| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Functions for working with the Flattened Device Tree data format |
| 4 | * |
| 5 | * Copyright 2009 Benjamin Herrenschmidt, IBM Corp |
| 6 | * benh@kernel.crashing.org |
| 7 | */ |
| 8 | |
| 9 | #define pr_fmt(fmt) "OF: fdt: " fmt |
| 10 | |
| 11 | #include <linux/crash_dump.h> |
| 12 | #include <linux/crc32.h> |
| 13 | #include <linux/kernel.h> |
| 14 | #include <linux/initrd.h> |
| 15 | #include <linux/memblock.h> |
| 16 | #include <linux/mutex.h> |
| 17 | #include <linux/of.h> |
| 18 | #include <linux/of_fdt.h> |
| 19 | #include <linux/sizes.h> |
| 20 | #include <linux/string.h> |
| 21 | #include <linux/errno.h> |
| 22 | #include <linux/slab.h> |
| 23 | #include <linux/libfdt.h> |
| 24 | #include <linux/debugfs.h> |
| 25 | #include <linux/serial_core.h> |
| 26 | #include <linux/sysfs.h> |
| 27 | #include <linux/random.h> |
| 28 | #include <linux/kexec_handover.h> |
| 29 | |
| 30 | #include <asm/setup.h> /* for COMMAND_LINE_SIZE */ |
| 31 | #include <asm/page.h> |
| 32 | |
| 33 | #include "of_private.h" |
| 34 | |
| 35 | /* |
| 36 | * __dtb_empty_root_begin[] and __dtb_empty_root_end[] magically created by |
| 37 | * cmd_wrap_S_dtb in scripts/Makefile.dtbs |
| 38 | */ |
| 39 | extern uint8_t __dtb_empty_root_begin[]; |
| 40 | extern uint8_t __dtb_empty_root_end[]; |
| 41 | |
| 42 | /* |
| 43 | * of_fdt_limit_memory - limit the number of regions in the /memory node |
| 44 | * @limit: maximum entries |
| 45 | * |
| 46 | * Adjust the flattened device tree to have at most 'limit' number of |
| 47 | * memory entries in the /memory node. This function may be called |
| 48 | * any time after initial_boot_param is set. |
| 49 | */ |
| 50 | void __init of_fdt_limit_memory(int limit) |
| 51 | { |
| 52 | int memory; |
| 53 | int len; |
| 54 | const void *val; |
| 55 | int cell_size = sizeof(uint32_t)*(dt_root_addr_cells + dt_root_size_cells); |
| 56 | |
| 57 | memory = fdt_path_offset(initial_boot_params, "/memory"); |
| 58 | if (memory > 0) { |
| 59 | val = fdt_getprop(initial_boot_params, memory, "reg", &len); |
| 60 | if (len > limit*cell_size) { |
| 61 | len = limit*cell_size; |
| 62 | pr_debug("Limiting number of entries to %d\n", limit); |
| 63 | fdt_setprop(initial_boot_params, memory, "reg", val, |
| 64 | len); |
| 65 | } |
| 66 | } |
| 67 | } |
| 68 | |
| 69 | bool of_fdt_device_is_available(const void *blob, unsigned long node) |
| 70 | { |
| 71 | const char *status = fdt_getprop(blob, node, "status", NULL); |
| 72 | |
| 73 | if (!status) |
| 74 | return true; |
| 75 | |
| 76 | if (!strcmp(status, "ok") || !strcmp(status, "okay")) |
| 77 | return true; |
| 78 | |
| 79 | return false; |
| 80 | } |
| 81 | |
| 82 | static void *unflatten_dt_alloc(void **mem, unsigned long size, |
| 83 | unsigned long align) |
| 84 | { |
| 85 | void *res; |
| 86 | |
| 87 | *mem = PTR_ALIGN(*mem, align); |
| 88 | res = *mem; |
| 89 | *mem += size; |
| 90 | |
| 91 | return res; |
| 92 | } |
| 93 | |
| 94 | static void populate_properties(const void *blob, |
| 95 | int offset, |
| 96 | void **mem, |
| 97 | struct device_node *np, |
| 98 | const char *nodename, |
| 99 | bool dryrun) |
| 100 | { |
| 101 | struct property *pp, **pprev = NULL; |
| 102 | int cur; |
| 103 | bool has_name = false; |
| 104 | |
| 105 | pprev = &np->properties; |
| 106 | for (cur = fdt_first_property_offset(blob, offset); |
| 107 | cur >= 0; |
| 108 | cur = fdt_next_property_offset(blob, cur)) { |
| 109 | const __be32 *val; |
| 110 | const char *pname; |
| 111 | u32 sz; |
| 112 | |
| 113 | val = fdt_getprop_by_offset(blob, cur, &pname, &sz); |
| 114 | if (!val) { |
| 115 | pr_warn("Cannot locate property at 0x%x\n", cur); |
| 116 | continue; |
| 117 | } |
| 118 | |
| 119 | if (!pname) { |
| 120 | pr_warn("Cannot find property name at 0x%x\n", cur); |
| 121 | continue; |
| 122 | } |
| 123 | |
| 124 | if (!strcmp(pname, "name")) |
| 125 | has_name = true; |
| 126 | |
| 127 | pp = unflatten_dt_alloc(mem, sizeof(struct property), |
| 128 | __alignof__(struct property)); |
| 129 | if (dryrun) |
| 130 | continue; |
| 131 | |
| 132 | /* We accept flattened tree phandles either in |
| 133 | * ePAPR-style "phandle" properties, or the |
| 134 | * legacy "linux,phandle" properties. If both |
| 135 | * appear and have different values, things |
| 136 | * will get weird. Don't do that. |
| 137 | */ |
| 138 | if (!strcmp(pname, "phandle") || |
| 139 | !strcmp(pname, "linux,phandle")) { |
| 140 | if (!np->phandle) |
| 141 | np->phandle = be32_to_cpup(val); |
| 142 | } |
| 143 | |
| 144 | /* And we process the "ibm,phandle" property |
| 145 | * used in pSeries dynamic device tree |
| 146 | * stuff |
| 147 | */ |
| 148 | if (!strcmp(pname, "ibm,phandle")) |
| 149 | np->phandle = be32_to_cpup(val); |
| 150 | |
| 151 | pp->name = (char *)pname; |
| 152 | pp->length = sz; |
| 153 | pp->value = (__be32 *)val; |
| 154 | *pprev = pp; |
| 155 | pprev = &pp->next; |
| 156 | } |
| 157 | |
| 158 | /* With version 0x10 we may not have the name property, |
| 159 | * recreate it here from the unit name if absent |
| 160 | */ |
| 161 | if (!has_name) { |
| 162 | const char *p = nodename, *ps = p, *pa = NULL; |
| 163 | int len; |
| 164 | |
| 165 | while (*p) { |
| 166 | if ((*p) == '@') |
| 167 | pa = p; |
| 168 | else if ((*p) == '/') |
| 169 | ps = p + 1; |
| 170 | p++; |
| 171 | } |
| 172 | |
| 173 | if (pa < ps) |
| 174 | pa = p; |
| 175 | len = (pa - ps) + 1; |
| 176 | pp = unflatten_dt_alloc(mem, sizeof(struct property) + len, |
| 177 | __alignof__(struct property)); |
| 178 | if (!dryrun) { |
