Linux 6.16-rc6
[linux-block.git] / drivers / of / base.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Procedures for creating, accessing and interpreting the device tree.
4 *
5 * Paul Mackerras August 1996.
6 * Copyright (C) 1996-2005 Paul Mackerras.
7 *
8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9 * {engebret|bergner}@us.ibm.com
10 *
11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12 *
13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14 * Grant Likely.
15 */
16
17#define pr_fmt(fmt) "OF: " fmt
18
19#include <linux/cleanup.h>
20#include <linux/console.h>
21#include <linux/ctype.h>
22#include <linux/cpu.h>
23#include <linux/module.h>
24#include <linux/of.h>
25#include <linux/of_device.h>
26#include <linux/of_graph.h>
27#include <linux/spinlock.h>
28#include <linux/slab.h>
29#include <linux/string.h>
30#include <linux/proc_fs.h>
31
32#include "of_private.h"
33
34LIST_HEAD(aliases_lookup);
35
36struct device_node *of_root;
37EXPORT_SYMBOL(of_root);
38struct device_node *of_chosen;
39EXPORT_SYMBOL(of_chosen);
40struct device_node *of_aliases;
41struct device_node *of_stdout;
42static const char *of_stdout_options;
43
44struct kset *of_kset;
45
46/*
47 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
48 * This mutex must be held whenever modifications are being made to the
49 * device tree. The of_{attach,detach}_node() and
50 * of_{add,remove,update}_property() helpers make sure this happens.
51 */
52DEFINE_MUTEX(of_mutex);
53
54/* use when traversing tree through the child, sibling,
55 * or parent members of struct device_node.
56 */
57DEFINE_RAW_SPINLOCK(devtree_lock);
58
59bool of_node_name_eq(const struct device_node *np, const char *name)
60{
61 const char *node_name;
62 size_t len;
63
64 if (!np)
65 return false;
66
67 node_name = kbasename(np->full_name);
68 len = strchrnul(node_name, '@') - node_name;
69
70 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
71}
72EXPORT_SYMBOL(of_node_name_eq);
73
74bool of_node_name_prefix(const struct device_node *np, const char *prefix)
75{
76 if (!np)
77 return false;
78
79 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
80}
81EXPORT_SYMBOL(of_node_name_prefix);
82
83static bool __of_node_is_type(const struct device_node *np, const char *type)
84{
85 const char *match = __of_get_property(np, "device_type", NULL);
86
87 return np && match && type && !strcmp(match, type);
88}
89
90#define EXCLUDED_DEFAULT_CELLS_PLATFORMS ( \
91 IS_ENABLED(CONFIG_SPARC) || \
92 of_find_compatible_node(NULL, NULL, "coreboot") \
93)
94
95int of_bus_n_addr_cells(struct device_node *np)
96{
97 u32 cells;
98
99 for (; np; np = np->parent) {
100 if (!of_property_read_u32(np, "#address-cells", &cells))
101 return cells;
102 /*
103 * Default root value and walking parent nodes for "#address-cells"
104 * is deprecated. Any platforms which hit this warning should
105 * be added to the excluded list.
106 */
107 WARN_ONCE(!EXCLUDED_DEFAULT_CELLS_PLATFORMS,
108 "Missing '#address-cells' in %pOF\n", np);
109 }
110 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
111}
112
113int of_n_addr_cells(struct device_node *np)
114{
115 if (np->parent)
116 np = np->parent;
117
118 return of_bus_n_addr_cells(np);
119}
120EXPORT_SYMBOL(of_n_addr_cells);
121
122int of_bus_n_size_cells(struct device_node *np)
123{
124 u32 cells;
125
126 for (; np; np = np->parent) {
127 if (!of_property_read_u32(np, "#size-cells", &cells))
128 return cells;
129 /*
130 * Default root value and walking parent nodes for "#size-cells"
131 * is deprecated. Any platforms which hit this warning should
132 * be added to the excluded list.
133 */
134 WARN_ONCE(!EXCLUDED_DEFAULT_CELLS_PLATFORMS,
135 "Missing '#size-cells' in %pOF\n", np);
136 }
137 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
138}
139
140int of_n_size_cells(struct device_node *np)
141{
142 if (np->parent)
143 np = np->parent;
144
145 return of_bus_n_size_cells(np);
146}
147EXPORT_SYMBOL(of_n_size_cells);
148
149#ifdef CONFIG_NUMA
150int __weak of_node_to_nid(struct device_node *np)
151{
152 return NUMA_NO_NODE;
153}
154#endif
155
156#define OF_PHANDLE_CACHE_BITS 7
157#define OF_PHANDLE_CACHE_SZ BIT(OF_PHANDLE_CACHE_BITS)
158
159static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
160
161static u32 of_phandle_cache_hash(phandle handle)
162{
163 return hash_32(handle, OF_PHANDLE_CACHE_BITS);
164}
165
166/*
167 * Caller must hold devtree_lock.
168 */
169void __of_phandle_cache_inv_entry(phandle handle)
170{
171 u32 handle_hash;
172 struct device_node *np;
173
174 if (!handle)
175 return;
176
177 handle_hash = of_phandle_cache_hash(handle);
178
179 np = phandle_cache[handle_hash];
180 if (np && handle == np->phandle)
181 phandle_cache[handle_hash] = NULL;
182}
183
184void __init of_core_init(void)
185{
186 struct device_node *np;
187
188 of_platform_register_reconfig_notifier();
189
190 /* Create the kset, and register existing nodes */
191 mutex_lock(&of_mutex);
192 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
193 if (!of_kset) {
194 mutex_unlock(&of_mutex);
195 pr_err("failed to register existing nodes\n");
196 return;
197 }
198 for_each_of_allnodes(np) {
199 __of_attach_node_sysfs(np);
200 if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
201 phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
202 }
203 mutex_unlock(&of_mutex);
204
205 /* Symlink in /proc as required by userspace ABI */
206 if (of_root)
207 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
208}
209
210static struct property *__of_find_property(const struct device_node *np,
211 const char *name, int *lenp)
212{
213 struct property *pp;
214
215 if (!np)
216 return NULL;
217
218 for (pp = np->properties; pp; pp = pp->next) {
219 if (of_prop_cmp(pp->name, name) == 0) {
220 if (lenp)
221 *lenp = pp->length;
222 break;
223 }
224 }
225
226 return pp;
227}
228
229struct property *of_find_property(const struct device_node *np,
230 const char *name,
231 int *lenp)
232{
233 struct property *pp;
234 unsigned long flags;
235
236 raw_spin_lock_irqsave(&devtree_lock, flags);
237 pp = __of_find_property(np, name, lenp);
238 raw_spin_unlock_irqrestore(&devtree_lock, flags);
239
240 return pp;
241}
242EXPORT_SYMBOL(of_find_property);
243
244struct device_node *__of_find_all_nodes(struct device_node *prev)
245{
246 struct device_node *np;
247 if (!prev) {
248 np = of_root;
249 } else if (prev->child) {
250 np = prev->child;
251 } else {
252 /* Walk back up looking for a sibling, or the end of the structure */
253 np = prev;
254 while (np->parent && !np->sibling)
255 np = np->parent;
256 np = np->sibling; /* Might be null at the end of the tree */
257 }
258 return np;
259}
260
261/**
262 * of_find_all_nodes - Get next node in global list
263 * @prev: Previous node or NULL to start iteration
264 * of_node_put() will be called on it
265 *
266 * Return: A node pointer with refcount incremented, use
267 * of_node_put() on it when done.
268 */
269struct device_node *of_find_all_nodes(struct device_node *prev)
270{
271 struct device_node *np;
272 unsigned long flags;
273
274 raw_spin_lock_irqsave(&devtree_lock, flags);
275 np = __of_find_all_nodes(prev);
276 of_node_get(np);
277 of_node_put(prev);
278 raw_spin_unlock_irqrestore(&devtree_lock, flags);
279 return np;
280}
281EXPORT_SYMBOL(of_find_all_nodes);
282
283/*
284 * Find a property with a given name for a given node
285 * and return the value.
