| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * EMIF driver |
| 4 | * |
| 5 | * Copyright (C) 2012 Texas Instruments, Inc. |
| 6 | * |
| 7 | * Aneesh V <aneesh@ti.com> |
| 8 | * Santosh Shilimkar <santosh.shilimkar@ti.com> |
| 9 | */ |
| 10 | #include <linux/cleanup.h> |
| 11 | #include <linux/err.h> |
| 12 | #include <linux/kernel.h> |
| 13 | #include <linux/reboot.h> |
| 14 | #include <linux/platform_data/emif_plat.h> |
| 15 | #include <linux/io.h> |
| 16 | #include <linux/device.h> |
| 17 | #include <linux/platform_device.h> |
| 18 | #include <linux/interrupt.h> |
| 19 | #include <linux/slab.h> |
| 20 | #include <linux/of.h> |
| 21 | #include <linux/debugfs.h> |
| 22 | #include <linux/seq_file.h> |
| 23 | #include <linux/module.h> |
| 24 | #include <linux/list.h> |
| 25 | #include <linux/spinlock.h> |
| 26 | #include <linux/pm.h> |
| 27 | |
| 28 | #include "emif.h" |
| 29 | #include "jedec_ddr.h" |
| 30 | #include "of_memory.h" |
| 31 | |
| 32 | /** |
| 33 | * struct emif_data - Per device static data for driver's use |
| 34 | * @duplicate: Whether the DDR devices attached to this EMIF |
| 35 | * instance are exactly same as that on EMIF1. In |
| 36 | * this case we can save some memory and processing |
| 37 | * @temperature_level: Maximum temperature of LPDDR2 devices attached |
| 38 | * to this EMIF - read from MR4 register. If there |
| 39 | * are two devices attached to this EMIF, this |
| 40 | * value is the maximum of the two temperature |
| 41 | * levels. |
| 42 | * @node: node in the device list |
| 43 | * @base: base address of memory-mapped IO registers. |
| 44 | * @dev: device pointer. |
| 45 | * @regs_cache: An array of 'struct emif_regs' that stores |
| 46 | * calculated register values for different |
| 47 | * frequencies, to avoid re-calculating them on |
| 48 | * each DVFS transition. |
| 49 | * @curr_regs: The set of register values used in the last |
| 50 | * frequency change (i.e. corresponding to the |
| 51 | * frequency in effect at the moment) |
| 52 | * @plat_data: Pointer to saved platform data. |
| 53 | * @debugfs_root: dentry to the root folder for EMIF in debugfs |
| 54 | * @np_ddr: Pointer to ddr device tree node |
| 55 | */ |
| 56 | struct emif_data { |
| 57 | u8 duplicate; |
| 58 | u8 temperature_level; |
| 59 | u8 lpmode; |
| 60 | struct list_head node; |
| 61 | void __iomem *base; |
| 62 | struct device *dev; |
| 63 | struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES]; |
| 64 | struct emif_regs *curr_regs; |
| 65 | struct emif_platform_data *plat_data; |
| 66 | struct dentry *debugfs_root; |
| 67 | struct device_node *np_ddr; |
| 68 | }; |
| 69 | |
| 70 | static struct emif_data *emif1; |
| 71 | static DEFINE_SPINLOCK(emif_lock); |
| 72 | static LIST_HEAD(device_list); |
| 73 | |
| 74 | static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif, |
| 75 | struct emif_regs *regs) |
| 76 | { |
| 77 | u32 type = emif->plat_data->device_info->type; |
| 78 | u32 ip_rev = emif->plat_data->ip_rev; |
| 79 | |
| 80 | seq_printf(s, "EMIF register cache dump for %dMHz\n", |
| 81 | regs->freq/1000000); |
| 82 | |
| 83 | seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw); |
| 84 | seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw); |
| 85 | seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw); |
| 86 | seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw); |
| 87 | |
| 88 | if (ip_rev == EMIF_4D) { |
| 89 | seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n", |
| 90 | regs->read_idle_ctrl_shdw_normal); |
| 91 | seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n", |
| 92 | regs->read_idle_ctrl_shdw_volt_ramp); |
| 93 | } else if (ip_rev == EMIF_4D5) { |
| 94 | seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n", |
| 95 | regs->dll_calib_ctrl_shdw_normal); |
| 96 | seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n", |
| 97 | regs->dll_calib_ctrl_shdw_volt_ramp); |
| 98 | } |
| 99 | |
| 100 | if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) { |
| 101 | seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n", |
| 102 | regs->ref_ctrl_shdw_derated); |
| 103 | seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n", |
| 104 | regs->sdram_tim1_shdw_derated); |
| 105 | seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n", |
| 106 | regs->sdram_tim3_shdw_derated); |
| 107 | } |
| 108 | } |
| 109 | |
| 110 | static int emif_regdump_show(struct seq_file *s, void *unused) |
| 111 | { |
| 112 | struct emif_data *emif = s->private; |
| 113 | struct emif_regs **regs_cache; |
| 114 | int i; |
| 115 | |
| 116 | if (emif->duplicate) |
| 117 | regs_cache = emif1->regs_cache; |
| 118 | else |
| 119 | regs_cache = emif->regs_cache; |
