mtd: nand: denali: remove unused struct member totalblks, blksperchip
[linux-2.6-block.git] / drivers / mtd / nand / denali.c
... / ...
CommitLineData
1/*
2 * NAND Flash Controller Device Driver
3 * Copyright © 2009-2010, Intel Corporation and its suppliers.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 *
18 */
19#include <linux/interrupt.h>
20#include <linux/delay.h>
21#include <linux/dma-mapping.h>
22#include <linux/wait.h>
23#include <linux/mutex.h>
24#include <linux/mtd/mtd.h>
25#include <linux/module.h>
26
27#include "denali.h"
28
29MODULE_LICENSE("GPL");
30
31/*
32 * We define a module parameter that allows the user to override
33 * the hardware and decide what timing mode should be used.
34 */
35#define NAND_DEFAULT_TIMINGS -1
36
37static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
38module_param(onfi_timing_mode, int, S_IRUGO);
39MODULE_PARM_DESC(onfi_timing_mode,
40 "Overrides default ONFI setting. -1 indicates use default timings");
41
42#define DENALI_NAND_NAME "denali-nand"
43
44/*
45 * We define a macro here that combines all interrupts this driver uses into
46 * a single constant value, for convenience.
47 */
48#define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \
49 INTR_STATUS__ECC_TRANSACTION_DONE | \
50 INTR_STATUS__ECC_ERR | \
51 INTR_STATUS__PROGRAM_FAIL | \
52 INTR_STATUS__LOAD_COMP | \
53 INTR_STATUS__PROGRAM_COMP | \
54 INTR_STATUS__TIME_OUT | \
55 INTR_STATUS__ERASE_FAIL | \
56 INTR_STATUS__RST_COMP | \
57 INTR_STATUS__ERASE_COMP)
58
59/*
60 * indicates whether or not the internal value for the flash bank is
61 * valid or not
62 */
63#define CHIP_SELECT_INVALID -1
64
65#define SUPPORT_8BITECC 1
66
67/*
68 * This macro divides two integers and rounds fractional values up
69 * to the nearest integer value.
70 */
71#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
72
73/*
74 * this macro allows us to convert from an MTD structure to our own
75 * device context (denali) structure.
76 */
77static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
78{
79 return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
80}
81
82/*
83 * These constants are defined by the driver to enable common driver
84 * configuration options.
85 */
86#define SPARE_ACCESS 0x41
87#define MAIN_ACCESS 0x42
88#define MAIN_SPARE_ACCESS 0x43
89#define PIPELINE_ACCESS 0x2000
90
91#define DENALI_READ 0
92#define DENALI_WRITE 0x100
93
94/* types of device accesses. We can issue commands and get status */
95#define COMMAND_CYCLE 0
96#define ADDR_CYCLE 1
97#define STATUS_CYCLE 2
98
99/*
100 * this is a helper macro that allows us to
101 * format the bank into the proper bits for the controller
102 */
103#define BANK(x) ((x) << 24)
104
105/* forward declarations */
106static void clear_interrupts(struct denali_nand_info *denali);
107static uint32_t wait_for_irq(struct denali_nand_info *denali,
108 uint32_t irq_mask);
109static void denali_irq_enable(struct denali_nand_info *denali,
110 uint32_t int_mask);
111static uint32_t read_interrupt_status(struct denali_nand_info *denali);
112
113/*
114 * Certain operations for the denali NAND controller use an indexed mode to
115 * read/write data. The operation is performed by writing the address value
116 * of the command to the device memory followed by the data. This function
117 * abstracts this common operation.
118 */
119static void index_addr(struct denali_nand_info *denali,
120 uint32_t address, uint32_t data)
121{
122 iowrite32(address, denali->flash_mem);
123 iowrite32(data, denali->flash_mem + 0x10);
124}
125
126/* Perform an indexed read of the device */
127static void index_addr_read_data(struct denali_nand_info *denali,
128 uint32_t address, uint32_t *pdata)
129{
130 iowrite32(address, denali->flash_mem);
131 *pdata = ioread32(denali->flash_mem + 0x10);
132}
133
134/*
135 * We need to buffer some data for some of the NAND core routines.
136 * The operations manage buffering that data.
137 */
138static void reset_buf(struct denali_nand_info *denali)
139{
140 denali->buf.head = denali->buf.tail = 0;
141}
142
143static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
144{
145 denali->buf.buf[denali->buf.tail++] = byte;
146}
147
148/* reads the status of the device */
149static void read_status(struct denali_nand_info *denali)
150{
151 uint32_t cmd;
152
153 /* initialize the data buffer to store status */
154 reset_buf(denali);
155
156 cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
157 if (cmd)
158 write_byte_to_buf(denali, NAND_STATUS_WP);
159 else
160 write_byte_to_buf(denali, 0);
161}
162
163/* resets a specific device connected to the core */
164static void reset_bank(struct denali_nand_info *denali)
165{
166 uint32_t irq_status;
167 uint32_t irq_mask = INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT;
168
169 clear_interrupts(denali);
170
171 iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
172
173 irq_status = wait_for_irq(denali, irq_mask);
174
175 if (irq_status & INTR_STATUS__TIME_OUT)
176 dev_err(denali->dev, "reset bank failed.\n");
177}
178
179/* Reset the flash controller */
180static uint16_t denali_nand_reset(struct denali_nand_info *denali)
181{
182 int i;
183
184 dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
185 __FILE__, __LINE__, __func__);
186
187 for (i = 0; i < denali->max_banks; i++)
188 iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
189 denali->flash_reg + INTR_STATUS(i));
190
191 for (i = 0; i < denali->max_banks; i++) {
192 iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
193 while (!(ioread32(denali->flash_reg + INTR_STATUS(i)) &
194 (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
195 cpu_relax();
196 if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
197 INTR_STATUS__TIME_OUT)
198 dev_dbg(denali->dev,
199 "NAND Reset operation timed out on bank %d\n", i);
200 }
201
202 for (i = 0; i < denali->max_banks; i++)
203 iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
204 denali->flash_reg + INTR_STATUS(i));
205
206 return PASS;
207}
208
209/*
210 * this routine calculates the ONFI timing values for a given mode and
211 * programs the clocking register accordingly. The mode is determined by
212 * the get_onfi_nand_para routine.