286 */
287const void *__of_get_property(const struct device_node *np,
288 const char *name, int *lenp)
289{
290 const struct property *pp = __of_find_property(np, name, lenp);
291
292 return pp ? pp->value : NULL;
293}
294
295/*
296 * Find a property with a given name for a given node
297 * and return the value.
298 */
299const void *of_get_property(const struct device_node *np, const char *name,
300 int *lenp)
301{
302 const struct property *pp = of_find_property(np, name, lenp);
303
304 return pp ? pp->value : NULL;
305}
306EXPORT_SYMBOL(of_get_property);
307
308/**
309 * __of_device_is_compatible() - Check if the node matches given constraints
310 * @device: pointer to node
311 * @compat: required compatible string, NULL or "" for any match
312 * @type: required device_type value, NULL or "" for any match
313 * @name: required node name, NULL or "" for any match
314 *
315 * Checks if the given @compat, @type and @name strings match the
316 * properties of the given @device. A constraints can be skipped by
317 * passing NULL or an empty string as the constraint.
318 *
319 * Returns 0 for no match, and a positive integer on match. The return
320 * value is a relative score with larger values indicating better
321 * matches. The score is weighted for the most specific compatible value
322 * to get the highest score. Matching type is next, followed by matching
323 * name. Practically speaking, this results in the following priority
324 * order for matches:
325 *
326 * 1. specific compatible && type && name
327 * 2. specific compatible && type
328 * 3. specific compatible && name
329 * 4. specific compatible
330 * 5. general compatible && type && name
331 * 6. general compatible && type
332 * 7. general compatible && name
333 * 8. general compatible
334 * 9. type && name
335 * 10. type
336 * 11. name
337 */
338static int __of_device_is_compatible(const struct device_node *device,
339 const char *compat, const char *type, const char *name)
340{
341 const struct property *prop;
342 const char *cp;
343 int index = 0, score = 0;
344
345 /* Compatible match has highest priority */
346 if (compat && compat[0]) {
347 prop = __of_find_property(device, "compatible", NULL);
348 for (cp = of_prop_next_string(prop, NULL); cp;
349 cp = of_prop_next_string(prop, cp), index++) {
350 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
351 score = INT_MAX/2 - (index << 2);
352 break;
353 }
354 }
355 if (!score)
356 return 0;
357 }
358
359 /* Matching type is better than matching name */
360 if (type && type[0]) {
361 if (!__of_node_is_type(device, type))
362 return 0;
363 score += 2;
364 }
365
366 /* Matching name is a bit better than not */
367 if (name && name[0]) {
368 if (!of_node_name_eq(device, name))
369 return 0;
370 score++;
371 }
372
373 return score;
374}
375
376/** Checks if the given "compat" string matches one of the strings in
377 * the device's "compatible" property
378 */
379int of_device_is_compatible(const struct device_node *device,
380 const char *compat)
381{
382 unsigned long flags;
383 int res;
384
385 raw_spin_lock_irqsave(&devtree_lock, flags);
386 res = __of_device_is_compatible(device, compat, NULL, NULL);
387 raw_spin_unlock_irqrestore(&devtree_lock, flags);
388 return res;
389}
390EXPORT_SYMBOL(of_device_is_compatible);
391
392/** Checks if the device is compatible with any of the entries in
393 * a NULL terminated array of strings. Returns the best match
394 * score or 0.
395 */
396int of_device_compatible_match(const struct device_node *device,
397 const char *const *compat)
398{
399 unsigned int tmp, score = 0;
400
401 if (!compat)
402 return 0;
403
404 while (*compat) {
405 tmp = of_device_is_compatible(device, *compat);
406 if (tmp > score)
407 score = tmp;
408 compat++;
409 }
410
411 return score;
412}
413EXPORT_SYMBOL_GPL(of_device_compatible_match);
414
415/**
416 * of_machine_compatible_match - Test root of device tree against a compatible array
417 * @compats: NULL terminated array of compatible strings to look for in root node's compatible property.
418 *
419 * Returns true if the root node has any of the given compatible values in its
420 * compatible property.
421 */
422bool of_machine_compatible_match(const char *const *compats)
423{
424 struct device_node *root;
425 int rc = 0;
426
427 root = of_find_node_by_path("/");
428 if (root) {
429 rc = of_device_compatible_match(root, compats);
430 of_node_put(root);
431 }
432
433 return rc != 0;
434}
435EXPORT_SYMBOL(of_machine_compatible_match);
436
437static bool __of_device_is_status(const struct device_node *device,
438 const char * const*strings)
439{
440 const char *status;
441 int statlen;
442
443 if (!device)
444 return false;
445
446 status = __of_get_property(device, "status", &statlen);
447 if (status == NULL)
448 return false;
449
450 if (statlen > 0) {
451 while (*strings) {
452 unsigned int len = strlen(*strings);
453
454 if ((*strings)[len - 1] == '-') {
455 if (!strncmp(status, *strings, len))
456 return true;
457 } else {
458 if (!strcmp(status, *strings))
459 return true;
460 }
461 strings++;
462 }
463 }
464
465 return false;
466}
467
468/**
469 * __of_device_is_available - check if a device is available for use
470 *
471 * @device: Node to check for availability, with locks already held
472 *
473 * Return: True if the status property is absent or set to "okay" or "ok",
474 * false otherwise
475 */
476static bool __of_device_is_available(const struct device_node *device)
477{
478 static const char * const ok[] = {"okay", "ok", NULL};
479
480 if (!device)
481 return false;
482
483 return !__of_get_property(device, "status", NULL) ||
484 __of_device_is_status(device, ok);
485}
486
487/**
488 * __of_device_is_reserved - check if a device is reserved
489 *
490 * @device: Node to check for availability, with locks already held
491 *
492 * Return: True if the status property is set to "reserved", false otherwise
493 */
494static bool __of_device_is_reserved(const struct device_node *device)
495{
496 static const char * const reserved[] = {"reserved", NULL};
497
498 return __of_device_is_status(device, reserved);
499}
500
501/**
502 * of_device_is_available - check if a device is available for use
503 *
504 * @device: Node to check for availability
505 *
506 * Return: True if the status property is absent or set to "okay" or "ok",
507 * false otherwise
508 */
509bool of_device_is_available(const struct device_node *device)
510{
511 unsigned long flags;
512 bool res;
513
514 raw_spin_lock_irqsave(&devtree_lock, flags);
515 res = __of_device_is_available(device);
516 raw_spin_unlock_irqrestore(&devtree_lock, flags);
517 return res;
518
519}
520EXPORT_SYMBOL(of_device_is_available);
521
522/**
523 * __of_device_is_fail - check if a device has status "fail" or "fail-..."
524 *
525 * @device: Node to check status for, with locks already held
526 *
527 * Return: True if the status property is set to "fail" or "fail-..." (for any
528 * error code suffix), false otherwise
529 */
530static bool __of_device_is_fail(const struct device_node *device)
531{
532 static const char * const fail[] = {"fail", "fail-", NULL};
533
534 return __of_device_is_status(device, fail);
535}
536
537/**
538 * of_device_is_big_endian - check if a device has BE registers
539 *
540 * @device: Node to check for endianness
541 *
542 * Return: True if the device has a "big-endian" property, or if the kernel
543 * was compiled for BE *and* the device has a "native-endian" property.
544 * Returns false otherwise.
545 *
546 * Callers would nominally use ioread32be/iowrite32be if
547 * of_device_is_big_endian() == true, or readl/writel otherwise.
548 */
549bool of_device_is_big_endian(const struct device_node *device)
550{
551 if (of_property_read_bool(device, "big-endian"))
552 return true;
553 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
554 of_property_read_bool(device, "native-endian"))
555 return true;
556 return false;
557}
558EXPORT_SYMBOL(of_device_is_big_endian);
559
560/**
561 * of_get_parent - Get a node's parent if any
562 * @node: Node to get parent
563 *
564 * Return: A node pointer with refcount incremented, use
565 * of_node_put() on it when done.