| 120 | |
| 121 | for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) { |
| 122 | do_emif_regdump_show(s, emif, regs_cache[i]); |
| 123 | seq_putc(s, '\n'); |
| 124 | } |
| 125 | |
| 126 | return 0; |
| 127 | } |
| 128 | |
| 129 | DEFINE_SHOW_ATTRIBUTE(emif_regdump); |
| 130 | |
| 131 | static int emif_mr4_show(struct seq_file *s, void *unused) |
| 132 | { |
| 133 | struct emif_data *emif = s->private; |
| 134 | |
| 135 | seq_printf(s, "MR4=%d\n", emif->temperature_level); |
| 136 | return 0; |
| 137 | } |
| 138 | |
| 139 | DEFINE_SHOW_ATTRIBUTE(emif_mr4); |
| 140 | |
| 141 | static void emif_debugfs_init(struct emif_data *emif) |
| 142 | { |
| 143 | if (IS_ENABLED(CONFIG_DEBUG_FS)) { |
| 144 | emif->debugfs_root = debugfs_create_dir(dev_name(emif->dev), NULL); |
| 145 | debugfs_create_file("regcache_dump", S_IRUGO, emif->debugfs_root, emif, |
| 146 | &emif_regdump_fops); |
| 147 | debugfs_create_file("mr4", S_IRUGO, emif->debugfs_root, emif, |
| 148 | &emif_mr4_fops); |
| 149 | } |
| 150 | } |
| 151 | |
| 152 | static void emif_debugfs_exit(struct emif_data *emif) |
| 153 | { |
| 154 | if (IS_ENABLED(CONFIG_DEBUG_FS)) { |
| 155 | debugfs_remove_recursive(emif->debugfs_root); |
| 156 | emif->debugfs_root = NULL; |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | /* |
| 161 | * Get bus width used by EMIF. Note that this may be different from the |
| 162 | * bus width of the DDR devices used. For instance two 16-bit DDR devices |
| 163 | * may be connected to a given CS of EMIF. In this case bus width as far |
| 164 | * as EMIF is concerned is 32, where as the DDR bus width is 16 bits. |
| 165 | */ |
| 166 | static u32 get_emif_bus_width(struct emif_data *emif) |
| 167 | { |
| 168 | u32 width; |
| 169 | void __iomem *base = emif->base; |
| 170 | |
| 171 | width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK) |
| 172 | >> NARROW_MODE_SHIFT; |
| 173 | width = width == 0 ? 32 : 16; |
| 174 | |
| 175 | return width; |
| 176 | } |
| 177 | |
| 178 | static void set_lpmode(struct emif_data *emif, u8 lpmode) |
| 179 | { |
| 180 | u32 temp; |
| 181 | void __iomem *base = emif->base; |
| 182 | |
| 183 | /* |
| 184 | * Workaround for errata i743 - LPDDR2 Power-Down State is Not |
| 185 | * Efficient |
| 186 | * |
| 187 | * i743 DESCRIPTION: |
| 188 | * The EMIF supports power-down state for low power. The EMIF |
| 189 | * automatically puts the SDRAM into power-down after the memory is |
| 190 | * not accessed for a defined number of cycles and the |
| 191 | * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4. |
| 192 | * As the EMIF supports automatic output impedance calibration, a ZQ |
| 193 | * calibration long command is issued every time it exits active |
| 194 | * power-down and precharge power-down modes. The EMIF waits and |
| 195 | * blocks any other command during this calibration. |
| 196 | * The EMIF does not allow selective disabling of ZQ calibration upon |
| 197 | * exit of power-down mode. Due to very short periods of power-down |
| 198 | * cycles, ZQ calibration overhead creates bandwidth issues and |
| 199 | * increases overall system power consumption. On the other hand, |
| 200 | * issuing ZQ calibration long commands when exiting self-refresh is |
| 201 | * still required. |
| 202 | * |
| 203 | * WORKAROUND |
| 204 | * Because there is no power consumption benefit of the power-down due |
| 205 | * to the calibration and there is a performance risk, the guideline |
| 206 | * is to not allow power-down state and, therefore, to not have set |
| 207 | * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4. |
| 208 | */ |
| 209 | if ((emif->plat_data->ip_rev == EMIF_4D) && |
| 210 | (lpmode == EMIF_LP_MODE_PWR_DN)) { |
| 211 | WARN_ONCE(1, |
| 212 | "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n"); |
| 213 | /* rollback LP_MODE to Self-refresh mode */ |
| 214 | lpmode = EMIF_LP_MODE_SELF_REFRESH; |
| 215 | } |
| 216 | |
| 217 | temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL); |
| 218 | temp &= ~LP_MODE_MASK; |
| 219 | temp |= (lpmode << LP_MODE_SHIFT); |
| 220 | writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL); |
| 221 | } |
| 222 | |
| 223 | static void do_freq_update(void) |
| 224 | { |
| 225 | struct emif_data *emif; |
| 226 | |
| 227 | /* |
| 228 | * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE |
| 229 | * |
| 230 | * i728 DESCRIPTION: |
| 231 | * The EMIF automatically puts the SDRAM into self-refresh mode |
| 232 | * after the EMIF has not performed accesses during |
| 233 | * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles |
| 234 | * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set |
