PCI: endpoint: Use INTX instead of legacy
[linux-2.6-block.git] / drivers / pci / endpoint / functions / pci-epf-test.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Test driver to test endpoint functionality
4 *
5 * Copyright (C) 2017 Texas Instruments
6 * Author: Kishon Vijay Abraham I <kishon@ti.com>
7 */
8
9#include <linux/crc32.h>
10#include <linux/delay.h>
11#include <linux/dmaengine.h>
12#include <linux/io.h>
13#include <linux/module.h>
14#include <linux/slab.h>
15#include <linux/pci_ids.h>
16#include <linux/random.h>
17
18#include <linux/pci-epc.h>
19#include <linux/pci-epf.h>
20#include <linux/pci_regs.h>
21
22#define IRQ_TYPE_LEGACY 0
23#define IRQ_TYPE_MSI 1
24#define IRQ_TYPE_MSIX 2
25
26#define COMMAND_RAISE_LEGACY_IRQ BIT(0)
27#define COMMAND_RAISE_MSI_IRQ BIT(1)
28#define COMMAND_RAISE_MSIX_IRQ BIT(2)
29#define COMMAND_READ BIT(3)
30#define COMMAND_WRITE BIT(4)
31#define COMMAND_COPY BIT(5)
32
33#define STATUS_READ_SUCCESS BIT(0)
34#define STATUS_READ_FAIL BIT(1)
35#define STATUS_WRITE_SUCCESS BIT(2)
36#define STATUS_WRITE_FAIL BIT(3)
37#define STATUS_COPY_SUCCESS BIT(4)
38#define STATUS_COPY_FAIL BIT(5)
39#define STATUS_IRQ_RAISED BIT(6)
40#define STATUS_SRC_ADDR_INVALID BIT(7)
41#define STATUS_DST_ADDR_INVALID BIT(8)
42
43#define FLAG_USE_DMA BIT(0)
44
45#define TIMER_RESOLUTION 1
46
47static struct workqueue_struct *kpcitest_workqueue;
48
49struct pci_epf_test {
50 void *reg[PCI_STD_NUM_BARS];
51 struct pci_epf *epf;
52 enum pci_barno test_reg_bar;
53 size_t msix_table_offset;
54 struct delayed_work cmd_handler;
55 struct dma_chan *dma_chan_tx;
56 struct dma_chan *dma_chan_rx;
57 struct dma_chan *transfer_chan;
58 dma_cookie_t transfer_cookie;
59 enum dma_status transfer_status;
60 struct completion transfer_complete;
61 bool dma_supported;
62 bool dma_private;
63 const struct pci_epc_features *epc_features;
64};
65
66struct pci_epf_test_reg {
67 u32 magic;
68 u32 command;
69 u32 status;
70 u64 src_addr;
71 u64 dst_addr;
72 u32 size;
73 u32 checksum;
74 u32 irq_type;
75 u32 irq_number;
76 u32 flags;
77} __packed;
78
79static struct pci_epf_header test_header = {
80 .vendorid = PCI_ANY_ID,
81 .deviceid = PCI_ANY_ID,
82 .baseclass_code = PCI_CLASS_OTHERS,
83 .interrupt_pin = PCI_INTERRUPT_INTA,
84};
85
86static size_t bar_size[] = { 512, 512, 1024, 16384, 131072, 1048576 };
87
88static void pci_epf_test_dma_callback(void *param)
89{
90 struct pci_epf_test *epf_test = param;
91 struct dma_tx_state state;
92
93 epf_test->transfer_status =
94 dmaengine_tx_status(epf_test->transfer_chan,
95 epf_test->transfer_cookie, &state);
96 if (epf_test->transfer_status == DMA_COMPLETE ||
97 epf_test->transfer_status == DMA_ERROR)
98 complete(&epf_test->transfer_complete);
99}
100
101/**
102 * pci_epf_test_data_transfer() - Function that uses dmaengine API to transfer
103 * data between PCIe EP and remote PCIe RC
104 * @epf_test: the EPF test device that performs the data transfer operation
105 * @dma_dst: The destination address of the data transfer. It can be a physical
106 * address given by pci_epc_mem_alloc_addr or DMA mapping APIs.
107 * @dma_src: The source address of the data transfer. It can be a physical
108 * address given by pci_epc_mem_alloc_addr or DMA mapping APIs.
109 * @len: The size of the data transfer
110 * @dma_remote: remote RC physical address
111 * @dir: DMA transfer direction
112 *
113 * Function that uses dmaengine API to transfer data between PCIe EP and remote
114 * PCIe RC. The source and destination address can be a physical address given
115 * by pci_epc_mem_alloc_addr or the one obtained using DMA mapping APIs.
