| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Remote Processor Framework |
| 4 | * |
| 5 | * Copyright (C) 2011 Texas Instruments, Inc. |
| 6 | * Copyright (C) 2011 Google, Inc. |
| 7 | * |
| 8 | * Ohad Ben-Cohen <ohad@wizery.com> |
| 9 | * Brian Swetland <swetland@google.com> |
| 10 | * Mark Grosen <mgrosen@ti.com> |
| 11 | * Fernando Guzman Lugo <fernando.lugo@ti.com> |
| 12 | * Suman Anna <s-anna@ti.com> |
| 13 | * Robert Tivy <rtivy@ti.com> |
| 14 | * Armando Uribe De Leon <x0095078@ti.com> |
| 15 | */ |
| 16 | |
| 17 | #define pr_fmt(fmt) "%s: " fmt, __func__ |
| 18 | |
| 19 | #include <linux/delay.h> |
| 20 | #include <linux/kernel.h> |
| 21 | #include <linux/module.h> |
| 22 | #include <linux/device.h> |
| 23 | #include <linux/panic_notifier.h> |
| 24 | #include <linux/slab.h> |
| 25 | #include <linux/mutex.h> |
| 26 | #include <linux/dma-mapping.h> |
| 27 | #include <linux/firmware.h> |
| 28 | #include <linux/string.h> |
| 29 | #include <linux/debugfs.h> |
| 30 | #include <linux/rculist.h> |
| 31 | #include <linux/remoteproc.h> |
| 32 | #include <linux/iommu.h> |
| 33 | #include <linux/idr.h> |
| 34 | #include <linux/elf.h> |
| 35 | #include <linux/crc32.h> |
| 36 | #include <linux/of_platform.h> |
| 37 | #include <linux/of_reserved_mem.h> |
| 38 | #include <linux/virtio_ids.h> |
| 39 | #include <linux/virtio_ring.h> |
| 40 | #include <asm/byteorder.h> |
| 41 | #include <linux/platform_device.h> |
| 42 | |
| 43 | #include "remoteproc_internal.h" |
| 44 | |
| 45 | #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL |
| 46 | |
| 47 | static DEFINE_MUTEX(rproc_list_mutex); |
| 48 | static LIST_HEAD(rproc_list); |
| 49 | static struct notifier_block rproc_panic_nb; |
| 50 | |
| 51 | typedef int (*rproc_handle_resource_t)(struct rproc *rproc, |
| 52 | void *, int offset, int avail); |
| 53 | |
| 54 | static int rproc_alloc_carveout(struct rproc *rproc, |
| 55 | struct rproc_mem_entry *mem); |
| 56 | static int rproc_release_carveout(struct rproc *rproc, |
| 57 | struct rproc_mem_entry *mem); |
| 58 | |
| 59 | /* Unique indices for remoteproc devices */ |
| 60 | static DEFINE_IDA(rproc_dev_index); |
| 61 | static struct workqueue_struct *rproc_recovery_wq; |
| 62 | |
| 63 | static const char * const rproc_crash_names[] = { |
| 64 | [RPROC_MMUFAULT] = "mmufault", |
| 65 | [RPROC_WATCHDOG] = "watchdog", |
| 66 | [RPROC_FATAL_ERROR] = "fatal error", |
| 67 | }; |
| 68 | |
| 69 | /* translate rproc_crash_type to string */ |
| 70 | static const char *rproc_crash_to_string(enum rproc_crash_type type) |
| 71 | { |
| 72 | if (type < ARRAY_SIZE(rproc_crash_names)) |
| 73 | return rproc_crash_names[type]; |
| 74 | return "unknown"; |
| 75 | } |
| 76 | |
| 77 | /* |
| 78 | * This is the IOMMU fault handler we register with the IOMMU API |
| 79 | * (when relevant; not all remote processors access memory through |
| 80 | * an IOMMU). |
| 81 | * |
| 82 | * IOMMU core will invoke this handler whenever the remote processor |
| 83 | * will try to access an unmapped device address. |
| 84 | */ |
| 85 | static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev, |
| 86 | unsigned long iova, int flags, void *token) |
| 87 | { |
| 88 | struct rproc *rproc = token; |
| 89 | |
| 90 | dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags); |
| 91 | |
| 92 | rproc_report_crash(rproc, RPROC_MMUFAULT); |
| 93 | |
| 94 | /* |
| 95 | * Let the iommu core know we're not really handling this fault; |
| 96 | * we just used it as a recovery trigger. |
| 97 | */ |
| 98 | return -ENOSYS; |
| 99 | } |
| 100 | |
| 101 | static int rproc_enable_iommu(struct rproc *rproc) |
| 102 | { |
| 103 | struct iommu_domain *domain; |
| 104 | struct device *dev = rproc->dev.parent; |
| 105 | int ret; |
| 106 | |
| 107 | if (!rproc->has_iommu) { |
| 108 | dev_dbg(dev, "iommu not present\n"); |
| 109 | return 0; |
| 110 | } |
| 111 | |
| 112 | domain = iommu_paging_domain_alloc(dev); |
| 113 | if (IS_ERR(domain)) { |
| 114 | dev_err(dev, "can't alloc iommu domain\n"); |
| 115 | return PTR_ERR(domain); |
| 116 | } |
| 117 | |
| 118 | iommu_set_fault_handler(domain, rproc_iommu_fault, rproc); |
| 119 | |
| 120 | ret = iommu_attach_device(domain, dev); |
| 121 | if (ret) { |
| 122 | dev_err(dev, "can't attach iommu device: %d\n", ret); |
| 123 | goto free_domain; |
| 124 | } |
| 125 | |
| 126 | rproc->domain = domain; |
| 127 | |
| 128 | return 0; |
| 129 | |
| 130 | free_domain: |
| 131 | iommu_domain_free(domain); |
| 132 | return ret; |
| 133 | } |
| 134 | |
| 135 | static void rproc_disable_iommu(struct rproc *rproc) |
| 136 | { |
| 137 | struct iommu_domain *domain = rproc->domain; |
| 138 | struct device *dev = rproc->dev.parent; |
| 139 | |
| 140 | if (!domain) |
| 141 | return; |
| 142 | |
| 143 | iommu_detach_device(domain, dev); |
| 144 | iommu_domain_free(domain); |
| 145 | } |
| 146 | |
| 147 | phys_addr_t rproc_va_to_pa(void *cpu_addr) |
| 148 | { |
| 149 | /* |
| 150 | * Return physical address according to virtual address location |
| 151 | * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent |
| 152 | * - in kernel: if region allocated in generic dma memory pool |
| 153 | */ |
| 154 | if (is_vmalloc_addr(cpu_addr)) { |
| 155 | return page_to_phys(vmalloc_to_page(cpu_addr)) + |
| 156 | offset_in_page(cpu_addr); |
| 157 | } |
| 158 | |
| 159 | WARN_ON(!virt_addr_valid(cpu_addr)); |
| 160 | return virt_to_phys(cpu_addr); |
| 161 | } |
| 162 | EXPORT_SYMBOL(rproc_va_to_pa); |
| 163 | |
| 164 | /** |
| 165 | * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address |
| 166 | * @rproc: handle of a remote processor |
| 167 | * @da: remoteproc device address to translate |
| 168 | * @len: length of the memory region @da is pointing to |
| 169 | * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory |
| 170 | * |
| 171 | * Some remote processors will ask us to allocate them physically contiguous |
| 172 | * memory regions (which we call "carveouts"), and map them to specific |
| 173 | * device addresses (which are hardcoded in the firmware). They may also have |
| 174 | * dedicated memory regions internal to the processors, and use them either |
| 175 | * exclusively or alongside carveouts. |
| 176 | * |
| 177 | * They may then ask us to copy objects into specific device addresses (e.g. |
| 178 | * code/data sections) or expose us certain symbols in other device address |
| 179 | * (e.g. their trace buffer). |
| 180 | * |
| 181 | * This function is a helper function with which we can go over the allocated |
| 182 | * carveouts and translate specific device addresses to kernel virtual addresses |
| 183 | * so we can access the referenced memory. This function also allows to perform |
| 184 | * translations on the internal remoteproc memory regions through a platform |
| 185 | * implementation specific da_to_va ops, if present. |
| 186 | * |
| 187 | * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too, |
| 188 | * but only on kernel direct mapped RAM memory. Instead, we're just using |
| 189 | * here the output of the DMA API for the carveouts, which should be more |
| 190 | * correct. |
| 191 | * |
| 192 | * Return: a valid kernel address on success or NULL on failure |
| 193 | */ |
| 194 | void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) |
| 195 | { |
| 196 | struct rproc_mem_entry *carveout; |
| 197 | void *ptr = NULL; |
| 198 | |
| 199 | if (rproc->ops->da_to_va) { |
| 200 | ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem); |
| 201 | if (ptr) |
| 202 | goto out; |
| 203 | } |
| 204 | |
| 205 | list_for_each_entry(carveout, &rproc->carveouts, node) { |
| 206 | int offset = da - carveout->da; |
| 207 | |
| 208 | /* Verify that carveout is allocated */ |
| 209 | if (!carveout->va) |
| 210 | continue; |
| 211 | |
| 212 | /* try next carveout if da is too small */ |
| 213 | if (offset < 0) |
| 214 | continue; |
| 215 | |
| 216 | /* try next carveout if da is too large */ |
| 217 | if (offset + len > carveout->len) |
| 218 | continue; |
| 219 | |
| 220 | ptr = carveout->va + offset; |
| 221 | |
| 222 | if (is_iomem) |
| 223 | *is_iomem = carveout->is_iomem; |
| 224 | |
| 225 | break; |
| 226 | } |
| 227 | |
| 228 | out: |
| 229 | return ptr; |
| 230 | } |
| 231 | EXPORT_SYMBOL(rproc_da_to_va); |
| 232 | |
| 233 | /** |
| 234 | * rproc_find_carveout_by_name() - lookup the carveout region by a name |
| 235 | * @rproc: handle of a remote processor |
| 236 | * @name: carveout name to find (format string) |
| 237 | * @...: optional parameters matching @name string |
| 238 | * |
| 239 | * Platform driver has the capability to register some pre-allacoted carveout |
| 240 | * (physically contiguous memory regions) before rproc firmware loading and |
| 241 | * associated resource table analysis. These regions may be dedicated memory |
| 242 | * regions internal to the coprocessor or specified DDR region with specific |
| 243 | * attributes |
| 244 | * |
| 245 | * This function is a helper function with which we can go over the |
| 246 | * allocated carveouts and return associated region characteristics like |
| 247 | * coprocessor address, length or processor virtual address. |
| 248 | * |
| 249 | * Return: a valid pointer on carveout entry on success or NULL on failure. |
| 250 | */ |
| 251 | __printf(2, 3) |
| 252 | struct rproc_mem_entry * |
| 253 | rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...) |
| 254 | { |
| 255 | va_list args; |
| 256 | char _name[32]; |
| 257 | struct rproc_mem_entry *carveout, *mem = NULL; |
| 258 | |
| 259 | if (!name) |
| 260 | return NULL; |
| 261 | |
| 262 | va_start(args, name); |
| 263 | vsnprintf(_name, sizeof(_name), name, args); |
| 264 | va_end(args); |
| 265 | |
| 266 | list_for_each_entry(carveout, &rproc->carveouts, node) { |
| 267 | /* Compare carveout and requested names */ |
| 268 | if (!strcmp(carveout->name, _name)) { |
| 269 | mem = carveout; |
| 270 | break; |
| 271 | } |
| 272 | } |
| 273 | |
| 274 | return mem; |
| 275 | } |
| 276 | |
| 277 | /** |
| 278 | * rproc_check_carveout_da() - Check specified carveout da configuration |
| 279 | * @rproc: handle of a remote processor |
| 280 | * @mem: pointer on carveout to check |
| 281 | * @da: area device address |
| 282 | * @len: associated area size |
| 283 | * |
| 284 | * This function is a helper function to verify requested device area (couple |
| 285 | * da, len) is part of specified carveout. |
| 286 | * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is |
| 287 | * checked. |
| 288 | * |
| 289 | * Return: 0 if carveout matches request else error |
| 290 | */ |
| 291 | static int rproc_check_carveout_da(struct rproc *rproc, |
| 292 | struct rproc_mem_entry *mem, u32 da, u32 len) |
| 293 | { |
| 294 | struct device *dev = &rproc->dev; |
| 295 | int delta; |
| 296 | |
| 297 | /* Check requested resource length */ |
| 298 | if (len > mem->len) { |
| 299 | dev_err(dev, "Registered carveout doesn't fit len request\n"); |
| 300 | return -EINVAL; |
| 301 | } |
| 302 | |
| 303 | if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) { |
| 304 | /* Address doesn't match registered carveout configuration */ |
| 305 | return -EINVAL; |
| 306 | } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) { |
| 307 | delta = da - mem->da; |
| 308 | |
| 309 | /* Check requested resource belongs to registered carveout */ |
| 310 | if (delta < 0) { |
| 311 | dev_err(dev, |
| 312 | "Registered carveout doesn't fit da request\n"); |
| 313 | return -EINVAL; |
| 314 | } |
| 315 | |
| 316 | if (delta + len > mem->len) { |
| 317 | dev_err(dev, |
| 318 | "Registered carveout doesn't fit len request\n"); |
| 319 | return -EINVAL; |
| 320 | } |
| 321 | } |
| 322 | |
| 323 | return 0; |
| 324 | } |
| 325 | |
| 326 | int rproc_alloc_vring(struct rproc_vdev *rvdev, int i) |
| 327 | { |
| 328 | struct rproc *rproc = rvdev->rproc; |
| 329 | struct device *dev = &rproc->dev; |
| 330 | struct rproc_vring *rvring = &rvdev->vring[i]; |
| 331 | struct fw_rsc_vdev *rsc; |
| 332 | int ret, notifyid; |
| 333 | struct rproc_mem_entry *mem; |
| 334 | size_t size; |
| 335 | |
| 336 | /* actual size of vring (in bytes) */ |
| 337 | size = PAGE_ALIGN(vring_size(rvring->num, rvring->align)); |
| 338 | |
| 339 | rsc = (void *)rproc->table_ptr + rvdev->rsc_offset; |
| 340 | |
| 341 | /* Search for pre-registered carveout */ |
| 342 | mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index, |
| 343 | i); |