| 235 | * to 0x2. If during a small window the following three events |
| 236 | * occur: |
| 237 | * - The SR_TIMING counter expires |
| 238 | * - And frequency change is requested |
| 239 | * - And OCP access is requested |
| 240 | * Then it causes instable clock on the DDR interface. |
| 241 | * |
| 242 | * WORKAROUND |
| 243 | * To avoid the occurrence of the three events, the workaround |
| 244 | * is to disable the self-refresh when requesting a frequency |
| 245 | * change. Before requesting a frequency change the software must |
| 246 | * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the |
| 247 | * frequency change has been done, the software can reprogram |
| 248 | * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2 |
| 249 | */ |
| 250 | list_for_each_entry(emif, &device_list, node) { |
| 251 | if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) |
| 252 | set_lpmode(emif, EMIF_LP_MODE_DISABLE); |
| 253 | } |
| 254 | |
| 255 | /* |
| 256 | * TODO: Do FREQ_UPDATE here when an API |
| 257 | * is available for this as part of the new |
| 258 | * clock framework |
| 259 | */ |
| 260 | |
| 261 | list_for_each_entry(emif, &device_list, node) { |
| 262 | if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) |
| 263 | set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); |
| 264 | } |
| 265 | } |
| 266 | |
| 267 | /* Find addressing table entry based on the device's type and density */ |
| 268 | static const struct lpddr2_addressing *get_addressing_table( |
| 269 | const struct ddr_device_info *device_info) |
| 270 | { |
| 271 | u32 index, type, density; |
| 272 | |
| 273 | type = device_info->type; |
| 274 | density = device_info->density; |
| 275 | |
| 276 | switch (type) { |
| 277 | case DDR_TYPE_LPDDR2_S4: |
| 278 | index = density - 1; |
| 279 | break; |
| 280 | case DDR_TYPE_LPDDR2_S2: |
| 281 | switch (density) { |
| 282 | case DDR_DENSITY_1Gb: |
| 283 | case DDR_DENSITY_2Gb: |
| 284 | index = density + 3; |
| 285 | break; |
| 286 | default: |
| 287 | index = density - 1; |
| 288 | } |
| 289 | break; |
| 290 | default: |
| 291 | return NULL; |
| 292 | } |
| 293 | |
| 294 | return &lpddr2_jedec_addressing_table[index]; |
| 295 | } |
| 296 | |
| 297 | static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing, |
| 298 | bool cs1_used, bool cal_resistors_per_cs) |
| 299 | { |
| 300 | u32 zq = 0, val = 0; |
| 301 | |
| 302 | val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns; |
| 303 | zq |= val << ZQ_REFINTERVAL_SHIFT; |
| 304 | |
| 305 | val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1; |
| 306 | zq |= val << ZQ_ZQCL_MULT_SHIFT; |
| 307 | |
| 308 | val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1; |
| 309 | zq |= val << ZQ_ZQINIT_MULT_SHIFT; |
| 310 | |
| 311 | zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT; |
| 312 | |
| 313 | if (cal_resistors_per_cs) |
| 314 | zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT; |
| 315 | else |
| 316 | zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT; |
| 317 | |
| 318 | zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */ |
| 319 | |
| 320 | val = cs1_used ? 1 : 0; |
| 321 | zq |= val << ZQ_CS1EN_SHIFT; |
| 322 | |
| 323 | return zq; |
| 324 | } |
| 325 | |
| 326 | static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing, |
| 327 | const struct emif_custom_configs *custom_configs, bool cs1_used, |
| 328 | u32 sdram_io_width, u32 emif_bus_width) |
| 329 | { |
| 330 | u32 alert = 0, interval, devcnt; |
| 331 | |
| 332 | if (custom_configs && (custom_configs->mask & |
| 333 | EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)) |
| 334 | interval = custom_configs->temp_alert_poll_interval_ms; |
| 335 | else |
| 336 | interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS; |
| 337 | |
| 338 | interval *= 1000000; /* Convert to ns */ |
| 339 | interval /= addressing->tREFI_ns; /* Convert to refresh cycles */ |
| 340 | alert |= (interval << TA_REFINTERVAL_SHIFT); |
| 341 | |
| 342 | /* |
| 343 | * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width |
| 344 | * also to this form and subtract to get TA_DEVCNT, which is |
| 345 | * in log2(x) form. |
| 346 | */ |
| 347 | emif_bus_width = __fls(emif_bus_width) - 1; |
| 348 | devcnt = emif_bus_width - sdram_io_width; |
| 349 | alert |= devcnt << TA_DEVCNT_SHIFT; |
| 350 | |
| 351 | /* DEVWDT is in 'log2(x) - 3' form */ |
| 352 | alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT; |
| 353 | |
| 354 | alert |= 1 << TA_SFEXITEN_SHIFT; |
| 355 | alert |= 1 << TA_CS0EN_SHIFT; |
| 356 | alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT; |
| 357 | |
| 358 | return alert; |
| 359 | } |
| 360 | |
| 361 | static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev) |
