mtd: nand: fsl_upm: use the mtd instance embedded in struct nand_chip
[linux-2.6-block.git] / drivers / mtd / nand / fsmc_nand.c
... / ...
CommitLineData
1/*
2 * drivers/mtd/nand/fsmc_nand.c
3 *
4 * ST Microelectronics
5 * Flexible Static Memory Controller (FSMC)
6 * Driver for NAND portions
7 *
8 * Copyright © 2010 ST Microelectronics
9 * Vipin Kumar <vipin.kumar@st.com>
10 * Ashish Priyadarshi
11 *
12 * Based on drivers/mtd/nand/nomadik_nand.c
13 *
14 * This file is licensed under the terms of the GNU General Public
15 * License version 2. This program is licensed "as is" without any
16 * warranty of any kind, whether express or implied.
17 */
18
19#include <linux/clk.h>
20#include <linux/completion.h>
21#include <linux/dmaengine.h>
22#include <linux/dma-direction.h>
23#include <linux/dma-mapping.h>
24#include <linux/err.h>
25#include <linux/init.h>
26#include <linux/module.h>
27#include <linux/resource.h>
28#include <linux/sched.h>
29#include <linux/types.h>
30#include <linux/mtd/mtd.h>
31#include <linux/mtd/nand.h>
32#include <linux/mtd/nand_ecc.h>
33#include <linux/platform_device.h>
34#include <linux/of.h>
35#include <linux/mtd/partitions.h>
36#include <linux/io.h>
37#include <linux/slab.h>
38#include <linux/mtd/fsmc.h>
39#include <linux/amba/bus.h>
40#include <mtd/mtd-abi.h>
41
42static struct nand_ecclayout fsmc_ecc1_128_layout = {
43 .eccbytes = 24,
44 .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52,
45 66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116},
46 .oobfree = {
47 {.offset = 8, .length = 8},
48 {.offset = 24, .length = 8},
49 {.offset = 40, .length = 8},
50 {.offset = 56, .length = 8},
51 {.offset = 72, .length = 8},
52 {.offset = 88, .length = 8},
53 {.offset = 104, .length = 8},
54 {.offset = 120, .length = 8}
55 }
56};
57
58static struct nand_ecclayout fsmc_ecc1_64_layout = {
59 .eccbytes = 12,
60 .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52},
61 .oobfree = {
62 {.offset = 8, .length = 8},
63 {.offset = 24, .length = 8},
64 {.offset = 40, .length = 8},
65 {.offset = 56, .length = 8},
66 }
67};
68
69static struct nand_ecclayout fsmc_ecc1_16_layout = {
70 .eccbytes = 3,
71 .eccpos = {2, 3, 4},
72 .oobfree = {
73 {.offset = 8, .length = 8},
74 }
75};
76
77/*
78 * ECC4 layout for NAND of pagesize 8192 bytes & OOBsize 256 bytes. 13*16 bytes
79 * of OB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block and 46
80 * bytes are free for use.
81 */
82static struct nand_ecclayout fsmc_ecc4_256_layout = {
83 .eccbytes = 208,
84 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
85 9, 10, 11, 12, 13, 14,
86 18, 19, 20, 21, 22, 23, 24,
87 25, 26, 27, 28, 29, 30,
88 34, 35, 36, 37, 38, 39, 40,
89 41, 42, 43, 44, 45, 46,
90 50, 51, 52, 53, 54, 55, 56,
91 57, 58, 59, 60, 61, 62,
92 66, 67, 68, 69, 70, 71, 72,
93 73, 74, 75, 76, 77, 78,
94 82, 83, 84, 85, 86, 87, 88,
95 89, 90, 91, 92, 93, 94,
96 98, 99, 100, 101, 102, 103, 104,
97 105, 106, 107, 108, 109, 110,
98 114, 115, 116, 117, 118, 119, 120,
99 121, 122, 123, 124, 125, 126,
100 130, 131, 132, 133, 134, 135, 136,
101 137, 138, 139, 140, 141, 142,
102 146, 147, 148, 149, 150, 151, 152,
103 153, 154, 155, 156, 157, 158,
104 162, 163, 164, 165, 166, 167, 168,
105 169, 170, 171, 172, 173, 174,
106 178, 179, 180, 181, 182, 183, 184,
107 185, 186, 187, 188, 189, 190,
108 194, 195, 196, 197, 198, 199, 200,
109 201, 202, 203, 204, 205, 206,
110 210, 211, 212, 213, 214, 215, 216,
111 217, 218, 219, 220, 221, 222,
112 226, 227, 228, 229, 230, 231, 232,
113 233, 234, 235, 236, 237, 238,
114 242, 243, 244, 245, 246, 247, 248,
115 249, 250, 251, 252, 253, 254
116 },
117 .oobfree = {
118 {.offset = 15, .length = 3},
119 {.offset = 31, .length = 3},
120 {.offset = 47, .length = 3},
121 {.offset = 63, .length = 3},
122 {.offset = 79, .length = 3},
123 {.offset = 95, .length = 3},
124 {.offset = 111, .length = 3},
125 {.offset = 127, .length = 3},
126 {.offset = 143, .length = 3},
127 {.offset = 159, .length = 3},
128 {.offset = 175, .length = 3},
129 {.offset = 191, .length = 3},
130 {.offset = 207, .length = 3},
131 {.offset = 223, .length = 3},
132 {.offset = 239, .length = 3},
133 {.offset = 255, .length = 1}
134 }
135};
136
137/*
138 * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 224 bytes. 13*8 bytes
139 * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 118
140 * bytes are free for use.