| 344 | if (mem) { |
| 345 | if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size)) |
| 346 | return -ENOMEM; |
| 347 | } else { |
| 348 | /* Register carveout in list */ |
| 349 | mem = rproc_mem_entry_init(dev, NULL, 0, |
| 350 | size, rsc->vring[i].da, |
| 351 | rproc_alloc_carveout, |
| 352 | rproc_release_carveout, |
| 353 | "vdev%dvring%d", |
| 354 | rvdev->index, i); |
| 355 | if (!mem) { |
| 356 | dev_err(dev, "Can't allocate memory entry structure\n"); |
| 357 | return -ENOMEM; |
| 358 | } |
| 359 | |
| 360 | rproc_add_carveout(rproc, mem); |
| 361 | } |
| 362 | |
| 363 | /* |
| 364 | * Assign an rproc-wide unique index for this vring |
| 365 | * TODO: assign a notifyid for rvdev updates as well |
| 366 | * TODO: support predefined notifyids (via resource table) |
| 367 | */ |
| 368 | ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL); |
| 369 | if (ret < 0) { |
| 370 | dev_err(dev, "idr_alloc failed: %d\n", ret); |
| 371 | return ret; |
| 372 | } |
| 373 | notifyid = ret; |
| 374 | |
| 375 | /* Potentially bump max_notifyid */ |
| 376 | if (notifyid > rproc->max_notifyid) |
| 377 | rproc->max_notifyid = notifyid; |
| 378 | |
| 379 | rvring->notifyid = notifyid; |
| 380 | |
| 381 | /* Let the rproc know the notifyid of this vring.*/ |
| 382 | rsc->vring[i].notifyid = notifyid; |
| 383 | return 0; |
| 384 | } |
| 385 | |
| 386 | int |
| 387 | rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i) |
| 388 | { |
| 389 | struct rproc *rproc = rvdev->rproc; |
| 390 | struct device *dev = &rproc->dev; |
| 391 | struct fw_rsc_vdev_vring *vring = &rsc->vring[i]; |
| 392 | struct rproc_vring *rvring = &rvdev->vring[i]; |
| 393 | |
| 394 | dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n", |
| 395 | i, vring->da, vring->num, vring->align); |
| 396 | |
| 397 | /* verify queue size and vring alignment are sane */ |
| 398 | if (!vring->num || !vring->align) { |
| 399 | dev_err(dev, "invalid qsz (%d) or alignment (%d)\n", |
| 400 | vring->num, vring->align); |
| 401 | return -EINVAL; |
| 402 | } |
| 403 | |
| 404 | rvring->num = vring->num; |
| 405 | rvring->align = vring->align; |
| 406 | rvring->rvdev = rvdev; |
| 407 | |
| 408 | return 0; |
| 409 | } |
| 410 | |
| 411 | void rproc_free_vring(struct rproc_vring *rvring) |
| 412 | { |
| 413 | struct rproc *rproc = rvring->rvdev->rproc; |
| 414 | int idx = rvring - rvring->rvdev->vring; |
| 415 | struct fw_rsc_vdev *rsc; |
| 416 | |
| 417 | idr_remove(&rproc->notifyids, rvring->notifyid); |
| 418 | |
| 419 | /* |
| 420 | * At this point rproc_stop() has been called and the installed resource |
| 421 | * table in the remote processor memory may no longer be accessible. As |
| 422 | * such and as per rproc_stop(), rproc->table_ptr points to the cached |
| 423 | * resource table (rproc->cached_table). The cached resource table is |
| 424 | * only available when a remote processor has been booted by the |
| 425 | * remoteproc core, otherwise it is NULL. |
| 426 | * |
| 427 | * Based on the above, reset the virtio device section in the cached |
| 428 | * resource table only if there is one to work with. |
| 429 | */ |
| 430 | if (rproc->table_ptr) { |
| 431 | rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset; |
| 432 | rsc->vring[idx].da = 0; |
| 433 | rsc->vring[idx].notifyid = -1; |
| 434 | } |
| 435 | } |
| 436 | |
| 437 | void rproc_add_rvdev(struct rproc *rproc, struct rproc_vdev *rvdev) |
| 438 | { |
| 439 | if (rvdev && rproc) |
| 440 | list_add_tail(&rvdev->node, &rproc->rvdevs); |
| 441 | } |
| 442 | |
| 443 | void rproc_remove_rvdev(struct rproc_vdev *rvdev) |
| 444 | { |
| 445 | if (rvdev) |
| 446 | list_del(&rvdev->node); |
| 447 | } |
| 448 | /** |
| 449 | * rproc_handle_vdev() - handle a vdev fw resource |
| 450 | * @rproc: the remote processor |
| 451 | * @ptr: the vring resource descriptor |
| 452 | * @offset: offset of the resource entry |
| 453 | * @avail: size of available data (for sanity checking the image) |
| 454 | * |
| 455 | * This resource entry requests the host to statically register a virtio |
| 456 | * device (vdev), and setup everything needed to support it. It contains |
| 457 | * everything needed to make it possible: the virtio device id, virtio |
| 458 | * device features, vrings information, virtio config space, etc... |
| 459 | * |
| 460 | * Before registering the vdev, the vrings are allocated from non-cacheable |
| 461 | * physically contiguous memory. Currently we only support two vrings per |
| 462 | * remote processor (temporary limitation). We might also want to consider |
| 463 | * doing the vring allocation only later when ->find_vqs() is invoked, and |
| 464 | * then release them upon ->del_vqs(). |
| 465 | * |
| 466 | * Note: @da is currently not really handled correctly: we dynamically |
| 467 | * allocate it using the DMA API, ignoring requested hard coded addresses, |
| 468 | * and we don't take care of any required IOMMU programming. This is all |
| 469 | * going to be taken care of when the generic iommu-based DMA API will be |
| 470 | * merged. Meanwhile, statically-addressed iommu-based firmware images should |
| 471 | * use RSC_DEVMEM resource entries to map their required @da to the physical |
| 472 | * address of their base CMA region (ouch, hacky!). |
| 473 | * |
| 474 | * Return: 0 on success, or an appropriate error code otherwise |
| 475 | */ |
| 476 | static int rproc_handle_vdev(struct rproc *rproc, void *ptr, |
| 477 | int offset, int avail) |
| 478 | { |
| 479 | struct fw_rsc_vdev *rsc = ptr; |
| 480 | struct device *dev = &rproc->dev; |
| 481 | struct rproc_vdev *rvdev; |
| 482 | size_t rsc_size; |
| 483 | struct rproc_vdev_data rvdev_data; |
| 484 | struct platform_device *pdev; |
| 485 | |
| 486 | /* make sure resource isn't truncated */ |
| 487 | rsc_size = struct_size(rsc, vring, rsc->num_of_vrings); |
| 488 | if (size_add(rsc_size, rsc->config_len) > avail) { |
| 489 | dev_err(dev, "vdev rsc is truncated\n"); |
| 490 | return -EINVAL; |
| 491 | } |
| 492 | |
| 493 | /* make sure reserved bytes are zeroes */ |
| 494 | if (rsc->reserved[0] || rsc->reserved[1]) { |
| 495 | dev_err(dev, "vdev rsc has non zero reserved bytes\n"); |
| 496 | return -EINVAL; |
| 497 | } |
| 498 | |
| 499 | dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n", |
| 500 | rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings); |
| 501 | |
| 502 | /* we currently support only two vrings per rvdev */ |
| 503 | if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) { |
| 504 | dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings); |
| 505 | return -EINVAL; |
| 506 | } |
| 507 | |
| 508 | rvdev_data.id = rsc->id; |
| 509 | rvdev_data.index = rproc->nb_vdev++; |
| 510 | rvdev_data.rsc_offset = offset; |
| 511 | rvdev_data.rsc = rsc; |
| 512 | |
| 513 | /* |
| 514 | * When there is more than one remote processor, rproc->nb_vdev number is |
| 515 | * same for each separate instances of "rproc". If rvdev_data.index is used |
| 516 | * as device id, then we get duplication in sysfs, so need to use |
| 517 | * PLATFORM_DEVID_AUTO to auto select device id. |
| 518 | */ |
| 519 | pdev = platform_device_register_data(dev, "rproc-virtio", PLATFORM_DEVID_AUTO, &rvdev_data, |
| 520 | sizeof(rvdev_data)); |
| 521 | if (IS_ERR(pdev)) { |
| 522 | dev_err(dev, "failed to create rproc-virtio device\n"); |
| 523 | return PTR_ERR(pdev); |
| 524 | } |
| 525 | |
| 526 | return 0; |
| 527 | } |
| 528 | |
| 529 | /** |
| 530 | * rproc_handle_trace() - handle a shared trace buffer resource |
| 531 | * @rproc: the remote processor |
| 532 | * @ptr: the trace resource descriptor |
| 533 | * @offset: offset of the resource entry |
| 534 | * @avail: size of available data (for sanity checking the image) |
| 535 | * |
| 536 | * In case the remote processor dumps trace logs into memory, |
| 537 | * export it via debugfs. |
| 538 | * |
| 539 | * Currently, the 'da' member of @rsc should contain the device address |
| 540 | * where the remote processor is dumping the traces. Later we could also |
| 541 | * support dynamically allocating this address using the generic |
| 542 | * DMA API (but currently there isn't a use case for that). |
| 543 | * |
| 544 | * Return: 0 on success, or an appropriate error code otherwise |
| 545 | */ |
| 546 | static int rproc_handle_trace(struct rproc *rproc, void *ptr, |
| 547 | int offset, int avail) |
| 548 | { |
| 549 | struct fw_rsc_trace *rsc = ptr; |
| 550 | struct rproc_debug_trace *trace; |
| 551 | struct device *dev = &rproc->dev; |
| 552 | char name[15]; |
| 553 | |
| 554 | if (sizeof(*rsc) > avail) { |
| 555 | dev_err(dev, "trace rsc is truncated\n"); |
| 556 | return -EINVAL; |
| 557 | } |
| 558 | |
| 559 | /* make sure reserved bytes are zeroes */ |
| 560 | if (rsc->reserved) { |
| 561 | dev_err(dev, "trace rsc has non zero reserved bytes\n"); |
| 562 | return -EINVAL; |
| 563 | } |
| 564 | |
| 565 | trace = kzalloc(sizeof(*trace), GFP_KERNEL); |
| 566 | if (!trace) |
| 567 | return -ENOMEM; |
| 568 | |
| 569 | /* set the trace buffer dma properties */ |
| 570 | trace->trace_mem.len = rsc->len; |
| 571 | trace->trace_mem.da = rsc->da; |
| 572 | |
| 573 | /* set pointer on rproc device */ |
| 574 | trace->rproc = rproc; |
| 575 | |
| 576 | /* make sure snprintf always null terminates, even if truncating */ |
| 577 | snprintf(name, sizeof(name), "trace%d", rproc->num_traces); |
| 578 | |
| 579 | /* create the debugfs entry */ |
| 580 | trace->tfile = rproc_create_trace_file(name, rproc, trace); |
| 581 | |
| 582 | list_add_tail(&trace->node, &rproc->traces); |
| 583 | |
| 584 | rproc->num_traces++; |
| 585 | |
| 586 | dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n", |
| 587 | name, rsc->da, rsc->len); |
| 588 | |
| 589 | return 0; |
| 590 | } |
| 591 | |
| 592 | /** |
| 593 | * rproc_handle_devmem() - handle devmem resource entry |
| 594 | * @rproc: remote processor handle |
| 595 | * @ptr: the devmem resource entry |
| 596 | * @offset: offset of the resource entry |
| 597 | * @avail: size of available data (for sanity checking the image) |
| 598 | * |
| 599 | * Remote processors commonly need to access certain on-chip peripherals. |
| 600 | * |
| 601 | * Some of these remote processors access memory via an iommu device, |
| 602 | * and might require us to configure their iommu before they can access |
| 603 | * the on-chip peripherals they need. |
| 604 | * |
| 605 | * This resource entry is a request to map such a peripheral device. |
| 606 | * |
| 607 | * These devmem entries will contain the physical address of the device in |
| 608 | * the 'pa' member. If a specific device address is expected, then 'da' will |
| 609 | * contain it (currently this is the only use case supported). 'len' will |
| 610 | * contain the size of the physical region we need to map. |
| 611 | * |
| 612 | * Currently we just "trust" those devmem entries to contain valid physical |
| 613 | * addresses, but this is going to change: we want the implementations to |
| 614 | * tell us ranges of physical addresses the firmware is allowed to request, |
| 615 | * and not allow firmwares to request access to physical addresses that |
| 616 | * are outside those ranges. |
| 617 | * |
| 618 | * Return: 0 on success, or an appropriate error code otherwise |
| 619 | */ |
| 620 | static int rproc_handle_devmem(struct rproc *rproc, void *ptr, |
| 621 | int offset, int avail) |
| 622 | { |
| 623 | struct fw_rsc_devmem *rsc = ptr; |
| 624 | struct rproc_mem_entry *mapping; |
| 625 | struct device *dev = &rproc->dev; |
| 626 | int ret; |
| 627 | |
| 628 | /* no point in handling this resource without a valid iommu domain */ |
| 629 | if (!rproc->domain) |
| 630 | return -EINVAL; |
| 631 | |
| 632 | if (sizeof(*rsc) > avail) { |
| 633 | dev_err(dev, "devmem rsc is truncated\n"); |
| 634 | return -EINVAL; |
| 635 | } |
| 636 | |
| 637 | /* make sure reserved bytes are zeroes */ |
| 638 | if (rsc->reserved) { |
| 639 | dev_err(dev, "devmem rsc has non zero reserved bytes\n"); |
| 640 | return -EINVAL; |
| 641 | } |
| 642 | |
| 643 | mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); |
| 644 | if (!mapping) |
| 645 | return -ENOMEM; |
| 646 | |
| 647 | ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags, |
| 648 | GFP_KERNEL); |
| 649 | if (ret) { |
| 650 | dev_err(dev, "failed to map devmem: %d\n", ret); |
| 651 | goto out; |
| 652 | } |
| 653 | |
| 654 | /* |