| 362 | { |
| 363 | u32 pwr_mgmt_ctrl = 0, timeout; |
| 364 | u32 lpmode = EMIF_LP_MODE_SELF_REFRESH; |
| 365 | u32 timeout_perf = EMIF_LP_MODE_TIMEOUT_PERFORMANCE; |
| 366 | u32 timeout_pwr = EMIF_LP_MODE_TIMEOUT_POWER; |
| 367 | u32 freq_threshold = EMIF_LP_MODE_FREQ_THRESHOLD; |
| 368 | u32 mask; |
| 369 | u8 shift; |
| 370 | |
| 371 | struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs; |
| 372 | |
| 373 | if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) { |
| 374 | lpmode = cust_cfgs->lpmode; |
| 375 | timeout_perf = cust_cfgs->lpmode_timeout_performance; |
| 376 | timeout_pwr = cust_cfgs->lpmode_timeout_power; |
| 377 | freq_threshold = cust_cfgs->lpmode_freq_threshold; |
| 378 | } |
| 379 | |
| 380 | /* Timeout based on DDR frequency */ |
| 381 | timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr; |
| 382 | |
| 383 | /* |
| 384 | * The value to be set in register is "log2(timeout) - 3" |
| 385 | * if timeout < 16 load 0 in register |
| 386 | * if timeout is not a power of 2, round to next highest power of 2 |
| 387 | */ |
| 388 | if (timeout < 16) { |
| 389 | timeout = 0; |
| 390 | } else { |
| 391 | if (timeout & (timeout - 1)) |
| 392 | timeout <<= 1; |
| 393 | timeout = __fls(timeout) - 3; |
| 394 | } |
| 395 | |
| 396 | switch (lpmode) { |
| 397 | case EMIF_LP_MODE_CLOCK_STOP: |
| 398 | shift = CS_TIM_SHIFT; |
| 399 | mask = CS_TIM_MASK; |
| 400 | break; |
| 401 | case EMIF_LP_MODE_SELF_REFRESH: |
| 402 | /* Workaround for errata i735 */ |
| 403 | if (timeout < 6) |
| 404 | timeout = 6; |
| 405 | |
| 406 | shift = SR_TIM_SHIFT; |
| 407 | mask = SR_TIM_MASK; |
| 408 | break; |
| 409 | case EMIF_LP_MODE_PWR_DN: |
| 410 | shift = PD_TIM_SHIFT; |
| 411 | mask = PD_TIM_MASK; |
| 412 | break; |
| 413 | case EMIF_LP_MODE_DISABLE: |
| 414 | default: |
| 415 | mask = 0; |
| 416 | shift = 0; |
| 417 | break; |
| 418 | } |
| 419 | /* Round to maximum in case of overflow, BUT warn! */ |
| 420 | if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) { |
| 421 | pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n", |
| 422 | lpmode, |
| 423 | timeout_perf, |
| 424 | timeout_pwr, |
| 425 | freq_threshold); |
| 426 | WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n", |
| 427 | timeout, mask >> shift); |
| 428 | timeout = mask >> shift; |
| 429 | } |
| 430 | |
| 431 | /* Setup required timing */ |
| 432 | pwr_mgmt_ctrl = (timeout << shift) & mask; |
| 433 | /* setup a default mask for rest of the modes */ |
| 434 | pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) & |
| 435 | ~mask; |
| 436 | |
| 437 | /* No CS_TIM in EMIF_4D5 */ |
| 438 | if (ip_rev == EMIF_4D5) |
| 439 | pwr_mgmt_ctrl &= ~CS_TIM_MASK; |
| 440 | |
| 441 | pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT; |
| 442 | |
| 443 | return pwr_mgmt_ctrl; |
| 444 | } |
| 445 | |
| 446 | /* |
| 447 | * Get the temperature level of the EMIF instance: |
| 448 | * Reads the MR4 register of attached SDRAM parts to find out the temperature |
| 449 | * level. If there are two parts attached(one on each CS), then the temperature |
| 450 | * level for the EMIF instance is the higher of the two temperatures. |
| 451 | */ |
| 452 | static void get_temperature_level(struct emif_data *emif) |
| 453 | { |
| 454 | u32 temp, temperature_level; |
| 455 | void __iomem *base; |
| 456 | |
| 457 | base = emif->base; |
| 458 | |
| 459 | /* Read mode register 4 */ |
| 460 | writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG); |
| 461 | temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA); |
| 462 | temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >> |
| 463 | MR4_SDRAM_REF_RATE_SHIFT; |
| 464 | |
| 465 | if (emif->plat_data->device_info->cs1_used) { |
| 466 | writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG); |
| 467 | temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA); |
| 468 | temp = (temp & MR4_SDRAM_REF_RATE_MASK) |
| 469 | >> MR4_SDRAM_REF_RATE_SHIFT; |
| 470 | temperature_level = max(temp, temperature_level); |
| 471 | } |
| 472 | |
| 473 | /* treat everything less than nominal(3) in MR4 as nominal */ |
| 474 | if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL)) |
| 475 | temperature_level = SDRAM_TEMP_NOMINAL; |
| 476 | |
| 477 | /* if we get reserved value in MR4 persist with the existing value */ |
| 478 | if (likely(temperature_level != SDRAM_TEMP_RESERVED_4)) |
| 479 | emif->temperature_level = temperature_level; |
| 480 | } |
| 481 | |
| 482 | /* |
| 483 | * setup_temperature_sensitive_regs() - set the timings for temperature |
| 484 | * sensitive registers. This happens once at initialisation time based |
| 485 | * on the temperature at boot time and subsequently based on the temperature |
