nvmet-tcp: move send/recv error handling in the send/recv methods instead of call...
[linux-2.6-block.git] / drivers / nvme / host / pci.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7#include <linux/aer.h>
8#include <linux/async.h>
9#include <linux/blkdev.h>
10#include <linux/blk-mq.h>
11#include <linux/blk-mq-pci.h>
12#include <linux/dmi.h>
13#include <linux/init.h>
14#include <linux/interrupt.h>
15#include <linux/io.h>
16#include <linux/mm.h>
17#include <linux/module.h>
18#include <linux/mutex.h>
19#include <linux/once.h>
20#include <linux/pci.h>
21#include <linux/suspend.h>
22#include <linux/t10-pi.h>
23#include <linux/types.h>
24#include <linux/io-64-nonatomic-lo-hi.h>
25#include <linux/sed-opal.h>
26#include <linux/pci-p2pdma.h>
27
28#include "trace.h"
29#include "nvme.h"
30
31#define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
32#define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
33
34#define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
35
36/*
37 * These can be higher, but we need to ensure that any command doesn't
38 * require an sg allocation that needs more than a page of data.
39 */
40#define NVME_MAX_KB_SZ 4096
41#define NVME_MAX_SEGS 127
42
43static int use_threaded_interrupts;
44module_param(use_threaded_interrupts, int, 0);
45
46static bool use_cmb_sqes = true;
47module_param(use_cmb_sqes, bool, 0444);
48MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
49
50static unsigned int max_host_mem_size_mb = 128;
51module_param(max_host_mem_size_mb, uint, 0444);
52MODULE_PARM_DESC(max_host_mem_size_mb,
53 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
54
55static unsigned int sgl_threshold = SZ_32K;
56module_param(sgl_threshold, uint, 0644);
57MODULE_PARM_DESC(sgl_threshold,
58 "Use SGLs when average request segment size is larger or equal to "
59 "this size. Use 0 to disable SGLs.");
60
61static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
62static const struct kernel_param_ops io_queue_depth_ops = {
63 .set = io_queue_depth_set,
64 .get = param_get_int,
65};
66
67static int io_queue_depth = 1024;
68module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
69MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
70
71static unsigned int write_queues;
72module_param(write_queues, uint, 0644);
73MODULE_PARM_DESC(write_queues,
74 "Number of queues to use for writes. If not set, reads and writes "
75 "will share a queue set.");
76
77static unsigned int poll_queues;
78module_param(poll_queues, uint, 0644);
79MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
80
81struct nvme_dev;
82struct nvme_queue;
83
84static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
85static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
86
87/*
88 * Represents an NVM Express device. Each nvme_dev is a PCI function.
89 */
90struct nvme_dev {
91 struct nvme_queue *queues;
92 struct blk_mq_tag_set tagset;
93 struct blk_mq_tag_set admin_tagset;
94 u32 __iomem *dbs;
95 struct device *dev;
96 struct dma_pool *prp_page_pool;
97 struct dma_pool *prp_small_pool;
98 unsigned online_queues;
99 unsigned max_qid;
100 unsigned io_queues[HCTX_MAX_TYPES];
101 unsigned int num_vecs;
102 int q_depth;
103 int io_sqes;
104 u32 db_stride;
105 void __iomem *bar;
106 unsigned long bar_mapped_size;
107 struct work_struct remove_work;
108 struct mutex shutdown_lock;
109 bool subsystem;
110 u64 cmb_size;
111 bool cmb_use_sqes;
112 u32 cmbsz;
113 u32 cmbloc;
114 struct nvme_ctrl ctrl;
115 u32 last_ps;
116
117 mempool_t *iod_mempool;
118
119 /* shadow doorbell buffer support: */
120 u32 *dbbuf_dbs;
121 dma_addr_t dbbuf_dbs_dma_addr;
122 u32 *dbbuf_eis;
123 dma_addr_t dbbuf_eis_dma_addr;
124
125 /* host memory buffer support: */
126 u64 host_mem_size;
127 u32 nr_host_mem_descs;
128 dma_addr_t host_mem_descs_dma;
129 struct nvme_host_mem_buf_desc *host_mem_descs;
130 void **host_mem_desc_bufs;
131 unsigned int nr_allocated_queues;
132 unsigned int nr_write_queues;
133 unsigned int nr_poll_queues;
134};
135
136static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
137{
138 int n = 0, ret;
139
140 ret = kstrtoint(val, 10, &n);
141 if (ret != 0 || n < 2)
142 return -EINVAL;
143
144 return param_set_int(val, kp);
145}
146
147static inline unsigned int sq_idx(unsigned int qid, u32 stride)
148{
149 return qid * 2 * stride;
150}
151
152static inline unsigned int cq_idx(unsigned int qid, u32 stride)
153{
154 return (qid * 2 + 1) * stride;
155}
156
157static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
158{
159 return container_of(ctrl, struct nvme_dev, ctrl);
160}
161
162/*
163 * An NVM Express queue. Each device has at least two (one for admin
164 * commands and one for I/O commands).
165 */
166struct nvme_queue {
167 struct nvme_dev *dev;
168 spinlock_t sq_lock;
169 void *sq_cmds;
170 /* only used for poll queues: */
171 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
172 struct nvme_completion *cqes;
173 dma_addr_t sq_dma_addr;
174 dma_addr_t cq_dma_addr;
175 u32 __iomem *q_db;
176 u16 q_depth;
177 u16 cq_vector;
178 u16 sq_tail;
179 u16 cq_head;
180 u16 qid;
181 u8 cq_phase;
182 u8 sqes;
183 unsigned long flags;
184#define NVMEQ_ENABLED 0
185#define NVMEQ_SQ_CMB 1
186#define NVMEQ_DELETE_ERROR 2
187#define NVMEQ_POLLED 3
188 u32 *dbbuf_sq_db;
189 u32 *dbbuf_cq_db;
190 u32 *dbbuf_sq_ei;
191 u32 *dbbuf_cq_ei;
192 struct completion delete_done;
193};
194
195/*
196 * The nvme_iod describes the data in an I/O.
197 *
198 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
199 * to the actual struct scatterlist.
200 */
201struct nvme_iod {
202 struct nvme_request req;
203 struct nvme_queue *nvmeq;
204 bool use_sgl;
205 int aborted;
206 int npages; /* In the PRP list. 0 means small pool in use */
207 int nents; /* Used in scatterlist */
208 dma_addr_t first_dma;
209 unsigned int dma_len; /* length of single DMA segment mapping */
210 dma_addr_t meta_dma;
211 struct scatterlist *sg;
212};
213
214static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
215{
216 return dev->nr_allocated_queues * 8 * dev->db_stride;
217}
218
219static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
220{
221 unsigned int mem_size = nvme_dbbuf_size(dev);
222
223 if (dev->dbbuf_dbs)
224 return 0;
225
226 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
227 &dev->dbbuf_dbs_dma_addr,
228 GFP_KERNEL);
229 if (!dev->dbbuf_dbs)
230 return -ENOMEM;
231 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
232 &dev->dbbuf_eis_dma_addr,
233 GFP_KERNEL);
234 if (!dev->dbbuf_eis) {
235 dma_free_coherent(dev->dev, mem_size,
236 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
237 dev->dbbuf_dbs = NULL;
238 return -ENOMEM;
239 }
240
241 return 0;
242}
243
244static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
245{
246 unsigned int mem_size = nvme_dbbuf_size(dev);
247
248 if (dev->dbbuf_dbs) {
249 dma_free_coherent(dev->dev, mem_size,
250 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
251 dev->dbbuf_dbs = NULL;
252 }
253 if (dev->dbbuf_eis) {
254 dma_free_coherent(dev->dev, mem_size,
255 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
256 dev->dbbuf_eis = NULL;
257 }
258}
259
260static void nvme_dbbuf_init(struct nvme_dev *dev,
261 struct nvme_queue *nvmeq, int qid)
262{
263 if (!dev->dbbuf_dbs || !qid)
264 return;
265
266 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
267 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
268 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
269 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
270}
271
272static void nvme_dbbuf_set(struct nvme_dev *dev)
273{
274 struct nvme_command c;
275
276 if (!dev->dbbuf_dbs)
277 return;
278
279 memset(&c, 0, sizeof(c));
280 c.dbbuf.opcode = nvme_admin_dbbuf;
281 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
282 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
283
284 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
285 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
286 /* Free memory and continue on */
287 nvme_dbbuf_dma_free(dev);
288 }
289}
290
291static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
292{
293 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
294}
295
296/* Update dbbuf and return true if an MMIO is required */
297static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
298 volatile u32 *dbbuf_ei)
299{
300 if (dbbuf_db) {
301 u16 old_value;
302
303 /*
304 * Ensure that the queue is written before updating
305 * the doorbell in memory
306 */
307 wmb();
308
309 old_value = *dbbuf_db;
310 *dbbuf_db = value;
311
312 /*
313 * Ensure that the doorbell is updated before reading the event
314 * index from memory. The controller needs to provide similar
315 * ordering to ensure the envent index is updated before reading
316 * the doorbell.
317 */
318 mb();
319
320 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
321 return false;
322 }
323
324 return true;
325}
326
327/*
328 * Will slightly overestimate the number of pages needed. This is OK
329 * as it only leads to a small amount of wasted memory for the lifetime of
330 * the I/O.
331 */
332static int nvme_npages(unsigned size, struct nvme_dev *dev)
333{
334 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
335 dev->ctrl.page_size);
336 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
337}
338
339/*
340 * Calculates the number of pages needed for the SGL segments. For example a 4k
341 * page can accommodate 256 SGL descriptors.