| 655 | * We'll need this info later when we'll want to unmap everything |
| 656 | * (e.g. on shutdown). |
| 657 | * |
| 658 | * We can't trust the remote processor not to change the resource |
| 659 | * table, so we must maintain this info independently. |
| 660 | */ |
| 661 | mapping->da = rsc->da; |
| 662 | mapping->len = rsc->len; |
| 663 | list_add_tail(&mapping->node, &rproc->mappings); |
| 664 | |
| 665 | dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n", |
| 666 | rsc->pa, rsc->da, rsc->len); |
| 667 | |
| 668 | return 0; |
| 669 | |
| 670 | out: |
| 671 | kfree(mapping); |
| 672 | return ret; |
| 673 | } |
| 674 | |
| 675 | /** |
| 676 | * rproc_alloc_carveout() - allocated specified carveout |
| 677 | * @rproc: rproc handle |
| 678 | * @mem: the memory entry to allocate |
| 679 | * |
| 680 | * This function allocate specified memory entry @mem using |
| 681 | * dma_alloc_coherent() as default allocator |
| 682 | * |
| 683 | * Return: 0 on success, or an appropriate error code otherwise |
| 684 | */ |
| 685 | static int rproc_alloc_carveout(struct rproc *rproc, |
| 686 | struct rproc_mem_entry *mem) |
| 687 | { |
| 688 | struct rproc_mem_entry *mapping = NULL; |
| 689 | struct device *dev = &rproc->dev; |
| 690 | dma_addr_t dma; |
| 691 | void *va; |
| 692 | int ret; |
| 693 | |
| 694 | va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL); |
| 695 | if (!va) { |
| 696 | dev_err(dev->parent, |
| 697 | "failed to allocate dma memory: len 0x%zx\n", |
| 698 | mem->len); |
| 699 | return -ENOMEM; |
| 700 | } |
| 701 | |
| 702 | dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n", |
| 703 | va, &dma, mem->len); |
| 704 | |
| 705 | if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) { |
| 706 | /* |
| 707 | * Check requested da is equal to dma address |
| 708 | * and print a warn message in case of missalignment. |
| 709 | * Don't stop rproc_start sequence as coprocessor may |
| 710 | * build pa to da translation on its side. |
| 711 | */ |
| 712 | if (mem->da != (u32)dma) |
| 713 | dev_warn(dev->parent, |
| 714 | "Allocated carveout doesn't fit device address request\n"); |
| 715 | } |
| 716 | |
| 717 | /* |
| 718 | * Ok, this is non-standard. |
| 719 | * |
| 720 | * Sometimes we can't rely on the generic iommu-based DMA API |
| 721 | * to dynamically allocate the device address and then set the IOMMU |
| 722 | * tables accordingly, because some remote processors might |
| 723 | * _require_ us to use hard coded device addresses that their |
| 724 | * firmware was compiled with. |
| 725 | * |
| 726 | * In this case, we must use the IOMMU API directly and map |
| 727 | * the memory to the device address as expected by the remote |
| 728 | * processor. |
| 729 | * |
| 730 | * Obviously such remote processor devices should not be configured |
| 731 | * to use the iommu-based DMA API: we expect 'dma' to contain the |
| 732 | * physical address in this case. |
| 733 | */ |
| 734 | if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) { |
| 735 | mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); |
| 736 | if (!mapping) { |
| 737 | ret = -ENOMEM; |
| 738 | goto dma_free; |
| 739 | } |
| 740 | |
| 741 | ret = iommu_map(rproc->domain, mem->da, dma, mem->len, |
| 742 | mem->flags, GFP_KERNEL); |
| 743 | if (ret) { |
| 744 | dev_err(dev, "iommu_map failed: %d\n", ret); |
| 745 | goto free_mapping; |
| 746 | } |
| 747 | |
| 748 | /* |
| 749 | * We'll need this info later when we'll want to unmap |
| 750 | * everything (e.g. on shutdown). |
| 751 | * |
| 752 | * We can't trust the remote processor not to change the |
| 753 | * resource table, so we must maintain this info independently. |
| 754 | */ |
| 755 | mapping->da = mem->da; |
| 756 | mapping->len = mem->len; |
| 757 | list_add_tail(&mapping->node, &rproc->mappings); |
| 758 | |
| 759 | dev_dbg(dev, "carveout mapped 0x%x to %pad\n", |
| 760 | mem->da, &dma); |
| 761 | } |
| 762 | |
| 763 | if (mem->da == FW_RSC_ADDR_ANY) { |
| 764 | /* Update device address as undefined by requester */ |
| 765 | if ((u64)dma & HIGH_BITS_MASK) |
| 766 | dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n"); |
| 767 | |
| 768 | mem->da = (u32)dma; |
| 769 | } |
| 770 | |
| 771 | mem->dma = dma; |
| 772 | mem->va = va; |
| 773 | |
| 774 | return 0; |
| 775 | |
| 776 | free_mapping: |
| 777 | kfree(mapping); |
| 778 | dma_free: |
| 779 | dma_free_coherent(dev->parent, mem->len, va, dma); |
| 780 | return ret; |
| 781 | } |
| 782 | |
| 783 | /** |
| 784 | * rproc_release_carveout() - release acquired carveout |
| 785 | * @rproc: rproc handle |
| 786 | * @mem: the memory entry to release |
| 787 | * |
| 788 | * This function releases specified memory entry @mem allocated via |
| 789 | * rproc_alloc_carveout() function by @rproc. |
| 790 | * |
| 791 | * Return: 0 on success, or an appropriate error code otherwise |
| 792 | */ |
| 793 | static int rproc_release_carveout(struct rproc *rproc, |
| 794 | struct rproc_mem_entry *mem) |
| 795 | { |
| 796 | struct device *dev = &rproc->dev; |
| 797 | |
| 798 | /* clean up carveout allocations */ |
| 799 | dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma); |
| 800 | return 0; |
| 801 | } |
| 802 | |
| 803 | /** |
| 804 | * rproc_handle_carveout() - handle phys contig memory allocation requests |
| 805 | * @rproc: rproc handle |
| 806 | * @ptr: the resource entry |
| 807 | * @offset: offset of the resource entry |
| 808 | * @avail: size of available data (for image validation) |
| 809 | * |
| 810 | * This function will handle firmware requests for allocation of physically |
| 811 | * contiguous memory regions. |
| 812 | * |
| 813 | * These request entries should come first in the firmware's resource table, |
| 814 | * as other firmware entries might request placing other data objects inside |
| 815 | * these memory regions (e.g. data/code segments, trace resource entries, ...). |
| 816 | * |
| 817 | * Allocating memory this way helps utilizing the reserved physical memory |
| 818 | * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries |
| 819 | * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB |
| 820 | * pressure is important; it may have a substantial impact on performance. |
| 821 | * |
| 822 | * Return: 0 on success, or an appropriate error code otherwise |
| 823 | */ |
| 824 | static int rproc_handle_carveout(struct rproc *rproc, |
| 825 | void *ptr, int offset, int avail) |
| 826 | { |
| 827 | struct fw_rsc_carveout *rsc = ptr; |
| 828 | struct rproc_mem_entry *carveout; |
| 829 | struct device *dev = &rproc->dev; |
| 830 | |
| 831 | if (sizeof(*rsc) > avail) { |
| 832 | dev_err(dev, "carveout rsc is truncated\n"); |
| 833 | return -EINVAL; |
| 834 | } |
| 835 | |
| 836 | /* make sure reserved bytes are zeroes */ |
| 837 | if (rsc->reserved) { |
| 838 | dev_err(dev, "carveout rsc has non zero reserved bytes\n"); |
| 839 | return -EINVAL; |
| 840 | } |
| 841 | |
| 842 | dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n", |
| 843 | rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags); |
| 844 | |
| 845 | /* |
| 846 | * Check carveout rsc already part of a registered carveout, |
| 847 | * Search by name, then check the da and length |
| 848 | */ |
| 849 | carveout = rproc_find_carveout_by_name(rproc, rsc->name); |
| 850 | |
| 851 | if (carveout) { |
| 852 | if (carveout->rsc_offset != FW_RSC_ADDR_ANY) { |
| 853 | dev_err(dev, |
| 854 | "Carveout already associated to resource table\n"); |
| 855 | return -ENOMEM; |
| 856 | } |
| 857 | |
| 858 | if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len)) |
| 859 | return -ENOMEM; |
| 860 | |
| 861 | /* Update memory carveout with resource table info */ |
| 862 | carveout->rsc_offset = offset; |
| 863 | carveout->flags = rsc->flags; |
| 864 | |
| 865 | return 0; |
| 866 | } |
| 867 | |
| 868 | /* Register carveout in list */ |
| 869 | carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da, |
| 870 | rproc_alloc_carveout, |
| 871 | rproc_release_carveout, rsc->name); |
| 872 | if (!carveout) { |
| 873 | dev_err(dev, "Can't allocate memory entry structure\n"); |
| 874 | return -ENOMEM; |
| 875 | } |
| 876 | |
| 877 | carveout->flags = rsc->flags; |
| 878 | carveout->rsc_offset = offset; |
| 879 | rproc_add_carveout(rproc, carveout); |
| 880 | |
| 881 | return 0; |
| 882 | } |
| 883 | |
| 884 | /** |
| 885 | * rproc_add_carveout() - register an allocated carveout region |
| 886 | * @rproc: rproc handle |
| 887 | * @mem: memory entry to register |
| 888 | * |
| 889 | * This function registers specified memory entry in @rproc carveouts list. |
| 890 | * Specified carveout should have been allocated before registering. |
| 891 | */ |
| 892 | void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem) |
| 893 | { |
| 894 | list_add_tail(&mem->node, &rproc->carveouts); |
| 895 | } |
| 896 | EXPORT_SYMBOL(rproc_add_carveout); |
| 897 | |
| 898 | /** |
| 899 | * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct |
| 900 | * @dev: pointer on device struct |
| 901 | * @va: virtual address |
| 902 | * @dma: dma address |
| 903 | * @len: memory carveout length |
| 904 | * @da: device address |
| 905 | * @alloc: memory carveout allocation function |
| 906 | * @release: memory carveout release function |
| 907 | * @name: carveout name |
| 908 | * |
| 909 | * This function allocates a rproc_mem_entry struct and fill it with parameters |
| 910 | * provided by client. |
| 911 | * |
| 912 | * Return: a valid pointer on success, or NULL on failure |
| 913 | */ |
| 914 | __printf(8, 9) |
| 915 | struct rproc_mem_entry * |
| 916 | rproc_mem_entry_init(struct device *dev, |
| 917 | void *va, dma_addr_t dma, size_t len, u32 da, |
| 918 | int (*alloc)(struct rproc *, struct rproc_mem_entry *), |
| 919 | int (*release)(struct rproc *, struct rproc_mem_entry *), |
| 920 | const char *name, ...) |
| 921 | { |
| 922 | struct rproc_mem_entry *mem; |
| 923 | va_list args; |
| 924 | |
| 925 | mem = kzalloc(sizeof(*mem), GFP_KERNEL); |
| 926 | if (!mem) |
| 927 | return mem; |
| 928 | |
| 929 | mem->va = va; |
| 930 | mem->dma = dma; |
| 931 | mem->da = da; |
| 932 | mem->len = len; |
| 933 | mem->alloc = alloc; |
| 934 | mem->release = release; |
| 935 | mem->rsc_offset = FW_RSC_ADDR_ANY; |
| 936 | mem->of_resm_idx = -1; |
| 937 | |
| 938 | va_start(args, name); |
| 939 | vsnprintf(mem->name, sizeof(mem->name), name, args); |
| 940 | va_end(args); |
| 941 | |
| 942 | return mem; |
| 943 | } |
| 944 | EXPORT_SYMBOL(rproc_mem_entry_init); |
| 945 | |
| 946 | /** |
| 947 | * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct |
| 948 | * from a reserved memory phandle |
| 949 | * @dev: pointer on device struct |
| 950 | * @of_resm_idx: reserved memory phandle index in "memory-region" |
| 951 | * @len: memory carveout length |
| 952 | * @da: device address |
| 953 | * @name: carveout name |
| 954 | * |
| 955 | * This function allocates a rproc_mem_entry struct and fill it with parameters |
| 956 | * provided by client. |
| 957 | * |
| 958 | * Return: a valid pointer on success, or NULL on failure |
| 959 | */ |
| 960 | __printf(5, 6) |
| 961 | struct rproc_mem_entry * |
| 962 | rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len, |
| 963 | u32 da, const char *name, ...) |
| 964 | { |
| 965 | struct rproc_mem_entry *mem; |
| 966 | va_list args; |
| 967 | |
| 968 | mem = kzalloc(sizeof(*mem), GFP_KERNEL); |
| 969 | if (!mem) |
| 970 | return mem; |
| 971 | |
| 972 | mem->da = da; |
| 973 | mem->len = len; |
| 974 | mem->rsc_offset = FW_RSC_ADDR_ANY; |
| 975 | mem->of_resm_idx = of_resm_idx; |
| 976 | |
| 977 | va_start(args, name); |
| 978 | vsnprintf(mem->name, sizeof(mem->name), name, args); |
| 979 | va_end(args); |
| 980 | |
| 981 | return mem; |
| 982 | } |
| 983 | EXPORT_SYMBOL(rproc_of_resm_mem_entry_init); |
| 984 | |
| 985 | /** |
| 986 | * rproc_of_parse_firmware() - parse and return the firmware-name |
| 987 | * @dev: pointer on device struct representing a rproc |
| 988 | * @index: index to use for the firmware-name retrieval |
| 989 | * @fw_name: pointer to a character string, in which the firmware |
| 990 | * name is returned on success and unmodified otherwise. |
| 991 | * |
| 992 | * This is an OF helper function that parses a device's DT node for |
| 993 | * the "firmware-name" property and returns the firmware name pointer |
| 994 | * in @fw_name on success. |
| 995 | * |