213 */
214static void nand_onfi_timing_set(struct denali_nand_info *denali,
215 uint16_t mode)
216{
217 uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
218 uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
219 uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
220 uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
221 uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
222 uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
223 uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
224 uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
225 uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
226 uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
227 uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
228 uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
229
230 uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
231 uint16_t dv_window = 0;
232 uint16_t en_lo, en_hi;
233 uint16_t acc_clks;
234 uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
235
236 dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
237 __FILE__, __LINE__, __func__);
238
239 en_lo = CEIL_DIV(Trp[mode], CLK_X);
240 en_hi = CEIL_DIV(Treh[mode], CLK_X);
241#if ONFI_BLOOM_TIME
242 if ((en_hi * CLK_X) < (Treh[mode] + 2))
243 en_hi++;
244#endif
245
246 if ((en_lo + en_hi) * CLK_X < Trc[mode])
247 en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
248
249 if ((en_lo + en_hi) < CLK_MULTI)
250 en_lo += CLK_MULTI - en_lo - en_hi;
251
252 while (dv_window < 8) {
253 data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
254
255 data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
256
257 data_invalid = data_invalid_rhoh < data_invalid_rloh ?
258 data_invalid_rhoh : data_invalid_rloh;
259
260 dv_window = data_invalid - Trea[mode];
261
262 if (dv_window < 8)
263 en_lo++;
264 }
265
266 acc_clks = CEIL_DIV(Trea[mode], CLK_X);
267
268 while (acc_clks * CLK_X - Trea[mode] < 3)
269 acc_clks++;
270
271 if (data_invalid - acc_clks * CLK_X < 2)
272 dev_warn(denali->dev, "%s, Line %d: Warning!\n",
273 __FILE__, __LINE__);
274
275 addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
276 re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
277 re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
278 we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
279 cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
280 if (cs_cnt == 0)
281 cs_cnt = 1;
282
283 if (Tcea[mode]) {
284 while (cs_cnt * CLK_X + Trea[mode] < Tcea[mode])
285 cs_cnt++;
286 }
287
288#if MODE5_WORKAROUND
289 if (mode == 5)
290 acc_clks = 5;
291#endif
292
293 /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
294 if (ioread32(denali->flash_reg + MANUFACTURER_ID) == 0 &&
295 ioread32(denali->flash_reg + DEVICE_ID) == 0x88)
296 acc_clks = 6;
297
298 iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
299 iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
300 iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
301 iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
302 iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
303 iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
304 iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
305 iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
306}
307
308/* queries the NAND device to see what ONFI modes it supports. */
309static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
310{
311 int i;
312
313 /*
314 * we needn't to do a reset here because driver has already
315 * reset all the banks before
316 */
317 if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
318 ONFI_TIMING_MODE__VALUE))
319 return FAIL;
320
321 for (i = 5; i > 0; i--) {
322 if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
323 (0x01 << i))
324 break;
325 }
326
327 nand_onfi_timing_set(denali, i);
328
329 /*
330 * By now, all the ONFI devices we know support the page cache
331 * rw feature. So here we enable the pipeline_rw_ahead feature
332 */
333 /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
334 /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */
335
336 return PASS;
337}
338
339static void get_samsung_nand_para(struct denali_nand_info *denali,
340 uint8_t device_id)
341{
342 if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
343 /* Set timing register values according to datasheet */
344 iowrite32(5, denali->flash_reg + ACC_CLKS);
345 iowrite32(20, denali->flash_reg + RE_2_WE);
346 iowrite32(12, denali->flash_reg + WE_2_RE);
347 iowrite32(14, denali->flash_reg + ADDR_2_DATA);
348 iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
349 iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
350 iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
351 }
352}
353
354static void get_toshiba_nand_para(struct denali_nand_info *denali)
355{
356 uint32_t tmp;
357
358 /*
359 * Workaround to fix a controller bug which reports a wrong
360 * spare area size for some kind of Toshiba NAND device
361 */
362 if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
363 (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
364 iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
365 tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
366 ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
367 iowrite32(tmp,
368 denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
369#if SUPPORT_15BITECC
370 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
371#elif SUPPORT_8BITECC
372 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
373#endif
374 }
375}
376
377static void get_hynix_nand_para(struct denali_nand_info *denali,
378 uint8_t device_id)
379{
380 uint32_t main_size, spare_size;
381
382 switch (device_id) {
383 case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
384 case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
385 iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
386 iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
387 iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
388 main_size = 4096 *
389 ioread32(denali->flash_reg + DEVICES_CONNECTED);
390 spare_size = 224 *
391 ioread32(denali->flash_reg + DEVICES_CONNECTED);
392 iowrite32(main_size,
393 denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
394 iowrite32(spare_size,
395 denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
396 iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
397#if SUPPORT_15BITECC
398 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
399#elif SUPPORT_8BITECC
400 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
401#endif
402 break;
403 default:
404 dev_warn(denali->dev,
405 "Unknown Hynix NAND (Device ID: 0x%x).\n"
406 "Will use default parameter values instead.\n",
407 device_id);
408 }
409}
410
411/*
412 * determines how many NAND chips are connected to the controller. Note for
413 * Intel CE4100 devices we don't support more than one device.
414 */
415static void find_valid_banks(struct denali_nand_info *denali)
416{
417 uint32_t id[denali->max_banks];
418 int i;
419
420 denali->total_used_banks = 1;
421 for (i = 0; i < denali->max_banks; i++) {
422 index_addr(denali, MODE_11 | (i << 24) | 0, 0x90);
423 index_addr(denali, MODE_11 | (i << 24) | 1, 0);
424 index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]);
425
426 dev_dbg(denali->dev,
427 "Return 1st ID for bank[%d]: %x\n", i, id[i]);
428
429 if (i == 0) {
430 if (!(id[i] & 0x0ff))
431 break; /* WTF? */
432 } else {
433 if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
434 denali->total_used_banks++;
435 else
436 break;
437 }
438 }
439
440 if (denali->platform == INTEL_CE4100) {
441 /*
442 * Platform limitations of the CE4100 device limit
443 * users to a single chip solution for NAND.
444 * Multichip support is not enabled.
