_expires = rtc_tm_to_time64(&t->time); |
| 558 | |
| 559 | return 0; |
| 560 | } |
| 561 | |
| 562 | static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled) |
| 563 | { |
| 564 | struct cmos_rtc *cmos = dev_get_drvdata(dev); |
| 565 | unsigned long flags; |
| 566 | |
| 567 | spin_lock_irqsave(&rtc_lock, flags); |
| 568 | |
| 569 | if (enabled) |
| 570 | cmos_irq_enable(cmos, RTC_AIE); |
| 571 | else |
| 572 | cmos_irq_disable(cmos, RTC_AIE); |
| 573 | |
| 574 | spin_unlock_irqrestore(&rtc_lock, flags); |
| 575 | return 0; |
| 576 | } |
| 577 | |
| 578 | #if IS_ENABLED(CONFIG_RTC_INTF_PROC) |
| 579 | |
| 580 | static int cmos_procfs(struct device *dev, struct seq_file *seq) |
| 581 | { |
| 582 | struct cmos_rtc *cmos = dev_get_drvdata(dev); |
| 583 | unsigned char rtc_control, valid; |
| 584 | |
| 585 | spin_lock_irq(&rtc_lock); |
| 586 | rtc_control = CMOS_READ(RTC_CONTROL); |
| 587 | valid = CMOS_READ(RTC_VALID); |
| 588 | spin_unlock_irq(&rtc_lock); |
| 589 | |
| 590 | /* NOTE: at least ICH6 reports battery status using a different |
| 591 | * (non-RTC) bit; and SQWE is ignored on many current systems. |
| 592 | */ |
| 593 | seq_printf(seq, |
| 594 | "periodic_IRQ\t: %s\n" |
| 595 | "update_IRQ\t: %s\n" |
| 596 | "HPET_emulated\t: %s\n" |
| 597 | // "square_wave\t: %s\n" |
| 598 | "BCD\t\t: %s\n" |
| 599 | "DST_enable\t: %s\n" |
| 600 | "periodic_freq\t: %d\n" |
| 601 | "batt_status\t: %s\n", |
| 602 | (rtc_control & RTC_PIE) ? "yes" : "no", |
| 603 | (rtc_control & RTC_UIE) ? "yes" : "no", |
| 604 | use_hpet_alarm() ? "yes" : "no", |
| 605 | // (rtc_control & RTC_SQWE) ? "yes" : "no", |
| 606 | (rtc_control & RTC_DM_BINARY) ? "no" : "yes", |
| 607 | (rtc_control & RTC_DST_EN) ? "yes" : "no", |
| 608 | cmos->rtc->irq_freq, |
| 609 | (valid & RTC_VRT) ? "okay" : "dead"); |
| 610 | |
| 611 | return 0; |
| 612 | } |
| 613 | |
| 614 | #else |
| 615 | #define cmos_procfs NULL |
| 616 | #endif |
| 617 | |
| 618 | static const struct rtc_class_ops cmos_rtc_ops = { |
| 619 | .read_time = cmos_read_time, |
| 620 | .set_time = cmos_set_time, |
| 621 | .read_alarm = cmos_read_alarm, |
| 622 | .set_alarm = cmos_set_alarm, |
| 623 | .proc = cmos_procfs, |
| 624 | .alarm_irq_enable = cmos_alarm_irq_enable, |
| 625 | }; |
| 626 | |
| 627 | /*----------------------------------------------------------------*/ |
| 628 | |
| 629 | /* |
| 630 | * All these chips have at least 64 bytes of address space, shared by |
| 631 | * RTC registers and NVRAM. Most of those bytes of NVRAM are used |
| 632 | * by boot firmware. Modern chips have 128 or 256 bytes. |
| 633 | */ |
| 634 | |
| 635 | #define NVRAM_OFFSET (RTC_REG_D + 1) |
| 636 | |
| 637 | static int cmos_nvram_read(void *priv, unsigned int off, void *val, |
| 638 | size_t count) |
| 639 | { |
| 640 | unsigned char *buf = val; |
| 641 | |
| 642 | off += NVRAM_OFFSET; |
| 643 | for (; count; count--, off++, buf++) { |
| 644 | guard(spinlock_irq)(&rtc_lock); |
| 645 | if (off < 128) |
| 646 | *buf = CMOS_READ(off); |
| 647 | else if (can_bank2) |
| 648 | *buf = cmos_read_bank2(off); |
| 649 | else |
| 650 | return -EIO; |
| 651 | } |
| 652 | |
| 653 | return 0; |
| 654 | } |
| 655 | |
| 656 | static int cmos_nvram_write(void *priv, unsigned int off, void *val, |
| 657 | size_t count) |
| 658 | { |
| 659 | struct cmos_rtc *cmos = priv; |
| 660 | unsigned char *buf = val; |
| 661 | |
| 662 | /* NOTE: on at least PCs and Ataris, the boot firmware uses a |
| 663 | * checksum on part of the NVRAM data. That's currently ignored |
| 664 | * here. If userspace is smart enough to know what fields of |
| 665 | * NVRAM to update, updating checksums is also part of its job. |
| 666 | */ |
| 667 | off += NVRAM_OFFSET; |
| 668 | for (; count; count--, off++, buf++) { |
| 669 | /* don't trash RTC registers */ |
| 670 | if (off == cmos->day_alrm |
| 671 | || off == cmos->mon_alrm |
| 672 | || off == cmos->century) |
| 673 | continue; |
| 674 | |
| 675 | guard(spinlock_irq)(&rtc_lock); |
| 676 | if (off < 128) |
| 677 | CMOS_WRITE(*buf, off); |
| 678 | else if (can_bank2) |
| 679 | cmos_write_bank2(*buf, off); |
| 680 | else |
| 681 | return -EIO; |
| 682 | } |
| 683 | |
| 684 | return 0; |
| 685 | } |
| 686 | |
| 687 | /*----------------------------------------------------------------*/ |
| 688 | |
| 689 | static struct cmos_rtc cmos_rtc; |
