| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * linux/drivers/mmc/core/core.c |
| 4 | * |
| 5 | * Copyright (C) 2003-2004 Russell King, All Rights Reserved. |
| 6 | * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. |
| 7 | * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. |
| 8 | * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. |
| 9 | */ |
| 10 | #include <linux/module.h> |
| 11 | #include <linux/init.h> |
| 12 | #include <linux/interrupt.h> |
| 13 | #include <linux/completion.h> |
| 14 | #include <linux/device.h> |
| 15 | #include <linux/delay.h> |
| 16 | #include <linux/pagemap.h> |
| 17 | #include <linux/err.h> |
| 18 | #include <linux/leds.h> |
| 19 | #include <linux/scatterlist.h> |
| 20 | #include <linux/log2.h> |
| 21 | #include <linux/pm_runtime.h> |
| 22 | #include <linux/suspend.h> |
| 23 | #include <linux/fault-inject.h> |
| 24 | #include <linux/random.h> |
| 25 | #include <linux/slab.h> |
| 26 | #include <linux/of.h> |
| 27 | |
| 28 | #include <linux/mmc/card.h> |
| 29 | #include <linux/mmc/host.h> |
| 30 | #include <linux/mmc/mmc.h> |
| 31 | #include <linux/mmc/sd.h> |
| 32 | #include <linux/mmc/slot-gpio.h> |
| 33 | |
| 34 | #define CREATE_TRACE_POINTS |
| 35 | #include <trace/events/mmc.h> |
| 36 | |
| 37 | #include "core.h" |
| 38 | #include "card.h" |
| 39 | #include "crypto.h" |
| 40 | #include "bus.h" |
| 41 | #include "host.h" |
| 42 | #include "sdio_bus.h" |
| 43 | #include "pwrseq.h" |
| 44 | |
| 45 | #include "mmc_ops.h" |
| 46 | #include "sd_ops.h" |
| 47 | #include "sdio_ops.h" |
| 48 | |
| 49 | /* The max erase timeout, used when host->max_busy_timeout isn't specified */ |
| 50 | #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */ |
| 51 | #define SD_DISCARD_TIMEOUT_MS (250) |
| 52 | |
| 53 | static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; |
| 54 | |
| 55 | /* |
| 56 | * Enabling software CRCs on the data blocks can be a significant (30%) |
| 57 | * performance cost, and for other reasons may not always be desired. |
| 58 | * So we allow it to be disabled. |
| 59 | */ |
| 60 | bool use_spi_crc = 1; |
| 61 | module_param(use_spi_crc, bool, 0); |
| 62 | |
| 63 | static int mmc_schedule_delayed_work(struct delayed_work *work, |
| 64 | unsigned long delay) |
| 65 | { |
| 66 | /* |
| 67 | * We use the system_freezable_wq, because of two reasons. |
| 68 | * First, it allows several works (not the same work item) to be |
| 69 | * executed simultaneously. Second, the queue becomes frozen when |
| 70 | * userspace becomes frozen during system PM. |
| 71 | */ |
| 72 | return queue_delayed_work(system_freezable_wq, work, delay); |
| 73 | } |
| 74 | |
| 75 | #ifdef CONFIG_FAIL_MMC_REQUEST |
| 76 | |
| 77 | /* |
| 78 | * Internal function. Inject random data errors. |
| 79 | * If mmc_data is NULL no errors are injected. |
| 80 | */ |
| 81 | static void mmc_should_fail_request(struct mmc_host *host, |
| 82 | struct mmc_request *mrq) |
| 83 | { |
| 84 | struct mmc_command *cmd = mrq->cmd; |
| 85 | struct mmc_data *data = mrq->data; |
| 86 | static const int data_errors[] = { |
| 87 | -ETIMEDOUT, |
| 88 | -EILSEQ, |
| 89 | -EIO, |
| 90 | }; |
| 91 | |
| 92 | if (!data) |
| 93 | return; |
| 94 | |
| 95 | if ((cmd && cmd->error) || data->error || |
| 96 | !should_fail(&host->fail_mmc_request, data->blksz * data->blocks)) |
| 97 | return; |
| 98 | |
| 99 | data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))]; |
| 100 | data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9; |
| 101 | } |
| 102 | |
| 103 | #else /* CONFIG_FAIL_MMC_REQUEST */ |
| 104 | |
| 105 | static inline void mmc_should_fail_request(struct mmc_host *host, |
| 106 | struct mmc_request *mrq) |
| 107 | { |
| 108 | } |
| 109 | |
| 110 | #endif /* CONFIG_FAIL_MMC_REQUEST */ |
| 111 | |
| 112 | static inline void mmc_complete_cmd(struct mmc_request *mrq) |
| 113 | { |
| 114 | if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion)) |
| 115 | complete_all(&mrq->cmd_completion); |
| 116 | } |
| 117 | |
| 118 | void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq) |
| 119 | { |
| 120 | if (!mrq->cap_cmd_during_tfr) |
| 121 | return; |
| 122 | |
| 123 | mmc_complete_cmd(mrq); |
| 124 | |
| 125 | pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n", |
| 126 | mmc_hostname(host), mrq->cmd->opcode); |
| 127 | } |
| 128 | EXPORT_SYMBOL(mmc_command_done); |
| 129 | |
| 130 | /** |
| 131 | * mmc_request_done - finish processing an MMC request |
| 132 | * @host: MMC host which completed request |
| 133 | * @mrq: MMC request which request |
| 134 | * |
| 135 | * MMC drivers should call this function when they have completed |
| 136 | * their processing of a request. |
| 137 | */ |
| 138 | void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) |
| 139 | { |
| 140 | struct mmc_command *cmd = mrq->cmd; |
| 141 | int err = cmd->error; |
| 142 | |
| 143 | /* Flag re-tuning needed on CRC errors */ |
| 144 | if (!mmc_op_tuning(cmd->opcode) && |
| 145 | !host->retune_crc_disable && |
| 146 | (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) || |
| 147 | (mrq->data && mrq->data->error == -EILSEQ) || |
| 148 | (mrq->stop && mrq->stop->error == -EILSEQ))) |
| 149 | mmc_retune_needed(host); |
| 150 | |
| 151 | if (err && cmd->retries && mmc_host_is_spi(host)) { |
| 152 | if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) |
| 153 | cmd->retries = 0; |
| 154 | } |
| 155 | |
| 156 | if (host->ongoing_mrq == mrq) |
| 157 | host->ongoing_mrq = NULL; |
| 158 | |
| 159 | mmc_complete_cmd(mrq); |
| 160 | |
| 161 | trace_mmc_request_done(host, mrq); |
| 162 | |
| 163 | /* |
| 164 | * We list various conditions for the command to be considered |
| 165 | * properly done: |
| 166 | * |
| 167 | * - There was no error, OK fine then |
| 168 | * - We are not doing some kind of retry |
| 169 | * - The card was removed (...so just complete everything no matter |
| 170 | * if there are errors or retries) |
| 171 | */ |
| 172 | if (!err || !cmd->retries || mmc_card_removed(host->card)) { |
| 173 | mmc_should_fail_request(host, mrq); |
| 174 | |
| 175 | if (!host->ongoing_mrq) |
| 176 | led_trigger_event(host->led, LED_OFF); |
| 177 | |
| 178 | if (mrq->sbc) { |
| 179 | pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n", |
| 180 | mmc_hostname(host), mrq->sbc->opcode, |
| 181 | mrq->sbc->error, |
| 182 | mrq->sbc->resp[0], mrq->sbc->resp[1], |
| 183 | mrq->sbc->resp[2], mrq->sbc->resp[3]); |
| 184 | } |
| 185 | |
| 186 | pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", |
| 187 | mmc_hostname(host), cmd->opcode, err, |
| 188 | cmd->resp[0], cmd->resp[1], |
| 189 | cmd->resp[2], cmd->resp[3]); |
| 190 | |
| 191 | if (mrq->data) { |
| 192 | pr_debug("%s: %d bytes transferred: %d\n", |
| 193 | mmc_hostname(host), |
| 194 | mrq->data->bytes_xfered, mrq->data->error); |
| 195 | } |
| 196 | |
| 197 | if (mrq->stop) { |
| 198 | pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", |
| 199 | mmc_hostname(host), mrq->stop->opcode, |
| 200 | mrq->stop->error, |
| 201 | mrq->stop->resp[0], mrq->stop->resp[1], |
| 202 | mrq->stop->resp[2], mrq->stop->resp[3]); |
| 203 | } |
| 204 | } |
| 205 | /* |
| 206 | * Request starter must handle retries - see |
| 207 | * mmc_wait_for_req_done(). |
| 208 | */ |
| 209 | if (mrq->done) |
| 210 | mrq->done(mrq); |
| 211 | } |
| 212 | |
| 213 | EXPORT_SYMBOL(mmc_request_done); |
| 214 | |
| 215 | static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) |
| 216 | { |
| 217 | int err; |
| 218 | |
| 219 | /* Assumes host controller has been runtime resumed by mmc_claim_host */ |
| 220 | err = mmc_retune(host); |
| 221 | if (err) { |
| 222 | mrq->cmd->error = err; |
| 223 | mmc_request_done(host, mrq); |
| 224 | return; |
| 225 | } |
| 226 | |
| 227 | /* |
| 228 | * For sdio rw commands we must wait for card busy otherwise some |
| 229 | * sdio devices won't work properly. |
| 230 | * And bypass I/O abort, reset and bus suspend operations. |
| 231 | */ |
| 232 | if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) && |
| 233 | host->ops->card_busy) { |
| 234 | int tries = 500; /* Wait aprox 500ms at maximum */ |
| 235 | |
| 236 | while (host->ops->card_busy(host) && --tries) |
| 237 | mmc_delay(1); |
| 238 | |
| 239 | if (tries == 0) { |
| 240 | mrq->cmd->error = -EBUSY; |
| 241 | mmc_request_done(host, mrq); |
| 242 | return; |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | if (mrq->cap_cmd_during_tfr) { |
| 247 | host->ongoing_mrq = mrq; |
| 248 | /* |
| 249 | * Retry path could come through here without having waiting on |
| 250 | * cmd_completion, so ensure it is reinitialised. |
| 251 | */ |
| 252 | reinit_completion(&mrq->cmd_completion); |
| 253 | } |
| 254 | |
| 255 | trace_mmc_request_start(host, mrq); |
| 256 | |
| 257 | if (host->cqe_on) |
| 258 | host->cqe_ops->cqe_off(host); |
| 259 | |
| 260 | host->ops->request(host, mrq); |
| 261 | } |
| 262 | |
| 263 | static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq, |
| 264 | bool cqe) |
| 265 | { |
| 266 | if (mrq->sbc) { |
| 267 | pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n", |
| 268 | mmc_hostname(host), mrq->sbc->opcode, |
| 269 | mrq->sbc->arg, mrq->sbc->flags); |
| 270 | } |
| 271 | |
| 272 | if (mrq->cmd) { |
| 273 | pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n", |
| 274 | mmc_hostname(host), cqe ? "CQE direct " : "", |
| 275 | mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags); |
| 276 | } else if (cqe) { |
| 277 | pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n", |
| 278 | mmc_hostname(host), mrq->tag, mrq->data->blk_addr); |
| 279 | } |
| 280 | |
| 281 | if (mrq->data) { |
| 282 | pr_debug("%s: blksz %d blocks %d flags %08x " |
| 283 | "tsac %d ms nsac %d\n", |
| 284 | mmc_hostname(host), mrq->data->blksz, |
| 285 | mrq->data->blocks, mrq->data->flags, |
| 286 | mrq->data->timeout_ns / 1000000, |
| 287 | mrq->data->timeout_clks); |
| 288 | } |
| 289 | |
| 290 | if (mrq->stop) { |
| 291 | pr_debug("%s: CMD%u arg %08x flags %08x\n", |
| 292 | mmc_hostname(host), mrq->stop->opcode, |
| 293 | mrq->stop->arg, mrq->stop->flags); |
| 294 | } |
| 295 | } |
| 296 | |
| 297 | static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq) |
| 298 | { |
| 299 | unsigned int i, sz = 0; |
| 300 | struct scatterlist *sg; |
| 301 | |
| 302 | if (mrq->cmd) { |
| 303 | mrq->cmd->error = 0; |