566 */
567struct device_node *of_get_parent(const struct device_node *node)
568{
569 struct device_node *np;
570 unsigned long flags;
571
572 if (!node)
573 return NULL;
574
575 raw_spin_lock_irqsave(&devtree_lock, flags);
576 np = of_node_get(node->parent);
577 raw_spin_unlock_irqrestore(&devtree_lock, flags);
578 return np;
579}
580EXPORT_SYMBOL(of_get_parent);
581
582/**
583 * of_get_next_parent - Iterate to a node's parent
584 * @node: Node to get parent of
585 *
586 * This is like of_get_parent() except that it drops the
587 * refcount on the passed node, making it suitable for iterating
588 * through a node's parents.
589 *
590 * Return: A node pointer with refcount incremented, use
591 * of_node_put() on it when done.
592 */
593struct device_node *of_get_next_parent(struct device_node *node)
594{
595 struct device_node *parent;
596 unsigned long flags;
597
598 if (!node)
599 return NULL;
600
601 raw_spin_lock_irqsave(&devtree_lock, flags);
602 parent = of_node_get(node->parent);
603 of_node_put(node);
604 raw_spin_unlock_irqrestore(&devtree_lock, flags);
605 return parent;
606}
607EXPORT_SYMBOL(of_get_next_parent);
608
609static struct device_node *__of_get_next_child(const struct device_node *node,
610 struct device_node *prev)
611{
612 struct device_node *next;
613
614 if (!node)
615 return NULL;
616
617 next = prev ? prev->sibling : node->child;
618 of_node_get(next);
619 of_node_put(prev);
620 return next;
621}
622#define __for_each_child_of_node(parent, child) \
623 for (child = __of_get_next_child(parent, NULL); child != NULL; \
624 child = __of_get_next_child(parent, child))
625
626/**
627 * of_get_next_child - Iterate a node childs
628 * @node: parent node
629 * @prev: previous child of the parent node, or NULL to get first
630 *
631 * Return: A node pointer with refcount incremented, use of_node_put() on
632 * it when done. Returns NULL when prev is the last child. Decrements the
633 * refcount of prev.
634 */
635struct device_node *of_get_next_child(const struct device_node *node,
636 struct device_node *prev)
637{
638 struct device_node *next;
639 unsigned long flags;
640
641 raw_spin_lock_irqsave(&devtree_lock, flags);
642 next = __of_get_next_child(node, prev);
643 raw_spin_unlock_irqrestore(&devtree_lock, flags);
644 return next;
645}
646EXPORT_SYMBOL(of_get_next_child);
647
648/**
649 * of_get_next_child_with_prefix - Find the next child node with prefix
650 * @node: parent node
651 * @prev: previous child of the parent node, or NULL to get first
652 * @prefix: prefix that the node name should have
653 *
654 * This function is like of_get_next_child(), except that it automatically
655 * skips any nodes whose name doesn't have the given prefix.
656 *
657 * Return: A node pointer with refcount incremented, use
658 * of_node_put() on it when done.
659 */
660struct device_node *of_get_next_child_with_prefix(const struct device_node *node,
661 struct device_node *prev,
662 const char *prefix)
663{
664 struct device_node *next;
665 unsigned long flags;
666
667 if (!node)
668 return NULL;
669
670 raw_spin_lock_irqsave(&devtree_lock, flags);
671 next = prev ? prev->sibling : node->child;
672 for (; next; next = next->sibling) {
673 if (!of_node_name_prefix(next, prefix))
674 continue;
675 if (of_node_get(next))
676 break;
677 }
678 of_node_put(prev);
679 raw_spin_unlock_irqrestore(&devtree_lock, flags);
680 return next;
681}
682EXPORT_SYMBOL(of_get_next_child_with_prefix);
683
684static struct device_node *of_get_next_status_child(const struct device_node *node,
685 struct device_node *prev,
686 bool (*checker)(const struct device_node *))
687{
688 struct device_node *next;
689 unsigned long flags;
690
691 if (!node)
692 return NULL;
693
694 raw_spin_lock_irqsave(&devtree_lock, flags);
695 next = prev ? prev->sibling : node->child;
696 for (; next; next = next->sibling) {
697 if (!checker(next))
698 continue;
699 if (of_node_get(next))
700 break;
701 }
702 of_node_put(prev);
703 raw_spin_unlock_irqrestore(&devtree_lock, flags);
704 return next;
705}
706
707/**
708 * of_get_next_available_child - Find the next available child node
709 * @node: parent node
710 * @prev: previous child of the parent node, or NULL to get first
711 *
712 * This function is like of_get_next_child(), except that it
713 * automatically skips any disabled nodes (i.e. status = "disabled").
714 */
715struct device_node *of_get_next_available_child(const struct device_node *node,
716 struct device_node *prev)
717{
718 return of_get_next_status_child(node, prev, __of_device_is_available);
719}
720EXPORT_SYMBOL(of_get_next_available_child);
721
722/**
723 * of_get_next_reserved_child - Find the next reserved child node
724 * @node: parent node
725 * @prev: previous child of the parent node, or NULL to get first
726 *
727 * This function is like of_get_next_child(), except that it
728 * automatically skips any disabled nodes (i.e. status = "disabled").
729 */
730struct device_node *of_get_next_reserved_child(const struct device_node *node,
731 struct device_node *prev)
732{
733 return of_get_next_status_child(node, prev, __of_device_is_reserved);
734}
735EXPORT_SYMBOL(of_get_next_reserved_child);
736
737/**
738 * of_get_next_cpu_node - Iterate on cpu nodes
739 * @prev: previous child of the /cpus node, or NULL to get first
740 *
741 * Unusable CPUs (those with the status property set to "fail" or "fail-...")
742 * will be skipped.
743 *
744 * Return: A cpu node pointer with refcount incremented, use of_node_put()
745 * on it when done. Returns NULL when prev is the last child. Decrements
746 * the refcount of prev.
747 */
748struct device_node *of_get_next_cpu_node(struct device_node *prev)
749{
750 struct device_node *next = NULL;
751 unsigned long flags;
752 struct device_node *node;
753
754 if (!prev)
755 node = of_find_node_by_path("/cpus");
756
757 raw_spin_lock_irqsave(&devtree_lock, flags);
758 if (prev)
759 next = prev->sibling;
760 else if (node) {
761 next = node->child;
762 of_node_put(node);
763 }
764 for (; next; next = next->sibling) {
765 if (__of_device_is_fail(next))
766 continue;
767 if (!(of_node_name_eq(next, "cpu") ||
768 __of_node_is_type(next, "cpu")))
769 continue;
770 if (of_node_get(next))
771 break;
772 }
773 of_node_put(prev);
774 raw_spin_unlock_irqrestore(&devtree_lock, flags);
775 return next;
776}
777EXPORT_SYMBOL(of_get_next_cpu_node);
778
779/**
780 * of_get_compatible_child - Find compatible child node
781 * @parent: parent node
782 * @compatible: compatible string
783 *
784 * Lookup child node whose compatible property contains the given compatible
785 * string.
786 *
787 * Return: a node pointer with refcount incremented, use of_node_put() on it
788 * when done; or NULL if not found.
789 */
790struct device_node *of_get_compatible_child(const struct device_node *parent,
791 const char *compatible)
792{
793 struct device_node *child;
794
795 for_each_child_of_node(parent, child) {
796 if (of_device_is_compatible(child, compatible))
797 break;
798 }
799
800 return child;
801}
802EXPORT_SYMBOL(of_get_compatible_child);
803
804/**
805 * of_get_child_by_name - Find the child node by name for a given parent
806 * @node: parent node
807 * @name: child name to look for.
808 *
809 * This function looks for child node for given matching name
810 *
811 * Return: A node pointer if found, with refcount incremented, use
812 * of_node_put() on it when done.
813 * Returns NULL if node is not found.
814 */
815struct device_node *of_get_child_by_name(const struct device_node *node,
816 const char *name)
817{
818 struct device_node *child;
819
820 for_each_child_of_node(node, child)
821 if (of_node_name_eq(child, name))
822 break;
823 return child;
824}
825EXPORT_SYMBOL(of_get_child_by_name);
826
827/**
828 * of_get_available_child_by_name - Find the available child node by name for a given parent
829 * @node: parent node
830 * @name: child name to look for.
831 *
832 * This function looks for child node for given matching name and checks the
833 * device's availability for use.
834 *
835 * Return: A node pointer if found, with refcount incremented, use
836 * of_node_put() on it when done.