445 */
446 if (denali->total_used_banks != 1) {
447 dev_err(denali->dev,
448 "Sorry, Intel CE4100 only supports a single NAND device.\n");
449 BUG();
450 }
451 }
452 dev_dbg(denali->dev,
453 "denali->total_used_banks: %d\n", denali->total_used_banks);
454}
455
456/*
457 * Use the configuration feature register to determine the maximum number of
458 * banks that the hardware supports.
459 */
460static void detect_max_banks(struct denali_nand_info *denali)
461{
462 uint32_t features = ioread32(denali->flash_reg + FEATURES);
463 /*
464 * Read the revision register, so we can calculate the max_banks
465 * properly: the encoding changed from rev 5.0 to 5.1
466 */
467 u32 revision = MAKE_COMPARABLE_REVISION(
468 ioread32(denali->flash_reg + REVISION));
469
470 if (revision < REVISION_5_1)
471 denali->max_banks = 2 << (features & FEATURES__N_BANKS);
472 else
473 denali->max_banks = 1 << (features & FEATURES__N_BANKS);
474}
475
476static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
477{
478 uint16_t status = PASS;
479 uint32_t id_bytes[8], addr;
480 uint8_t maf_id, device_id;
481 int i;
482
483 dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
484 __FILE__, __LINE__, __func__);
485
486 /*
487 * Use read id method to get device ID and other params.
488 * For some NAND chips, controller can't report the correct
489 * device ID by reading from DEVICE_ID register
490 */
491 addr = MODE_11 | BANK(denali->flash_bank);
492 index_addr(denali, addr | 0, 0x90);
493 index_addr(denali, addr | 1, 0);
494 for (i = 0; i < 8; i++)
495 index_addr_read_data(denali, addr | 2, &id_bytes[i]);
496 maf_id = id_bytes[0];
497 device_id = id_bytes[1];
498
499 if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
500 ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
501 if (FAIL == get_onfi_nand_para(denali))
502 return FAIL;
503 } else if (maf_id == 0xEC) { /* Samsung NAND */
504 get_samsung_nand_para(denali, device_id);
505 } else if (maf_id == 0x98) { /* Toshiba NAND */
506 get_toshiba_nand_para(denali);
507 } else if (maf_id == 0xAD) { /* Hynix NAND */
508 get_hynix_nand_para(denali, device_id);
509 }
510
511 dev_info(denali->dev,
512 "Dump timing register values:\n"
513 "acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
514 "we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
515 "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
516 ioread32(denali->flash_reg + ACC_CLKS),
517 ioread32(denali->flash_reg + RE_2_WE),
518 ioread32(denali->flash_reg + RE_2_RE),
519 ioread32(denali->flash_reg + WE_2_RE),
520 ioread32(denali->flash_reg + ADDR_2_DATA),
521 ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
522 ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
523 ioread32(denali->flash_reg + CS_SETUP_CNT));
524
525 find_valid_banks(denali);
526
527 /*
528 * If the user specified to override the default timings
529 * with a specific ONFI mode, we apply those changes here.
530 */
531 if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
532 nand_onfi_timing_set(denali, onfi_timing_mode);
533
534 return status;
535}
536
537static void denali_set_intr_modes(struct denali_nand_info *denali,
538 uint16_t INT_ENABLE)
539{
540 dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
541 __FILE__, __LINE__, __func__);
542
543 if (INT_ENABLE)
544 iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
545 else
546 iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
547}
548
549/*
550 * validation function to verify that the controlling software is making
551 * a valid request
552 */
553static inline bool is_flash_bank_valid(int flash_bank)
554{
555 return flash_bank >= 0 && flash_bank < 4;
556}
557
558static void denali_irq_init(struct denali_nand_info *denali)
559{
560 uint32_t int_mask;
561 int i;
562
563 /* Disable global interrupts */
564 denali_set_intr_modes(denali, false);
565
566 int_mask = DENALI_IRQ_ALL;
567
568 /* Clear all status bits */
569 for (i = 0; i < denali->max_banks; ++i)
570 iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
571
572 denali_irq_enable(denali, int_mask);
573}
574
575static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
576{
577 denali_set_intr_modes(denali, false);
578 free_irq(irqnum, denali);
579}
580
581static void denali_irq_enable(struct denali_nand_info *denali,
582 uint32_t int_mask)
583{
584 int i;
585
586 for (i = 0; i < denali->max_banks; ++i)
587 iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
588}
589
590/*
591 * This function only returns when an interrupt that this driver cares about
592 * occurs. This is to reduce the overhead of servicing interrupts
593 */
594static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
595{
596 return read_interrupt_status(denali) & DENALI_IRQ_ALL;
597}
598
599/* Interrupts are cleared by writing a 1 to the appropriate status bit */
600static inline void clear_interrupt(struct denali_nand_info *denali,
601 uint32_t irq_mask)
602{
603 uint32_t intr_status_reg;
604
605 intr_status_reg = INTR_STATUS(denali->flash_bank);
606
607 iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
608}
609
610static void clear_interrupts(struct denali_nand_info *denali)
611{
612 uint32_t status;
613
614 spin_lock_irq(&denali->irq_lock);
615
616 status = read_interrupt_status(denali);
617 clear_interrupt(denali, status);
618
619 denali->irq_status = 0x0;
620 spin_unlock_irq(&denali->irq_lock);
621}
622
623static uint32_t read_interrupt_status(struct denali_nand_info *denali)
624{
625 uint32_t intr_status_reg;
626
627 intr_status_reg = INTR_STATUS(denali->flash_bank);
628
629 return ioread32(denali->flash_reg + intr_status_reg);
630}
631
632/*
633 * This is the interrupt service routine. It handles all interrupts
634 * sent to this device. Note that on CE4100, this is a shared interrupt.