| 690 | |
| 691 | static irqreturn_t cmos_interrupt(int irq, void *p) |
| 692 | { |
| 693 | u8 irqstat; |
| 694 | u8 rtc_control; |
| 695 | unsigned long flags; |
| 696 | |
| 697 | /* We cannot use spin_lock() here, as cmos_interrupt() is also called |
| 698 | * in a non-irq context. |
| 699 | */ |
| 700 | spin_lock_irqsave(&rtc_lock, flags); |
| 701 | |
| 702 | /* When the HPET interrupt handler calls us, the interrupt |
| 703 | * status is passed as arg1 instead of the irq number. But |
| 704 | * always clear irq status, even when HPET is in the way. |
| 705 | * |
| 706 | * Note that HPET and RTC are almost certainly out of phase, |
| 707 | * giving different IRQ status ... |
| 708 | */ |
| 709 | irqstat = CMOS_READ(RTC_INTR_FLAGS); |
| 710 | rtc_control = CMOS_READ(RTC_CONTROL); |
| 711 | if (use_hpet_alarm()) |
| 712 | irqstat = (unsigned long)irq & 0xF0; |
| 713 | |
| 714 | /* If we were suspended, RTC_CONTROL may not be accurate since the |
| 715 | * bios may have cleared it. |
| 716 | */ |
| 717 | if (!cmos_rtc.suspend_ctrl) |
| 718 | irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; |
| 719 | else |
| 720 | irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF; |
| 721 | |
| 722 | /* All Linux RTC alarms should be treated as if they were oneshot. |
| 723 | * Similar code may be needed in system wakeup paths, in case the |
| 724 | * alarm woke the system. |
| 725 | */ |
| 726 | if (irqstat & RTC_AIE) { |
| 727 | cmos_rtc.suspend_ctrl &= ~RTC_AIE; |
| 728 | rtc_control &= ~RTC_AIE; |
| 729 | CMOS_WRITE(rtc_control, RTC_CONTROL); |
| 730 | if (use_hpet_alarm()) |
| 731 | hpet_mask_rtc_irq_bit(RTC_AIE); |
| 732 | CMOS_READ(RTC_INTR_FLAGS); |
| 733 | } |
| 734 | spin_unlock_irqrestore(&rtc_lock, flags); |
| 735 | |
| 736 | if (is_intr(irqstat)) { |
| 737 | rtc_update_irq(p, 1, irqstat); |
| 738 | return IRQ_HANDLED; |
| 739 | } else |
| 740 | return IRQ_NONE; |
| 741 | } |
| 742 | |
| 743 | #ifdef CONFIG_ACPI |
| 744 | |
| 745 | #include <linux/acpi.h> |
| 746 | |
| 747 | static u32 rtc_handler(void *context) |
| 748 | { |
| 749 | struct device *dev = context; |
| 750 | struct cmos_rtc *cmos = dev_get_drvdata(dev); |
| 751 | unsigned char rtc_control = 0; |
| 752 | unsigned char rtc_intr; |
| 753 | unsigned long flags; |
| 754 | |
| 755 | |
| 756 | /* |
| 757 | * Always update rtc irq when ACPI is used as RTC Alarm. |
| 758 | * Or else, ACPI SCI is enabled during suspend/resume only, |
| 759 | * update rtc irq in that case. |
| 760 | */ |
| 761 | if (cmos_use_acpi_alarm()) |
| 762 | cmos_interrupt(0, (void *)cmos->rtc); |
| 763 | else { |
| 764 | /* Fix me: can we use cmos_interrupt() here as well? */ |
| 765 | spin_lock_irqsave(&rtc_lock, flags); |
| 766 | if (cmos_rtc.suspend_ctrl) |
| 767 | rtc_control = CMOS_READ(RTC_CONTROL); |
| 768 | if (rtc_control & RTC_AIE) { |
| 769 | cmos_rtc.suspend_ctrl &= ~RTC_AIE; |
| 770 | CMOS_WRITE(rtc_control, RTC_CONTROL); |
| 771 | rtc_intr = CMOS_READ(RTC_INTR_FLAGS); |
| 772 | rtc_update_irq(cmos->rtc, 1, rtc_intr); |
| 773 | } |
| 774 | spin_unlock_irqrestore(&rtc_lock, flags); |
| 775 | } |
| 776 | |
| 777 | pm_wakeup_hard_event(dev); |
| 778 | acpi_clear_event(ACPI_EVENT_RTC); |
| 779 | acpi_disable_event(ACPI_EVENT_RTC, 0); |
| 780 | return ACPI_INTERRUPT_HANDLED; |
| 781 | } |
| 782 | |
| 783 | static void acpi_rtc_event_setup(struct device *dev) |
| 784 | { |
| 785 | if (acpi_disabled) |
| 786 | return; |
| 787 | |
| 788 | acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev); |
| 789 | /* |
| 790 | * After the RTC handler is installed, the Fixed_RTC event should |
| 791 | * be disabled. Only when the RTC alarm is set will it be enabled. |
| 792 | */ |
| 793 | acpi_clear_event(ACPI_EVENT_RTC); |
| 794 | acpi_disable_event(ACPI_EVENT_RTC, 0); |
| 795 | } |
| 796 | |
| 797 | static void acpi_rtc_event_cleanup(void) |
| 798 | { |
| 799 | if (acpi_disabled) |
| 800 | return; |
| 801 | |
| 802 | acpi_remove_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler); |
| 803 | } |
| 804 | |
| 805 | static void rtc_wake_on(struct device *dev) |
| 806 | { |
| 807 | acpi_clear_event(ACPI_EVENT_RTC); |
| 808 | acpi_enable_event(ACPI_EVENT_RTC, 0); |
| 809 | } |
| 810 | |
| 811 | static void rtc_wake_off(struct device *dev) |
| 812 | { |
| 813 | acpi_disable_event(ACPI_EVENT_RTC, 0); |