| 996 | * Return: 0 on success, or an appropriate failure. |
| 997 | */ |
| 998 | int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name) |
| 999 | { |
| 1000 | int ret; |
| 1001 | |
| 1002 | ret = of_property_read_string_index(dev->of_node, "firmware-name", |
| 1003 | index, fw_name); |
| 1004 | return ret ? ret : 0; |
| 1005 | } |
| 1006 | EXPORT_SYMBOL(rproc_of_parse_firmware); |
| 1007 | |
| 1008 | /* |
| 1009 | * A lookup table for resource handlers. The indices are defined in |
| 1010 | * enum fw_resource_type. |
| 1011 | */ |
| 1012 | static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = { |
| 1013 | [RSC_CARVEOUT] = rproc_handle_carveout, |
| 1014 | [RSC_DEVMEM] = rproc_handle_devmem, |
| 1015 | [RSC_TRACE] = rproc_handle_trace, |
| 1016 | [RSC_VDEV] = rproc_handle_vdev, |
| 1017 | }; |
| 1018 | |
| 1019 | /* handle firmware resource entries before booting the remote processor */ |
| 1020 | static int rproc_handle_resources(struct rproc *rproc, |
| 1021 | rproc_handle_resource_t handlers[RSC_LAST]) |
| 1022 | { |
| 1023 | struct device *dev = &rproc->dev; |
| 1024 | rproc_handle_resource_t handler; |
| 1025 | int ret = 0, i; |
| 1026 | |
| 1027 | if (!rproc->table_ptr) |
| 1028 | return 0; |
| 1029 | |
| 1030 | for (i = 0; i < rproc->table_ptr->num; i++) { |
| 1031 | int offset = rproc->table_ptr->offset[i]; |
| 1032 | struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset; |
| 1033 | int avail = rproc->table_sz - offset - sizeof(*hdr); |
| 1034 | void *rsc = (void *)hdr + sizeof(*hdr); |
| 1035 | |
| 1036 | /* make sure table isn't truncated */ |
| 1037 | if (avail < 0) { |
| 1038 | dev_err(dev, "rsc table is truncated\n"); |
| 1039 | return -EINVAL; |
| 1040 | } |
| 1041 | |
| 1042 | dev_dbg(dev, "rsc: type %d\n", hdr->type); |
| 1043 | |
| 1044 | if (hdr->type >= RSC_VENDOR_START && |
| 1045 | hdr->type <= RSC_VENDOR_END) { |
| 1046 | ret = rproc_handle_rsc(rproc, hdr->type, rsc, |
| 1047 | offset + sizeof(*hdr), avail); |
| 1048 | if (ret == RSC_HANDLED) |
| 1049 | continue; |
| 1050 | else if (ret < 0) |
| 1051 | break; |
| 1052 | |
| 1053 | dev_warn(dev, "unsupported vendor resource %d\n", |
| 1054 | hdr->type); |
| 1055 | continue; |
| 1056 | } |
| 1057 | |
| 1058 | if (hdr->type >= RSC_LAST) { |
| 1059 | dev_warn(dev, "unsupported resource %d\n", hdr->type); |
| 1060 | continue; |
| 1061 | } |
| 1062 | |
| 1063 | handler = handlers[hdr->type]; |
| 1064 | if (!handler) |
| 1065 | continue; |
| 1066 | |
| 1067 | ret = handler(rproc, rsc, offset + sizeof(*hdr), avail); |
| 1068 | if (ret) |
| 1069 | break; |
| 1070 | } |
| 1071 | |
| 1072 | return ret; |
| 1073 | } |
| 1074 | |
| 1075 | static int rproc_prepare_subdevices(struct rproc *rproc) |
| 1076 | { |
| 1077 | struct rproc_subdev *subdev; |
| 1078 | int ret; |
| 1079 | |
| 1080 | list_for_each_entry(subdev, &rproc->subdevs, node) { |
| 1081 | if (subdev->prepare) { |
| 1082 | ret = subdev->prepare(subdev); |
| 1083 | if (ret) |
| 1084 | goto unroll_preparation; |
| 1085 | } |
| 1086 | } |
| 1087 | |
| 1088 | return 0; |
| 1089 | |
| 1090 | unroll_preparation: |
| 1091 | list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { |
| 1092 | if (subdev->unprepare) |
| 1093 | subdev->unprepare(subdev); |
| 1094 | } |
| 1095 | |
| 1096 | return ret; |
| 1097 | } |
| 1098 | |
| 1099 | static int rproc_start_subdevices(struct rproc *rproc) |
| 1100 | { |
| 1101 | struct rproc_subdev *subdev; |
| 1102 | int ret; |
| 1103 | |
| 1104 | list_for_each_entry(subdev, &rproc->subdevs, node) { |
| 1105 | if (subdev->start) { |
| 1106 | ret = subdev->start(subdev); |
| 1107 | if (ret) |
| 1108 | goto unroll_registration; |
| 1109 | } |
| 1110 | } |
| 1111 | |
| 1112 | return 0; |
| 1113 | |
| 1114 | unroll_registration: |
| 1115 | list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { |
| 1116 | if (subdev->stop) |
| 1117 | subdev->stop(subdev, true); |
| 1118 | } |
| 1119 | |
| 1120 | return ret; |
| 1121 | } |
| 1122 | |
| 1123 | static void rproc_stop_subdevices(struct rproc *rproc, bool crashed) |
| 1124 | { |
| 1125 | struct rproc_subdev *subdev; |
| 1126 | |
| 1127 | list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { |
| 1128 | if (subdev->stop) |
| 1129 | subdev->stop(subdev, crashed); |
| 1130 | } |
| 1131 | } |
| 1132 | |
| 1133 | static void rproc_unprepare_subdevices(struct rproc *rproc) |
| 1134 | { |
| 1135 | struct rproc_subdev *subdev; |
| 1136 | |
| 1137 | list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { |
| 1138 | if (subdev->unprepare) |
| 1139 | subdev->unprepare(subdev); |
| 1140 | } |
| 1141 | } |
| 1142 | |
| 1143 | /** |
| 1144 | * rproc_alloc_registered_carveouts() - allocate all carveouts registered |
| 1145 | * in the list |
| 1146 | * @rproc: the remote processor handle |
| 1147 | * |
| 1148 | * This function parses registered carveout list, performs allocation |
| 1149 | * if alloc() ops registered and updates resource table information |
| 1150 | * if rsc_offset set. |
| 1151 | * |
| 1152 | * Return: 0 on success |
| 1153 | */ |
| 1154 | static int rproc_alloc_registered_carveouts(struct rproc *rproc) |
| 1155 | { |
| 1156 | struct rproc_mem_entry *entry, *tmp; |
| 1157 | struct fw_rsc_carveout *rsc; |
| 1158 | struct device *dev = &rproc->dev; |
| 1159 | u64 pa; |
| 1160 | int ret; |
| 1161 | |
| 1162 | list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { |
| 1163 | if (entry->alloc) { |
| 1164 | ret = entry->alloc(rproc, entry); |
| 1165 | if (ret) { |
| 1166 | dev_err(dev, "Unable to allocate carveout %s: %d\n", |
| 1167 | entry->name, ret); |
| 1168 | return -ENOMEM; |
| 1169 | } |
| 1170 | } |
| 1171 | |
| 1172 | if (entry->rsc_offset != FW_RSC_ADDR_ANY) { |
| 1173 | /* update resource table */ |
| 1174 | rsc = (void *)rproc->table_ptr + entry->rsc_offset; |
| 1175 | |
| 1176 | /* |
| 1177 | * Some remote processors might need to know the pa |
| 1178 | * even though they are behind an IOMMU. E.g., OMAP4's |
| 1179 | * remote M3 processor needs this so it can control |
| 1180 | * on-chip hardware accelerators that are not behind |
| 1181 | * the IOMMU, and therefor must know the pa. |
| 1182 | * |
| 1183 | * Generally we don't want to expose physical addresses |
| 1184 | * if we don't have to (remote processors are generally |
| 1185 | * _not_ trusted), so we might want to do this only for |
| 1186 | * remote processor that _must_ have this (e.g. OMAP4's |
| 1187 | * dual M3 subsystem). |
| 1188 | * |
| 1189 | * Non-IOMMU processors might also want to have this info. |
| 1190 | * In this case, the device address and the physical address |
| 1191 | * are the same. |
| 1192 | */ |
| 1193 | |
| 1194 | /* Use va if defined else dma to generate pa */ |
| 1195 | if (entry->va) |
| 1196 | pa = (u64)rproc_va_to_pa(entry->va); |
| 1197 | else |
| 1198 | pa = (u64)entry->dma; |
| 1199 | |
| 1200 | if (((u64)pa) & HIGH_BITS_MASK) |
| 1201 | dev_warn(dev, |
| 1202 | "Physical address cast in 32bit to fit resource table format\n"); |
| 1203 | |
| 1204 | rsc->pa = (u32)pa; |
| 1205 | rsc->da = entry->da; |
| 1206 | rsc->len = entry->len; |
| 1207 | } |
| 1208 | } |
| 1209 | |
| 1210 | return 0; |
| 1211 | } |
| 1212 | |
| 1213 | |
| 1214 | /** |
| 1215 | * rproc_resource_cleanup() - clean up and free all acquired resources |
| 1216 | * @rproc: rproc handle |
| 1217 | * |
| 1218 | * This function will free all resources acquired for @rproc, and it |
| 1219 | * is called whenever @rproc either shuts down or fails to boot. |
| 1220 | */ |
| 1221 | void rproc_resource_cleanup(struct rproc *rproc) |
| 1222 | { |
| 1223 | struct rproc_mem_entry *entry, *tmp; |
| 1224 | struct rproc_debug_trace *trace, *ttmp; |
| 1225 | struct rproc_vdev *rvdev, *rvtmp; |
| 1226 | struct device *dev = &rproc->dev; |
| 1227 | |
| 1228 | /* clean up debugfs trace entries */ |
| 1229 | list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) { |
| 1230 | rproc_remove_trace_file(trace->tfile); |
| 1231 | rproc->num_traces--; |
| 1232 | list_del(&trace->node); |
| 1233 | kfree(trace); |
| 1234 | } |
| 1235 | |
| 1236 | /* clean up iommu mapping entries */ |
| 1237 | list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) { |
| 1238 | size_t unmapped; |
| 1239 | |
| 1240 | unmapped = iommu_unmap(rproc->domain, entry->da, entry->len); |
| 1241 | if (unmapped != entry->len) { |
| 1242 | /* nothing much to do besides complaining */ |
| 1243 | dev_err(dev, "failed to unmap %zx/%zu\n", entry->len, |
| 1244 | unmapped); |
| 1245 | } |
| 1246 | |
| 1247 | list_del(&entry->node); |
| 1248 | kfree(entry); |
| 1249 | } |
| 1250 | |
| 1251 | /* clean up carveout allocations */ |
| 1252 | list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { |
| 1253 | if (entry->release) |
| 1254 | entry->release(rproc, entry); |
| 1255 | list_del(&entry->node); |
| 1256 | kfree(entry); |
| 1257 | } |
| 1258 | |
| 1259 | /* clean up remote vdev entries */ |
| 1260 | list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) |
| 1261 | platform_device_unregister(rvdev->pdev); |
| 1262 | |
| 1263 | rproc_coredump_cleanup(rproc); |
| 1264 | } |
| 1265 | EXPORT_SYMBOL(rproc_resource_cleanup); |
| 1266 | |
| 1267 | static int rproc_start(struct rproc *rproc, const struct firmware *fw) |
| 1268 | { |
| 1269 | struct resource_table *loaded_table; |
| 1270 | struct device *dev = &rproc->dev; |
| 1271 | int ret; |
| 1272 | |
| 1273 | /* load the ELF segments to memory */ |
| 1274 | ret = rproc_load_segments(rproc, fw); |
| 1275 | if (ret) { |
| 1276 | dev_err(dev, "Failed to load program segments: %d\n", ret); |
| 1277 | return ret; |
| 1278 | } |
| 1279 | |
| 1280 | /* |
| 1281 | * The starting device has been given the rproc->cached_table as the |
| 1282 | * resource table. The address of the vring along with the other |
| 1283 | * allocated resources (carveouts etc) is stored in cached_table. |
| 1284 | * In order to pass this information to the remote device we must copy |
| 1285 | * this information to device memory. We also update the table_ptr so |
| 1286 | * that any subsequent changes will be applied to the loaded version. |
| 1287 | */ |
| 1288 | loaded_table = rproc_find_loaded_rsc_table(rproc, fw); |
| 1289 | if (loaded_table) { |
| 1290 | memcpy(loaded_table, rproc->cached_table, rproc->table_sz); |
| 1291 | rproc->table_ptr = loaded_table; |
| 1292 | } |
| 1293 | |
| 1294 | ret = rproc_prepare_subdevices(rproc); |
| 1295 | if (ret) { |
| 1296 | dev_err(dev, "failed to prepare subdevices for %s: %d\n", |
| 1297 | rproc->name, ret); |
| 1298 | goto reset_table_ptr; |
| 1299 | } |
| 1300 | |
| 1301 | /* power up the remote processor */ |
| 1302 | ret = rproc->ops->start(rproc); |
| 1303 | if (ret) { |
| 1304 | dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret); |
| 1305 | goto unprepare_subdevices; |
| 1306 | } |
| 1307 | |
| 1308 | /* Start any subdevices for the remote processor */ |
| 1309 | ret = rproc_start_subdevices(rproc); |
| 1310 | if (ret) { |
| 1311 | dev_err(dev, "failed to probe subdevices for %s: %d\n", |
| 1312 | rproc->name, ret); |
| 1313 | goto stop_rproc; |
| 1314 | } |
| 1315 | |
| 1316 | rproc->state = RPROC_RUNNING; |
| 1317 | |
| 1318 | dev_info(dev, "remote processor %s is now up\n", rproc->name); |
| 1319 | |
| 1320 | return 0; |
| 1321 | |
| 1322 | stop_rproc: |
| 1323 | rproc->ops->stop(rproc); |
| 1324 | unprepare_subdevices: |
| 1325 | rproc_unprepare_subdevices(rproc); |
| 1326 | reset_table_ptr: |
| 1327 | rproc->table_ptr = rproc->cached_table; |
| 1328 | |
| 1329 | return ret; |
| 1330 | } |
| 1331 | |
| 1332 | static int __rproc_attach(struct rproc *rproc) |
| 1333 | { |
| 1334 | struct device *dev = &rproc->dev; |
| 1335 | int ret; |
| 1336 | |
| 1337 | ret = rproc_prepare_subdevices(rproc); |
| 1338 | if (ret) { |
| 1339 | dev_err(dev, "failed to prepare subdevices for %s: %d\n", |
| 1340 | rproc->name, ret); |
| 1341 | goto out; |
| 1342 | } |
| 1343 | |
| 1344 | /* Attach to the remote processor */ |
| 1345 | ret = rproc_attach_device(rproc); |
| 1346 | if (ret) { |
| 1347 | dev_err(dev, "can't attach to rproc %s: %d\n", |
| 1348 | rproc->name, ret); |
| 1349 | goto unprepare_subdevices; |
| 1350 | } |
| 1351 | |
| 1352 | /* Start any subdevices for the remote processor */ |
| 1353 | ret = rproc_start_subdevices(rproc); |
| 1354 | if (ret) { |
| 1355 | dev_err(dev, "failed to probe subdevices for %s: %d\n", |
| 1356 | rproc->name, ret); |
| 1357 | goto stop_rproc; |
| 1358 | } |