| 486 | * alert interrupt. Temperature alert can happen when the temperature |
| 487 | * increases or drops. So this function can have the effect of either |
| 488 | * derating the timings or going back to nominal values. |
| 489 | */ |
| 490 | static void setup_temperature_sensitive_regs(struct emif_data *emif, |
| 491 | struct emif_regs *regs) |
| 492 | { |
| 493 | u32 tim1, tim3, ref_ctrl, type; |
| 494 | void __iomem *base = emif->base; |
| 495 | u32 temperature; |
| 496 | |
| 497 | type = emif->plat_data->device_info->type; |
| 498 | |
| 499 | tim1 = regs->sdram_tim1_shdw; |
| 500 | tim3 = regs->sdram_tim3_shdw; |
| 501 | ref_ctrl = regs->ref_ctrl_shdw; |
| 502 | |
| 503 | /* No de-rating for non-lpddr2 devices */ |
| 504 | if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4) |
| 505 | goto out; |
| 506 | |
| 507 | temperature = emif->temperature_level; |
| 508 | if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) { |
| 509 | ref_ctrl = regs->ref_ctrl_shdw_derated; |
| 510 | } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) { |
| 511 | tim1 = regs->sdram_tim1_shdw_derated; |
| 512 | tim3 = regs->sdram_tim3_shdw_derated; |
| 513 | ref_ctrl = regs->ref_ctrl_shdw_derated; |
| 514 | } |
| 515 | |
| 516 | out: |
| 517 | writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW); |
| 518 | writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW); |
| 519 | writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW); |
| 520 | } |
| 521 | |
| 522 | static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif) |
| 523 | { |
| 524 | u32 old_temp_level; |
| 525 | irqreturn_t ret; |
| 526 | struct emif_custom_configs *custom_configs; |
| 527 | |
| 528 | guard(spinlock_irqsave)(&emif_lock); |
| 529 | old_temp_level = emif->temperature_level; |
| 530 | get_temperature_level(emif); |
| 531 | |
| 532 | if (unlikely(emif->temperature_level == old_temp_level)) { |
| 533 | return IRQ_HANDLED; |
| 534 | } else if (!emif->curr_regs) { |
| 535 | dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n"); |
| 536 | return IRQ_HANDLED; |
| 537 | } |
| 538 | |
| 539 | custom_configs = emif->plat_data->custom_configs; |
| 540 | |
| 541 | /* |
| 542 | * IF we detect higher than "nominal rating" from DDR sensor |
| 543 | * on an unsupported DDR part, shutdown system |
| 544 | */ |
| 545 | if (custom_configs && !(custom_configs->mask & |
| 546 | EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) { |
| 547 | if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) { |
| 548 | dev_err(emif->dev, |
| 549 | "%s:NOT Extended temperature capable memory. Converting MR4=0x%02x as shutdown event\n", |
| 550 | __func__, emif->temperature_level); |
| 551 | /* |
| 552 | * Temperature far too high - do kernel_power_off() |
| 553 | * from thread context |
| 554 | */ |
| 555 | emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN; |
| 556 | return IRQ_WAKE_THREAD; |
| 557 | } |
| 558 | } |
| 559 | |
| 560 | if (emif->temperature_level < old_temp_level || |
| 561 | emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) { |
| 562 | /* |
| 563 | * Temperature coming down - defer handling to thread OR |
| 564 | * Temperature far too high - do kernel_power_off() from |
| 565 | * thread context |
| 566 | */ |
| 567 | ret = IRQ_WAKE_THREAD; |
| 568 | } else { |
| 569 | /* Temperature is going up - handle immediately */ |
| 570 | setup_temperature_sensitive_regs(emif, emif->curr_regs); |
| 571 | do_freq_update(); |
| 572 | ret = IRQ_HANDLED; |
| 573 | } |
| 574 | |
| 575 | return ret; |
| 576 | } |
| 577 | |
| 578 | static irqreturn_t emif_interrupt_handler(int irq, void *dev_id) |
| 579 | { |
| 580 | u32 interrupts; |
| 581 | struct emif_data *emif = dev_id; |
| 582 | void __iomem *base = emif->base; |
| 583 | struct device *dev = emif->dev; |
| 584 | irqreturn_t ret = IRQ_HANDLED; |
| 585 | |
| 586 | /* Save the status and clear it */ |
| 587 | interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); |
| 588 | writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); |
| 589 | |
| 590 | /* |
| 591 | * Handle temperature alert |
| 592 | * Temperature alert should be same for all ports |
| 593 | * So, it's enough to process it only for one of the ports |
| 594 | */ |
| 595 | if (interrupts & TA_SYS_MASK) |
| 596 | ret = handle_temp_alert(base, emif); |
| 597 | |
| 598 | if (interrupts & ERR_SYS_MASK) |
| 599 | dev_err(dev, "Access error from SYS port - %x\n", interrupts); |
| 600 | |
| 601 | if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) { |
| 602 | /* Save the status and clear it */ |
| 603 | interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS); |