342 */
343static int nvme_pci_npages_sgl(unsigned int num_seg)
344{
345 return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
346}
347
348static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
349 unsigned int size, unsigned int nseg, bool use_sgl)
350{
351 size_t alloc_size;
352
353 if (use_sgl)
354 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
355 else
356 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
357
358 return alloc_size + sizeof(struct scatterlist) * nseg;
359}
360
361static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
362 unsigned int hctx_idx)
363{
364 struct nvme_dev *dev = data;
365 struct nvme_queue *nvmeq = &dev->queues[0];
366
367 WARN_ON(hctx_idx != 0);
368 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
369
370 hctx->driver_data = nvmeq;
371 return 0;
372}
373
374static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
375 unsigned int hctx_idx)
376{
377 struct nvme_dev *dev = data;
378 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
379
380 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
381 hctx->driver_data = nvmeq;
382 return 0;
383}
384
385static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
386 unsigned int hctx_idx, unsigned int numa_node)
387{
388 struct nvme_dev *dev = set->driver_data;
389 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
390 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
391 struct nvme_queue *nvmeq = &dev->queues[queue_idx];
392
393 BUG_ON(!nvmeq);
394 iod->nvmeq = nvmeq;
395
396 nvme_req(req)->ctrl = &dev->ctrl;
397 return 0;
398}
399
400static int queue_irq_offset(struct nvme_dev *dev)
401{
402 /* if we have more than 1 vec, admin queue offsets us by 1 */
403 if (dev->num_vecs > 1)
404 return 1;
405
406 return 0;
407}
408
409static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
410{
411 struct nvme_dev *dev = set->driver_data;
412 int i, qoff, offset;
413
414 offset = queue_irq_offset(dev);
415 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
416 struct blk_mq_queue_map *map = &set->map[i];
417
418 map->nr_queues = dev->io_queues[i];
419 if (!map->nr_queues) {
420 BUG_ON(i == HCTX_TYPE_DEFAULT);
421 continue;
422 }
423
424 /*
425 * The poll queue(s) doesn't have an IRQ (and hence IRQ
426 * affinity), so use the regular blk-mq cpu mapping
427 */
428 map->queue_offset = qoff;
429 if (i != HCTX_TYPE_POLL && offset)
430 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
431 else
432 blk_mq_map_queues(map);
433 qoff += map->nr_queues;
434 offset += map->nr_queues;
435 }
436
437 return 0;
438}
439
440static inline void nvme_write_sq_db(struct nvme_queue *nvmeq)
441{
442 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
443 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
444 writel(nvmeq->sq_tail, nvmeq->q_db);
445}
446
447/**
448 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
449 * @nvmeq: The queue to use
450 * @cmd: The command to send
451 * @write_sq: whether to write to the SQ doorbell
452 */
453static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
454 bool write_sq)
455{
456 spin_lock(&nvmeq->sq_lock);
457 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
458 cmd, sizeof(*cmd));
459 if (++nvmeq->sq_tail == nvmeq->q_depth)
460 nvmeq->sq_tail = 0;
461 if (write_sq)
462 nvme_write_sq_db(nvmeq);
463 spin_unlock(&nvmeq->sq_lock);
464}
465
466static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
467{
468 struct nvme_queue *nvmeq = hctx->driver_data;
469
470 spin_lock(&nvmeq->sq_lock);
471 nvme_write_sq_db(nvmeq);
472 spin_unlock(&nvmeq->sq_lock);
473}
474
475static void **nvme_pci_iod_list(struct request *req)
476{
477 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
478 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
479}
480
481static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
482{
483 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
484 int nseg = blk_rq_nr_phys_segments(req);
485 unsigned int avg_seg_size;
486
487 if (nseg == 0)
488 return false;
489
490 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
491
492 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
493 return false;
494 if (!iod->nvmeq->qid)
495 return false;
496 if (!sgl_threshold || avg_seg_size < sgl_threshold)
497 return false;
498 return true;
499}
500
501static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
502{
503 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
504 const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
505 dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
506 int i;
507
508 if (iod->dma_len) {
509 dma_unmap_page(dev->dev, dma_addr, iod->dma_len,
510 rq_dma_dir(req));
511 return;
512 }
513
514 WARN_ON_ONCE(!iod->nents);
515
516 if (is_pci_p2pdma_page(sg_page(iod->sg)))
517 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
518 rq_dma_dir(req));
519 else
520 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
521
522
523 if (iod->npages == 0)
524 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
525 dma_addr);
526
527 for (i = 0; i < iod->npages; i++) {
528 void *addr = nvme_pci_iod_list(req)[i];
529
530 if (iod->use_sgl) {
531 struct nvme_sgl_desc *sg_list = addr;
532
533 next_dma_addr =
534 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
535 } else {
536 __le64 *prp_list = addr;
537
538 next_dma_addr = le64_to_cpu(prp_list[last_prp]);
539 }
540
541 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
542 dma_addr = next_dma_addr;
543 }
544
545 mempool_free(iod->sg, dev->iod_mempool);
546}
547
548static void nvme_print_sgl(struct scatterlist *sgl, int nents)
549{
550 int i;
551 struct scatterlist *sg;
552
553 for_each_sg(sgl, sg, nents, i) {
554 dma_addr_t phys = sg_phys(sg);
555 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
556 "dma_address:%pad dma_length:%d\n",
557 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
558 sg_dma_len(sg));
559 }
560}
561
562static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
563 struct request *req, struct nvme_rw_command *cmnd)
564{
565 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
566 struct dma_pool *pool;
567 int length = blk_rq_payload_bytes(req);
568 struct scatterlist *sg = iod->sg;
569 int dma_len = sg_dma_len(sg);
570 u64 dma_addr = sg_dma_address(sg);
571 u32 page_size = dev->ctrl.page_size;
572 int offset = dma_addr & (page_size - 1);
573 __le64 *prp_list;
574 void **list = nvme_pci_iod_list(req);
575 dma_addr_t prp_dma;
576 int nprps, i;
577
578 length -= (page_size - offset);
579 if (length <= 0) {
580 iod->first_dma = 0;
581 goto done;
582 }
583
584 dma_len -= (page_size - offset);
585 if (dma_len) {
586 dma_addr += (page_size - offset);
587 } else {
588 sg = sg_next(sg);
589 dma_addr = sg_dma_address(sg);
590 dma_len = sg_dma_len(sg);
591 }
592
593 if (length <= page_size) {
594 iod->first_dma = dma_addr;
595 goto done;
596 }
597
598 nprps = DIV_ROUND_UP(length, page_size);
599 if (nprps <= (256 / 8)) {
600 pool = dev->prp_small_pool;
601 iod->npages = 0;
602 } else {
603 pool = dev->prp_page_pool;
604 iod->npages = 1;
605 }
606
607 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
608 if (!prp_list) {
609 iod->first_dma = dma_addr;
610 iod->npages = -1;
611 return BLK_STS_RESOURCE;
612 }
613 list[0] = prp_list;
614 iod->first_dma = prp_dma;
615 i = 0;
616 for (;;) {
617 if (i == page_size >> 3) {
618 __le64 *old_prp_list = prp_list;
619 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
620 if (!prp_list)
621 return BLK_STS_RESOURCE;
622 list[iod->npages++] = prp_list;
623 prp_list[0] = old_prp_list[i - 1];
624 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
625 i = 1;
626 }
627 prp_list[i++] = cpu_to_le64(dma_addr);
628 dma_len -= page_size;
629 dma_addr += page_size;
630 length -= page_size;
631 if (length <= 0)
632 break;
633 if (dma_len > 0)
634 continue;
635 if (unlikely(dma_len < 0))
636 goto bad_sgl;
637 sg = sg_next(sg);
638 dma_addr = sg_dma_address(sg);
639 dma_len = sg_dma_len(sg);
640 }
641
642done:
643 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
644 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
645
646 return BLK_STS_OK;
647
648 bad_sgl:
649 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
650 "Invalid SGL for payload:%d nents:%d\n",
651 blk_rq_payload_bytes(req), iod->nents);
652 return BLK_STS_IOERR;
653}
654
655static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
656 struct scatterlist *sg)
657{
658 sge->addr = cpu_to_le64(sg_dma_address(sg));
659 sge->length = cpu_to_le32(sg_dma_len(sg));
660 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
661}
662
663static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
664 dma_addr_t dma_addr, int entries)
665{
666 sge->addr = cpu_to_le64(dma_addr);
667 if (entries < SGES_PER_PAGE) {
668 sge->length = cpu_to_le32(entries * sizeof(*sge));
669 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
670 } else {
671 sge->length = cpu_to_le32(PAGE_SIZE);
672 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
673 }
674}
675
676static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
677 struct request *req, struct nvme_rw_command *cmd, int entries)
678{
679 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
680 struct dma_pool *pool;
681 struct nvme_sgl_desc *sg_list;
682 struct scatterlist *sg = iod->sg;
683 dma_addr_t sgl_dma;
684 int i = 0;
685
686 /* setting the transfer type as SGL */
687 cmd->flags = NVME_CMD_SGL_METABUF;
688
689 if (entries == 1) {
690 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
691 return BLK_STS_OK;
692 }
693
694 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
695 pool = dev->prp_small_pool;
696 iod->npages = 0;
697 } else {
698 pool = dev->prp_page_pool;
699 iod->npages = 1;
700 }
701
702 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
703 if (!sg_list) {
704 iod->npages = -1;
705 return BLK_STS_RESOURCE;
706 }
707
708 nvme_pci_iod_list(req)[0] = sg_list;
709 iod->first_dma = sgl_dma;
710
711 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
712
713 do {
714 if (i == SGES_PER_PAGE) {
715 struct nvme_sgl_desc *old_sg_desc = sg_list;
716 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
717
718 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
719 if (!sg_list)
720 return BLK_STS_RESOURCE;
721
722 i = 0;
723 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
724 sg_list[i++] = *link;
725 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
726 }
727
728 nvme_pci_sgl_set_data(&sg_list[i++], sg);
729 sg = sg_next(sg);
730 } while (--entries > 0);
731
732 return BLK_STS_OK;
733}
734
735static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
736 struct request *req, struct nvme_rw_command *cmnd,
737 struct bio_vec *bv)
738{
739 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
740 unsigned int offset = bv->bv_offset & (dev->ctrl.page_size - 1);
741 unsigned int first_prp_len = dev->ctrl.page_size - offset;
742
743 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
744 if (dma_mapping_error(dev->dev, iod->first_dma))
745 return BLK_STS_RESOURCE;
746 iod->dma_len = bv->bv_len;
747
748 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
749 if (bv->bv_len > first_prp_len)
750 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
751 return 0;
752}
753
754static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
755 struct request *req, struct nvme_rw_command *cmnd,
756 struct bio_vec *bv)
757{
758 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
759
760 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
761 if (dma_mapping_error(dev->dev, iod->first_dma))
762 return BLK_STS_RESOURCE;
763 iod->dma_len = bv->bv_len;
764
765 cmnd->flags = NVME_CMD_SGL_METABUF;
766 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
767 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
768 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
769 return 0;
770}
771
772static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
773 struct nvme_command *cmnd)
774{
775 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
776 blk_status_t ret = BLK_STS_RESOURCE;
777 int nr_mapped;
778
779 if (blk_rq_nr_phys_segments(req) == 1) {
780 struct bio_vec bv = req_bvec(req);
781
782 if (!is_pci_p2pdma_page(bv.bv_page)) {
783 if (bv.bv_offset + bv.bv_len <= dev->ctrl.page_size * 2)
784 return nvme_setup_prp_simple(dev, req,
785 &cmnd->rw, &bv);
786
787 if (iod->nvmeq->qid &&
788 dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
789 return nvme_setup_sgl_simple(dev, req,
790 &cmnd->rw, &bv);
791 }
792 }
793
794 iod->dma_len = 0;
795 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
796 if (!iod->sg)
797 return BLK_STS_RESOURCE;
798 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
799 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
800 if (!iod->nents)
801 goto out;
802
803 if (is_pci_p2pdma_page(sg_page(iod->sg)))
804 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
805 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
806 else
807 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
808 rq_dma_dir(req), DMA_ATTR_NO_WARN);
809 if (!nr_mapped)
810 goto out;
811
812 iod->use_sgl = nvme_pci_use_sgls(dev, req);
813 if (iod->use_sgl)
814 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
815 else
816 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
817out:
818 if (ret != BLK_STS_OK)
819 nvme_unmap_data(dev, req);
820 return ret;
821}
822
823static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
824 struct nvme_command *cmnd)
825{
826 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
827
828 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
829 rq_dma_dir(req), 0);
830 if (dma_mapping_error(dev->dev, iod->meta_dma))
831 return BLK_STS_IOERR;
832 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
833 return 0;
834}
835
836/*
837 * NOTE: ns is NULL when called on the admin queue.