| 1359 | |
| 1360 | rproc->state = RPROC_ATTACHED; |
| 1361 | |
| 1362 | dev_info(dev, "remote processor %s is now attached\n", rproc->name); |
| 1363 | |
| 1364 | return 0; |
| 1365 | |
| 1366 | stop_rproc: |
| 1367 | rproc->ops->stop(rproc); |
| 1368 | unprepare_subdevices: |
| 1369 | rproc_unprepare_subdevices(rproc); |
| 1370 | out: |
| 1371 | return ret; |
| 1372 | } |
| 1373 | |
| 1374 | /* |
| 1375 | * take a firmware and boot a remote processor with it. |
| 1376 | */ |
| 1377 | static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw) |
| 1378 | { |
| 1379 | struct device *dev = &rproc->dev; |
| 1380 | const char *name = rproc->firmware; |
| 1381 | int ret; |
| 1382 | |
| 1383 | ret = rproc_fw_sanity_check(rproc, fw); |
| 1384 | if (ret) |
| 1385 | return ret; |
| 1386 | |
| 1387 | dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size); |
| 1388 | |
| 1389 | /* |
| 1390 | * if enabling an IOMMU isn't relevant for this rproc, this is |
| 1391 | * just a nop |
| 1392 | */ |
| 1393 | ret = rproc_enable_iommu(rproc); |
| 1394 | if (ret) { |
| 1395 | dev_err(dev, "can't enable iommu: %d\n", ret); |
| 1396 | return ret; |
| 1397 | } |
| 1398 | |
| 1399 | /* Prepare rproc for firmware loading if needed */ |
| 1400 | ret = rproc_prepare_device(rproc); |
| 1401 | if (ret) { |
| 1402 | dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret); |
| 1403 | goto disable_iommu; |
| 1404 | } |
| 1405 | |
| 1406 | rproc->bootaddr = rproc_get_boot_addr(rproc, fw); |
| 1407 | |
| 1408 | /* Load resource table, core dump segment list etc from the firmware */ |
| 1409 | ret = rproc_parse_fw(rproc, fw); |
| 1410 | if (ret) |
| 1411 | goto unprepare_rproc; |
| 1412 | |
| 1413 | /* reset max_notifyid */ |
| 1414 | rproc->max_notifyid = -1; |
| 1415 | |
| 1416 | /* reset handled vdev */ |
| 1417 | rproc->nb_vdev = 0; |
| 1418 | |
| 1419 | /* handle fw resources which are required to boot rproc */ |
| 1420 | ret = rproc_handle_resources(rproc, rproc_loading_handlers); |
| 1421 | if (ret) { |
| 1422 | dev_err(dev, "Failed to process resources: %d\n", ret); |
| 1423 | goto clean_up_resources; |
| 1424 | } |
| 1425 | |
| 1426 | /* Allocate carveout resources associated to rproc */ |
| 1427 | ret = rproc_alloc_registered_carveouts(rproc); |
| 1428 | if (ret) { |
| 1429 | dev_err(dev, "Failed to allocate associated carveouts: %d\n", |
| 1430 | ret); |
| 1431 | goto clean_up_resources; |
| 1432 | } |
| 1433 | |
| 1434 | ret = rproc_start(rproc, fw); |
| 1435 | if (ret) |
| 1436 | goto clean_up_resources; |
| 1437 | |
| 1438 | return 0; |
| 1439 | |
| 1440 | clean_up_resources: |
| 1441 | rproc_resource_cleanup(rproc); |
| 1442 | kfree(rproc->cached_table); |
| 1443 | rproc->cached_table = NULL; |
| 1444 | rproc->table_ptr = NULL; |
| 1445 | unprepare_rproc: |
| 1446 | /* release HW resources if needed */ |
| 1447 | rproc_unprepare_device(rproc); |
| 1448 | disable_iommu: |
| 1449 | rproc_disable_iommu(rproc); |
| 1450 | return ret; |
| 1451 | } |
| 1452 | |
| 1453 | static int rproc_set_rsc_table(struct rproc *rproc) |
| 1454 | { |
| 1455 | struct resource_table *table_ptr; |
| 1456 | struct device *dev = &rproc->dev; |
| 1457 | size_t table_sz; |
| 1458 | int ret; |
| 1459 | |
| 1460 | table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz); |
| 1461 | if (!table_ptr) { |
| 1462 | /* Not having a resource table is acceptable */ |
| 1463 | return 0; |
| 1464 | } |
| 1465 | |
| 1466 | if (IS_ERR(table_ptr)) { |
| 1467 | ret = PTR_ERR(table_ptr); |
| 1468 | dev_err(dev, "can't load resource table: %d\n", ret); |
| 1469 | return ret; |
| 1470 | } |
| 1471 | |
| 1472 | /* |
| 1473 | * If it is possible to detach the remote processor, keep an untouched |
| 1474 | * copy of the resource table. That way we can start fresh again when |
| 1475 | * the remote processor is re-attached, that is: |
| 1476 | * |
| 1477 | * DETACHED -> ATTACHED -> DETACHED -> ATTACHED |
| 1478 | * |
| 1479 | * Free'd in rproc_reset_rsc_table_on_detach() and |
| 1480 | * rproc_reset_rsc_table_on_stop(). |
| 1481 | */ |
| 1482 | if (rproc->ops->detach) { |
| 1483 | rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL); |
| 1484 | if (!rproc->clean_table) |
| 1485 | return -ENOMEM; |
| 1486 | } else { |
| 1487 | rproc->clean_table = NULL; |
| 1488 | } |
| 1489 | |
| 1490 | rproc->cached_table = NULL; |
| 1491 | rproc->table_ptr = table_ptr; |
| 1492 | rproc->table_sz = table_sz; |
| 1493 | |
| 1494 | return 0; |
| 1495 | } |
| 1496 | |
| 1497 | static int rproc_reset_rsc_table_on_detach(struct rproc *rproc) |
| 1498 | { |
| 1499 | struct resource_table *table_ptr; |
| 1500 | |
| 1501 | /* A resource table was never retrieved, nothing to do here */ |
| 1502 | if (!rproc->table_ptr) |
| 1503 | return 0; |
| 1504 | |
| 1505 | /* |
| 1506 | * If we made it to this point a clean_table _must_ have been |
| 1507 | * allocated in rproc_set_rsc_table(). If one isn't present |
| 1508 | * something went really wrong and we must complain. |
| 1509 | */ |
| 1510 | if (WARN_ON(!rproc->clean_table)) |
| 1511 | return -EINVAL; |
| 1512 | |
| 1513 | /* Remember where the external entity installed the resource table */ |
| 1514 | table_ptr = rproc->table_ptr; |
| 1515 | |
| 1516 | /* |
| 1517 | * If we made it here the remote processor was started by another |
| 1518 | * entity and a cache table doesn't exist. As such make a copy of |
| 1519 | * the resource table currently used by the remote processor and |
| 1520 | * use that for the rest of the shutdown process. The memory |
| 1521 | * allocated here is free'd in rproc_detach(). |
| 1522 | */ |
| 1523 | rproc->cached_table = kmemdup(rproc->table_ptr, |
| 1524 | rproc->table_sz, GFP_KERNEL); |
| 1525 | if (!rproc->cached_table) |
| 1526 | return -ENOMEM; |
| 1527 | |
| 1528 | /* |
| 1529 | * Use a copy of the resource table for the remainder of the |
| 1530 | * shutdown process. |
| 1531 | */ |
| 1532 | rproc->table_ptr = rproc->cached_table; |
| 1533 | |
| 1534 | /* |
| 1535 | * Reset the memory area where the firmware loaded the resource table |
| 1536 | * to its original value. That way when we re-attach the remote |
| 1537 | * processor the resource table is clean and ready to be used again. |
| 1538 | */ |
| 1539 | memcpy(table_ptr, rproc->clean_table, rproc->table_sz); |
| 1540 | |
| 1541 | /* |
| 1542 | * The clean resource table is no longer needed. Allocated in |
| 1543 | * rproc_set_rsc_table(). |
| 1544 | */ |
| 1545 | kfree(rproc->clean_table); |
| 1546 | |
| 1547 | return 0; |
| 1548 | } |
| 1549 | |
| 1550 | static int rproc_reset_rsc_table_on_stop(struct rproc *rproc) |
| 1551 | { |
| 1552 | /* A resource table was never retrieved, nothing to do here */ |
| 1553 | if (!rproc->table_ptr) |
| 1554 | return 0; |
| 1555 | |
| 1556 | /* |
| 1557 | * If a cache table exists the remote processor was started by |
| 1558 | * the remoteproc core. That cache table should be used for |
| 1559 | * the rest of the shutdown process. |
| 1560 | */ |
| 1561 | if (rproc->cached_table) |
| 1562 | goto out; |
| 1563 | |
| 1564 | /* |
| 1565 | * If we made it here the remote processor was started by another |
| 1566 | * entity and a cache table doesn't exist. As such make a copy of |
| 1567 | * the resource table currently used by the remote processor and |
| 1568 | * use that for the rest of the shutdown process. The memory |
| 1569 | * allocated here is free'd in rproc_shutdown(). |
| 1570 | */ |
| 1571 | rproc->cached_table = kmemdup(rproc->table_ptr, |
| 1572 | rproc->table_sz, GFP_KERNEL); |
| 1573 | if (!rproc->cached_table) |
| 1574 | return -ENOMEM; |
| 1575 | |
| 1576 | /* |
| 1577 | * Since the remote processor is being switched off the clean table |
| 1578 | * won't be needed. Allocated in rproc_set_rsc_table(). |
| 1579 | */ |
| 1580 | kfree(rproc->clean_table); |
| 1581 | |
| 1582 | out: |
| 1583 | /* |
| 1584 | * Use a copy of the resource table for the remainder of the |
| 1585 | * shutdown process. |
| 1586 | */ |
| 1587 | rproc->table_ptr = rproc->cached_table; |
| 1588 | return 0; |
| 1589 | } |
| 1590 | |
| 1591 | /* |
| 1592 | * Attach to remote processor - similar to rproc_fw_boot() but without |
| 1593 | * the steps that deal with the firmware image. |
| 1594 | */ |
| 1595 | static int rproc_attach(struct rproc *rproc) |
| 1596 | { |
| 1597 | struct device *dev = &rproc->dev; |
| 1598 | int ret; |
| 1599 | |
| 1600 | /* |
| 1601 | * if enabling an IOMMU isn't relevant for this rproc, this is |
| 1602 | * just a nop |
| 1603 | */ |
| 1604 | ret = rproc_enable_iommu(rproc); |
| 1605 | if (ret) { |
| 1606 | dev_err(dev, "can't enable iommu: %d\n", ret); |
| 1607 | return ret; |
| 1608 | } |
| 1609 | |
| 1610 | /* Do anything that is needed to boot the remote processor */ |
| 1611 | ret = rproc_prepare_device(rproc); |
| 1612 | if (ret) { |
| 1613 | dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret); |
| 1614 | goto disable_iommu; |
| 1615 | } |
| 1616 | |
| 1617 | ret = rproc_set_rsc_table(rproc); |
| 1618 | if (ret) { |
| 1619 | dev_err(dev, "can't load resource table: %d\n", ret); |
| 1620 | goto clean_up_resources; |
| 1621 | } |
| 1622 | |
| 1623 | /* reset max_notifyid */ |
| 1624 | rproc->max_notifyid = -1; |
| 1625 | |
| 1626 | /* reset handled vdev */ |
| 1627 | rproc->nb_vdev = 0; |
| 1628 | |
| 1629 | /* |
| 1630 | * Handle firmware resources required to attach to a remote processor. |
| 1631 | * Because we are attaching rather than booting the remote processor, |
| 1632 | * we expect the platform driver to properly set rproc->table_ptr. |
| 1633 | */ |
| 1634 | ret = rproc_handle_resources(rproc, rproc_loading_handlers); |
| 1635 | if (ret) { |
| 1636 | dev_err(dev, "Failed to process resources: %d\n", ret); |
| 1637 | goto clean_up_resources; |
| 1638 | } |
| 1639 | |
| 1640 | /* Allocate carveout resources associated to rproc */ |
| 1641 | ret = rproc_alloc_registered_carveouts(rproc); |
| 1642 | if (ret) { |
| 1643 | dev_err(dev, "Failed to allocate associated carveouts: %d\n", |
| 1644 | ret); |
| 1645 | goto clean_up_resources; |
| 1646 | } |
| 1647 | |
| 1648 | ret = __rproc_attach(rproc); |
| 1649 | if (ret) |
| 1650 | goto clean_up_resources; |
| 1651 | |
| 1652 | return 0; |
| 1653 | |
| 1654 | clean_up_resources: |
| 1655 | rproc_resource_cleanup(rproc); |
| 1656 | /* release HW resources if needed */ |
| 1657 | rproc_unprepare_device(rproc); |
| 1658 | kfree(rproc->clean_table); |
| 1659 | disable_iommu: |
| 1660 | rproc_disable_iommu(rproc); |
| 1661 | return ret; |
| 1662 | } |
| 1663 | |
| 1664 | /* |
| 1665 | * take a firmware and boot it up. |
| 1666 | * |
| 1667 | * Note: this function is called asynchronously upon registration of the |
| 1668 | * remote processor (so we must wait until it completes before we try |
| 1669 | * to unregister the device. one other option is just to use kref here, |
| 1670 | * that might be cleaner). |
| 1671 | */ |
| 1672 | static void rproc_auto_boot_callback(const struct firmware *fw, void *context) |
| 1673 | { |
| 1674 | struct rproc *rproc = context; |
| 1675 | |
| 1676 | rproc_boot(rproc); |
| 1677 | |
| 1678 | release_firmware(fw); |
| 1679 | } |
| 1680 | |
| 1681 | static int rproc_trigger_auto_boot(struct rproc *rproc) |
| 1682 | { |
| 1683 | int ret; |
| 1684 | |
| 1685 | /* |
| 1686 | * Since the remote processor is in a detached state, it has already |
| 1687 | * been booted by another entity. As such there is no point in waiting |
| 1688 | * for a firmware image to be loaded, we can simply initiate the process |
| 1689 | * of attaching to it immediately. |
| 1690 | */ |
| 1691 | if (rproc->state == RPROC_DETACHED) |
| 1692 | return rproc_boot(rproc); |
| 1693 | |
| 1694 | /* |
| 1695 | * We're initiating an asynchronous firmware loading, so we can |
| 1696 | * be built-in kernel code, without hanging the boot process. |
| 1697 | */ |
| 1698 | ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT, |
| 1699 | rproc->firmware, &rproc->dev, GFP_KERNEL, |
| 1700 | rproc, rproc_auto_boot_callback); |
| 1701 | if (ret < 0) |
| 1702 | dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret); |
| 1703 | |
| 1704 | return ret; |
| 1705 | } |
| 1706 | |
| 1707 | static int rproc_stop(struct rproc *rproc, bool crashed) |
| 1708 | { |
| 1709 | struct device *dev = &rproc->dev; |
| 1710 | int ret; |
| 1711 | |
| 1712 | /* No need to continue if a stop() operation has not been provided */ |