| 604 | writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS); |
| 605 | |
| 606 | if (interrupts & ERR_LL_MASK) |
| 607 | dev_err(dev, "Access error from LL port - %x\n", |
| 608 | interrupts); |
| 609 | } |
| 610 | |
| 611 | return ret; |
| 612 | } |
| 613 | |
| 614 | static irqreturn_t emif_threaded_isr(int irq, void *dev_id) |
| 615 | { |
| 616 | struct emif_data *emif = dev_id; |
| 617 | unsigned long irq_state; |
| 618 | |
| 619 | if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) { |
| 620 | dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n"); |
| 621 | |
| 622 | /* If we have Power OFF ability, use it, else try restarting */ |
| 623 | if (kernel_can_power_off()) { |
| 624 | kernel_power_off(); |
| 625 | } else { |
| 626 | WARN(1, "FIXME: NO pm_power_off!!! trying restart\n"); |
| 627 | kernel_restart("SDRAM Over-temp Emergency restart"); |
| 628 | } |
| 629 | return IRQ_HANDLED; |
| 630 | } |
| 631 | |
| 632 | spin_lock_irqsave(&emif_lock, irq_state); |
| 633 | |
| 634 | if (emif->curr_regs) { |
| 635 | setup_temperature_sensitive_regs(emif, emif->curr_regs); |
| 636 | do_freq_update(); |
| 637 | } else { |
| 638 | dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n"); |
| 639 | } |
| 640 | |
| 641 | spin_unlock_irqrestore(&emif_lock, irq_state); |
| 642 | |
| 643 | return IRQ_HANDLED; |
| 644 | } |
| 645 | |
| 646 | static void clear_all_interrupts(struct emif_data *emif) |
| 647 | { |
| 648 | void __iomem *base = emif->base; |
| 649 | |
| 650 | writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS), |
| 651 | base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); |
| 652 | if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) |
| 653 | writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS), |
| 654 | base + EMIF_LL_OCP_INTERRUPT_STATUS); |
| 655 | } |
| 656 | |
| 657 | static void disable_and_clear_all_interrupts(struct emif_data *emif) |
| 658 | { |
| 659 | void __iomem *base = emif->base; |
| 660 | |
| 661 | /* Disable all interrupts */ |
| 662 | writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET), |
| 663 | base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR); |
| 664 | if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) |
| 665 | writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET), |
| 666 | base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR); |
| 667 | |
| 668 | /* Clear all interrupts */ |
| 669 | clear_all_interrupts(emif); |
| 670 | } |
| 671 | |
| 672 | static int setup_interrupts(struct emif_data *emif, u32 irq) |
| 673 | { |
| 674 | u32 interrupts, type; |
| 675 | void __iomem *base = emif->base; |
| 676 | |
| 677 | type = emif->plat_data->device_info->type; |
| 678 | |
| 679 | clear_all_interrupts(emif); |
| 680 | |
| 681 | /* Enable interrupts for SYS interface */ |
| 682 | interrupts = EN_ERR_SYS_MASK; |
| 683 | if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) |
| 684 | interrupts |= EN_TA_SYS_MASK; |
| 685 | writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET); |
| 686 | |
| 687 | /* Enable interrupts for LL interface */ |
| 688 | if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) { |
| 689 | /* TA need not be enabled for LL */ |
| 690 | interrupts = EN_ERR_LL_MASK; |
| 691 | writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET); |
| 692 | } |
| 693 | |
| 694 | /* setup IRQ handlers */ |
| 695 | return devm_request_threaded_irq(emif->dev, irq, |
| 696 | emif_interrupt_handler, |
| 697 | emif_threaded_isr, |
| 698 | 0, dev_name(emif->dev), |
| 699 | emif); |
| 700 | |
| 701 | } |
| 702 | |
| 703 | static void emif_onetime_settings(struct emif_data *emif) |
| 704 | { |
| 705 | u32 pwr_mgmt_ctrl, zq, temp_alert_cfg; |
| 706 | void __iomem *base = emif->base; |
| 707 | const struct lpddr2_addressing *addressing; |
| 708 | const struct ddr_device_info *device_info; |
| 709 | |
| 710 | device_info = emif->plat_data->device_info; |
| 711 | addressing = get_addressing_table(device_info); |
| 712 | |
| 713 | /* |
| 714 | * Init power management settings |
| 715 | * We don't know the frequency yet. Use a high frequency |
| 716 | * value for a conservative timeout setting |
| 717 | */ |
| 718 | pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif, |
| 719 | emif->plat_data->ip_rev); |
| 720 | emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT; |
| 721 | writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL); |
| 722 | |
| 723 | /* Init ZQ calibration settings */ |
| 724 | zq = get_zq_config_reg(addressing, device_info->cs1_used, |
| 725 | device_info->cal_resistors_per_cs); |
| 726 | writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG); |
| 727 | |
| 728 | /* Check temperature level temperature level*/ |
