Merge branch 'core-objtool-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / drivers / net / ethernet / intel / ice / ice_txrx.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4/* The driver transmit and receive code */
5
6#include <linux/prefetch.h>
7#include <linux/mm.h>
8#include <linux/bpf_trace.h>
9#include <net/xdp.h>
10#include "ice_txrx_lib.h"
11#include "ice_lib.h"
12#include "ice.h"
13#include "ice_dcb_lib.h"
14#include "ice_xsk.h"
15
16#define ICE_RX_HDR_SIZE 256
17
18/**
19 * ice_unmap_and_free_tx_buf - Release a Tx buffer
20 * @ring: the ring that owns the buffer
21 * @tx_buf: the buffer to free
22 */
23static void
24ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
25{
26 if (tx_buf->skb) {
27 if (ice_ring_is_xdp(ring))
28 page_frag_free(tx_buf->raw_buf);
29 else
30 dev_kfree_skb_any(tx_buf->skb);
31 if (dma_unmap_len(tx_buf, len))
32 dma_unmap_single(ring->dev,
33 dma_unmap_addr(tx_buf, dma),
34 dma_unmap_len(tx_buf, len),
35 DMA_TO_DEVICE);
36 } else if (dma_unmap_len(tx_buf, len)) {
37 dma_unmap_page(ring->dev,
38 dma_unmap_addr(tx_buf, dma),
39 dma_unmap_len(tx_buf, len),
40 DMA_TO_DEVICE);
41 }
42
43 tx_buf->next_to_watch = NULL;
44 tx_buf->skb = NULL;
45 dma_unmap_len_set(tx_buf, len, 0);
46 /* tx_buf must be completely set up in the transmit path */
47}
48
49static struct netdev_queue *txring_txq(const struct ice_ring *ring)
50{
51 return netdev_get_tx_queue(ring->netdev, ring->q_index);
52}
53
54/**
55 * ice_clean_tx_ring - Free any empty Tx buffers
56 * @tx_ring: ring to be cleaned
57 */
58void ice_clean_tx_ring(struct ice_ring *tx_ring)
59{
60 u16 i;
61
62 if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_umem) {
63 ice_xsk_clean_xdp_ring(tx_ring);
64 goto tx_skip_free;
65 }
66
67 /* ring already cleared, nothing to do */
68 if (!tx_ring->tx_buf)
69 return;
70
71 /* Free all the Tx ring sk_buffs */
72 for (i = 0; i < tx_ring->count; i++)
73 ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
74
75tx_skip_free:
76 memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
77
78 /* Zero out the descriptor ring */
79 memset(tx_ring->desc, 0, tx_ring->size);
80
81 tx_ring->next_to_use = 0;
82 tx_ring->next_to_clean = 0;
83
84 if (!tx_ring->netdev)
85 return;
86
87 /* cleanup Tx queue statistics */
88 netdev_tx_reset_queue(txring_txq(tx_ring));
89}
90
91/**
92 * ice_free_tx_ring - Free Tx resources per queue
93 * @tx_ring: Tx descriptor ring for a specific queue
94 *
95 * Free all transmit software resources
96 */
97void ice_free_tx_ring(struct ice_ring *tx_ring)
98{
99 ice_clean_tx_ring(tx_ring);
100 devm_kfree(tx_ring->dev, tx_ring->tx_buf);
101 tx_ring->tx_buf = NULL;
102
103 if (tx_ring->desc) {
104 dmam_free_coherent(tx_ring->dev, tx_ring->size,
105 tx_ring->desc, tx_ring->dma);
106 tx_ring->desc = NULL;
107 }
108}
109
110/**
111 * ice_clean_tx_irq - Reclaim resources after transmit completes
112 * @tx_ring: Tx ring to clean
113 * @napi_budget: Used to determine if we are in netpoll
114 *
115 * Returns true if there's any budget left (e.g. the clean is finished)
116 */
117static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget)
118{
119 unsigned int total_bytes = 0, total_pkts = 0;
120 unsigned int budget = ICE_DFLT_IRQ_WORK;
121 struct ice_vsi *vsi = tx_ring->vsi;
122 s16 i = tx_ring->next_to_clean;
123 struct ice_tx_desc *tx_desc;
124 struct ice_tx_buf *tx_buf;
125
126 tx_buf = &tx_ring->tx_buf[i];
127 tx_desc = ICE_TX_DESC(tx_ring, i);
128 i -= tx_ring->count;
129
130 prefetch(&vsi->state);
131
132 do {
133 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
134
135 /* if next_to_watch is not set then there is no work pending */
136 if (!eop_desc)
137 break;
138
139 smp_rmb(); /* prevent any other reads prior to eop_desc */
140
141 /* if the descriptor isn't done, no work yet to do */
142 if (!(eop_desc->cmd_type_offset_bsz &
143 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
144 break;
145
146 /* clear next_to_watch to prevent false hangs */
147 tx_buf->next_to_watch = NULL;
148
149 /* update the statistics for this packet */
150 total_bytes += tx_buf->bytecount;
151 total_pkts += tx_buf->gso_segs;
152
153 if (ice_ring_is_xdp(tx_ring))
154 page_frag_free(tx_buf->raw_buf);
155 else
156 /* free the skb */
157 napi_consume_skb(tx_buf->skb, napi_budget);
158
159 /* unmap skb header data */
160 dma_unmap_single(tx_ring->dev,
161 dma_unmap_addr(tx_buf, dma),
162 dma_unmap_len(tx_buf, len),
163 DMA_TO_DEVICE);
164
165 /* clear tx_buf data */
166 tx_buf->skb = NULL;
167 dma_unmap_len_set(tx_buf, len, 0);
168
169 /* unmap remaining buffers */
170 while (tx_desc != eop_desc) {
171 tx_buf++;
172 tx_desc++;
173 i++;
174 if (unlikely(!i)) {
175 i -= tx_ring->count;
176 tx_buf = tx_ring->tx_buf;
177 tx_desc = ICE_TX_DESC(tx_ring, 0);
178 }
179
180 /* unmap any remaining paged data */
181 if (dma_unmap_len(tx_buf, len)) {
182 dma_unmap_page(tx_ring->dev,
183 dma_unmap_addr(tx_buf, dma),
184 dma_unmap_len(tx_buf, len),
185 DMA_TO_DEVICE);
186 dma_unmap_len_set(tx_buf, len, 0);
187 }
188 }
189
190 /* move us one more past the eop_desc for start of next pkt */
191 tx_buf++;
192 tx_desc++;
193 i++;
194 if (unlikely(!i)) {
195 i -= tx_ring->count;
196 tx_buf = tx_ring->tx_buf;
197 tx_desc = ICE_TX_DESC(tx_ring, 0);
198 }
199
200 prefetch(tx_desc);
201
202 /* update budget accounting */
203 budget--;
204 } while (likely(budget));
205
206 i += tx_ring->count;
207 tx_ring->next_to_clean = i;
208
209 ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
210
211 if (ice_ring_is_xdp(tx_ring))
212 return !!budget;
213
214 netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
215 total_bytes);
216
217#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
218 if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
219 (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
220 /* Make sure that anybody stopping the queue after this
221 * sees the new next_to_clean.
222 */
223 smp_mb();
224 if (__netif_subqueue_stopped(tx_ring->netdev,
225 tx_ring->q_index) &&
226 !test_bit(__ICE_DOWN, vsi->state)) {
227 netif_wake_subqueue(tx_ring->netdev,
228 tx_ring->q_index);
229 ++tx_ring->tx_stats.restart_q;
230 }
231 }
232
233 return !!budget;
234}
235
236/**
237 * ice_setup_tx_ring - Allocate the Tx descriptors
238 * @tx_ring: the Tx ring to set up
239 *
240 * Return 0 on success, negative on error
241 */
242int ice_setup_tx_ring(struct ice_ring *tx_ring)
243{
244 struct device *dev = tx_ring->dev;
245
246 if (!dev)
247 return -ENOMEM;
248
249 /* warn if we are about to overwrite the pointer */
250 WARN_ON(tx_ring->tx_buf);
251 tx_ring->tx_buf =
252 devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count,
253 GFP_KERNEL);
254 if (!tx_ring->tx_buf)
255 return -ENOMEM;
256
257 /* round up to nearest page */
258 tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
259 PAGE_SIZE);
260 tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
261 GFP_KERNEL);
262 if (!tx_ring->desc) {
263 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
264 tx_ring->size);
265 goto err;
266 }
267
268 tx_ring->next_to_use = 0;
269 tx_ring->next_to_clean = 0;
270 tx_ring->tx_stats.prev_pkt = -1;
271 return 0;
272
273err:
274 devm_kfree(dev, tx_ring->tx_buf);
275 tx_ring->tx_buf = NULL;
276 return -ENOMEM;
277}
278
279/**
280 * ice_clean_rx_ring - Free Rx buffers
281 * @rx_ring: ring to be cleaned
282 */
283void ice_clean_rx_ring(struct ice_ring *rx_ring)
284{
285 struct device *dev = rx_ring->dev;
286 u16 i;
287
288 /* ring already cleared, nothing to do */
289 if (!rx_ring->rx_buf)
290 return;
291
292 if (rx_ring->xsk_umem) {
293 ice_xsk_clean_rx_ring(rx_ring);
294 goto rx_skip_free;
295 }
296
297 /* Free all the Rx ring sk_buffs */
298 for (i = 0; i < rx_ring->count; i++) {
299 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
300
301 if (rx_buf->skb) {
302 dev_kfree_skb(rx_buf->skb);
303 rx_buf->skb = NULL;
304 }
305 if (!rx_buf->page)
306 continue;
307
308 /* Invalidate cache lines that may have been written to by
309 * device so that we avoid corrupting memory.