| 1713 | if (!rproc->ops->stop) |
| 1714 | return -EINVAL; |
| 1715 | |
| 1716 | /* Stop any subdevices for the remote processor */ |
| 1717 | rproc_stop_subdevices(rproc, crashed); |
| 1718 | |
| 1719 | /* the installed resource table is no longer accessible */ |
| 1720 | ret = rproc_reset_rsc_table_on_stop(rproc); |
| 1721 | if (ret) { |
| 1722 | dev_err(dev, "can't reset resource table: %d\n", ret); |
| 1723 | return ret; |
| 1724 | } |
| 1725 | |
| 1726 | |
| 1727 | /* power off the remote processor */ |
| 1728 | ret = rproc->ops->stop(rproc); |
| 1729 | if (ret) { |
| 1730 | dev_err(dev, "can't stop rproc: %d\n", ret); |
| 1731 | return ret; |
| 1732 | } |
| 1733 | |
| 1734 | rproc_unprepare_subdevices(rproc); |
| 1735 | |
| 1736 | rproc->state = RPROC_OFFLINE; |
| 1737 | |
| 1738 | dev_info(dev, "stopped remote processor %s\n", rproc->name); |
| 1739 | |
| 1740 | return 0; |
| 1741 | } |
| 1742 | |
| 1743 | /* |
| 1744 | * __rproc_detach(): Does the opposite of __rproc_attach() |
| 1745 | */ |
| 1746 | static int __rproc_detach(struct rproc *rproc) |
| 1747 | { |
| 1748 | struct device *dev = &rproc->dev; |
| 1749 | int ret; |
| 1750 | |
| 1751 | /* No need to continue if a detach() operation has not been provided */ |
| 1752 | if (!rproc->ops->detach) |
| 1753 | return -EINVAL; |
| 1754 | |
| 1755 | /* Stop any subdevices for the remote processor */ |
| 1756 | rproc_stop_subdevices(rproc, false); |
| 1757 | |
| 1758 | /* the installed resource table is no longer accessible */ |
| 1759 | ret = rproc_reset_rsc_table_on_detach(rproc); |
| 1760 | if (ret) { |
| 1761 | dev_err(dev, "can't reset resource table: %d\n", ret); |
| 1762 | return ret; |
| 1763 | } |
| 1764 | |
| 1765 | /* Tell the remote processor the core isn't available anymore */ |
| 1766 | ret = rproc->ops->detach(rproc); |
| 1767 | if (ret) { |
| 1768 | dev_err(dev, "can't detach from rproc: %d\n", ret); |
| 1769 | return ret; |
| 1770 | } |
| 1771 | |
| 1772 | rproc_unprepare_subdevices(rproc); |
| 1773 | |
| 1774 | rproc->state = RPROC_DETACHED; |
| 1775 | |
| 1776 | dev_info(dev, "detached remote processor %s\n", rproc->name); |
| 1777 | |
| 1778 | return 0; |
| 1779 | } |
| 1780 | |
| 1781 | static int rproc_attach_recovery(struct rproc *rproc) |
| 1782 | { |
| 1783 | int ret; |
| 1784 | |
| 1785 | ret = __rproc_detach(rproc); |
| 1786 | if (ret) |
| 1787 | return ret; |
| 1788 | |
| 1789 | return __rproc_attach(rproc); |
| 1790 | } |
| 1791 | |
| 1792 | static int rproc_boot_recovery(struct rproc *rproc) |
| 1793 | { |
| 1794 | const struct firmware *firmware_p; |
| 1795 | struct device *dev = &rproc->dev; |
| 1796 | int ret; |
| 1797 | |
| 1798 | ret = rproc_stop(rproc, true); |
| 1799 | if (ret) |
| 1800 | return ret; |
| 1801 | |
| 1802 | /* generate coredump */ |
| 1803 | rproc->ops->coredump(rproc); |
| 1804 | |
| 1805 | /* load firmware */ |
| 1806 | ret = request_firmware(&firmware_p, rproc->firmware, dev); |
| 1807 | if (ret < 0) { |
| 1808 | dev_err(dev, "request_firmware failed: %d\n", ret); |
| 1809 | return ret; |
| 1810 | } |
| 1811 | |
| 1812 | /* boot the remote processor up again */ |
| 1813 | ret = rproc_start(rproc, firmware_p); |
| 1814 | |
| 1815 | release_firmware(firmware_p); |
| 1816 | |
| 1817 | return ret; |
| 1818 | } |
| 1819 | |
| 1820 | /** |
| 1821 | * rproc_trigger_recovery() - recover a remoteproc |
| 1822 | * @rproc: the remote processor |
| 1823 | * |
| 1824 | * The recovery is done by resetting all the virtio devices, that way all the |
| 1825 | * rpmsg drivers will be reseted along with the remote processor making the |
| 1826 | * remoteproc functional again. |
| 1827 | * |
| 1828 | * This function can sleep, so it cannot be called from atomic context. |
| 1829 | * |
| 1830 | * Return: 0 on success or a negative value upon failure |
| 1831 | */ |
| 1832 | int rproc_trigger_recovery(struct rproc *rproc) |
| 1833 | { |
| 1834 | struct device *dev = &rproc->dev; |
| 1835 | int ret; |
| 1836 | |
| 1837 | ret = mutex_lock_interruptible(&rproc->lock); |
| 1838 | if (ret) |
| 1839 | return ret; |
| 1840 | |
| 1841 | /* State could have changed before we got the mutex */ |
| 1842 | if (rproc->state != RPROC_CRASHED) |
| 1843 | goto unlock_mutex; |
| 1844 | |
| 1845 | dev_err(dev, "recovering %s\n", rproc->name); |
| 1846 | |
| 1847 | if (rproc_has_feature(rproc, RPROC_FEAT_ATTACH_ON_RECOVERY)) |
| 1848 | ret = rproc_attach_recovery(rproc); |
| 1849 | else |
| 1850 | ret = rproc_boot_recovery(rproc); |
| 1851 | |
| 1852 | unlock_mutex: |
| 1853 | mutex_unlock(&rproc->lock); |
| 1854 | return ret; |
| 1855 | } |
| 1856 | |
| 1857 | /** |
| 1858 | * rproc_crash_handler_work() - handle a crash |
| 1859 | * @work: work treating the crash |
| 1860 | * |
| 1861 | * This function needs to handle everything related to a crash, like cpu |
| 1862 | * registers and stack dump, information to help to debug the fatal error, etc. |
| 1863 | */ |
| 1864 | static void rproc_crash_handler_work(struct work_struct *work) |
| 1865 | { |
| 1866 | struct rproc *rproc = container_of(work, struct rproc, crash_handler); |
| 1867 | struct device *dev = &rproc->dev; |
| 1868 | |
| 1869 | dev_dbg(dev, "enter %s\n", __func__); |
| 1870 | |
| 1871 | mutex_lock(&rproc->lock); |
| 1872 | |
| 1873 | if (rproc->state == RPROC_CRASHED) { |
| 1874 | /* handle only the first crash detected */ |
| 1875 | mutex_unlock(&rproc->lock); |
| 1876 | return; |
| 1877 | } |
| 1878 | |
| 1879 | if (rproc->state == RPROC_OFFLINE) { |
| 1880 | /* Don't recover if the remote processor was stopped */ |
| 1881 | mutex_unlock(&rproc->lock); |
| 1882 | goto out; |
| 1883 | } |
| 1884 | |
| 1885 | rproc->state = RPROC_CRASHED; |
| 1886 | dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt, |
| 1887 | rproc->name); |
| 1888 | |
| 1889 | mutex_unlock(&rproc->lock); |
| 1890 | |
| 1891 | if (!rproc->recovery_disabled) |
| 1892 | rproc_trigger_recovery(rproc); |
| 1893 | |
| 1894 | out: |
| 1895 | pm_relax(rproc->dev.parent); |
| 1896 | } |
| 1897 | |
| 1898 | /** |
| 1899 | * rproc_boot() - boot a remote processor |
| 1900 | * @rproc: handle of a remote processor |
| 1901 | * |
| 1902 | * Boot a remote processor (i.e. load its firmware, power it on, ...). |
| 1903 | * |
| 1904 | * If the remote processor is already powered on, this function immediately |
| 1905 | * returns (successfully). |
| 1906 | * |
| 1907 | * Return: 0 on success, and an appropriate error value otherwise |
| 1908 | */ |
| 1909 | int rproc_boot(struct rproc *rproc) |
| 1910 | { |
| 1911 | const struct firmware *firmware_p; |
| 1912 | struct device *dev; |
| 1913 | int ret; |
| 1914 | |
| 1915 | if (!rproc) { |
| 1916 | pr_err("invalid rproc handle\n"); |
| 1917 | return -EINVAL; |
| 1918 | } |
| 1919 | |
| 1920 | dev = &rproc->dev; |
| 1921 | |
| 1922 | ret = mutex_lock_interruptible(&rproc->lock); |
| 1923 | if (ret) { |
| 1924 | dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); |
| 1925 | return ret; |
| 1926 | } |
| 1927 | |
| 1928 | if (rproc->state == RPROC_DELETED) { |
| 1929 | ret = -ENODEV; |
| 1930 | dev_err(dev, "can't boot deleted rproc %s\n", rproc->name); |
| 1931 | goto unlock_mutex; |
| 1932 | } |
| 1933 | |
| 1934 | /* skip the boot or attach process if rproc is already powered up */ |
| 1935 | if (atomic_inc_return(&rproc->power) > 1) { |
| 1936 | ret = 0; |
| 1937 | goto unlock_mutex; |
| 1938 | } |
| 1939 | |
| 1940 | if (rproc->state == RPROC_DETACHED) { |
| 1941 | dev_info(dev, "attaching to %s\n", rproc->name); |
| 1942 | |
| 1943 | ret = rproc_attach(rproc); |
| 1944 | } else { |
| 1945 | dev_info(dev, "powering up %s\n", rproc->name); |
| 1946 | |
| 1947 | /* load firmware */ |
| 1948 | ret = request_firmware(&firmware_p, rproc->firmware, dev); |
| 1949 | if (ret < 0) { |
| 1950 | dev_err(dev, "request_firmware failed: %d\n", ret); |
| 1951 | goto downref_rproc; |
| 1952 | } |
| 1953 | |
| 1954 | ret = rproc_fw_boot(rproc, firmware_p); |
| 1955 | |
| 1956 | release_firmware(firmware_p); |
| 1957 | } |
| 1958 | |
| 1959 | downref_rproc: |
| 1960 | if (ret) |
| 1961 | atomic_dec(&rproc->power); |
| 1962 | unlock_mutex: |
| 1963 | mutex_unlock(&rproc->lock); |
| 1964 | return ret; |
| 1965 | } |
| 1966 | EXPORT_SYMBOL(rproc_boot); |
| 1967 | |
| 1968 | /** |
| 1969 | * rproc_shutdown() - power off the remote processor |
| 1970 | * @rproc: the remote processor |
| 1971 | * |
| 1972 | * Power off a remote processor (previously booted with rproc_boot()). |
| 1973 | * |
| 1974 | * In case @rproc is still being used by an additional user(s), then |
| 1975 | * this function will just decrement the power refcount and exit, |
| 1976 | * without really powering off the device. |
| 1977 | * |
| 1978 | * Every call to rproc_boot() must (eventually) be accompanied by a call |
| 1979 | * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug. |
| 1980 | * |
| 1981 | * Notes: |
| 1982 | * - we're not decrementing the rproc's refcount, only the power refcount. |
| 1983 | * which means that the @rproc handle stays valid even after rproc_shutdown() |
| 1984 | * returns, and users can still use it with a subsequent rproc_boot(), if |
| 1985 | * needed. |
| 1986 | * |
| 1987 | * Return: 0 on success, and an appropriate error value otherwise |
| 1988 | */ |
| 1989 | int rproc_shutdown(struct rproc *rproc) |
| 1990 | { |
| 1991 | struct device *dev = &rproc->dev; |
| 1992 | int ret = 0; |
| 1993 | |
| 1994 | ret = mutex_lock_interruptible(&rproc->lock); |
| 1995 | if (ret) { |
| 1996 | dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); |
| 1997 | return ret; |
| 1998 | } |
| 1999 | |
| 2000 | if (rproc->state != RPROC_RUNNING && |
| 2001 | rproc->state != RPROC_ATTACHED) { |
| 2002 | ret = -EINVAL; |
| 2003 | goto out; |
| 2004 | } |
| 2005 | |
| 2006 | /* if the remote proc is still needed, bail out */ |
| 2007 | if (!atomic_dec_and_test(&rproc->power)) |
| 2008 | goto out; |
| 2009 | |
| 2010 | ret = rproc_stop(rproc, false); |
| 2011 | if (ret) { |
| 2012 | atomic_inc(&rproc->power); |
| 2013 | goto out; |
| 2014 | } |
| 2015 | |
| 2016 | /* clean up all acquired resources */ |
| 2017 | rproc_resource_cleanup(rproc); |
| 2018 | |
| 2019 | /* release HW resources if needed */ |
| 2020 | rproc_unprepare_device(rproc); |
| 2021 | |
| 2022 | rproc_disable_iommu(rproc); |
| 2023 | |
| 2024 | /* Free the copy of the resource table */ |
| 2025 | kfree(rproc->cached_table); |
| 2026 | rproc->cached_table = NULL; |
| 2027 | rproc->table_ptr = NULL; |
| 2028 | out: |
| 2029 | mutex_unlock(&rproc->lock); |
| 2030 | return ret; |
| 2031 | } |
| 2032 | EXPORT_SYMBOL(rproc_shutdown); |
| 2033 | |
| 2034 | /** |
| 2035 | * rproc_detach() - Detach the remote processor from the |
| 2036 | * remoteproc core |
| 2037 | * |
| 2038 | * @rproc: the remote processor |
| 2039 | * |
| 2040 | * Detach a remote processor (previously attached to with rproc_attach()). |
| 2041 | * |
| 2042 | * In case @rproc is still being used by an additional user(s), then |
| 2043 | * this function will just decrement the power refcount and exit, |
| 2044 | * without disconnecting the device. |
| 2045 | * |
| 2046 | * Function rproc_detach() calls __rproc_detach() in order to let a remote |
| 2047 | * processor know that services provided by the application processor are |
| 2048 | * no longer available. From there it should be possible to remove the |
| 2049 | * platform driver and even power cycle the application processor (if the HW |
| 2050 | * supports it) without needing to switch off the remote processor. |
| 2051 | * |
| 2052 | * Return: 0 on success, and an appropriate error value otherwise |
| 2053 | */ |
| 2054 | int rproc_detach(struct rproc *rproc) |
| 2055 | { |
| 2056 | struct device *dev = &rproc->dev; |
| 2057 | int ret; |
| 2058 | |
| 2059 | ret = mutex_lock_interruptible(&rproc->lock); |
| 2060 | if (ret) { |
| 2061 | dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); |
| 2062 | return ret; |
| 2063 | } |
| 2064 | |
| 2065 | if (rproc->state != RPROC_ATTACHED) { |
| 2066 | ret = -EINVAL; |
| 2067 | goto out; |
| 2068 | } |
| 2069 | |
| 2070 | /* if the remote proc is still needed, bail out */ |
| 2071 | if (!atomic_dec_and_test(&rproc->power)) { |
| 2072 | ret = 0; |
| 2073 | goto out; |
| 2074 | } |
| 2075 | |
| 2076 | ret = __rproc_detach(rproc); |
| 2077 | if (ret) { |
| 2078 | atomic_inc(&rproc->power); |
| 2079 | goto out; |
| 2080 | } |
| 2081 | |