837 * Returns NULL if node is not found.
838 */
839struct device_node *of_get_available_child_by_name(const struct device_node *node,
840 const char *name)
841{
842 struct device_node *child;
843
844 child = of_get_child_by_name(node, name);
845 if (child && !of_device_is_available(child)) {
846 of_node_put(child);
847 return NULL;
848 }
849
850 return child;
851}
852EXPORT_SYMBOL(of_get_available_child_by_name);
853
854struct device_node *__of_find_node_by_path(const struct device_node *parent,
855 const char *path)
856{
857 struct device_node *child;
858 int len;
859
860 len = strcspn(path, "/:");
861 if (!len)
862 return NULL;
863
864 __for_each_child_of_node(parent, child) {
865 const char *name = kbasename(child->full_name);
866 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
867 return child;
868 }
869 return NULL;
870}
871
872struct device_node *__of_find_node_by_full_path(struct device_node *node,
873 const char *path)
874{
875 const char *separator = strchr(path, ':');
876
877 while (node && *path == '/') {
878 struct device_node *tmp = node;
879
880 path++; /* Increment past '/' delimiter */
881 node = __of_find_node_by_path(node, path);
882 of_node_put(tmp);
883 path = strchrnul(path, '/');
884 if (separator && separator < path)
885 break;
886 }
887 return node;
888}
889
890/**
891 * of_find_node_opts_by_path - Find a node matching a full OF path
892 * @path: Either the full path to match, or if the path does not
893 * start with '/', the name of a property of the /aliases
894 * node (an alias). In the case of an alias, the node
895 * matching the alias' value will be returned.
896 * @opts: Address of a pointer into which to store the start of
897 * an options string appended to the end of the path with
898 * a ':' separator.
899 *
900 * Valid paths:
901 * * /foo/bar Full path
902 * * foo Valid alias
903 * * foo/bar Valid alias + relative path
904 *
905 * Return: A node pointer with refcount incremented, use
906 * of_node_put() on it when done.
907 */
908struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
909{
910 struct device_node *np = NULL;
911 const struct property *pp;
912 unsigned long flags;
913 const char *separator = strchr(path, ':');
914
915 if (opts)
916 *opts = separator ? separator + 1 : NULL;
917
918 if (strcmp(path, "/") == 0)
919 return of_node_get(of_root);
920
921 /* The path could begin with an alias */
922 if (*path != '/') {
923 int len;
924 const char *p = strchrnul(path, '/');
925
926 if (separator && separator < p)
927 p = separator;
928 len = p - path;
929
930 /* of_aliases must not be NULL */
931 if (!of_aliases)
932 return NULL;
933
934 for_each_property_of_node(of_aliases, pp) {
935 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
936 np = of_find_node_by_path(pp->value);
937 break;
938 }
939 }
940 if (!np)
941 return NULL;
942 path = p;
943 }
944
945 /* Step down the tree matching path components */
946 raw_spin_lock_irqsave(&devtree_lock, flags);
947 if (!np)
948 np = of_node_get(of_root);
949 np = __of_find_node_by_full_path(np, path);
950 raw_spin_unlock_irqrestore(&devtree_lock, flags);
951 return np;
952}
953EXPORT_SYMBOL(of_find_node_opts_by_path);
954
955/**
956 * of_find_node_by_name - Find a node by its "name" property
957 * @from: The node to start searching from or NULL; the node
958 * you pass will not be searched, only the next one
959 * will. Typically, you pass what the previous call
960 * returned. of_node_put() will be called on @from.
961 * @name: The name string to match against
962 *
963 * Return: A node pointer with refcount incremented, use
964 * of_node_put() on it when done.
965 */
966struct device_node *of_find_node_by_name(struct device_node *from,
967 const char *name)
968{
969 struct device_node *np;
970 unsigned long flags;
971
972 raw_spin_lock_irqsave(&devtree_lock, flags);
973 for_each_of_allnodes_from(from, np)
974 if (of_node_name_eq(np, name) && of_node_get(np))
975 break;
976 of_node_put(from);
977 raw_spin_unlock_irqrestore(&devtree_lock, flags);
978 return np;
979}
980EXPORT_SYMBOL(of_find_node_by_name);
981
982/**
983 * of_find_node_by_type - Find a node by its "device_type" property
984 * @from: The node to start searching from, or NULL to start searching
985 * the entire device tree. The node you pass will not be
986 * searched, only the next one will; typically, you pass
987 * what the previous call returned. of_node_put() will be
988 * called on from for you.
989 * @type: The type string to match against
990 *
991 * Return: A node pointer with refcount incremented, use
992 * of_node_put() on it when done.
993 */
994struct device_node *of_find_node_by_type(struct device_node *from,
995 const char *type)
996{
997 struct device_node *np;
998 unsigned long flags;
999
1000 raw_spin_lock_irqsave(&devtree_lock, flags);
1001 for_each_of_allnodes_from(from, np)
1002 if (__of_node_is_type(np, type) && of_node_get(np))
1003 break;
1004 of_node_put(from);
1005 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1006 return np;
1007}
1008EXPORT_SYMBOL(of_find_node_by_type);
1009
1010/**
1011 * of_find_compatible_node - Find a node based on type and one of the
1012 * tokens in its "compatible" property
1013 * @from: The node to start searching from or NULL, the node
1014 * you pass will not be searched, only the next one
1015 * will; typically, you pass what the previous call
1016 * returned. of_node_put() will be called on it
1017 * @type: The type string to match "device_type" or NULL to ignore
1018 * @compatible: The string to match to one of the tokens in the device
1019 * "compatible" list.
1020 *
1021 * Return: A node pointer with refcount incremented, use
1022 * of_node_put() on it when done.
1023 */
1024struct device_node *of_find_compatible_node(struct device_node *from,
1025 const char *type, const char *compatible)
1026{
1027 struct device_node *np;
1028 unsigned long flags;
1029
1030 raw_spin_lock_irqsave(&devtree_lock, flags);
1031 for_each_of_allnodes_from(from, np)
1032 if (__of_device_is_compatible(np, compatible, type, NULL) &&
1033 of_node_get(np))
1034 break;
1035 of_node_put(from);
1036 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1037 return np;
1038}
1039EXPORT_SYMBOL(of_find_compatible_node);
1040
1041/**
1042 * of_find_node_with_property - Find a node which has a property with
1043 * the given name.
1044 * @from: The node to start searching from or NULL, the node
1045 * you pass will not be searched, only the next one
1046 * will; typically, you pass what the previous call
1047 * returned. of_node_put() will be called on it
1048 * @prop_name: The name of the property to look for.
1049 *
1050 * Return: A node pointer with refcount incremented, use
1051 * of_node_put() on it when done.
1052 */
1053struct device_node *of_find_node_with_property(struct device_node *from,
1054 const char *prop_name)
1055{
1056 struct device_node *np;
1057 unsigned long flags;
1058
1059 raw_spin_lock_irqsave(&devtree_lock, flags);
1060 for_each_of_allnodes_from(from, np) {
1061 if (__of_find_property(np, prop_name, NULL)) {
1062 of_node_get(np);
1063 break;
1064 }
1065 }
1066 of_node_put(from);
1067 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1068 return np;
1069}
1070EXPORT_SYMBOL(of_find_node_with_property);
1071
1072static
1073const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1074 const struct device_node *node)
1075{
1076 const struct of_device_id *best_match = NULL;
1077 int score, best_score = 0;
1078
1079 if (!matches)
1080 return NULL;
1081
1082 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1083 score = __of_device_is_compatible(node, matches->compatible,
1084 matches->type, matches->name);
1085 if (score > best_score) {
1086 best_match = matches;
1087 best_score = score;
1088 }
1089 }
1090
1091 return best_match;
1092}
1093
1094/**
1095 * of_match_node - Tell if a device_node has a matching of_match structure
1096 * @matches: array of of device match structures to search in
1097 * @node: the of device structure to match against
1098 *
1099 * Low level utility function used by device matching.