| 814 | } |
| 815 | |
| 816 | #ifdef CONFIG_X86 |
| 817 | static void use_acpi_alarm_quirks(void) |
| 818 | { |
| 819 | switch (boot_cpu_data.x86_vendor) { |
| 820 | case X86_VENDOR_INTEL: |
| 821 | if (dmi_get_bios_year() < 2015) |
| 822 | return; |
| 823 | break; |
| 824 | case X86_VENDOR_AMD: |
| 825 | case X86_VENDOR_HYGON: |
| 826 | if (dmi_get_bios_year() < 2021) |
| 827 | return; |
| 828 | break; |
| 829 | default: |
| 830 | return; |
| 831 | } |
| 832 | if (!is_hpet_enabled()) |
| 833 | return; |
| 834 | |
| 835 | use_acpi_alarm = true; |
| 836 | } |
| 837 | #else |
| 838 | static inline void use_acpi_alarm_quirks(void) { } |
| 839 | #endif |
| 840 | |
| 841 | static void acpi_cmos_wake_setup(struct device *dev) |
| 842 | { |
| 843 | if (acpi_disabled) |
| 844 | return; |
| 845 | |
| 846 | use_acpi_alarm_quirks(); |
| 847 | |
| 848 | cmos_rtc.wake_on = rtc_wake_on; |
| 849 | cmos_rtc.wake_off = rtc_wake_off; |
| 850 | |
| 851 | /* ACPI tables bug workaround. */ |
| 852 | if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) { |
| 853 | dev_dbg(dev, "bogus FADT month_alarm (%d)\n", |
| 854 | acpi_gbl_FADT.month_alarm); |
| 855 | acpi_gbl_FADT.month_alarm = 0; |
| 856 | } |
| 857 | |
| 858 | cmos_rtc.day_alrm = acpi_gbl_FADT.day_alarm; |
| 859 | cmos_rtc.mon_alrm = acpi_gbl_FADT.month_alarm; |
| 860 | cmos_rtc.century = acpi_gbl_FADT.century; |
| 861 | |
| 862 | if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE) |
| 863 | dev_info(dev, "RTC can wake from S4\n"); |
| 864 | |
| 865 | /* RTC always wakes from S1/S2/S3, and often S4/STD */ |
| 866 | device_init_wakeup(dev, true); |
| 867 | } |
| 868 | |
| 869 | static void cmos_check_acpi_rtc_status(struct device *dev, |
| 870 | unsigned char *rtc_control) |
| 871 | { |
| 872 | struct cmos_rtc *cmos = dev_get_drvdata(dev); |
| 873 | acpi_event_status rtc_status; |
| 874 | acpi_status status; |
| 875 | |
| 876 | if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC) |
| 877 | return; |
| 878 | |
| 879 | status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status); |
| 880 | if (ACPI_FAILURE(status)) { |
| 881 | dev_err(dev, "Could not get RTC status\n"); |
| 882 | } else if (rtc_status & ACPI_EVENT_FLAG_SET) { |
| 883 | unsigned char mask; |
| 884 | *rtc_control &= ~RTC_AIE; |
| 885 | CMOS_WRITE(*rtc_control, RTC_CONTROL); |
| 886 | mask = CMOS_READ(RTC_INTR_FLAGS); |
| 887 | rtc_update_irq(cmos->rtc, 1, mask); |
| 888 | } |
| 889 | } |
| 890 | |
| 891 | #else /* !CONFIG_ACPI */ |
| 892 | |
| 893 | static inline void acpi_rtc_event_setup(struct device *dev) |
| 894 | { |
| 895 | } |
| 896 | |
| 897 | static inline void acpi_rtc_event_cleanup(void) |
| 898 | { |
| 899 | } |
| 900 | |
| 901 | static inline void acpi_cmos_wake_setup(struct device *dev) |
| 902 | { |
| 903 | } |
| 904 | |
| 905 | static inline void cmos_check_acpi_rtc_status(struct device *dev, |
| 906 | unsigned char *rtc_control) |
| 907 | { |
| 908 | } |
| 909 | #endif /* CONFIG_ACPI */ |
| 910 | |
| 911 | #ifdef CONFIG_PNP |
| 912 | #define INITSECTION |
| 913 | |
| 914 | #else |
| 915 | #define INITSECTION __init |
| 916 | #endif |
| 917 | |
| 918 | #define SECS_PER_DAY (24 * 60 * 60) |
| 919 | #define SECS_PER_MONTH (28 * SECS_PER_DAY) |
| 920 | #define SECS_PER_YEAR (365 * SECS_PER_DAY) |
| 921 | |
| 922 | static int INITSECTION |
| 923 | cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq) |
| 924 | { |
| 925 | struct cmos_rtc_board_info *info = dev_get_platdata(dev); |
| 926 | int retval = 0; |
| 927 | unsigned char rtc_control; |
| 928 | unsigned address_space; |
| 929 | u32 flags = 0; |
| 930 | struct nvmem_config nvmem_cfg = { |
| 931 | .name = "cmos_nvram", |
| 932 | .word_size = 1, |
| 933 | .stride = 1, |
| 934 | .reg_read = cmos_nvram_read, |
| 935 | .reg_write = cmos_nvram_write, |
| 936 | .priv = &cmos_rtc, |
| 937 | }; |
| 938 | |
| 939 | /* there can be only one ... */ |
| 940 | if (cmos_rtc.dev) |
| 941 | return -EBUSY; |
| 942 | |
| 943 | if (!ports) |
| 944 | return -ENODEV; |
| 945 | |
| 946 | /* Claim I/O ports ASAP, minimizing conflict with legacy driver. |
| 947 | * |
| 948 | * REVISIT non-x86 systems may instead use memory space resources |
| 949 | * (needing ioremap etc), not i/o space resources like this ... |
| 950 | */ |
| 951 | if (RTC_IOMAPPED) |
| 952 | ports = request_region(ports->start, resource_size(ports), |