116 *
117 * The function returns '0' on success and negative value on failure.
118 */
119static int pci_epf_test_data_transfer(struct pci_epf_test *epf_test,
120 dma_addr_t dma_dst, dma_addr_t dma_src,
121 size_t len, dma_addr_t dma_remote,
122 enum dma_transfer_direction dir)
123{
124 struct dma_chan *chan = (dir == DMA_MEM_TO_DEV) ?
125 epf_test->dma_chan_tx : epf_test->dma_chan_rx;
126 dma_addr_t dma_local = (dir == DMA_MEM_TO_DEV) ? dma_src : dma_dst;
127 enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
128 struct pci_epf *epf = epf_test->epf;
129 struct dma_async_tx_descriptor *tx;
130 struct dma_slave_config sconf = {};
131 struct device *dev = &epf->dev;
132 int ret;
133
134 if (IS_ERR_OR_NULL(chan)) {
135 dev_err(dev, "Invalid DMA memcpy channel\n");
136 return -EINVAL;
137 }
138
139 if (epf_test->dma_private) {
140 sconf.direction = dir;
141 if (dir == DMA_MEM_TO_DEV)
142 sconf.dst_addr = dma_remote;
143 else
144 sconf.src_addr = dma_remote;
145
146 if (dmaengine_slave_config(chan, &sconf)) {
147 dev_err(dev, "DMA slave config fail\n");
148 return -EIO;
149 }
150 tx = dmaengine_prep_slave_single(chan, dma_local, len, dir,
151 flags);
152 } else {
153 tx = dmaengine_prep_dma_memcpy(chan, dma_dst, dma_src, len,
154 flags);
155 }
156
157 if (!tx) {
158 dev_err(dev, "Failed to prepare DMA memcpy\n");
159 return -EIO;
160 }
161
162 reinit_completion(&epf_test->transfer_complete);
163 epf_test->transfer_chan = chan;
164 tx->callback = pci_epf_test_dma_callback;
165 tx->callback_param = epf_test;
166 epf_test->transfer_cookie = dmaengine_submit(tx);
167
168 ret = dma_submit_error(epf_test->transfer_cookie);
169 if (ret) {
170 dev_err(dev, "Failed to do DMA tx_submit %d\n", ret);
171 goto terminate;
172 }
173
174 dma_async_issue_pending(chan);
175 ret = wait_for_completion_interruptible(&epf_test->transfer_complete);
176 if (ret < 0) {
177 dev_err(dev, "DMA wait_for_completion interrupted\n");
178 goto terminate;
179 }
180
181 if (epf_test->transfer_status == DMA_ERROR) {
182 dev_err(dev, "DMA transfer failed\n");
183 ret = -EIO;
184 }
185
186terminate:
187 dmaengine_terminate_sync(chan);
188
189 return ret;
190}
191
192struct epf_dma_filter {
193 struct device *dev;
194 u32 dma_mask;
195};
196
197static bool epf_dma_filter_fn(struct dma_chan *chan, void *node)
198{
199 struct epf_dma_filter *filter = node;
200 struct dma_slave_caps caps;
201
202 memset(&caps, 0, sizeof(caps));
203 dma_get_slave_caps(chan, &caps);
204
205 return chan->device->dev == filter->dev
206 && (filter->dma_mask & caps.directions);
207}
208
209/**
210 * pci_epf_test_init_dma_chan() - Function to initialize EPF test DMA channel
211 * @epf_test: the EPF test device that performs data transfer operation
212 *
213 * Function to initialize EPF test DMA channel.