| 304 | mrq->cmd->mrq = mrq; |
| 305 | mrq->cmd->data = mrq->data; |
| 306 | } |
| 307 | if (mrq->sbc) { |
| 308 | mrq->sbc->error = 0; |
| 309 | mrq->sbc->mrq = mrq; |
| 310 | } |
| 311 | if (mrq->data) { |
| 312 | if (mrq->data->blksz > host->max_blk_size || |
| 313 | mrq->data->blocks > host->max_blk_count || |
| 314 | mrq->data->blocks * mrq->data->blksz > host->max_req_size) |
| 315 | return -EINVAL; |
| 316 | |
| 317 | for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) |
| 318 | sz += sg->length; |
| 319 | if (sz != mrq->data->blocks * mrq->data->blksz) |
| 320 | return -EINVAL; |
| 321 | |
| 322 | mrq->data->error = 0; |
| 323 | mrq->data->mrq = mrq; |
| 324 | if (mrq->stop) { |
| 325 | mrq->data->stop = mrq->stop; |
| 326 | mrq->stop->error = 0; |
| 327 | mrq->stop->mrq = mrq; |
| 328 | } |
| 329 | } |
| 330 | |
| 331 | return 0; |
| 332 | } |
| 333 | |
| 334 | int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) |
| 335 | { |
| 336 | int err; |
| 337 | |
| 338 | if (mrq->cmd->has_ext_addr) |
| 339 | mmc_send_ext_addr(host, mrq->cmd->ext_addr); |
| 340 | |
| 341 | init_completion(&mrq->cmd_completion); |
| 342 | |
| 343 | mmc_retune_hold(host); |
| 344 | |
| 345 | if (mmc_card_removed(host->card)) |
| 346 | return -ENOMEDIUM; |
| 347 | |
| 348 | mmc_mrq_pr_debug(host, mrq, false); |
| 349 | |
| 350 | WARN_ON(!host->claimed); |
| 351 | |
| 352 | err = mmc_mrq_prep(host, mrq); |
| 353 | if (err) |
| 354 | return err; |
| 355 | |
| 356 | if (host->uhs2_sd_tran) |
| 357 | mmc_uhs2_prepare_cmd(host, mrq); |
| 358 | |
| 359 | led_trigger_event(host->led, LED_FULL); |
| 360 | __mmc_start_request(host, mrq); |
| 361 | |
| 362 | return 0; |
| 363 | } |
| 364 | EXPORT_SYMBOL(mmc_start_request); |
| 365 | |
| 366 | static void mmc_wait_done(struct mmc_request *mrq) |
| 367 | { |
| 368 | complete(&mrq->completion); |
| 369 | } |
| 370 | |
| 371 | static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host) |
| 372 | { |
| 373 | struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq); |
| 374 | |
| 375 | /* |
| 376 | * If there is an ongoing transfer, wait for the command line to become |
| 377 | * available. |
| 378 | */ |
| 379 | if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion)) |
| 380 | wait_for_completion(&ongoing_mrq->cmd_completion); |
| 381 | } |
| 382 | |
| 383 | static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) |
| 384 | { |
| 385 | int err; |
| 386 | |
| 387 | mmc_wait_ongoing_tfr_cmd(host); |
| 388 | |
| 389 | init_completion(&mrq->completion); |
| 390 | mrq->done = mmc_wait_done; |
| 391 | |
| 392 | err = mmc_start_request(host, mrq); |
| 393 | if (err) { |
| 394 | mrq->cmd->error = err; |
| 395 | mmc_complete_cmd(mrq); |
| 396 | complete(&mrq->completion); |
| 397 | } |
| 398 | |
| 399 | return err; |
| 400 | } |
| 401 | |
| 402 | void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq) |
| 403 | { |
| 404 | struct mmc_command *cmd; |
| 405 | |
| 406 | while (1) { |
| 407 | wait_for_completion(&mrq->completion); |
| 408 | |
| 409 | cmd = mrq->cmd; |
| 410 | |
| 411 | if (!cmd->error || !cmd->retries || |
| 412 | mmc_card_removed(host->card)) |
| 413 | break; |
| 414 | |
| 415 | mmc_retune_recheck(host); |
| 416 | |
| 417 | pr_debug("%s: req failed (CMD%u): %d, retrying...\n", |
| 418 | mmc_hostname(host), cmd->opcode, cmd->error); |
| 419 | cmd->retries--; |
| 420 | cmd->error = 0; |
| 421 | __mmc_start_request(host, mrq); |
| 422 | } |
| 423 | |
| 424 | mmc_retune_release(host); |
| 425 | } |
| 426 | EXPORT_SYMBOL(mmc_wait_for_req_done); |
| 427 | |
| 428 | /* |
| 429 | * mmc_cqe_start_req - Start a CQE request. |
| 430 | * @host: MMC host to start the request |
| 431 | * @mrq: request to start |
| 432 | * |
| 433 | * Start the request, re-tuning if needed and it is possible. Returns an error |
| 434 | * code if the request fails to start or -EBUSY if CQE is busy. |
| 435 | */ |
| 436 | int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) |
| 437 | { |
| 438 | int err; |
| 439 | |
| 440 | /* |
| 441 | * CQE cannot process re-tuning commands. Caller must hold retuning |
| 442 | * while CQE is in use. Re-tuning can happen here only when CQE has no |
| 443 | * active requests i.e. this is the first. Note, re-tuning will call |
| 444 | * ->cqe_off(). |
| 445 | */ |
| 446 | err = mmc_retune(host); |
| 447 | if (err) |
| 448 | goto out_err; |
| 449 | |
| 450 | mrq->host = host; |
| 451 | |
| 452 | mmc_mrq_pr_debug(host, mrq, true); |
| 453 | |
| 454 | err = mmc_mrq_prep(host, mrq); |
| 455 | if (err) |
| 456 | goto out_err; |
| 457 | |
| 458 | if (host->uhs2_sd_tran) |
| 459 | mmc_uhs2_prepare_cmd(host, mrq); |
| 460 | |
| 461 | err = host->cqe_ops->cqe_request(host, mrq); |
| 462 | if (err) |
| 463 | goto out_err; |
| 464 | |
| 465 | trace_mmc_request_start(host, mrq); |
| 466 | |
| 467 | return 0; |
| 468 | |
| 469 | out_err: |
| 470 | if (mrq->cmd) { |
| 471 | pr_debug("%s: failed to start CQE direct CMD%u, error %d\n", |
| 472 | mmc_hostname(host), mrq->cmd->opcode, err); |
| 473 | } else { |
| 474 | pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n", |
| 475 | mmc_hostname(host), mrq->tag, err); |
| 476 | } |
| 477 | return err; |
| 478 | } |
| 479 | EXPORT_SYMBOL(mmc_cqe_start_req); |
| 480 | |
| 481 | /** |
| 482 | * mmc_cqe_request_done - CQE has finished processing an MMC request |
| 483 | * @host: MMC host which completed request |
| 484 | * @mrq: MMC request which completed |
| 485 | * |
| 486 | * CQE drivers should call this function when they have completed |
| 487 | * their processing of a request. |
| 488 | */ |
| 489 | void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq) |
| 490 | { |
| 491 | mmc_should_fail_request(host, mrq); |
| 492 | |
| 493 | /* Flag re-tuning needed on CRC errors */ |
| 494 | if ((mrq->cmd && mrq->cmd->error == -EILSEQ) || |
| 495 | (mrq->data && mrq->data->error == -EILSEQ)) |
| 496 | mmc_retune_needed(host); |
| 497 | |
| 498 | trace_mmc_request_done(host, mrq); |
| 499 | |
| 500 | if (mrq->cmd) { |
| 501 | pr_debug("%s: CQE req done (direct CMD%u): %d\n", |
| 502 | mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error); |
| 503 | } else { |
| 504 | pr_debug("%s: CQE transfer done tag %d\n", |
| 505 | mmc_hostname(host), mrq->tag); |
| 506 | } |
| 507 | |
| 508 | if (mrq->data) { |
| 509 | pr_debug("%s: %d bytes transferred: %d\n", |
| 510 | mmc_hostname(host), |
| 511 | mrq->data->bytes_xfered, mrq->data->error); |
| 512 | } |
| 513 | |
| 514 | mrq->done(mrq); |
| 515 | } |
| 516 | EXPORT_SYMBOL(mmc_cqe_request_done); |
| 517 | |
| 518 | /** |
| 519 | * mmc_cqe_post_req - CQE post process of a completed MMC request |
| 520 | * @host: MMC host |
| 521 | * @mrq: MMC request to be processed |
| 522 | */ |
| 523 | void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq) |
| 524 | { |
| 525 | if (host->cqe_ops->cqe_post_req) |
| 526 | host->cqe_ops->cqe_post_req(host, mrq); |
| 527 | } |
| 528 | EXPORT_SYMBOL(mmc_cqe_post_req); |
| 529 | |
| 530 | /* Arbitrary 1 second timeout */ |
| 531 | #define MMC_CQE_RECOVERY_TIMEOUT 1000 |
| 532 | |
| 533 | /* |
| 534 | * mmc_cqe_recovery - Recover from CQE errors. |
| 535 | * @host: MMC host to recover |
| 536 | * |
| 537 | * Recovery consists of stopping CQE, stopping eMMC, discarding the queue |
| 538 | * in eMMC, and discarding the queue in CQE. CQE must call |
| 539 | * mmc_cqe_request_done() on all requests. An error is returned if the eMMC |
| 540 | * fails to discard its queue. |
| 541 | */ |
| 542 | int mmc_cqe_recovery(struct mmc_host *host) |
| 543 | { |
| 544 | struct mmc_command cmd; |
| 545 | int err; |
| 546 | |
| 547 | mmc_retune_hold_now(host); |
| 548 | |
| 549 | /* |
| 550 | * Recovery is expected seldom, if at all, but it reduces performance, |
| 551 | * so make sure it is not completely silent. |
| 552 | */ |
| 553 | pr_warn("%s: running CQE recovery\n", mmc_hostname(host)); |
| 554 | |
| 555 | host->cqe_ops->cqe_recovery_start(host); |
| 556 | |
| 557 | memset(&cmd, 0, sizeof(cmd)); |
| 558 | cmd.opcode = MMC_STOP_TRANSMISSION; |
| 559 | cmd.flags = MMC_RSP_R1B_NO_CRC | MMC_CMD_AC; /* Ignore CRC */ |
| 560 | cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT; |
| 561 | mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); |
| 562 | |
| 563 | mmc_poll_for_busy(host->card, MMC_CQE_RECOVERY_TIMEOUT, true, MMC_BUSY_IO); |
| 564 | |
| 565 | memset(&cmd, 0, sizeof(cmd)); |
| 566 | cmd.opcode = MMC_CMDQ_TASK_MGMT; |
| 567 | cmd.arg = 1; /* Discard entire queue */ |
| 568 | cmd.flags = MMC_RSP_R1B_NO_CRC | MMC_CMD_AC; /* Ignore CRC */ |
| 569 | cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT; |
| 570 | err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); |
| 571 | |
| 572 | host->cqe_ops->cqe_recovery_finish(host); |
| 573 | |
| 574 | if (err) |
| 575 | err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); |
| 576 | |
| 577 | mmc_retune_release(host); |
| 578 | |
| 579 | return err; |
| 580 | } |
| 581 | EXPORT_SYMBOL(mmc_cqe_recovery); |
| 582 | |
| 583 | /** |
| 584 | * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done |
| 585 | * @host: MMC host |
| 586 | * @mrq: MMC request |
| 587 | * |
| 588 | * mmc_is_req_done() is used with requests that have |
| 589 | * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after |
| 590 | * starting a request and before waiting for it to complete. That is, |
| 591 | * either in between calls to mmc_start_req(), or after mmc_wait_for_req() |
| 592 | * and before mmc_wait_for_req_done(). If it is called at other times the |
| 593 | * result is not meaningful. |
| 594 | */ |
| 595 | bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq) |
| 596 | { |
| 597 | return completion_done(&mrq->completion); |
| 598 | } |
| 599 | EXPORT_SYMBOL(mmc_is_req_done); |
| 600 | |
| 601 | /** |
| 602 | * mmc_wait_for_req - start a request and wait for completion |
| 603 | * @host: MMC host to start command |
| 604 | * @mrq: MMC request to start |
| 605 | * |
| 606 | * Start a new MMC custom command request for a host, and wait |
| 607 | * for the command to complete. In the case of 'cap_cmd_during_tfr' |
| 608 | * requests, the transfer is ongoing and the caller can issue further |
| 609 | * commands that do not use the data lines, and then wait by calling |
| 610 | * mmc_wait_for_req_done(). |