310 */
311 dma_sync_single_range_for_cpu(dev, rx_buf->dma,
312 rx_buf->page_offset,
313 rx_ring->rx_buf_len,
314 DMA_FROM_DEVICE);
315
316 /* free resources associated with mapping */
317 dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
318 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
319 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
320
321 rx_buf->page = NULL;
322 rx_buf->page_offset = 0;
323 }
324
325rx_skip_free:
326 memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count);
327
328 /* Zero out the descriptor ring */
329 memset(rx_ring->desc, 0, rx_ring->size);
330
331 rx_ring->next_to_alloc = 0;
332 rx_ring->next_to_clean = 0;
333 rx_ring->next_to_use = 0;
334}
335
336/**
337 * ice_free_rx_ring - Free Rx resources
338 * @rx_ring: ring to clean the resources from
339 *
340 * Free all receive software resources
341 */
342void ice_free_rx_ring(struct ice_ring *rx_ring)
343{
344 ice_clean_rx_ring(rx_ring);
345 if (rx_ring->vsi->type == ICE_VSI_PF)
346 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
347 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
348 rx_ring->xdp_prog = NULL;
349 devm_kfree(rx_ring->dev, rx_ring->rx_buf);
350 rx_ring->rx_buf = NULL;
351
352 if (rx_ring->desc) {
353 dmam_free_coherent(rx_ring->dev, rx_ring->size,
354 rx_ring->desc, rx_ring->dma);
355 rx_ring->desc = NULL;
356 }
357}
358
359/**
360 * ice_setup_rx_ring - Allocate the Rx descriptors
361 * @rx_ring: the Rx ring to set up
362 *
363 * Return 0 on success, negative on error
364 */
365int ice_setup_rx_ring(struct ice_ring *rx_ring)
366{
367 struct device *dev = rx_ring->dev;
368
369 if (!dev)
370 return -ENOMEM;
371
372 /* warn if we are about to overwrite the pointer */
373 WARN_ON(rx_ring->rx_buf);
374 rx_ring->rx_buf =
375 devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count,
376 GFP_KERNEL);
377 if (!rx_ring->rx_buf)
378 return -ENOMEM;
379
380 /* round up to nearest page */
381 rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
382 PAGE_SIZE);
383 rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
384 GFP_KERNEL);
385 if (!rx_ring->desc) {
386 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
387 rx_ring->size);
388 goto err;
389 }
390
391 rx_ring->next_to_use = 0;
392 rx_ring->next_to_clean = 0;
393
394 if (ice_is_xdp_ena_vsi(rx_ring->vsi))
395 WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
396
397 if (rx_ring->vsi->type == ICE_VSI_PF &&
398 !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
399 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
400 rx_ring->q_index))
401 goto err;
402 return 0;
403
404err:
405 devm_kfree(dev, rx_ring->rx_buf);
406 rx_ring->rx_buf = NULL;
407 return -ENOMEM;
408}
409
410/**
411 * ice_rx_offset - Return expected offset into page to access data
412 * @rx_ring: Ring we are requesting offset of
413 *
414 * Returns the offset value for ring into the data buffer.
415 */
416static unsigned int ice_rx_offset(struct ice_ring *rx_ring)
417{
418 if (ice_ring_uses_build_skb(rx_ring))
419 return ICE_SKB_PAD;
420 else if (ice_is_xdp_ena_vsi(rx_ring->vsi))
421 return XDP_PACKET_HEADROOM;
422
423 return 0;
424}
425
426/**
427 * ice_run_xdp - Executes an XDP program on initialized xdp_buff
428 * @rx_ring: Rx ring
429 * @xdp: xdp_buff used as input to the XDP program
430 * @xdp_prog: XDP program to run
431 *
432 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
433 */
434static int
435ice_run_xdp(struct ice_ring *rx_ring, struct xdp_buff *xdp,
436 struct bpf_prog *xdp_prog)
437{
438 int err, result = ICE_XDP_PASS;
439 struct ice_ring *xdp_ring;
440 u32 act;
441
442 act = bpf_prog_run_xdp(xdp_prog, xdp);
443 switch (act) {
444 case XDP_PASS:
445 break;
446 case XDP_TX:
447 xdp_ring = rx_ring->vsi->xdp_rings[smp_processor_id()];
448 result = ice_xmit_xdp_buff(xdp, xdp_ring);
449 break;
450 case XDP_REDIRECT:
451 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
452 result = !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED;
453 break;
454 default:
455 bpf_warn_invalid_xdp_action(act);
456 /* fallthrough -- not supported action */
457 case XDP_ABORTED:
458 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
459 /* fallthrough -- handle aborts by dropping frame */
460 case XDP_DROP:
461 result = ICE_XDP_CONSUMED;
462 break;
463 }
464
465 return result;
466}
467
468/**
469 * ice_xdp_xmit - submit packets to XDP ring for transmission
470 * @dev: netdev
471 * @n: number of XDP frames to be transmitted
472 * @frames: XDP frames to be transmitted
473 * @flags: transmit flags
474 *
475 * Returns number of frames successfully sent. Frames that fail are
476 * free'ed via XDP return API.
477 * For error cases, a negative errno code is returned and no-frames
478 * are transmitted (caller must handle freeing frames).
479 */
480int
481ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
482 u32 flags)
483{
484 struct ice_netdev_priv *np = netdev_priv(dev);
485 unsigned int queue_index = smp_processor_id();
486 struct ice_vsi *vsi = np->vsi;
487 struct ice_ring *xdp_ring;
488 int drops = 0, i;
489
490 if (test_bit(__ICE_DOWN, vsi->state))
491 return -ENETDOWN;
492
493 if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq)
494 return -ENXIO;
495
496 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
497 return -EINVAL;
498
499 xdp_ring = vsi->xdp_rings[queue_index];
500 for (i = 0; i < n; i++) {
501 struct xdp_frame *xdpf = frames[i];
502 int err;
503
504 err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring);
505 if (err != ICE_XDP_TX) {
506 xdp_return_frame_rx_napi(xdpf);
507 drops++;
508 }
509 }
510
511 if (unlikely(flags & XDP_XMIT_FLUSH))
512 ice_xdp_ring_update_tail(xdp_ring);
513
514 return n - drops;
515}
516
517/**
518 * ice_alloc_mapped_page - recycle or make a new page
519 * @rx_ring: ring to use
520 * @bi: rx_buf struct to modify
521 *
522 * Returns true if the page was successfully allocated or
523 * reused.
524 */
525static bool
526ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi)
527{
528 struct page *page = bi->page;
529 dma_addr_t dma;
530
531 /* since we are recycling buffers we should seldom need to alloc */
532 if (likely(page)) {
533 rx_ring->rx_stats.page_reuse_count++;
534 return true;
535 }
536
537 /* alloc new page for storage */
538 page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
539 if (unlikely(!page)) {
540 rx_ring->rx_stats.alloc_page_failed++;
541 return false;
542 }
543
544 /* map page for use */
545 dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
546 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
547
548 /* if mapping failed free memory back to system since
549 * there isn't much point in holding memory we can't use
550 */
551 if (dma_mapping_error(rx_ring->dev, dma)) {
552 __free_pages(page, ice_rx_pg_order(rx_ring));
553 rx_ring->rx_stats.alloc_page_failed++;
554 return false;
555 }
556
557 bi->dma = dma;
558 bi->page = page;
559 bi->page_offset = ice_rx_offset(rx_ring);
560 page_ref_add(page, USHRT_MAX - 1);
561 bi->pagecnt_bias = USHRT_MAX;
562
563 return true;
564}
565
566/**
567 * ice_alloc_rx_bufs - Replace used receive buffers
568 * @rx_ring: ring to place buffers on
569 * @cleaned_count: number of buffers to replace
570 *
571 * Returns false if all allocations were successful, true if any fail. Returning
572 * true signals to the caller that we didn't replace cleaned_count buffers and
573 * there is more work to do.
574 *
575 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
576 * buffers. Then bump tail at most one time. Grouping like this lets us avoid
577 * multiple tail writes per call.
578 */
579bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
580{
581 union ice_32b_rx_flex_desc *rx_desc;
582 u16 ntu = rx_ring->next_to_use;
583 struct ice_rx_buf *bi;
584
585 /* do nothing if no valid netdev defined */
586 if (!rx_ring->netdev || !cleaned_count)
587 return false;
588
589 /* get the Rx descriptor and buffer based on next_to_use */
590 rx_desc = ICE_RX_DESC(rx_ring, ntu);
591 bi = &rx_ring->rx_buf[ntu];
592
593 do {
594 /* if we fail here, we have work remaining */
595 if (!ice_alloc_mapped_page(rx_ring, bi))
596 break;
597
598 /* sync the buffer for use by the device */
599 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
600 bi->page_offset,
601 rx_ring->rx_buf_len,
602 DMA_FROM_DEVICE);
603
604 /* Refresh the desc even if buffer_addrs didn't change
605 * because each write-back erases this info.