214 */
215static int pci_epf_test_init_dma_chan(struct pci_epf_test *epf_test)
216{
217 struct pci_epf *epf = epf_test->epf;
218 struct device *dev = &epf->dev;
219 struct epf_dma_filter filter;
220 struct dma_chan *dma_chan;
221 dma_cap_mask_t mask;
222 int ret;
223
224 filter.dev = epf->epc->dev.parent;
225 filter.dma_mask = BIT(DMA_DEV_TO_MEM);
226
227 dma_cap_zero(mask);
228 dma_cap_set(DMA_SLAVE, mask);
229 dma_chan = dma_request_channel(mask, epf_dma_filter_fn, &filter);
230 if (!dma_chan) {
231 dev_info(dev, "Failed to get private DMA rx channel. Falling back to generic one\n");
232 goto fail_back_tx;
233 }
234
235 epf_test->dma_chan_rx = dma_chan;
236
237 filter.dma_mask = BIT(DMA_MEM_TO_DEV);
238 dma_chan = dma_request_channel(mask, epf_dma_filter_fn, &filter);
239
240 if (!dma_chan) {
241 dev_info(dev, "Failed to get private DMA tx channel. Falling back to generic one\n");
242 goto fail_back_rx;
243 }
244
245 epf_test->dma_chan_tx = dma_chan;
246 epf_test->dma_private = true;
247
248 init_completion(&epf_test->transfer_complete);
249
250 return 0;
251
252fail_back_rx:
253 dma_release_channel(epf_test->dma_chan_rx);
254 epf_test->dma_chan_tx = NULL;
255
256fail_back_tx:
257 dma_cap_zero(mask);
258 dma_cap_set(DMA_MEMCPY, mask);
259
260 dma_chan = dma_request_chan_by_mask(&mask);
261 if (IS_ERR(dma_chan)) {
262 ret = PTR_ERR(dma_chan);
263 if (ret != -EPROBE_DEFER)
264 dev_err(dev, "Failed to get DMA channel\n");
265 return ret;
266 }
267 init_completion(&epf_test->transfer_complete);
268
269 epf_test->dma_chan_tx = epf_test->dma_chan_rx = dma_chan;
270
271 return 0;
272}
273
274/**
275 * pci_epf_test_clean_dma_chan() - Function to cleanup EPF test DMA channel
276 * @epf_test: the EPF test device that performs data transfer operation
277 *
278 * Helper to cleanup EPF test DMA channel.
279 */
280static void pci_epf_test_clean_dma_chan(struct pci_epf_test *epf_test)
281{
282 if (!epf_test->dma_supported)
283 return;
284
285 dma_release_channel(epf_test->dma_chan_tx);
286 if (epf_test->dma_chan_tx == epf_test->dma_chan_rx) {
287 epf_test->dma_chan_tx = NULL;
288 epf_test->dma_chan_rx = NULL;
289 return;
290 }
291
292 dma_release_channel(epf_test->dma_chan_rx);
293 epf_test->dma_chan_rx = NULL;
294
295 return;
296}
297
298static void pci_epf_test_print_rate(struct pci_epf_test *epf_test,
299 const char *op, u64 size,
300 struct timespec64 *start,
301 struct timespec64 *end, bool dma)
302{
303 struct timespec64 ts = timespec64_sub(*end, *start);
304 u64 rate = 0, ns;
305
306 /* calculate the rate */
307 ns = timespec64_to_ns(&ts);
308 if (ns)
309 rate = div64_u64(size * NSEC_PER_SEC, ns * 1000);
310
311 dev_info(&epf_test->epf->dev,
312 "%s => Size: %llu B, DMA: %s, Time: %llu.%09u s, Rate: %llu KB/s\n",
313 op, size, dma ? "YES" : "NO",
314 (u64)ts.tv_sec, (u32)ts.tv_nsec, rate);
315}
316
317static void pci_epf_test_copy(struct pci_epf_test *epf_test,
318 struct pci_epf_test_reg *reg)
319{
320 int ret;
321 void __iomem *src_addr;
322 void __iomem *dst_addr;
323 phys_addr_t src_phys_addr;
324 phys_addr_t dst_phys_addr;
325 struct timespec64 start, end;
326 struct pci_epf *epf = epf_test->epf;
327 struct device *dev = &epf->dev;
328 struct pci_epc *epc = epf->epc;
329
330 src_addr = pci_epc_mem_alloc_addr(epc, &src_phys_addr, reg->size);
331 if (!src_addr) {
332 dev_err(dev, "Failed to allocate source address\n");
333 reg->status = STATUS_SRC_ADDR_INVALID;
334 ret = -ENOMEM;
335 goto err;
336 }
337
338 ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, src_phys_addr,