838 */
839static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
840 const struct blk_mq_queue_data *bd)
841{
842 struct nvme_ns *ns = hctx->queue->queuedata;
843 struct nvme_queue *nvmeq = hctx->driver_data;
844 struct nvme_dev *dev = nvmeq->dev;
845 struct request *req = bd->rq;
846 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
847 struct nvme_command cmnd;
848 blk_status_t ret;
849
850 iod->aborted = 0;
851 iod->npages = -1;
852 iod->nents = 0;
853
854 /*
855 * We should not need to do this, but we're still using this to
856 * ensure we can drain requests on a dying queue.
857 */
858 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
859 return BLK_STS_IOERR;
860
861 ret = nvme_setup_cmd(ns, req, &cmnd);
862 if (ret)
863 return ret;
864
865 if (blk_rq_nr_phys_segments(req)) {
866 ret = nvme_map_data(dev, req, &cmnd);
867 if (ret)
868 goto out_free_cmd;
869 }
870
871 if (blk_integrity_rq(req)) {
872 ret = nvme_map_metadata(dev, req, &cmnd);
873 if (ret)
874 goto out_unmap_data;
875 }
876
877 blk_mq_start_request(req);
878 nvme_submit_cmd(nvmeq, &cmnd, bd->last);
879 return BLK_STS_OK;
880out_unmap_data:
881 nvme_unmap_data(dev, req);
882out_free_cmd:
883 nvme_cleanup_cmd(req);
884 return ret;
885}
886
887static void nvme_pci_complete_rq(struct request *req)
888{
889 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
890 struct nvme_dev *dev = iod->nvmeq->dev;
891
892 if (blk_integrity_rq(req))
893 dma_unmap_page(dev->dev, iod->meta_dma,
894 rq_integrity_vec(req)->bv_len, rq_data_dir(req));
895 if (blk_rq_nr_phys_segments(req))
896 nvme_unmap_data(dev, req);
897 nvme_complete_rq(req);
898}
899
900/* We read the CQE phase first to check if the rest of the entry is valid */
901static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
902{
903 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
904
905 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
906}
907
908static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
909{
910 u16 head = nvmeq->cq_head;
911
912 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
913 nvmeq->dbbuf_cq_ei))
914 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
915}
916
917static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
918{
919 if (!nvmeq->qid)
920 return nvmeq->dev->admin_tagset.tags[0];
921 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
922}
923
924static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
925{
926 struct nvme_completion *cqe = &nvmeq->cqes[idx];
927 struct request *req;
928
929 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
930 dev_warn(nvmeq->dev->ctrl.device,
931 "invalid id %d completed on queue %d\n",
932 cqe->command_id, le16_to_cpu(cqe->sq_id));
933 return;
934 }
935
936 /*
937 * AEN requests are special as they don't time out and can
938 * survive any kind of queue freeze and often don't respond to
939 * aborts. We don't even bother to allocate a struct request
940 * for them but rather special case them here.
941 */
942 if (unlikely(nvme_is_aen_req(nvmeq->qid, cqe->command_id))) {
943 nvme_complete_async_event(&nvmeq->dev->ctrl,
944 cqe->status, &cqe->result);
945 return;
946 }
947
948 req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), cqe->command_id);
949 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
950 nvme_end_request(req, cqe->status, cqe->result);
951}
952
953static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
954{
955 u16 tmp = nvmeq->cq_head + 1;
956
957 if (tmp == nvmeq->q_depth) {
958 nvmeq->cq_head = 0;
959 nvmeq->cq_phase ^= 1;
960 } else {
961 nvmeq->cq_head = tmp;
962 }
963}
964
965static inline int nvme_process_cq(struct nvme_queue *nvmeq)
966{
967 int found = 0;
968
969 while (nvme_cqe_pending(nvmeq)) {
970 found++;
971 nvme_handle_cqe(nvmeq, nvmeq->cq_head);
972 nvme_update_cq_head(nvmeq);
973 }
974
975 if (found)
976 nvme_ring_cq_doorbell(nvmeq);
977 return found;
978}
979
980static irqreturn_t nvme_irq(int irq, void *data)
981{
982 struct nvme_queue *nvmeq = data;
983 irqreturn_t ret = IRQ_NONE;
984
985 /*
986 * The rmb/wmb pair ensures we see all updates from a previous run of
987 * the irq handler, even if that was on another CPU.
988 */
989 rmb();
990 if (nvme_process_cq(nvmeq))
991 ret = IRQ_HANDLED;
992 wmb();
993
994 return ret;
995}
996
997static irqreturn_t nvme_irq_check(int irq, void *data)
998{
999 struct nvme_queue *nvmeq = data;
1000 if (nvme_cqe_pending(nvmeq))
1001 return IRQ_WAKE_THREAD;
1002 return IRQ_NONE;
1003}
1004
1005/*
1006 * Poll for completions for any interrupt driven queue
1007 * Can be called from any context.
1008 */
1009static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1010{
1011 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1012
1013 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1014
1015 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1016 nvme_process_cq(nvmeq);
1017 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1018}
1019
1020static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1021{
1022 struct nvme_queue *nvmeq = hctx->driver_data;
1023 bool found;
1024
1025 if (!nvme_cqe_pending(nvmeq))
1026 return 0;
1027
1028 spin_lock(&nvmeq->cq_poll_lock);
1029 found = nvme_process_cq(nvmeq);
1030 spin_unlock(&nvmeq->cq_poll_lock);
1031
1032 return found;
1033}
1034
1035static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1036{
1037 struct nvme_dev *dev = to_nvme_dev(ctrl);
1038 struct nvme_queue *nvmeq = &dev->queues[0];
1039 struct nvme_command c;
1040
1041 memset(&c, 0, sizeof(c));
1042 c.common.opcode = nvme_admin_async_event;
1043 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1044 nvme_submit_cmd(nvmeq, &c, true);
1045}
1046
1047static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1048{
1049 struct nvme_command c;
1050
1051 memset(&c, 0, sizeof(c));
1052 c.delete_queue.opcode = opcode;
1053 c.delete_queue.qid = cpu_to_le16(id);
1054
1055 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1056}
1057
1058static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1059 struct nvme_queue *nvmeq, s16 vector)
1060{
1061 struct nvme_command c;
1062 int flags = NVME_QUEUE_PHYS_CONTIG;
1063
1064 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1065 flags |= NVME_CQ_IRQ_ENABLED;
1066
1067 /*
1068 * Note: we (ab)use the fact that the prp fields survive if no data
1069 * is attached to the request.
1070 */
1071 memset(&c, 0, sizeof(c));
1072 c.create_cq.opcode = nvme_admin_create_cq;
1073 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1074 c.create_cq.cqid = cpu_to_le16(qid);
1075 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1076 c.create_cq.cq_flags = cpu_to_le16(flags);
1077 c.create_cq.irq_vector = cpu_to_le16(vector);
1078
1079 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1080}
1081
1082static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1083 struct nvme_queue *nvmeq)
1084{
1085 struct nvme_ctrl *ctrl = &dev->ctrl;
1086 struct nvme_command c;
1087 int flags = NVME_QUEUE_PHYS_CONTIG;
1088
1089 /*
1090 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1091 * set. Since URGENT priority is zeroes, it makes all queues
1092 * URGENT.
1093 */
1094 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1095 flags |= NVME_SQ_PRIO_MEDIUM;
1096
1097 /*
1098 * Note: we (ab)use the fact that the prp fields survive if no data
1099 * is attached to the request.
1100 */
1101 memset(&c, 0, sizeof(c));
1102 c.create_sq.opcode = nvme_admin_create_sq;
1103 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1104 c.create_sq.sqid = cpu_to_le16(qid);
1105 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1106 c.create_sq.sq_flags = cpu_to_le16(flags);
1107 c.create_sq.cqid = cpu_to_le16(qid);
1108
1109 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1110}
1111
1112static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1113{
1114 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1115}
1116
1117static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1118{
1119 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1120}
1121
1122static void abort_endio(struct request *req, blk_status_t error)
1123{
1124 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1125 struct nvme_queue *nvmeq = iod->nvmeq;
1126
1127 dev_warn(nvmeq->dev->ctrl.device,
1128 "Abort status: 0x%x", nvme_req(req)->status);
1129 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1130 blk_mq_free_request(req);
1131}
1132
1133static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1134{
1135
1136 /* If true, indicates loss of adapter communication, possibly by a
1137 * NVMe Subsystem reset.
1138 */
1139 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1140
1141 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1142 switch (dev->ctrl.state) {
1143 case NVME_CTRL_RESETTING:
1144 case NVME_CTRL_CONNECTING:
1145 return false;
1146 default:
1147 break;
1148 }
1149
1150 /* We shouldn't reset unless the controller is on fatal error state
1151 * _or_ if we lost the communication with it.
1152 */
1153 if (!(csts & NVME_CSTS_CFS) && !nssro)
1154 return false;
1155
1156 return true;
1157}
1158
1159static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1160{
1161 /* Read a config register to help see what died. */
1162 u16 pci_status;
1163 int result;
1164
1165 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1166 &pci_status);
1167 if (result == PCIBIOS_SUCCESSFUL)
1168 dev_warn(dev->ctrl.device,
1169 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1170 csts, pci_status);
1171 else
1172 dev_warn(dev->ctrl.device,
1173 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1174 csts, result);
1175}
1176
1177static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1178{
1179 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1180 struct nvme_queue *nvmeq = iod->nvmeq;
1181 struct nvme_dev *dev = nvmeq->dev;
1182 struct request *abort_req;
1183 struct nvme_command cmd;
1184 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1185
1186 /* If PCI error recovery process is happening, we cannot reset or
1187 * the recovery mechanism will surely fail.
1188 */
1189 mb();
1190 if (pci_channel_offline(to_pci_dev(dev->dev)))
1191 return BLK_EH_RESET_TIMER;
1192
1193 /*
1194 * Reset immediately if the controller is failed
1195 */
1196 if (nvme_should_reset(dev, csts)) {
1197 nvme_warn_reset(dev, csts);
1198 nvme_dev_disable(dev, false);
1199 nvme_reset_ctrl(&dev->ctrl);
1200 return BLK_EH_DONE;
1201 }
1202
1203 /*
1204 * Did we miss an interrupt?
1205 */
1206 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1207 nvme_poll(req->mq_hctx);
1208 else
1209 nvme_poll_irqdisable(nvmeq);
1210
1211 if (blk_mq_request_completed(req)) {
1212 dev_warn(dev->ctrl.device,
1213 "I/O %d QID %d timeout, completion polled\n",
1214 req->tag, nvmeq->qid);
1215 return BLK_EH_DONE;
1216 }
1217
1218 /*
1219 * Shutdown immediately if controller times out while starting. The
1220 * reset work will see the pci device disabled when it gets the forced
1221 * cancellation error. All outstanding requests are completed on
1222 * shutdown, so we return BLK_EH_DONE.