| 179 | pp->name = "name"; |
| 180 | pp->length = len; |
| 181 | pp->value = pp + 1; |
| 182 | *pprev = pp; |
| 183 | memcpy(pp->value, ps, len - 1); |
| 184 | ((char *)pp->value)[len - 1] = 0; |
| 185 | pr_debug("fixed up name for %s -> %s\n", |
| 186 | nodename, (char *)pp->value); |
| 187 | } |
| 188 | } |
| 189 | } |
| 190 | |
| 191 | static int populate_node(const void *blob, |
| 192 | int offset, |
| 193 | void **mem, |
| 194 | struct device_node *dad, |
| 195 | struct device_node **pnp, |
| 196 | bool dryrun) |
| 197 | { |
| 198 | struct device_node *np; |
| 199 | const char *pathp; |
| 200 | int len; |
| 201 | |
| 202 | pathp = fdt_get_name(blob, offset, &len); |
| 203 | if (!pathp) { |
| 204 | *pnp = NULL; |
| 205 | return len; |
| 206 | } |
| 207 | |
| 208 | len++; |
| 209 | |
| 210 | np = unflatten_dt_alloc(mem, sizeof(struct device_node) + len, |
| 211 | __alignof__(struct device_node)); |
| 212 | if (!dryrun) { |
| 213 | char *fn; |
| 214 | of_node_init(np); |
| 215 | np->full_name = fn = ((char *)np) + sizeof(*np); |
| 216 | |
| 217 | memcpy(fn, pathp, len); |
| 218 | |
| 219 | if (dad != NULL) { |
| 220 | np->parent = dad; |
| 221 | np->sibling = dad->child; |
| 222 | dad->child = np; |
| 223 | } |
| 224 | } |
| 225 | |
| 226 | populate_properties(blob, offset, mem, np, pathp, dryrun); |
| 227 | if (!dryrun) { |
| 228 | np->name = of_get_property(np, "name", NULL); |
| 229 | if (!np->name) |
| 230 | np->name = "<NULL>"; |
| 231 | } |
| 232 | |
| 233 | *pnp = np; |
| 234 | return 0; |
| 235 | } |
| 236 | |
| 237 | static void reverse_nodes(struct device_node *parent) |
| 238 | { |
| 239 | struct device_node *child, *next; |
| 240 | |
| 241 | /* In-depth first */ |
| 242 | child = parent->child; |
| 243 | while (child) { |
| 244 | reverse_nodes(child); |
| 245 | |
| 246 | child = child->sibling; |
| 247 | } |
| 248 | |
| 249 | /* Reverse the nodes in the child list */ |
| 250 | child = parent->child; |
| 251 | parent->child = NULL; |
| 252 | while (child) { |
| 253 | next = child->sibling; |
| 254 | |
| 255 | child->sibling = parent->child; |
| 256 | parent->child = child; |
| 257 | child = next; |
| 258 | } |
| 259 | } |
| 260 | |
| 261 | /** |
| 262 | * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree |
| 263 | * @blob: The parent device tree blob |
| 264 | * @mem: Memory chunk to use for allocating device nodes and properties |
| 265 | * @dad: Parent struct device_node |
| 266 | * @nodepp: The device_node tree created by the call |
| 267 | * |
| 268 | * Return: The size of unflattened device tree or error code |
| 269 | */ |
| 270 | static int unflatten_dt_nodes(const void *blob, |
| 271 | void *mem, |
| 272 | struct device_node *dad, |
| 273 | struct device_node **nodepp) |
| 274 | { |
| 275 | struct device_node *root; |
| 276 | int offset = 0, depth = 0, initial_depth = 0; |
| 277 | #define FDT_MAX_DEPTH 64 |
| 278 | struct device_node *nps[FDT_MAX_DEPTH]; |
| 279 | void *base = mem; |
| 280 | bool dryrun = !base; |
| 281 | int ret; |
| 282 | |
| 283 | if (nodepp) |
| 284 | *nodepp = NULL; |
| 285 | |
| 286 | /* |
| 287 | * We're unflattening device sub-tree if @dad is valid. There are |
| 288 | * possibly multiple nodes in the first level of depth. We need |
| 289 | * set @depth to 1 to make fdt_next_node() happy as it bails |
| 290 | * immediately when negative @depth is found. Otherwise, the device |
| 291 | * nodes except the first one won't be unflattened successfully. |
| 292 | */ |
| 293 | if (dad) |
| 294 | depth = initial_depth = 1; |
| 295 | |
| 296 | root = dad; |
| 297 | nps[depth] = dad; |
| 298 | |
| 299 | for (offset = 0; |
| 300 | offset >= 0 && depth >= initial_depth; |
| 301 | offset = fdt_next_node(blob, offset, &depth)) { |
| 302 | if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH - 1)) |
| 303 | continue; |
| 304 | |
| 305 | if (!IS_ENABLED(CONFIG_OF_KOBJ) && |
| 306 | !of_fdt_device_is_available(blob, offset)) |
| 307 | continue; |
| 308 | |
| 309 | ret = populate_node(blob, offset, &mem, nps[depth], |
| 310 | &nps[depth+1], dryrun); |
| 311 | if (ret < 0) |
| 312 | return ret; |
| 313 | |
| 314 | if (!dryrun && nodepp && !*nodepp) |
| 315 | *nodepp = nps[depth+1]; |
| 316 | if (!dryrun && !root) |
| 317 | root = nps[depth+1]; |
| 318 | } |
| 319 | |
| 320 | if (offset < 0 && offset != -FDT_ERR_NOTFOUND) { |
| 321 | pr_err("Error %d processing FDT\n", offset); |
| 322 | return -EINVAL; |
| 323 | } |
| 324 | |
| 325 | /* |
| 326 | * Reverse the child list. Some drivers assumes node order matches .dts |
| 327 | * node order |
| 328 | */ |
| 329 | if (!dryrun) |
| 330 | reverse_nodes(root); |
| 331 | |
| 332 | return mem - base; |
| 333 | } |
| 334 | |
| 335 | /** |
| 336 | * __unflatten_device_tree - create tree of device_nodes from flat blob |
| 337 | * @blob: The blob to expand |
| 338 | * @dad: Parent device node |
| 339 | * @mynodes: The device_node tree created by the call |
| 340 | * @dt_alloc: An allocator that provides a virtual address to memory |
| 341 | * for the resulting tree |
| 342 | * @detached: if true set OF_DETACHED on @mynodes |
| 343 | * |
| 344 | * unflattens a device-tree, creating the tree of struct device_node. It also |
| 345 | * fills the "name" and "type" pointers of the nodes so the normal device-tree |
| 346 | * walking functions can be used. |
| 347 | * |
| 348 | * Return: NULL on failure or the memory chunk containing the unflattened |
| 349 | * device tree on success. |
| 350 | */ |
| 351 | void *__unflatten_device_tree(const void *blob, |
| 352 | struct device_node *dad, |