| 953 | driver_name); |
| 954 | else |
| 955 | ports = request_mem_region(ports->start, resource_size(ports), |
| 956 | driver_name); |
| 957 | if (!ports) { |
| 958 | dev_dbg(dev, "i/o registers already in use\n"); |
| 959 | return -EBUSY; |
| 960 | } |
| 961 | |
| 962 | cmos_rtc.irq = rtc_irq; |
| 963 | cmos_rtc.iomem = ports; |
| 964 | |
| 965 | /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM |
| 966 | * driver did, but don't reject unknown configs. Old hardware |
| 967 | * won't address 128 bytes. Newer chips have multiple banks, |
| 968 | * though they may not be listed in one I/O resource. |
| 969 | */ |
| 970 | #if defined(CONFIG_ATARI) |
| 971 | address_space = 64; |
| 972 | #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \ |
| 973 | || defined(__sparc__) || defined(__mips__) \ |
| 974 | || defined(__powerpc__) |
| 975 | address_space = 128; |
| 976 | #else |
| 977 | #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes. |
| 978 | address_space = 128; |
| 979 | #endif |
| 980 | if (can_bank2 && ports->end > (ports->start + 1)) |
| 981 | address_space = 256; |
| 982 | |
| 983 | /* For ACPI systems extension info comes from the FADT. On others, |
| 984 | * board specific setup provides it as appropriate. Systems where |
| 985 | * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and |
| 986 | * some almost-clones) can provide hooks to make that behave. |
| 987 | * |
| 988 | * Note that ACPI doesn't preclude putting these registers into |
| 989 | * "extended" areas of the chip, including some that we won't yet |
| 990 | * expect CMOS_READ and friends to handle. |
| 991 | */ |
| 992 | if (info) { |
| 993 | if (info->flags) |
| 994 | flags = info->flags; |
| 995 | if (info->address_space) |
| 996 | address_space = info->address_space; |
| 997 | |
| 998 | cmos_rtc.day_alrm = info->rtc_day_alarm; |
| 999 | cmos_rtc.mon_alrm = info->rtc_mon_alarm; |
| 1000 | cmos_rtc.century = info->rtc_century; |
| 1001 | |
| 1002 | if (info->wake_on && info->wake_off) { |
| 1003 | cmos_rtc.wake_on = info->wake_on; |
| 1004 | cmos_rtc.wake_off = info->wake_off; |
| 1005 | } |
| 1006 | } else { |
| 1007 | acpi_cmos_wake_setup(dev); |
| 1008 | } |
| 1009 | |
| 1010 | if (cmos_rtc.day_alrm >= 128) |
| 1011 | cmos_rtc.day_alrm = 0; |
| 1012 | |
| 1013 | if (cmos_rtc.mon_alrm >= 128) |
| 1014 | cmos_rtc.mon_alrm = 0; |
| 1015 | |
| 1016 | if (cmos_rtc.century >= 128) |
| 1017 | cmos_rtc.century = 0; |
| 1018 | |
| 1019 | cmos_rtc.dev = dev; |
| 1020 | dev_set_drvdata(dev, &cmos_rtc); |
| 1021 | |
| 1022 | cmos_rtc.rtc = devm_rtc_allocate_device(dev); |
| 1023 | if (IS_ERR(cmos_rtc.rtc)) { |
| 1024 | retval = PTR_ERR(cmos_rtc.rtc); |
| 1025 | goto cleanup0; |
| 1026 | } |
| 1027 | |
| 1028 | if (cmos_rtc.mon_alrm) |
| 1029 | cmos_rtc.rtc->alarm_offset_max = SECS_PER_YEAR - 1; |
| 1030 | else if (cmos_rtc.day_alrm) |
| 1031 | cmos_rtc.rtc->alarm_offset_max = SECS_PER_MONTH - 1; |
| 1032 | else |
| 1033 | cmos_rtc.rtc->alarm_offset_max = SECS_PER_DAY - 1; |
| 1034 | |
| 1035 | rename_region(ports, dev_name(&cmos_rtc.rtc->dev)); |
| 1036 | |
| 1037 | if (!mc146818_does_rtc_work()) { |
| 1038 | dev_warn(dev, "broken or not accessible\n"); |
| 1039 | retval = -ENXIO; |
| 1040 | goto cleanup1; |
| 1041 | } |
| 1042 | |
| 1043 | spin_lock_irq(&rtc_lock); |
| 1044 | |
| 1045 | if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) { |
| 1046 | /* force periodic irq to CMOS reset default of 1024Hz; |
| 1047 | * |
| 1048 | * REVISIT it's been reported that at least one x86_64 ALI |
| 1049 | * mobo doesn't use 32KHz here ... for portability we might |
| 1050 | * need to do something about other clock frequencies. |
| 1051 | */ |
| 1052 | cmos_rtc.rtc->irq_freq = 1024; |
| 1053 | if (use_hpet_alarm()) |
| 1054 | hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq); |
| 1055 | CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT); |
| 1056 | } |
| 1057 | |
| 1058 | /* disable irqs */ |
| 1059 | if (is_valid_irq(rtc_irq)) |
| 1060 | cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE); |
| 1061 | |
| 1062 | rtc_control = CMOS_READ(RTC_CONTROL); |
| 1063 | |
| 1064 | spin_unlock_irq(&rtc_lock); |
| 1065 | |
| 1066 | if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) { |
| 1067 | dev_warn(dev, "only 24-hr supported\n"); |