| 729 | get_temperature_level(emif); |
| 730 | if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) |
| 731 | dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n"); |
| 732 | |
| 733 | /* Init temperature polling */ |
| 734 | temp_alert_cfg = get_temp_alert_config(addressing, |
| 735 | emif->plat_data->custom_configs, device_info->cs1_used, |
| 736 | device_info->io_width, get_emif_bus_width(emif)); |
| 737 | writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG); |
| 738 | |
| 739 | /* |
| 740 | * Program external PHY control registers that are not frequency |
| 741 | * dependent |
| 742 | */ |
| 743 | if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY) |
| 744 | return; |
| 745 | writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW); |
| 746 | writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW); |
| 747 | writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW); |
| 748 | writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW); |
| 749 | writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW); |
| 750 | writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW); |
| 751 | writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW); |
| 752 | writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW); |
| 753 | writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW); |
| 754 | writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW); |
| 755 | writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW); |
| 756 | writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW); |
| 757 | writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW); |
| 758 | writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW); |
| 759 | writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW); |
| 760 | writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW); |
| 761 | writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW); |
| 762 | writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW); |
| 763 | writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW); |
| 764 | writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW); |
| 765 | writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW); |
| 766 | } |
| 767 | |
| 768 | static void get_default_timings(struct emif_data *emif) |
| 769 | { |
| 770 | struct emif_platform_data *pd = emif->plat_data; |
| 771 | |
| 772 | pd->timings = lpddr2_jedec_timings; |
| 773 | pd->timings_arr_size = ARRAY_SIZE(lpddr2_jedec_timings); |
| 774 | |
| 775 | dev_warn(emif->dev, "%s: using default timings\n", __func__); |
| 776 | } |
| 777 | |
| 778 | static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type, |
| 779 | u32 ip_rev, struct device *dev) |
| 780 | { |
| 781 | int valid; |
| 782 | |
| 783 | valid = (type == DDR_TYPE_LPDDR2_S4 || |
| 784 | type == DDR_TYPE_LPDDR2_S2) |
| 785 | && (density >= DDR_DENSITY_64Mb |
| 786 | && density <= DDR_DENSITY_8Gb) |
| 787 | && (io_width >= DDR_IO_WIDTH_8 |
| 788 | && io_width <= DDR_IO_WIDTH_32); |
| 789 | |
| 790 | /* Combinations of EMIF and PHY revisions that we support today */ |
| 791 | switch (ip_rev) { |
| 792 | case EMIF_4D: |
| 793 | valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY); |
| 794 | break; |
| 795 | case EMIF_4D5: |
| 796 | valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY); |
| 797 | break; |
| 798 | default: |
| 799 | valid = 0; |
| 800 | } |
| 801 | |
| 802 | if (!valid) |
| 803 | dev_err(dev, "%s: invalid DDR details\n", __func__); |
| 804 | return valid; |
| 805 | } |
| 806 | |
| 807 | static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs, |
| 808 | struct device *dev) |
| 809 | { |
| 810 | int valid = 1; |
| 811 | |
| 812 | if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) && |
| 813 | (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE)) |
| 814 | valid = cust_cfgs->lpmode_freq_threshold && |
| 815 | cust_cfgs->lpmode_timeout_performance && |
| 816 | cust_cfgs->lpmode_timeout_power; |
| 817 | |
| 818 | if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL) |
| 819 | valid = valid && cust_cfgs->temp_alert_poll_interval_ms; |
| 820 | |
| 821 | if (!valid) |
| 822 | dev_warn(dev, "%s: invalid custom configs\n", __func__); |
| 823 | |
| 824 | return valid; |
| 825 | } |
| 826 | |
| 827 | static void of_get_custom_configs(struct device_node *np_emif, |
| 828 | struct emif_data *emif) |
| 829 | { |
| 830 | struct emif_custom_configs *cust_cfgs = NULL; |
| 831 | int len; |
| 832 | const __be32 *lpmode, *poll_intvl; |
| 833 | |
| 834 | lpmode = of_get_property(np_emif, "low-power-mode", &len); |
| 835 | poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len); |
| 836 | |