| 353 | struct device_node **mynodes, |
| 354 | void *(*dt_alloc)(u64 size, u64 align), |
| 355 | bool detached) |
| 356 | { |
| 357 | int size; |
| 358 | void *mem; |
| 359 | int ret; |
| 360 | |
| 361 | if (mynodes) |
| 362 | *mynodes = NULL; |
| 363 | |
| 364 | pr_debug(" -> unflatten_device_tree()\n"); |
| 365 | |
| 366 | if (!blob) { |
| 367 | pr_debug("No device tree pointer\n"); |
| 368 | return NULL; |
| 369 | } |
| 370 | |
| 371 | pr_debug("Unflattening device tree:\n"); |
| 372 | pr_debug("magic: %08x\n", fdt_magic(blob)); |
| 373 | pr_debug("size: %08x\n", fdt_totalsize(blob)); |
| 374 | pr_debug("version: %08x\n", fdt_version(blob)); |
| 375 | |
| 376 | if (fdt_check_header(blob)) { |
| 377 | pr_err("Invalid device tree blob header\n"); |
| 378 | return NULL; |
| 379 | } |
| 380 | |
| 381 | /* First pass, scan for size */ |
| 382 | size = unflatten_dt_nodes(blob, NULL, dad, NULL); |
| 383 | if (size <= 0) |
| 384 | return NULL; |
| 385 | |
| 386 | size = ALIGN(size, 4); |
| 387 | pr_debug(" size is %d, allocating...\n", size); |
| 388 | |
| 389 | /* Allocate memory for the expanded device tree */ |
| 390 | mem = dt_alloc(size + 4, __alignof__(struct device_node)); |
| 391 | if (!mem) |
| 392 | return NULL; |
| 393 | |
| 394 | memset(mem, 0, size); |
| 395 | |
| 396 | *(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef); |
| 397 | |
| 398 | pr_debug(" unflattening %p...\n", mem); |
| 399 | |
| 400 | /* Second pass, do actual unflattening */ |
| 401 | ret = unflatten_dt_nodes(blob, mem, dad, mynodes); |
| 402 | |
| 403 | if (be32_to_cpup(mem + size) != 0xdeadbeef) |
| 404 | pr_warn("End of tree marker overwritten: %08x\n", |
| 405 | be32_to_cpup(mem + size)); |
| 406 | |
| 407 | if (ret <= 0) |
| 408 | return NULL; |
| 409 | |
| 410 | if (detached && mynodes && *mynodes) { |
| 411 | of_node_set_flag(*mynodes, OF_DETACHED); |
| 412 | pr_debug("unflattened tree is detached\n"); |
| 413 | } |
| 414 | |
| 415 | pr_debug(" <- unflatten_device_tree()\n"); |
| 416 | return mem; |
| 417 | } |
| 418 | |
| 419 | static void *kernel_tree_alloc(u64 size, u64 align) |
| 420 | { |
| 421 | return kzalloc(size, GFP_KERNEL); |
| 422 | } |
| 423 | |
| 424 | static DEFINE_MUTEX(of_fdt_unflatten_mutex); |
| 425 | |
| 426 | /** |
| 427 | * of_fdt_unflatten_tree - create tree of device_nodes from flat blob |
| 428 | * @blob: Flat device tree blob |
| 429 | * @dad: Parent device node |
| 430 | * @mynodes: The device tree created by the call |
| 431 | * |
| 432 | * unflattens the device-tree passed by the firmware, creating the |
| 433 | * tree of struct device_node. It also fills the "name" and "type" |
| 434 | * pointers of the nodes so the normal device-tree walking functions |
| 435 | * can be used. |
| 436 | * |
| 437 | * Return: NULL on failure or the memory chunk containing the unflattened |
| 438 | * device tree on success. |
| 439 | */ |
| 440 | void *of_fdt_unflatten_tree(const unsigned long *blob, |
| 441 | struct device_node *dad, |
| 442 | struct device_node **mynodes) |
| 443 | { |
| 444 | void *mem; |
| 445 | |
| 446 | mutex_lock(&of_fdt_unflatten_mutex); |
| 447 | mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc, |
| 448 | true); |
| 449 | mutex_unlock(&of_fdt_unflatten_mutex); |
| 450 | |
| 451 | return mem; |
| 452 | } |
| 453 | EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree); |
| 454 | |
| 455 | /* Everything below here references initial_boot_params directly. */ |
| 456 | int __initdata dt_root_addr_cells; |
| 457 | int __initdata dt_root_size_cells; |
| 458 | |
| 459 | void *initial_boot_params __ro_after_init; |
| 460 | phys_addr_t initial_boot_params_pa __ro_after_init; |
| 461 | |
| 462 | #ifdef CONFIG_OF_EARLY_FLATTREE |
| 463 | |
| 464 | static u32 of_fdt_crc32; |
| 465 | |
| 466 | /* |
| 467 | * fdt_reserve_elfcorehdr() - reserves memory for elf core header |
| 468 | * |
| 469 | * This function reserves the memory occupied by an elf core header |
| 470 | * described in the device tree. This region contains all the |
| 471 | * information about primary kernel's core image and is used by a dump |
| 472 | * capture kernel to access the system memory on primary kernel. |
| 473 | */ |
| 474 | static void __init fdt_reserve_elfcorehdr(void) |
| 475 | { |
| 476 | if (!IS_ENABLED(CONFIG_CRASH_DUMP) || !elfcorehdr_size) |
| 477 | return; |
| 478 | |
| 479 | if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) { |
| 480 | pr_warn("elfcorehdr is overlapped\n"); |
| 481 | return; |
| 482 | } |
| 483 | |
| 484 | memblock_reserve(elfcorehdr_addr, elfcorehdr_size); |
| 485 | |
| 486 | pr_info("Reserving %llu KiB of memory at 0x%llx for elfcorehdr\n", |
| 487 | elfcorehdr_size >> 10, elfcorehdr_addr); |
| 488 | } |
| 489 | |
| 490 | /** |
| 491 | * early_init_fdt_scan_reserved_mem() - create reserved memory regions |
| 492 | * |
| 493 | * This function grabs memory from early allocator for device exclusive use |
| 494 | * defined in device tree structures. It should be called by arch specific code |
| 495 | * once the early allocator (i.e. memblock) has been fully activated. |
| 496 | */ |
| 497 | void __init early_init_fdt_scan_reserved_mem(void) |
| 498 | { |
| 499 | int n; |
| 500 | int res; |
| 501 | u64 base, size; |
| 502 | |
| 503 | if (!initial_boot_params) |
| 504 | return; |
| 505 | |
| 506 | fdt_scan_reserved_mem(); |
| 507 | fdt_reserve_elfcorehdr(); |
| 508 | |
| 509 | /* Process header /memreserve/ fields */ |
| 510 | for (n = 0; ; n++) { |
| 511 | res = fdt_get_mem_rsv(initial_boot_params, n, &base, &size); |