| 611 | * Does not attempt to parse the response. |
| 612 | */ |
| 613 | void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) |
| 614 | { |
| 615 | __mmc_start_req(host, mrq); |
| 616 | |
| 617 | if (!mrq->cap_cmd_during_tfr) |
| 618 | mmc_wait_for_req_done(host, mrq); |
| 619 | } |
| 620 | EXPORT_SYMBOL(mmc_wait_for_req); |
| 621 | |
| 622 | /** |
| 623 | * mmc_wait_for_cmd - start a command and wait for completion |
| 624 | * @host: MMC host to start command |
| 625 | * @cmd: MMC command to start |
| 626 | * @retries: maximum number of retries |
| 627 | * |
| 628 | * Start a new MMC command for a host, and wait for the command |
| 629 | * to complete. Return any error that occurred while the command |
| 630 | * was executing. Do not attempt to parse the response. |
| 631 | */ |
| 632 | int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) |
| 633 | { |
| 634 | struct mmc_request mrq = {}; |
| 635 | |
| 636 | WARN_ON(!host->claimed); |
| 637 | |
| 638 | memset(cmd->resp, 0, sizeof(cmd->resp)); |
| 639 | cmd->retries = retries; |
| 640 | |
| 641 | mrq.cmd = cmd; |
| 642 | cmd->data = NULL; |
| 643 | |
| 644 | mmc_wait_for_req(host, &mrq); |
| 645 | |
| 646 | return cmd->error; |
| 647 | } |
| 648 | |
| 649 | EXPORT_SYMBOL(mmc_wait_for_cmd); |
| 650 | |
| 651 | /** |
| 652 | * mmc_set_data_timeout - set the timeout for a data command |
| 653 | * @data: data phase for command |
| 654 | * @card: the MMC card associated with the data transfer |
| 655 | * |
| 656 | * Computes the data timeout parameters according to the |
| 657 | * correct algorithm given the card type. |
| 658 | */ |
| 659 | void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) |
| 660 | { |
| 661 | unsigned int mult; |
| 662 | |
| 663 | /* |
| 664 | * SDIO cards only define an upper 1 s limit on access. |
| 665 | */ |
| 666 | if (mmc_card_sdio(card)) { |
| 667 | data->timeout_ns = 1000000000; |
| 668 | data->timeout_clks = 0; |
| 669 | return; |
| 670 | } |
| 671 | |
| 672 | /* |
| 673 | * SD cards use a 100 multiplier rather than 10 |
| 674 | */ |
| 675 | mult = mmc_card_sd(card) ? 100 : 10; |
| 676 | |
| 677 | /* |
| 678 | * Scale up the multiplier (and therefore the timeout) by |
| 679 | * the r2w factor for writes. |
| 680 | */ |
| 681 | if (data->flags & MMC_DATA_WRITE) |
| 682 | mult <<= card->csd.r2w_factor; |
| 683 | |
| 684 | data->timeout_ns = card->csd.taac_ns * mult; |
| 685 | data->timeout_clks = card->csd.taac_clks * mult; |
| 686 | |
| 687 | /* |
| 688 | * SD cards also have an upper limit on the timeout. |
| 689 | */ |
| 690 | if (mmc_card_sd(card)) { |
| 691 | unsigned int timeout_us, limit_us; |
| 692 | |
| 693 | timeout_us = data->timeout_ns / 1000; |
| 694 | if (card->host->ios.clock) |
| 695 | timeout_us += data->timeout_clks * 1000 / |
| 696 | (card->host->ios.clock / 1000); |
| 697 | |
| 698 | if (data->flags & MMC_DATA_WRITE) |
| 699 | /* |
| 700 | * The MMC spec "It is strongly recommended |
| 701 | * for hosts to implement more than 500ms |
| 702 | * timeout value even if the card indicates |
| 703 | * the 250ms maximum busy length." Even the |
| 704 | * previous value of 300ms is known to be |
| 705 | * insufficient for some cards. |
| 706 | */ |
| 707 | limit_us = 3000000; |
| 708 | else |
| 709 | limit_us = 100000; |
| 710 | |
| 711 | /* |
| 712 | * SDHC cards always use these fixed values. |
| 713 | */ |
| 714 | if (timeout_us > limit_us) { |
| 715 | data->timeout_ns = limit_us * 1000; |
| 716 | data->timeout_clks = 0; |
| 717 | } |
| 718 | |
| 719 | /* assign limit value if invalid */ |
| 720 | if (timeout_us == 0) |
| 721 | data->timeout_ns = limit_us * 1000; |
| 722 | } |
| 723 | |
| 724 | /* |
| 725 | * Some cards require longer data read timeout than indicated in CSD. |
| 726 | * Address this by setting the read timeout to a "reasonably high" |
| 727 | * value. For the cards tested, 600ms has proven enough. If necessary, |
| 728 | * this value can be increased if other problematic cards require this. |
| 729 | */ |
| 730 | if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) { |
| 731 | data->timeout_ns = 600000000; |
| 732 | data->timeout_clks = 0; |
| 733 | } |
| 734 | |
| 735 | /* |
| 736 | * Some cards need very high timeouts if driven in SPI mode. |
| 737 | * The worst observed timeout was 900ms after writing a |
| 738 | * continuous stream of data until the internal logic |
| 739 | * overflowed. |
| 740 | */ |
| 741 | if (mmc_host_is_spi(card->host)) { |
| 742 | if (data->flags & MMC_DATA_WRITE) { |
| 743 | if (data->timeout_ns < 1000000000) |
| 744 | data->timeout_ns = 1000000000; /* 1s */ |
| 745 | } else { |
| 746 | if (data->timeout_ns < 100000000) |
| 747 | data->timeout_ns = 100000000; /* 100ms */ |
| 748 | } |
| 749 | } |
| 750 | } |
| 751 | EXPORT_SYMBOL(mmc_set_data_timeout); |
| 752 | |
| 753 | /* |
| 754 | * Allow claiming an already claimed host if the context is the same or there is |
| 755 | * no context but the task is the same. |
| 756 | */ |
| 757 | static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx, |
| 758 | struct task_struct *task) |
| 759 | { |
| 760 | return host->claimer == ctx || |
| 761 | (!ctx && task && host->claimer->task == task); |
| 762 | } |
| 763 | |
| 764 | static inline void mmc_ctx_set_claimer(struct mmc_host *host, |
| 765 | struct mmc_ctx *ctx, |
| 766 | struct task_struct *task) |
| 767 | { |
| 768 | if (!host->claimer) { |
| 769 | if (ctx) |
| 770 | host->claimer = ctx; |
| 771 | else |
| 772 | host->claimer = &host->default_ctx; |
| 773 | } |
| 774 | if (task) |
| 775 | host->claimer->task = task; |
| 776 | } |
| 777 | |
| 778 | /** |
| 779 | * __mmc_claim_host - exclusively claim a host |
| 780 | * @host: mmc host to claim |
| 781 | * @ctx: context that claims the host or NULL in which case the default |
| 782 | * context will be used |
| 783 | * @abort: whether or not the operation should be aborted |
| 784 | * |
| 785 | * Claim a host for a set of operations. If @abort is non null and |
| 786 | * dereference a non-zero value then this will return prematurely with |
| 787 | * that non-zero value without acquiring the lock. Returns zero |
| 788 | * with the lock held otherwise. |
| 789 | */ |
| 790 | int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx, |
| 791 | atomic_t *abort) |
| 792 | { |
| 793 | struct task_struct *task = ctx ? NULL : current; |
| 794 | DECLARE_WAITQUEUE(wait, current); |
| 795 | unsigned long flags; |
| 796 | int stop; |
| 797 | bool pm = false; |
| 798 | |
| 799 | might_sleep(); |
| 800 | |
| 801 | add_wait_queue(&host->wq, &wait); |
| 802 | spin_lock_irqsave(&host->lock, flags); |
| 803 | while (1) { |
| 804 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 805 | stop = abort ? atomic_read(abort) : 0; |
| 806 | if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task)) |
| 807 | break; |
| 808 | spin_unlock_irqrestore(&host->lock, flags); |
| 809 | schedule(); |
| 810 | spin_lock_irqsave(&host->lock, flags); |
| 811 | } |
| 812 | set_current_state(TASK_RUNNING); |
| 813 | if (!stop) { |
| 814 | host->claimed = 1; |
| 815 | mmc_ctx_set_claimer(host, ctx, task); |
| 816 | host->claim_cnt += 1; |
| 817 | if (host->claim_cnt == 1) |
| 818 | pm = true; |
| 819 | } else |
| 820 | wake_up(&host->wq); |
| 821 | spin_unlock_irqrestore(&host->lock, flags); |
| 822 | remove_wait_queue(&host->wq, &wait); |
| 823 | |
| 824 | if (pm) |
| 825 | pm_runtime_get_sync(mmc_dev(host)); |
| 826 | |
| 827 | return stop; |
| 828 | } |
| 829 | EXPORT_SYMBOL(__mmc_claim_host); |
| 830 | |
| 831 | /** |
| 832 | * mmc_release_host - release a host |
| 833 | * @host: mmc host to release |
| 834 | * |
| 835 | * Release a MMC host, allowing others to claim the host |
| 836 | * for their operations. |
| 837 | */ |
| 838 | void mmc_release_host(struct mmc_host *host) |
| 839 | { |
| 840 | unsigned long flags; |
| 841 | |
| 842 | WARN_ON(!host->claimed); |
| 843 | |
| 844 | spin_lock_irqsave(&host->lock, flags); |
| 845 | if (--host->claim_cnt) { |
| 846 | /* Release for nested claim */ |
| 847 | spin_unlock_irqrestore(&host->lock, flags); |
| 848 | } else { |
| 849 | host->claimed = 0; |
| 850 | host->claimer->task = NULL; |
| 851 | host->claimer = NULL; |
| 852 | spin_unlock_irqrestore(&host->lock, flags); |
| 853 | wake_up(&host->wq); |
| 854 | pm_runtime_mark_last_busy(mmc_dev(host)); |
| 855 | if (host->caps & MMC_CAP_SYNC_RUNTIME_PM) |
| 856 | pm_runtime_put_sync_suspend(mmc_dev(host)); |
| 857 | else |
| 858 | pm_runtime_put_autosuspend(mmc_dev(host)); |
| 859 | } |
| 860 | } |
| 861 | EXPORT_SYMBOL(mmc_release_host); |
| 862 | |
| 863 | /* |
| 864 | * This is a helper function, which fetches a runtime pm reference for the |
| 865 | * card device and also claims the host. |
| 866 | */ |
| 867 | void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx) |
| 868 | { |
| 869 | pm_runtime_get_sync(&card->dev); |
| 870 | __mmc_claim_host(card->host, ctx, NULL); |
| 871 | } |
| 872 | EXPORT_SYMBOL(mmc_get_card); |
| 873 | |
| 874 | /* |
| 875 | * This is a helper function, which releases the host and drops the runtime |
| 876 | * pm reference for the card device. |
| 877 | */ |
| 878 | void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx) |
| 879 | { |
| 880 | struct mmc_host *host = card->host; |
| 881 | |
| 882 | WARN_ON(ctx && host->claimer != ctx); |
| 883 | |
| 884 | mmc_release_host(host); |
| 885 | pm_runtime_mark_last_busy(&card->dev); |
| 886 | pm_runtime_put_autosuspend(&card->dev); |
| 887 | } |
| 888 | EXPORT_SYMBOL(mmc_put_card); |
| 889 | |
| 890 | /* |
| 891 | * Internal function that does the actual ios call to the host driver, |
| 892 | * optionally printing some debug output. |
| 893 | */ |
| 894 | static inline void mmc_set_ios(struct mmc_host *host) |
| 895 | { |
| 896 | struct mmc_ios *ios = &host->ios; |
| 897 | |
| 898 | pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " |
| 899 | "width %u timing %u\n", |
| 900 | mmc_hostname(host), ios->clock, ios->bus_mode, |
| 901 | ios->power_mode, ios->chip_select, ios->vdd, |
| 902 | 1 << ios->bus_width, ios->timing); |
| 903 | |
| 904 | host->ops->set_ios(host, ios); |
| 905 | } |
| 906 | |
| 907 | /* |
| 908 | * Control chip select pin on a host. |
| 909 | */ |
| 910 | void mmc_set_chip_select(struct mmc_host *host, int mode) |
| 911 | { |
| 912 | host->ios.chip_select = mode; |
| 913 | mmc_set_ios(host); |