1223 */
1224 switch (dev->ctrl.state) {
1225 case NVME_CTRL_CONNECTING:
1226 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1227 /* fall through */
1228 case NVME_CTRL_DELETING:
1229 dev_warn_ratelimited(dev->ctrl.device,
1230 "I/O %d QID %d timeout, disable controller\n",
1231 req->tag, nvmeq->qid);
1232 nvme_dev_disable(dev, true);
1233 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1234 return BLK_EH_DONE;
1235 case NVME_CTRL_RESETTING:
1236 return BLK_EH_RESET_TIMER;
1237 default:
1238 break;
1239 }
1240
1241 /*
1242 * Shutdown the controller immediately and schedule a reset if the
1243 * command was already aborted once before and still hasn't been
1244 * returned to the driver, or if this is the admin queue.
1245 */
1246 if (!nvmeq->qid || iod->aborted) {
1247 dev_warn(dev->ctrl.device,
1248 "I/O %d QID %d timeout, reset controller\n",
1249 req->tag, nvmeq->qid);
1250 nvme_dev_disable(dev, false);
1251 nvme_reset_ctrl(&dev->ctrl);
1252
1253 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1254 return BLK_EH_DONE;
1255 }
1256
1257 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1258 atomic_inc(&dev->ctrl.abort_limit);
1259 return BLK_EH_RESET_TIMER;
1260 }
1261 iod->aborted = 1;
1262
1263 memset(&cmd, 0, sizeof(cmd));
1264 cmd.abort.opcode = nvme_admin_abort_cmd;
1265 cmd.abort.cid = req->tag;
1266 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1267
1268 dev_warn(nvmeq->dev->ctrl.device,
1269 "I/O %d QID %d timeout, aborting\n",
1270 req->tag, nvmeq->qid);
1271
1272 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1273 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1274 if (IS_ERR(abort_req)) {
1275 atomic_inc(&dev->ctrl.abort_limit);
1276 return BLK_EH_RESET_TIMER;
1277 }
1278
1279 abort_req->timeout = ADMIN_TIMEOUT;
1280 abort_req->end_io_data = NULL;
1281 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1282
1283 /*
1284 * The aborted req will be completed on receiving the abort req.
1285 * We enable the timer again. If hit twice, it'll cause a device reset,
1286 * as the device then is in a faulty state.
1287 */
1288 return BLK_EH_RESET_TIMER;
1289}
1290
1291static void nvme_free_queue(struct nvme_queue *nvmeq)
1292{
1293 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1294 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1295 if (!nvmeq->sq_cmds)
1296 return;
1297
1298 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1299 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1300 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1301 } else {
1302 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1303 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1304 }
1305}
1306
1307static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1308{
1309 int i;
1310
1311 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1312 dev->ctrl.queue_count--;
1313 nvme_free_queue(&dev->queues[i]);
1314 }
1315}
1316
1317/**
1318 * nvme_suspend_queue - put queue into suspended state
1319 * @nvmeq: queue to suspend
1320 */
1321static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1322{
1323 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1324 return 1;
1325
1326 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1327 mb();
1328
1329 nvmeq->dev->online_queues--;
1330 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1331 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1332 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1333 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1334 return 0;
1335}
1336
1337static void nvme_suspend_io_queues(struct nvme_dev *dev)
1338{
1339 int i;
1340
1341 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1342 nvme_suspend_queue(&dev->queues[i]);
1343}
1344
1345static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1346{
1347 struct nvme_queue *nvmeq = &dev->queues[0];
1348
1349 if (shutdown)
1350 nvme_shutdown_ctrl(&dev->ctrl);
1351 else
1352 nvme_disable_ctrl(&dev->ctrl);
1353
1354 nvme_poll_irqdisable(nvmeq);
1355}
1356
1357/*
1358 * Called only on a device that has been disabled and after all other threads
1359 * that can check this device's completion queues have synced. This is the
1360 * last chance for the driver to see a natural completion before
1361 * nvme_cancel_request() terminates all incomplete requests.
1362 */
1363static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1364{
1365 int i;
1366
1367 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1368 nvme_process_cq(&dev->queues[i]);
1369}
1370
1371static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1372 int entry_size)
1373{
1374 int q_depth = dev->q_depth;
1375 unsigned q_size_aligned = roundup(q_depth * entry_size,
1376 dev->ctrl.page_size);
1377
1378 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1379 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1380 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1381 q_depth = div_u64(mem_per_q, entry_size);
1382
1383 /*
1384 * Ensure the reduced q_depth is above some threshold where it
1385 * would be better to map queues in system memory with the
1386 * original depth
1387 */
1388 if (q_depth < 64)
1389 return -ENOMEM;
1390 }
1391
1392 return q_depth;
1393}
1394
1395static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1396 int qid)
1397{
1398 struct pci_dev *pdev = to_pci_dev(dev->dev);
1399
1400 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1401 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1402 if (nvmeq->sq_cmds) {
1403 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1404 nvmeq->sq_cmds);
1405 if (nvmeq->sq_dma_addr) {
1406 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1407 return 0;
1408 }
1409
1410 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1411 }
1412 }
1413
1414 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1415 &nvmeq->sq_dma_addr, GFP_KERNEL);
1416 if (!nvmeq->sq_cmds)
1417 return -ENOMEM;
1418 return 0;
1419}
1420
1421static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1422{
1423 struct nvme_queue *nvmeq = &dev->queues[qid];
1424
1425 if (dev->ctrl.queue_count > qid)
1426 return 0;
1427
1428 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1429 nvmeq->q_depth = depth;
1430 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1431 &nvmeq->cq_dma_addr, GFP_KERNEL);
1432 if (!nvmeq->cqes)
1433 goto free_nvmeq;
1434
1435 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1436 goto free_cqdma;
1437
1438 nvmeq->dev = dev;
1439 spin_lock_init(&nvmeq->sq_lock);
1440 spin_lock_init(&nvmeq->cq_poll_lock);
1441 nvmeq->cq_head = 0;
1442 nvmeq->cq_phase = 1;
1443 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1444 nvmeq->qid = qid;
1445 dev->ctrl.queue_count++;
1446
1447 return 0;
1448
1449 free_cqdma:
1450 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1451 nvmeq->cq_dma_addr);
1452 free_nvmeq:
1453 return -ENOMEM;
1454}
1455
1456static int queue_request_irq(struct nvme_queue *nvmeq)
1457{
1458 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1459 int nr = nvmeq->dev->ctrl.instance;
1460
1461 if (use_threaded_interrupts) {
1462 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1463 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1464 } else {
1465 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1466 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1467 }
1468}
1469
1470static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1471{
1472 struct nvme_dev *dev = nvmeq->dev;
1473
1474 nvmeq->sq_tail = 0;
1475 nvmeq->cq_head = 0;
1476 nvmeq->cq_phase = 1;
1477 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1478 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1479 nvme_dbbuf_init(dev, nvmeq, qid);
1480 dev->online_queues++;
1481 wmb(); /* ensure the first interrupt sees the initialization */
1482}
1483
1484static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1485{
1486 struct nvme_dev *dev = nvmeq->dev;
1487 int result;
1488 u16 vector = 0;
1489
1490 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1491
1492 /*
1493 * A queue's vector matches the queue identifier unless the controller
1494 * has only one vector available.
1495 */
1496 if (!polled)
1497 vector = dev->num_vecs == 1 ? 0 : qid;
1498 else
1499 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1500
1501 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1502 if (result)
1503 return result;
1504
1505 result = adapter_alloc_sq(dev, qid, nvmeq);
1506 if (result < 0)
1507 return result;
1508 if (result)
1509 goto release_cq;
1510
1511 nvmeq->cq_vector = vector;
1512 nvme_init_queue(nvmeq, qid);
1513
1514 if (!polled) {
1515 result = queue_request_irq(nvmeq);
1516 if (result < 0)
1517 goto release_sq;
1518 }
1519
1520 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1521 return result;
1522
1523release_sq:
1524 dev->online_queues--;
1525 adapter_delete_sq(dev, qid);
1526release_cq:
1527 adapter_delete_cq(dev, qid);
1528 return result;
1529}
1530
1531static const struct blk_mq_ops nvme_mq_admin_ops = {
1532 .queue_rq = nvme_queue_rq,
1533 .complete = nvme_pci_complete_rq,
1534 .init_hctx = nvme_admin_init_hctx,
1535 .init_request = nvme_init_request,
1536 .timeout = nvme_timeout,
1537};
1538
1539static const struct blk_mq_ops nvme_mq_ops = {
1540 .queue_rq = nvme_queue_rq,
1541 .complete = nvme_pci_complete_rq,
1542 .commit_rqs = nvme_commit_rqs,
1543 .init_hctx = nvme_init_hctx,
1544 .init_request = nvme_init_request,
1545 .map_queues = nvme_pci_map_queues,
1546 .timeout = nvme_timeout,
1547 .poll = nvme_poll,
1548};
1549
1550static void nvme_dev_remove_admin(struct nvme_dev *dev)
1551{
1552 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1553 /*
1554 * If the controller was reset during removal, it's possible
1555 * user requests may be waiting on a stopped queue. Start the
1556 * queue to flush these to completion.