| 512 | if (res) { |
| 513 | pr_err("Invalid memory reservation block index %d\n", n); |
| 514 | break; |
| 515 | } |
| 516 | if (!size) |
| 517 | break; |
| 518 | memblock_reserve(base, size); |
| 519 | } |
| 520 | } |
| 521 | |
| 522 | /** |
| 523 | * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob |
| 524 | */ |
| 525 | void __init early_init_fdt_reserve_self(void) |
| 526 | { |
| 527 | if (!initial_boot_params) |
| 528 | return; |
| 529 | |
| 530 | /* Reserve the dtb region */ |
| 531 | memblock_reserve(__pa(initial_boot_params), |
| 532 | fdt_totalsize(initial_boot_params)); |
| 533 | } |
| 534 | |
| 535 | /** |
| 536 | * of_scan_flat_dt - scan flattened tree blob and call callback on each. |
| 537 | * @it: callback function |
| 538 | * @data: context data pointer |
| 539 | * |
| 540 | * This function is used to scan the flattened device-tree, it is |
| 541 | * used to extract the memory information at boot before we can |
| 542 | * unflatten the tree |
| 543 | */ |
| 544 | int __init of_scan_flat_dt(int (*it)(unsigned long node, |
| 545 | const char *uname, int depth, |
| 546 | void *data), |
| 547 | void *data) |
| 548 | { |
| 549 | const void *blob = initial_boot_params; |
| 550 | const char *pathp; |
| 551 | int offset, rc = 0, depth = -1; |
| 552 | |
| 553 | if (!blob) |
| 554 | return 0; |
| 555 | |
| 556 | for (offset = fdt_next_node(blob, -1, &depth); |
| 557 | offset >= 0 && depth >= 0 && !rc; |
| 558 | offset = fdt_next_node(blob, offset, &depth)) { |
| 559 | |
| 560 | pathp = fdt_get_name(blob, offset, NULL); |
| 561 | rc = it(offset, pathp, depth, data); |
| 562 | } |
| 563 | return rc; |
| 564 | } |
| 565 | |
| 566 | /** |
| 567 | * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each. |
| 568 | * @parent: parent node |
| 569 | * @it: callback function |
| 570 | * @data: context data pointer |
| 571 | * |
| 572 | * This function is used to scan sub-nodes of a node. |
| 573 | */ |
| 574 | int __init of_scan_flat_dt_subnodes(unsigned long parent, |
| 575 | int (*it)(unsigned long node, |
| 576 | const char *uname, |
| 577 | void *data), |
| 578 | void *data) |
| 579 | { |
| 580 | const void *blob = initial_boot_params; |
| 581 | int node; |
| 582 | |
| 583 | fdt_for_each_subnode(node, blob, parent) { |
| 584 | const char *pathp; |
| 585 | int rc; |
| 586 | |
| 587 | pathp = fdt_get_name(blob, node, NULL); |
| 588 | rc = it(node, pathp, data); |
| 589 | if (rc) |
| 590 | return rc; |
| 591 | } |
| 592 | return 0; |
| 593 | } |
| 594 | |
| 595 | /** |
| 596 | * of_get_flat_dt_subnode_by_name - get the subnode by given name |
| 597 | * |
| 598 | * @node: the parent node |
| 599 | * @uname: the name of subnode |
| 600 | * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none |
| 601 | */ |
| 602 | |
| 603 | int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname) |
| 604 | { |
| 605 | return fdt_subnode_offset(initial_boot_params, node, uname); |
| 606 | } |
| 607 | |
| 608 | /* |
| 609 | * of_get_flat_dt_root - find the root node in the flat blob |
| 610 | */ |
| 611 | unsigned long __init of_get_flat_dt_root(void) |
| 612 | { |
| 613 | return 0; |
| 614 | } |
| 615 | |
| 616 | /* |
| 617 | * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr |
| 618 | * |
| 619 | * This function can be used within scan_flattened_dt callback to get |
| 620 | * access to properties |
| 621 | */ |
| 622 | const void *__init of_get_flat_dt_prop(unsigned long node, const char *name, |
| 623 | int *size) |
| 624 | { |
| 625 | return fdt_getprop(initial_boot_params, node, name, size); |
| 626 | } |
| 627 | |
| 628 | /** |
| 629 | * of_fdt_is_compatible - Return true if given node from the given blob has |
| 630 | * compat in its compatible list |
| 631 | * @blob: A device tree blob |
| 632 | * @node: node to test |
| 633 | * @compat: compatible string to compare with compatible list. |
| 634 | * |
| 635 | * Return: a non-zero value on match with smaller values returned for more |
| 636 | * specific compatible values. |
| 637 | */ |
| 638 | static int of_fdt_is_compatible(const void *blob, |
| 639 | unsigned long node, const char *compat) |
| 640 | { |
| 641 | const char *cp; |
| 642 | int cplen; |
| 643 | unsigned long l, score = 0; |
| 644 | |
| 645 | cp = fdt_getprop(blob, node, "compatible", &cplen); |
| 646 | if (cp == NULL) |
| 647 | return 0; |
| 648 | while (cplen > 0) { |
| 649 | score++; |
| 650 | if (of_compat_cmp(cp, compat, strlen(compat)) == 0) |
| 651 | return score; |
| 652 | l = strlen(cp) + 1; |
| 653 | cp += l; |
| 654 | cplen -= l; |
| 655 | } |
| 656 | |
| 657 | return 0; |
| 658 | } |
| 659 | |
| 660 | /** |
| 661 | * of_flat_dt_is_compatible - Return true if given node has compat in compatible list |
| 662 | * @node: node to test |
| 663 | * @compat: compatible string to compare with compatible list. |
| 664 | */ |
| 665 | int __init of_flat_dt_is_compatible(unsigned long node, const char *compat) |
| 666 | { |
| 667 | return of_fdt_is_compatible(initial_boot_params, node, compat); |
| 668 | } |
| 669 | |
| 670 | /* |
| 671 | * of_flat_dt_match - Return true if node matches a list of compatible values |
| 672 | */ |
| 673 | static int __init of_flat_dt_match(unsigned long node, const char *const *compat) |
| 674 | { |
| 675 | unsigned int tmp, score = 0; |
| 676 | |
| 677 | if (!compat) |
| 678 | return 0; |
| 679 | |
| 680 | while (*compat) { |
| 681 | tmp = of_fdt_is_compatible(initial_boot_params, node, *compat); |
| 682 | if (tmp && (score == 0 || (tmp < score))) |
| 683 | score = tmp; |
| 684 | compat++; |
| 685 | } |
| 686 | |