| 2082 | /* clean up all acquired resources */ |
| 2083 | rproc_resource_cleanup(rproc); |
| 2084 | |
| 2085 | /* release HW resources if needed */ |
| 2086 | rproc_unprepare_device(rproc); |
| 2087 | |
| 2088 | rproc_disable_iommu(rproc); |
| 2089 | |
| 2090 | /* Free the copy of the resource table */ |
| 2091 | kfree(rproc->cached_table); |
| 2092 | rproc->cached_table = NULL; |
| 2093 | rproc->table_ptr = NULL; |
| 2094 | out: |
| 2095 | mutex_unlock(&rproc->lock); |
| 2096 | return ret; |
| 2097 | } |
| 2098 | EXPORT_SYMBOL(rproc_detach); |
| 2099 | |
| 2100 | /** |
| 2101 | * rproc_get_by_phandle() - find a remote processor by phandle |
| 2102 | * @phandle: phandle to the rproc |
| 2103 | * |
| 2104 | * Finds an rproc handle using the remote processor's phandle, and then |
| 2105 | * return a handle to the rproc. |
| 2106 | * |
| 2107 | * This function increments the remote processor's refcount, so always |
| 2108 | * use rproc_put() to decrement it back once rproc isn't needed anymore. |
| 2109 | * |
| 2110 | * Return: rproc handle on success, and NULL on failure |
| 2111 | */ |
| 2112 | #ifdef CONFIG_OF |
| 2113 | struct rproc *rproc_get_by_phandle(phandle phandle) |
| 2114 | { |
| 2115 | struct rproc *rproc = NULL, *r; |
| 2116 | struct device_driver *driver; |
| 2117 | struct device_node *np; |
| 2118 | |
| 2119 | np = of_find_node_by_phandle(phandle); |
| 2120 | if (!np) |
| 2121 | return NULL; |
| 2122 | |
| 2123 | rcu_read_lock(); |
| 2124 | list_for_each_entry_rcu(r, &rproc_list, node) { |
| 2125 | if (r->dev.parent && device_match_of_node(r->dev.parent, np)) { |
| 2126 | /* prevent underlying implementation from being removed */ |
| 2127 | |
| 2128 | /* |
| 2129 | * If the remoteproc's parent has a driver, the |
| 2130 | * remoteproc is not part of a cluster and we can use |
| 2131 | * that driver. |
| 2132 | */ |
| 2133 | driver = r->dev.parent->driver; |
| 2134 | |
| 2135 | /* |
| 2136 | * If the remoteproc's parent does not have a driver, |
| 2137 | * look for the driver associated with the cluster. |
| 2138 | */ |
| 2139 | if (!driver) { |
| 2140 | if (r->dev.parent->parent) |
| 2141 | driver = r->dev.parent->parent->driver; |
| 2142 | if (!driver) |
| 2143 | break; |
| 2144 | } |
| 2145 | |
| 2146 | if (!try_module_get(driver->owner)) { |
| 2147 | dev_err(&r->dev, "can't get owner\n"); |
| 2148 | break; |
| 2149 | } |
| 2150 | |
| 2151 | rproc = r; |
| 2152 | get_device(&rproc->dev); |
| 2153 | break; |
| 2154 | } |
| 2155 | } |
| 2156 | rcu_read_unlock(); |
| 2157 | |
| 2158 | of_node_put(np); |
| 2159 | |
| 2160 | return rproc; |
| 2161 | } |
| 2162 | #else |
| 2163 | struct rproc *rproc_get_by_phandle(phandle phandle) |
| 2164 | { |
| 2165 | return NULL; |
| 2166 | } |
| 2167 | #endif |
| 2168 | EXPORT_SYMBOL(rproc_get_by_phandle); |
| 2169 | |
| 2170 | /** |
| 2171 | * rproc_set_firmware() - assign a new firmware |
| 2172 | * @rproc: rproc handle to which the new firmware is being assigned |
| 2173 | * @fw_name: new firmware name to be assigned |
| 2174 | * |
| 2175 | * This function allows remoteproc drivers or clients to configure a custom |
| 2176 | * firmware name that is different from the default name used during remoteproc |
| 2177 | * registration. The function does not trigger a remote processor boot, |
| 2178 | * only sets the firmware name used for a subsequent boot. This function |
| 2179 | * should also be called only when the remote processor is offline. |
| 2180 | * |
| 2181 | * This allows either the userspace to configure a different name through |
| 2182 | * sysfs or a kernel-level remoteproc or a remoteproc client driver to set |
| 2183 | * a specific firmware when it is controlling the boot and shutdown of the |
| 2184 | * remote processor. |
| 2185 | * |
| 2186 | * Return: 0 on success or a negative value upon failure |
| 2187 | */ |
| 2188 | int rproc_set_firmware(struct rproc *rproc, const char *fw_name) |
| 2189 | { |
| 2190 | struct device *dev; |
| 2191 | int ret, len; |
| 2192 | char *p; |
| 2193 | |
| 2194 | if (!rproc || !fw_name) |
| 2195 | return -EINVAL; |
| 2196 | |
| 2197 | dev = rproc->dev.parent; |
| 2198 | |
| 2199 | ret = mutex_lock_interruptible(&rproc->lock); |
| 2200 | if (ret) { |
| 2201 | dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); |
| 2202 | return -EINVAL; |
| 2203 | } |
| 2204 | |
| 2205 | if (rproc->state != RPROC_OFFLINE) { |
| 2206 | dev_err(dev, "can't change firmware while running\n"); |
| 2207 | ret = -EBUSY; |
| 2208 | goto out; |
| 2209 | } |
| 2210 | |
| 2211 | len = strcspn(fw_name, "\n"); |
| 2212 | if (!len) { |
| 2213 | dev_err(dev, "can't provide empty string for firmware name\n"); |
| 2214 | ret = -EINVAL; |
| 2215 | goto out; |
| 2216 | } |
| 2217 | |
| 2218 | p = kstrndup(fw_name, len, GFP_KERNEL); |
| 2219 | if (!p) { |
| 2220 | ret = -ENOMEM; |
| 2221 | goto out; |
| 2222 | } |
| 2223 | |
| 2224 | kfree_const(rproc->firmware); |
| 2225 | rproc->firmware = p; |
| 2226 | |
| 2227 | out: |
| 2228 | mutex_unlock(&rproc->lock); |
| 2229 | return ret; |
| 2230 | } |
| 2231 | EXPORT_SYMBOL(rproc_set_firmware); |
| 2232 | |
| 2233 | static int rproc_validate(struct rproc *rproc) |
| 2234 | { |
| 2235 | switch (rproc->state) { |
| 2236 | case RPROC_OFFLINE: |
| 2237 | /* |
| 2238 | * An offline processor without a start() |
| 2239 | * function makes no sense. |
| 2240 | */ |
| 2241 | if (!rproc->ops->start) |
| 2242 | return -EINVAL; |
| 2243 | break; |
| 2244 | case RPROC_DETACHED: |
| 2245 | /* |
| 2246 | * A remote processor in a detached state without an |
| 2247 | * attach() function makes not sense. |
| 2248 | */ |
| 2249 | if (!rproc->ops->attach) |
| 2250 | return -EINVAL; |
| 2251 | /* |
| 2252 | * When attaching to a remote processor the device memory |
| 2253 | * is already available and as such there is no need to have a |
| 2254 | * cached table. |
| 2255 | */ |
| 2256 | if (rproc->cached_table) |
| 2257 | return -EINVAL; |
| 2258 | break; |
| 2259 | default: |
| 2260 | /* |
| 2261 | * When adding a remote processor, the state of the device |
| 2262 | * can be offline or detached, nothing else. |
| 2263 | */ |
| 2264 | return -EINVAL; |
| 2265 | } |
| 2266 | |
| 2267 | return 0; |
| 2268 | } |
| 2269 | |
| 2270 | /** |
| 2271 | * rproc_add() - register a remote processor |
| 2272 | * @rproc: the remote processor handle to register |
| 2273 | * |
| 2274 | * Registers @rproc with the remoteproc framework, after it has been |
| 2275 | * allocated with rproc_alloc(). |
| 2276 | * |
| 2277 | * This is called by the platform-specific rproc implementation, whenever |
| 2278 | * a new remote processor device is probed. |
| 2279 | * |
| 2280 | * Note: this function initiates an asynchronous firmware loading |
| 2281 | * context, which will look for virtio devices supported by the rproc's |
| 2282 | * firmware. |
| 2283 | * |
| 2284 | * If found, those virtio devices will be created and added, so as a result |
| 2285 | * of registering this remote processor, additional virtio drivers might be |
| 2286 | * probed. |
| 2287 | * |
| 2288 | * Return: 0 on success and an appropriate error code otherwise |
| 2289 | */ |
| 2290 | int rproc_add(struct rproc *rproc) |
| 2291 | { |
| 2292 | struct device *dev = &rproc->dev; |
| 2293 | int ret; |
| 2294 | |
| 2295 | ret = rproc_validate(rproc); |
| 2296 | if (ret < 0) |
| 2297 | return ret; |
| 2298 | |
| 2299 | /* add char device for this remoteproc */ |
| 2300 | ret = rproc_char_device_add(rproc); |
| 2301 | if (ret < 0) |
| 2302 | return ret; |
| 2303 | |
| 2304 | ret = device_add(dev); |
| 2305 | if (ret < 0) { |
| 2306 | put_device(dev); |
| 2307 | goto rproc_remove_cdev; |
| 2308 | } |
| 2309 | |
| 2310 | dev_info(dev, "%s is available\n", rproc->name); |
| 2311 | |
| 2312 | /* create debugfs entries */ |
| 2313 | rproc_create_debug_dir(rproc); |
| 2314 | |
| 2315 | /* if rproc is marked always-on, request it to boot */ |
| 2316 | if (rproc->auto_boot) { |
| 2317 | ret = rproc_trigger_auto_boot(rproc); |
| 2318 | if (ret < 0) |
| 2319 | goto rproc_remove_dev; |
| 2320 | } |
| 2321 | |
| 2322 | /* expose to rproc_get_by_phandle users */ |
| 2323 | mutex_lock(&rproc_list_mutex); |
| 2324 | list_add_rcu(&rproc->node, &rproc_list); |
| 2325 | mutex_unlock(&rproc_list_mutex); |
| 2326 | |
| 2327 | return 0; |
| 2328 | |
| 2329 | rproc_remove_dev: |
| 2330 | rproc_delete_debug_dir(rproc); |
| 2331 | device_del(dev); |
| 2332 | rproc_remove_cdev: |
| 2333 | rproc_char_device_remove(rproc); |
| 2334 | return ret; |
| 2335 | } |
| 2336 | EXPORT_SYMBOL(rproc_add); |
| 2337 | |
| 2338 | static void devm_rproc_remove(void *rproc) |
| 2339 | { |
| 2340 | rproc_del(rproc); |
| 2341 | } |
| 2342 | |
| 2343 | /** |
| 2344 | * devm_rproc_add() - resource managed rproc_add() |
| 2345 | * @dev: the underlying device |
| 2346 | * @rproc: the remote processor handle to register |
| 2347 | * |
| 2348 | * This function performs like rproc_add() but the registered rproc device will |
| 2349 | * automatically be removed on driver detach. |
| 2350 | * |
| 2351 | * Return: 0 on success, negative errno on failure |
| 2352 | */ |
| 2353 | int devm_rproc_add(struct device *dev, struct rproc *rproc) |
| 2354 | { |
| 2355 | int err; |
| 2356 | |
| 2357 | err = rproc_add(rproc); |
| 2358 | if (err) |
| 2359 | return err; |
| 2360 | |
| 2361 | return devm_add_action_or_reset(dev, devm_rproc_remove, rproc); |
| 2362 | } |
| 2363 | EXPORT_SYMBOL(devm_rproc_add); |
| 2364 | |
| 2365 | /** |
| 2366 | * rproc_type_release() - release a remote processor instance |
| 2367 | * @dev: the rproc's device |
| 2368 | * |
| 2369 | * This function should _never_ be called directly. |
| 2370 | * |
| 2371 | * It will be called by the driver core when no one holds a valid pointer |
| 2372 | * to @dev anymore. |
| 2373 | */ |
| 2374 | static void rproc_type_release(struct device *dev) |
| 2375 | { |
| 2376 | struct rproc *rproc = container_of(dev, struct rproc, dev); |
| 2377 | |
| 2378 | dev_info(&rproc->dev, "releasing %s\n", rproc->name); |
| 2379 | |
| 2380 | idr_destroy(&rproc->notifyids); |
| 2381 | |
| 2382 | if (rproc->index >= 0) |
| 2383 | ida_free(&rproc_dev_index, rproc->index); |
| 2384 | |
| 2385 | kfree_const(rproc->firmware); |
| 2386 | kfree_const(rproc->name); |
| 2387 | kfree(rproc->ops); |
| 2388 | kfree(rproc); |
| 2389 | } |
| 2390 | |
| 2391 | static const struct device_type rproc_type = { |
| 2392 | .name = "remoteproc", |
| 2393 | .release = rproc_type_release, |
| 2394 | }; |
| 2395 | |
| 2396 | static int rproc_alloc_firmware(struct rproc *rproc, |
| 2397 | const char *name, const char *firmware) |
| 2398 | { |
| 2399 | const char *p; |
| 2400 | |
| 2401 | /* |
| 2402 | * Allocate a firmware name if the caller gave us one to work |
| 2403 | * with. Otherwise construct a new one using a default pattern. |
| 2404 | */ |
| 2405 | if (firmware) |
| 2406 | p = kstrdup_const(firmware, GFP_KERNEL); |
| 2407 | else |
| 2408 | p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name); |
| 2409 | |
| 2410 | if (!p) |
| 2411 | return -ENOMEM; |
| 2412 | |
| 2413 | rproc->firmware = p; |
| 2414 | |
| 2415 | return 0; |
| 2416 | } |
| 2417 | |
| 2418 | static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops) |
| 2419 | { |
| 2420 | rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL); |
| 2421 | if (!rproc->ops) |
| 2422 | return -ENOMEM; |
| 2423 | |
| 2424 | /* Default to rproc_coredump if no coredump function is specified */ |
| 2425 | if (!rproc->ops->coredump) |
| 2426 | rproc->ops->coredump = rproc_coredump; |
| 2427 | |
| 2428 | if (rproc->ops->load) |
| 2429 | return 0; |
| 2430 | |
| 2431 | /* Default to ELF loader if no load function is specified */ |
| 2432 | rproc->ops->load = rproc_elf_load_segments; |
| 2433 | rproc->ops->parse_fw = rproc_elf_load_rsc_table; |
| 2434 | rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table; |
| 2435 | rproc->ops->sanity_check = rproc_elf_sanity_check; |
| 2436 | rproc->ops->get_boot_addr = rproc_elf_get_boot_addr; |
| 2437 | |
| 2438 | return 0; |
| 2439 | } |
| 2440 | |
| 2441 | /** |
| 2442 | * rproc_alloc() - allocate a remote processor handle |
| 2443 | * @dev: the underlying device |
| 2444 | * @name: name of this remote processor |
| 2445 | * @ops: platform-specific handlers (mainly start/stop) |
| 2446 | * @firmware: name of firmware file to load, can be NULL |
| 2447 | * @len: length of private data needed by the rproc driver (in bytes) |