1557 */
1558 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1559 blk_cleanup_queue(dev->ctrl.admin_q);
1560 blk_mq_free_tag_set(&dev->admin_tagset);
1561 }
1562}
1563
1564static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1565{
1566 if (!dev->ctrl.admin_q) {
1567 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1568 dev->admin_tagset.nr_hw_queues = 1;
1569
1570 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1571 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1572 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1573 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1574 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1575 dev->admin_tagset.driver_data = dev;
1576
1577 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1578 return -ENOMEM;
1579 dev->ctrl.admin_tagset = &dev->admin_tagset;
1580
1581 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1582 if (IS_ERR(dev->ctrl.admin_q)) {
1583 blk_mq_free_tag_set(&dev->admin_tagset);
1584 return -ENOMEM;
1585 }
1586 if (!blk_get_queue(dev->ctrl.admin_q)) {
1587 nvme_dev_remove_admin(dev);
1588 dev->ctrl.admin_q = NULL;
1589 return -ENODEV;
1590 }
1591 } else
1592 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1593
1594 return 0;
1595}
1596
1597static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1598{
1599 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1600}
1601
1602static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1603{
1604 struct pci_dev *pdev = to_pci_dev(dev->dev);
1605
1606 if (size <= dev->bar_mapped_size)
1607 return 0;
1608 if (size > pci_resource_len(pdev, 0))
1609 return -ENOMEM;
1610 if (dev->bar)
1611 iounmap(dev->bar);
1612 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1613 if (!dev->bar) {
1614 dev->bar_mapped_size = 0;
1615 return -ENOMEM;
1616 }
1617 dev->bar_mapped_size = size;
1618 dev->dbs = dev->bar + NVME_REG_DBS;
1619
1620 return 0;
1621}
1622
1623static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1624{
1625 int result;
1626 u32 aqa;
1627 struct nvme_queue *nvmeq;
1628
1629 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1630 if (result < 0)
1631 return result;
1632
1633 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1634 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1635
1636 if (dev->subsystem &&
1637 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1638 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1639
1640 result = nvme_disable_ctrl(&dev->ctrl);
1641 if (result < 0)
1642 return result;
1643
1644 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1645 if (result)
1646 return result;
1647
1648 nvmeq = &dev->queues[0];
1649 aqa = nvmeq->q_depth - 1;
1650 aqa |= aqa << 16;
1651
1652 writel(aqa, dev->bar + NVME_REG_AQA);
1653 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1654 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1655
1656 result = nvme_enable_ctrl(&dev->ctrl);
1657 if (result)
1658 return result;
1659
1660 nvmeq->cq_vector = 0;
1661 nvme_init_queue(nvmeq, 0);
1662 result = queue_request_irq(nvmeq);
1663 if (result) {
1664 dev->online_queues--;
1665 return result;
1666 }
1667
1668 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1669 return result;
1670}
1671
1672static int nvme_create_io_queues(struct nvme_dev *dev)
1673{
1674 unsigned i, max, rw_queues;
1675 int ret = 0;
1676
1677 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1678 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1679 ret = -ENOMEM;
1680 break;
1681 }
1682 }
1683
1684 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1685 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1686 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1687 dev->io_queues[HCTX_TYPE_READ];
1688 } else {
1689 rw_queues = max;
1690 }
1691
1692 for (i = dev->online_queues; i <= max; i++) {
1693 bool polled = i > rw_queues;
1694
1695 ret = nvme_create_queue(&dev->queues[i], i, polled);
1696 if (ret)
1697 break;
1698 }
1699
1700 /*
1701 * Ignore failing Create SQ/CQ commands, we can continue with less
1702 * than the desired amount of queues, and even a controller without
1703 * I/O queues can still be used to issue admin commands. This might
1704 * be useful to upgrade a buggy firmware for example.
1705 */
1706 return ret >= 0 ? 0 : ret;
1707}
1708
1709static ssize_t nvme_cmb_show(struct device *dev,
1710 struct device_attribute *attr,
1711 char *buf)
1712{
1713 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1714
1715 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1716 ndev->cmbloc, ndev->cmbsz);
1717}
1718static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1719
1720static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1721{
1722 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1723
1724 return 1ULL << (12 + 4 * szu);
1725}
1726
1727static u32 nvme_cmb_size(struct nvme_dev *dev)
1728{
1729 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1730}
1731
1732static void nvme_map_cmb(struct nvme_dev *dev)
1733{
1734 u64 size, offset;
1735 resource_size_t bar_size;
1736 struct pci_dev *pdev = to_pci_dev(dev->dev);
1737 int bar;
1738
1739 if (dev->cmb_size)
1740 return;
1741
1742 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1743 if (!dev->cmbsz)
1744 return;
1745 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1746
1747 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1748 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1749 bar = NVME_CMB_BIR(dev->cmbloc);
1750 bar_size = pci_resource_len(pdev, bar);
1751
1752 if (offset > bar_size)
1753 return;
1754
1755 /*
1756 * Controllers may support a CMB size larger than their BAR,
1757 * for example, due to being behind a bridge. Reduce the CMB to
1758 * the reported size of the BAR
1759 */
1760 if (size > bar_size - offset)
1761 size = bar_size - offset;
1762
1763 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1764 dev_warn(dev->ctrl.device,
1765 "failed to register the CMB\n");
1766 return;
1767 }
1768
1769 dev->cmb_size = size;
1770 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1771
1772 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1773 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1774 pci_p2pmem_publish(pdev, true);
1775
1776 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1777 &dev_attr_cmb.attr, NULL))
1778 dev_warn(dev->ctrl.device,
1779 "failed to add sysfs attribute for CMB\n");
1780}
1781
1782static inline void nvme_release_cmb(struct nvme_dev *dev)
1783{
1784 if (dev->cmb_size) {
1785 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1786 &dev_attr_cmb.attr, NULL);
1787 dev->cmb_size = 0;
1788 }
1789}
1790
1791static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1792{
1793 u64 dma_addr = dev->host_mem_descs_dma;
1794 struct nvme_command c;
1795 int ret;
1796
1797 memset(&c, 0, sizeof(c));
1798 c.features.opcode = nvme_admin_set_features;
1799 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1800 c.features.dword11 = cpu_to_le32(bits);
1801 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1802 ilog2(dev->ctrl.page_size));
1803 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1804 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1805 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1806
1807 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1808 if (ret) {
1809 dev_warn(dev->ctrl.device,
1810 "failed to set host mem (err %d, flags %#x).\n",
1811 ret, bits);
1812 }
1813 return ret;
1814}
1815
1816static void nvme_free_host_mem(struct nvme_dev *dev)
1817{
1818 int i;
1819
1820 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1821 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1822 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1823
1824 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1825 le64_to_cpu(desc->addr),
1826 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1827 }
1828
1829 kfree(dev->host_mem_desc_bufs);
1830 dev->host_mem_desc_bufs = NULL;
1831 dma_free_coherent(dev->dev,
1832 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1833 dev->host_mem_descs, dev->host_mem_descs_dma);
1834 dev->host_mem_descs = NULL;
1835 dev->nr_host_mem_descs = 0;
1836}
1837
1838static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1839 u32 chunk_size)
1840{
1841 struct nvme_host_mem_buf_desc *descs;
1842 u32 max_entries, len;
1843 dma_addr_t descs_dma;
1844 int i = 0;
1845 void **bufs;
1846 u64 size, tmp;
1847
1848 tmp = (preferred + chunk_size - 1);
1849 do_div(tmp, chunk_size);
1850 max_entries = tmp;
1851
1852 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1853 max_entries = dev->ctrl.hmmaxd;
1854
1855 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1856 &descs_dma, GFP_KERNEL);
1857 if (!descs)
1858 goto out;
1859
1860 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1861 if (!bufs)
1862 goto out_free_descs;
1863
1864 for (size = 0; size < preferred && i < max_entries; size += len) {
1865 dma_addr_t dma_addr;
1866
1867 len = min_t(u64, chunk_size, preferred - size);
1868 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1869 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1870 if (!bufs[i])
1871 break;
1872
1873 descs[i].addr = cpu_to_le64(dma_addr);
1874 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1875 i++;
1876 }
1877
1878 if (!size)
1879 goto out_free_bufs;
1880
1881 dev->nr_host_mem_descs = i;
1882 dev->host_mem_size = size;
1883 dev->host_mem_descs = descs;
1884 dev->host_mem_descs_dma = descs_dma;
1885 dev->host_mem_desc_bufs = bufs;
1886 return 0;
1887
1888out_free_bufs:
1889 while (--i >= 0) {
1890 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1891
1892 dma_free_attrs(dev->dev, size, bufs[i],
1893 le64_to_cpu(descs[i].addr),
1894 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1895 }
1896
1897 kfree(bufs);
1898out_free_descs:
1899 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1900 descs_dma);
1901out:
1902 dev->host_mem_descs = NULL;
1903 return -ENOMEM;
1904}
1905
1906static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1907{
1908 u32 chunk_size;
1909
1910 /* start big and work our way down */
1911 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1912 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1913 chunk_size /= 2) {
1914 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1915 if (!min || dev->host_mem_size >= min)
1916 return 0;
1917 nvme_free_host_mem(dev);
1918 }
1919 }
1920
1921 return -ENOMEM;
1922}
1923
1924static int nvme_setup_host_mem(struct nvme_dev *dev)
1925{
1926 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1927 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1928 u64 min = (u64)dev->ctrl.hmmin * 4096;
1929 u32 enable_bits = NVME_HOST_MEM_ENABLE;
1930 int ret;
1931
1932 preferred = min(preferred, max);
1933 if (min > max) {
1934 dev_warn(dev->ctrl.device,
1935 "min host memory (%lld MiB) above limit (%d MiB).\n",
1936 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1937 nvme_free_host_mem(dev);
1938 return 0;
1939 }
1940
1941 /*
1942 * If we already have a buffer allocated check if we can reuse it.
1943 */
1944 if (dev->host_mem_descs) {
1945 if (dev->host_mem_size >= min)
1946 enable_bits |= NVME_HOST_MEM_RETURN;
1947 else
1948 nvme_free_host_mem(dev);
1949 }
1950
1951 if (!dev->host_mem_descs) {
1952 if (nvme_alloc_host_mem(dev, min, preferred)) {
1953 dev_warn(dev->ctrl.device,
1954 "failed to allocate host memory buffer.\n");
1955 return 0; /* controller must work without HMB */
1956 }
1957
1958 dev_info(dev->ctrl.device,
1959 "allocated %lld MiB host memory buffer.\n",
1960 dev->host_mem_size >> ilog2(SZ_1M));
1961 }
1962
1963 ret = nvme_set_host_mem(dev, enable_bits);
1964 if (ret)
1965 nvme_free_host_mem(dev);
1966 return ret;
1967}
1968
1969/*
1970 * nirqs is the number of interrupts available for write and read
1971 * queues. The core already reserved an interrupt for the admin queue.
1972 */
1973static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
1974{
1975 struct nvme_dev *dev = affd->priv;
1976 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
1977
1978 /*
1979 * If there is no interupt available for queues, ensure that
1980 * the default queue is set to 1. The affinity set size is
1981 * also set to one, but the irq core ignores it for this case.
1982 *
1983 * If only one interrupt is available or 'write_queue' == 0, combine
1984 * write and read queues.
1985 *
1986 * If 'write_queues' > 0, ensure it leaves room for at least one read
1987 * queue.
1988 */
1989 if (!nrirqs) {
1990 nrirqs = 1;
1991 nr_read_queues = 0;
1992 } else if (nrirqs == 1 || !nr_write_queues) {
1993 nr_read_queues = 0;
1994 } else if (nr_write_queues >= nrirqs) {
1995 nr_read_queues = 1;
1996 } else {
1997 nr_read_queues = nrirqs - nr_write_queues;
1998 }
1999
2000 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2001 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2002 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2003 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2004 affd->nr_sets = nr_read_queues ? 2 : 1;
2005}
2006
2007static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2008{
2009 struct pci_dev *pdev = to_pci_dev(dev->dev);
2010 struct irq_affinity affd = {
2011 .pre_vectors = 1,
2012 .calc_sets = nvme_calc_irq_sets,
2013 .priv = dev,
2014 };
2015 unsigned int irq_queues, this_p_queues;
2016
2017 /*
2018 * Poll queues don't need interrupts, but we need at least one IO
2019 * queue left over for non-polled IO.
2020 */
2021 this_p_queues = dev->nr_poll_queues;
2022 if (this_p_queues >= nr_io_queues) {
2023 this_p_queues = nr_io_queues - 1;
2024 irq_queues = 1;
2025 } else {
2026 irq_queues = nr_io_queues - this_p_queues + 1;
2027 }
2028 dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
2029
2030 /* Initialize for the single interrupt case */
2031 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2032 dev->io_queues[HCTX_TYPE_READ] = 0;
2033
2034 /*
2035 * Some Apple controllers require all queues to use the
2036 * first vector.