| 687 | return score; |
| 688 | } |
| 689 | |
| 690 | /* |
| 691 | * of_get_flat_dt_phandle - Given a node in the flat blob, return the phandle |
| 692 | */ |
| 693 | uint32_t __init of_get_flat_dt_phandle(unsigned long node) |
| 694 | { |
| 695 | return fdt_get_phandle(initial_boot_params, node); |
| 696 | } |
| 697 | |
| 698 | const char * __init of_flat_dt_get_machine_name(void) |
| 699 | { |
| 700 | const char *name; |
| 701 | unsigned long dt_root = of_get_flat_dt_root(); |
| 702 | |
| 703 | name = of_get_flat_dt_prop(dt_root, "model", NULL); |
| 704 | if (!name) |
| 705 | name = of_get_flat_dt_prop(dt_root, "compatible", NULL); |
| 706 | return name; |
| 707 | } |
| 708 | |
| 709 | /** |
| 710 | * of_flat_dt_match_machine - Iterate match tables to find matching machine. |
| 711 | * |
| 712 | * @default_match: A machine specific ptr to return in case of no match. |
| 713 | * @get_next_compat: callback function to return next compatible match table. |
| 714 | * |
| 715 | * Iterate through machine match tables to find the best match for the machine |
| 716 | * compatible string in the FDT. |
| 717 | */ |
| 718 | const void * __init of_flat_dt_match_machine(const void *default_match, |
| 719 | const void * (*get_next_compat)(const char * const**)) |
| 720 | { |
| 721 | const void *data = NULL; |
| 722 | const void *best_data = default_match; |
| 723 | const char *const *compat; |
| 724 | unsigned long dt_root; |
| 725 | unsigned int best_score = ~1, score = 0; |
| 726 | |
| 727 | dt_root = of_get_flat_dt_root(); |
| 728 | while ((data = get_next_compat(&compat))) { |
| 729 | score = of_flat_dt_match(dt_root, compat); |
| 730 | if (score > 0 && score < best_score) { |
| 731 | best_data = data; |
| 732 | best_score = score; |
| 733 | } |
| 734 | } |
| 735 | if (!best_data) { |
| 736 | const char *prop; |
| 737 | int size; |
| 738 | |
| 739 | pr_err("\n unrecognized device tree list:\n[ "); |
| 740 | |
| 741 | prop = of_get_flat_dt_prop(dt_root, "compatible", &size); |
| 742 | if (prop) { |
| 743 | while (size > 0) { |
| 744 | printk("'%s' ", prop); |
| 745 | size -= strlen(prop) + 1; |
| 746 | prop += strlen(prop) + 1; |
| 747 | } |
| 748 | } |
| 749 | printk("]\n\n"); |
| 750 | return NULL; |
| 751 | } |
| 752 | |
| 753 | pr_info("Machine model: %s\n", of_flat_dt_get_machine_name()); |
| 754 | |
| 755 | return best_data; |
| 756 | } |
| 757 | |
| 758 | static void __early_init_dt_declare_initrd(unsigned long start, |
| 759 | unsigned long end) |
| 760 | { |
| 761 | /* |
| 762 | * __va() is not yet available this early on some platforms. In that |
| 763 | * case, the platform uses phys_initrd_start/phys_initrd_size instead |
| 764 | * and does the VA conversion itself. |
| 765 | */ |
| 766 | if (!IS_ENABLED(CONFIG_ARM64) && |
| 767 | !(IS_ENABLED(CONFIG_RISCV) && IS_ENABLED(CONFIG_64BIT))) { |
| 768 | initrd_start = (unsigned long)__va(start); |
| 769 | initrd_end = (unsigned long)__va(end); |
| 770 | initrd_below_start_ok = 1; |
| 771 | } |
| 772 | } |
| 773 | |
| 774 | /** |
| 775 | * early_init_dt_check_for_initrd - Decode initrd location from flat tree |
| 776 | * @node: reference to node containing initrd location ('chosen') |
| 777 | */ |
| 778 | static void __init early_init_dt_check_for_initrd(unsigned long node) |
| 779 | { |
| 780 | u64 start, end; |
| 781 | int len; |
| 782 | const __be32 *prop; |
| 783 | |
| 784 | if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD)) |
| 785 | return; |
| 786 | |
| 787 | pr_debug("Looking for initrd properties... "); |
| 788 | |
| 789 | prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len); |
| 790 | if (!prop) |
| 791 | return; |
| 792 | start = of_read_number(prop, len/4); |
| 793 | |
| 794 | prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len); |
| 795 | if (!prop) |
| 796 | return; |
| 797 | end = of_read_number(prop, len/4); |
| 798 | if (start > end) |
| 799 | return; |
| 800 | |
| 801 | __early_init_dt_declare_initrd(start, end); |
| 802 | phys_initrd_start = start; |
| 803 | phys_initrd_size = end - start; |
| 804 | |
| 805 | pr_debug("initrd_start=0x%llx initrd_end=0x%llx\n", start, end); |
| 806 | } |
| 807 | |
| 808 | /** |
| 809 | * early_init_dt_check_for_elfcorehdr - Decode elfcorehdr location from flat |
| 810 | * tree |
| 811 | * @node: reference to node containing elfcorehdr location ('chosen') |
| 812 | */ |
| 813 | static void __init early_init_dt_check_for_elfcorehdr(unsigned long node) |
| 814 | { |
| 815 | const __be32 *prop; |
| 816 | int len; |
| 817 | |
| 818 | if (!IS_ENABLED(CONFIG_CRASH_DUMP)) |
| 819 | return; |
| 820 | |
| 821 | pr_debug("Looking for elfcorehdr property... "); |
| 822 | |
| 823 | prop = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len); |
| 824 | if (!prop || (len < (dt_root_addr_cells + dt_root_size_cells))) |
| 825 | return; |
| 826 | |
| 827 | elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &prop); |
| 828 | elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &prop); |
| 829 | |
| 830 | pr_debug("elfcorehdr_start=0x%llx elfcorehdr_size=0x%llx\n", |
| 831 | elfcorehdr_addr, elfcorehdr_size); |
| 832 | } |
| 833 | |
| 834 | static unsigned long chosen_node_offset = -FDT_ERR_NOTFOUND; |
| 835 | |
| 836 | /* |
| 837 | * The main usage of linux,usable-memory-range is for crash dump kernel. |
| 838 | * Originally, the number of usable-memory regions is one. Now there may |
| 839 | * be two regions, low region and high region. |
| 840 | * To make compatibility with existing user-space and older kdump, the low |