606 */
607 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
608
609 rx_desc++;
610 bi++;
611 ntu++;
612 if (unlikely(ntu == rx_ring->count)) {
613 rx_desc = ICE_RX_DESC(rx_ring, 0);
614 bi = rx_ring->rx_buf;
615 ntu = 0;
616 }
617
618 /* clear the status bits for the next_to_use descriptor */
619 rx_desc->wb.status_error0 = 0;
620
621 cleaned_count--;
622 } while (cleaned_count);
623
624 if (rx_ring->next_to_use != ntu)
625 ice_release_rx_desc(rx_ring, ntu);
626
627 return !!cleaned_count;
628}
629
630/**
631 * ice_page_is_reserved - check if reuse is possible
632 * @page: page struct to check
633 */
634static bool ice_page_is_reserved(struct page *page)
635{
636 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
637}
638
639/**
640 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
641 * @rx_buf: Rx buffer to adjust
642 * @size: Size of adjustment
643 *
644 * Update the offset within page so that Rx buf will be ready to be reused.
645 * For systems with PAGE_SIZE < 8192 this function will flip the page offset
646 * so the second half of page assigned to Rx buffer will be used, otherwise
647 * the offset is moved by "size" bytes
648 */
649static void
650ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
651{
652#if (PAGE_SIZE < 8192)
653 /* flip page offset to other buffer */
654 rx_buf->page_offset ^= size;
655#else
656 /* move offset up to the next cache line */
657 rx_buf->page_offset += size;
658#endif
659}
660
661/**
662 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
663 * @rx_buf: buffer containing the page
664 *
665 * If page is reusable, we have a green light for calling ice_reuse_rx_page,
666 * which will assign the current buffer to the buffer that next_to_alloc is
667 * pointing to; otherwise, the DMA mapping needs to be destroyed and
668 * page freed
669 */
670static bool ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf)
671{
672 unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
673 struct page *page = rx_buf->page;
674
675 /* avoid re-using remote pages */
676 if (unlikely(ice_page_is_reserved(page)))
677 return false;
678
679#if (PAGE_SIZE < 8192)
680 /* if we are only owner of page we can reuse it */
681 if (unlikely((page_count(page) - pagecnt_bias) > 1))
682 return false;
683#else
684#define ICE_LAST_OFFSET \
685 (SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048)
686 if (rx_buf->page_offset > ICE_LAST_OFFSET)
687 return false;
688#endif /* PAGE_SIZE < 8192) */
689
690 /* If we have drained the page fragment pool we need to update
691 * the pagecnt_bias and page count so that we fully restock the
692 * number of references the driver holds.
693 */
694 if (unlikely(pagecnt_bias == 1)) {
695 page_ref_add(page, USHRT_MAX - 1);
696 rx_buf->pagecnt_bias = USHRT_MAX;
697 }
698
699 return true;
700}
701
702/**
703 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
704 * @rx_ring: Rx descriptor ring to transact packets on
705 * @rx_buf: buffer containing page to add
706 * @skb: sk_buff to place the data into
707 * @size: packet length from rx_desc
708 *
709 * This function will add the data contained in rx_buf->page to the skb.
710 * It will just attach the page as a frag to the skb.
711 * The function will then update the page offset.
712 */
713static void
714ice_add_rx_frag(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
715 struct sk_buff *skb, unsigned int size)
716{
717#if (PAGE_SIZE >= 8192)
718 unsigned int truesize = SKB_DATA_ALIGN(size + ice_rx_offset(rx_ring));
719#else
720 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
721#endif
722
723 if (!size)
724 return;
725 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
726 rx_buf->page_offset, size, truesize);
727
728 /* page is being used so we must update the page offset */
729 ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
730}
731
732/**
733 * ice_reuse_rx_page - page flip buffer and store it back on the ring
734 * @rx_ring: Rx descriptor ring to store buffers on
735 * @old_buf: donor buffer to have page reused
736 *
737 * Synchronizes page for reuse by the adapter
738 */
739static void
740ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf)
741{
742 u16 nta = rx_ring->next_to_alloc;
743 struct ice_rx_buf *new_buf;
744
745 new_buf = &rx_ring->rx_buf[nta];
746
747 /* update, and store next to alloc */
748 nta++;
749 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
750
751 /* Transfer page from old buffer to new buffer.
752 * Move each member individually to avoid possible store
753 * forwarding stalls and unnecessary copy of skb.
754 */
755 new_buf->dma = old_buf->dma;
756 new_buf->page = old_buf->page;
757 new_buf->page_offset = old_buf->page_offset;
758 new_buf->pagecnt_bias = old_buf->pagecnt_bias;
759}
760
761/**
762 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
763 * @rx_ring: Rx descriptor ring to transact packets on
764 * @skb: skb to be used
765 * @size: size of buffer to add to skb
766 *
767 * This function will pull an Rx buffer from the ring and synchronize it
768 * for use by the CPU.
769 */
770static struct ice_rx_buf *
771ice_get_rx_buf(struct ice_ring *rx_ring, struct sk_buff **skb,
772 const unsigned int size)
773{
774 struct ice_rx_buf *rx_buf;
775
776 rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
777 prefetchw(rx_buf->page);
778 *skb = rx_buf->skb;
779
780 if (!size)
781 return rx_buf;
782 /* we are reusing so sync this buffer for CPU use */
783 dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
784 rx_buf->page_offset, size,
785 DMA_FROM_DEVICE);
786
787 /* We have pulled a buffer for use, so decrement pagecnt_bias */
788 rx_buf->pagecnt_bias--;
789
790 return rx_buf;
791}
792
793/**
794 * ice_build_skb - Build skb around an existing buffer
795 * @rx_ring: Rx descriptor ring to transact packets on
796 * @rx_buf: Rx buffer to pull data from
797 * @xdp: xdp_buff pointing to the data
798 *
799 * This function builds an skb around an existing Rx buffer, taking care
800 * to set up the skb correctly and avoid any memcpy overhead.
801 */
802static struct sk_buff *
803ice_build_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
804 struct xdp_buff *xdp)
805{
806 unsigned int metasize = xdp->data - xdp->data_meta;
807#if (PAGE_SIZE < 8192)
808 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
809#else
810 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
811 SKB_DATA_ALIGN(xdp->data_end -
812 xdp->data_hard_start);
813#endif
814 struct sk_buff *skb;
815
816 /* Prefetch first cache line of first page. If xdp->data_meta
817 * is unused, this points exactly as xdp->data, otherwise we
818 * likely have a consumer accessing first few bytes of meta
819 * data, and then actual data.
820 */
821 prefetch(xdp->data_meta);
822#if L1_CACHE_BYTES < 128
823 prefetch((void *)(xdp->data + L1_CACHE_BYTES));
824#endif
825 /* build an skb around the page buffer */
826 skb = build_skb(xdp->data_hard_start, truesize);
827 if (unlikely(!skb))
828 return NULL;
829
830 /* must to record Rx queue, otherwise OS features such as
831 * symmetric queue won't work
832 */
833 skb_record_rx_queue(skb, rx_ring->q_index);
834
835 /* update pointers within the skb to store the data */
836 skb_reserve(skb, xdp->data - xdp->data_hard_start);
837 __skb_put(skb, xdp->data_end - xdp->data);
838 if (metasize)
839 skb_metadata_set(skb, metasize);
840
841 /* buffer is used by skb, update page_offset */
842 ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
843
844 return skb;
845}
846
847/**
848 * ice_construct_skb - Allocate skb and populate it
849 * @rx_ring: Rx descriptor ring to transact packets on
850 * @rx_buf: Rx buffer to pull data from
851 * @xdp: xdp_buff pointing to the data
852 *
853 * This function allocates an skb. It then populates it with the page
854 * data from the current receive descriptor, taking care to set up the
855 * skb correctly.
856 */
857static struct sk_buff *
858ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
859 struct xdp_buff *xdp)
860{
861 unsigned int size = xdp->data_end - xdp->data;
862 unsigned int headlen;
863 struct sk_buff *skb;
864
865 /* prefetch first cache line of first page */
866 prefetch(xdp->data);
867#if L1_CACHE_BYTES < 128
868 prefetch((void *)(xdp->data + L1_CACHE_BYTES));
869#endif /* L1_CACHE_BYTES */
870
871 /* allocate a skb to store the frags */
872 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE,
873 GFP_ATOMIC | __GFP_NOWARN);
874 if (unlikely(!skb))
875 return NULL;
876
877 skb_record_rx_queue(skb, rx_ring->q_index);
878 /* Determine available headroom for copy */
879 headlen = size;
880 if (headlen > ICE_RX_HDR_SIZE)
881 headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
882
883 /* align pull length to size of long to optimize memcpy performance */
884 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen,
885 sizeof(long)));
886
887 /* if we exhaust the linear part then add what is left as a frag */
888 size -= headlen;
889 if (size) {
890#if (PAGE_SIZE >= 8192)
891 unsigned int truesize = SKB_DATA_ALIGN(size);
892#else
893 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
894#endif
895 skb_add_rx_frag(skb, 0, rx_buf->page,
896 rx_buf->page_offset + headlen, size, truesize);
897 /* buffer is used by skb, update page_offset */
898 ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
899 } else {
900 /* buffer is unused, reset bias back to rx_buf; data was copied
901 * onto skb's linear part so there's no need for adjusting
902 * page offset and we can reuse this buffer as-is
903 */
904 rx_buf->pagecnt_bias++;
905 }
906
907 return skb;
908}
909
910/**
911 * ice_put_rx_buf - Clean up used buffer and either recycle or free
912 * @rx_ring: Rx descriptor ring to transact packets on
913 * @rx_buf: Rx buffer to pull data from
914 *
915 * This function will update next_to_clean and then clean up the contents
916 * of the rx_buf. It will either recycle the buffer or unmap it and free
917 * the associated resources.