1100 */
1101const struct of_device_id *of_match_node(const struct of_device_id *matches,
1102 const struct device_node *node)
1103{
1104 const struct of_device_id *match;
1105 unsigned long flags;
1106
1107 raw_spin_lock_irqsave(&devtree_lock, flags);
1108 match = __of_match_node(matches, node);
1109 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1110 return match;
1111}
1112EXPORT_SYMBOL(of_match_node);
1113
1114/**
1115 * of_find_matching_node_and_match - Find a node based on an of_device_id
1116 * match table.
1117 * @from: The node to start searching from or NULL, the node
1118 * you pass will not be searched, only the next one
1119 * will; typically, you pass what the previous call
1120 * returned. of_node_put() will be called on it
1121 * @matches: array of of device match structures to search in
1122 * @match: Updated to point at the matches entry which matched
1123 *
1124 * Return: A node pointer with refcount incremented, use
1125 * of_node_put() on it when done.
1126 */
1127struct device_node *of_find_matching_node_and_match(struct device_node *from,
1128 const struct of_device_id *matches,
1129 const struct of_device_id **match)
1130{
1131 struct device_node *np;
1132 const struct of_device_id *m;
1133 unsigned long flags;
1134
1135 if (match)
1136 *match = NULL;
1137
1138 raw_spin_lock_irqsave(&devtree_lock, flags);
1139 for_each_of_allnodes_from(from, np) {
1140 m = __of_match_node(matches, np);
1141 if (m && of_node_get(np)) {
1142 if (match)
1143 *match = m;
1144 break;
1145 }
1146 }
1147 of_node_put(from);
1148 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1149 return np;
1150}
1151EXPORT_SYMBOL(of_find_matching_node_and_match);
1152
1153/**
1154 * of_alias_from_compatible - Lookup appropriate alias for a device node
1155 * depending on compatible
1156 * @node: pointer to a device tree node
1157 * @alias: Pointer to buffer that alias value will be copied into
1158 * @len: Length of alias value
1159 *
1160 * Based on the value of the compatible property, this routine will attempt
1161 * to choose an appropriate alias value for a particular device tree node.
1162 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1163 * from the first entry in the compatible list property.
1164 *
1165 * Note: The matching on just the "product" side of the compatible is a relic
1166 * from I2C and SPI. Please do not add any new user.
1167 *
1168 * Return: This routine returns 0 on success, <0 on failure.
1169 */
1170int of_alias_from_compatible(const struct device_node *node, char *alias, int len)
1171{
1172 const char *compatible, *p;
1173 int cplen;
1174
1175 compatible = of_get_property(node, "compatible", &cplen);
1176 if (!compatible || strlen(compatible) > cplen)
1177 return -ENODEV;
1178 p = strchr(compatible, ',');
1179 strscpy(alias, p ? p + 1 : compatible, len);
1180 return 0;
1181}
1182EXPORT_SYMBOL_GPL(of_alias_from_compatible);
1183
1184/**
1185 * of_find_node_by_phandle - Find a node given a phandle
1186 * @handle: phandle of the node to find
1187 *
1188 * Return: A node pointer with refcount incremented, use
1189 * of_node_put() on it when done.
1190 */
1191struct device_node *of_find_node_by_phandle(phandle handle)
1192{
1193 struct device_node *np = NULL;
1194 unsigned long flags;
1195 u32 handle_hash;
1196
1197 if (!handle)
1198 return NULL;
1199
1200 handle_hash = of_phandle_cache_hash(handle);
1201
1202 raw_spin_lock_irqsave(&devtree_lock, flags);
1203
1204 if (phandle_cache[handle_hash] &&
1205 handle == phandle_cache[handle_hash]->phandle)
1206 np = phandle_cache[handle_hash];
1207
1208 if (!np) {
1209 for_each_of_allnodes(np)
1210 if (np->phandle == handle &&
1211 !of_node_check_flag(np, OF_DETACHED)) {
1212 phandle_cache[handle_hash] = np;
1213 break;
1214 }
1215 }
1216
1217 of_node_get(np);
1218 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1219 return np;
1220}
1221EXPORT_SYMBOL(of_find_node_by_phandle);
1222
1223void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1224{
1225 int i;
1226 printk("%s %pOF", msg, args->np);
1227 for (i = 0; i < args->args_count; i++) {
1228 const char delim = i ? ',' : ':';
1229
1230 pr_cont("%c%08x", delim, args->args[i]);
1231 }
1232 pr_cont("\n");
1233}
1234
1235int of_phandle_iterator_init(struct of_phandle_iterator *it,
1236 const struct device_node *np,
1237 const char *list_name,
1238 const char *cells_name,
1239 int cell_count)
1240{
1241 const __be32 *list;
1242 int size;
1243
1244 memset(it, 0, sizeof(*it));
1245
1246 /*
1247 * one of cell_count or cells_name must be provided to determine the
1248 * argument length.
1249 */
1250 if (cell_count < 0 && !cells_name)
1251 return -EINVAL;
1252
1253 list = of_get_property(np, list_name, &size);
1254 if (!list)
1255 return -ENOENT;
1256
1257 it->cells_name = cells_name;
1258 it->cell_count = cell_count;
1259 it->parent = np;
1260 it->list_end = list + size / sizeof(*list);
1261 it->phandle_end = list;
1262 it->cur = list;
1263
1264 return 0;
1265}
1266EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1267
1268int of_phandle_iterator_next(struct of_phandle_iterator *it)
1269{
1270 uint32_t count = 0;
1271
1272 if (it->node) {
1273 of_node_put(it->node);
1274 it->node = NULL;
1275 }
1276
1277 if (!it->cur || it->phandle_end >= it->list_end)
1278 return -ENOENT;
1279
1280 it->cur = it->phandle_end;
1281
1282 /* If phandle is 0, then it is an empty entry with no arguments. */
1283 it->phandle = be32_to_cpup(it->cur++);
1284
1285 if (it->phandle) {
1286
1287 /*
1288 * Find the provider node and parse the #*-cells property to
1289 * determine the argument length.
1290 */
1291 it->node = of_find_node_by_phandle(it->phandle);
1292
1293 if (it->cells_name) {
1294 if (!it->node) {
1295 pr_err("%pOF: could not find phandle %d\n",
1296 it->parent, it->phandle);
1297 goto err;
1298 }
1299
1300 if (of_property_read_u32(it->node, it->cells_name,
1301 &count)) {
1302 /*
1303 * If both cell_count and cells_name is given,
1304 * fall back to cell_count in absence
1305 * of the cells_name property
1306 */
1307 if (it->cell_count >= 0) {
1308 count = it->cell_count;
1309 } else {
1310 pr_err("%pOF: could not get %s for %pOF\n",
1311 it->parent,
1312 it->cells_name,
1313 it->node);
1314 goto err;
1315 }
1316 }
1317 } else {
1318 count = it->cell_count;
1319 }
1320
1321 /*
1322 * Make sure that the arguments actually fit in the remaining
1323 * property data length
1324 */
1325 if (it->cur + count > it->list_end) {
1326 if (it->cells_name)
1327 pr_err("%pOF: %s = %d found %td\n",
1328 it->parent, it->cells_name,
1329 count, it->list_end - it->cur);
1330 else
1331 pr_err("%pOF: phandle %s needs %d, found %td\n",
1332 it->parent, of_node_full_name(it->node),
1333 count, it->list_end - it->cur);
1334 goto err;
1335 }
1336 }
1337
1338 it->phandle_end = it->cur + count;
1339 it->cur_count = count;
1340
1341 return 0;
1342
1343err:
1344 if (it->node) {
1345 of_node_put(it->node);
1346 it->node = NULL;
1347 }
1348
1349 return -EINVAL;
1350}
1351EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1352
1353int of_phandle_iterator_args(struct of_phandle_iterator *it,
1354 uint32_t *args,
1355 int size)
1356{
1357 int i, count;
1358
1359 count = it->cur_count;
1360
1361 if (WARN_ON(size < count))
1362 count = size;
1363
1364 for (i = 0; i < count; i++)
1365 args[i] = be32_to_cpup(it->cur++);
1366
1367 return count;
1368}
1369
1370int __of_parse_phandle_with_args(const struct device_node *np,
1371 const char *list_name,
1372 const char *cells_name,
1373 int cell_count, int index,
1374 struct of_phandle_args *out_args)
1375{
1376 struct of_phandle_iterator it;
1377 int rc, cur_index = 0;
1378
1379 if (index < 0)
1380 return -EINVAL;
1381
1382 /* Loop over the phandles until all the requested entry is found */
1383 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1384 /*
1385 * All of the error cases bail out of the loop, so at
1386 * this point, the parsing is successful. If the requested
1387 * index matches, then fill the out_args structure and return,
1388 * or return -ENOENT for an empty entry.