| 914 | } |
| 915 | |
| 916 | /* |
| 917 | * Sets the host clock to the highest possible frequency that |
| 918 | * is below "hz". |
| 919 | */ |
| 920 | void mmc_set_clock(struct mmc_host *host, unsigned int hz) |
| 921 | { |
| 922 | WARN_ON(hz && hz < host->f_min); |
| 923 | |
| 924 | if (hz > host->f_max) |
| 925 | hz = host->f_max; |
| 926 | |
| 927 | host->ios.clock = hz; |
| 928 | mmc_set_ios(host); |
| 929 | } |
| 930 | |
| 931 | int mmc_execute_tuning(struct mmc_card *card) |
| 932 | { |
| 933 | struct mmc_host *host = card->host; |
| 934 | u32 opcode; |
| 935 | int err; |
| 936 | |
| 937 | if (!host->ops->execute_tuning) |
| 938 | return 0; |
| 939 | |
| 940 | if (host->cqe_on) |
| 941 | host->cqe_ops->cqe_off(host); |
| 942 | |
| 943 | if (mmc_card_mmc(card)) |
| 944 | opcode = MMC_SEND_TUNING_BLOCK_HS200; |
| 945 | else |
| 946 | opcode = MMC_SEND_TUNING_BLOCK; |
| 947 | |
| 948 | err = host->ops->execute_tuning(host, opcode); |
| 949 | if (!err) { |
| 950 | mmc_retune_clear(host); |
| 951 | mmc_retune_enable(host); |
| 952 | return 0; |
| 953 | } |
| 954 | |
| 955 | /* Only print error when we don't check for card removal */ |
| 956 | if (!host->detect_change) { |
| 957 | pr_err("%s: tuning execution failed: %d\n", |
| 958 | mmc_hostname(host), err); |
| 959 | mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING); |
| 960 | } |
| 961 | |
| 962 | return err; |
| 963 | } |
| 964 | |
| 965 | /* |
| 966 | * Change the bus mode (open drain/push-pull) of a host. |
| 967 | */ |
| 968 | void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) |
| 969 | { |
| 970 | host->ios.bus_mode = mode; |
| 971 | mmc_set_ios(host); |
| 972 | } |
| 973 | |
| 974 | /* |
| 975 | * Change data bus width of a host. |
| 976 | */ |
| 977 | void mmc_set_bus_width(struct mmc_host *host, unsigned int width) |
| 978 | { |
| 979 | host->ios.bus_width = width; |
| 980 | mmc_set_ios(host); |
| 981 | } |
| 982 | |
| 983 | /* |
| 984 | * Set initial state after a power cycle or a hw_reset. |
| 985 | */ |
| 986 | void mmc_set_initial_state(struct mmc_host *host) |
| 987 | { |
| 988 | if (host->cqe_on) |
| 989 | host->cqe_ops->cqe_off(host); |
| 990 | |
| 991 | mmc_retune_disable(host); |
| 992 | |
| 993 | if (mmc_host_is_spi(host)) |
| 994 | host->ios.chip_select = MMC_CS_HIGH; |
| 995 | else |
| 996 | host->ios.chip_select = MMC_CS_DONTCARE; |
| 997 | host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; |
| 998 | host->ios.bus_width = MMC_BUS_WIDTH_1; |
| 999 | host->ios.timing = MMC_TIMING_LEGACY; |
| 1000 | host->ios.drv_type = 0; |
| 1001 | host->ios.enhanced_strobe = false; |
| 1002 | |
| 1003 | /* |
| 1004 | * Make sure we are in non-enhanced strobe mode before we |
| 1005 | * actually enable it in ext_csd. |
| 1006 | */ |
| 1007 | if ((host->caps2 & MMC_CAP2_HS400_ES) && |
| 1008 | host->ops->hs400_enhanced_strobe) |
| 1009 | host->ops->hs400_enhanced_strobe(host, &host->ios); |
| 1010 | |
| 1011 | mmc_set_ios(host); |
| 1012 | |
| 1013 | mmc_crypto_set_initial_state(host); |
| 1014 | } |
| 1015 | |
| 1016 | /** |
| 1017 | * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number |
| 1018 | * @vdd: voltage (mV) |
| 1019 | * @low_bits: prefer low bits in boundary cases |
| 1020 | * |
| 1021 | * This function returns the OCR bit number according to the provided @vdd |
| 1022 | * value. If conversion is not possible a negative errno value returned. |
| 1023 | * |
| 1024 | * Depending on the @low_bits flag the function prefers low or high OCR bits |
| 1025 | * on boundary voltages. For example, |
| 1026 | * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); |
| 1027 | * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); |
| 1028 | * |
| 1029 | * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). |
| 1030 | */ |
| 1031 | static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) |
| 1032 | { |
| 1033 | const int max_bit = ilog2(MMC_VDD_35_36); |
| 1034 | int bit; |
| 1035 | |
| 1036 | if (vdd < 1650 || vdd > 3600) |
| 1037 | return -EINVAL; |
| 1038 | |
| 1039 | if (vdd >= 1650 && vdd <= 1950) |
| 1040 | return ilog2(MMC_VDD_165_195); |
| 1041 | |
| 1042 | if (low_bits) |
| 1043 | vdd -= 1; |
| 1044 | |
| 1045 | /* Base 2000 mV, step 100 mV, bit's base 8. */ |
| 1046 | bit = (vdd - 2000) / 100 + 8; |
| 1047 | if (bit > max_bit) |
| 1048 | return max_bit; |
| 1049 | return bit; |
| 1050 | } |
| 1051 | |
| 1052 | /** |
| 1053 | * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask |
| 1054 | * @vdd_min: minimum voltage value (mV) |
| 1055 | * @vdd_max: maximum voltage value (mV) |
| 1056 | * |
| 1057 | * This function returns the OCR mask bits according to the provided @vdd_min |
| 1058 | * and @vdd_max values. If conversion is not possible the function returns 0. |
| 1059 | * |
| 1060 | * Notes wrt boundary cases: |
| 1061 | * This function sets the OCR bits for all boundary voltages, for example |
| 1062 | * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | |
| 1063 | * MMC_VDD_34_35 mask. |
| 1064 | */ |
| 1065 | u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) |
| 1066 | { |
| 1067 | u32 mask = 0; |
| 1068 | |
| 1069 | if (vdd_max < vdd_min) |
| 1070 | return 0; |
| 1071 | |
| 1072 | /* Prefer high bits for the boundary vdd_max values. */ |
| 1073 | vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); |
| 1074 | if (vdd_max < 0) |
| 1075 | return 0; |
| 1076 | |
| 1077 | /* Prefer low bits for the boundary vdd_min values. */ |
| 1078 | vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); |
| 1079 | if (vdd_min < 0) |
| 1080 | return 0; |
| 1081 | |
| 1082 | /* Fill the mask, from max bit to min bit. */ |
| 1083 | while (vdd_max >= vdd_min) |
| 1084 | mask |= 1 << vdd_max--; |
| 1085 | |
| 1086 | return mask; |
| 1087 | } |
| 1088 | |
| 1089 | static int mmc_of_get_func_num(struct device_node *node) |
| 1090 | { |
| 1091 | u32 reg; |
| 1092 | int ret; |
| 1093 | |
| 1094 | ret = of_property_read_u32(node, "reg", ®); |
| 1095 | if (ret < 0) |
| 1096 | return ret; |
| 1097 | |
| 1098 | return reg; |
| 1099 | } |
| 1100 | |
| 1101 | struct device_node *mmc_of_find_child_device(struct mmc_host *host, |
| 1102 | unsigned func_num) |
| 1103 | { |
| 1104 | struct device_node *node; |
| 1105 | |
| 1106 | if (!host->parent || !host->parent->of_node) |
| 1107 | return NULL; |
| 1108 | |
| 1109 | for_each_child_of_node(host->parent->of_node, node) { |
| 1110 | if (mmc_of_get_func_num(node) == func_num) |
| 1111 | return node; |
| 1112 | } |
| 1113 | |
| 1114 | return NULL; |
| 1115 | } |
| 1116 | |
| 1117 | /* |
| 1118 | * Mask off any voltages we don't support and select |
| 1119 | * the lowest voltage |
| 1120 | */ |
| 1121 | u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) |
| 1122 | { |
| 1123 | int bit; |
| 1124 | |
| 1125 | /* |
| 1126 | * Sanity check the voltages that the card claims to |
| 1127 | * support. |
| 1128 | */ |
| 1129 | if (ocr & 0x7F) { |
| 1130 | dev_warn(mmc_dev(host), |
| 1131 | "card claims to support voltages below defined range\n"); |
| 1132 | ocr &= ~0x7F; |
| 1133 | } |
| 1134 | |
| 1135 | ocr &= host->ocr_avail; |
| 1136 | if (!ocr) { |
| 1137 | dev_warn(mmc_dev(host), "no support for card's volts\n"); |
| 1138 | return 0; |
| 1139 | } |
| 1140 | |
| 1141 | if (!mmc_card_uhs2(host) && host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) { |
| 1142 | bit = ffs(ocr) - 1; |
| 1143 | ocr &= 3 << bit; |
| 1144 | mmc_power_cycle(host, ocr); |
| 1145 | } else { |
| 1146 | bit = fls(ocr) - 1; |
| 1147 | /* |
| 1148 | * The bit variable represents the highest voltage bit set in |
| 1149 | * the OCR register. |
| 1150 | * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V), |
| 1151 | * we must shift the mask '3' with (bit - 1). |
| 1152 | */ |
| 1153 | ocr &= 3 << (bit - 1); |
| 1154 | if (bit != host->ios.vdd) |
| 1155 | dev_warn(mmc_dev(host), "exceeding card's volts\n"); |
| 1156 | } |
| 1157 | |
| 1158 | return ocr; |
| 1159 | } |
| 1160 | |
| 1161 | int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage) |
| 1162 | { |
| 1163 | int err = 0; |
| 1164 | int old_signal_voltage = host->ios.signal_voltage; |
| 1165 | |
| 1166 | host->ios.signal_voltage = signal_voltage; |
| 1167 | if (host->ops->start_signal_voltage_switch) |
| 1168 | err = host->ops->start_signal_voltage_switch(host, &host->ios); |
| 1169 | |
| 1170 | if (err) |
| 1171 | host->ios.signal_voltage = old_signal_voltage; |
| 1172 | |
| 1173 | return err; |
| 1174 | |
| 1175 | } |
| 1176 | |
| 1177 | void mmc_set_initial_signal_voltage(struct mmc_host *host) |
| 1178 | { |
| 1179 | /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */ |
| 1180 | if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330)) |
| 1181 | dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n"); |
| 1182 | else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) |
| 1183 | dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n"); |
| 1184 | else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120)) |
| 1185 | dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n"); |
| 1186 | } |
| 1187 | |
| 1188 | int mmc_host_set_uhs_voltage(struct mmc_host *host) |
| 1189 | { |
| 1190 | u32 clock; |
| 1191 | |
| 1192 | /* |
| 1193 | * During a signal voltage level switch, the clock must be gated |
| 1194 | * for 5 ms according to the SD spec |
| 1195 | */ |
| 1196 | clock = host->ios.clock; |
| 1197 | host->ios.clock = 0; |
| 1198 | mmc_set_ios(host); |
| 1199 | |
| 1200 | if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) |
| 1201 | return -EAGAIN; |
| 1202 | |
| 1203 | /* Keep clock gated for at least 10 ms, though spec only says 5 ms */ |
| 1204 | mmc_delay(10); |
| 1205 | host->ios.clock = clock; |
| 1206 | mmc_set_ios(host); |
| 1207 | |
| 1208 | return 0; |
| 1209 | } |
| 1210 | |
| 1211 | int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr) |
| 1212 | { |
| 1213 | struct mmc_command cmd = {}; |
| 1214 | int err = 0; |
| 1215 | |
| 1216 | /* |
| 1217 | * If we cannot switch voltages, return failure so the caller |
| 1218 | * can continue without UHS mode |
| 1219 | */ |
| 1220 | if (!host->ops->start_signal_voltage_switch) |
| 1221 | return -EPERM; |
| 1222 | if (!host->ops->card_busy) |
| 1223 | pr_warn("%s: cannot verify signal voltage switch\n", |
| 1224 | mmc_hostname(host)); |
| 1225 | |