918 */
919static void ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
920{
921 u32 ntc = rx_ring->next_to_clean + 1;
922
923 /* fetch, update, and store next to clean */
924 ntc = (ntc < rx_ring->count) ? ntc : 0;
925 rx_ring->next_to_clean = ntc;
926
927 if (!rx_buf)
928 return;
929
930 if (ice_can_reuse_rx_page(rx_buf)) {
931 /* hand second half of page back to the ring */
932 ice_reuse_rx_page(rx_ring, rx_buf);
933 rx_ring->rx_stats.page_reuse_count++;
934 } else {
935 /* we are not reusing the buffer so unmap it */
936 dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
937 ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
938 ICE_RX_DMA_ATTR);
939 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
940 }
941
942 /* clear contents of buffer_info */
943 rx_buf->page = NULL;
944 rx_buf->skb = NULL;
945}
946
947/**
948 * ice_is_non_eop - process handling of non-EOP buffers
949 * @rx_ring: Rx ring being processed
950 * @rx_desc: Rx descriptor for current buffer
951 * @skb: Current socket buffer containing buffer in progress
952 *
953 * If the buffer is an EOP buffer, this function exits returning false,
954 * otherwise return true indicating that this is in fact a non-EOP buffer.
955 */
956static bool
957ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
958 struct sk_buff *skb)
959{
960 /* if we are the last buffer then there is nothing else to do */
961#define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
962 if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
963 return false;
964
965 /* place skb in next buffer to be received */
966 rx_ring->rx_buf[rx_ring->next_to_clean].skb = skb;
967 rx_ring->rx_stats.non_eop_descs++;
968
969 return true;
970}
971
972/**
973 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
974 * @rx_ring: Rx descriptor ring to transact packets on
975 * @budget: Total limit on number of packets to process
976 *
977 * This function provides a "bounce buffer" approach to Rx interrupt
978 * processing. The advantage to this is that on systems that have
979 * expensive overhead for IOMMU access this provides a means of avoiding
980 * it by maintaining the mapping of the page to the system.
981 *
982 * Returns amount of work completed
983 */
984static int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
985{
986 unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
987 u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
988 unsigned int xdp_res, xdp_xmit = 0;
989 struct bpf_prog *xdp_prog = NULL;
990 struct xdp_buff xdp;
991 bool failure;
992
993 xdp.rxq = &rx_ring->xdp_rxq;
994
995 /* start the loop to process Rx packets bounded by 'budget' */
996 while (likely(total_rx_pkts < (unsigned int)budget)) {
997 union ice_32b_rx_flex_desc *rx_desc;
998 struct ice_rx_buf *rx_buf;
999 struct sk_buff *skb;
1000 unsigned int size;
1001 u16 stat_err_bits;
1002 u16 vlan_tag = 0;
1003 u8 rx_ptype;
1004
1005 /* get the Rx desc from Rx ring based on 'next_to_clean' */
1006 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
1007
1008 /* status_error_len will always be zero for unused descriptors
1009 * because it's cleared in cleanup, and overlaps with hdr_addr
1010 * which is always zero because packet split isn't used, if the
1011 * hardware wrote DD then it will be non-zero
1012 */
1013 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1014 if (!ice_test_staterr(rx_desc, stat_err_bits))
1015 break;
1016
1017 /* This memory barrier is needed to keep us from reading
1018 * any other fields out of the rx_desc until we know the
1019 * DD bit is set.
1020 */
1021 dma_rmb();
1022
1023 size = le16_to_cpu(rx_desc->wb.pkt_len) &
1024 ICE_RX_FLX_DESC_PKT_LEN_M;
1025
1026 /* retrieve a buffer from the ring */
1027 rx_buf = ice_get_rx_buf(rx_ring, &skb, size);
1028
1029 if (!size) {
1030 xdp.data = NULL;
1031 xdp.data_end = NULL;
1032 xdp.data_hard_start = NULL;
1033 xdp.data_meta = NULL;
1034 goto construct_skb;
1035 }
1036
1037 xdp.data = page_address(rx_buf->page) + rx_buf->page_offset;
1038 xdp.data_hard_start = xdp.data - ice_rx_offset(rx_ring);
1039 xdp.data_meta = xdp.data;
1040 xdp.data_end = xdp.data + size;
1041
1042 rcu_read_lock();
1043 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1044 if (!xdp_prog) {
1045 rcu_read_unlock();
1046 goto construct_skb;
1047 }
1048
1049 xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog);
1050 rcu_read_unlock();
1051 if (!xdp_res)
1052 goto construct_skb;
1053 if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
1054 unsigned int truesize;
1055
1056#if (PAGE_SIZE < 8192)
1057 truesize = ice_rx_pg_size(rx_ring) / 2;
1058#else
1059 truesize = SKB_DATA_ALIGN(ice_rx_offset(rx_ring) +
1060 size);
1061#endif
1062 xdp_xmit |= xdp_res;
1063 ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
1064 } else {
1065 rx_buf->pagecnt_bias++;
1066 }
1067 total_rx_bytes += size;
1068 total_rx_pkts++;
1069
1070 cleaned_count++;
1071 ice_put_rx_buf(rx_ring, rx_buf);
1072 continue;
1073construct_skb:
1074 if (skb) {
1075 ice_add_rx_frag(rx_ring, rx_buf, skb, size);
1076 } else if (likely(xdp.data)) {
1077 if (ice_ring_uses_build_skb(rx_ring))
1078 skb = ice_build_skb(rx_ring, rx_buf, &xdp);
1079 else
1080 skb = ice_construct_skb(rx_ring, rx_buf, &xdp);
1081 }
1082 /* exit if we failed to retrieve a buffer */
1083 if (!skb) {
1084 rx_ring->rx_stats.alloc_buf_failed++;
1085 if (rx_buf)
1086 rx_buf->pagecnt_bias++;
1087 break;
1088 }
1089
1090 ice_put_rx_buf(rx_ring, rx_buf);
1091 cleaned_count++;
1092
1093 /* skip if it is NOP desc */
1094 if (ice_is_non_eop(rx_ring, rx_desc, skb))
1095 continue;
1096
1097 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1098 if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
1099 dev_kfree_skb_any(skb);
1100 continue;
1101 }
1102
1103 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
1104 if (ice_test_staterr(rx_desc, stat_err_bits))
1105 vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
1106
1107 /* pad the skb if needed, to make a valid ethernet frame */
1108 if (eth_skb_pad(skb)) {
1109 skb = NULL;
1110 continue;
1111 }
1112
1113 /* probably a little skewed due to removing CRC */
1114 total_rx_bytes += skb->len;
1115
1116 /* populate checksum, VLAN, and protocol */
1117 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1118 ICE_RX_FLEX_DESC_PTYPE_M;
1119
1120 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1121
1122 /* send completed skb up the stack */
1123 ice_receive_skb(rx_ring, skb, vlan_tag);
1124
1125 /* update budget accounting */
1126 total_rx_pkts++;
1127 }
1128
1129 /* return up to cleaned_count buffers to hardware */
1130 failure = ice_alloc_rx_bufs(rx_ring, cleaned_count);
1131
1132 if (xdp_prog)
1133 ice_finalize_xdp_rx(rx_ring, xdp_xmit);
1134
1135 ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes);
1136
1137 /* guarantee a trip back through this routine if there was a failure */
1138 return failure ? budget : (int)total_rx_pkts;
1139}
1140
1141/**
1142 * ice_adjust_itr_by_size_and_speed - Adjust ITR based on current traffic
1143 * @port_info: port_info structure containing the current link speed
1144 * @avg_pkt_size: average size of Tx or Rx packets based on clean routine
1145 * @itr: ITR value to update
1146 *
1147 * Calculate how big of an increment should be applied to the ITR value passed
1148 * in based on wmem_default, SKB overhead, Ethernet overhead, and the current
1149 * link speed.