1389 */
1390 rc = -ENOENT;
1391 if (cur_index == index) {
1392 if (!it.phandle)
1393 goto err;
1394
1395 if (out_args) {
1396 int c;
1397
1398 c = of_phandle_iterator_args(&it,
1399 out_args->args,
1400 MAX_PHANDLE_ARGS);
1401 out_args->np = it.node;
1402 out_args->args_count = c;
1403 } else {
1404 of_node_put(it.node);
1405 }
1406
1407 /* Found it! return success */
1408 return 0;
1409 }
1410
1411 cur_index++;
1412 }
1413
1414 /*
1415 * Unlock node before returning result; will be one of:
1416 * -ENOENT : index is for empty phandle
1417 * -EINVAL : parsing error on data
1418 */
1419
1420 err:
1421 of_node_put(it.node);
1422 return rc;
1423}
1424EXPORT_SYMBOL(__of_parse_phandle_with_args);
1425
1426/**
1427 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1428 * @np: pointer to a device tree node containing a list
1429 * @list_name: property name that contains a list
1430 * @stem_name: stem of property names that specify phandles' arguments count
1431 * @index: index of a phandle to parse out
1432 * @out_args: optional pointer to output arguments structure (will be filled)
1433 *
1434 * This function is useful to parse lists of phandles and their arguments.
1435 * Returns 0 on success and fills out_args, on error returns appropriate errno
1436 * value. The difference between this function and of_parse_phandle_with_args()
1437 * is that this API remaps a phandle if the node the phandle points to has
1438 * a <@stem_name>-map property.
1439 *
1440 * Caller is responsible to call of_node_put() on the returned out_args->np
1441 * pointer.
1442 *
1443 * Example::
1444 *
1445 * phandle1: node1 {
1446 * #list-cells = <2>;
1447 * };
1448 *
1449 * phandle2: node2 {
1450 * #list-cells = <1>;
1451 * };
1452 *
1453 * phandle3: node3 {
1454 * #list-cells = <1>;
1455 * list-map = <0 &phandle2 3>,
1456 * <1 &phandle2 2>,
1457 * <2 &phandle1 5 1>;
1458 * list-map-mask = <0x3>;
1459 * };
1460 *
1461 * node4 {
1462 * list = <&phandle1 1 2 &phandle3 0>;
1463 * };
1464 *
1465 * To get a device_node of the ``node2`` node you may call this:
1466 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1467 */
1468int of_parse_phandle_with_args_map(const struct device_node *np,
1469 const char *list_name,
1470 const char *stem_name,
1471 int index, struct of_phandle_args *out_args)
1472{
1473 char *cells_name __free(kfree) = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1474 char *map_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1475 char *mask_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1476 char *pass_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1477 struct device_node *cur, *new = NULL;
1478 const __be32 *map, *mask, *pass;
1479 static const __be32 dummy_mask[] = { [0 ... (MAX_PHANDLE_ARGS - 1)] = cpu_to_be32(~0) };
1480 static const __be32 dummy_pass[] = { [0 ... (MAX_PHANDLE_ARGS - 1)] = cpu_to_be32(0) };
1481 __be32 initial_match_array[MAX_PHANDLE_ARGS];
1482 const __be32 *match_array = initial_match_array;
1483 int i, ret, map_len, match;
1484 u32 list_size, new_size;
1485
1486 if (index < 0)
1487 return -EINVAL;
1488
1489 if (!cells_name || !map_name || !mask_name || !pass_name)
1490 return -ENOMEM;
1491
1492 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1493 out_args);
1494 if (ret)
1495 return ret;
1496
1497 /* Get the #<list>-cells property */
1498 cur = out_args->np;
1499 ret = of_property_read_u32(cur, cells_name, &list_size);
1500 if (ret < 0)
1501 goto put;
1502
1503 /* Precalculate the match array - this simplifies match loop */
1504 for (i = 0; i < list_size; i++)
1505 initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1506
1507 ret = -EINVAL;
1508 while (cur) {
1509 /* Get the <list>-map property */
1510 map = of_get_property(cur, map_name, &map_len);
1511 if (!map) {
1512 return 0;
1513 }
1514 map_len /= sizeof(u32);
1515
1516 /* Get the <list>-map-mask property (optional) */
1517 mask = of_get_property(cur, mask_name, NULL);
1518 if (!mask)
1519 mask = dummy_mask;
1520 /* Iterate through <list>-map property */
1521 match = 0;
1522 while (map_len > (list_size + 1) && !match) {
1523 /* Compare specifiers */
1524 match = 1;
1525 for (i = 0; i < list_size; i++, map_len--)
1526 match &= !((match_array[i] ^ *map++) & mask[i]);
1527
1528 of_node_put(new);
1529 new = of_find_node_by_phandle(be32_to_cpup(map));
1530 map++;
1531 map_len--;
1532
1533 /* Check if not found */
1534 if (!new) {
1535 ret = -EINVAL;
1536 goto put;
1537 }
1538
1539 if (!of_device_is_available(new))
1540 match = 0;
1541
1542 ret = of_property_read_u32(new, cells_name, &new_size);
1543 if (ret)
1544 goto put;
1545
1546 /* Check for malformed properties */
1547 if (WARN_ON(new_size > MAX_PHANDLE_ARGS) ||
1548 map_len < new_size) {
1549 ret = -EINVAL;
1550 goto put;
1551 }
1552
1553 /* Move forward by new node's #<list>-cells amount */
1554 map += new_size;
1555 map_len -= new_size;
1556 }
1557 if (!match) {
1558 ret = -ENOENT;
1559 goto put;
1560 }
1561
1562 /* Get the <list>-map-pass-thru property (optional) */
1563 pass = of_get_property(cur, pass_name, NULL);
1564 if (!pass)
1565 pass = dummy_pass;
1566
1567 /*
1568 * Successfully parsed a <list>-map translation; copy new
1569 * specifier into the out_args structure, keeping the
1570 * bits specified in <list>-map-pass-thru.
1571 */
1572 for (i = 0; i < new_size; i++) {
1573 __be32 val = *(map - new_size + i);
1574
1575 if (i < list_size) {
1576 val &= ~pass[i];
1577 val |= cpu_to_be32(out_args->args[i]) & pass[i];
1578 }
1579
1580 initial_match_array[i] = val;
1581 out_args->args[i] = be32_to_cpu(val);
1582 }
1583 out_args->args_count = list_size = new_size;
1584 /* Iterate again with new provider */
1585 out_args->np = new;
1586 of_node_put(cur);
1587 cur = new;
1588 new = NULL;
1589 }
1590put:
1591 of_node_put(cur);
1592 of_node_put(new);
1593 return ret;
1594}
1595EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1596
1597/**
1598 * of_count_phandle_with_args() - Find the number of phandles references in a property
1599 * @np: pointer to a device tree node containing a list
1600 * @list_name: property name that contains a list
1601 * @cells_name: property name that specifies phandles' arguments count
1602 *
1603 * Return: The number of phandle + argument tuples within a property. It
1604 * is a typical pattern to encode a list of phandle and variable
1605 * arguments into a single property. The number of arguments is encoded
1606 * by a property in the phandle-target node. For example, a gpios
1607 * property would contain a list of GPIO specifies consisting of a
1608 * phandle and 1 or more arguments. The number of arguments are
1609 * determined by the #gpio-cells property in the node pointed to by the
1610 * phandle.
1611 */
1612int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1613 const char *cells_name)
1614{
1615 struct of_phandle_iterator it;
1616 int rc, cur_index = 0;
1617
1618 /*
1619 * If cells_name is NULL we assume a cell count of 0. This makes
1620 * counting the phandles trivial as each 32bit word in the list is a
1621 * phandle and no arguments are to consider. So we don't iterate through
1622 * the list but just use the length to determine the phandle count.