2037 */
2038 if (dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)
2039 irq_queues = 1;
2040
2041 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2042 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2043}
2044
2045static void nvme_disable_io_queues(struct nvme_dev *dev)
2046{
2047 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2048 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2049}
2050
2051static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2052{
2053 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2054}
2055
2056static int nvme_setup_io_queues(struct nvme_dev *dev)
2057{
2058 struct nvme_queue *adminq = &dev->queues[0];
2059 struct pci_dev *pdev = to_pci_dev(dev->dev);
2060 unsigned int nr_io_queues;
2061 unsigned long size;
2062 int result;
2063
2064 /*
2065 * Sample the module parameters once at reset time so that we have
2066 * stable values to work with.
2067 */
2068 dev->nr_write_queues = write_queues;
2069 dev->nr_poll_queues = poll_queues;
2070
2071 /*
2072 * If tags are shared with admin queue (Apple bug), then
2073 * make sure we only use one IO queue.
2074 */
2075 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2076 nr_io_queues = 1;
2077 else
2078 nr_io_queues = min(nvme_max_io_queues(dev),
2079 dev->nr_allocated_queues - 1);
2080
2081 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2082 if (result < 0)
2083 return result;
2084
2085 if (nr_io_queues == 0)
2086 return 0;
2087
2088 clear_bit(NVMEQ_ENABLED, &adminq->flags);
2089
2090 if (dev->cmb_use_sqes) {
2091 result = nvme_cmb_qdepth(dev, nr_io_queues,
2092 sizeof(struct nvme_command));
2093 if (result > 0)
2094 dev->q_depth = result;
2095 else
2096 dev->cmb_use_sqes = false;
2097 }
2098
2099 do {
2100 size = db_bar_size(dev, nr_io_queues);
2101 result = nvme_remap_bar(dev, size);
2102 if (!result)
2103 break;
2104 if (!--nr_io_queues)
2105 return -ENOMEM;
2106 } while (1);
2107 adminq->q_db = dev->dbs;
2108
2109 retry:
2110 /* Deregister the admin queue's interrupt */
2111 pci_free_irq(pdev, 0, adminq);
2112
2113 /*
2114 * If we enable msix early due to not intx, disable it again before
2115 * setting up the full range we need.
2116 */
2117 pci_free_irq_vectors(pdev);
2118
2119 result = nvme_setup_irqs(dev, nr_io_queues);
2120 if (result <= 0)
2121 return -EIO;
2122
2123 dev->num_vecs = result;
2124 result = max(result - 1, 1);
2125 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2126
2127 /*
2128 * Should investigate if there's a performance win from allocating
2129 * more queues than interrupt vectors; it might allow the submission
2130 * path to scale better, even if the receive path is limited by the
2131 * number of interrupts.
2132 */
2133 result = queue_request_irq(adminq);
2134 if (result)
2135 return result;
2136 set_bit(NVMEQ_ENABLED, &adminq->flags);
2137
2138 result = nvme_create_io_queues(dev);
2139 if (result || dev->online_queues < 2)
2140 return result;
2141
2142 if (dev->online_queues - 1 < dev->max_qid) {
2143 nr_io_queues = dev->online_queues - 1;
2144 nvme_disable_io_queues(dev);
2145 nvme_suspend_io_queues(dev);
2146 goto retry;
2147 }
2148 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2149 dev->io_queues[HCTX_TYPE_DEFAULT],
2150 dev->io_queues[HCTX_TYPE_READ],
2151 dev->io_queues[HCTX_TYPE_POLL]);
2152 return 0;
2153}
2154
2155static void nvme_del_queue_end(struct request *req, blk_status_t error)
2156{
2157 struct nvme_queue *nvmeq = req->end_io_data;
2158
2159 blk_mq_free_request(req);
2160 complete(&nvmeq->delete_done);
2161}
2162
2163static void nvme_del_cq_end(struct request *req, blk_status_t error)
2164{
2165 struct nvme_queue *nvmeq = req->end_io_data;
2166
2167 if (error)
2168 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2169
2170 nvme_del_queue_end(req, error);
2171}
2172
2173static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2174{
2175 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2176 struct request *req;
2177 struct nvme_command cmd;
2178
2179 memset(&cmd, 0, sizeof(cmd));
2180 cmd.delete_queue.opcode = opcode;
2181 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2182
2183 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2184 if (IS_ERR(req))
2185 return PTR_ERR(req);
2186
2187 req->timeout = ADMIN_TIMEOUT;
2188 req->end_io_data = nvmeq;
2189
2190 init_completion(&nvmeq->delete_done);
2191 blk_execute_rq_nowait(q, NULL, req, false,
2192 opcode == nvme_admin_delete_cq ?
2193 nvme_del_cq_end : nvme_del_queue_end);
2194 return 0;
2195}
2196
2197static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2198{
2199 int nr_queues = dev->online_queues - 1, sent = 0;
2200 unsigned long timeout;
2201
2202 retry:
2203 timeout = ADMIN_TIMEOUT;
2204 while (nr_queues > 0) {
2205 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2206 break;
2207 nr_queues--;
2208 sent++;
2209 }
2210 while (sent) {
2211 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2212
2213 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2214 timeout);
2215 if (timeout == 0)
2216 return false;
2217
2218 sent--;
2219 if (nr_queues)
2220 goto retry;
2221 }
2222 return true;
2223}
2224
2225static void nvme_dev_add(struct nvme_dev *dev)
2226{
2227 int ret;
2228
2229 if (!dev->ctrl.tagset) {
2230 dev->tagset.ops = &nvme_mq_ops;
2231 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2232 dev->tagset.nr_maps = 2; /* default + read */
2233 if (dev->io_queues[HCTX_TYPE_POLL])
2234 dev->tagset.nr_maps++;
2235 dev->tagset.timeout = NVME_IO_TIMEOUT;
2236 dev->tagset.numa_node = dev_to_node(dev->dev);
2237 dev->tagset.queue_depth =
2238 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2239 dev->tagset.cmd_size = sizeof(struct nvme_iod);
2240 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2241 dev->tagset.driver_data = dev;
2242
2243 /*
2244 * Some Apple controllers requires tags to be unique
2245 * across admin and IO queue, so reserve the first 32
2246 * tags of the IO queue.
2247 */
2248 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2249 dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2250
2251 ret = blk_mq_alloc_tag_set(&dev->tagset);
2252 if (ret) {
2253 dev_warn(dev->ctrl.device,
2254 "IO queues tagset allocation failed %d\n", ret);
2255 return;
2256 }
2257 dev->ctrl.tagset = &dev->tagset;
2258 } else {
2259 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2260
2261 /* Free previously allocated queues that are no longer usable */
2262 nvme_free_queues(dev, dev->online_queues);
2263 }
2264
2265 nvme_dbbuf_set(dev);
2266}
2267
2268static int nvme_pci_enable(struct nvme_dev *dev)
2269{
2270 int result = -ENOMEM;
2271 struct pci_dev *pdev = to_pci_dev(dev->dev);
2272
2273 if (pci_enable_device_mem(pdev))
2274 return result;
2275
2276 pci_set_master(pdev);
2277
2278 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
2279 goto disable;
2280
2281 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2282 result = -ENODEV;
2283 goto disable;
2284 }
2285
2286 /*
2287 * Some devices and/or platforms don't advertise or work with INTx
2288 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2289 * adjust this later.
2290 */
2291 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2292 if (result < 0)
2293 return result;
2294
2295 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2296
2297 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2298 io_queue_depth);
2299 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2300 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2301 dev->dbs = dev->bar + 4096;
2302
2303 /*
2304 * Some Apple controllers require a non-standard SQE size.
2305 * Interestingly they also seem to ignore the CC:IOSQES register
2306 * so we don't bother updating it here.
2307 */
2308 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2309 dev->io_sqes = 7;
2310 else
2311 dev->io_sqes = NVME_NVM_IOSQES;
2312
2313 /*
2314 * Temporary fix for the Apple controller found in the MacBook8,1 and
2315 * some MacBook7,1 to avoid controller resets and data loss.
2316 */
2317 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2318 dev->q_depth = 2;
2319 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2320 "set queue depth=%u to work around controller resets\n",
2321 dev->q_depth);
2322 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2323 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2324 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2325 dev->q_depth = 64;
2326 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2327 "set queue depth=%u\n", dev->q_depth);
2328 }
2329
2330 /*
2331 * Controllers with the shared tags quirk need the IO queue to be
2332 * big enough so that we get 32 tags for the admin queue
2333 */
2334 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2335 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2336 dev->q_depth = NVME_AQ_DEPTH + 2;
2337 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2338 dev->q_depth);
2339 }
2340
2341
2342 nvme_map_cmb(dev);
2343
2344 pci_enable_pcie_error_reporting(pdev);
2345 pci_save_state(pdev);
2346 return 0;
2347
2348 disable:
2349 pci_disable_device(pdev);
2350 return result;
2351}
2352
2353static void nvme_dev_unmap(struct nvme_dev *dev)
2354{
2355 if (dev->bar)
2356 iounmap(dev->bar);
2357 pci_release_mem_regions(to_pci_dev(dev->dev));
2358}
2359
2360static void nvme_pci_disable(struct nvme_dev *dev)
2361{
2362 struct pci_dev *pdev = to_pci_dev(dev->dev);
2363
2364 pci_free_irq_vectors(pdev);
2365
2366 if (pci_is_enabled(pdev)) {
2367 pci_disable_pcie_error_reporting(pdev);
2368 pci_disable_device(pdev);
2369 }
2370}
2371
2372static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2373{
2374 bool dead = true, freeze = false;
2375 struct pci_dev *pdev = to_pci_dev(dev->dev);
2376
2377 mutex_lock(&dev->shutdown_lock);
2378 if (pci_is_enabled(pdev)) {
2379 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2380
2381 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2382 dev->ctrl.state == NVME_CTRL_RESETTING) {
2383 freeze = true;
2384 nvme_start_freeze(&dev->ctrl);
2385 }
2386 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2387 pdev->error_state != pci_channel_io_normal);
2388 }
2389
2390 /*
2391 * Give the controller a chance to complete all entered requests if
2392 * doing a safe shutdown.
2393 */
2394 if (!dead && shutdown && freeze)
2395 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2396
2397 nvme_stop_queues(&dev->ctrl);
2398
2399 if (!dead && dev->ctrl.queue_count > 0) {
2400 nvme_disable_io_queues(dev);
2401 nvme_disable_admin_queue(dev, shutdown);
2402 }
2403 nvme_suspend_io_queues(dev);
2404 nvme_suspend_queue(&dev->queues[0]);
2405 nvme_pci_disable(dev);
2406 nvme_reap_pending_cqes(dev);
2407
2408 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2409 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2410 blk_mq_tagset_wait_completed_request(&dev->tagset);
2411 blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2412
2413 /*
2414 * The driver will not be starting up queues again if shutting down so
2415 * must flush all entered requests to their failed completion to avoid
2416 * deadlocking blk-mq hot-cpu notifier.