141 */
142static struct nand_ecclayout fsmc_ecc4_224_layout = {
143 .eccbytes = 104,
144 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
145 9, 10, 11, 12, 13, 14,
146 18, 19, 20, 21, 22, 23, 24,
147 25, 26, 27, 28, 29, 30,
148 34, 35, 36, 37, 38, 39, 40,
149 41, 42, 43, 44, 45, 46,
150 50, 51, 52, 53, 54, 55, 56,
151 57, 58, 59, 60, 61, 62,
152 66, 67, 68, 69, 70, 71, 72,
153 73, 74, 75, 76, 77, 78,
154 82, 83, 84, 85, 86, 87, 88,
155 89, 90, 91, 92, 93, 94,
156 98, 99, 100, 101, 102, 103, 104,
157 105, 106, 107, 108, 109, 110,
158 114, 115, 116, 117, 118, 119, 120,
159 121, 122, 123, 124, 125, 126
160 },
161 .oobfree = {
162 {.offset = 15, .length = 3},
163 {.offset = 31, .length = 3},
164 {.offset = 47, .length = 3},
165 {.offset = 63, .length = 3},
166 {.offset = 79, .length = 3},
167 {.offset = 95, .length = 3},
168 {.offset = 111, .length = 3},
169 {.offset = 127, .length = 97}
170 }
171};
172
173/*
174 * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 128 bytes. 13*8 bytes
175 * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 22
176 * bytes are free for use.
177 */
178static struct nand_ecclayout fsmc_ecc4_128_layout = {
179 .eccbytes = 104,
180 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
181 9, 10, 11, 12, 13, 14,
182 18, 19, 20, 21, 22, 23, 24,
183 25, 26, 27, 28, 29, 30,
184 34, 35, 36, 37, 38, 39, 40,
185 41, 42, 43, 44, 45, 46,
186 50, 51, 52, 53, 54, 55, 56,
187 57, 58, 59, 60, 61, 62,
188 66, 67, 68, 69, 70, 71, 72,
189 73, 74, 75, 76, 77, 78,
190 82, 83, 84, 85, 86, 87, 88,
191 89, 90, 91, 92, 93, 94,
192 98, 99, 100, 101, 102, 103, 104,
193 105, 106, 107, 108, 109, 110,
194 114, 115, 116, 117, 118, 119, 120,
195 121, 122, 123, 124, 125, 126
196 },
197 .oobfree = {
198 {.offset = 15, .length = 3},
199 {.offset = 31, .length = 3},
200 {.offset = 47, .length = 3},
201 {.offset = 63, .length = 3},
202 {.offset = 79, .length = 3},
203 {.offset = 95, .length = 3},
204 {.offset = 111, .length = 3},
205 {.offset = 127, .length = 1}
206 }
207};
208
209/*
210 * ECC4 layout for NAND of pagesize 2048 bytes & OOBsize 64 bytes. 13*4 bytes of
211 * OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block and 10
212 * bytes are free for use.
213 */
214static struct nand_ecclayout fsmc_ecc4_64_layout = {
215 .eccbytes = 52,
216 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
217 9, 10, 11, 12, 13, 14,
218 18, 19, 20, 21, 22, 23, 24,
219 25, 26, 27, 28, 29, 30,
220 34, 35, 36, 37, 38, 39, 40,
221 41, 42, 43, 44, 45, 46,
222 50, 51, 52, 53, 54, 55, 56,
223 57, 58, 59, 60, 61, 62,
224 },
225 .oobfree = {
226 {.offset = 15, .length = 3},
227 {.offset = 31, .length = 3},
228 {.offset = 47, .length = 3},
229 {.offset = 63, .length = 1},
230 }
231};
232
233/*
234 * ECC4 layout for NAND of pagesize 512 bytes & OOBsize 16 bytes. 13 bytes of
235 * OOB size is reserved for ECC, Byte no. 4 & 5 reserved for bad block and One
236 * byte is free for use.
237 */
238static struct nand_ecclayout fsmc_ecc4_16_layout = {
239 .eccbytes = 13,
240 .eccpos = { 0, 1, 2, 3, 6, 7, 8,
241 9, 10, 11, 12, 13, 14
242 },
243 .oobfree = {
244 {.offset = 15, .length = 1},
245 }
246};
247
248/*
249 * ECC placement definitions in oobfree type format.
250 * There are 13 bytes of ecc for every 512 byte block and it has to be read
251 * consecutively and immediately after the 512 byte data block for hardware to
252 * generate the error bit offsets in 512 byte data.
253 * Managing the ecc bytes in the following way makes it easier for software to
254 * read ecc bytes consecutive to data bytes. This way is similar to
255 * oobfree structure maintained already in generic nand driver
256 */
257static struct fsmc_eccplace fsmc_ecc4_lp_place = {
258 .eccplace = {
259 {.offset = 2, .length = 13},
260 {.offset = 18, .length = 13},
261 {.offset = 34, .length = 13},
262 {.offset = 50, .length = 13},
263 {.offset = 66, .length = 13},
264 {.offset = 82, .length = 13},
265 {.offset = 98, .length = 13},
266 {.offset = 114, .length = 13}
267 }
268};
269
270static struct fsmc_eccplace fsmc_ecc4_sp_place = {
271 .eccplace = {
272 {.offset = 0, .length = 4},
273 {.offset = 6, .length = 9}
274 }
275};
276
277/**
278 * struct fsmc_nand_data - structure for FSMC NAND device state
279 *
280 * @pid: Part ID on the AMBA PrimeCell format
281 * @mtd: MTD info for a NAND flash.