635 */
636static irqreturn_t denali_isr(int irq, void *dev_id)
637{
638 struct denali_nand_info *denali = dev_id;
639 uint32_t irq_status;
640 irqreturn_t result = IRQ_NONE;
641
642 spin_lock(&denali->irq_lock);
643
644 /* check to see if a valid NAND chip has been selected. */
645 if (is_flash_bank_valid(denali->flash_bank)) {
646 /*
647 * check to see if controller generated the interrupt,
648 * since this is a shared interrupt
649 */
650 irq_status = denali_irq_detected(denali);
651 if (irq_status != 0) {
652 /* handle interrupt */
653 /* first acknowledge it */
654 clear_interrupt(denali, irq_status);
655 /*
656 * store the status in the device context for someone
657 * to read
658 */
659 denali->irq_status |= irq_status;
660 /* notify anyone who cares that it happened */
661 complete(&denali->complete);
662 /* tell the OS that we've handled this */
663 result = IRQ_HANDLED;
664 }
665 }
666 spin_unlock(&denali->irq_lock);
667 return result;
668}
669#define BANK(x) ((x) << 24)
670
671static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
672{
673 unsigned long comp_res;
674 uint32_t intr_status;
675 unsigned long timeout = msecs_to_jiffies(1000);
676
677 do {
678 comp_res =
679 wait_for_completion_timeout(&denali->complete, timeout);
680 spin_lock_irq(&denali->irq_lock);
681 intr_status = denali->irq_status;
682
683 if (intr_status & irq_mask) {
684 denali->irq_status &= ~irq_mask;
685 spin_unlock_irq(&denali->irq_lock);
686 /* our interrupt was detected */
687 break;
688 }
689
690 /*
691 * these are not the interrupts you are looking for -
692 * need to wait again
693 */
694 spin_unlock_irq(&denali->irq_lock);
695 } while (comp_res != 0);
696
697 if (comp_res == 0) {
698 /* timeout */
699 pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
700 intr_status, irq_mask);
701
702 intr_status = 0;
703 }
704 return intr_status;
705}
706
707/*
708 * This helper function setups the registers for ECC and whether or not
709 * the spare area will be transferred.
710 */
711static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
712 bool transfer_spare)
713{
714 int ecc_en_flag, transfer_spare_flag;
715
716 /* set ECC, transfer spare bits if needed */
717 ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
718 transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
719
720 /* Enable spare area/ECC per user's request. */
721 iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
722 iowrite32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
723}
724
725/*
726 * sends a pipeline command operation to the controller. See the Denali NAND
727 * controller's user guide for more information (section 4.2.3.6).
728 */
729static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
730 bool ecc_en, bool transfer_spare,
731 int access_type, int op)
732{
733 int status = PASS;
734 uint32_t page_count = 1;
735 uint32_t addr, cmd, irq_status, irq_mask;
736
737 if (op == DENALI_READ)
738 irq_mask = INTR_STATUS__LOAD_COMP;
739 else if (op == DENALI_WRITE)
740 irq_mask = 0;
741 else
742 BUG();
743
744 setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
745
746 clear_interrupts(denali);
747
748 addr = BANK(denali->flash_bank) | denali->page;
749
750 if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
751 cmd = MODE_01 | addr;
752 iowrite32(cmd, denali->flash_mem);
753 } else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
754 /* read spare area */
755 cmd = MODE_10 | addr;
756 index_addr(denali, cmd, access_type);
757
758 cmd = MODE_01 | addr;
759 iowrite32(cmd, denali->flash_mem);
760 } else if (op == DENALI_READ) {
761 /* setup page read request for access type */
762 cmd = MODE_10 | addr;
763 index_addr(denali, cmd, access_type);
764
765 /*
766 * page 33 of the NAND controller spec indicates we should not
767 * use the pipeline commands in Spare area only mode.
768 * So we don't.
769 */
770 if (access_type == SPARE_ACCESS) {
771 cmd = MODE_01 | addr;
772 iowrite32(cmd, denali->flash_mem);
773 } else {
774 index_addr(denali, cmd,
775 PIPELINE_ACCESS | op | page_count);
776
777 /*
778 * wait for command to be accepted
779 * can always use status0 bit as the
780 * mask is identical for each bank.
781 */
782 irq_status = wait_for_irq(denali, irq_mask);
783
784 if (irq_status == 0) {
785 dev_err(denali->dev,
786 "cmd, page, addr on timeout (0x%x, 0x%x, 0x%x)\n",
787 cmd, denali->page, addr);
788 status = FAIL;
789 } else {
790 cmd = MODE_01 | addr;
791 iowrite32(cmd, denali->flash_mem);
792 }
793 }
794 }
795 return status;
796}
797
798/* helper function that simply writes a buffer to the flash */
799static int write_data_to_flash_mem(struct denali_nand_info *denali,
800 const uint8_t *buf, int len)
801{
802 uint32_t *buf32;
803 int i;
804
805 /*
806 * verify that the len is a multiple of 4.
807 * see comment in read_data_from_flash_mem()
808 */
809 BUG_ON((len % 4) != 0);
810
811 /* write the data to the flash memory */
812 buf32 = (uint32_t *)buf;
813 for (i = 0; i < len / 4; i++)
814 iowrite32(*buf32++, denali->flash_mem + 0x10);
815 return i * 4; /* intent is to return the number of bytes read */
816}
817
818/* helper function that simply reads a buffer from the flash */
819static int read_data_from_flash_mem(struct denali_nand_info *denali,
820 uint8_t *buf, int len)
821{
822 uint32_t *buf32;
823 int i;
824
825 /*
826 * we assume that len will be a multiple of 4, if not it would be nice
827 * to know about it ASAP rather than have random failures...
828 * This assumption is based on the fact that this function is designed
829 * to be used to read flash pages, which are typically multiples of 4.
830 */
831 BUG_ON((len % 4) != 0);
832
833 /* transfer the data from the flash */
834 buf32 = (uint32_t *)buf;
835 for (i = 0; i < len / 4; i++)
836 *buf32++ = ioread32(denali->flash_mem + 0x10);
837 return i * 4; /* intent is to return the number of bytes read */
838}
839
840/* writes OOB data to the device */
841static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
842{
843 struct denali_nand_info *denali = mtd_to_denali(mtd);
844 uint32_t irq_status;
845 uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
846 INTR_STATUS__PROGRAM_FAIL;
847 int status = 0;
848
849 denali->page = page;
850
851 if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
852 DENALI_WRITE) == PASS) {
853 write_data_to_flash_mem(denali, buf, mtd->oobsize);
854
855 /* wait for operation to complete */
856 irq_status = wait_for_irq(denali, irq_mask);
857
858 if (irq_status == 0) {
859 dev_err(denali->dev, "OOB write failed\n");
860 status = -EIO;
861 }
862 } else {
863 dev_err(denali->dev, "unable to send pipeline command\n");
864 status = -EIO;
865 }
866 return status;
867}
868
869/* reads OOB data from the device */
870static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
871{
872 struct denali_nand_info *denali = mtd_to_denali(mtd);
873 uint32_t irq_mask = INTR_STATUS__LOAD_COMP;
874 uint32_t irq_status, addr, cmd;
875
876 denali->page = page;
877
878 if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
879 DENALI_READ) == PASS) {
880 read_data_from_flash_mem(denali, buf, mtd->oobsize);
881
882 /*
883 * wait for command to be accepted
884 * can always use status0 bit as the
885 * mask is identical for each bank.