| 1068 | retval = -ENXIO; |
| 1069 | goto cleanup1; |
| 1070 | } |
| 1071 | |
| 1072 | if (use_hpet_alarm()) |
| 1073 | hpet_rtc_timer_init(); |
| 1074 | |
| 1075 | if (is_valid_irq(rtc_irq)) { |
| 1076 | irq_handler_t rtc_cmos_int_handler; |
| 1077 | |
| 1078 | if (use_hpet_alarm()) { |
| 1079 | rtc_cmos_int_handler = hpet_rtc_interrupt; |
| 1080 | retval = hpet_register_irq_handler(cmos_interrupt); |
| 1081 | if (retval) { |
| 1082 | hpet_mask_rtc_irq_bit(RTC_IRQMASK); |
| 1083 | dev_warn(dev, "hpet_register_irq_handler " |
| 1084 | " failed in rtc_init()."); |
| 1085 | goto cleanup1; |
| 1086 | } |
| 1087 | } else |
| 1088 | rtc_cmos_int_handler = cmos_interrupt; |
| 1089 | |
| 1090 | retval = request_irq(rtc_irq, rtc_cmos_int_handler, |
| 1091 | 0, dev_name(&cmos_rtc.rtc->dev), |
| 1092 | cmos_rtc.rtc); |
| 1093 | if (retval < 0) { |
| 1094 | dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq); |
| 1095 | goto cleanup1; |
| 1096 | } |
| 1097 | } else { |
| 1098 | clear_bit(RTC_FEATURE_ALARM, cmos_rtc.rtc->features); |
| 1099 | } |
| 1100 | |
| 1101 | cmos_rtc.rtc->ops = &cmos_rtc_ops; |
| 1102 | |
| 1103 | retval = devm_rtc_register_device(cmos_rtc.rtc); |
| 1104 | if (retval) |
| 1105 | goto cleanup2; |
| 1106 | |
| 1107 | /* Set the sync offset for the periodic 11min update correct */ |
| 1108 | cmos_rtc.rtc->set_offset_nsec = NSEC_PER_SEC / 2; |
| 1109 | |
| 1110 | /* export at least the first block of NVRAM */ |
| 1111 | nvmem_cfg.size = address_space - NVRAM_OFFSET; |
| 1112 | devm_rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg); |
| 1113 | |
| 1114 | /* |
| 1115 | * Everything has gone well so far, so by default register a handler for |
| 1116 | * the ACPI RTC fixed event. |
| 1117 | */ |
| 1118 | if (!info) |
| 1119 | acpi_rtc_event_setup(dev); |
| 1120 | |
| 1121 | dev_info(dev, "%s%s, %d bytes nvram%s\n", |
| 1122 | !is_valid_irq(rtc_irq) ? "no alarms" : |
| 1123 | cmos_rtc.mon_alrm ? "alarms up to one year" : |
| 1124 | cmos_rtc.day_alrm ? "alarms up to one month" : |
| 1125 | "alarms up to one day", |
| 1126 | cmos_rtc.century ? ", y3k" : "", |
| 1127 | nvmem_cfg.size, |
| 1128 | use_hpet_alarm() ? ", hpet irqs" : ""); |
| 1129 | |
| 1130 | return 0; |
| 1131 | |
| 1132 | cleanup2: |
| 1133 | if (is_valid_irq(rtc_irq)) |
| 1134 | free_irq(rtc_irq, cmos_rtc.rtc); |
| 1135 | cleanup1: |
| 1136 | cmos_rtc.dev = NULL; |
| 1137 | cleanup0: |
| 1138 | if (RTC_IOMAPPED) |
| 1139 | release_region(ports->start, resource_size(ports)); |
| 1140 | else |
| 1141 | release_mem_region(ports->start, resource_size(ports)); |
| 1142 | return retval; |
| 1143 | } |
| 1144 | |
| 1145 | static void cmos_do_shutdown(int rtc_irq) |
| 1146 | { |
| 1147 | spin_lock_irq(&rtc_lock); |
| 1148 | if (is_valid_irq(rtc_irq)) |
| 1149 | cmos_irq_disable(&cmos_rtc, RTC_IRQMASK); |
| 1150 | spin_unlock_irq(&rtc_lock); |
| 1151 | } |
| 1152 | |
| 1153 | static void cmos_do_remove(struct device *dev) |
| 1154 | { |
| 1155 | struct cmos_rtc *cmos = dev_get_drvdata(dev); |
| 1156 | struct resource *ports; |
| 1157 | |
| 1158 | cmos_do_shutdown(cmos->irq); |
| 1159 | |
| 1160 | if (is_valid_irq(cmos->irq)) { |
| 1161 | free_irq(cmos->irq, cmos->rtc); |
| 1162 | if (use_hpet_alarm()) |
| 1163 | hpet_unregister_irq_handler(cmos_interrupt); |
| 1164 | } |
| 1165 | |
| 1166 | if (!dev_get_platdata(dev)) |
| 1167 | acpi_rtc_event_cleanup(); |
| 1168 | |
| 1169 | cmos->rtc = NULL; |
| 1170 | |
| 1171 | ports = cmos->iomem; |
| 1172 | if (RTC_IOMAPPED) |
| 1173 | release_region(ports->start, resource_size(ports)); |
| 1174 | else |
| 1175 | release_mem_region(ports->start, resource_size(ports)); |
| 1176 | cmos->iomem = NULL; |
| 1177 | |
| 1178 | cmos->dev = NULL; |
| 1179 | } |
| 1180 | |
| 1181 | static int cmos_aie_poweroff(struct device *dev) |
| 1182 | { |
| 1183 | struct cmos_rtc *cmos = dev_get_drvdata(dev); |
| 1184 | struct rtc_time now; |
| 1185 | time64_t t_now; |
| 1186 | int retval = 0; |
| 1187 | unsigned char rtc_control; |
| 1188 | |
| 1189 | if (!cmos->alarm_expires) |
| 1190 | return -EINVAL; |
| 1191 | |
| 1192 | spin_lock_irq(&rtc_lock); |
| 1193 | rtc_control = CMOS_READ(RTC_CONTROL); |
| 1194 | spin_unlock_irq(&rtc_lock); |
| 1195 | |
| 1196 | /* We only care about the situation where AIE is disabled. */ |
| 1197 | if (rtc_control & RTC_AIE) |