282 * @nand: Chip related info for a NAND flash.
283 * @partitions: Partition info for a NAND Flash.
284 * @nr_partitions: Total number of partition of a NAND flash.
285 *
286 * @ecc_place: ECC placing locations in oobfree type format.
287 * @bank: Bank number for probed device.
288 * @clk: Clock structure for FSMC.
289 *
290 * @read_dma_chan: DMA channel for read access
291 * @write_dma_chan: DMA channel for write access to NAND
292 * @dma_access_complete: Completion structure
293 *
294 * @data_pa: NAND Physical port for Data.
295 * @data_va: NAND port for Data.
296 * @cmd_va: NAND port for Command.
297 * @addr_va: NAND port for Address.
298 * @regs_va: FSMC regs base address.
299 */
300struct fsmc_nand_data {
301 u32 pid;
302 struct mtd_info mtd;
303 struct nand_chip nand;
304 struct mtd_partition *partitions;
305 unsigned int nr_partitions;
306
307 struct fsmc_eccplace *ecc_place;
308 unsigned int bank;
309 struct device *dev;
310 enum access_mode mode;
311 struct clk *clk;
312
313 /* DMA related objects */
314 struct dma_chan *read_dma_chan;
315 struct dma_chan *write_dma_chan;
316 struct completion dma_access_complete;
317
318 struct fsmc_nand_timings *dev_timings;
319
320 dma_addr_t data_pa;
321 void __iomem *data_va;
322 void __iomem *cmd_va;
323 void __iomem *addr_va;
324 void __iomem *regs_va;
325
326 void (*select_chip)(uint32_t bank, uint32_t busw);
327};
328
329static inline struct fsmc_nand_data *mtd_to_fsmc(struct mtd_info *mtd)
330{
331 return container_of(mtd, struct fsmc_nand_data, mtd);
332}
333
334/* Assert CS signal based on chipnr */
335static void fsmc_select_chip(struct mtd_info *mtd, int chipnr)
336{
337 struct nand_chip *chip = mtd_to_nand(mtd);
338 struct fsmc_nand_data *host;
339
340 host = mtd_to_fsmc(mtd);
341
342 switch (chipnr) {
343 case -1:
344 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
345 break;
346 case 0:
347 case 1:
348 case 2:
349 case 3:
350 if (host->select_chip)
351 host->select_chip(chipnr,
352 chip->options & NAND_BUSWIDTH_16);
353 break;
354
355 default:
356 dev_err(host->dev, "unsupported chip-select %d\n", chipnr);
357 }
358}
359
360/*
361 * fsmc_cmd_ctrl - For facilitaing Hardware access
362 * This routine allows hardware specific access to control-lines(ALE,CLE)
363 */
364static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
365{
366 struct nand_chip *this = mtd_to_nand(mtd);
367 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
368 void __iomem *regs = host->regs_va;
369 unsigned int bank = host->bank;
370
371 if (ctrl & NAND_CTRL_CHANGE) {
372 u32 pc;
373
374 if (ctrl & NAND_CLE) {
375 this->IO_ADDR_R = host->cmd_va;
376 this->IO_ADDR_W = host->cmd_va;
377 } else if (ctrl & NAND_ALE) {
378 this->IO_ADDR_R = host->addr_va;
379 this->IO_ADDR_W = host->addr_va;
380 } else {
381 this->IO_ADDR_R = host->data_va;
382 this->IO_ADDR_W = host->data_va;
383 }
384
385 pc = readl(FSMC_NAND_REG(regs, bank, PC));
386 if (ctrl & NAND_NCE)
387 pc |= FSMC_ENABLE;
388 else
389 pc &= ~FSMC_ENABLE;
390 writel_relaxed(pc, FSMC_NAND_REG(regs, bank, PC));
391 }
392
393 mb();
394
395 if (cmd != NAND_CMD_NONE)
396 writeb_relaxed(cmd, this->IO_ADDR_W);
397}
398
399/*
400 * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
401 *
402 * This routine initializes timing parameters related to NAND memory access in
403 * FSMC registers
404 */
405static void fsmc_nand_setup(void __iomem *regs, uint32_t bank,
406 uint32_t busw, struct fsmc_nand_timings *timings)
407{
408 uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
409 uint32_t tclr, tar, thiz, thold, twait, tset;
410 struct fsmc_nand_timings *tims;
411 struct fsmc_nand_timings default_timings = {
412 .tclr = FSMC_TCLR_1,
413 .tar = FSMC_TAR_1,
414 .thiz = FSMC_THIZ_1,
415 .thold = FSMC_THOLD_4,
416 .twait = FSMC_TWAIT_6,
417 .tset = FSMC_TSET_0,
418 };
419
420 if (timings)
421 tims = timings;
422 else
423 tims = &default_timings;
424
425 tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
426 tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
427 thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
428 thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
429 twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
430 tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
431
432 if (busw)
433 writel_relaxed(value | FSMC_DEVWID_16,
434 FSMC_NAND_REG(regs, bank, PC));
435 else
436 writel_relaxed(value | FSMC_DEVWID_8,
437 FSMC_NAND_REG(regs, bank, PC));
438
439 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar,
440 FSMC_NAND_REG(regs, bank, PC));
441 writel_relaxed(thiz | thold | twait | tset,
442 FSMC_NAND_REG(regs, bank, COMM));
443 writel_relaxed(thiz | thold | twait | tset,
444 FSMC_NAND_REG(regs, bank, ATTRIB));
445}
446
447/*
448 * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
449 */
450static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
451{
452 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
453 void __iomem *regs = host->regs_va;
454 uint32_t bank = host->bank;
455