1623 */
1624 if (!cells_name) {
1625 const __be32 *list;
1626 int size;
1627
1628 list = of_get_property(np, list_name, &size);
1629 if (!list)
1630 return -ENOENT;
1631
1632 return size / sizeof(*list);
1633 }
1634
1635 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1636 if (rc)
1637 return rc;
1638
1639 while ((rc = of_phandle_iterator_next(&it)) == 0)
1640 cur_index += 1;
1641
1642 if (rc != -ENOENT)
1643 return rc;
1644
1645 return cur_index;
1646}
1647EXPORT_SYMBOL(of_count_phandle_with_args);
1648
1649static struct property *__of_remove_property_from_list(struct property **list, struct property *prop)
1650{
1651 struct property **next;
1652
1653 for (next = list; *next; next = &(*next)->next) {
1654 if (*next == prop) {
1655 *next = prop->next;
1656 prop->next = NULL;
1657 return prop;
1658 }
1659 }
1660 return NULL;
1661}
1662
1663/**
1664 * __of_add_property - Add a property to a node without lock operations
1665 * @np: Caller's Device Node
1666 * @prop: Property to add
1667 */
1668int __of_add_property(struct device_node *np, struct property *prop)
1669{
1670 int rc = 0;
1671 unsigned long flags;
1672 struct property **next;
1673
1674 raw_spin_lock_irqsave(&devtree_lock, flags);
1675
1676 __of_remove_property_from_list(&np->deadprops, prop);
1677
1678 prop->next = NULL;
1679 next = &np->properties;
1680 while (*next) {
1681 if (of_prop_cmp(prop->name, (*next)->name) == 0) {
1682 /* duplicate ! don't insert it */
1683 rc = -EEXIST;
1684 goto out_unlock;
1685 }
1686 next = &(*next)->next;
1687 }
1688 *next = prop;
1689
1690out_unlock:
1691 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1692 if (rc)
1693 return rc;
1694
1695 __of_add_property_sysfs(np, prop);
1696 return 0;
1697}
1698
1699/**
1700 * of_add_property - Add a property to a node
1701 * @np: Caller's Device Node
1702 * @prop: Property to add
1703 */
1704int of_add_property(struct device_node *np, struct property *prop)
1705{
1706 int rc;
1707
1708 mutex_lock(&of_mutex);
1709 rc = __of_add_property(np, prop);
1710 mutex_unlock(&of_mutex);
1711
1712 if (!rc)
1713 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1714
1715 return rc;
1716}
1717EXPORT_SYMBOL_GPL(of_add_property);
1718
1719int __of_remove_property(struct device_node *np, struct property *prop)
1720{
1721 unsigned long flags;
1722 int rc = -ENODEV;
1723
1724 raw_spin_lock_irqsave(&devtree_lock, flags);
1725
1726 if (__of_remove_property_from_list(&np->properties, prop)) {
1727 /* Found the property, add it to deadprops list */
1728 prop->next = np->deadprops;
1729 np->deadprops = prop;
1730 rc = 0;
1731 }
1732
1733 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1734 if (rc)
1735 return rc;
1736
1737 __of_remove_property_sysfs(np, prop);
1738 return 0;
1739}
1740
1741/**
1742 * of_remove_property - Remove a property from a node.
1743 * @np: Caller's Device Node
1744 * @prop: Property to remove
1745 *
1746 * Note that we don't actually remove it, since we have given out
1747 * who-knows-how-many pointers to the data using get-property.
1748 * Instead we just move the property to the "dead properties"
1749 * list, so it won't be found any more.
1750 */
1751int of_remove_property(struct device_node *np, struct property *prop)
1752{
1753 int rc;
1754
1755 if (!prop)
1756 return -ENODEV;
1757
1758 mutex_lock(&of_mutex);
1759 rc = __of_remove_property(np, prop);
1760 mutex_unlock(&of_mutex);
1761
1762 if (!rc)
1763 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1764
1765 return rc;
1766}
1767EXPORT_SYMBOL_GPL(of_remove_property);
1768
1769int __of_update_property(struct device_node *np, struct property *newprop,
1770 struct property **oldpropp)
1771{
1772 struct property **next, *oldprop;
1773 unsigned long flags;
1774
1775 raw_spin_lock_irqsave(&devtree_lock, flags);
1776
1777 __of_remove_property_from_list(&np->deadprops, newprop);
1778
1779 for (next = &np->properties; *next; next = &(*next)->next) {
1780 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1781 break;
1782 }
1783 *oldpropp = oldprop = *next;
1784
1785 if (oldprop) {
1786 /* replace the node */
1787 newprop->next = oldprop->next;
1788 *next = newprop;
1789 oldprop->next = np->deadprops;
1790 np->deadprops = oldprop;
1791 } else {
1792 /* new node */
1793 newprop->next = NULL;
1794 *next = newprop;
1795 }
1796
1797 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1798
1799 __of_update_property_sysfs(np, newprop, oldprop);
1800
1801 return 0;
1802}
1803
1804/*
1805 * of_update_property - Update a property in a node, if the property does
1806 * not exist, add it.
1807 *
1808 * Note that we don't actually remove it, since we have given out
1809 * who-knows-how-many pointers to the data using get-property.
1810 * Instead we just move the property to the "dead properties" list,
1811 * and add the new property to the property list
1812 */
1813int of_update_property(struct device_node *np, struct property *newprop)
1814{
1815 struct property *oldprop;
1816 int rc;
1817
1818 if (!newprop->name)
1819 return -EINVAL;
1820
1821 mutex_lock(&of_mutex);
1822 rc = __of_update_property(np, newprop, &oldprop);
1823 mutex_unlock(&of_mutex);
1824
1825 if (!rc)
1826 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1827
1828 return rc;
1829}
1830
1831static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1832 int id, const char *stem, int stem_len)
1833{
1834 ap->np = np;
1835 ap->id = id;
1836 strscpy(ap->stem, stem, stem_len + 1);
1837 list_add_tail(&ap->link, &aliases_lookup);
1838 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1839 ap->alias, ap->stem, ap->id, np);
1840}
1841
1842/**
1843 * of_alias_scan - Scan all properties of the 'aliases' node
1844 * @dt_alloc: An allocator that provides a virtual address to memory
1845 * for storing the resulting tree
1846 *
1847 * The function scans all the properties of the 'aliases' node and populates
1848 * the global lookup table with the properties.
1849 */
1850void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1851{
1852 const struct property *pp;
1853
1854 of_aliases = of_find_node_by_path("/aliases");
1855 of_chosen = of_find_node_by_path("/chosen");
1856 if (of_chosen == NULL)
1857 of_chosen = of_find_node_by_path("/chosen@0");
1858
1859 if (of_chosen) {
1860 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1861 const char *name = NULL;
1862
1863 if (of_property_read_string(of_chosen, "stdout-path", &name))
1864 of_property_read_string(of_chosen, "linux,stdout-path",
1865 &name);
1866 if (IS_ENABLED(CONFIG_PPC) && !name)
1867 of_property_read_string(of_aliases, "stdout", &name);
1868 if (name)
1869 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1870 if (of_stdout)
1871 of_stdout->fwnode.flags |= FWNODE_FLAG_BEST_EFFORT;
1872 }
1873
1874 if (!of_aliases)
1875 return;
1876
1877 for_each_property_of_node(of_aliases, pp) {
1878 const char *start = pp->name;
1879 const char *end = start + strlen(start);
1880 struct device_node *np;
1881 struct alias_prop *ap;
1882 int id, len;
1883
1884 /* Skip those we do not want to proceed */
1885 if (is_pseudo_property(pp->name))
1886 continue;
1887
1888 np = of_find_node_by_path(pp->value);
1889 if (!np)
1890 continue;
1891
1892 /* walk the alias backwards to extract the id and work out
1893 * the 'stem' string */
1894 while (isdigit(*(end-1)) && end > start)
1895 end--;
1896 len = end - start;
1897
1898 if (kstrtoint(end, 10, &id) < 0)
1899 continue;
1900
1901 /* Allocate an alias_prop with enough space for the stem */
1902 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1903 if (!ap)
1904 continue;
1905 memset(ap, 0, sizeof(*ap) + len + 1);
1906 ap->alias = start;
1907 of_alias_add(ap, np, id, start, len);
1908 }
1909}
1910
1911/**
1912 * of_alias_get_id - Get alias id for the given device_node
1913 * @np: Pointer to the given device_node
1914 * @stem: Alias stem of the given device_node
1915 *
1916 * The function travels the lookup table to get the alias id for the given
1917 * device_node and alias stem.