339 reg->src_addr, reg->size);
340 if (ret) {
341 dev_err(dev, "Failed to map source address\n");
342 reg->status = STATUS_SRC_ADDR_INVALID;
343 goto err_src_addr;
344 }
345
346 dst_addr = pci_epc_mem_alloc_addr(epc, &dst_phys_addr, reg->size);
347 if (!dst_addr) {
348 dev_err(dev, "Failed to allocate destination address\n");
349 reg->status = STATUS_DST_ADDR_INVALID;
350 ret = -ENOMEM;
351 goto err_src_map_addr;
352 }
353
354 ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, dst_phys_addr,
355 reg->dst_addr, reg->size);
356 if (ret) {
357 dev_err(dev, "Failed to map destination address\n");
358 reg->status = STATUS_DST_ADDR_INVALID;
359 goto err_dst_addr;
360 }
361
362 ktime_get_ts64(&start);
363 if (reg->flags & FLAG_USE_DMA) {
364 if (epf_test->dma_private) {
365 dev_err(dev, "Cannot transfer data using DMA\n");
366 ret = -EINVAL;
367 goto err_map_addr;
368 }
369
370 ret = pci_epf_test_data_transfer(epf_test, dst_phys_addr,
371 src_phys_addr, reg->size, 0,
372 DMA_MEM_TO_MEM);
373 if (ret)
374 dev_err(dev, "Data transfer failed\n");
375 } else {
376 void *buf;
377
378 buf = kzalloc(reg->size, GFP_KERNEL);
379 if (!buf) {
380 ret = -ENOMEM;
381 goto err_map_addr;
382 }
383
384 memcpy_fromio(buf, src_addr, reg->size);
385 memcpy_toio(dst_addr, buf, reg->size);
386 kfree(buf);
387 }
388 ktime_get_ts64(&end);
389 pci_epf_test_print_rate(epf_test, "COPY", reg->size, &start, &end,
390 reg->flags & FLAG_USE_DMA);
391
392err_map_addr:
393 pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, dst_phys_addr);
394
395err_dst_addr:
396 pci_epc_mem_free_addr(epc, dst_phys_addr, dst_addr, reg->size);
397
398err_src_map_addr:
399 pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, src_phys_addr);
400
401err_src_addr:
402 pci_epc_mem_free_addr(epc, src_phys_addr, src_addr, reg->size);
403
404err:
405 if (!ret)
406 reg->status |= STATUS_COPY_SUCCESS;
407 else
408 reg->status |= STATUS_COPY_FAIL;
409}
410
411static void pci_epf_test_read(struct pci_epf_test *epf_test,
412 struct pci_epf_test_reg *reg)
413{
414 int ret;
415 void __iomem *src_addr;
416 void *buf;
417 u32 crc32;
418 phys_addr_t phys_addr;
419 phys_addr_t dst_phys_addr;
420 struct timespec64 start, end;
421 struct pci_epf *epf = epf_test->epf;
422 struct device *dev = &epf->dev;
423 struct pci_epc *epc = epf->epc;
424 struct device *dma_dev = epf->epc->dev.parent;
425
426 src_addr = pci_epc_mem_alloc_addr(epc, &phys_addr, reg->size);
427 if (!src_addr) {
428 dev_err(dev, "Failed to allocate address\n");
429 reg->status = STATUS_SRC_ADDR_INVALID;
430 ret = -ENOMEM;
431 goto err;
432 }
433
434 ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, phys_addr,
435 reg->src_addr, reg->size);
436 if (ret) {
437 dev_err(dev, "Failed to map address\n");
438 reg->status = STATUS_SRC_ADDR_INVALID;
439 goto err_addr;
440 }
441
442 buf = kzalloc(reg->size, GFP_KERNEL);
443 if (!buf) {
444 ret = -ENOMEM;
445 goto err_map_addr;
446 }
447
448 if (reg->flags & FLAG_USE_DMA) {
449 dst_phys_addr = dma_map_single(dma_dev, buf, reg->size,
450 DMA_FROM_DEVICE);
451 if (dma_mapping_error(dma_dev, dst_phys_addr)) {
452 dev_err(dev, "Failed to map destination buffer addr\n");
453 ret = -ENOMEM;
454 goto err_dma_map;
455 }
456
457 ktime_get_ts64(&start);
458 ret = pci_epf_test_data_transfer(epf_test, dst_phys_addr,
459 phys_addr, reg->size,
460 reg->src_addr, DMA_DEV_TO_MEM);
461 if (ret)
462 dev_err(dev, "Data transfer failed\n");
463 ktime_get_ts64(&end);
464
465 dma_unmap_single(dma_dev, dst_phys_addr, reg->size,