456 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256,
457 FSMC_NAND_REG(regs, bank, PC));
458 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN,
459 FSMC_NAND_REG(regs, bank, PC));
460 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN,
461 FSMC_NAND_REG(regs, bank, PC));
462}
463
464/*
465 * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
466 * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
467 * max of 8-bits)
468 */
469static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
470 uint8_t *ecc)
471{
472 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
473 void __iomem *regs = host->regs_va;
474 uint32_t bank = host->bank;
475 uint32_t ecc_tmp;
476 unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
477
478 do {
479 if (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY)
480 break;
481 else
482 cond_resched();
483 } while (!time_after_eq(jiffies, deadline));
484
485 if (time_after_eq(jiffies, deadline)) {
486 dev_err(host->dev, "calculate ecc timed out\n");
487 return -ETIMEDOUT;
488 }
489
490 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
491 ecc[0] = (uint8_t) (ecc_tmp >> 0);
492 ecc[1] = (uint8_t) (ecc_tmp >> 8);
493 ecc[2] = (uint8_t) (ecc_tmp >> 16);
494 ecc[3] = (uint8_t) (ecc_tmp >> 24);
495
496 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
497 ecc[4] = (uint8_t) (ecc_tmp >> 0);
498 ecc[5] = (uint8_t) (ecc_tmp >> 8);
499 ecc[6] = (uint8_t) (ecc_tmp >> 16);
500 ecc[7] = (uint8_t) (ecc_tmp >> 24);
501
502 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
503 ecc[8] = (uint8_t) (ecc_tmp >> 0);
504 ecc[9] = (uint8_t) (ecc_tmp >> 8);
505 ecc[10] = (uint8_t) (ecc_tmp >> 16);
506 ecc[11] = (uint8_t) (ecc_tmp >> 24);
507
508 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
509 ecc[12] = (uint8_t) (ecc_tmp >> 16);
510
511 return 0;
512}
513
514/*
515 * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
516 * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
517 * max of 1-bit)
518 */
519static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
520 uint8_t *ecc)
521{
522 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
523 void __iomem *regs = host->regs_va;
524 uint32_t bank = host->bank;
525 uint32_t ecc_tmp;
526
527 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
528 ecc[0] = (uint8_t) (ecc_tmp >> 0);
529 ecc[1] = (uint8_t) (ecc_tmp >> 8);
530 ecc[2] = (uint8_t) (ecc_tmp >> 16);
531
532 return 0;
533}
534
535/* Count the number of 0's in buff upto a max of max_bits */
536static int count_written_bits(uint8_t *buff, int size, int max_bits)
537{
538 int k, written_bits = 0;
539
540 for (k = 0; k < size; k++) {
541 written_bits += hweight8(~buff[k]);
542 if (written_bits > max_bits)
543 break;
544 }
545
546 return written_bits;
547}
548
549static void dma_complete(void *param)
550{
551 struct fsmc_nand_data *host = param;
552
553 complete(&host->dma_access_complete);
554}
555
556static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
557 enum dma_data_direction direction)
558{
559 struct dma_chan *chan;
560 struct dma_device *dma_dev;
561 struct dma_async_tx_descriptor *tx;
562 dma_addr_t dma_dst, dma_src, dma_addr;
563 dma_cookie_t cookie;
564 unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
565 int ret;
566 unsigned long time_left;
567
568 if (direction == DMA_TO_DEVICE)
569 chan = host->write_dma_chan;
570 else if (direction == DMA_FROM_DEVICE)
571 chan = host->read_dma_chan;
572 else
573 return -EINVAL;
574
575 dma_dev = chan->device;
576 dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
577
578 if (direction == DMA_TO_DEVICE) {
579 dma_src = dma_addr;
580 dma_dst = host->data_pa;
581 } else {
582 dma_src = host->data_pa;
583 dma_dst = dma_addr;
584 }
585
586 tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
587 len, flags);
588 if (!tx) {
589 dev_err(host->dev, "device_prep_dma_memcpy error\n");
590 ret = -EIO;
591 goto unmap_dma;
592 }
593
594 tx->callback = dma_complete;
595 tx->callback_param = host;
596 cookie = tx->tx_submit(tx);
597
598 ret = dma_submit_error(cookie);
599 if (ret) {
600 dev_err(host->dev, "dma_submit_error %d\n", cookie);
601 goto unmap_dma;
602 }
603
604 dma_async_issue_pending(chan);
605
606 time_left =
607 wait_for_completion_timeout(&host->dma_access_complete,
608 msecs_to_jiffies(3000));
609 if (time_left == 0) {
610 dmaengine_terminate_all(chan);
611 dev_err(host->dev, "wait_for_completion_timeout\n");
612 ret = -ETIMEDOUT;
613 goto unmap_dma;
614 }
615
616 ret = 0;
617
618unmap_dma:
619 dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
620
621 return ret;
622}
623
624/*
625 * fsmc_write_buf - write buffer to chip
626 * @mtd: MTD device structure
627 * @buf: data buffer
628 * @len: number of bytes to write
629 */
630static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
631{
632 int i;
633 struct nand_chip *chip = mtd_to_nand(mtd);
634
635 if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
636 IS_ALIGNED(len, sizeof(uint32_t))) {
637 uint32_t *p = (uint32_t *)buf;
638 len = len >> 2;
639 for (i = 0; i < len; i++)