| 1226 | cmd.opcode = SD_SWITCH_VOLTAGE; |
| 1227 | cmd.arg = 0; |
| 1228 | cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; |
| 1229 | |
| 1230 | err = mmc_wait_for_cmd(host, &cmd, 0); |
| 1231 | if (err) |
| 1232 | goto power_cycle; |
| 1233 | |
| 1234 | if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) |
| 1235 | return -EIO; |
| 1236 | |
| 1237 | /* |
| 1238 | * The card should drive cmd and dat[0:3] low immediately |
| 1239 | * after the response of cmd11, but wait 1 ms to be sure |
| 1240 | */ |
| 1241 | mmc_delay(1); |
| 1242 | if (host->ops->card_busy && !host->ops->card_busy(host)) { |
| 1243 | err = -EAGAIN; |
| 1244 | goto power_cycle; |
| 1245 | } |
| 1246 | |
| 1247 | if (mmc_host_set_uhs_voltage(host)) { |
| 1248 | /* |
| 1249 | * Voltages may not have been switched, but we've already |
| 1250 | * sent CMD11, so a power cycle is required anyway |
| 1251 | */ |
| 1252 | err = -EAGAIN; |
| 1253 | goto power_cycle; |
| 1254 | } |
| 1255 | |
| 1256 | /* Wait for at least 1 ms according to spec */ |
| 1257 | mmc_delay(1); |
| 1258 | |
| 1259 | /* |
| 1260 | * Failure to switch is indicated by the card holding |
| 1261 | * dat[0:3] low |
| 1262 | */ |
| 1263 | if (host->ops->card_busy && host->ops->card_busy(host)) |
| 1264 | err = -EAGAIN; |
| 1265 | |
| 1266 | power_cycle: |
| 1267 | if (err) { |
| 1268 | pr_debug("%s: Signal voltage switch failed, " |
| 1269 | "power cycling card\n", mmc_hostname(host)); |
| 1270 | mmc_power_cycle(host, ocr); |
| 1271 | } |
| 1272 | |
| 1273 | return err; |
| 1274 | } |
| 1275 | |
| 1276 | /* |
| 1277 | * Select timing parameters for host. |
| 1278 | */ |
| 1279 | void mmc_set_timing(struct mmc_host *host, unsigned int timing) |
| 1280 | { |
| 1281 | host->ios.timing = timing; |
| 1282 | mmc_set_ios(host); |
| 1283 | } |
| 1284 | |
| 1285 | /* |
| 1286 | * Select appropriate driver type for host. |
| 1287 | */ |
| 1288 | void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) |
| 1289 | { |
| 1290 | host->ios.drv_type = drv_type; |
| 1291 | mmc_set_ios(host); |
| 1292 | } |
| 1293 | |
| 1294 | int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr, |
| 1295 | int card_drv_type, int *drv_type) |
| 1296 | { |
| 1297 | struct mmc_host *host = card->host; |
| 1298 | int host_drv_type = SD_DRIVER_TYPE_B; |
| 1299 | |
| 1300 | *drv_type = 0; |
| 1301 | |
| 1302 | if (!host->ops->select_drive_strength) |
| 1303 | return 0; |
| 1304 | |
| 1305 | /* Use SD definition of driver strength for hosts */ |
| 1306 | if (host->caps & MMC_CAP_DRIVER_TYPE_A) |
| 1307 | host_drv_type |= SD_DRIVER_TYPE_A; |
| 1308 | |
| 1309 | if (host->caps & MMC_CAP_DRIVER_TYPE_C) |
| 1310 | host_drv_type |= SD_DRIVER_TYPE_C; |
| 1311 | |
| 1312 | if (host->caps & MMC_CAP_DRIVER_TYPE_D) |
| 1313 | host_drv_type |= SD_DRIVER_TYPE_D; |
| 1314 | |
| 1315 | /* |
| 1316 | * The drive strength that the hardware can support |
| 1317 | * depends on the board design. Pass the appropriate |
| 1318 | * information and let the hardware specific code |
| 1319 | * return what is possible given the options |
| 1320 | */ |
| 1321 | return host->ops->select_drive_strength(card, max_dtr, |
| 1322 | host_drv_type, |
| 1323 | card_drv_type, |
| 1324 | drv_type); |
| 1325 | } |
| 1326 | |
| 1327 | /* |
| 1328 | * Apply power to the MMC stack. This is a two-stage process. |
| 1329 | * First, we enable power to the card without the clock running. |
| 1330 | * We then wait a bit for the power to stabilise. Finally, |
| 1331 | * enable the bus drivers and clock to the card. |
| 1332 | * |
| 1333 | * We must _NOT_ enable the clock prior to power stablising. |
| 1334 | * |
| 1335 | * If a host does all the power sequencing itself, ignore the |
| 1336 | * initial MMC_POWER_UP stage. |
| 1337 | */ |
| 1338 | void mmc_power_up(struct mmc_host *host, u32 ocr) |
| 1339 | { |
| 1340 | if (host->ios.power_mode == MMC_POWER_ON) |
| 1341 | return; |
| 1342 | |
| 1343 | mmc_pwrseq_pre_power_on(host); |
| 1344 | |
| 1345 | host->ios.vdd = fls(ocr) - 1; |
| 1346 | host->ios.power_mode = MMC_POWER_UP; |
| 1347 | /* Set initial state and call mmc_set_ios */ |
| 1348 | mmc_set_initial_state(host); |
| 1349 | |
| 1350 | mmc_set_initial_signal_voltage(host); |
| 1351 | |
| 1352 | /* |
| 1353 | * This delay should be sufficient to allow the power supply |
| 1354 | * to reach the minimum voltage. |
| 1355 | */ |
| 1356 | mmc_delay(host->ios.power_delay_ms); |
| 1357 | |
| 1358 | mmc_pwrseq_post_power_on(host); |
| 1359 | |
| 1360 | host->ios.clock = host->f_init; |
| 1361 | |
| 1362 | host->ios.power_mode = MMC_POWER_ON; |
| 1363 | mmc_set_ios(host); |
| 1364 | |
| 1365 | /* |
| 1366 | * This delay must be at least 74 clock sizes, or 1 ms, or the |
| 1367 | * time required to reach a stable voltage. |
| 1368 | */ |
| 1369 | mmc_delay(host->ios.power_delay_ms); |
| 1370 | } |
| 1371 | |
| 1372 | void mmc_power_off(struct mmc_host *host) |
| 1373 | { |
| 1374 | if (host->ios.power_mode == MMC_POWER_OFF) |
| 1375 | return; |
| 1376 | |
| 1377 | mmc_pwrseq_power_off(host); |
| 1378 | |
| 1379 | host->ios.clock = 0; |
| 1380 | host->ios.vdd = 0; |
| 1381 | |
| 1382 | host->ios.power_mode = MMC_POWER_OFF; |
| 1383 | /* Set initial state and call mmc_set_ios */ |
| 1384 | mmc_set_initial_state(host); |
| 1385 | |
| 1386 | /* |
| 1387 | * Some configurations, such as the 802.11 SDIO card in the OLPC |
| 1388 | * XO-1.5, require a short delay after poweroff before the card |
| 1389 | * can be successfully turned on again. |
| 1390 | */ |
| 1391 | mmc_delay(1); |
| 1392 | } |
| 1393 | |
| 1394 | void mmc_power_cycle(struct mmc_host *host, u32 ocr) |
| 1395 | { |
| 1396 | mmc_power_off(host); |
| 1397 | /* Wait at least 1 ms according to SD spec */ |
| 1398 | mmc_delay(1); |
| 1399 | mmc_power_up(host, ocr); |
| 1400 | } |
| 1401 | |
| 1402 | /* |
| 1403 | * Assign a mmc bus handler to a host. Only one bus handler may control a |
| 1404 | * host at any given time. |
| 1405 | */ |
| 1406 | void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) |
| 1407 | { |
| 1408 | host->bus_ops = ops; |
| 1409 | } |
| 1410 | |
| 1411 | /* |
| 1412 | * Remove the current bus handler from a host. |
| 1413 | */ |
| 1414 | void mmc_detach_bus(struct mmc_host *host) |
| 1415 | { |
| 1416 | host->bus_ops = NULL; |
| 1417 | } |
| 1418 | |
| 1419 | void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq) |
| 1420 | { |
| 1421 | /* |
| 1422 | * Prevent system sleep for 5s to allow user space to consume the |
| 1423 | * corresponding uevent. This is especially useful, when CD irq is used |
| 1424 | * as a system wakeup, but doesn't hurt in other cases. |
| 1425 | */ |
| 1426 | if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL)) |
| 1427 | __pm_wakeup_event(host->ws, 5000); |
| 1428 | |
| 1429 | host->detect_change = 1; |
| 1430 | mmc_schedule_delayed_work(&host->detect, delay); |
| 1431 | } |
| 1432 | |
| 1433 | /** |
| 1434 | * mmc_detect_change - process change of state on a MMC socket |
| 1435 | * @host: host which changed state. |
| 1436 | * @delay: optional delay to wait before detection (jiffies) |
| 1437 | * |
| 1438 | * MMC drivers should call this when they detect a card has been |
| 1439 | * inserted or removed. The MMC layer will confirm that any |
| 1440 | * present card is still functional, and initialize any newly |
| 1441 | * inserted. |
| 1442 | */ |
| 1443 | void mmc_detect_change(struct mmc_host *host, unsigned long delay) |
| 1444 | { |
| 1445 | _mmc_detect_change(host, delay, true); |
| 1446 | } |
| 1447 | EXPORT_SYMBOL(mmc_detect_change); |
| 1448 | |
| 1449 | void mmc_init_erase(struct mmc_card *card) |
| 1450 | { |
| 1451 | unsigned int sz; |
| 1452 | |
| 1453 | if (is_power_of_2(card->erase_size)) |
| 1454 | card->erase_shift = ffs(card->erase_size) - 1; |
| 1455 | else |
| 1456 | card->erase_shift = 0; |
| 1457 | |
| 1458 | /* |
| 1459 | * It is possible to erase an arbitrarily large area of an SD or MMC |
| 1460 | * card. That is not desirable because it can take a long time |
| 1461 | * (minutes) potentially delaying more important I/O, and also the |
| 1462 | * timeout calculations become increasingly hugely over-estimated. |
| 1463 | * Consequently, 'pref_erase' is defined as a guide to limit erases |
| 1464 | * to that size and alignment. |
| 1465 | * |
| 1466 | * For SD cards that define Allocation Unit size, limit erases to one |
| 1467 | * Allocation Unit at a time. |
| 1468 | * For MMC, have a stab at ai good value and for modern cards it will |
| 1469 | * end up being 4MiB. Note that if the value is too small, it can end |
| 1470 | * up taking longer to erase. Also note, erase_size is already set to |
| 1471 | * High Capacity Erase Size if available when this function is called. |
| 1472 | */ |
| 1473 | if (mmc_card_sd(card) && card->ssr.au) { |
| 1474 | card->pref_erase = card->ssr.au; |
| 1475 | card->erase_shift = ffs(card->ssr.au) - 1; |
| 1476 | } else if (card->erase_size) { |
| 1477 | sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; |
| 1478 | if (sz < 128) |
| 1479 | card->pref_erase = 512 * 1024 / 512; |
| 1480 | else if (sz < 512) |
| 1481 | card->pref_erase = 1024 * 1024 / 512; |
| 1482 | else if (sz < 1024) |
| 1483 | card->pref_erase = 2 * 1024 * 1024 / 512; |
| 1484 | else |
| 1485 | card->pref_erase = 4 * 1024 * 1024 / 512; |
| 1486 | if (card->pref_erase < card->erase_size) |
| 1487 | card->pref_erase = card->erase_size; |
| 1488 | else { |
| 1489 | sz = card->pref_erase % card->erase_size; |
| 1490 | if (sz) |
| 1491 | card->pref_erase += card->erase_size - sz; |
| 1492 | } |
| 1493 | } else |
| 1494 | card->pref_erase = 0; |
| 1495 | } |
| 1496 | |
| 1497 | static bool is_trim_arg(unsigned int arg) |
| 1498 | { |
| 1499 | return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG; |
| 1500 | } |
| 1501 | |
| 1502 | static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, |
| 1503 | unsigned int arg, unsigned int qty) |
| 1504 | { |
| 1505 | unsigned int erase_timeout; |
| 1506 | |
| 1507 | if (arg == MMC_DISCARD_ARG || |
| 1508 | (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) { |
| 1509 | erase_timeout = card->ext_csd.trim_timeout; |
| 1510 | } else if (card->ext_csd.erase_group_def & 1) { |
| 1511 | /* High Capacity Erase Group Size uses HC timeouts */ |
| 1512 | if (arg == MMC_TRIM_ARG) |
| 1513 | erase_timeout = card->ext_csd.trim_timeout; |