1150 *
1151 * The following is a calculation derived from:
1152 * wmem_default / (size + overhead) = desired_pkts_per_int
1153 * rate / bits_per_byte / (size + Ethernet overhead) = pkt_rate
1154 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1155 *
1156 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1157 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1158 * formula down to:
1159 *
1160 * wmem_default * bits_per_byte * usecs_per_sec pkt_size + 24
1161 * ITR = -------------------------------------------- * --------------
1162 * rate pkt_size + 640
1163 */
1164static unsigned int
1165ice_adjust_itr_by_size_and_speed(struct ice_port_info *port_info,
1166 unsigned int avg_pkt_size,
1167 unsigned int itr)
1168{
1169 switch (port_info->phy.link_info.link_speed) {
1170 case ICE_AQ_LINK_SPEED_100GB:
1171 itr += DIV_ROUND_UP(17 * (avg_pkt_size + 24),
1172 avg_pkt_size + 640);
1173 break;
1174 case ICE_AQ_LINK_SPEED_50GB:
1175 itr += DIV_ROUND_UP(34 * (avg_pkt_size + 24),
1176 avg_pkt_size + 640);
1177 break;
1178 case ICE_AQ_LINK_SPEED_40GB:
1179 itr += DIV_ROUND_UP(43 * (avg_pkt_size + 24),
1180 avg_pkt_size + 640);
1181 break;
1182 case ICE_AQ_LINK_SPEED_25GB:
1183 itr += DIV_ROUND_UP(68 * (avg_pkt_size + 24),
1184 avg_pkt_size + 640);
1185 break;
1186 case ICE_AQ_LINK_SPEED_20GB:
1187 itr += DIV_ROUND_UP(85 * (avg_pkt_size + 24),
1188 avg_pkt_size + 640);
1189 break;
1190 case ICE_AQ_LINK_SPEED_10GB:
1191 /* fall through */
1192 default:
1193 itr += DIV_ROUND_UP(170 * (avg_pkt_size + 24),
1194 avg_pkt_size + 640);
1195 break;
1196 }
1197
1198 if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1199 itr &= ICE_ITR_ADAPTIVE_LATENCY;
1200 itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1201 }
1202
1203 return itr;
1204}
1205
1206/**
1207 * ice_update_itr - update the adaptive ITR value based on statistics
1208 * @q_vector: structure containing interrupt and ring information
1209 * @rc: structure containing ring performance data
1210 *
1211 * Stores a new ITR value based on packets and byte
1212 * counts during the last interrupt. The advantage of per interrupt
1213 * computation is faster updates and more accurate ITR for the current
1214 * traffic pattern. Constants in this function were computed
1215 * based on theoretical maximum wire speed and thresholds were set based
1216 * on testing data as well as attempting to minimize response time
1217 * while increasing bulk throughput.
1218 */
1219static void
1220ice_update_itr(struct ice_q_vector *q_vector, struct ice_ring_container *rc)
1221{
1222 unsigned long next_update = jiffies;
1223 unsigned int packets, bytes, itr;
1224 bool container_is_rx;
1225
1226 if (!rc->ring || !ITR_IS_DYNAMIC(rc->itr_setting))
1227 return;
1228
1229 /* If itr_countdown is set it means we programmed an ITR within
1230 * the last 4 interrupt cycles. This has a side effect of us
1231 * potentially firing an early interrupt. In order to work around
1232 * this we need to throw out any data received for a few
1233 * interrupts following the update.
1234 */
1235 if (q_vector->itr_countdown) {
1236 itr = rc->target_itr;
1237 goto clear_counts;
1238 }
1239
1240 container_is_rx = (&q_vector->rx == rc);
1241 /* For Rx we want to push the delay up and default to low latency.
1242 * for Tx we want to pull the delay down and default to high latency.
1243 */
1244 itr = container_is_rx ?
1245 ICE_ITR_ADAPTIVE_MIN_USECS | ICE_ITR_ADAPTIVE_LATENCY :
1246 ICE_ITR_ADAPTIVE_MAX_USECS | ICE_ITR_ADAPTIVE_LATENCY;
1247
1248 /* If we didn't update within up to 1 - 2 jiffies we can assume
1249 * that either packets are coming in so slow there hasn't been
1250 * any work, or that there is so much work that NAPI is dealing
1251 * with interrupt moderation and we don't need to do anything.
1252 */
1253 if (time_after(next_update, rc->next_update))
1254 goto clear_counts;
1255
1256 prefetch(q_vector->vsi->port_info);
1257
1258 packets = rc->total_pkts;
1259 bytes = rc->total_bytes;
1260
1261 if (container_is_rx) {
1262 /* If Rx there are 1 to 4 packets and bytes are less than
1263 * 9000 assume insufficient data to use bulk rate limiting
1264 * approach unless Tx is already in bulk rate limiting. We
1265 * are likely latency driven.
1266 */
1267 if (packets && packets < 4 && bytes < 9000 &&
1268 (q_vector->tx.target_itr & ICE_ITR_ADAPTIVE_LATENCY)) {
1269 itr = ICE_ITR_ADAPTIVE_LATENCY;
1270 goto adjust_by_size_and_speed;
1271 }
1272 } else if (packets < 4) {
1273 /* If we have Tx and Rx ITR maxed and Tx ITR is running in
1274 * bulk mode and we are receiving 4 or fewer packets just
1275 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1276 * that the Rx can relax.
1277 */
1278 if (rc->target_itr == ICE_ITR_ADAPTIVE_MAX_USECS &&
1279 (q_vector->rx.target_itr & ICE_ITR_MASK) ==
1280 ICE_ITR_ADAPTIVE_MAX_USECS)
1281 goto clear_counts;
1282 } else if (packets > 32) {
1283 /* If we have processed over 32 packets in a single interrupt
1284 * for Tx assume we need to switch over to "bulk" mode.
1285 */
1286 rc->target_itr &= ~ICE_ITR_ADAPTIVE_LATENCY;
1287 }
1288
1289 /* We have no packets to actually measure against. This means
1290 * either one of the other queues on this vector is active or
1291 * we are a Tx queue doing TSO with too high of an interrupt rate.
1292 *
1293 * Between 4 and 56 we can assume that our current interrupt delay
1294 * is only slightly too low. As such we should increase it by a small
1295 * fixed amount.
1296 */
1297 if (packets < 56) {
1298 itr = rc->target_itr + ICE_ITR_ADAPTIVE_MIN_INC;
1299 if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1300 itr &= ICE_ITR_ADAPTIVE_LATENCY;
1301 itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1302 }
1303 goto clear_counts;
1304 }
1305
1306 if (packets <= 256) {
1307 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1308 itr &= ICE_ITR_MASK;
1309
1310 /* Between 56 and 112 is our "goldilocks" zone where we are
1311 * working out "just right". Just report that our current
1312 * ITR is good for us.
1313 */
1314 if (packets <= 112)
1315 goto clear_counts;
1316
1317 /* If packet count is 128 or greater we are likely looking
1318 * at a slight overrun of the delay we want. Try halving
1319 * our delay to see if that will cut the number of packets
1320 * in half per interrupt.
1321 */
1322 itr >>= 1;
1323 itr &= ICE_ITR_MASK;
1324 if (itr < ICE_ITR_ADAPTIVE_MIN_USECS)
1325 itr = ICE_ITR_ADAPTIVE_MIN_USECS;
1326
1327 goto clear_counts;
1328 }
1329
1330 /* The paths below assume we are dealing with a bulk ITR since
1331 * number of packets is greater than 256. We are just going to have
1332 * to compute a value and try to bring the count under control,
1333 * though for smaller packet sizes there isn't much we can do as
1334 * NAPI polling will likely be kicking in sooner rather than later.
1335 */
1336 itr = ICE_ITR_ADAPTIVE_BULK;
1337
1338adjust_by_size_and_speed:
1339
1340 /* based on checks above packets cannot be 0 so division is safe */
1341 itr = ice_adjust_itr_by_size_and_speed(q_vector->vsi->port_info,
1342 bytes / packets, itr);
1343
1344clear_counts:
1345 /* write back value */
1346 rc->target_itr = itr;
1347
1348 /* next update should occur within next jiffy */
1349 rc->next_update = next_update + 1;
1350
1351 rc->total_bytes = 0;
1352 rc->total_pkts = 0;
1353}
1354
1355/**
1356 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1357 * @itr_idx: interrupt throttling index
1358 * @itr: interrupt throttling value in usecs
1359 */
1360static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1361{
1362 /* The ITR value is reported in microseconds, and the register value is
1363 * recorded in 2 microsecond units. For this reason we only need to
1364 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1365 * granularity as a shift instead of division. The mask makes sure the
1366 * ITR value is never odd so we don't accidentally write into the field
1367 * prior to the ITR field.
1368 */
1369 itr &= ICE_ITR_MASK;
1370
1371 return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1372 (itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1373 (itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1374}
1375
1376/* The act of updating the ITR will cause it to immediately trigger. In order
1377 * to prevent this from throwing off adaptive update statistics we defer the
1378 * update so that it can only happen so often. So after either Tx or Rx are
1379 * updated we make the adaptive scheme wait until either the ITR completely
1380 * expires via the next_update expiration or we have been through at least
1381 * 3 interrupts.