640 writel_relaxed(p[i], chip->IO_ADDR_W);
641 } else {
642 for (i = 0; i < len; i++)
643 writeb_relaxed(buf[i], chip->IO_ADDR_W);
644 }
645}
646
647/*
648 * fsmc_read_buf - read chip data into buffer
649 * @mtd: MTD device structure
650 * @buf: buffer to store date
651 * @len: number of bytes to read
652 */
653static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
654{
655 int i;
656 struct nand_chip *chip = mtd_to_nand(mtd);
657
658 if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
659 IS_ALIGNED(len, sizeof(uint32_t))) {
660 uint32_t *p = (uint32_t *)buf;
661 len = len >> 2;
662 for (i = 0; i < len; i++)
663 p[i] = readl_relaxed(chip->IO_ADDR_R);
664 } else {
665 for (i = 0; i < len; i++)
666 buf[i] = readb_relaxed(chip->IO_ADDR_R);
667 }
668}
669
670/*
671 * fsmc_read_buf_dma - read chip data into buffer
672 * @mtd: MTD device structure
673 * @buf: buffer to store date
674 * @len: number of bytes to read
675 */
676static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len)
677{
678 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
679
680 dma_xfer(host, buf, len, DMA_FROM_DEVICE);
681}
682
683/*
684 * fsmc_write_buf_dma - write buffer to chip
685 * @mtd: MTD device structure
686 * @buf: data buffer
687 * @len: number of bytes to write
688 */
689static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf,
690 int len)
691{
692 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
693
694 dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
695}
696
697/*
698 * fsmc_read_page_hwecc
699 * @mtd: mtd info structure
700 * @chip: nand chip info structure
701 * @buf: buffer to store read data
702 * @oob_required: caller expects OOB data read to chip->oob_poi
703 * @page: page number to read
704 *
705 * This routine is needed for fsmc version 8 as reading from NAND chip has to be
706 * performed in a strict sequence as follows:
707 * data(512 byte) -> ecc(13 byte)
708 * After this read, fsmc hardware generates and reports error data bits(up to a
709 * max of 8 bits)
710 */
711static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
712 uint8_t *buf, int oob_required, int page)
713{
714 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
715 struct fsmc_eccplace *ecc_place = host->ecc_place;
716 int i, j, s, stat, eccsize = chip->ecc.size;
717 int eccbytes = chip->ecc.bytes;
718 int eccsteps = chip->ecc.steps;
719 uint8_t *p = buf;
720 uint8_t *ecc_calc = chip->buffers->ecccalc;
721 uint8_t *ecc_code = chip->buffers->ecccode;
722 int off, len, group = 0;
723 /*
724 * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we
725 * end up reading 14 bytes (7 words) from oob. The local array is
726 * to maintain word alignment
727 */
728 uint16_t ecc_oob[7];
729 uint8_t *oob = (uint8_t *)&ecc_oob[0];
730 unsigned int max_bitflips = 0;
731
732 for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
733 chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);
734 chip->ecc.hwctl(mtd, NAND_ECC_READ);
735 chip->read_buf(mtd, p, eccsize);
736
737 for (j = 0; j < eccbytes;) {
738 off = ecc_place->eccplace[group].offset;
739 len = ecc_place->eccplace[group].length;
740 group++;
741
742 /*
743 * length is intentionally kept a higher multiple of 2
744 * to read at least 13 bytes even in case of 16 bit NAND
745 * devices
746 */
747 if (chip->options & NAND_BUSWIDTH_16)
748 len = roundup(len, 2);
749
750 chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);
751 chip->read_buf(mtd, oob + j, len);
752 j += len;
753 }
754
755 memcpy(&ecc_code[i], oob, chip->ecc.bytes);
756 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
757
758 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
759 if (stat < 0) {
760 mtd->ecc_stats.failed++;
761 } else {
762 mtd->ecc_stats.corrected += stat;
763 max_bitflips = max_t(unsigned int, max_bitflips, stat);
764 }
765 }
766
767 return max_bitflips;
768}
769
770/*
771 * fsmc_bch8_correct_data
772 * @mtd: mtd info structure
773 * @dat: buffer of read data
774 * @read_ecc: ecc read from device spare area
775 * @calc_ecc: ecc calculated from read data
776 *
777 * calc_ecc is a 104 bit information containing maximum of 8 error
778 * offset informations of 13 bits each in 512 bytes of read data.
779 */
780static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat,
781 uint8_t *read_ecc, uint8_t *calc_ecc)
782{
783 struct nand_chip *chip = mtd_to_nand(mtd);
784 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
785 void __iomem *regs = host->regs_va;
786 unsigned int bank = host->bank;
787 uint32_t err_idx[8];
788 uint32_t num_err, i;
789 uint32_t ecc1, ecc2, ecc3, ecc4;
790
791 num_err = (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF;
792
793 /* no bit flipping */
794 if (likely(num_err == 0))
795 return 0;
796
797 /* too many errors */
798 if (unlikely(num_err > 8)) {
799 /*
800 * This is a temporary erase check. A newly erased page read
801 * would result in an ecc error because the oob data is also
802 * erased to FF and the calculated ecc for an FF data is not
803 * FF..FF.