2417 */
2418 if (shutdown) {
2419 nvme_start_queues(&dev->ctrl);
2420 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2421 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2422 }
2423 mutex_unlock(&dev->shutdown_lock);
2424}
2425
2426static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2427{
2428 if (!nvme_wait_reset(&dev->ctrl))
2429 return -EBUSY;
2430 nvme_dev_disable(dev, shutdown);
2431 return 0;
2432}
2433
2434static int nvme_setup_prp_pools(struct nvme_dev *dev)
2435{
2436 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2437 PAGE_SIZE, PAGE_SIZE, 0);
2438 if (!dev->prp_page_pool)
2439 return -ENOMEM;
2440
2441 /* Optimisation for I/Os between 4k and 128k */
2442 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2443 256, 256, 0);
2444 if (!dev->prp_small_pool) {
2445 dma_pool_destroy(dev->prp_page_pool);
2446 return -ENOMEM;
2447 }
2448 return 0;
2449}
2450
2451static void nvme_release_prp_pools(struct nvme_dev *dev)
2452{
2453 dma_pool_destroy(dev->prp_page_pool);
2454 dma_pool_destroy(dev->prp_small_pool);
2455}
2456
2457static void nvme_free_tagset(struct nvme_dev *dev)
2458{
2459 if (dev->tagset.tags)
2460 blk_mq_free_tag_set(&dev->tagset);
2461 dev->ctrl.tagset = NULL;
2462}
2463
2464static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2465{
2466 struct nvme_dev *dev = to_nvme_dev(ctrl);
2467
2468 nvme_dbbuf_dma_free(dev);
2469 nvme_free_tagset(dev);
2470 if (dev->ctrl.admin_q)
2471 blk_put_queue(dev->ctrl.admin_q);
2472 free_opal_dev(dev->ctrl.opal_dev);
2473 mempool_destroy(dev->iod_mempool);
2474 put_device(dev->dev);
2475 kfree(dev->queues);
2476 kfree(dev);
2477}
2478
2479static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2480{
2481 /*
2482 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2483 * may be holding this pci_dev's device lock.
2484 */
2485 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2486 nvme_get_ctrl(&dev->ctrl);
2487 nvme_dev_disable(dev, false);
2488 nvme_kill_queues(&dev->ctrl);
2489 if (!queue_work(nvme_wq, &dev->remove_work))
2490 nvme_put_ctrl(&dev->ctrl);
2491}
2492
2493static void nvme_reset_work(struct work_struct *work)
2494{
2495 struct nvme_dev *dev =
2496 container_of(work, struct nvme_dev, ctrl.reset_work);
2497 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2498 int result;
2499
2500 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) {
2501 result = -ENODEV;
2502 goto out;
2503 }
2504
2505 /*
2506 * If we're called to reset a live controller first shut it down before
2507 * moving on.
2508 */
2509 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2510 nvme_dev_disable(dev, false);
2511 nvme_sync_queues(&dev->ctrl);
2512
2513 mutex_lock(&dev->shutdown_lock);
2514 result = nvme_pci_enable(dev);
2515 if (result)
2516 goto out_unlock;
2517
2518 result = nvme_pci_configure_admin_queue(dev);
2519 if (result)
2520 goto out_unlock;
2521
2522 result = nvme_alloc_admin_tags(dev);
2523 if (result)
2524 goto out_unlock;
2525
2526 /*
2527 * Limit the max command size to prevent iod->sg allocations going
2528 * over a single page.
2529 */
2530 dev->ctrl.max_hw_sectors = min_t(u32,
2531 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2532 dev->ctrl.max_segments = NVME_MAX_SEGS;
2533
2534 /*
2535 * Don't limit the IOMMU merged segment size.
2536 */
2537 dma_set_max_seg_size(dev->dev, 0xffffffff);
2538
2539 mutex_unlock(&dev->shutdown_lock);
2540
2541 /*
2542 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2543 * initializing procedure here.
2544 */
2545 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2546 dev_warn(dev->ctrl.device,
2547 "failed to mark controller CONNECTING\n");
2548 result = -EBUSY;
2549 goto out;
2550 }
2551
2552 result = nvme_init_identify(&dev->ctrl);
2553 if (result)
2554 goto out;
2555
2556 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2557 if (!dev->ctrl.opal_dev)
2558 dev->ctrl.opal_dev =
2559 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2560 else if (was_suspend)
2561 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2562 } else {
2563 free_opal_dev(dev->ctrl.opal_dev);
2564 dev->ctrl.opal_dev = NULL;
2565 }
2566
2567 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2568 result = nvme_dbbuf_dma_alloc(dev);
2569 if (result)
2570 dev_warn(dev->dev,
2571 "unable to allocate dma for dbbuf\n");
2572 }
2573
2574 if (dev->ctrl.hmpre) {
2575 result = nvme_setup_host_mem(dev);
2576 if (result < 0)
2577 goto out;
2578 }
2579
2580 result = nvme_setup_io_queues(dev);
2581 if (result)
2582 goto out;
2583
2584 /*
2585 * Keep the controller around but remove all namespaces if we don't have
2586 * any working I/O queue.
2587 */
2588 if (dev->online_queues < 2) {
2589 dev_warn(dev->ctrl.device, "IO queues not created\n");
2590 nvme_kill_queues(&dev->ctrl);
2591 nvme_remove_namespaces(&dev->ctrl);
2592 nvme_free_tagset(dev);
2593 } else {
2594 nvme_start_queues(&dev->ctrl);
2595 nvme_wait_freeze(&dev->ctrl);
2596 nvme_dev_add(dev);
2597 nvme_unfreeze(&dev->ctrl);
2598 }
2599
2600 /*
2601 * If only admin queue live, keep it to do further investigation or
2602 * recovery.
2603 */
2604 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2605 dev_warn(dev->ctrl.device,
2606 "failed to mark controller live state\n");
2607 result = -ENODEV;
2608 goto out;
2609 }
2610
2611 nvme_start_ctrl(&dev->ctrl);
2612 return;
2613
2614 out_unlock:
2615 mutex_unlock(&dev->shutdown_lock);
2616 out:
2617 if (result)
2618 dev_warn(dev->ctrl.device,
2619 "Removing after probe failure status: %d\n", result);
2620 nvme_remove_dead_ctrl(dev);
2621}
2622
2623static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2624{
2625 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2626 struct pci_dev *pdev = to_pci_dev(dev->dev);
2627
2628 if (pci_get_drvdata(pdev))
2629 device_release_driver(&pdev->dev);
2630 nvme_put_ctrl(&dev->ctrl);
2631}
2632
2633static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2634{
2635 *val = readl(to_nvme_dev(ctrl)->bar + off);
2636 return 0;
2637}
2638
2639static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2640{
2641 writel(val, to_nvme_dev(ctrl)->bar + off);
2642 return 0;
2643}
2644
2645static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2646{
2647 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2648 return 0;
2649}
2650
2651static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2652{
2653 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2654
2655 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2656}
2657
2658static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2659 .name = "pcie",
2660 .module = THIS_MODULE,
2661 .flags = NVME_F_METADATA_SUPPORTED |
2662 NVME_F_PCI_P2PDMA,
2663 .reg_read32 = nvme_pci_reg_read32,
2664 .reg_write32 = nvme_pci_reg_write32,
2665 .reg_read64 = nvme_pci_reg_read64,
2666 .free_ctrl = nvme_pci_free_ctrl,
2667 .submit_async_event = nvme_pci_submit_async_event,
2668 .get_address = nvme_pci_get_address,
2669};
2670
2671static int nvme_dev_map(struct nvme_dev *dev)
2672{
2673 struct pci_dev *pdev = to_pci_dev(dev->dev);
2674
2675 if (pci_request_mem_regions(pdev, "nvme"))
2676 return -ENODEV;
2677
2678 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2679 goto release;
2680
2681 return 0;
2682 release:
2683 pci_release_mem_regions(pdev);
2684 return -ENODEV;
2685}
2686
2687static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2688{
2689 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2690 /*
2691 * Several Samsung devices seem to drop off the PCIe bus
2692 * randomly when APST is on and uses the deepest sleep state.
2693 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2694 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2695 * 950 PRO 256GB", but it seems to be restricted to two Dell
2696 * laptops.
2697 */
2698 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2699 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2700 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2701 return NVME_QUIRK_NO_DEEPEST_PS;
2702 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2703 /*
2704 * Samsung SSD 960 EVO drops off the PCIe bus after system
2705 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2706 * within few minutes after bootup on a Coffee Lake board -
2707 * ASUS PRIME Z370-A
2708 */
2709 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2710 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2711 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2712 return NVME_QUIRK_NO_APST;
2713 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2714 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2715 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2716 /*
2717 * Forcing to use host managed nvme power settings for
2718 * lowest idle power with quick resume latency on
2719 * Samsung and Toshiba SSDs based on suspend behavior
2720 * on Coffee Lake board for LENOVO C640
2721 */
2722 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2723 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2724 return NVME_QUIRK_SIMPLE_SUSPEND;
2725 }
2726
2727 return 0;
2728}
2729
2730static void nvme_async_probe(void *data, async_cookie_t cookie)
2731{
2732 struct nvme_dev *dev = data;
2733
2734 flush_work(&dev->ctrl.reset_work);
2735 flush_work(&dev->ctrl.scan_work);
2736 nvme_put_ctrl(&dev->ctrl);
2737}
2738
2739static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2740{
2741 int node, result = -ENOMEM;
2742 struct nvme_dev *dev;
2743 unsigned long quirks = id->driver_data;
2744 size_t alloc_size;
2745
2746 node = dev_to_node(&pdev->dev);
2747 if (node == NUMA_NO_NODE)
2748 set_dev_node(&pdev->dev, first_memory_node);
2749
2750 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2751 if (!dev)
2752 return -ENOMEM;
2753
2754 dev->nr_write_queues = write_queues;
2755 dev->nr_poll_queues = poll_queues;
2756 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2757 dev->queues = kcalloc_node(dev->nr_allocated_queues,
2758 sizeof(struct nvme_queue), GFP_KERNEL, node);
2759 if (!dev->queues)
2760 goto free;
2761
2762 dev->dev = get_device(&pdev->dev);
2763 pci_set_drvdata(pdev, dev);
2764
2765 result = nvme_dev_map(dev);
2766 if (result)
2767 goto put_pci;
2768
2769 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2770 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2771 mutex_init(&dev->shutdown_lock);
2772
2773 result = nvme_setup_prp_pools(dev);
2774 if (result)
2775 goto unmap;
2776
2777 quirks |= check_vendor_combination_bug(pdev);
2778
2779 /*
2780 * Double check that our mempool alloc size will cover the biggest
2781 * command we support.