1382 */
1383#define ITR_COUNTDOWN_START 3
1384
1385/**
1386 * ice_update_ena_itr - Update ITR and re-enable MSIX interrupt
1387 * @q_vector: q_vector for which ITR is being updated and interrupt enabled
1388 */
1389static void ice_update_ena_itr(struct ice_q_vector *q_vector)
1390{
1391 struct ice_ring_container *tx = &q_vector->tx;
1392 struct ice_ring_container *rx = &q_vector->rx;
1393 struct ice_vsi *vsi = q_vector->vsi;
1394 u32 itr_val;
1395
1396 /* when exiting WB_ON_ITR lets set a low ITR value and trigger
1397 * interrupts to expire right away in case we have more work ready to go
1398 * already
1399 */
1400 if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE) {
1401 itr_val = ice_buildreg_itr(rx->itr_idx, ICE_WB_ON_ITR_USECS);
1402 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
1403 /* set target back to last user set value */
1404 rx->target_itr = rx->itr_setting;
1405 /* set current to what we just wrote and dynamic if needed */
1406 rx->current_itr = ICE_WB_ON_ITR_USECS |
1407 (rx->itr_setting & ICE_ITR_DYNAMIC);
1408 /* allow normal interrupt flow to start */
1409 q_vector->itr_countdown = 0;
1410 return;
1411 }
1412
1413 /* This will do nothing if dynamic updates are not enabled */
1414 ice_update_itr(q_vector, tx);
1415 ice_update_itr(q_vector, rx);
1416
1417 /* This block of logic allows us to get away with only updating
1418 * one ITR value with each interrupt. The idea is to perform a
1419 * pseudo-lazy update with the following criteria.
1420 *
1421 * 1. Rx is given higher priority than Tx if both are in same state
1422 * 2. If we must reduce an ITR that is given highest priority.
1423 * 3. We then give priority to increasing ITR based on amount.
1424 */
1425 if (rx->target_itr < rx->current_itr) {
1426 /* Rx ITR needs to be reduced, this is highest priority */
1427 itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1428 rx->current_itr = rx->target_itr;
1429 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1430 } else if ((tx->target_itr < tx->current_itr) ||
1431 ((rx->target_itr - rx->current_itr) <
1432 (tx->target_itr - tx->current_itr))) {
1433 /* Tx ITR needs to be reduced, this is second priority
1434 * Tx ITR needs to be increased more than Rx, fourth priority
1435 */
1436 itr_val = ice_buildreg_itr(tx->itr_idx, tx->target_itr);
1437 tx->current_itr = tx->target_itr;
1438 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1439 } else if (rx->current_itr != rx->target_itr) {
1440 /* Rx ITR needs to be increased, third priority */
1441 itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1442 rx->current_itr = rx->target_itr;
1443 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1444 } else {
1445 /* Still have to re-enable the interrupts */
1446 itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1447 if (q_vector->itr_countdown)
1448 q_vector->itr_countdown--;
1449 }
1450
1451 if (!test_bit(__ICE_DOWN, q_vector->vsi->state))
1452 wr32(&q_vector->vsi->back->hw,
1453 GLINT_DYN_CTL(q_vector->reg_idx),
1454 itr_val);
1455}
1456
1457/**
1458 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
1459 * @q_vector: q_vector to set WB_ON_ITR on
1460 *
1461 * We need to tell hardware to write-back completed descriptors even when
1462 * interrupts are disabled. Descriptors will be written back on cache line
1463 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
1464 * descriptors may not be written back if they don't fill a cache line until the
1465 * next interrupt.
1466 *
1467 * This sets the write-back frequency to 2 microseconds as that is the minimum
1468 * value that's not 0 due to ITR granularity. Also, set the INTENA_MSK bit to
1469 * make sure hardware knows we aren't meddling with the INTENA_M bit.
1470 */
1471static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1472{
1473 struct ice_vsi *vsi = q_vector->vsi;
1474
1475 /* already in WB_ON_ITR mode no need to change it */
1476 if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE)
1477 return;
1478
1479 if (q_vector->num_ring_rx)
1480 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1481 ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
1482 ICE_RX_ITR));
1483
1484 if (q_vector->num_ring_tx)
1485 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1486 ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
1487 ICE_TX_ITR));
1488
1489 q_vector->itr_countdown = ICE_IN_WB_ON_ITR_MODE;
1490}
1491
1492/**
1493 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1494 * @napi: napi struct with our devices info in it
1495 * @budget: amount of work driver is allowed to do this pass, in packets
1496 *
1497 * This function will clean all queues associated with a q_vector.
1498 *
1499 * Returns the amount of work done
1500 */
1501int ice_napi_poll(struct napi_struct *napi, int budget)
1502{
1503 struct ice_q_vector *q_vector =
1504 container_of(napi, struct ice_q_vector, napi);
1505 bool clean_complete = true;
1506 struct ice_ring *ring;
1507 int budget_per_ring;
1508 int work_done = 0;
1509
1510 /* Since the actual Tx work is minimal, we can give the Tx a larger
1511 * budget and be more aggressive about cleaning up the Tx descriptors.
1512 */
1513 ice_for_each_ring(ring, q_vector->tx) {
1514 bool wd = ring->xsk_umem ?
1515 ice_clean_tx_irq_zc(ring, budget) :
1516 ice_clean_tx_irq(ring, budget);
1517
1518 if (!wd)
1519 clean_complete = false;
1520 }
1521
1522 /* Handle case where we are called by netpoll with a budget of 0 */
1523 if (unlikely(budget <= 0))
1524 return budget;
1525
1526 /* normally we have 1 Rx ring per q_vector */
1527 if (unlikely(q_vector->num_ring_rx > 1))
1528 /* We attempt to distribute budget to each Rx queue fairly, but
1529 * don't allow the budget to go below 1 because that would exit
1530 * polling early.
1531 */
1532 budget_per_ring = max(budget / q_vector->num_ring_rx, 1);
1533 else
1534 /* Max of 1 Rx ring in this q_vector so give it the budget */
1535 budget_per_ring = budget;
1536
1537 ice_for_each_ring(ring, q_vector->rx) {
1538 int cleaned;
1539
1540 /* A dedicated path for zero-copy allows making a single
1541 * comparison in the irq context instead of many inside the
1542 * ice_clean_rx_irq function and makes the codebase cleaner.
1543 */
1544 cleaned = ring->xsk_umem ?
1545 ice_clean_rx_irq_zc(ring, budget_per_ring) :
1546 ice_clean_rx_irq(ring, budget_per_ring);
1547 work_done += cleaned;
1548 /* if we clean as many as budgeted, we must not be done */
1549 if (cleaned >= budget_per_ring)
1550 clean_complete = false;
1551 }
1552
1553 /* If work not completed, return budget and polling will return */
1554 if (!clean_complete)
1555 return budget;
1556
1557 /* Exit the polling mode, but don't re-enable interrupts if stack might
1558 * poll us due to busy-polling
1559 */
1560 if (likely(napi_complete_done(napi, work_done)))
1561 ice_update_ena_itr(q_vector);
1562 else
1563 ice_set_wb_on_itr(q_vector);
1564
1565 return min_t(int, work_done, budget - 1);
1566}
1567
1568/**
1569 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1570 * @tx_ring: the ring to be checked
1571 * @size: the size buffer we want to assure is available
1572 *
1573 * Returns -EBUSY if a stop is needed, else 0
1574 */
1575static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1576{
1577 netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
1578 /* Memory barrier before checking head and tail */
1579 smp_mb();
1580
1581 /* Check again in a case another CPU has just made room available. */
1582 if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1583 return -EBUSY;
1584
1585 /* A reprieve! - use start_subqueue because it doesn't call schedule */
1586 netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
1587 ++tx_ring->tx_stats.restart_q;
1588 return 0;
1589}
1590
1591/**
1592 * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1593 * @tx_ring: the ring to be checked
1594 * @size: the size buffer we want to assure is available
1595 *
1596 * Returns 0 if stop is not needed
1597 */
1598static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1599{
1600 if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1601 return 0;
1602
1603 return __ice_maybe_stop_tx(tx_ring, size);
1604}
1605
1606/**
1607 * ice_tx_map - Build the Tx descriptor
1608 * @tx_ring: ring to send buffer on
1609 * @first: first buffer info buffer to use
1610 * @off: pointer to struct that holds offload parameters
1611 *
1612 * This function loops over the skb data pointed to by *first
1613 * and gets a physical address for each memory location and programs
1614 * it and the length into the transmit descriptor.
1615 */
1616static void
1617ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
1618 struct ice_tx_offload_params *off)
1619{
1620 u64 td_offset, td_tag, td_cmd;
1621 u16 i = tx_ring->next_to_use;
1622 unsigned int data_len, size;
1623 struct ice_tx_desc *tx_desc;
1624 struct ice_tx_buf *tx_buf;
1625 struct sk_buff *skb;
1626 skb_frag_t *frag;
1627 dma_addr_t dma;
1628
1629 td_tag = off->td_l2tag1;
1630 td_cmd = off->td_cmd;
1631 td_offset = off->td_offset;
1632 skb = first->skb;
1633
1634 data_len = skb->data_len;
1635 size = skb_headlen(skb);
1636
1637 tx_desc = ICE_TX_DESC(tx_ring, i);
1638
1639 if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1640 td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1641 td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
1642 ICE_TX_FLAGS_VLAN_S;
1643 }
1644
1645 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1646
1647 tx_buf = first;
1648
1649 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1650 unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1651
1652 if (dma_mapping_error(tx_ring->dev, dma))
1653 goto dma_error;
1654
1655 /* record length, and DMA address */
1656 dma_unmap_len_set(tx_buf, len, size);
1657 dma_unmap_addr_set(tx_buf, dma, dma);
1658
1659 /* align size to end of page */
1660 max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1661 tx_desc->buf_addr = cpu_to_le64(dma);
1662
1663 /* account for data chunks larger than the hardware
1664 * can handle
1665 */
1666 while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1667 tx_desc->cmd_type_offset_bsz =
1668 build_ctob(td_cmd, td_offset, max_data, td_tag);
1669
1670 tx_desc++;
1671 i++;
1672
1673 if (i == tx_ring->count) {
1674 tx_desc = ICE_TX_DESC(tx_ring, 0);
1675 i = 0;
1676 }
1677
1678 dma += max_data;
1679 size -= max_data;
1680
1681 max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1682 tx_desc->buf_addr = cpu_to_le64(dma);
1683 }
1684
1685 if (likely(!data_len))
1686 break;
1687
1688 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1689 size, td_tag);
1690
1691 tx_desc++;
1692 i++;
1693
1694 if (i == tx_ring->count) {
1695 tx_desc = ICE_TX_DESC(tx_ring, 0);
1696 i = 0;
1697 }
1698
1699 size = skb_frag_size(frag);
1700 data_len -= size;
1701
1702 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1703 DMA_TO_DEVICE);
1704
1705 tx_buf = &tx_ring->tx_buf[i];
1706 }
1707
1708 /* record bytecount for BQL */
1709 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1710
1711 /* record SW timestamp if HW timestamp is not available */
1712 skb_tx_timestamp(first->skb);
1713
1714 i++;
1715 if (i == tx_ring->count)
1716 i = 0;
1717
1718 /* write last descriptor with RS and EOP bits */
1719 td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
1720 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, size,
1721 td_tag);
1722
1723 /* Force memory writes to complete before letting h/w know there
1724 * are new descriptors to fetch.