804 * This is a workaround to skip performing correction in case
805 * data is FF..FF
806 *
807 * Logic:
808 * For every page, each bit written as 0 is counted until these
809 * number of bits are greater than 8 (the maximum correction
810 * capability of FSMC for each 512 + 13 bytes)
811 */
812
813 int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
814 int bits_data = count_written_bits(dat, chip->ecc.size, 8);
815
816 if ((bits_ecc + bits_data) <= 8) {
817 if (bits_data)
818 memset(dat, 0xff, chip->ecc.size);
819 return bits_data;
820 }
821
822 return -EBADMSG;
823 }
824
825 /*
826 * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
827 * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
828 *
829 * calc_ecc is a 104 bit information containing maximum of 8 error
830 * offset informations of 13 bits each. calc_ecc is copied into a
831 * uint64_t array and error offset indexes are populated in err_idx
832 * array
833 */
834 ecc1 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
835 ecc2 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
836 ecc3 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
837 ecc4 = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
838
839 err_idx[0] = (ecc1 >> 0) & 0x1FFF;
840 err_idx[1] = (ecc1 >> 13) & 0x1FFF;
841 err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
842 err_idx[3] = (ecc2 >> 7) & 0x1FFF;
843 err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
844 err_idx[5] = (ecc3 >> 1) & 0x1FFF;
845 err_idx[6] = (ecc3 >> 14) & 0x1FFF;
846 err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
847
848 i = 0;
849 while (num_err--) {
850 change_bit(0, (unsigned long *)&err_idx[i]);
851 change_bit(1, (unsigned long *)&err_idx[i]);
852
853 if (err_idx[i] < chip->ecc.size * 8) {
854 change_bit(err_idx[i], (unsigned long *)dat);
855 i++;
856 }
857 }
858 return i;
859}
860
861static bool filter(struct dma_chan *chan, void *slave)
862{
863 chan->private = slave;
864 return true;
865}
866
867#ifdef CONFIG_OF
868static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
869 struct device_node *np)
870{
871 struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
872 u32 val;
873 int ret;
874
875 /* Set default NAND width to 8 bits */
876 pdata->width = 8;
877 if (!of_property_read_u32(np, "bank-width", &val)) {
878 if (val == 2) {
879 pdata->width = 16;
880 } else if (val != 1) {
881 dev_err(&pdev->dev, "invalid bank-width %u\n", val);
882 return -EINVAL;
883 }
884 }
885 if (of_get_property(np, "nand-skip-bbtscan", NULL))
886 pdata->options = NAND_SKIP_BBTSCAN;
887
888 pdata->nand_timings = devm_kzalloc(&pdev->dev,
889 sizeof(*pdata->nand_timings), GFP_KERNEL);
890 if (!pdata->nand_timings)
891 return -ENOMEM;
892 ret = of_property_read_u8_array(np, "timings", (u8 *)pdata->nand_timings,
893 sizeof(*pdata->nand_timings));
894 if (ret) {
895 dev_info(&pdev->dev, "No timings in dts specified, using default timings!\n");
896 pdata->nand_timings = NULL;
897 }
898
899 /* Set default NAND bank to 0 */
900 pdata->bank = 0;
901 if (!of_property_read_u32(np, "bank", &val)) {
902 if (val > 3) {
903 dev_err(&pdev->dev, "invalid bank %u\n", val);
904 return -EINVAL;
905 }
906 pdata->bank = val;
907 }
908 return 0;
909}
910#else
911static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
912 struct device_node *np)
913{
914 return -ENOSYS;
915}
916#endif
917
918/*
919 * fsmc_nand_probe - Probe function
920 * @pdev: platform device structure
921 */
922static int __init fsmc_nand_probe(struct platform_device *pdev)
923{
924 struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
925 struct device_node __maybe_unused *np = pdev->dev.of_node;
926 struct fsmc_nand_data *host;
927 struct mtd_info *mtd;
928 struct nand_chip *nand;
929 struct resource *res;
930 dma_cap_mask_t mask;
931 int ret = 0;
932 u32 pid;
933 int i;
934
935 if (np) {
936 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
937 pdev->dev.platform_data = pdata;
938 ret = fsmc_nand_probe_config_dt(pdev, np);
939 if (ret) {
940 dev_err(&pdev->dev, "no platform data\n");
941 return -ENODEV;
942 }
943 }
944
945 if (!pdata) {
946 dev_err(&pdev->dev, "platform data is NULL\n");
947 return -EINVAL;
948 }
949
950 /* Allocate memory for the device structure (and zero it) */
951 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
952 if (!host)
953 return -ENOMEM;
954
955 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
956 host->data_va = devm_ioremap_resource(&pdev->dev, res);
957 if (IS_ERR(host->data_va))
958 return PTR_ERR(host->data_va);
959
960 host->data_pa = (dma_addr_t)res->start;
961
962 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
963 host->addr_va = devm_ioremap_resource(&pdev->dev, res);
964 if (IS_ERR(host->addr_va))
965 return PTR_ERR(host->addr_va);
966
967 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
968 host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
969 if (IS_ERR(host->cmd_va))
970 return PTR_ERR(host->cmd_va);
971
972 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
973 host->regs_va = devm_ioremap_resource(&pdev->dev, res);
974 if (IS_ERR(host->regs_va))
975 return PTR_ERR(host->regs_va);
976
977 host->clk = clk_get(&pdev->dev, NULL);
978 if (IS_ERR(host->clk)) {
979 dev_err(&pdev->dev, "failed to fetch block clock\n");
980 return PTR_ERR(host->clk);
981 }
982
983 ret = clk_prepare_enable(host->clk);
984 if (ret)
985 goto err_clk_prepare_enable;
986
987 /*
988 * This device ID is actually a common AMBA ID as used on the
989 * AMBA PrimeCell bus. However it is not a PrimeCell.