2782 */
2783 alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2784 NVME_MAX_SEGS, true);
2785 WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2786
2787 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2788 mempool_kfree,
2789 (void *) alloc_size,
2790 GFP_KERNEL, node);
2791 if (!dev->iod_mempool) {
2792 result = -ENOMEM;
2793 goto release_pools;
2794 }
2795
2796 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2797 quirks);
2798 if (result)
2799 goto release_mempool;
2800
2801 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2802
2803 nvme_reset_ctrl(&dev->ctrl);
2804 async_schedule(nvme_async_probe, dev);
2805
2806 return 0;
2807
2808 release_mempool:
2809 mempool_destroy(dev->iod_mempool);
2810 release_pools:
2811 nvme_release_prp_pools(dev);
2812 unmap:
2813 nvme_dev_unmap(dev);
2814 put_pci:
2815 put_device(dev->dev);
2816 free:
2817 kfree(dev->queues);
2818 kfree(dev);
2819 return result;
2820}
2821
2822static void nvme_reset_prepare(struct pci_dev *pdev)
2823{
2824 struct nvme_dev *dev = pci_get_drvdata(pdev);
2825
2826 /*
2827 * We don't need to check the return value from waiting for the reset
2828 * state as pci_dev device lock is held, making it impossible to race
2829 * with ->remove().
2830 */
2831 nvme_disable_prepare_reset(dev, false);
2832 nvme_sync_queues(&dev->ctrl);
2833}
2834
2835static void nvme_reset_done(struct pci_dev *pdev)
2836{
2837 struct nvme_dev *dev = pci_get_drvdata(pdev);
2838
2839 if (!nvme_try_sched_reset(&dev->ctrl))
2840 flush_work(&dev->ctrl.reset_work);
2841}
2842
2843static void nvme_shutdown(struct pci_dev *pdev)
2844{
2845 struct nvme_dev *dev = pci_get_drvdata(pdev);
2846 nvme_disable_prepare_reset(dev, true);
2847}
2848
2849/*
2850 * The driver's remove may be called on a device in a partially initialized
2851 * state. This function must not have any dependencies on the device state in
2852 * order to proceed.
2853 */
2854static void nvme_remove(struct pci_dev *pdev)
2855{
2856 struct nvme_dev *dev = pci_get_drvdata(pdev);
2857
2858 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2859 pci_set_drvdata(pdev, NULL);
2860
2861 if (!pci_device_is_present(pdev)) {
2862 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2863 nvme_dev_disable(dev, true);
2864 nvme_dev_remove_admin(dev);
2865 }
2866
2867 flush_work(&dev->ctrl.reset_work);
2868 nvme_stop_ctrl(&dev->ctrl);
2869 nvme_remove_namespaces(&dev->ctrl);
2870 nvme_dev_disable(dev, true);
2871 nvme_release_cmb(dev);
2872 nvme_free_host_mem(dev);
2873 nvme_dev_remove_admin(dev);
2874 nvme_free_queues(dev, 0);
2875 nvme_release_prp_pools(dev);
2876 nvme_dev_unmap(dev);
2877 nvme_uninit_ctrl(&dev->ctrl);
2878}
2879
2880#ifdef CONFIG_PM_SLEEP
2881static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
2882{
2883 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
2884}
2885
2886static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
2887{
2888 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
2889}
2890
2891static int nvme_resume(struct device *dev)
2892{
2893 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2894 struct nvme_ctrl *ctrl = &ndev->ctrl;
2895
2896 if (ndev->last_ps == U32_MAX ||
2897 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
2898 return nvme_try_sched_reset(&ndev->ctrl);
2899 return 0;
2900}
2901
2902static int nvme_suspend(struct device *dev)
2903{
2904 struct pci_dev *pdev = to_pci_dev(dev);
2905 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2906 struct nvme_ctrl *ctrl = &ndev->ctrl;
2907 int ret = -EBUSY;
2908
2909 ndev->last_ps = U32_MAX;
2910
2911 /*
2912 * The platform does not remove power for a kernel managed suspend so
2913 * use host managed nvme power settings for lowest idle power if
2914 * possible. This should have quicker resume latency than a full device
2915 * shutdown. But if the firmware is involved after the suspend or the
2916 * device does not support any non-default power states, shut down the
2917 * device fully.
2918 *
2919 * If ASPM is not enabled for the device, shut down the device and allow
2920 * the PCI bus layer to put it into D3 in order to take the PCIe link
2921 * down, so as to allow the platform to achieve its minimum low-power
2922 * state (which may not be possible if the link is up).
2923 */
2924 if (pm_suspend_via_firmware() || !ctrl->npss ||
2925 !pcie_aspm_enabled(pdev) ||
2926 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
2927 return nvme_disable_prepare_reset(ndev, true);
2928
2929 nvme_start_freeze(ctrl);
2930 nvme_wait_freeze(ctrl);
2931 nvme_sync_queues(ctrl);
2932
2933 if (ctrl->state != NVME_CTRL_LIVE)
2934 goto unfreeze;
2935
2936 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
2937 if (ret < 0)
2938 goto unfreeze;
2939
2940 /*
2941 * A saved state prevents pci pm from generically controlling the
2942 * device's power. If we're using protocol specific settings, we don't
2943 * want pci interfering.
2944 */
2945 pci_save_state(pdev);
2946
2947 ret = nvme_set_power_state(ctrl, ctrl->npss);
2948 if (ret < 0)
2949 goto unfreeze;
2950
2951 if (ret) {
2952 /* discard the saved state */
2953 pci_load_saved_state(pdev, NULL);
2954
2955 /*
2956 * Clearing npss forces a controller reset on resume. The
2957 * correct value will be rediscovered then.
2958 */
2959 ret = nvme_disable_prepare_reset(ndev, true);
2960 ctrl->npss = 0;
2961 }
2962unfreeze:
2963 nvme_unfreeze(ctrl);
2964 return ret;
2965}
2966
2967static int nvme_simple_suspend(struct device *dev)
2968{
2969 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2970 return nvme_disable_prepare_reset(ndev, true);
2971}
2972
2973static int nvme_simple_resume(struct device *dev)
2974{
2975 struct pci_dev *pdev = to_pci_dev(dev);
2976 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2977
2978 return nvme_try_sched_reset(&ndev->ctrl);
2979}
2980
2981static const struct dev_pm_ops nvme_dev_pm_ops = {
2982 .suspend = nvme_suspend,
2983 .resume = nvme_resume,
2984 .freeze = nvme_simple_suspend,
2985 .thaw = nvme_simple_resume,
2986 .poweroff = nvme_simple_suspend,
2987 .restore = nvme_simple_resume,
2988};
2989#endif /* CONFIG_PM_SLEEP */
2990
2991static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2992 pci_channel_state_t state)
2993{
2994 struct nvme_dev *dev = pci_get_drvdata(pdev);
2995
2996 /*
2997 * A frozen channel requires a reset. When detected, this method will
2998 * shutdown the controller to quiesce. The controller will be restarted
2999 * after the slot reset through driver's slot_reset callback.
3000 */
3001 switch (state) {
3002 case pci_channel_io_normal:
3003 return PCI_ERS_RESULT_CAN_RECOVER;
3004 case pci_channel_io_frozen:
3005 dev_warn(dev->ctrl.device,
3006 "frozen state error detected, reset controller\n");
3007 nvme_dev_disable(dev, false);
3008 return PCI_ERS_RESULT_NEED_RESET;
3009 case pci_channel_io_perm_failure:
3010 dev_warn(dev->ctrl.device,
3011 "failure state error detected, request disconnect\n");
3012 return PCI_ERS_RESULT_DISCONNECT;
3013 }
3014 return PCI_ERS_RESULT_NEED_RESET;
3015}
3016
3017static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3018{
3019 struct nvme_dev *dev = pci_get_drvdata(pdev);
3020
3021 dev_info(dev->ctrl.device, "restart after slot reset\n");
3022 pci_restore_state(pdev);
3023 nvme_reset_ctrl(&dev->ctrl);
3024 return PCI_ERS_RESULT_RECOVERED;
3025}
3026
3027static void nvme_error_resume(struct pci_dev *pdev)
3028{
3029 struct nvme_dev *dev = pci_get_drvdata(pdev);
3030
3031 flush_work(&dev->ctrl.reset_work);
3032}
3033
3034static const struct pci_error_handlers nvme_err_handler = {
3035 .error_detected = nvme_error_detected,
3036 .slot_reset = nvme_slot_reset,
3037 .resume = nvme_error_resume,
3038 .reset_prepare = nvme_reset_prepare,
3039 .reset_done = nvme_reset_done,
3040};
3041
3042static const struct pci_device_id nvme_id_table[] = {
3043 { PCI_VDEVICE(INTEL, 0x0953),
3044 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3045 NVME_QUIRK_DEALLOCATE_ZEROES, },
3046 { PCI_VDEVICE(INTEL, 0x0a53),
3047 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3048 NVME_QUIRK_DEALLOCATE_ZEROES, },
3049 { PCI_VDEVICE(INTEL, 0x0a54),
3050 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3051 NVME_QUIRK_DEALLOCATE_ZEROES, },
3052 { PCI_VDEVICE(INTEL, 0x0a55),
3053 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3054 NVME_QUIRK_DEALLOCATE_ZEROES, },
3055 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
3056 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3057 NVME_QUIRK_MEDIUM_PRIO_SQ |
3058 NVME_QUIRK_NO_TEMP_THRESH_CHANGE },
3059 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3060 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3061 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
3062 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3063 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3064 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3065 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3066 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3067 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3068 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3069 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3070 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3071 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3072 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3073 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3074 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3075 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3076 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
3077 .driver_data = NVME_QUIRK_LIGHTNVM, },
3078 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
3079 .driver_data = NVME_QUIRK_LIGHTNVM, },
3080 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
3081 .driver_data = NVME_QUIRK_LIGHTNVM, },
3082 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3083 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3084 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3085 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3086 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3087 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3088 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3089 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3090 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3091 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3092 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3093 NVME_QUIRK_128_BYTES_SQES |
3094 NVME_QUIRK_SHARED_TAGS },
3095 { 0, }
3096};
3097MODULE_DEVICE_TABLE(pci, nvme_id_table);
3098
3099static struct pci_driver nvme_driver = {
3100 .name = "nvme",
3101 .id_table = nvme_id_table,
3102 .probe = nvme_probe,
3103 .remove = nvme_remove,
3104 .shutdown = nvme_shutdown,
3105#ifdef CONFIG_PM_SLEEP
3106 .driver = {
3107 .pm = &nvme_dev_pm_ops,
3108 },
3109#endif
3110 .sriov_configure = pci_sriov_configure_simple,
3111 .err_handler = &nvme_err_handler,
3112};
3113
3114static int __init nvme_init(void)
3115{
3116 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3117 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3118 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3119 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3120
3121 write_queues = min(write_queues, num_possible_cpus());
3122 poll_queues = min(poll_queues, num_possible_cpus());
3123 return pci_register_driver(&nvme_driver);
3124}
3125
3126static void __exit nvme_exit(void)
3127{
3128 pci_unregister_driver(&nvme_driver);
3129 flush_workqueue(nvme_wq);
3130}
3131
3132MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3133MODULE_LICENSE("GPL");
3134MODULE_VERSION("1.0");
3135module_init(nvme_init);
3136module_exit(nvme_exit);