466 DMA_FROM_DEVICE);
467 } else {
468 ktime_get_ts64(&start);
469 memcpy_fromio(buf, src_addr, reg->size);
470 ktime_get_ts64(&end);
471 }
472
473 pci_epf_test_print_rate(epf_test, "READ", reg->size, &start, &end,
474 reg->flags & FLAG_USE_DMA);
475
476 crc32 = crc32_le(~0, buf, reg->size);
477 if (crc32 != reg->checksum)
478 ret = -EIO;
479
480err_dma_map:
481 kfree(buf);
482
483err_map_addr:
484 pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, phys_addr);
485
486err_addr:
487 pci_epc_mem_free_addr(epc, phys_addr, src_addr, reg->size);
488
489err:
490 if (!ret)
491 reg->status |= STATUS_READ_SUCCESS;
492 else
493 reg->status |= STATUS_READ_FAIL;
494}
495
496static void pci_epf_test_write(struct pci_epf_test *epf_test,
497 struct pci_epf_test_reg *reg)
498{
499 int ret;
500 void __iomem *dst_addr;
501 void *buf;
502 phys_addr_t phys_addr;
503 phys_addr_t src_phys_addr;
504 struct timespec64 start, end;
505 struct pci_epf *epf = epf_test->epf;
506 struct device *dev = &epf->dev;
507 struct pci_epc *epc = epf->epc;
508 struct device *dma_dev = epf->epc->dev.parent;
509
510 dst_addr = pci_epc_mem_alloc_addr(epc, &phys_addr, reg->size);
511 if (!dst_addr) {
512 dev_err(dev, "Failed to allocate address\n");
513 reg->status = STATUS_DST_ADDR_INVALID;
514 ret = -ENOMEM;
515 goto err;
516 }
517
518 ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, phys_addr,
519 reg->dst_addr, reg->size);
520 if (ret) {
521 dev_err(dev, "Failed to map address\n");
522 reg->status = STATUS_DST_ADDR_INVALID;
523 goto err_addr;
524 }
525
526 buf = kzalloc(reg->size, GFP_KERNEL);
527 if (!buf) {
528 ret = -ENOMEM;
529 goto err_map_addr;
530 }
531
532 get_random_bytes(buf, reg->size);
533 reg->checksum = crc32_le(~0, buf, reg->size);
534
535 if (reg->flags & FLAG_USE_DMA) {
536 src_phys_addr = dma_map_single(dma_dev, buf, reg->size,
537 DMA_TO_DEVICE);
538 if (dma_mapping_error(dma_dev, src_phys_addr)) {
539 dev_err(dev, "Failed to map source buffer addr\n");
540 ret = -ENOMEM;
541 goto err_dma_map;
542 }
543
544 ktime_get_ts64(&start);
545
546 ret = pci_epf_test_data_transfer(epf_test, phys_addr,
547 src_phys_addr, reg->size,
548 reg->dst_addr,
549 DMA_MEM_TO_DEV);
550 if (ret)
551 dev_err(dev, "Data transfer failed\n");
552 ktime_get_ts64(&end);
553
554 dma_unmap_single(dma_dev, src_phys_addr, reg->size,
555 DMA_TO_DEVICE);
556 } else {
557 ktime_get_ts64(&start);
558 memcpy_toio(dst_addr, buf, reg->size);
559 ktime_get_ts64(&end);
560 }
561
562 pci_epf_test_print_rate(epf_test, "WRITE", reg->size, &start, &end,
563 reg->flags & FLAG_USE_DMA);
564
565 /*
566 * wait 1ms inorder for the write to complete. Without this delay L3
567 * error in observed in the host system.
568 */
569 usleep_range(1000, 2000);
570
571err_dma_map:
572 kfree(buf);
573
574err_map_addr:
575 pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, phys_addr);
576
577err_addr:
578 pci_epc_mem_free_addr(epc, phys_addr, dst_addr, reg->size);
579
580err:
581 if (!ret)
582 reg->status |= STATUS_WRITE_SUCCESS;
583 else
584 reg->status |= STATUS_WRITE_FAIL;
585}
586
587static void pci_epf_test_raise_irq(struct pci_epf_test *epf_test,
588 struct pci_epf_test_reg *reg)
589{
590 struct pci_epf *epf = epf_test->epf;
591 struct device *dev = &epf->dev;
592 struct pci_epc *epc = epf->epc;
593 u32 status = reg->status | STATUS_IRQ_RAISED;
594 int count;
595
596 /*
597 * Set the status before raising the IRQ to ensure that the host sees
598 * the updated value when it gets the IRQ.