1725 *
1726 * We also use this memory barrier to make certain all of the
1727 * status bits have been updated before next_to_watch is written.
1728 */
1729 wmb();
1730
1731 /* set next_to_watch value indicating a packet is present */
1732 first->next_to_watch = tx_desc;
1733
1734 tx_ring->next_to_use = i;
1735
1736 ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1737
1738 /* notify HW of packet */
1739 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
1740 writel(i, tx_ring->tail);
1741
1742 return;
1743
1744dma_error:
1745 /* clear DMA mappings for failed tx_buf map */
1746 for (;;) {
1747 tx_buf = &tx_ring->tx_buf[i];
1748 ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1749 if (tx_buf == first)
1750 break;
1751 if (i == 0)
1752 i = tx_ring->count;
1753 i--;
1754 }
1755
1756 tx_ring->next_to_use = i;
1757}
1758
1759/**
1760 * ice_tx_csum - Enable Tx checksum offloads
1761 * @first: pointer to the first descriptor
1762 * @off: pointer to struct that holds offload parameters
1763 *
1764 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1765 */
1766static
1767int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1768{
1769 u32 l4_len = 0, l3_len = 0, l2_len = 0;
1770 struct sk_buff *skb = first->skb;
1771 union {
1772 struct iphdr *v4;
1773 struct ipv6hdr *v6;
1774 unsigned char *hdr;
1775 } ip;
1776 union {
1777 struct tcphdr *tcp;
1778 unsigned char *hdr;
1779 } l4;
1780 __be16 frag_off, protocol;
1781 unsigned char *exthdr;
1782 u32 offset, cmd = 0;
1783 u8 l4_proto = 0;
1784
1785 if (skb->ip_summed != CHECKSUM_PARTIAL)
1786 return 0;
1787
1788 ip.hdr = skb_network_header(skb);
1789 l4.hdr = skb_transport_header(skb);
1790
1791 /* compute outer L2 header size */
1792 l2_len = ip.hdr - skb->data;
1793 offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1794
1795 if (skb->encapsulation)
1796 return -1;
1797
1798 /* Enable IP checksum offloads */
1799 protocol = vlan_get_protocol(skb);
1800 if (protocol == htons(ETH_P_IP)) {
1801 l4_proto = ip.v4->protocol;
1802 /* the stack computes the IP header already, the only time we
1803 * need the hardware to recompute it is in the case of TSO.
1804 */
1805 if (first->tx_flags & ICE_TX_FLAGS_TSO)
1806 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1807 else
1808 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1809
1810 } else if (protocol == htons(ETH_P_IPV6)) {
1811 cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1812 exthdr = ip.hdr + sizeof(*ip.v6);
1813 l4_proto = ip.v6->nexthdr;
1814 if (l4.hdr != exthdr)
1815 ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1816 &frag_off);
1817 } else {
1818 return -1;
1819 }
1820
1821 /* compute inner L3 header size */
1822 l3_len = l4.hdr - ip.hdr;
1823 offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
1824
1825 /* Enable L4 checksum offloads */
1826 switch (l4_proto) {
1827 case IPPROTO_TCP:
1828 /* enable checksum offloads */
1829 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1830 l4_len = l4.tcp->doff;
1831 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1832 break;
1833 case IPPROTO_UDP:
1834 /* enable UDP checksum offload */
1835 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1836 l4_len = (sizeof(struct udphdr) >> 2);
1837 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1838 break;
1839 case IPPROTO_SCTP:
1840 /* enable SCTP checksum offload */
1841 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
1842 l4_len = sizeof(struct sctphdr) >> 2;
1843 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1844 break;
1845
1846 default:
1847 if (first->tx_flags & ICE_TX_FLAGS_TSO)
1848 return -1;
1849 skb_checksum_help(skb);
1850 return 0;
1851 }
1852
1853 off->td_cmd |= cmd;
1854 off->td_offset |= offset;
1855 return 1;
1856}
1857
1858/**
1859 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
1860 * @tx_ring: ring to send buffer on
1861 * @first: pointer to struct ice_tx_buf
1862 *
1863 * Checks the skb and set up correspondingly several generic transmit flags
1864 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1865 *
1866 * Returns error code indicate the frame should be dropped upon error and the
1867 * otherwise returns 0 to indicate the flags has been set properly.
1868 */
1869static int
1870ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
1871{
1872 struct sk_buff *skb = first->skb;
1873 __be16 protocol = skb->protocol;
1874
1875 if (protocol == htons(ETH_P_8021Q) &&
1876 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1877 /* when HW VLAN acceleration is turned off by the user the
1878 * stack sets the protocol to 8021q so that the driver
1879 * can take any steps required to support the SW only
1880 * VLAN handling. In our case the driver doesn't need
1881 * to take any further steps so just set the protocol
1882 * to the encapsulated ethertype.
1883 */
1884 skb->protocol = vlan_get_protocol(skb);
1885 return 0;
1886 }
1887
1888 /* if we have a HW VLAN tag being added, default to the HW one */
1889 if (skb_vlan_tag_present(skb)) {
1890 first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
1891 first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
1892 } else if (protocol == htons(ETH_P_8021Q)) {
1893 struct vlan_hdr *vhdr, _vhdr;
1894
1895 /* for SW VLAN, check the next protocol and store the tag */
1896 vhdr = (struct vlan_hdr *)skb_header_pointer(skb, ETH_HLEN,
1897 sizeof(_vhdr),
1898 &_vhdr);
1899 if (!vhdr)
1900 return -EINVAL;
1901
1902 first->tx_flags |= ntohs(vhdr->h_vlan_TCI) <<
1903 ICE_TX_FLAGS_VLAN_S;
1904 first->tx_flags |= ICE_TX_FLAGS_SW_VLAN;
1905 }
1906
1907 return ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
1908}
1909
1910/**
1911 * ice_tso - computes mss and TSO length to prepare for TSO
1912 * @first: pointer to struct ice_tx_buf
1913 * @off: pointer to struct that holds offload parameters
1914 *
1915 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
1916 */
1917static
1918int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1919{
1920 struct sk_buff *skb = first->skb;
1921 union {
1922 struct iphdr *v4;
1923 struct ipv6hdr *v6;
1924 unsigned char *hdr;
1925 } ip;
1926 union {
1927 struct tcphdr *tcp;
1928 struct udphdr *udp;
1929 unsigned char *hdr;
1930 } l4;
1931 u64 cd_mss, cd_tso_len;
1932 u32 paylen, l4_start;
1933 int err;
1934
1935 if (skb->ip_summed != CHECKSUM_PARTIAL)
1936 return 0;
1937
1938 if (!skb_is_gso(skb))
1939 return 0;
1940
1941 err = skb_cow_head(skb, 0);
1942 if (err < 0)
1943 return err;
1944
1945 /* cppcheck-suppress unreadVariable */
1946 ip.hdr = skb_network_header(skb);
1947 l4.hdr = skb_transport_header(skb);
1948
1949 /* initialize outer IP header fields */
1950 if (ip.v4->version == 4) {
1951 ip.v4->tot_len = 0;
1952 ip.v4->check = 0;
1953 } else {
1954 ip.v6->payload_len = 0;
1955 }
1956
1957 /* determine offset of transport header */
1958 l4_start = l4.hdr - skb->data;
1959
1960 /* remove payload length from checksum */
1961 paylen = skb->len - l4_start;
1962
1963 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1964 csum_replace_by_diff(&l4.udp->check,
1965 (__force __wsum)htonl(paylen));
1966 /* compute length of UDP segmentation header */
1967 off->header_len = sizeof(l4.udp) + l4_start;
1968 } else {
1969 csum_replace_by_diff(&l4.tcp->check,
1970 (__force __wsum)htonl(paylen));
1971 /* compute length of TCP segmentation header */
1972 off->header_len = (l4.tcp->doff * 4) + l4_start;
1973 }
1974
1975 /* update gso_segs and bytecount */
1976 first->gso_segs = skb_shinfo(skb)->gso_segs;
1977 first->bytecount += (first->gso_segs - 1) * off->header_len;
1978
1979 cd_tso_len = skb->len - off->header_len;
1980 cd_mss = skb_shinfo(skb)->gso_size;
1981
1982 /* record cdesc_qw1 with TSO parameters */
1983 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
1984 (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
1985 (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
1986 (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
1987 first->tx_flags |= ICE_TX_FLAGS_TSO;
1988 return 1;
1989}
1990
1991/**
1992 * ice_txd_use_count - estimate the number of descriptors needed for Tx
1993 * @size: transmit request size in bytes
1994 *
1995 * Due to hardware alignment restrictions (4K alignment), we need to
1996 * assume that we can have no more than 12K of data per descriptor, even
1997 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
1998 * Thus, we need to divide by 12K. But division is slow! Instead,
1999 * we decompose the operation into shifts and one relatively cheap
2000 * multiply operation.