| 1198 | return -EBUSY; |
| 1199 | |
| 1200 | cmos_read_time(dev, &now); |
| 1201 | t_now = rtc_tm_to_time64(&now); |
| 1202 | |
| 1203 | /* |
| 1204 | * When enabling "RTC wake-up" in BIOS setup, the machine reboots |
| 1205 | * automatically right after shutdown on some buggy boxes. |
| 1206 | * This automatic rebooting issue won't happen when the alarm |
| 1207 | * time is larger than now+1 seconds. |
| 1208 | * |
| 1209 | * If the alarm time is equal to now+1 seconds, the issue can be |
| 1210 | * prevented by cancelling the alarm. |
| 1211 | */ |
| 1212 | if (cmos->alarm_expires == t_now + 1) { |
| 1213 | struct rtc_wkalrm alarm; |
| 1214 | |
| 1215 | /* Cancel the AIE timer by configuring the past time. */ |
| 1216 | rtc_time64_to_tm(t_now - 1, &alarm.time); |
| 1217 | alarm.enabled = 0; |
| 1218 | retval = cmos_set_alarm(dev, &alarm); |
| 1219 | } else if (cmos->alarm_expires > t_now + 1) { |
| 1220 | retval = -EBUSY; |
| 1221 | } |
| 1222 | |
| 1223 | return retval; |
| 1224 | } |
| 1225 | |
| 1226 | static int cmos_suspend(struct device *dev) |
| 1227 | { |
| 1228 | struct cmos_rtc *cmos = dev_get_drvdata(dev); |
| 1229 | unsigned char tmp; |
| 1230 | |
| 1231 | /* only the alarm might be a wakeup event source */ |
| 1232 | spin_lock_irq(&rtc_lock); |
| 1233 | cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL); |
| 1234 | if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) { |
| 1235 | unsigned char mask; |
| 1236 | |
| 1237 | if (device_may_wakeup(dev)) |
| 1238 | mask = RTC_IRQMASK & ~RTC_AIE; |
| 1239 | else |
| 1240 | mask = RTC_IRQMASK; |
| 1241 | tmp &= ~mask; |
| 1242 | CMOS_WRITE(tmp, RTC_CONTROL); |
| 1243 | if (use_hpet_alarm()) |
| 1244 | hpet_mask_rtc_irq_bit(mask); |
| 1245 | cmos_checkintr(cmos, tmp); |
| 1246 | } |
| 1247 | spin_unlock_irq(&rtc_lock); |
| 1248 | |
| 1249 | if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) { |
| 1250 | cmos->enabled_wake = 1; |
| 1251 | if (cmos->wake_on) |
| 1252 | cmos->wake_on(dev); |
| 1253 | else |
| 1254 | enable_irq_wake(cmos->irq); |
| 1255 | } |
| 1256 | |
| 1257 | memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm)); |
| 1258 | cmos_read_alarm(dev, &cmos->saved_wkalrm); |
| 1259 | |
| 1260 | dev_dbg(dev, "suspend%s, ctrl %02x\n", |
| 1261 | (tmp & RTC_AIE) ? ", alarm may wake" : "", |
| 1262 | tmp); |
| 1263 | |
| 1264 | return 0; |
| 1265 | } |
| 1266 | |
| 1267 | /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even |
| 1268 | * after a detour through G3 "mechanical off", although the ACPI spec |
| 1269 | * says wakeup should only work from G1/S4 "hibernate". To most users, |
| 1270 | * distinctions between S4 and S5 are pointless. So when the hardware |
| 1271 | * allows, don't draw that distinction. |
| 1272 | */ |
| 1273 | static inline int cmos_poweroff(struct device *dev) |
| 1274 | { |
| 1275 | if (!IS_ENABLED(CONFIG_PM)) |
| 1276 | return -ENOSYS; |
| 1277 | |
| 1278 | return cmos_suspend(dev); |
| 1279 | } |
| 1280 | |
| 1281 | static void cmos_check_wkalrm(struct device *dev) |
| 1282 | { |
| 1283 | struct cmos_rtc *cmos = dev_get_drvdata(dev); |
| 1284 | struct rtc_wkalrm current_alarm; |
| 1285 | time64_t t_now; |
| 1286 | time64_t t_current_expires; |
| 1287 | time64_t t_saved_expires; |
| 1288 | struct rtc_time now; |
| 1289 | |
| 1290 | /* Check if we have RTC Alarm armed */ |
| 1291 | if (!(cmos->suspend_ctrl & RTC_AIE)) |
| 1292 | return; |
| 1293 | |
| 1294 | cmos_read_time(dev, &now); |
| 1295 | t_now = rtc_tm_to_time64(&now); |
| 1296 | |
| 1297 | /* |
| 1298 | * ACPI RTC wake event is cleared after resume from STR, |
| 1299 | * ACK the rtc irq here |
| 1300 | */ |
| 1301 | if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) { |
| 1302 | cmos_interrupt(0, (void *)cmos->rtc); |
| 1303 | return; |
| 1304 | } |
| 1305 | |
| 1306 | memset(¤t_alarm, 0, sizeof(struct rtc_wkalrm)); |
| 1307 | cmos_read_alarm(dev, ¤t_alarm); |
| 1308 | t_current_expires = rtc_tm_to_time64(¤t_alarm.time); |
| 1309 | t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time); |
| 1310 | if (t_current_expires != t_saved_expires || |
| 1311 | cmos->saved_wkalrm.enabled != current_alarm.enabled) { |
| 1312 | cmos_set_alarm(dev, &cmos->saved_wkalrm); |
| 1313 | } |
| 1314 | } |
| 1315 | |
| 1316 | static int __maybe_unused cmos_resume(struct device *dev) |