599 */
600 WRITE_ONCE(reg->status, status);
601
602 switch (reg->irq_type) {
603 case IRQ_TYPE_LEGACY:
604 pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no,
605 PCI_IRQ_INTX, 0);
606 break;
607 case IRQ_TYPE_MSI:
608 count = pci_epc_get_msi(epc, epf->func_no, epf->vfunc_no);
609 if (reg->irq_number > count || count <= 0) {
610 dev_err(dev, "Invalid MSI IRQ number %d / %d\n",
611 reg->irq_number, count);
612 return;
613 }
614 pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no,
615 PCI_IRQ_MSI, reg->irq_number);
616 break;
617 case IRQ_TYPE_MSIX:
618 count = pci_epc_get_msix(epc, epf->func_no, epf->vfunc_no);
619 if (reg->irq_number > count || count <= 0) {
620 dev_err(dev, "Invalid MSIX IRQ number %d / %d\n",
621 reg->irq_number, count);
622 return;
623 }
624 pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no,
625 PCI_IRQ_MSIX, reg->irq_number);
626 break;
627 default:
628 dev_err(dev, "Failed to raise IRQ, unknown type\n");
629 break;
630 }
631}
632
633static void pci_epf_test_cmd_handler(struct work_struct *work)
634{
635 u32 command;
636 struct pci_epf_test *epf_test = container_of(work, struct pci_epf_test,
637 cmd_handler.work);
638 struct pci_epf *epf = epf_test->epf;
639 struct device *dev = &epf->dev;
640 enum pci_barno test_reg_bar = epf_test->test_reg_bar;
641 struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar];
642
643 command = READ_ONCE(reg->command);
644 if (!command)
645 goto reset_handler;
646
647 WRITE_ONCE(reg->command, 0);
648 WRITE_ONCE(reg->status, 0);
649
650 if ((READ_ONCE(reg->flags) & FLAG_USE_DMA) &&
651 !epf_test->dma_supported) {
652 dev_err(dev, "Cannot transfer data using DMA\n");
653 goto reset_handler;
654 }
655
656 if (reg->irq_type > IRQ_TYPE_MSIX) {
657 dev_err(dev, "Failed to detect IRQ type\n");
658 goto reset_handler;
659 }
660
661 switch (command) {
662 case COMMAND_RAISE_LEGACY_IRQ:
663 case COMMAND_RAISE_MSI_IRQ:
664 case COMMAND_RAISE_MSIX_IRQ:
665 pci_epf_test_raise_irq(epf_test, reg);
666 break;
667 case COMMAND_WRITE:
668 pci_epf_test_write(epf_test, reg);
669 pci_epf_test_raise_irq(epf_test, reg);
670 break;
671 case COMMAND_READ:
672 pci_epf_test_read(epf_test, reg);
673 pci_epf_test_raise_irq(epf_test, reg);
674 break;
675 case COMMAND_COPY:
676 pci_epf_test_copy(epf_test, reg);
677 pci_epf_test_raise_irq(epf_test, reg);
678 break;
679 default:
680 dev_err(dev, "Invalid command 0x%x\n", command);
681 break;
682 }
683
684reset_handler:
685 queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler,
686 msecs_to_jiffies(1));
687}
688
689static void pci_epf_test_unbind(struct pci_epf *epf)
690{
691 struct pci_epf_test *epf_test = epf_get_drvdata(epf);
692 struct pci_epc *epc = epf->epc;
693 struct pci_epf_bar *epf_bar;
694 int bar;
695
696 cancel_delayed_work(&epf_test->cmd_handler);
697 pci_epf_test_clean_dma_chan(epf_test);
698 for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) {
699 epf_bar = &epf->bar[bar];
700
701 if (epf_test->reg[bar]) {
702 pci_epc_clear_bar(epc, epf->func_no, epf->vfunc_no,
703 epf_bar);
704 pci_epf_free_space(epf, epf_test->reg[bar], bar,
705 PRIMARY_INTERFACE);
706 }
707 }
708}
709
710static int pci_epf_test_set_bar(struct pci_epf *epf)
711{
712 int bar, add;
713 int ret;
714 struct pci_epf_bar *epf_bar;
715 struct pci_epc *epc = epf->epc;
716 struct device *dev = &epf->dev;
717 struct pci_epf_test *epf_test = epf_get_drvdata(epf);
718 enum pci_barno test_reg_bar = epf_test->test_reg_bar;
719 const struct pci_epc_features *epc_features;
720
721 epc_features = epf_test->epc_features;
722
723 for (bar = 0; bar < PCI_STD_NUM_BARS; bar += add) {
724 epf_bar = &epf->bar[bar];
725 /*
726 * pci_epc_set_bar() sets PCI_BASE_ADDRESS_MEM_TYPE_64
727 * if the specific implementation required a 64-bit BAR,
728 * even if we only requested a 32-bit BAR.