| 2448 | * |
| 2449 | * Allocates a new remote processor handle, but does not register |
| 2450 | * it yet. if @firmware is NULL, a default name is used. |
| 2451 | * |
| 2452 | * This function should be used by rproc implementations during initialization |
| 2453 | * of the remote processor. |
| 2454 | * |
| 2455 | * After creating an rproc handle using this function, and when ready, |
| 2456 | * implementations should then call rproc_add() to complete |
| 2457 | * the registration of the remote processor. |
| 2458 | * |
| 2459 | * Note: _never_ directly deallocate @rproc, even if it was not registered |
| 2460 | * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free(). |
| 2461 | * |
| 2462 | * Return: new rproc pointer on success, and NULL on failure |
| 2463 | */ |
| 2464 | struct rproc *rproc_alloc(struct device *dev, const char *name, |
| 2465 | const struct rproc_ops *ops, |
| 2466 | const char *firmware, int len) |
| 2467 | { |
| 2468 | struct rproc *rproc; |
| 2469 | |
| 2470 | if (!dev || !name || !ops) |
| 2471 | return NULL; |
| 2472 | |
| 2473 | rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL); |
| 2474 | if (!rproc) |
| 2475 | return NULL; |
| 2476 | |
| 2477 | rproc->priv = &rproc[1]; |
| 2478 | rproc->auto_boot = true; |
| 2479 | rproc->elf_class = ELFCLASSNONE; |
| 2480 | rproc->elf_machine = EM_NONE; |
| 2481 | |
| 2482 | device_initialize(&rproc->dev); |
| 2483 | rproc->dev.parent = dev; |
| 2484 | rproc->dev.type = &rproc_type; |
| 2485 | rproc->dev.class = &rproc_class; |
| 2486 | rproc->dev.driver_data = rproc; |
| 2487 | idr_init(&rproc->notifyids); |
| 2488 | |
| 2489 | /* Assign a unique device index and name */ |
| 2490 | rproc->index = ida_alloc(&rproc_dev_index, GFP_KERNEL); |
| 2491 | if (rproc->index < 0) { |
| 2492 | dev_err(dev, "ida_alloc failed: %d\n", rproc->index); |
| 2493 | goto put_device; |
| 2494 | } |
| 2495 | |
| 2496 | rproc->name = kstrdup_const(name, GFP_KERNEL); |
| 2497 | if (!rproc->name) |
| 2498 | goto put_device; |
| 2499 | |
| 2500 | if (rproc_alloc_firmware(rproc, name, firmware)) |
| 2501 | goto put_device; |
| 2502 | |
| 2503 | if (rproc_alloc_ops(rproc, ops)) |
| 2504 | goto put_device; |
| 2505 | |
| 2506 | dev_set_name(&rproc->dev, "remoteproc%d", rproc->index); |
| 2507 | |
| 2508 | atomic_set(&rproc->power, 0); |
| 2509 | |
| 2510 | mutex_init(&rproc->lock); |
| 2511 | |
| 2512 | INIT_LIST_HEAD(&rproc->carveouts); |
| 2513 | INIT_LIST_HEAD(&rproc->mappings); |
| 2514 | INIT_LIST_HEAD(&rproc->traces); |
| 2515 | INIT_LIST_HEAD(&rproc->rvdevs); |
| 2516 | INIT_LIST_HEAD(&rproc->subdevs); |
| 2517 | INIT_LIST_HEAD(&rproc->dump_segments); |
| 2518 | |
| 2519 | INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work); |
| 2520 | |
| 2521 | rproc->state = RPROC_OFFLINE; |
| 2522 | |
| 2523 | return rproc; |
| 2524 | |
| 2525 | put_device: |
| 2526 | put_device(&rproc->dev); |
| 2527 | return NULL; |
| 2528 | } |
| 2529 | EXPORT_SYMBOL(rproc_alloc); |
| 2530 | |
| 2531 | /** |
| 2532 | * rproc_free() - unroll rproc_alloc() |
| 2533 | * @rproc: the remote processor handle |
| 2534 | * |
| 2535 | * This function decrements the rproc dev refcount. |
| 2536 | * |
| 2537 | * If no one holds any reference to rproc anymore, then its refcount would |
| 2538 | * now drop to zero, and it would be freed. |
| 2539 | */ |
| 2540 | void rproc_free(struct rproc *rproc) |
| 2541 | { |
| 2542 | put_device(&rproc->dev); |
| 2543 | } |
| 2544 | EXPORT_SYMBOL(rproc_free); |
| 2545 | |
| 2546 | /** |
| 2547 | * rproc_put() - release rproc reference |
| 2548 | * @rproc: the remote processor handle |
| 2549 | * |
| 2550 | * This function decrements the rproc dev refcount. |
| 2551 | * |
| 2552 | * If no one holds any reference to rproc anymore, then its refcount would |
| 2553 | * now drop to zero, and it would be freed. |
| 2554 | */ |
| 2555 | void rproc_put(struct rproc *rproc) |
| 2556 | { |
| 2557 | if (rproc->dev.parent->driver) |
| 2558 | module_put(rproc->dev.parent->driver->owner); |
| 2559 | else |
| 2560 | module_put(rproc->dev.parent->parent->driver->owner); |
| 2561 | |
| 2562 | put_device(&rproc->dev); |
| 2563 | } |
| 2564 | EXPORT_SYMBOL(rproc_put); |
| 2565 | |
| 2566 | /** |
| 2567 | * rproc_del() - unregister a remote processor |
| 2568 | * @rproc: rproc handle to unregister |
| 2569 | * |
| 2570 | * This function should be called when the platform specific rproc |
| 2571 | * implementation decides to remove the rproc device. it should |
| 2572 | * _only_ be called if a previous invocation of rproc_add() |
| 2573 | * has completed successfully. |
| 2574 | * |
| 2575 | * After rproc_del() returns, @rproc isn't freed yet, because |
| 2576 | * of the outstanding reference created by rproc_alloc. To decrement that |
| 2577 | * one last refcount, one still needs to call rproc_free(). |
| 2578 | * |
| 2579 | * Return: 0 on success and -EINVAL if @rproc isn't valid |
| 2580 | */ |
| 2581 | int rproc_del(struct rproc *rproc) |
| 2582 | { |
| 2583 | if (!rproc) |
| 2584 | return -EINVAL; |
| 2585 | |
| 2586 | /* TODO: make sure this works with rproc->power > 1 */ |
| 2587 | rproc_shutdown(rproc); |
| 2588 | |
| 2589 | mutex_lock(&rproc->lock); |
| 2590 | rproc->state = RPROC_DELETED; |
| 2591 | mutex_unlock(&rproc->lock); |
| 2592 | |
| 2593 | rproc_delete_debug_dir(rproc); |
| 2594 | |
| 2595 | /* the rproc is downref'ed as soon as it's removed from the klist */ |
| 2596 | mutex_lock(&rproc_list_mutex); |
| 2597 | list_del_rcu(&rproc->node); |
| 2598 | mutex_unlock(&rproc_list_mutex); |
| 2599 | |
| 2600 | /* Ensure that no readers of rproc_list are still active */ |
| 2601 | synchronize_rcu(); |
| 2602 | |
| 2603 | device_del(&rproc->dev); |
| 2604 | rproc_char_device_remove(rproc); |
| 2605 | |
| 2606 | return 0; |
| 2607 | } |
| 2608 | EXPORT_SYMBOL(rproc_del); |
| 2609 | |
| 2610 | static void devm_rproc_free(struct device *dev, void *res) |
| 2611 | { |
| 2612 | rproc_free(*(struct rproc **)res); |
| 2613 | } |
| 2614 | |
| 2615 | /** |
| 2616 | * devm_rproc_alloc() - resource managed rproc_alloc() |
| 2617 | * @dev: the underlying device |
| 2618 | * @name: name of this remote processor |
| 2619 | * @ops: platform-specific handlers (mainly start/stop) |
| 2620 | * @firmware: name of firmware file to load, can be NULL |
| 2621 | * @len: length of private data needed by the rproc driver (in bytes) |
| 2622 | * |
| 2623 | * This function performs like rproc_alloc() but the acquired rproc device will |
| 2624 | * automatically be released on driver detach. |
| 2625 | * |
| 2626 | * Return: new rproc instance, or NULL on failure |
| 2627 | */ |
| 2628 | struct rproc *devm_rproc_alloc(struct device *dev, const char *name, |
| 2629 | const struct rproc_ops *ops, |
| 2630 | const char *firmware, int len) |
| 2631 | { |
| 2632 | struct rproc **ptr, *rproc; |
| 2633 | |
| 2634 | ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL); |
| 2635 | if (!ptr) |
| 2636 | return NULL; |
| 2637 | |
| 2638 | rproc = rproc_alloc(dev, name, ops, firmware, len); |
| 2639 | if (rproc) { |
| 2640 | *ptr = rproc; |
| 2641 | devres_add(dev, ptr); |
| 2642 | } else { |
| 2643 | devres_free(ptr); |
| 2644 | } |
| 2645 | |
| 2646 | return rproc; |
| 2647 | } |
| 2648 | EXPORT_SYMBOL(devm_rproc_alloc); |
| 2649 | |
| 2650 | /** |
| 2651 | * rproc_add_subdev() - add a subdevice to a remoteproc |
| 2652 | * @rproc: rproc handle to add the subdevice to |
| 2653 | * @subdev: subdev handle to register |
| 2654 | * |
| 2655 | * Caller is responsible for populating optional subdevice function pointers. |
| 2656 | */ |
| 2657 | void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev) |
| 2658 | { |
| 2659 | list_add_tail(&subdev->node, &rproc->subdevs); |
| 2660 | } |
| 2661 | EXPORT_SYMBOL(rproc_add_subdev); |
| 2662 | |
| 2663 | /** |
| 2664 | * rproc_remove_subdev() - remove a subdevice from a remoteproc |
| 2665 | * @rproc: rproc handle to remove the subdevice from |
| 2666 | * @subdev: subdev handle, previously registered with rproc_add_subdev() |
| 2667 | */ |
| 2668 | void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev) |
| 2669 | { |
| 2670 | list_del(&subdev->node); |
| 2671 | } |
| 2672 | EXPORT_SYMBOL(rproc_remove_subdev); |
| 2673 | |
| 2674 | /** |
| 2675 | * rproc_get_by_child() - acquire rproc handle of @dev's ancestor |
| 2676 | * @dev: child device to find ancestor of |
| 2677 | * |
| 2678 | * Return: the ancestor rproc instance, or NULL if not found |
| 2679 | */ |
| 2680 | struct rproc *rproc_get_by_child(struct device *dev) |
| 2681 | { |
| 2682 | for (dev = dev->parent; dev; dev = dev->parent) { |
| 2683 | if (dev->type == &rproc_type) |
| 2684 | return dev->driver_data; |
| 2685 | } |
| 2686 | |
| 2687 | return NULL; |
| 2688 | } |
| 2689 | EXPORT_SYMBOL(rproc_get_by_child); |
| 2690 | |
| 2691 | /** |
| 2692 | * rproc_report_crash() - rproc crash reporter function |
| 2693 | * @rproc: remote processor |
| 2694 | * @type: crash type |
| 2695 | * |
| 2696 | * This function must be called every time a crash is detected by the low-level |
| 2697 | * drivers implementing a specific remoteproc. This should not be called from a |
| 2698 | * non-remoteproc driver. |
| 2699 | * |
| 2700 | * This function can be called from atomic/interrupt context. |
| 2701 | */ |
| 2702 | void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type) |
| 2703 | { |
| 2704 | if (!rproc) { |
| 2705 | pr_err("NULL rproc pointer\n"); |
| 2706 | return; |
| 2707 | } |
| 2708 | |
| 2709 | /* Prevent suspend while the remoteproc is being recovered */ |
| 2710 | pm_stay_awake(rproc->dev.parent); |
| 2711 | |
| 2712 | dev_err(&rproc->dev, "crash detected in %s: type %s\n", |
| 2713 | rproc->name, rproc_crash_to_string(type)); |
| 2714 | |
| 2715 | queue_work(rproc_recovery_wq, &rproc->crash_handler); |
| 2716 | } |
| 2717 | EXPORT_SYMBOL(rproc_report_crash); |
| 2718 | |
| 2719 | static int rproc_panic_handler(struct notifier_block *nb, unsigned long event, |
| 2720 | void *ptr) |
| 2721 | { |
| 2722 | unsigned int longest = 0; |
| 2723 | struct rproc *rproc; |
| 2724 | unsigned int d; |
| 2725 | |
| 2726 | rcu_read_lock(); |
| 2727 | list_for_each_entry_rcu(rproc, &rproc_list, node) { |
| 2728 | if (!rproc->ops->panic) |
| 2729 | continue; |
| 2730 | |
| 2731 | if (rproc->state != RPROC_RUNNING && |
| 2732 | rproc->state != RPROC_ATTACHED) |
| 2733 | continue; |
| 2734 | |
| 2735 | d = rproc->ops->panic(rproc); |
| 2736 | longest = max(longest, d); |
| 2737 | } |
| 2738 | rcu_read_unlock(); |
| 2739 | |
| 2740 | /* |
| 2741 | * Delay for the longest requested duration before returning. This can |
| 2742 | * be used by the remoteproc drivers to give the remote processor time |
| 2743 | * to perform any requested operations (such as flush caches), when |
| 2744 | * it's not possible to signal the Linux side due to the panic. |
| 2745 | */ |
| 2746 | mdelay(longest); |
| 2747 | |
| 2748 | return NOTIFY_DONE; |
| 2749 | } |
| 2750 | |
| 2751 | static void __init rproc_init_panic(void) |
| 2752 | { |
| 2753 | rproc_panic_nb.notifier_call = rproc_panic_handler; |
| 2754 | atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb); |
| 2755 | } |
| 2756 | |
| 2757 | static void __exit rproc_exit_panic(void) |
| 2758 | { |
| 2759 | atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb); |
| 2760 | } |
| 2761 | |
| 2762 | static int __init remoteproc_init(void) |
| 2763 | { |
| 2764 | rproc_recovery_wq = alloc_workqueue("rproc_recovery_wq", |
| 2765 | WQ_UNBOUND | WQ_FREEZABLE, 0); |
| 2766 | if (!rproc_recovery_wq) { |
| 2767 | pr_err("remoteproc: creation of rproc_recovery_wq failed\n"); |
| 2768 | return -ENOMEM; |
| 2769 | } |
| 2770 | |
| 2771 | rproc_init_sysfs(); |
| 2772 | rproc_init_debugfs(); |
| 2773 | rproc_init_cdev(); |
| 2774 | rproc_init_panic(); |
| 2775 | |
| 2776 | return 0; |
| 2777 | } |
| 2778 | subsys_initcall(remoteproc_init); |
| 2779 | |
| 2780 | static void __exit remoteproc_exit(void) |
| 2781 | { |
| 2782 | ida_destroy(&rproc_dev_index); |
| 2783 | |
| 2784 | if (!rproc_recovery_wq) |
| 2785 | return; |
| 2786 | |
| 2787 | rproc_exit_panic(); |
| 2788 | rproc_exit_debugfs(); |
| 2789 | rproc_exit_sysfs(); |
| 2790 | destroy_workqueue(rproc_recovery_wq); |
| 2791 | } |
| 2792 | module_exit(remoteproc_exit); |
| 2793 | |
| 2794 | MODULE_DESCRIPTION("Generic Remote Processor Framework"); |