| 1317 | { |
| 1318 | struct cmos_rtc *cmos = dev_get_drvdata(dev); |
| 1319 | unsigned char tmp; |
| 1320 | |
| 1321 | if (cmos->enabled_wake && !cmos_use_acpi_alarm()) { |
| 1322 | if (cmos->wake_off) |
| 1323 | cmos->wake_off(dev); |
| 1324 | else |
| 1325 | disable_irq_wake(cmos->irq); |
| 1326 | cmos->enabled_wake = 0; |
| 1327 | } |
| 1328 | |
| 1329 | /* The BIOS might have changed the alarm, restore it */ |
| 1330 | cmos_check_wkalrm(dev); |
| 1331 | |
| 1332 | spin_lock_irq(&rtc_lock); |
| 1333 | tmp = cmos->suspend_ctrl; |
| 1334 | cmos->suspend_ctrl = 0; |
| 1335 | /* re-enable any irqs previously active */ |
| 1336 | if (tmp & RTC_IRQMASK) { |
| 1337 | unsigned char mask; |
| 1338 | |
| 1339 | if (device_may_wakeup(dev) && use_hpet_alarm()) |
| 1340 | hpet_rtc_timer_init(); |
| 1341 | |
| 1342 | do { |
| 1343 | CMOS_WRITE(tmp, RTC_CONTROL); |
| 1344 | if (use_hpet_alarm()) |
| 1345 | hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK); |
| 1346 | |
| 1347 | mask = CMOS_READ(RTC_INTR_FLAGS); |
| 1348 | mask &= (tmp & RTC_IRQMASK) | RTC_IRQF; |
| 1349 | if (!use_hpet_alarm() || !is_intr(mask)) |
| 1350 | break; |
| 1351 | |
| 1352 | /* force one-shot behavior if HPET blocked |
| 1353 | * the wake alarm's irq |
| 1354 | */ |
| 1355 | rtc_update_irq(cmos->rtc, 1, mask); |
| 1356 | tmp &= ~RTC_AIE; |
| 1357 | hpet_mask_rtc_irq_bit(RTC_AIE); |
| 1358 | } while (mask & RTC_AIE); |
| 1359 | |
| 1360 | if (tmp & RTC_AIE) |
| 1361 | cmos_check_acpi_rtc_status(dev, &tmp); |
| 1362 | } |
| 1363 | spin_unlock_irq(&rtc_lock); |
| 1364 | |
| 1365 | dev_dbg(dev, "resume, ctrl %02x\n", tmp); |
| 1366 | |
| 1367 | return 0; |
| 1368 | } |
| 1369 | |
| 1370 | static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume); |
| 1371 | |
| 1372 | /*----------------------------------------------------------------*/ |
| 1373 | |
| 1374 | /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus. |
| 1375 | * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs |
| 1376 | * probably list them in similar PNPBIOS tables; so PNP is more common. |
| 1377 | * |
| 1378 | * We don't use legacy "poke at the hardware" probing. Ancient PCs that |
| 1379 | * predate even PNPBIOS should set up platform_bus devices. |
| 1380 | */ |
| 1381 | |
| 1382 | #ifdef CONFIG_PNP |
| 1383 | |
| 1384 | #include <linux/pnp.h> |
| 1385 | |
| 1386 | static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id) |
| 1387 | { |
| 1388 | int irq; |
| 1389 | |
| 1390 | if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) { |
| 1391 | irq = 0; |
| 1392 | #ifdef CONFIG_X86 |
| 1393 | /* Some machines contain a PNP entry for the RTC, but |
| 1394 | * don't define the IRQ. It should always be safe to |
| 1395 | * hardcode it on systems with a legacy PIC. |
| 1396 | */ |
| 1397 | if (nr_legacy_irqs()) |
| 1398 | irq = RTC_IRQ; |
| 1399 | #endif |
| 1400 | } else { |
| 1401 | irq = pnp_irq(pnp, 0); |
| 1402 | } |
| 1403 | |
| 1404 | return cmos_do_probe(&pnp->dev, pnp_get_resource(pnp, IORESOURCE_IO, 0), irq); |
| 1405 | } |
| 1406 | |
| 1407 | static void cmos_pnp_remove(struct pnp_dev *pnp) |
| 1408 | { |
| 1409 | cmos_do_remove(&pnp->dev); |
| 1410 | } |
| 1411 | |
| 1412 | static void cmos_pnp_shutdown(struct pnp_dev *pnp) |
| 1413 | { |
| 1414 | struct device *dev = &pnp->dev; |
| 1415 | struct cmos_rtc *cmos = dev_get_drvdata(dev); |
| 1416 | |
| 1417 | if (system_state == SYSTEM_POWER_OFF) { |
| 1418 | int retval = cmos_poweroff(dev); |
| 1419 | |
| 1420 | if (cmos_aie_poweroff(dev) < 0 && !retval) |
| 1421 | return; |
| 1422 | } |
| 1423 | |
| 1424 | cmos_do_shutdown(cmos->irq); |
| 1425 | } |
| 1426 | |
| 1427 | static const struct pnp_device_id rtc_ids[] = { |
| 1428 | { .id = "PNP0b00", }, |
| 1429 | { .id = "PNP0b01", }, |
| 1430 | { .id = "PNP0b02", }, |
| 1431 | { }, |
| 1432 | }; |
| 1433 | MODULE_DEVICE_TABLE(pnp, rtc_ids); |
| 1434 | |
| 1435 | static struct pnp_driver cmos_pnp_driver = { |
| 1436 | .name = driver_name, |
| 1437 | .id_table = rtc_ids, |
| 1438 | .probe = cmos_pnp_probe, |
| 1439 | .remove = cmos_pnp_remove, |
| 1440 | .shutdown = cmos_pnp_shutdown, |
| 1441 | |
| 1442 | /* flag ensures resume() gets called, and stops syslog spam */ |
| 1443 | .flags = PNP_DRIVER_RES_DO_NOT_CHANGE, |
| 1444 | .driver = { |
| 1445 | .pm = &cmos_pm_ops, |
| 1446 | }, |
| 1447 | }; |