990 */
991 for (pid = 0, i = 0; i < 4; i++)
992 pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
993 host->pid = pid;
994 dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, "
995 "revision %02x, config %02x\n",
996 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
997 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
998
999 host->bank = pdata->bank;
1000 host->select_chip = pdata->select_bank;
1001 host->partitions = pdata->partitions;
1002 host->nr_partitions = pdata->nr_partitions;
1003 host->dev = &pdev->dev;
1004 host->dev_timings = pdata->nand_timings;
1005 host->mode = pdata->mode;
1006
1007 if (host->mode == USE_DMA_ACCESS)
1008 init_completion(&host->dma_access_complete);
1009
1010 /* Link all private pointers */
1011 mtd = &host->mtd;
1012 nand = &host->nand;
1013 mtd->priv = nand;
1014 nand->priv = host;
1015 nand_set_flash_node(nand, np);
1016
1017 host->mtd.dev.parent = &pdev->dev;
1018 nand->IO_ADDR_R = host->data_va;
1019 nand->IO_ADDR_W = host->data_va;
1020 nand->cmd_ctrl = fsmc_cmd_ctrl;
1021 nand->chip_delay = 30;
1022
1023 /*
1024 * Setup default ECC mode. nand_dt_init() called from nand_scan_ident()
1025 * can overwrite this value if the DT provides a different value.
1026 */
1027 nand->ecc.mode = NAND_ECC_HW;
1028 nand->ecc.hwctl = fsmc_enable_hwecc;
1029 nand->ecc.size = 512;
1030 nand->options = pdata->options;
1031 nand->select_chip = fsmc_select_chip;
1032 nand->badblockbits = 7;
1033 nand_set_flash_node(nand, np);
1034
1035 if (pdata->width == FSMC_NAND_BW16)
1036 nand->options |= NAND_BUSWIDTH_16;
1037
1038 switch (host->mode) {
1039 case USE_DMA_ACCESS:
1040 dma_cap_zero(mask);
1041 dma_cap_set(DMA_MEMCPY, mask);
1042 host->read_dma_chan = dma_request_channel(mask, filter,
1043 pdata->read_dma_priv);
1044 if (!host->read_dma_chan) {
1045 dev_err(&pdev->dev, "Unable to get read dma channel\n");
1046 goto err_req_read_chnl;
1047 }
1048 host->write_dma_chan = dma_request_channel(mask, filter,
1049 pdata->write_dma_priv);
1050 if (!host->write_dma_chan) {
1051 dev_err(&pdev->dev, "Unable to get write dma channel\n");
1052 goto err_req_write_chnl;
1053 }
1054 nand->read_buf = fsmc_read_buf_dma;
1055 nand->write_buf = fsmc_write_buf_dma;
1056 break;
1057
1058 default:
1059 case USE_WORD_ACCESS:
1060 nand->read_buf = fsmc_read_buf;
1061 nand->write_buf = fsmc_write_buf;
1062 break;
1063 }
1064
1065 fsmc_nand_setup(host->regs_va, host->bank,
1066 nand->options & NAND_BUSWIDTH_16,
1067 host->dev_timings);
1068
1069 if (AMBA_REV_BITS(host->pid) >= 8) {
1070 nand->ecc.read_page = fsmc_read_page_hwecc;
1071 nand->ecc.calculate = fsmc_read_hwecc_ecc4;
1072 nand->ecc.correct = fsmc_bch8_correct_data;
1073 nand->ecc.bytes = 13;
1074 nand->ecc.strength = 8;
1075 }
1076
1077 /*
1078 * Scan to find existence of the device
1079 */
1080 if (nand_scan_ident(&host->mtd, 1, NULL)) {
1081 ret = -ENXIO;
1082 dev_err(&pdev->dev, "No NAND Device found!\n");
1083 goto err_scan_ident;
1084 }
1085
1086 if (AMBA_REV_BITS(host->pid) >= 8) {
1087 switch (host->mtd.oobsize) {
1088 case 16:
1089 nand->ecc.layout = &fsmc_ecc4_16_layout;
1090 host->ecc_place = &fsmc_ecc4_sp_place;
1091 break;
1092 case 64:
1093 nand->ecc.layout = &fsmc_ecc4_64_layout;
1094 host->ecc_place = &fsmc_ecc4_lp_place;
1095 break;
1096 case 128:
1097 nand->ecc.layout = &fsmc_ecc4_128_layout;
1098 host->ecc_place = &fsmc_ecc4_lp_place;
1099 break;
1100 case 224:
1101 nand->ecc.layout = &fsmc_ecc4_224_layout;
1102 host->ecc_place = &fsmc_ecc4_lp_place;
1103 break;
1104 case 256:
1105 nand->ecc.layout = &fsmc_ecc4_256_layout;
1106 host->ecc_place = &fsmc_ecc4_lp_place;
1107 break;
1108 default:
1109 dev_warn(&pdev->dev, "No oob scheme defined for oobsize %d\n",
1110 mtd->oobsize);
1111 ret = -EINVAL;
1112 goto err_probe;
1113 }
1114 } else {
1115 switch (nand->ecc.mode) {
1116 case NAND_ECC_HW:
1117 dev_info(&pdev->dev, "Using 1-bit HW ECC scheme\n");
1118 nand->ecc.calculate = fsmc_read_hwecc_ecc1;
1119 nand->ecc.correct = nand_correct_data;
1120 nand->ecc.bytes = 3;
1121 nand->ecc.strength = 1;
1122 break;
1123
1124 case NAND_ECC_SOFT_BCH:
1125 dev_info(&pdev->dev, "Using 4-bit SW BCH ECC scheme\n");
1126 break;
1127
1128 default:
1129 dev_err(&pdev->dev, "Unsupported ECC mode!\n");
1130 goto err_probe;
1131 }
1132
1133 /*
1134 * Don't set layout for BCH4 SW ECC. This will be
1135 * generated later in nand_bch_init() later.