| 1514 | else |
| 1515 | erase_timeout = card->ext_csd.hc_erase_timeout; |
| 1516 | } else { |
| 1517 | /* CSD Erase Group Size uses write timeout */ |
| 1518 | unsigned int mult = (10 << card->csd.r2w_factor); |
| 1519 | unsigned int timeout_clks = card->csd.taac_clks * mult; |
| 1520 | unsigned int timeout_us; |
| 1521 | |
| 1522 | /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */ |
| 1523 | if (card->csd.taac_ns < 1000000) |
| 1524 | timeout_us = (card->csd.taac_ns * mult) / 1000; |
| 1525 | else |
| 1526 | timeout_us = (card->csd.taac_ns / 1000) * mult; |
| 1527 | |
| 1528 | /* |
| 1529 | * ios.clock is only a target. The real clock rate might be |
| 1530 | * less but not that much less, so fudge it by multiplying by 2. |
| 1531 | */ |
| 1532 | timeout_clks <<= 1; |
| 1533 | timeout_us += (timeout_clks * 1000) / |
| 1534 | (card->host->ios.clock / 1000); |
| 1535 | |
| 1536 | erase_timeout = timeout_us / 1000; |
| 1537 | |
| 1538 | /* |
| 1539 | * Theoretically, the calculation could underflow so round up |
| 1540 | * to 1ms in that case. |
| 1541 | */ |
| 1542 | if (!erase_timeout) |
| 1543 | erase_timeout = 1; |
| 1544 | } |
| 1545 | |
| 1546 | /* Multiplier for secure operations */ |
| 1547 | if (arg & MMC_SECURE_ARGS) { |
| 1548 | if (arg == MMC_SECURE_ERASE_ARG) |
| 1549 | erase_timeout *= card->ext_csd.sec_erase_mult; |
| 1550 | else |
| 1551 | erase_timeout *= card->ext_csd.sec_trim_mult; |
| 1552 | } |
| 1553 | |
| 1554 | erase_timeout *= qty; |
| 1555 | |
| 1556 | /* |
| 1557 | * Ensure at least a 1 second timeout for SPI as per |
| 1558 | * 'mmc_set_data_timeout()' |
| 1559 | */ |
| 1560 | if (mmc_host_is_spi(card->host) && erase_timeout < 1000) |
| 1561 | erase_timeout = 1000; |
| 1562 | |
| 1563 | return erase_timeout; |
| 1564 | } |
| 1565 | |
| 1566 | static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, |
| 1567 | unsigned int arg, |
| 1568 | unsigned int qty) |
| 1569 | { |
| 1570 | unsigned int erase_timeout; |
| 1571 | |
| 1572 | /* for DISCARD none of the below calculation applies. |
| 1573 | * the busy timeout is 250msec per discard command. |
| 1574 | */ |
| 1575 | if (arg == SD_DISCARD_ARG) |
| 1576 | return SD_DISCARD_TIMEOUT_MS; |
| 1577 | |
| 1578 | if (card->ssr.erase_timeout) { |
| 1579 | /* Erase timeout specified in SD Status Register (SSR) */ |
| 1580 | erase_timeout = card->ssr.erase_timeout * qty + |
| 1581 | card->ssr.erase_offset; |
| 1582 | } else { |
| 1583 | /* |
| 1584 | * Erase timeout not specified in SD Status Register (SSR) so |
| 1585 | * use 250ms per write block. |
| 1586 | */ |
| 1587 | erase_timeout = 250 * qty; |
| 1588 | } |
| 1589 | |
| 1590 | /* Must not be less than 1 second */ |
| 1591 | if (erase_timeout < 1000) |
| 1592 | erase_timeout = 1000; |
| 1593 | |
| 1594 | return erase_timeout; |
| 1595 | } |
| 1596 | |
| 1597 | static unsigned int mmc_erase_timeout(struct mmc_card *card, |
| 1598 | unsigned int arg, |
| 1599 | unsigned int qty) |
| 1600 | { |
| 1601 | if (mmc_card_sd(card)) |
| 1602 | return mmc_sd_erase_timeout(card, arg, qty); |
| 1603 | else |
| 1604 | return mmc_mmc_erase_timeout(card, arg, qty); |
| 1605 | } |
| 1606 | |
| 1607 | static int mmc_do_erase(struct mmc_card *card, sector_t from, |
| 1608 | sector_t to, unsigned int arg) |
| 1609 | { |
| 1610 | struct mmc_command cmd = {}; |
| 1611 | unsigned int qty = 0, busy_timeout = 0; |
| 1612 | bool use_r1b_resp; |
| 1613 | int err; |
| 1614 | |
| 1615 | mmc_retune_hold(card->host); |
| 1616 | |
| 1617 | /* |
| 1618 | * qty is used to calculate the erase timeout which depends on how many |
| 1619 | * erase groups (or allocation units in SD terminology) are affected. |
| 1620 | * We count erasing part of an erase group as one erase group. |
| 1621 | * For SD, the allocation units are always a power of 2. For MMC, the |
| 1622 | * erase group size is almost certainly also power of 2, but it does not |
| 1623 | * seem to insist on that in the JEDEC standard, so we fall back to |
| 1624 | * division in that case. SD may not specify an allocation unit size, |
| 1625 | * in which case the timeout is based on the number of write blocks. |
| 1626 | * |
| 1627 | * Note that the timeout for secure trim 2 will only be correct if the |
| 1628 | * number of erase groups specified is the same as the total of all |
| 1629 | * preceding secure trim 1 commands. Since the power may have been |
| 1630 | * lost since the secure trim 1 commands occurred, it is generally |
| 1631 | * impossible to calculate the secure trim 2 timeout correctly. |
| 1632 | */ |
| 1633 | if (card->erase_shift) |
| 1634 | qty += ((to >> card->erase_shift) - |
| 1635 | (from >> card->erase_shift)) + 1; |
| 1636 | else if (mmc_card_sd(card)) |
| 1637 | qty += to - from + 1; |
| 1638 | else |
| 1639 | qty += (mmc_sector_div(to, card->erase_size) - |
| 1640 | mmc_sector_div(from, card->erase_size)) + 1; |
| 1641 | |
| 1642 | if (!mmc_card_blockaddr(card)) { |
| 1643 | from <<= 9; |
| 1644 | to <<= 9; |
| 1645 | } |
| 1646 | |
| 1647 | if (mmc_card_sd(card)) |
| 1648 | cmd.opcode = SD_ERASE_WR_BLK_START; |
| 1649 | else |
| 1650 | cmd.opcode = MMC_ERASE_GROUP_START; |
| 1651 | cmd.arg = from; |
| 1652 | cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; |
| 1653 | |
| 1654 | if (mmc_card_ult_capacity(card)) { |
| 1655 | cmd.ext_addr = from >> 32; |
| 1656 | cmd.has_ext_addr = true; |
| 1657 | } |
| 1658 | |
| 1659 | err = mmc_wait_for_cmd(card->host, &cmd, 0); |
| 1660 | if (err) { |
| 1661 | pr_err("mmc_erase: group start error %d, " |
| 1662 | "status %#x\n", err, cmd.resp[0]); |
| 1663 | err = -EIO; |
| 1664 | goto out; |
| 1665 | } |
| 1666 | |
| 1667 | memset(&cmd, 0, sizeof(struct mmc_command)); |
| 1668 | if (mmc_card_sd(card)) |
| 1669 | cmd.opcode = SD_ERASE_WR_BLK_END; |
| 1670 | else |
| 1671 | cmd.opcode = MMC_ERASE_GROUP_END; |
| 1672 | cmd.arg = to; |
| 1673 | cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; |
| 1674 | |
| 1675 | if (mmc_card_ult_capacity(card)) { |
| 1676 | cmd.ext_addr = to >> 32; |
| 1677 | cmd.has_ext_addr = true; |
| 1678 | } |
| 1679 | |
| 1680 | err = mmc_wait_for_cmd(card->host, &cmd, 0); |
| 1681 | if (err) { |
| 1682 | pr_err("mmc_erase: group end error %d, status %#x\n", |
| 1683 | err, cmd.resp[0]); |
| 1684 | err = -EIO; |
| 1685 | goto out; |
| 1686 | } |
| 1687 | |
| 1688 | memset(&cmd, 0, sizeof(struct mmc_command)); |
| 1689 | cmd.opcode = MMC_ERASE; |
| 1690 | cmd.arg = arg; |
| 1691 | busy_timeout = mmc_erase_timeout(card, arg, qty); |
| 1692 | use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout); |
| 1693 | |
| 1694 | err = mmc_wait_for_cmd(card->host, &cmd, 0); |
| 1695 | if (err) { |
| 1696 | pr_err("mmc_erase: erase error %d, status %#x\n", |
| 1697 | err, cmd.resp[0]); |
| 1698 | err = -EIO; |
| 1699 | goto out; |
| 1700 | } |
| 1701 | |
| 1702 | if (mmc_host_is_spi(card->host)) |
| 1703 | goto out; |
| 1704 | |
| 1705 | /* |
| 1706 | * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling |
| 1707 | * shall be avoided. |
| 1708 | */ |
| 1709 | if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) |
| 1710 | goto out; |
| 1711 | |
| 1712 | /* Let's poll to find out when the erase operation completes. */ |
| 1713 | err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE); |
| 1714 | |
| 1715 | out: |
| 1716 | mmc_retune_release(card->host); |
| 1717 | return err; |
| 1718 | } |
| 1719 | |
| 1720 | static unsigned int mmc_align_erase_size(struct mmc_card *card, |
| 1721 | sector_t *from, |
| 1722 | sector_t *to, |
| 1723 | unsigned int nr) |
| 1724 | { |
| 1725 | sector_t from_new = *from; |
| 1726 | unsigned int nr_new = nr, rem; |
| 1727 | |
| 1728 | /* |
| 1729 | * When the 'card->erase_size' is power of 2, we can use round_up/down() |
| 1730 | * to align the erase size efficiently. |
| 1731 | */ |
| 1732 | if (is_power_of_2(card->erase_size)) { |
| 1733 | sector_t temp = from_new; |
| 1734 | |
| 1735 | from_new = round_up(temp, card->erase_size); |
| 1736 | rem = from_new - temp; |
| 1737 | |
| 1738 | if (nr_new > rem) |
| 1739 | nr_new -= rem; |
| 1740 | else |
| 1741 | return 0; |
| 1742 | |
| 1743 | nr_new = round_down(nr_new, card->erase_size); |
| 1744 | } else { |
| 1745 | rem = mmc_sector_mod(from_new, card->erase_size); |
| 1746 | if (rem) { |
| 1747 | rem = card->erase_size - rem; |
| 1748 | from_new += rem; |
| 1749 | if (nr_new > rem) |
| 1750 | nr_new -= rem; |
| 1751 | else |
| 1752 | return 0; |
| 1753 | } |
| 1754 | |
| 1755 | rem = nr_new % card->erase_size; |
| 1756 | if (rem) |
| 1757 | nr_new -= rem; |
| 1758 | } |
| 1759 | |
| 1760 | if (nr_new == 0) |
| 1761 | return 0; |
| 1762 | |
| 1763 | *to = from_new + nr_new; |
| 1764 | *from = from_new; |
| 1765 | |
| 1766 | return nr_new; |
| 1767 | } |
| 1768 | |
| 1769 | /** |
| 1770 | * mmc_erase - erase sectors. |
| 1771 | * @card: card to erase |
| 1772 | * @from: first sector to erase |
| 1773 | * @nr: number of sectors to erase |
| 1774 | * @arg: erase command argument |
| 1775 | * |
| 1776 | * Caller must claim host before calling this function. |
| 1777 | */ |
| 1778 | int mmc_erase(struct mmc_card *card, sector_t from, unsigned int nr, |
| 1779 | unsigned int arg) |
| 1780 | { |
| 1781 | unsigned int rem; |
| 1782 | sector_t to = from + nr; |
| 1783 | |
| 1784 | int err; |
| 1785 | |
| 1786 | if (!(card->csd.cmdclass & CCC_ERASE)) |
| 1787 | return -EOPNOTSUPP; |
| 1788 | |
| 1789 | if (!card->erase_size) |
| 1790 | return -EOPNOTSUPP; |
| 1791 | |
| 1792 | if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG) |
| 1793 | return -EOPNOTSUPP; |
| 1794 | |
| 1795 | if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) && |
| 1796 | !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) |
| 1797 | return -EOPNOTSUPP; |
| 1798 | |
| 1799 | if (mmc_card_mmc(card) && is_trim_arg(arg) && |
| 1800 | !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) |
| 1801 | return -EOPNOTSUPP; |
| 1802 | |
| 1803 | if (arg == MMC_SECURE_ERASE_ARG) { |
| 1804 | if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size) |
| 1805 | return -EINVAL; |
| 1806 | } |
| 1807 | |
| 1808 | if (arg == MMC_ERASE_ARG) |
| 1809 | nr = mmc_align_erase_size(card, &from, &to, nr); |
| 1810 | |
| 1811 | if (nr == 0) |
| 1812 | return 0; |
| 1813 | |
| 1814 | if (to <= from) |
| 1815 | return -EINVAL; |