729 */
730 add = (epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ? 2 : 1;
731
732 if (!!(epc_features->reserved_bar & (1 << bar)))
733 continue;
734
735 ret = pci_epc_set_bar(epc, epf->func_no, epf->vfunc_no,
736 epf_bar);
737 if (ret) {
738 pci_epf_free_space(epf, epf_test->reg[bar], bar,
739 PRIMARY_INTERFACE);
740 dev_err(dev, "Failed to set BAR%d\n", bar);
741 if (bar == test_reg_bar)
742 return ret;
743 }
744 }
745
746 return 0;
747}
748
749static int pci_epf_test_core_init(struct pci_epf *epf)
750{
751 struct pci_epf_test *epf_test = epf_get_drvdata(epf);
752 struct pci_epf_header *header = epf->header;
753 const struct pci_epc_features *epc_features;
754 struct pci_epc *epc = epf->epc;
755 struct device *dev = &epf->dev;
756 bool msix_capable = false;
757 bool msi_capable = true;
758 int ret;
759
760 epc_features = pci_epc_get_features(epc, epf->func_no, epf->vfunc_no);
761 if (epc_features) {
762 msix_capable = epc_features->msix_capable;
763 msi_capable = epc_features->msi_capable;
764 }
765
766 if (epf->vfunc_no <= 1) {
767 ret = pci_epc_write_header(epc, epf->func_no, epf->vfunc_no, header);
768 if (ret) {
769 dev_err(dev, "Configuration header write failed\n");
770 return ret;
771 }
772 }
773
774 ret = pci_epf_test_set_bar(epf);
775 if (ret)
776 return ret;
777
778 if (msi_capable) {
779 ret = pci_epc_set_msi(epc, epf->func_no, epf->vfunc_no,
780 epf->msi_interrupts);
781 if (ret) {
782 dev_err(dev, "MSI configuration failed\n");
783 return ret;
784 }
785 }
786
787 if (msix_capable) {
788 ret = pci_epc_set_msix(epc, epf->func_no, epf->vfunc_no,
789 epf->msix_interrupts,
790 epf_test->test_reg_bar,
791 epf_test->msix_table_offset);
792 if (ret) {
793 dev_err(dev, "MSI-X configuration failed\n");
794 return ret;
795 }
796 }
797
798 return 0;
799}
800
801static int pci_epf_test_link_up(struct pci_epf *epf)
802{
803 struct pci_epf_test *epf_test = epf_get_drvdata(epf);
804
805 queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler,
806 msecs_to_jiffies(1));
807
808 return 0;
809}
810
811static const struct pci_epc_event_ops pci_epf_test_event_ops = {
812 .core_init = pci_epf_test_core_init,
813 .link_up = pci_epf_test_link_up,
814};
815
816static int pci_epf_test_alloc_space(struct pci_epf *epf)
817{
818 struct pci_epf_test *epf_test = epf_get_drvdata(epf);
819 struct device *dev = &epf->dev;
820 struct pci_epf_bar *epf_bar;
821 size_t msix_table_size = 0;
822 size_t test_reg_bar_size;
823 size_t pba_size = 0;
824 bool msix_capable;
825 void *base;
826 int bar, add;
827 enum pci_barno test_reg_bar = epf_test->test_reg_bar;
828 const struct pci_epc_features *epc_features;
829 size_t test_reg_size;
830
831 epc_features = epf_test->epc_features;
832
833 test_reg_bar_size = ALIGN(sizeof(struct pci_epf_test_reg), 128);
834
835 msix_capable = epc_features->msix_capable;
836 if (msix_capable) {
837 msix_table_size = PCI_MSIX_ENTRY_SIZE * epf->msix_interrupts;
838 epf_test->msix_table_offset = test_reg_bar_size;
839 /* Align to QWORD or 8 Bytes */
840 pba_size = ALIGN(DIV_ROUND_UP(epf->msix_interrupts, 8), 8);
841 }
842 test_reg_size = test_reg_bar_size + msix_table_size + pba_size;
843
844 if (epc_features->bar_fixed_size[test_reg_bar]) {
845 if (test_reg_size > bar_size[test_reg_bar])
846 return -ENOMEM;
847 test_reg_size = bar_size[test_reg_bar];
848 }
849
850 base = pci_epf_alloc_space(epf, test_reg_size, test_reg_bar,
851 epc_features->align, PRIMARY_INTERFACE);
852 if (!base) {
853 dev_err(dev, "Failed to allocated register space\n");
854 return -ENOMEM;
855 }
856 epf_test->reg[test_reg_bar] = base;
857
858 for (bar = 0; bar < PCI_STD_NUM_BARS; bar += add) {
859 epf_bar = &epf->bar[bar];
860 add = (epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ? 2 : 1;
861
862 if (bar == test_reg_bar)
863 continue;
864
865 if (!!(epc_features->reserved_bar & (1 << bar)))
866 continue;
867
868 base = pci_epf_alloc_space(epf, bar_size[bar], bar,
869 epc_features->align,
870 PRIMARY_INTERFACE);