1136 */
1137 if (nand->ecc.mode != NAND_ECC_SOFT_BCH) {
1138 switch (host->mtd.oobsize) {
1139 case 16:
1140 nand->ecc.layout = &fsmc_ecc1_16_layout;
1141 break;
1142 case 64:
1143 nand->ecc.layout = &fsmc_ecc1_64_layout;
1144 break;
1145 case 128:
1146 nand->ecc.layout = &fsmc_ecc1_128_layout;
1147 break;
1148 default:
1149 dev_warn(&pdev->dev,
1150 "No oob scheme defined for oobsize %d\n",
1151 mtd->oobsize);
1152 ret = -EINVAL;
1153 goto err_probe;
1154 }
1155 }
1156 }
1157
1158 /* Second stage of scan to fill MTD data-structures */
1159 if (nand_scan_tail(&host->mtd)) {
1160 ret = -ENXIO;
1161 goto err_probe;
1162 }
1163
1164 /*
1165 * The partition information can is accessed by (in the same precedence)
1166 *
1167 * command line through Bootloader,
1168 * platform data,
1169 * default partition information present in driver.
1170 */
1171 /*
1172 * Check for partition info passed
1173 */
1174 host->mtd.name = "nand";
1175 ret = mtd_device_register(&host->mtd, host->partitions,
1176 host->nr_partitions);
1177 if (ret)
1178 goto err_probe;
1179
1180 platform_set_drvdata(pdev, host);
1181 dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
1182 return 0;
1183
1184err_probe:
1185err_scan_ident:
1186 if (host->mode == USE_DMA_ACCESS)
1187 dma_release_channel(host->write_dma_chan);
1188err_req_write_chnl:
1189 if (host->mode == USE_DMA_ACCESS)
1190 dma_release_channel(host->read_dma_chan);
1191err_req_read_chnl:
1192 clk_disable_unprepare(host->clk);
1193err_clk_prepare_enable:
1194 clk_put(host->clk);
1195 return ret;
1196}
1197
1198/*
1199 * Clean up routine
1200 */
1201static int fsmc_nand_remove(struct platform_device *pdev)
1202{
1203 struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1204
1205 if (host) {
1206 nand_release(&host->mtd);
1207
1208 if (host->mode == USE_DMA_ACCESS) {
1209 dma_release_channel(host->write_dma_chan);
1210 dma_release_channel(host->read_dma_chan);
1211 }
1212 clk_disable_unprepare(host->clk);
1213 clk_put(host->clk);
1214 }
1215
1216 return 0;
1217}
1218
1219#ifdef CONFIG_PM_SLEEP
1220static int fsmc_nand_suspend(struct device *dev)
1221{
1222 struct fsmc_nand_data *host = dev_get_drvdata(dev);
1223 if (host)
1224 clk_disable_unprepare(host->clk);
1225 return 0;
1226}
1227
1228static int fsmc_nand_resume(struct device *dev)
1229{
1230 struct fsmc_nand_data *host = dev_get_drvdata(dev);
1231 if (host) {
1232 clk_prepare_enable(host->clk);
1233 fsmc_nand_setup(host->regs_va, host->bank,
1234 host->nand.options & NAND_BUSWIDTH_16,
1235 host->dev_timings);
1236 }
1237 return 0;
1238}
1239#endif
1240
1241static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
1242
1243#ifdef CONFIG_OF
1244static const struct of_device_id fsmc_nand_id_table[] = {
1245 { .compatible = "st,spear600-fsmc-nand" },
1246 { .compatible = "stericsson,fsmc-nand" },
1247 {}
1248};
1249MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
1250#endif
1251
1252static struct platform_driver fsmc_nand_driver = {
1253 .remove = fsmc_nand_remove,
1254 .driver = {
1255 .name = "fsmc-nand",
1256 .of_match_table = of_match_ptr(fsmc_nand_id_table),
1257 .pm = &fsmc_nand_pm_ops,
1258 },
1259};
1260
1261module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
1262
1263MODULE_LICENSE("GPL");
1264MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
1265MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");