| 841 | * region is always the last range of linux,usable-memory-range if exist. |
| 842 | */ |
| 843 | #define MAX_USABLE_RANGES 2 |
| 844 | |
| 845 | /** |
| 846 | * early_init_dt_check_for_usable_mem_range - Decode usable memory range |
| 847 | * location from flat tree |
| 848 | */ |
| 849 | void __init early_init_dt_check_for_usable_mem_range(void) |
| 850 | { |
| 851 | struct memblock_region rgn[MAX_USABLE_RANGES] = {0}; |
| 852 | const __be32 *prop, *endp; |
| 853 | int len, i; |
| 854 | unsigned long node = chosen_node_offset; |
| 855 | |
| 856 | if ((long)node < 0) |
| 857 | return; |
| 858 | |
| 859 | pr_debug("Looking for usable-memory-range property... "); |
| 860 | |
| 861 | prop = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len); |
| 862 | if (!prop || (len % (dt_root_addr_cells + dt_root_size_cells))) |
| 863 | return; |
| 864 | |
| 865 | endp = prop + (len / sizeof(__be32)); |
| 866 | for (i = 0; i < MAX_USABLE_RANGES && prop < endp; i++) { |
| 867 | rgn[i].base = dt_mem_next_cell(dt_root_addr_cells, &prop); |
| 868 | rgn[i].size = dt_mem_next_cell(dt_root_size_cells, &prop); |
| 869 | |
| 870 | pr_debug("cap_mem_regions[%d]: base=%pa, size=%pa\n", |
| 871 | i, &rgn[i].base, &rgn[i].size); |
| 872 | } |
| 873 | |
| 874 | memblock_cap_memory_range(rgn[0].base, rgn[0].size); |
| 875 | for (i = 1; i < MAX_USABLE_RANGES && rgn[i].size; i++) |
| 876 | memblock_add(rgn[i].base, rgn[i].size); |
| 877 | } |
| 878 | |
| 879 | /** |
| 880 | * early_init_dt_check_kho - Decode info required for kexec handover from DT |
| 881 | */ |
| 882 | static void __init early_init_dt_check_kho(void) |
| 883 | { |
| 884 | unsigned long node = chosen_node_offset; |
| 885 | u64 fdt_start, fdt_size, scratch_start, scratch_size; |
| 886 | const __be32 *p; |
| 887 | int l; |
| 888 | |
| 889 | if (!IS_ENABLED(CONFIG_KEXEC_HANDOVER) || (long)node < 0) |
| 890 | return; |
| 891 | |
| 892 | p = of_get_flat_dt_prop(node, "linux,kho-fdt", &l); |
| 893 | if (l != (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32)) |
| 894 | return; |
| 895 | |
| 896 | fdt_start = dt_mem_next_cell(dt_root_addr_cells, &p); |
| 897 | fdt_size = dt_mem_next_cell(dt_root_addr_cells, &p); |
| 898 | |
| 899 | p = of_get_flat_dt_prop(node, "linux,kho-scratch", &l); |
| 900 | if (l != (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32)) |
| 901 | return; |
| 902 | |
| 903 | scratch_start = dt_mem_next_cell(dt_root_addr_cells, &p); |
| 904 | scratch_size = dt_mem_next_cell(dt_root_addr_cells, &p); |
| 905 | |
| 906 | kho_populate(fdt_start, fdt_size, scratch_start, scratch_size); |
| 907 | } |
| 908 | |
| 909 | #ifdef CONFIG_SERIAL_EARLYCON |
| 910 | |
| 911 | int __init early_init_dt_scan_chosen_stdout(void) |
| 912 | { |
| 913 | int offset; |
| 914 | const char *p, *q, *options = NULL; |
| 915 | int l; |
| 916 | const struct earlycon_id *match; |
| 917 | const void *fdt = initial_boot_params; |
| 918 | int ret; |
| 919 | |
| 920 | offset = fdt_path_offset(fdt, "/chosen"); |
| 921 | if (offset < 0) |
| 922 | offset = fdt_path_offset(fdt, "/chosen@0"); |
| 923 | if (offset < 0) |
| 924 | return -ENOENT; |
| 925 | |
| 926 | p = fdt_getprop(fdt, offset, "stdout-path", &l); |
| 927 | if (!p) |
| 928 | p = fdt_getprop(fdt, offset, "linux,stdout-path", &l); |
| 929 | if (!p || !l) |
| 930 | return -ENOENT; |
| 931 | |
| 932 | q = strchrnul(p, ':'); |
| 933 | if (*q != '\0') |
| 934 | options = q + 1; |
| 935 | l = q - p; |
| 936 | |
| 937 | /* Get the node specified by stdout-path */ |
| 938 | offset = fdt_path_offset_namelen(fdt, p, l); |
| 939 | if (offset < 0) { |
| 940 | pr_warn("earlycon: stdout-path %.*s not found\n", l, p); |
| 941 | return 0; |
| 942 | } |
| 943 | |
| 944 | for (match = __earlycon_table; match < __earlycon_table_end; match++) { |
| 945 | if (!match->compatible[0]) |
| 946 | continue; |
| 947 | |
| 948 | if (fdt_node_check_compatible(fdt, offset, match->compatible)) |
| 949 | continue; |
| 950 | |
| 951 | ret = of_setup_earlycon(match, offset, options); |
| 952 | if (!ret || ret == -EALREADY) |
| 953 | return 0; |
| 954 | } |
| 955 | return -ENODEV; |
| 956 | } |
| 957 | #endif |
| 958 | |
| 959 | /* |
| 960 | * early_init_dt_scan_root - fetch the top level address and size cells |
| 961 | */ |
| 962 | int __init early_init_dt_scan_root(void) |
| 963 | { |
| 964 | const __be32 *prop; |
| 965 | const void *fdt = initial_boot_params; |
| 966 | int node = fdt_path_offset(fdt, "/"); |
| 967 | |
| 968 | if (node < 0) |
| 969 | return -ENODEV; |
| 970 | |
| 971 | dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT; |
| 972 | dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT; |
| 973 | |
| 974 | prop = of_get_flat_dt_prop(node, "#size-cells", NULL); |
| 975 | if (!WARN(!prop, "No '#size-cells' in root node\n")) |
| 976 | dt_root_size_cells = be32_to_cpup(prop); |
| 977 | pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells); |
| 978 | |
| 979 | prop = of_get_flat_dt_prop(node, "#address-cells", NULL); |
| 980 | if (!WARN(!prop, "No '#address-cells' in root node\n")) |
| 981 | dt_root_addr_cells = be32_to_cpup(prop); |
| 982 | pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells); |
| 983 | |
| 984 | return 0; |
| 985 | } |
| 986 | |
| 987 | u64 __init dt_mem_next_cell(int s, const __be32 **cellp) |
| 988 | { |
| 989 | const __be32 *p = *cellp; |
| 990 | |
| 991 | *cellp = p + s; |
| 992 | return of_read_number(p, s); |
| 993 | } |
| 994 | |
| 995 | /* |
| 996 | * early_init_dt_scan_memory - Look for and parse memory nodes |
| 997 | */ |
| 998 | int __init early_init_dt_scan_memory(void) |