886 */
887 irq_status = wait_for_irq(denali, irq_mask);
888
889 if (irq_status == 0)
890 dev_err(denali->dev, "page on OOB timeout %d\n",
891 denali->page);
892
893 /*
894 * We set the device back to MAIN_ACCESS here as I observed
895 * instability with the controller if you do a block erase
896 * and the last transaction was a SPARE_ACCESS. Block erase
897 * is reliable (according to the MTD test infrastructure)
898 * if you are in MAIN_ACCESS.
899 */
900 addr = BANK(denali->flash_bank) | denali->page;
901 cmd = MODE_10 | addr;
902 index_addr(denali, cmd, MAIN_ACCESS);
903 }
904}
905
906/*
907 * this function examines buffers to see if they contain data that
908 * indicate that the buffer is part of an erased region of flash.
909 */
910static bool is_erased(uint8_t *buf, int len)
911{
912 int i;
913
914 for (i = 0; i < len; i++)
915 if (buf[i] != 0xFF)
916 return false;
917 return true;
918}
919#define ECC_SECTOR_SIZE 512
920
921#define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
922#define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
923#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
924#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
925#define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
926#define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
927
928static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
929 uint32_t irq_status, unsigned int *max_bitflips)
930{
931 bool check_erased_page = false;
932 unsigned int bitflips = 0;
933
934 if (irq_status & INTR_STATUS__ECC_ERR) {
935 /* read the ECC errors. we'll ignore them for now */
936 uint32_t err_address, err_correction_info, err_byte,
937 err_sector, err_device, err_correction_value;
938 denali_set_intr_modes(denali, false);
939
940 do {
941 err_address = ioread32(denali->flash_reg +
942 ECC_ERROR_ADDRESS);
943 err_sector = ECC_SECTOR(err_address);
944 err_byte = ECC_BYTE(err_address);
945
946 err_correction_info = ioread32(denali->flash_reg +
947 ERR_CORRECTION_INFO);
948 err_correction_value =
949 ECC_CORRECTION_VALUE(err_correction_info);
950 err_device = ECC_ERR_DEVICE(err_correction_info);
951
952 if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
953 /*
954 * If err_byte is larger than ECC_SECTOR_SIZE,
955 * means error happened in OOB, so we ignore
956 * it. It's no need for us to correct it
957 * err_device is represented the NAND error
958 * bits are happened in if there are more
959 * than one NAND connected.
960 */
961 if (err_byte < ECC_SECTOR_SIZE) {
962 struct mtd_info *mtd =
963 nand_to_mtd(&denali->nand);
964 int offset;
965
966 offset = (err_sector *
967 ECC_SECTOR_SIZE +
968 err_byte) *
969 denali->devnum +
970 err_device;
971 /* correct the ECC error */
972 buf[offset] ^= err_correction_value;
973 mtd->ecc_stats.corrected++;
974 bitflips++;
975 }
976 } else {
977 /*
978 * if the error is not correctable, need to
979 * look at the page to see if it is an erased
980 * page. if so, then it's not a real ECC error
981 */
982 check_erased_page = true;
983 }
984 } while (!ECC_LAST_ERR(err_correction_info));
985 /*
986 * Once handle all ecc errors, controller will triger
987 * a ECC_TRANSACTION_DONE interrupt, so here just wait
988 * for a while for this interrupt
989 */
990 while (!(read_interrupt_status(denali) &
991 INTR_STATUS__ECC_TRANSACTION_DONE))
992 cpu_relax();
993 clear_interrupts(denali);
994 denali_set_intr_modes(denali, true);
995 }
996 *max_bitflips = bitflips;
997 return check_erased_page;
998}
999
1000/* programs the controller to either enable/disable DMA transfers */
1001static void denali_enable_dma(struct denali_nand_info *denali, bool en)
1002{
1003 iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE);
1004 ioread32(denali->flash_reg + DMA_ENABLE);
1005}
1006
1007/* setups the HW to perform the data DMA */
1008static void denali_setup_dma(struct denali_nand_info *denali, int op)
1009{
1010 uint32_t mode;
1011 const int page_count = 1;
1012 uint32_t addr = denali->buf.dma_buf;
1013
1014 mode = MODE_10 | BANK(denali->flash_bank);
1015
1016 /* DMA is a four step process */
1017
1018 /* 1. setup transfer type and # of pages */
1019 index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
1020
1021 /* 2. set memory high address bits 23:8 */
1022 index_addr(denali, mode | ((addr >> 16) << 8), 0x2200);
1023
1024 /* 3. set memory low address bits 23:8 */
1025 index_addr(denali, mode | ((addr & 0xffff) << 8), 0x2300);
1026
1027 /* 4. interrupt when complete, burst len = 64 bytes */
1028 index_addr(denali, mode | 0x14000, 0x2400);
1029}
1030
1031/*
1032 * writes a page. user specifies type, and this function handles the
1033 * configuration details.
1034 */
1035static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
1036 const uint8_t *buf, bool raw_xfer)
1037{
1038 struct denali_nand_info *denali = mtd_to_denali(mtd);
1039 dma_addr_t addr = denali->buf.dma_buf;
1040 size_t size = mtd->writesize + mtd->oobsize;
1041 uint32_t irq_status;
1042 uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
1043 INTR_STATUS__PROGRAM_FAIL;
1044
1045 /*
1046 * if it is a raw xfer, we want to disable ecc and send the spare area.