2001 *
2002 * To divide by 12K, we first divide by 4K, then divide by 3:
2003 * To divide by 4K, shift right by 12 bits
2004 * To divide by 3, multiply by 85, then divide by 256
2005 * (Divide by 256 is done by shifting right by 8 bits)
2006 * Finally, we add one to round up. Because 256 isn't an exact multiple of
2007 * 3, we'll underestimate near each multiple of 12K. This is actually more
2008 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
2009 * segment. For our purposes this is accurate out to 1M which is orders of
2010 * magnitude greater than our largest possible GSO size.
2011 *
2012 * This would then be implemented as:
2013 * return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
2014 *
2015 * Since multiplication and division are commutative, we can reorder
2016 * operations into:
2017 * return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2018 */
2019static unsigned int ice_txd_use_count(unsigned int size)
2020{
2021 return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2022}
2023
2024/**
2025 * ice_xmit_desc_count - calculate number of Tx descriptors needed
2026 * @skb: send buffer
2027 *
2028 * Returns number of data descriptors needed for this skb.
2029 */
2030static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
2031{
2032 const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
2033 unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2034 unsigned int count = 0, size = skb_headlen(skb);
2035
2036 for (;;) {
2037 count += ice_txd_use_count(size);
2038
2039 if (!nr_frags--)
2040 break;
2041
2042 size = skb_frag_size(frag++);
2043 }
2044
2045 return count;
2046}
2047
2048/**
2049 * __ice_chk_linearize - Check if there are more than 8 buffers per packet
2050 * @skb: send buffer
2051 *
2052 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
2053 * and so we need to figure out the cases where we need to linearize the skb.
2054 *
2055 * For TSO we need to count the TSO header and segment payload separately.
2056 * As such we need to check cases where we have 7 fragments or more as we
2057 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2058 * the segment payload in the first descriptor, and another 7 for the
2059 * fragments.
2060 */
2061static bool __ice_chk_linearize(struct sk_buff *skb)
2062{
2063 const skb_frag_t *frag, *stale;
2064 int nr_frags, sum;
2065
2066 /* no need to check if number of frags is less than 7 */
2067 nr_frags = skb_shinfo(skb)->nr_frags;
2068 if (nr_frags < (ICE_MAX_BUF_TXD - 1))
2069 return false;
2070
2071 /* We need to walk through the list and validate that each group
2072 * of 6 fragments totals at least gso_size.
2073 */
2074 nr_frags -= ICE_MAX_BUF_TXD - 2;
2075 frag = &skb_shinfo(skb)->frags[0];
2076
2077 /* Initialize size to the negative value of gso_size minus 1. We
2078 * use this as the worst case scenario in which the frag ahead
2079 * of us only provides one byte which is why we are limited to 6
2080 * descriptors for a single transmit as the header and previous
2081 * fragment are already consuming 2 descriptors.
2082 */
2083 sum = 1 - skb_shinfo(skb)->gso_size;
2084
2085 /* Add size of frags 0 through 4 to create our initial sum */
2086 sum += skb_frag_size(frag++);
2087 sum += skb_frag_size(frag++);
2088 sum += skb_frag_size(frag++);
2089 sum += skb_frag_size(frag++);
2090 sum += skb_frag_size(frag++);
2091
2092 /* Walk through fragments adding latest fragment, testing it, and
2093 * then removing stale fragments from the sum.
2094 */
2095 stale = &skb_shinfo(skb)->frags[0];
2096 for (;;) {
2097 sum += skb_frag_size(frag++);
2098
2099 /* if sum is negative we failed to make sufficient progress */
2100 if (sum < 0)
2101 return true;
2102
2103 if (!nr_frags--)
2104 break;
2105
2106 sum -= skb_frag_size(stale++);
2107 }
2108
2109 return false;
2110}
2111
2112/**
2113 * ice_chk_linearize - Check if there are more than 8 fragments per packet
2114 * @skb: send buffer
2115 * @count: number of buffers used
2116 *
2117 * Note: Our HW can't scatter-gather more than 8 fragments to build
2118 * a packet on the wire and so we need to figure out the cases where we
2119 * need to linearize the skb.
2120 */
2121static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2122{
2123 /* Both TSO and single send will work if count is less than 8 */
2124 if (likely(count < ICE_MAX_BUF_TXD))
2125 return false;
2126
2127 if (skb_is_gso(skb))
2128 return __ice_chk_linearize(skb);
2129
2130 /* we can support up to 8 data buffers for a single send */
2131 return count != ICE_MAX_BUF_TXD;
2132}
2133
2134/**
2135 * ice_xmit_frame_ring - Sends buffer on Tx ring
2136 * @skb: send buffer
2137 * @tx_ring: ring to send buffer on
2138 *
2139 * Returns NETDEV_TX_OK if sent, else an error code
2140 */
2141static netdev_tx_t
2142ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
2143{
2144 struct ice_tx_offload_params offload = { 0 };
2145 struct ice_vsi *vsi = tx_ring->vsi;
2146 struct ice_tx_buf *first;
2147 unsigned int count;
2148 int tso, csum;
2149
2150 count = ice_xmit_desc_count(skb);
2151 if (ice_chk_linearize(skb, count)) {
2152 if (__skb_linearize(skb))
2153 goto out_drop;
2154 count = ice_txd_use_count(skb->len);
2155 tx_ring->tx_stats.tx_linearize++;
2156 }
2157
2158 /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2159 * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2160 * + 4 desc gap to avoid the cache line where head is,
2161 * + 1 desc for context descriptor,
2162 * otherwise try next time
2163 */
2164 if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2165 ICE_DESCS_FOR_CTX_DESC)) {
2166 tx_ring->tx_stats.tx_busy++;
2167 return NETDEV_TX_BUSY;
2168 }
2169
2170 offload.tx_ring = tx_ring;
2171
2172 /* record the location of the first descriptor for this packet */
2173 first = &tx_ring->tx_buf[tx_ring->next_to_use];
2174 first->skb = skb;
2175 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2176 first->gso_segs = 1;
2177 first->tx_flags = 0;
2178
2179 /* prepare the VLAN tagging flags for Tx */
2180 if (ice_tx_prepare_vlan_flags(tx_ring, first))
2181 goto out_drop;
2182
2183 /* set up TSO offload */
2184 tso = ice_tso(first, &offload);
2185 if (tso < 0)
2186 goto out_drop;
2187
2188 /* always set up Tx checksum offload */
2189 csum = ice_tx_csum(first, &offload);
2190 if (csum < 0)
2191 goto out_drop;
2192
2193 /* allow CONTROL frames egress from main VSI if FW LLDP disabled */
2194 if (unlikely(skb->priority == TC_PRIO_CONTROL &&
2195 vsi->type == ICE_VSI_PF &&
2196 vsi->port_info->is_sw_lldp))
2197 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2198 ICE_TX_CTX_DESC_SWTCH_UPLINK <<
2199 ICE_TXD_CTX_QW1_CMD_S);
2200
2201 if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2202 struct ice_tx_ctx_desc *cdesc;
2203 int i = tx_ring->next_to_use;
2204
2205 /* grab the next descriptor */
2206 cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2207 i++;
2208 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2209
2210 /* setup context descriptor */
2211 cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2212 cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2213 cdesc->rsvd = cpu_to_le16(0);
2214 cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2215 }
2216
2217 ice_tx_map(tx_ring, first, &offload);
2218 return NETDEV_TX_OK;
2219
2220out_drop:
2221 dev_kfree_skb_any(skb);
2222 return NETDEV_TX_OK;
2223}
2224
2225/**
2226 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2227 * @skb: send buffer
2228 * @netdev: network interface device structure
2229 *
2230 * Returns NETDEV_TX_OK if sent, else an error code
2231 */
2232netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2233{
2234 struct ice_netdev_priv *np = netdev_priv(netdev);
2235 struct ice_vsi *vsi = np->vsi;
2236 struct ice_ring *tx_ring;
2237
2238 tx_ring = vsi->tx_rings[skb->queue_mapping];
2239
2240 /* hardware can't handle really short frames, hardware padding works
2241 * beyond this point
2242 */
2243 if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2244 return NETDEV_TX_OK;
2245
2246 return ice_xmit_frame_ring(skb, tx_ring);
2247}