| 1816 | |
| 1817 | /* 'from' and 'to' are inclusive */ |
| 1818 | to -= 1; |
| 1819 | |
| 1820 | /* |
| 1821 | * Special case where only one erase-group fits in the timeout budget: |
| 1822 | * If the region crosses an erase-group boundary on this particular |
| 1823 | * case, we will be trimming more than one erase-group which, does not |
| 1824 | * fit in the timeout budget of the controller, so we need to split it |
| 1825 | * and call mmc_do_erase() twice if necessary. This special case is |
| 1826 | * identified by the card->eg_boundary flag. |
| 1827 | */ |
| 1828 | rem = card->erase_size - mmc_sector_mod(from, card->erase_size); |
| 1829 | if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) { |
| 1830 | err = mmc_do_erase(card, from, from + rem - 1, arg); |
| 1831 | from += rem; |
| 1832 | if ((err) || (to <= from)) |
| 1833 | return err; |
| 1834 | } |
| 1835 | |
| 1836 | return mmc_do_erase(card, from, to, arg); |
| 1837 | } |
| 1838 | EXPORT_SYMBOL(mmc_erase); |
| 1839 | |
| 1840 | bool mmc_card_can_erase(struct mmc_card *card) |
| 1841 | { |
| 1842 | return (card->csd.cmdclass & CCC_ERASE && card->erase_size); |
| 1843 | } |
| 1844 | EXPORT_SYMBOL(mmc_card_can_erase); |
| 1845 | |
| 1846 | bool mmc_card_can_trim(struct mmc_card *card) |
| 1847 | { |
| 1848 | return ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) && |
| 1849 | (!(card->quirks & MMC_QUIRK_TRIM_BROKEN))); |
| 1850 | } |
| 1851 | EXPORT_SYMBOL(mmc_card_can_trim); |
| 1852 | |
| 1853 | bool mmc_card_can_discard(struct mmc_card *card) |
| 1854 | { |
| 1855 | /* |
| 1856 | * As there's no way to detect the discard support bit at v4.5 |
| 1857 | * use the s/w feature support filed. |
| 1858 | */ |
| 1859 | return (card->ext_csd.feature_support & MMC_DISCARD_FEATURE); |
| 1860 | } |
| 1861 | EXPORT_SYMBOL(mmc_card_can_discard); |
| 1862 | |
| 1863 | bool mmc_card_can_sanitize(struct mmc_card *card) |
| 1864 | { |
| 1865 | if (!mmc_card_can_trim(card) && !mmc_card_can_erase(card)) |
| 1866 | return false; |
| 1867 | if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) |
| 1868 | return true; |
| 1869 | return false; |
| 1870 | } |
| 1871 | |
| 1872 | bool mmc_card_can_secure_erase_trim(struct mmc_card *card) |
| 1873 | { |
| 1874 | return ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) && |
| 1875 | !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN)); |
| 1876 | } |
| 1877 | EXPORT_SYMBOL(mmc_card_can_secure_erase_trim); |
| 1878 | |
| 1879 | int mmc_erase_group_aligned(struct mmc_card *card, sector_t from, |
| 1880 | unsigned int nr) |
| 1881 | { |
| 1882 | if (!card->erase_size) |
| 1883 | return 0; |
| 1884 | if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size) |
| 1885 | return 0; |
| 1886 | return 1; |
| 1887 | } |
| 1888 | EXPORT_SYMBOL(mmc_erase_group_aligned); |
| 1889 | |
| 1890 | static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, |
| 1891 | unsigned int arg) |
| 1892 | { |
| 1893 | struct mmc_host *host = card->host; |
| 1894 | unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout; |
| 1895 | unsigned int last_timeout = 0; |
| 1896 | unsigned int max_busy_timeout = host->max_busy_timeout ? |
| 1897 | host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS; |
| 1898 | |
| 1899 | if (card->erase_shift) { |
| 1900 | max_qty = UINT_MAX >> card->erase_shift; |
| 1901 | min_qty = card->pref_erase >> card->erase_shift; |
| 1902 | } else if (mmc_card_sd(card)) { |
| 1903 | max_qty = UINT_MAX; |
| 1904 | min_qty = card->pref_erase; |
| 1905 | } else { |
| 1906 | max_qty = UINT_MAX / card->erase_size; |
| 1907 | min_qty = card->pref_erase / card->erase_size; |
| 1908 | } |
| 1909 | |
| 1910 | /* |
| 1911 | * We should not only use 'host->max_busy_timeout' as the limitation |
| 1912 | * when deciding the max discard sectors. We should set a balance value |
| 1913 | * to improve the erase speed, and it can not get too long timeout at |
| 1914 | * the same time. |
| 1915 | * |
| 1916 | * Here we set 'card->pref_erase' as the minimal discard sectors no |
| 1917 | * matter what size of 'host->max_busy_timeout', but if the |
| 1918 | * 'host->max_busy_timeout' is large enough for more discard sectors, |
| 1919 | * then we can continue to increase the max discard sectors until we |
| 1920 | * get a balance value. In cases when the 'host->max_busy_timeout' |
| 1921 | * isn't specified, use the default max erase timeout. |
| 1922 | */ |
| 1923 | do { |
| 1924 | y = 0; |
| 1925 | for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { |
| 1926 | timeout = mmc_erase_timeout(card, arg, qty + x); |
| 1927 | |
| 1928 | if (qty + x > min_qty && timeout > max_busy_timeout) |
| 1929 | break; |
| 1930 | |
| 1931 | if (timeout < last_timeout) |
| 1932 | break; |
| 1933 | last_timeout = timeout; |
| 1934 | y = x; |
| 1935 | } |
| 1936 | qty += y; |
| 1937 | } while (y); |
| 1938 | |
| 1939 | if (!qty) |
| 1940 | return 0; |
| 1941 | |
| 1942 | /* |
| 1943 | * When specifying a sector range to trim, chances are we might cross |
| 1944 | * an erase-group boundary even if the amount of sectors is less than |
| 1945 | * one erase-group. |
| 1946 | * If we can only fit one erase-group in the controller timeout budget, |
| 1947 | * we have to care that erase-group boundaries are not crossed by a |
| 1948 | * single trim operation. We flag that special case with "eg_boundary". |
| 1949 | * In all other cases we can just decrement qty and pretend that we |
| 1950 | * always touch (qty + 1) erase-groups as a simple optimization. |
| 1951 | */ |
| 1952 | if (qty == 1) |
| 1953 | card->eg_boundary = 1; |
| 1954 | else |
| 1955 | qty--; |
| 1956 | |
| 1957 | /* Convert qty to sectors */ |
| 1958 | if (card->erase_shift) |
| 1959 | max_discard = qty << card->erase_shift; |
| 1960 | else if (mmc_card_sd(card)) |
| 1961 | max_discard = qty + 1; |
| 1962 | else |
| 1963 | max_discard = qty * card->erase_size; |
| 1964 | |
| 1965 | return max_discard; |
| 1966 | } |
| 1967 | |
| 1968 | unsigned int mmc_calc_max_discard(struct mmc_card *card) |
| 1969 | { |
| 1970 | struct mmc_host *host = card->host; |
| 1971 | unsigned int max_discard, max_trim; |
| 1972 | |
| 1973 | /* |
| 1974 | * Without erase_group_def set, MMC erase timeout depends on clock |
| 1975 | * frequence which can change. In that case, the best choice is |
| 1976 | * just the preferred erase size. |
| 1977 | */ |
| 1978 | if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) |
| 1979 | return card->pref_erase; |
| 1980 | |
| 1981 | max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); |
| 1982 | if (mmc_card_can_trim(card)) { |
| 1983 | max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); |
| 1984 | if (max_trim < max_discard || max_discard == 0) |
| 1985 | max_discard = max_trim; |
| 1986 | } else if (max_discard < card->erase_size) { |
| 1987 | max_discard = 0; |
| 1988 | } |
| 1989 | pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", |
| 1990 | mmc_hostname(host), max_discard, host->max_busy_timeout ? |
| 1991 | host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS); |
| 1992 | return max_discard; |
| 1993 | } |
| 1994 | EXPORT_SYMBOL(mmc_calc_max_discard); |
| 1995 | |
| 1996 | bool mmc_card_is_blockaddr(struct mmc_card *card) |
| 1997 | { |
| 1998 | return card ? mmc_card_blockaddr(card) : false; |
| 1999 | } |
| 2000 | EXPORT_SYMBOL(mmc_card_is_blockaddr); |
| 2001 | |
| 2002 | int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) |
| 2003 | { |
| 2004 | struct mmc_command cmd = {}; |
| 2005 | |
| 2006 | if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) || |
| 2007 | mmc_card_hs400(card) || mmc_card_hs400es(card)) |
| 2008 | return 0; |
| 2009 | |
| 2010 | cmd.opcode = MMC_SET_BLOCKLEN; |
| 2011 | cmd.arg = blocklen; |
| 2012 | cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; |
| 2013 | return mmc_wait_for_cmd(card->host, &cmd, 5); |
| 2014 | } |
| 2015 | EXPORT_SYMBOL(mmc_set_blocklen); |
| 2016 | |
| 2017 | static void mmc_hw_reset_for_init(struct mmc_host *host) |
| 2018 | { |
| 2019 | mmc_pwrseq_reset(host); |
| 2020 | |
| 2021 | if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset) |
| 2022 | return; |
| 2023 | host->ops->card_hw_reset(host); |
| 2024 | } |
| 2025 | |
| 2026 | /** |
| 2027 | * mmc_hw_reset - reset the card in hardware |
| 2028 | * @card: card to be reset |
| 2029 | * |
| 2030 | * Hard reset the card. This function is only for upper layers, like the |
| 2031 | * block layer or card drivers. You cannot use it in host drivers (struct |
| 2032 | * mmc_card might be gone then). |
| 2033 | * |
| 2034 | * Return: 0 on success, -errno on failure |
| 2035 | */ |
| 2036 | int mmc_hw_reset(struct mmc_card *card) |
| 2037 | { |
| 2038 | struct mmc_host *host = card->host; |
| 2039 | int ret; |
| 2040 | |
| 2041 | ret = host->bus_ops->hw_reset(host); |
| 2042 | if (ret < 0) |
| 2043 | pr_warn("%s: tried to HW reset card, got error %d\n", |
| 2044 | mmc_hostname(host), ret); |
| 2045 | |
| 2046 | return ret; |
| 2047 | } |
| 2048 | EXPORT_SYMBOL(mmc_hw_reset); |
| 2049 | |
| 2050 | int mmc_sw_reset(struct mmc_card *card) |
| 2051 | { |
| 2052 | struct mmc_host *host = card->host; |
| 2053 | int ret; |
| 2054 | |
| 2055 | if (!host->bus_ops->sw_reset) |
| 2056 | return -EOPNOTSUPP; |
| 2057 | |
| 2058 | ret = host->bus_ops->sw_reset(host); |
| 2059 | if (ret) |
| 2060 | pr_warn("%s: tried to SW reset card, got error %d\n", |
| 2061 | mmc_hostname(host), ret); |
| 2062 | |
| 2063 | return ret; |
| 2064 | } |
| 2065 | EXPORT_SYMBOL(mmc_sw_reset); |
| 2066 | |
| 2067 | static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) |
| 2068 | { |
| 2069 | host->f_init = freq; |
| 2070 | |
| 2071 | pr_debug("%s: %s: trying to init card at %u Hz\n", |
| 2072 | mmc_hostname(host), __func__, host->f_init); |
| 2073 | |
| 2074 | mmc_power_up(host, host->ocr_avail); |
| 2075 | |
| 2076 | /* |
| 2077 | * Some eMMCs (with VCCQ always on) may not be reset after power up, so |
| 2078 | * do a hardware reset if possible. |
| 2079 | */ |
| 2080 | mmc_hw_reset_for_init(host); |
| 2081 | |
| 2082 | /* |
| 2083 | * sdio_reset sends CMD52 to reset card. Since we do not know |
| 2084 | * if the card is being re-initialized, just send it. CMD52 |
| 2085 | * should be ignored by SD/eMMC cards. |
| 2086 | * Skip it if we already know that we do not support SDIO commands |