1047 * !raw_xfer - enable ecc
1048 * raw_xfer - transfer spare
1049 */
1050 setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
1051
1052 /* copy buffer into DMA buffer */
1053 memcpy(denali->buf.buf, buf, mtd->writesize);
1054
1055 if (raw_xfer) {
1056 /* transfer the data to the spare area */
1057 memcpy(denali->buf.buf + mtd->writesize,
1058 chip->oob_poi,
1059 mtd->oobsize);
1060 }
1061
1062 dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
1063
1064 clear_interrupts(denali);
1065 denali_enable_dma(denali, true);
1066
1067 denali_setup_dma(denali, DENALI_WRITE);
1068
1069 /* wait for operation to complete */
1070 irq_status = wait_for_irq(denali, irq_mask);
1071
1072 if (irq_status == 0) {
1073 dev_err(denali->dev, "timeout on write_page (type = %d)\n",
1074 raw_xfer);
1075 denali->status = NAND_STATUS_FAIL;
1076 }
1077
1078 denali_enable_dma(denali, false);
1079 dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
1080
1081 return 0;
1082}
1083
1084/* NAND core entry points */
1085
1086/*
1087 * this is the callback that the NAND core calls to write a page. Since
1088 * writing a page with ECC or without is similar, all the work is done
1089 * by write_page above.
1090 */
1091static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1092 const uint8_t *buf, int oob_required, int page)
1093{
1094 /*
1095 * for regular page writes, we let HW handle all the ECC
1096 * data written to the device.
1097 */
1098 return write_page(mtd, chip, buf, false);
1099}
1100
1101/*
1102 * This is the callback that the NAND core calls to write a page without ECC.
1103 * raw access is similar to ECC page writes, so all the work is done in the
1104 * write_page() function above.
1105 */
1106static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1107 const uint8_t *buf, int oob_required,
1108 int page)
1109{
1110 /*
1111 * for raw page writes, we want to disable ECC and simply write
1112 * whatever data is in the buffer.
1113 */
1114 return write_page(mtd, chip, buf, true);
1115}
1116
1117static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1118 int page)
1119{
1120 return write_oob_data(mtd, chip->oob_poi, page);
1121}
1122
1123static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1124 int page)
1125{
1126 read_oob_data(mtd, chip->oob_poi, page);
1127
1128 return 0;
1129}
1130
1131static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1132 uint8_t *buf, int oob_required, int page)
1133{
1134 unsigned int max_bitflips;
1135 struct denali_nand_info *denali = mtd_to_denali(mtd);
1136
1137 dma_addr_t addr = denali->buf.dma_buf;
1138 size_t size = mtd->writesize + mtd->oobsize;
1139
1140 uint32_t irq_status;
1141 uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE |
1142 INTR_STATUS__ECC_ERR;
1143 bool check_erased_page = false;
1144
1145 if (page != denali->page) {
1146 dev_err(denali->dev,
1147 "IN %s: page %d is not equal to denali->page %d",
1148 __func__, page, denali->page);
1149 BUG();
1150 }
1151
1152 setup_ecc_for_xfer(denali, true, false);
1153
1154 denali_enable_dma(denali, true);
1155 dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1156
1157 clear_interrupts(denali);
1158 denali_setup_dma(denali, DENALI_READ);
1159
1160 /* wait for operation to complete */
1161 irq_status = wait_for_irq(denali, irq_mask);
1162
1163 dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1164
1165 memcpy(buf, denali->buf.buf, mtd->writesize);
1166
1167 check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips);
1168 denali_enable_dma(denali, false);
1169
1170 if (check_erased_page) {
1171 read_oob_data(mtd, chip->oob_poi, denali->page);
1172
1173 /* check ECC failures that may have occurred on erased pages */
1174 if (check_erased_page) {
1175 if (!is_erased(buf, mtd->writesize))
1176 mtd->ecc_stats.failed++;
1177 if (!is_erased(buf, mtd->oobsize))
1178 mtd->ecc_stats.failed++;
1179 }
1180 }
1181 return max_bitflips;
1182}
1183
1184static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1185 uint8_t *buf, int oob_required, int page)
1186{
1187 struct denali_nand_info *denali = mtd_to_denali(mtd);
1188 dma_addr_t addr = denali->buf.dma_buf;
1189 size_t size = mtd->writesize + mtd->oobsize;
1190 uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
1191
1192 if (page != denali->page) {
1193 dev_err(denali->dev,
1194 "IN %s: page %d is not equal to denali->page %d",
1195 __func__, page, denali->page);
1196 BUG();
1197 }
1198
1199 setup_ecc_for_xfer(denali, false, true);
1200 denali_enable_dma(denali, true);
1201
1202 dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1203
1204 clear_interrupts(denali);
1205 denali_setup_dma(denali, DENALI_READ);
1206
1207 /* wait for operation to complete */
1208 wait_for_irq(denali, irq_mask);
1209
1210 dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1211
1212 denali_enable_dma(denali, false);
1213
1214 memcpy(buf, denali->buf.buf, mtd->writesize);
1215 memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
1216
1217 return 0;
1218}
1219
1220static uint8_t denali_read_byte(struct mtd_info *mtd)
1221{
1222 struct denali_nand_info *denali = mtd_to_denali(mtd);
1223 uint8_t result = 0xff;
1224
1225 if (denali->buf.head < denali->buf.tail)
1226 result = denali->buf.buf[denali->buf.head++];
1227
1228 return result;
1229}
1230
1231static void denali_select_chip(struct mtd_info *mtd, int chip)
1232{
1233 struct denali_nand_info *denali = mtd_to_denali(mtd);
1234
1235 spin_lock_irq(&denali->irq_lock);
1236 denali->flash_bank = chip;
1237 spin_unlock_irq(&denali->irq_lock);
1238}
1239
1240static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
1241{
1242 struct denali_nand_info *denali = mtd_to_denali(mtd);
1243 int status = denali->status;
1244
1245 denali->status = 0;
1246
1247 return status;
1248}
1249
1250static int denali_erase(struct mtd_info *mtd, int page)
1251{
1252 struct denali_nand_info *denali = mtd_to_denali(mtd);
1253
1254 uint32_t cmd, irq_status;
1255
1256 clear_interrupts(denali);
1257
1258 /* setup page read request for access type */
1259 cmd = MODE_10 | BANK(denali->flash_bank) | page;
1260 index_addr(denali, cmd, 0x1);
1261
1262 /* wait for erase to complete or failure to occur */
1263 irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
1264 INTR_STATUS__ERASE_FAIL);
1265
1266 return irq_status & INTR_STATUS__ERASE_FAIL ? NAND_STATUS_FAIL : PASS;
1267}
1268
1269static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1270 int page)
1271{
1272 struct denali_nand_info *denali = mtd_to_denali(mtd);
1273 uint32_t addr, id;
1274 int i;
1275
1276 switch (cmd) {
1277 case NAND_CMD_PAGEPROG:
1278 break;
1279 case NAND_CMD_STATUS:
1280 read_status(denali);
1281 break;
1282 case NAND_CMD_READID:
1283 case NAND_CMD_PARAM:
1284 reset_buf(denali);
1285 /*
1286 * sometimes ManufactureId read from register is not right
1287 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
1288 * So here we send READID cmd to NAND insteand
1289 */
1290 addr = MODE_11 | BANK(denali->flash_bank);
1291 index_addr(denali, addr | 0, 0x90);
1292 index_addr(denali, addr | 1, col);
1293 for (i = 0; i < 8; i++) {
1294 index_addr_read_data(denali, addr | 2, &id);
1295 write_byte_to_buf(denali, id);
1296 }
1297 break;
1298 case NAND_CMD_READ0:
1299 case NAND_CMD_SEQIN:
1300 denali->page = page;
1301 break;
1302 case NAND_CMD_RESET:
1303 reset_bank(denali);
1304 break;
1305 case NAND_CMD_READOOB:
1306 /* TODO: Read OOB data */
1307 break;
1308 default:
1309 pr_err(": unsupported command received 0x%x\n", cmd);
1310 break;
1311 }
1312}
1313/* end NAND core entry points */
1314
1315/* Initialization code to bring the device up to a known good state */
1316static void denali_hw_init(struct denali_nand_info *denali)
1317{
1318 /*
1319 * tell driver how many bit controller will skip before
1320 * writing ECC code in OOB, this register may be already
1321 * set by firmware. So we read this value out.