| 1448 | |
| 1449 | #endif /* CONFIG_PNP */ |
| 1450 | |
| 1451 | #ifdef CONFIG_OF |
| 1452 | static const struct of_device_id of_cmos_match[] = { |
| 1453 | { |
| 1454 | .compatible = "motorola,mc146818", |
| 1455 | }, |
| 1456 | { }, |
| 1457 | }; |
| 1458 | MODULE_DEVICE_TABLE(of, of_cmos_match); |
| 1459 | |
| 1460 | static __init void cmos_of_init(struct platform_device *pdev) |
| 1461 | { |
| 1462 | struct device_node *node = pdev->dev.of_node; |
| 1463 | const __be32 *val; |
| 1464 | |
| 1465 | if (!node) |
| 1466 | return; |
| 1467 | |
| 1468 | val = of_get_property(node, "ctrl-reg", NULL); |
| 1469 | if (val) |
| 1470 | CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL); |
| 1471 | |
| 1472 | val = of_get_property(node, "freq-reg", NULL); |
| 1473 | if (val) |
| 1474 | CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT); |
| 1475 | } |
| 1476 | #else |
| 1477 | static inline void cmos_of_init(struct platform_device *pdev) {} |
| 1478 | #endif |
| 1479 | /*----------------------------------------------------------------*/ |
| 1480 | |
| 1481 | /* Platform setup should have set up an RTC device, when PNP is |
| 1482 | * unavailable ... this could happen even on (older) PCs. |
| 1483 | */ |
| 1484 | |
| 1485 | static int __init cmos_platform_probe(struct platform_device *pdev) |
| 1486 | { |
| 1487 | struct resource *resource; |
| 1488 | int irq; |
| 1489 | |
| 1490 | cmos_of_init(pdev); |
| 1491 | |
| 1492 | if (RTC_IOMAPPED) |
| 1493 | resource = platform_get_resource(pdev, IORESOURCE_IO, 0); |
| 1494 | else |
| 1495 | resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 1496 | irq = platform_get_irq(pdev, 0); |
| 1497 | if (irq < 0) |
| 1498 | irq = -1; |
| 1499 | |
| 1500 | return cmos_do_probe(&pdev->dev, resource, irq); |
| 1501 | } |
| 1502 | |
| 1503 | static void cmos_platform_remove(struct platform_device *pdev) |
| 1504 | { |
| 1505 | cmos_do_remove(&pdev->dev); |
| 1506 | } |
| 1507 | |
| 1508 | static void cmos_platform_shutdown(struct platform_device *pdev) |
| 1509 | { |
| 1510 | struct device *dev = &pdev->dev; |
| 1511 | struct cmos_rtc *cmos = dev_get_drvdata(dev); |
| 1512 | |
| 1513 | if (system_state == SYSTEM_POWER_OFF) { |
| 1514 | int retval = cmos_poweroff(dev); |
| 1515 | |
| 1516 | if (cmos_aie_poweroff(dev) < 0 && !retval) |
| 1517 | return; |
| 1518 | } |
| 1519 | |
| 1520 | cmos_do_shutdown(cmos->irq); |
| 1521 | } |
| 1522 | |
| 1523 | /* work with hotplug and coldplug */ |
| 1524 | MODULE_ALIAS("platform:rtc_cmos"); |
| 1525 | |
| 1526 | static struct platform_driver cmos_platform_driver = { |
| 1527 | .remove = cmos_platform_remove, |
| 1528 | .shutdown = cmos_platform_shutdown, |
| 1529 | .driver = { |
| 1530 | .name = driver_name, |
| 1531 | .pm = &cmos_pm_ops, |
| 1532 | .of_match_table = of_match_ptr(of_cmos_match), |
| 1533 | } |
| 1534 | }; |
| 1535 | |
| 1536 | #ifdef CONFIG_PNP |
| 1537 | static bool pnp_driver_registered; |
| 1538 | #endif |
| 1539 | static bool platform_driver_registered; |
| 1540 | |
| 1541 | static int __init cmos_init(void) |
| 1542 | { |
| 1543 | int retval = 0; |
| 1544 | |
| 1545 | #ifdef CONFIG_PNP |
| 1546 | retval = pnp_register_driver(&cmos_pnp_driver); |
| 1547 | if (retval == 0) |
| 1548 | pnp_driver_registered = true; |
| 1549 | #endif |
| 1550 | |
| 1551 | if (!cmos_rtc.dev) { |
| 1552 | retval = platform_driver_probe(&cmos_platform_driver, |
| 1553 | cmos_platform_probe); |
| 1554 | if (retval == 0) |
| 1555 | platform_driver_registered = true; |
| 1556 | } |
| 1557 | |
| 1558 | if (retval == 0) |
| 1559 | return 0; |
| 1560 | |
| 1561 | #ifdef CONFIG_PNP |
| 1562 | if (pnp_driver_registered) |
| 1563 | pnp_unregister_driver(&cmos_pnp_driver); |
| 1564 | #endif |
| 1565 | return retval; |
| 1566 | } |
| 1567 | module_init(cmos_init); |
| 1568 | |
| 1569 | static void __exit cmos_exit(void) |
| 1570 | { |
| 1571 | #ifdef CONFIG_PNP |
| 1572 | if (pnp_driver_registered) |
| 1573 | pnp_unregister_driver(&cmos_pnp_driver); |
| 1574 | #endif |
| 1575 | if (platform_driver_registered) |
| 1576 | platform_driver_unregister(&cmos_platform_driver); |
| 1577 | } |
| 1578 | module_exit(cmos_exit); |
| 1579 | |
| 1580 | |
| 1581 | MODULE_AUTHOR("David Brownell"); |
| 1582 | MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs"); |
| 1583 | MODULE_LICENSE("GPL"); |