| 999 | { |
| 1000 | int node, found_memory = 0; |
| 1001 | const void *fdt = initial_boot_params; |
| 1002 | |
| 1003 | fdt_for_each_subnode(node, fdt, 0) { |
| 1004 | const char *type = of_get_flat_dt_prop(node, "device_type", NULL); |
| 1005 | const __be32 *reg, *endp; |
| 1006 | int l; |
| 1007 | bool hotpluggable; |
| 1008 | |
| 1009 | /* We are scanning "memory" nodes only */ |
| 1010 | if (type == NULL || strcmp(type, "memory") != 0) |
| 1011 | continue; |
| 1012 | |
| 1013 | if (!of_fdt_device_is_available(fdt, node)) |
| 1014 | continue; |
| 1015 | |
| 1016 | reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l); |
| 1017 | if (reg == NULL) |
| 1018 | reg = of_get_flat_dt_prop(node, "reg", &l); |
| 1019 | if (reg == NULL) |
| 1020 | continue; |
| 1021 | |
| 1022 | endp = reg + (l / sizeof(__be32)); |
| 1023 | hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL); |
| 1024 | |
| 1025 | pr_debug("memory scan node %s, reg size %d,\n", |
| 1026 | fdt_get_name(fdt, node, NULL), l); |
| 1027 | |
| 1028 | while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) { |
| 1029 | u64 base, size; |
| 1030 | |
| 1031 | base = dt_mem_next_cell(dt_root_addr_cells, ®); |
| 1032 | size = dt_mem_next_cell(dt_root_size_cells, ®); |
| 1033 | |
| 1034 | if (size == 0) |
| 1035 | continue; |
| 1036 | pr_debug(" - %llx, %llx\n", base, size); |
| 1037 | |
| 1038 | early_init_dt_add_memory_arch(base, size); |
| 1039 | |
| 1040 | found_memory = 1; |
| 1041 | |
| 1042 | if (!hotpluggable) |
| 1043 | continue; |
| 1044 | |
| 1045 | if (memblock_mark_hotplug(base, size)) |
| 1046 | pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n", |
| 1047 | base, base + size); |
| 1048 | } |
| 1049 | } |
| 1050 | return found_memory; |
| 1051 | } |
| 1052 | |
| 1053 | int __init early_init_dt_scan_chosen(char *cmdline) |
| 1054 | { |
| 1055 | int l, node; |
| 1056 | const char *p; |
| 1057 | const void *rng_seed; |
| 1058 | const void *fdt = initial_boot_params; |
| 1059 | |
| 1060 | node = fdt_path_offset(fdt, "/chosen"); |
| 1061 | if (node < 0) |
| 1062 | node = fdt_path_offset(fdt, "/chosen@0"); |
| 1063 | if (node < 0) |
| 1064 | /* Handle the cmdline config options even if no /chosen node */ |
| 1065 | goto handle_cmdline; |
| 1066 | |
| 1067 | chosen_node_offset = node; |
| 1068 | |
| 1069 | early_init_dt_check_for_initrd(node); |
| 1070 | early_init_dt_check_for_elfcorehdr(node); |
| 1071 | |
| 1072 | rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l); |
| 1073 | if (rng_seed && l > 0) { |
| 1074 | add_bootloader_randomness(rng_seed, l); |
| 1075 | |
| 1076 | /* try to clear seed so it won't be found. */ |
| 1077 | fdt_nop_property(initial_boot_params, node, "rng-seed"); |
| 1078 | |
| 1079 | /* update CRC check value */ |
| 1080 | of_fdt_crc32 = crc32_be(~0, initial_boot_params, |
| 1081 | fdt_totalsize(initial_boot_params)); |
| 1082 | } |
| 1083 | |
| 1084 | /* Retrieve command line */ |
| 1085 | p = of_get_flat_dt_prop(node, "bootargs", &l); |
| 1086 | if (p != NULL && l > 0) |
| 1087 | strscpy(cmdline, p, min(l, COMMAND_LINE_SIZE)); |
| 1088 | |
| 1089 | handle_cmdline: |
| 1090 | /* |
| 1091 | * CONFIG_CMDLINE is meant to be a default in case nothing else |
| 1092 | * managed to set the command line, unless CONFIG_CMDLINE_FORCE |
| 1093 | * is set in which case we override whatever was found earlier. |
| 1094 | */ |
| 1095 | #ifdef CONFIG_CMDLINE |
| 1096 | #if defined(CONFIG_CMDLINE_EXTEND) |
| 1097 | strlcat(cmdline, " ", COMMAND_LINE_SIZE); |
| 1098 | strlcat(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE); |
| 1099 | #elif defined(CONFIG_CMDLINE_FORCE) |
| 1100 | strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE); |
| 1101 | #else |
| 1102 | /* No arguments from boot loader, use kernel's cmdl*/ |
| 1103 | if (!((char *)cmdline)[0]) |
| 1104 | strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE); |
| 1105 | #endif |
| 1106 | #endif /* CONFIG_CMDLINE */ |
| 1107 | |
| 1108 | pr_debug("Command line is: %s\n", (char *)cmdline); |
| 1109 | |
| 1110 | return 0; |
| 1111 | } |
| 1112 | |
| 1113 | #ifndef MIN_MEMBLOCK_ADDR |
| 1114 | #define MIN_MEMBLOCK_ADDR __pa(PAGE_OFFSET) |
| 1115 | #endif |
| 1116 | #ifndef MAX_MEMBLOCK_ADDR |
| 1117 | #define MAX_MEMBLOCK_ADDR ((phys_addr_t)~0) |
| 1118 | #endif |
| 1119 | |
| 1120 | void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size) |
| 1121 | { |
| 1122 | const u64 phys_offset = MIN_MEMBLOCK_ADDR; |
| 1123 | |
| 1124 | if (size < PAGE_SIZE - (base & ~PAGE_MASK)) { |
| 1125 | pr_warn("Ignoring memory block 0x%llx - 0x%llx\n", |
| 1126 | base, base + size); |
| 1127 | return; |
| 1128 | } |
| 1129 | |
| 1130 | if (!PAGE_ALIGNED(base)) { |
| 1131 | size -= PAGE_SIZE - (base & ~PAGE_MASK); |
| 1132 | base = PAGE_ALIGN(base); |
| 1133 | } |
| 1134 | size &= PAGE_MASK; |
| 1135 | |
| 1136 | if (base > MAX_MEMBLOCK_ADDR) { |
| 1137 | pr_warn("Ignoring memory block 0x%llx - 0x%llx\n", |
| 1138 | base, base + size); |
| 1139 | return; |
| 1140 | } |
| 1141 | |
| 1142 | if (base + size - 1 > MAX_MEMBLOCK_ADDR) { |
| 1143 | pr_warn("Ignoring memory range 0x%llx - 0x%llx\n", |
| 1144 | ((u64)MAX_MEMBLOCK_ADDR) + 1, base + size); |
| 1145 | size = MAX_MEMBLOCK_ADDR - base + 1; |
| 1146 | } |
| 1147 | |
| 1148 | if (base + size < phys_offset) { |
| 1149 | pr_warn("Ignoring memory block 0x%llx - 0x%llx\n", |
| 1150 | base, base + size); |
| 1151 | return; |
| 1152 | } |
| 1153 | if (base < phys_offset) { |
| 1154 | pr_warn("Ignoring memory range 0x%llx - 0x%llx\n", |
| 1155 | base, phys_offset); |