1322 * if this value is 0, just let it be.
1323 */
1324 denali->bbtskipbytes = ioread32(denali->flash_reg +
1325 SPARE_AREA_SKIP_BYTES);
1326 detect_max_banks(denali);
1327 denali_nand_reset(denali);
1328 iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
1329 iowrite32(CHIP_EN_DONT_CARE__FLAG,
1330 denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1331
1332 iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1333
1334 /* Should set value for these registers when init */
1335 iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
1336 iowrite32(1, denali->flash_reg + ECC_ENABLE);
1337 denali_nand_timing_set(denali);
1338 denali_irq_init(denali);
1339}
1340
1341/*
1342 * Althogh controller spec said SLC ECC is forceb to be 4bit,
1343 * but denali controller in MRST only support 15bit and 8bit ECC
1344 * correction
1345 */
1346#define ECC_8BITS 14
1347#define ECC_15BITS 26
1348
1349static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
1350 struct mtd_oob_region *oobregion)
1351{
1352 struct denali_nand_info *denali = mtd_to_denali(mtd);
1353 struct nand_chip *chip = mtd_to_nand(mtd);
1354
1355 if (section)
1356 return -ERANGE;
1357
1358 oobregion->offset = denali->bbtskipbytes;
1359 oobregion->length = chip->ecc.total;
1360
1361 return 0;
1362}
1363
1364static int denali_ooblayout_free(struct mtd_info *mtd, int section,
1365 struct mtd_oob_region *oobregion)
1366{
1367 struct denali_nand_info *denali = mtd_to_denali(mtd);
1368 struct nand_chip *chip = mtd_to_nand(mtd);
1369
1370 if (section)
1371 return -ERANGE;
1372
1373 oobregion->offset = chip->ecc.total + denali->bbtskipbytes;
1374 oobregion->length = mtd->oobsize - oobregion->offset;
1375
1376 return 0;
1377}
1378
1379static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
1380 .ecc = denali_ooblayout_ecc,
1381 .free = denali_ooblayout_free,
1382};
1383
1384static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
1385static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
1386
1387static struct nand_bbt_descr bbt_main_descr = {
1388 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1389 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1390 .offs = 8,
1391 .len = 4,
1392 .veroffs = 12,
1393 .maxblocks = 4,
1394 .pattern = bbt_pattern,
1395};
1396
1397static struct nand_bbt_descr bbt_mirror_descr = {
1398 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1399 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1400 .offs = 8,
1401 .len = 4,
1402 .veroffs = 12,
1403 .maxblocks = 4,
1404 .pattern = mirror_pattern,
1405};
1406
1407/* initialize driver data structures */
1408static void denali_drv_init(struct denali_nand_info *denali)
1409{
1410 /*
1411 * the completion object will be used to notify
1412 * the callee that the interrupt is done
1413 */
1414 init_completion(&denali->complete);
1415
1416 /*
1417 * the spinlock will be used to synchronize the ISR with any
1418 * element that might be access shared data (interrupt status)
1419 */
1420 spin_lock_init(&denali->irq_lock);
1421
1422 /* indicate that MTD has not selected a valid bank yet */
1423 denali->flash_bank = CHIP_SELECT_INVALID;
1424
1425 /* initialize our irq_status variable to indicate no interrupts */
1426 denali->irq_status = 0;
1427}
1428
1429int denali_init(struct denali_nand_info *denali)
1430{
1431 struct mtd_info *mtd = nand_to_mtd(&denali->nand);
1432 int ret;
1433
1434 if (denali->platform == INTEL_CE4100) {
1435 /*
1436 * Due to a silicon limitation, we can only support
1437 * ONFI timing mode 1 and below.