1918 *
1919 * Return: The alias id if found.
1920 */
1921int of_alias_get_id(const struct device_node *np, const char *stem)
1922{
1923 struct alias_prop *app;
1924 int id = -ENODEV;
1925
1926 mutex_lock(&of_mutex);
1927 list_for_each_entry(app, &aliases_lookup, link) {
1928 if (strcmp(app->stem, stem) != 0)
1929 continue;
1930
1931 if (np == app->np) {
1932 id = app->id;
1933 break;
1934 }
1935 }
1936 mutex_unlock(&of_mutex);
1937
1938 return id;
1939}
1940EXPORT_SYMBOL_GPL(of_alias_get_id);
1941
1942/**
1943 * of_alias_get_highest_id - Get highest alias id for the given stem
1944 * @stem: Alias stem to be examined
1945 *
1946 * The function travels the lookup table to get the highest alias id for the
1947 * given alias stem. It returns the alias id if found.
1948 */
1949int of_alias_get_highest_id(const char *stem)
1950{
1951 struct alias_prop *app;
1952 int id = -ENODEV;
1953
1954 mutex_lock(&of_mutex);
1955 list_for_each_entry(app, &aliases_lookup, link) {
1956 if (strcmp(app->stem, stem) != 0)
1957 continue;
1958
1959 if (app->id > id)
1960 id = app->id;
1961 }
1962 mutex_unlock(&of_mutex);
1963
1964 return id;
1965}
1966EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
1967
1968/**
1969 * of_console_check() - Test and setup console for DT setup
1970 * @dn: Pointer to device node
1971 * @name: Name to use for preferred console without index. ex. "ttyS"
1972 * @index: Index to use for preferred console.
1973 *
1974 * Check if the given device node matches the stdout-path property in the
1975 * /chosen node. If it does then register it as the preferred console.
1976 *
1977 * Return: TRUE if console successfully setup. Otherwise return FALSE.
1978 */
1979bool of_console_check(const struct device_node *dn, char *name, int index)
1980{
1981 if (!dn || dn != of_stdout || console_set_on_cmdline)
1982 return false;
1983
1984 /*
1985 * XXX: cast `options' to char pointer to suppress complication
1986 * warnings: printk, UART and console drivers expect char pointer.
1987 */
1988 return !add_preferred_console(name, index, (char *)of_stdout_options);
1989}
1990EXPORT_SYMBOL_GPL(of_console_check);
1991
1992/**
1993 * of_find_next_cache_node - Find a node's subsidiary cache
1994 * @np: node of type "cpu" or "cache"
1995 *
1996 * Return: A node pointer with refcount incremented, use
1997 * of_node_put() on it when done. Caller should hold a reference
1998 * to np.
1999 */
2000struct device_node *of_find_next_cache_node(const struct device_node *np)
2001{
2002 struct device_node *child, *cache_node;
2003
2004 cache_node = of_parse_phandle(np, "l2-cache", 0);
2005 if (!cache_node)
2006 cache_node = of_parse_phandle(np, "next-level-cache", 0);
2007
2008 if (cache_node)
2009 return cache_node;
2010
2011 /* OF on pmac has nodes instead of properties named "l2-cache"
2012 * beneath CPU nodes.
2013 */
2014 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2015 for_each_child_of_node(np, child)
2016 if (of_node_is_type(child, "cache"))
2017 return child;
2018
2019 return NULL;
2020}
2021
2022/**
2023 * of_find_last_cache_level - Find the level at which the last cache is
2024 * present for the given logical cpu
2025 *
2026 * @cpu: cpu number(logical index) for which the last cache level is needed
2027 *
2028 * Return: The level at which the last cache is present. It is exactly
2029 * same as the total number of cache levels for the given logical cpu.
2030 */
2031int of_find_last_cache_level(unsigned int cpu)
2032{
2033 u32 cache_level = 0;
2034 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2035
2036 while (np) {
2037 of_node_put(prev);
2038 prev = np;
2039 np = of_find_next_cache_node(np);
2040 }
2041
2042 of_property_read_u32(prev, "cache-level", &cache_level);
2043 of_node_put(prev);
2044
2045 return cache_level;
2046}
2047
2048/**
2049 * of_map_id - Translate an ID through a downstream mapping.
2050 * @np: root complex device node.
2051 * @id: device ID to map.
2052 * @map_name: property name of the map to use.
2053 * @map_mask_name: optional property name of the mask to use.
2054 * @target: optional pointer to a target device node.
2055 * @id_out: optional pointer to receive the translated ID.
2056 *
2057 * Given a device ID, look up the appropriate implementation-defined
2058 * platform ID and/or the target device which receives transactions on that
2059 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2060 * @id_out may be NULL if only the other is required. If @target points to
2061 * a non-NULL device node pointer, only entries targeting that node will be
2062 * matched; if it points to a NULL value, it will receive the device node of
2063 * the first matching target phandle, with a reference held.
2064 *
2065 * Return: 0 on success or a standard error code on failure.
2066 */
2067int of_map_id(const struct device_node *np, u32 id,
2068 const char *map_name, const char *map_mask_name,
2069 struct device_node **target, u32 *id_out)
2070{
2071 u32 map_mask, masked_id;
2072 int map_len;
2073 const __be32 *map = NULL;
2074
2075 if (!np || !map_name || (!target && !id_out))
2076 return -EINVAL;
2077
2078 map = of_get_property(np, map_name, &map_len);
2079 if (!map) {
2080 if (target)
2081 return -ENODEV;
2082 /* Otherwise, no map implies no translation */
2083 *id_out = id;
2084 return 0;
2085 }
2086
2087 if (!map_len || map_len % (4 * sizeof(*map))) {
2088 pr_err("%pOF: Error: Bad %s length: %d\n", np,
2089 map_name, map_len);
2090 return -EINVAL;
2091 }
2092
2093 /* The default is to select all bits. */
2094 map_mask = 0xffffffff;
2095
2096 /*
2097 * Can be overridden by "{iommu,msi}-map-mask" property.
2098 * If of_property_read_u32() fails, the default is used.
2099 */
2100 if (map_mask_name)
2101 of_property_read_u32(np, map_mask_name, &map_mask);
2102
2103 masked_id = map_mask & id;
2104 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2105 struct device_node *phandle_node;
2106 u32 id_base = be32_to_cpup(map + 0);
2107 u32 phandle = be32_to_cpup(map + 1);
2108 u32 out_base = be32_to_cpup(map + 2);
2109 u32 id_len = be32_to_cpup(map + 3);
2110
2111 if (id_base & ~map_mask) {
2112 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2113 np, map_name, map_name,
2114 map_mask, id_base);
2115 return -EFAULT;
2116 }
2117
2118 if (masked_id < id_base || masked_id >= id_base + id_len)
2119 continue;
2120
2121 phandle_node = of_find_node_by_phandle(phandle);
2122 if (!phandle_node)
2123 return -ENODEV;
2124
2125 if (target) {
2126 if (*target)
2127 of_node_put(phandle_node);
2128 else
2129 *target = phandle_node;
2130
2131 if (*target != phandle_node)
2132 continue;
2133 }
2134
2135 if (id_out)
2136 *id_out = masked_id - id_base + out_base;
2137
2138 pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2139 np, map_name, map_mask, id_base, out_base,
2140 id_len, id, masked_id - id_base + out_base);
2141 return 0;
2142 }
2143
2144 pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2145 id, target && *target ? *target : NULL);
2146
2147 /* Bypasses translation */
2148 if (id_out)
2149 *id_out = id;
2150 return 0;
2151}
2152EXPORT_SYMBOL_GPL(of_map_id);