| 1156 | size -= phys_offset - base; |
| 1157 | base = phys_offset; |
| 1158 | } |
| 1159 | memblock_add(base, size); |
| 1160 | } |
| 1161 | |
| 1162 | static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align) |
| 1163 | { |
| 1164 | return memblock_alloc_or_panic(size, align); |
| 1165 | } |
| 1166 | |
| 1167 | bool __init early_init_dt_verify(void *dt_virt, phys_addr_t dt_phys) |
| 1168 | { |
| 1169 | if (!dt_virt) |
| 1170 | return false; |
| 1171 | |
| 1172 | /* check device tree validity */ |
| 1173 | if (fdt_check_header(dt_virt)) |
| 1174 | return false; |
| 1175 | |
| 1176 | /* Setup flat device-tree pointer */ |
| 1177 | initial_boot_params = dt_virt; |
| 1178 | initial_boot_params_pa = dt_phys; |
| 1179 | of_fdt_crc32 = crc32_be(~0, initial_boot_params, |
| 1180 | fdt_totalsize(initial_boot_params)); |
| 1181 | |
| 1182 | /* Initialize {size,address}-cells info */ |
| 1183 | early_init_dt_scan_root(); |
| 1184 | |
| 1185 | return true; |
| 1186 | } |
| 1187 | |
| 1188 | |
| 1189 | void __init early_init_dt_scan_nodes(void) |
| 1190 | { |
| 1191 | int rc; |
| 1192 | |
| 1193 | /* Retrieve various information from the /chosen node */ |
| 1194 | rc = early_init_dt_scan_chosen(boot_command_line); |
| 1195 | if (rc) |
| 1196 | pr_warn("No chosen node found, continuing without\n"); |
| 1197 | |
| 1198 | /* Setup memory, calling early_init_dt_add_memory_arch */ |
| 1199 | early_init_dt_scan_memory(); |
| 1200 | |
| 1201 | /* Handle linux,usable-memory-range property */ |
| 1202 | early_init_dt_check_for_usable_mem_range(); |
| 1203 | |
| 1204 | /* Handle kexec handover */ |
| 1205 | early_init_dt_check_kho(); |
| 1206 | } |
| 1207 | |
| 1208 | bool __init early_init_dt_scan(void *dt_virt, phys_addr_t dt_phys) |
| 1209 | { |
| 1210 | bool status; |
| 1211 | |
| 1212 | status = early_init_dt_verify(dt_virt, dt_phys); |
| 1213 | if (!status) |
| 1214 | return false; |
| 1215 | |
| 1216 | early_init_dt_scan_nodes(); |
| 1217 | return true; |
| 1218 | } |
| 1219 | |
| 1220 | static void *__init copy_device_tree(void *fdt) |
| 1221 | { |
| 1222 | int size; |
| 1223 | void *dt; |
| 1224 | |
| 1225 | size = fdt_totalsize(fdt); |
| 1226 | dt = early_init_dt_alloc_memory_arch(size, |
| 1227 | roundup_pow_of_two(FDT_V17_SIZE)); |
| 1228 | |
| 1229 | if (dt) |
| 1230 | memcpy(dt, fdt, size); |
| 1231 | |
| 1232 | return dt; |
| 1233 | } |
| 1234 | |
| 1235 | /** |
| 1236 | * unflatten_device_tree - create tree of device_nodes from flat blob |
| 1237 | * |
| 1238 | * unflattens the device-tree passed by the firmware, creating the |
| 1239 | * tree of struct device_node. It also fills the "name" and "type" |
| 1240 | * pointers of the nodes so the normal device-tree walking functions |
| 1241 | * can be used. |
| 1242 | */ |
| 1243 | void __init unflatten_device_tree(void) |
| 1244 | { |
| 1245 | void *fdt = initial_boot_params; |
| 1246 | |
| 1247 | /* Save the statically-placed regions in the reserved_mem array */ |
| 1248 | fdt_scan_reserved_mem_reg_nodes(); |
| 1249 | |
| 1250 | /* Populate an empty root node when bootloader doesn't provide one */ |
| 1251 | if (!fdt) { |
| 1252 | fdt = (void *) __dtb_empty_root_begin; |
| 1253 | /* fdt_totalsize() will be used for copy size */ |
| 1254 | if (fdt_totalsize(fdt) > |
| 1255 | __dtb_empty_root_end - __dtb_empty_root_begin) { |
| 1256 | pr_err("invalid size in dtb_empty_root\n"); |
| 1257 | return; |
| 1258 | } |
| 1259 | of_fdt_crc32 = crc32_be(~0, fdt, fdt_totalsize(fdt)); |
| 1260 | fdt = copy_device_tree(fdt); |
| 1261 | } |
| 1262 | |
| 1263 | __unflatten_device_tree(fdt, NULL, &of_root, |
| 1264 | early_init_dt_alloc_memory_arch, false); |
| 1265 | |
| 1266 | /* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */ |
| 1267 | of_alias_scan(early_init_dt_alloc_memory_arch); |
| 1268 | |
| 1269 | unittest_unflatten_overlay_base(); |
| 1270 | } |
| 1271 | |
| 1272 | /** |
| 1273 | * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob |
| 1274 | * |
| 1275 | * Copies and unflattens the device-tree passed by the firmware, creating the |
| 1276 | * tree of struct device_node. It also fills the "name" and "type" |
| 1277 | * pointers of the nodes so the normal device-tree walking functions |
| 1278 | * can be used. This should only be used when the FDT memory has not been |
| 1279 | * reserved such is the case when the FDT is built-in to the kernel init |
| 1280 | * section. If the FDT memory is reserved already then unflatten_device_tree |
| 1281 | * should be used instead. |
| 1282 | */ |
| 1283 | void __init unflatten_and_copy_device_tree(void) |
| 1284 | { |
| 1285 | if (initial_boot_params) |
| 1286 | initial_boot_params = copy_device_tree(initial_boot_params); |
| 1287 | |
| 1288 | unflatten_device_tree(); |
| 1289 | } |
| 1290 | |
| 1291 | #ifdef CONFIG_SYSFS |
| 1292 | static int __init of_fdt_raw_init(void) |
| 1293 | { |
| 1294 | static __ro_after_init BIN_ATTR_SIMPLE_ADMIN_RO(fdt); |
| 1295 | |
| 1296 | if (!initial_boot_params) |
| 1297 | return 0; |
| 1298 | |
| 1299 | if (of_fdt_crc32 != crc32_be(~0, initial_boot_params, |
| 1300 | fdt_totalsize(initial_boot_params))) { |
| 1301 | pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n"); |
| 1302 | return 0; |
| 1303 | } |
| 1304 | bin_attr_fdt.private = initial_boot_params; |
| 1305 | bin_attr_fdt.size = fdt_totalsize(initial_boot_params); |
| 1306 | return sysfs_create_bin_file(firmware_kobj, &bin_attr_fdt); |
| 1307 | } |
| 1308 | late_initcall(of_fdt_raw_init); |
| 1309 | #endif |
| 1310 | |
| 1311 | #endif /* CONFIG_OF_EARLY_FLATTREE */ |