1438 */
1439 if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1440 pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
1441 return -EINVAL;
1442 }
1443 }
1444
1445 /* allocate a temporary buffer for nand_scan_ident() */
1446 denali->buf.buf = devm_kzalloc(denali->dev, PAGE_SIZE,
1447 GFP_DMA | GFP_KERNEL);
1448 if (!denali->buf.buf)
1449 return -ENOMEM;
1450
1451 mtd->dev.parent = denali->dev;
1452 denali_hw_init(denali);
1453 denali_drv_init(denali);
1454
1455 /*
1456 * denali_isr register is done after all the hardware
1457 * initilization is finished
1458 */
1459 if (request_irq(denali->irq, denali_isr, IRQF_SHARED,
1460 DENALI_NAND_NAME, denali)) {
1461 dev_err(denali->dev, "Unable to request IRQ\n");
1462 return -ENODEV;
1463 }
1464
1465 /* now that our ISR is registered, we can enable interrupts */
1466 denali_set_intr_modes(denali, true);
1467 mtd->name = "denali-nand";
1468
1469 /* register the driver with the NAND core subsystem */
1470 denali->nand.select_chip = denali_select_chip;
1471 denali->nand.cmdfunc = denali_cmdfunc;
1472 denali->nand.read_byte = denali_read_byte;
1473 denali->nand.waitfunc = denali_waitfunc;
1474
1475 /*
1476 * scan for NAND devices attached to the controller
1477 * this is the first stage in a two step process to register
1478 * with the nand subsystem
1479 */
1480 if (nand_scan_ident(mtd, denali->max_banks, NULL)) {
1481 ret = -ENXIO;
1482 goto failed_req_irq;
1483 }
1484
1485 /* allocate the right size buffer now */
1486 devm_kfree(denali->dev, denali->buf.buf);
1487 denali->buf.buf = devm_kzalloc(denali->dev,
1488 mtd->writesize + mtd->oobsize,
1489 GFP_KERNEL);
1490 if (!denali->buf.buf) {
1491 ret = -ENOMEM;
1492 goto failed_req_irq;
1493 }
1494
1495 /* Is 32-bit DMA supported? */
1496 ret = dma_set_mask(denali->dev, DMA_BIT_MASK(32));
1497 if (ret) {
1498 dev_err(denali->dev, "No usable DMA configuration\n");
1499 goto failed_req_irq;
1500 }
1501
1502 denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
1503 mtd->writesize + mtd->oobsize,
1504 DMA_BIDIRECTIONAL);
1505 if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
1506 dev_err(denali->dev, "Failed to map DMA buffer\n");
1507 ret = -EIO;
1508 goto failed_req_irq;
1509 }
1510
1511 /*
1512 * support for multi nand
1513 * MTD known nothing about multi nand, so we should tell it
1514 * the real pagesize and anything necessery
1515 */
1516 denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
1517 denali->nand.chipsize <<= (denali->devnum - 1);
1518 denali->nand.page_shift += (denali->devnum - 1);
1519 denali->nand.pagemask = (denali->nand.chipsize >>
1520 denali->nand.page_shift) - 1;
1521 denali->nand.bbt_erase_shift += (denali->devnum - 1);
1522 denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
1523 denali->nand.chip_shift += (denali->devnum - 1);
1524 mtd->writesize <<= (denali->devnum - 1);
1525 mtd->oobsize <<= (denali->devnum - 1);
1526 mtd->erasesize <<= (denali->devnum - 1);
1527 mtd->size = denali->nand.numchips * denali->nand.chipsize;
1528 denali->bbtskipbytes *= denali->devnum;
1529
1530 /*
1531 * second stage of the NAND scan
1532 * this stage requires information regarding ECC and
1533 * bad block management.
1534 */
1535
1536 /* Bad block management */
1537 denali->nand.bbt_td = &bbt_main_descr;
1538 denali->nand.bbt_md = &bbt_mirror_descr;
1539
1540 /* skip the scan for now until we have OOB read and write support */
1541 denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
1542 denali->nand.options |= NAND_SKIP_BBTSCAN;
1543 denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
1544
1545 /* no subpage writes on denali */
1546 denali->nand.options |= NAND_NO_SUBPAGE_WRITE;
1547
1548 /*
1549 * Denali Controller only support 15bit and 8bit ECC in MRST,
1550 * so just let controller do 15bit ECC for MLC and 8bit ECC for
1551 * SLC if possible.
1552 * */
1553 if (!nand_is_slc(&denali->nand) &&
1554 (mtd->oobsize > (denali->bbtskipbytes +
1555 ECC_15BITS * (mtd->writesize /
1556 ECC_SECTOR_SIZE)))) {
1557 /* if MLC OOB size is large enough, use 15bit ECC*/
1558 denali->nand.ecc.strength = 15;
1559 denali->nand.ecc.bytes = ECC_15BITS;
1560 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
1561 } else if (mtd->oobsize < (denali->bbtskipbytes +
1562 ECC_8BITS * (mtd->writesize /
1563 ECC_SECTOR_SIZE))) {
1564 pr_err("Your NAND chip OOB is not large enough to contain 8bit ECC correction codes");
1565 goto failed_req_irq;
1566 } else {
1567 denali->nand.ecc.strength = 8;
1568 denali->nand.ecc.bytes = ECC_8BITS;
1569 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
1570 }
1571
1572 mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
1573 denali->nand.ecc.bytes *= denali->devnum;
1574 denali->nand.ecc.strength *= denali->devnum;
1575
1576 /* override the default read operations */
1577 denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
1578 denali->nand.ecc.read_page = denali_read_page;
1579 denali->nand.ecc.read_page_raw = denali_read_page_raw;
1580 denali->nand.ecc.write_page = denali_write_page;
1581 denali->nand.ecc.write_page_raw = denali_write_page_raw;
1582 denali->nand.ecc.read_oob = denali_read_oob;
1583 denali->nand.ecc.write_oob = denali_write_oob;
1584 denali->nand.erase = denali_erase;
1585
1586 if (nand_scan_tail(mtd)) {
1587 ret = -ENXIO;
1588 goto failed_req_irq;
1589 }
1590
1591 ret = mtd_device_register(mtd, NULL, 0);
1592 if (ret) {
1593 dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
1594 goto failed_req_irq;
1595 }
1596 return 0;
1597
1598failed_req_irq:
1599 denali_irq_cleanup(denali->irq, denali);
1600
1601 return ret;
1602}
1603EXPORT_SYMBOL(denali_init);
1604
1605/* driver exit point */
1606void denali_remove(struct denali_nand_info *denali)
1607{
1608 struct mtd_info *mtd = nand_to_mtd(&denali->nand);
1609 /*
1610 * Pre-compute DMA buffer size to avoid any problems in case
1611 * nand_release() ever changes in a way that mtd->writesize and
1612 * mtd->oobsize are not reliable after this call.
1613 */
1614 int bufsize = mtd->writesize + mtd->oobsize;
1615
1616 nand_release(mtd);
1617 denali_irq_cleanup(denali->irq, denali);
1618 dma_unmap_single(denali->dev, denali->buf.dma_buf, bufsize,
1619 DMA_BIDIRECTIONAL);
1620}
1621EXPORT_SYMBOL(denali_remove);