| 2087 | */ |
| 2088 | if (!(host->caps2 & MMC_CAP2_NO_SDIO)) |
| 2089 | sdio_reset(host); |
| 2090 | |
| 2091 | mmc_go_idle(host); |
| 2092 | |
| 2093 | if (!(host->caps2 & MMC_CAP2_NO_SD)) { |
| 2094 | if (mmc_send_if_cond_pcie(host, host->ocr_avail)) |
| 2095 | goto out; |
| 2096 | if (mmc_card_sd_express(host)) |
| 2097 | return 0; |
| 2098 | } |
| 2099 | |
| 2100 | /* Order's important: probe SDIO, then SD, then MMC */ |
| 2101 | if (!(host->caps2 & MMC_CAP2_NO_SDIO)) |
| 2102 | if (!mmc_attach_sdio(host)) |
| 2103 | return 0; |
| 2104 | |
| 2105 | if (!(host->caps2 & MMC_CAP2_NO_SD)) |
| 2106 | if (!mmc_attach_sd(host)) |
| 2107 | return 0; |
| 2108 | |
| 2109 | if (!(host->caps2 & MMC_CAP2_NO_MMC)) |
| 2110 | if (!mmc_attach_mmc(host)) |
| 2111 | return 0; |
| 2112 | |
| 2113 | out: |
| 2114 | mmc_power_off(host); |
| 2115 | return -EIO; |
| 2116 | } |
| 2117 | |
| 2118 | int _mmc_detect_card_removed(struct mmc_host *host) |
| 2119 | { |
| 2120 | int ret; |
| 2121 | |
| 2122 | if (!host->card || mmc_card_removed(host->card)) |
| 2123 | return 1; |
| 2124 | |
| 2125 | ret = host->bus_ops->alive(host); |
| 2126 | |
| 2127 | /* |
| 2128 | * Card detect status and alive check may be out of sync if card is |
| 2129 | * removed slowly, when card detect switch changes while card/slot |
| 2130 | * pads are still contacted in hardware (refer to "SD Card Mechanical |
| 2131 | * Addendum, Appendix C: Card Detection Switch"). So reschedule a |
| 2132 | * detect work 200ms later for this case. |
| 2133 | */ |
| 2134 | if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) { |
| 2135 | mmc_detect_change(host, msecs_to_jiffies(200)); |
| 2136 | pr_debug("%s: card removed too slowly\n", mmc_hostname(host)); |
| 2137 | } |
| 2138 | |
| 2139 | if (ret) { |
| 2140 | mmc_card_set_removed(host->card); |
| 2141 | pr_debug("%s: card remove detected\n", mmc_hostname(host)); |
| 2142 | } |
| 2143 | |
| 2144 | return ret; |
| 2145 | } |
| 2146 | |
| 2147 | int mmc_detect_card_removed(struct mmc_host *host) |
| 2148 | { |
| 2149 | struct mmc_card *card = host->card; |
| 2150 | int ret; |
| 2151 | |
| 2152 | WARN_ON(!host->claimed); |
| 2153 | |
| 2154 | if (!card) |
| 2155 | return 1; |
| 2156 | |
| 2157 | if (!mmc_card_is_removable(host)) |
| 2158 | return 0; |
| 2159 | |
| 2160 | ret = mmc_card_removed(card); |
| 2161 | /* |
| 2162 | * The card will be considered unchanged unless we have been asked to |
| 2163 | * detect a change or host requires polling to provide card detection. |
| 2164 | */ |
| 2165 | if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL)) |
| 2166 | return ret; |
| 2167 | |
| 2168 | host->detect_change = 0; |
| 2169 | if (!ret) { |
| 2170 | ret = _mmc_detect_card_removed(host); |
| 2171 | if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) { |
| 2172 | /* |
| 2173 | * Schedule a detect work as soon as possible to let a |
| 2174 | * rescan handle the card removal. |
| 2175 | */ |
| 2176 | cancel_delayed_work(&host->detect); |
| 2177 | _mmc_detect_change(host, 0, false); |
| 2178 | } |
| 2179 | } |
| 2180 | |
| 2181 | return ret; |
| 2182 | } |
| 2183 | EXPORT_SYMBOL(mmc_detect_card_removed); |
| 2184 | |
| 2185 | int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector) |
| 2186 | { |
| 2187 | unsigned int boot_sectors_num; |
| 2188 | |
| 2189 | if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA))) |
| 2190 | return -EOPNOTSUPP; |
| 2191 | |
| 2192 | /* filter out unrelated cards */ |
| 2193 | if (card->ext_csd.rev < 3 || |
| 2194 | !mmc_card_mmc(card) || |
| 2195 | !mmc_card_is_blockaddr(card) || |
| 2196 | mmc_card_is_removable(card->host)) |
| 2197 | return -ENOENT; |
| 2198 | |
| 2199 | /* |
| 2200 | * eMMC storage has two special boot partitions in addition to the |
| 2201 | * main one. NVIDIA's bootloader linearizes eMMC boot0->boot1->main |
| 2202 | * accesses, this means that the partition table addresses are shifted |
| 2203 | * by the size of boot partitions. In accordance with the eMMC |
| 2204 | * specification, the boot partition size is calculated as follows: |
| 2205 | * |
| 2206 | * boot partition size = 128K byte x BOOT_SIZE_MULT |
| 2207 | * |
| 2208 | * Calculate number of sectors occupied by the both boot partitions. |
| 2209 | */ |
| 2210 | boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K / |
| 2211 | SZ_512 * MMC_NUM_BOOT_PARTITION; |
| 2212 | |
| 2213 | /* Defined by NVIDIA and used by Android devices. */ |
| 2214 | *gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1; |
| 2215 | |
| 2216 | return 0; |
| 2217 | } |
| 2218 | EXPORT_SYMBOL(mmc_card_alternative_gpt_sector); |
| 2219 | |
| 2220 | void mmc_rescan(struct work_struct *work) |
| 2221 | { |
| 2222 | struct mmc_host *host = |
| 2223 | container_of(work, struct mmc_host, detect.work); |
| 2224 | int i; |
| 2225 | |
| 2226 | if (host->rescan_disable) |
| 2227 | return; |
| 2228 | |
| 2229 | /* If there is a non-removable card registered, only scan once */ |
| 2230 | if (!mmc_card_is_removable(host) && host->rescan_entered) |
| 2231 | return; |
| 2232 | host->rescan_entered = 1; |
| 2233 | |
| 2234 | if (host->trigger_card_event && host->ops->card_event) { |
| 2235 | mmc_claim_host(host); |
| 2236 | host->ops->card_event(host); |
| 2237 | mmc_release_host(host); |
| 2238 | host->trigger_card_event = false; |
| 2239 | } |
| 2240 | |
| 2241 | /* Verify a registered card to be functional, else remove it. */ |
| 2242 | if (host->bus_ops) |
| 2243 | host->bus_ops->detect(host); |
| 2244 | |
| 2245 | host->detect_change = 0; |
| 2246 | |
| 2247 | /* if there still is a card present, stop here */ |
| 2248 | if (host->bus_ops != NULL) |
| 2249 | goto out; |
| 2250 | |
| 2251 | mmc_claim_host(host); |
| 2252 | if (mmc_card_is_removable(host) && host->ops->get_cd && |
| 2253 | host->ops->get_cd(host) == 0) { |
| 2254 | mmc_power_off(host); |
| 2255 | mmc_release_host(host); |
| 2256 | goto out; |
| 2257 | } |
| 2258 | |
| 2259 | /* If an SD express card is present, then leave it as is. */ |
| 2260 | if (mmc_card_sd_express(host)) { |
| 2261 | mmc_release_host(host); |
| 2262 | goto out; |
| 2263 | } |
| 2264 | |
| 2265 | /* |
| 2266 | * Ideally we should favor initialization of legacy SD cards and defer |
| 2267 | * UHS-II enumeration. However, it seems like cards doesn't reliably |
| 2268 | * announce their support for UHS-II in the response to the ACMD41, |
| 2269 | * while initializing the legacy SD interface. Therefore, let's start |
| 2270 | * with UHS-II for now. |
| 2271 | */ |
| 2272 | if (!mmc_attach_sd_uhs2(host)) { |
| 2273 | mmc_release_host(host); |
| 2274 | goto out; |
| 2275 | } |
| 2276 | |
| 2277 | for (i = 0; i < ARRAY_SIZE(freqs); i++) { |
| 2278 | unsigned int freq = freqs[i]; |
| 2279 | if (freq > host->f_max) { |
| 2280 | if (i + 1 < ARRAY_SIZE(freqs)) |
| 2281 | continue; |
| 2282 | freq = host->f_max; |
| 2283 | } |
| 2284 | if (!mmc_rescan_try_freq(host, max(freq, host->f_min))) |
| 2285 | break; |
| 2286 | if (freqs[i] <= host->f_min) |
| 2287 | break; |
| 2288 | } |
| 2289 | |
| 2290 | /* A non-removable card should have been detected by now. */ |
| 2291 | if (!mmc_card_is_removable(host) && !host->bus_ops) |
| 2292 | pr_info("%s: Failed to initialize a non-removable card", |
| 2293 | mmc_hostname(host)); |
| 2294 | |
| 2295 | /* |
| 2296 | * Ignore the command timeout errors observed during |
| 2297 | * the card init as those are excepted. |
| 2298 | */ |
| 2299 | host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0; |
| 2300 | mmc_release_host(host); |
| 2301 | |
| 2302 | out: |
| 2303 | if (host->caps & MMC_CAP_NEEDS_POLL) |
| 2304 | mmc_schedule_delayed_work(&host->detect, HZ); |
| 2305 | } |
| 2306 | |
| 2307 | void mmc_start_host(struct mmc_host *host) |
| 2308 | { |
| 2309 | bool power_up = !(host->caps2 & |
| 2310 | (MMC_CAP2_NO_PRESCAN_POWERUP | MMC_CAP2_SD_UHS2)); |
| 2311 | |
| 2312 | host->f_init = max(min(freqs[0], host->f_max), host->f_min); |
| 2313 | host->rescan_disable = 0; |
| 2314 | |
| 2315 | if (power_up) { |
| 2316 | mmc_claim_host(host); |
| 2317 | mmc_power_up(host, host->ocr_avail); |
| 2318 | mmc_release_host(host); |
| 2319 | } |
| 2320 | |
| 2321 | mmc_gpiod_request_cd_irq(host); |
| 2322 | _mmc_detect_change(host, 0, false); |
| 2323 | } |
| 2324 | |
| 2325 | void __mmc_stop_host(struct mmc_host *host) |
| 2326 | { |
| 2327 | if (host->rescan_disable) |
| 2328 | return; |
| 2329 | |
| 2330 | if (host->slot.cd_irq >= 0) { |
| 2331 | mmc_gpio_set_cd_wake(host, false); |
| 2332 | disable_irq(host->slot.cd_irq); |
| 2333 | } |
| 2334 | |
| 2335 | host->rescan_disable = 1; |
| 2336 | cancel_delayed_work_sync(&host->detect); |
| 2337 | } |
| 2338 | |
| 2339 | void mmc_stop_host(struct mmc_host *host) |
| 2340 | { |
| 2341 | __mmc_stop_host(host); |
| 2342 | |
| 2343 | /* clear pm flags now and let card drivers set them as needed */ |
| 2344 | host->pm_flags = 0; |
| 2345 | |
| 2346 | if (host->bus_ops) { |
| 2347 | /* Calling bus_ops->remove() with a claimed host can deadlock */ |
| 2348 | host->bus_ops->remove(host); |
| 2349 | mmc_claim_host(host); |
| 2350 | mmc_detach_bus(host); |
| 2351 | mmc_power_off(host); |
| 2352 | mmc_release_host(host); |
| 2353 | return; |
| 2354 | } |
| 2355 | |
| 2356 | mmc_claim_host(host); |
| 2357 | mmc_power_off(host); |
| 2358 | mmc_release_host(host); |
| 2359 | } |
| 2360 | |
| 2361 | static int __init mmc_init(void) |
| 2362 | { |
| 2363 | int ret; |
| 2364 | |
| 2365 | ret = mmc_register_bus(); |
| 2366 | if (ret) |
| 2367 | return ret; |
| 2368 | |
| 2369 | ret = mmc_register_host_class(); |
| 2370 | if (ret) |
| 2371 | goto unregister_bus; |
| 2372 | |
| 2373 | ret = sdio_register_bus(); |
| 2374 | if (ret) |
| 2375 | goto unregister_host_class; |
| 2376 | |
| 2377 | return 0; |
| 2378 | |
| 2379 | unregister_host_class: |
| 2380 | mmc_unregister_host_class(); |
| 2381 | unregister_bus: |
| 2382 | mmc_unregister_bus(); |
| 2383 | return ret; |
| 2384 | } |
| 2385 | |
| 2386 | static void __exit mmc_exit(void) |
| 2387 | { |
| 2388 | sdio_unregister_bus(); |
| 2389 | mmc_unregister_host_class(); |
| 2390 | mmc_unregister_bus(); |
| 2391 | } |
| 2392 | |
| 2393 | subsys_initcall(mmc_init); |
| 2394 | module_exit(mmc_exit); |
| 2395 | |
| 2396 | MODULE_DESCRIPTION("MMC core driver"); |
| 2397 | MODULE_LICENSE("GPL"); |