871 if (!base)
872 dev_err(dev, "Failed to allocate space for BAR%d\n",
873 bar);
874 epf_test->reg[bar] = base;
875 }
876
877 return 0;
878}
879
880static void pci_epf_configure_bar(struct pci_epf *epf,
881 const struct pci_epc_features *epc_features)
882{
883 struct pci_epf_bar *epf_bar;
884 bool bar_fixed_64bit;
885 int i;
886
887 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
888 epf_bar = &epf->bar[i];
889 bar_fixed_64bit = !!(epc_features->bar_fixed_64bit & (1 << i));
890 if (bar_fixed_64bit)
891 epf_bar->flags |= PCI_BASE_ADDRESS_MEM_TYPE_64;
892 if (epc_features->bar_fixed_size[i])
893 bar_size[i] = epc_features->bar_fixed_size[i];
894 }
895}
896
897static int pci_epf_test_bind(struct pci_epf *epf)
898{
899 int ret;
900 struct pci_epf_test *epf_test = epf_get_drvdata(epf);
901 const struct pci_epc_features *epc_features;
902 enum pci_barno test_reg_bar = BAR_0;
903 struct pci_epc *epc = epf->epc;
904 bool linkup_notifier = false;
905 bool core_init_notifier = false;
906
907 if (WARN_ON_ONCE(!epc))
908 return -EINVAL;
909
910 epc_features = pci_epc_get_features(epc, epf->func_no, epf->vfunc_no);
911 if (!epc_features) {
912 dev_err(&epf->dev, "epc_features not implemented\n");
913 return -EOPNOTSUPP;
914 }
915
916 linkup_notifier = epc_features->linkup_notifier;
917 core_init_notifier = epc_features->core_init_notifier;
918 test_reg_bar = pci_epc_get_first_free_bar(epc_features);
919 if (test_reg_bar < 0)
920 return -EINVAL;
921 pci_epf_configure_bar(epf, epc_features);
922
923 epf_test->test_reg_bar = test_reg_bar;
924 epf_test->epc_features = epc_features;
925
926 ret = pci_epf_test_alloc_space(epf);
927 if (ret)
928 return ret;
929
930 if (!core_init_notifier) {
931 ret = pci_epf_test_core_init(epf);
932 if (ret)
933 return ret;
934 }
935
936 epf_test->dma_supported = true;
937
938 ret = pci_epf_test_init_dma_chan(epf_test);
939 if (ret)
940 epf_test->dma_supported = false;
941
942 if (!linkup_notifier && !core_init_notifier)
943 queue_work(kpcitest_workqueue, &epf_test->cmd_handler.work);
944
945 return 0;
946}
947
948static const struct pci_epf_device_id pci_epf_test_ids[] = {
949 {
950 .name = "pci_epf_test",
951 },
952 {},
953};
954
955static int pci_epf_test_probe(struct pci_epf *epf,
956 const struct pci_epf_device_id *id)
957{
958 struct pci_epf_test *epf_test;
959 struct device *dev = &epf->dev;
960
961 epf_test = devm_kzalloc(dev, sizeof(*epf_test), GFP_KERNEL);
962 if (!epf_test)
963 return -ENOMEM;
964
965 epf->header = &test_header;
966 epf_test->epf = epf;
967
968 INIT_DELAYED_WORK(&epf_test->cmd_handler, pci_epf_test_cmd_handler);
969
970 epf->event_ops = &pci_epf_test_event_ops;
971
972 epf_set_drvdata(epf, epf_test);
973 return 0;
974}
975
976static struct pci_epf_ops ops = {
977 .unbind = pci_epf_test_unbind,
978 .bind = pci_epf_test_bind,
979};
980
981static struct pci_epf_driver test_driver = {
982 .driver.name = "pci_epf_test",
983 .probe = pci_epf_test_probe,
984 .id_table = pci_epf_test_ids,
985 .ops = &ops,
986 .owner = THIS_MODULE,
987};
988
989static int __init pci_epf_test_init(void)
990{
991 int ret;
992
993 kpcitest_workqueue = alloc_workqueue("kpcitest",
994 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
995 if (!kpcitest_workqueue) {
996 pr_err("Failed to allocate the kpcitest work queue\n");
997 return -ENOMEM;
998 }
999
1000 ret = pci_epf_register_driver(&test_driver);
1001 if (ret) {
1002 destroy_workqueue(kpcitest_workqueue);
1003 pr_err("Failed to register pci epf test driver --> %d\n", ret);
1004 return ret;
1005 }
1006
1007 return 0;
1008}
1009module_init(pci_epf_test_init);
1010
1011static void __exit pci_epf_test_exit(void)
1012{
1013 if (kpcitest_workqueue)
1014 destroy_workqueue(kpcitest_workqueue);
1015 pci_epf_unregister_driver(&test_driver);
1016}
1017module_exit(pci_epf_test_exit);
1018
1019MODULE_DESCRIPTION("PCI EPF TEST DRIVER");
1020MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
1021MODULE_LICENSE("GPL v2");