| 837 | if (lpmode || poll_intvl) |
| 838 | cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs), |
| 839 | GFP_KERNEL); |
| 840 | |
| 841 | if (!cust_cfgs) |
| 842 | return; |
| 843 | |
| 844 | if (lpmode) { |
| 845 | cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE; |
| 846 | cust_cfgs->lpmode = be32_to_cpup(lpmode); |
| 847 | of_property_read_u32(np_emif, |
| 848 | "low-power-mode-timeout-performance", |
| 849 | &cust_cfgs->lpmode_timeout_performance); |
| 850 | of_property_read_u32(np_emif, |
| 851 | "low-power-mode-timeout-power", |
| 852 | &cust_cfgs->lpmode_timeout_power); |
| 853 | of_property_read_u32(np_emif, |
| 854 | "low-power-mode-freq-threshold", |
| 855 | &cust_cfgs->lpmode_freq_threshold); |
| 856 | } |
| 857 | |
| 858 | if (poll_intvl) { |
| 859 | cust_cfgs->mask |= |
| 860 | EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL; |
| 861 | cust_cfgs->temp_alert_poll_interval_ms = |
| 862 | be32_to_cpup(poll_intvl); |
| 863 | } |
| 864 | |
| 865 | if (of_property_read_bool(np_emif, "extended-temp-part")) |
| 866 | cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART; |
| 867 | |
| 868 | if (!is_custom_config_valid(cust_cfgs, emif->dev)) { |
| 869 | devm_kfree(emif->dev, cust_cfgs); |
| 870 | return; |
| 871 | } |
| 872 | |
| 873 | emif->plat_data->custom_configs = cust_cfgs; |
| 874 | } |
| 875 | |
| 876 | static void of_get_ddr_info(struct device_node *np_emif, |
| 877 | struct device_node *np_ddr, |
| 878 | struct ddr_device_info *dev_info) |
| 879 | { |
| 880 | u32 density = 0, io_width = 0; |
| 881 | |
| 882 | dev_info->cs1_used = of_property_read_bool(np_emif, "cs1-used"); |
| 883 | dev_info->cal_resistors_per_cs = of_property_read_bool(np_emif, "cal-resistor-per-cs"); |
| 884 | |
| 885 | if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s4")) |
| 886 | dev_info->type = DDR_TYPE_LPDDR2_S4; |
| 887 | else if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s2")) |
| 888 | dev_info->type = DDR_TYPE_LPDDR2_S2; |
| 889 | |
| 890 | of_property_read_u32(np_ddr, "density", &density); |
| 891 | of_property_read_u32(np_ddr, "io-width", &io_width); |
| 892 | |
| 893 | /* Convert from density in Mb to the density encoding in jedc_ddr.h */ |
| 894 | if (density & (density - 1)) |
| 895 | dev_info->density = 0; |
| 896 | else |
| 897 | dev_info->density = __fls(density) - 5; |
| 898 | |
| 899 | /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */ |
| 900 | if (io_width & (io_width - 1)) |
| 901 | dev_info->io_width = 0; |
| 902 | else |
| 903 | dev_info->io_width = __fls(io_width) - 1; |
| 904 | } |
| 905 | |
| 906 | static struct emif_data *of_get_memory_device_details( |
| 907 | struct device_node *np_emif, struct device *dev) |
| 908 | { |
| 909 | struct emif_data *emif = NULL; |
| 910 | struct ddr_device_info *dev_info = NULL; |
| 911 | struct emif_platform_data *pd = NULL; |
| 912 | struct device_node *np_ddr; |
| 913 | |
| 914 | np_ddr = of_parse_phandle(np_emif, "device-handle", 0); |
| 915 | if (!np_ddr) |
| 916 | goto error; |
| 917 | emif = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL); |
| 918 | pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); |
| 919 | dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL); |
| 920 | |
| 921 | if (!emif || !pd || !dev_info) { |
| 922 | dev_err(dev, "%s: Out of memory!!\n", |
| 923 | __func__); |
| 924 | goto error; |
| 925 | } |
| 926 | |
| 927 | emif->plat_data = pd; |
| 928 | pd->device_info = dev_info; |
| 929 | emif->dev = dev; |
| 930 | emif->np_ddr = np_ddr; |
| 931 | emif->temperature_level = SDRAM_TEMP_NOMINAL; |
| 932 | |
| 933 | if (of_device_is_compatible(np_emif, "ti,emif-4d")) |
| 934 | emif->plat_data->ip_rev = EMIF_4D; |
| 935 | else if (of_device_is_compatible(np_emif, "ti,emif-4d5")) |
| 936 | emif->plat_data->ip_rev = EMIF_4D5; |
| 937 | |
| 938 | of_property_read_u32(np_emif, "phy-type", &pd->phy_type); |
| 939 | |
| 940 | if (of_property_read_bool(np_emif, "hw-caps-ll-interface")) |
| 941 | pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE; |
| 942 | |
| 943 | of_get_ddr_info(np_emif, np_ddr, dev_info); |
| 944 | if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density, |
| 945 | pd->device_info->io_width, pd->phy_type, pd->ip_rev, |
| 946 | emif->dev)) { |
| 947 | dev_err(dev, "%s: invalid device data!!\n", __func__); |
| 948 | goto error; |
| 949 | } |
| 950 | /* |
| 951 | * For EMIF instances other than EMIF1 see if the devices connected |
| 952 | * are exactly same as on EMIF1(which is typically the case). If so, |
| 953 | * mark it as a duplicate of EMIF1. This will save some memory and |
| 954 | * computation. |
| 955 | */ |
| 956 | if (emif1 && emif1->np_ddr == np_ddr) { |
| 957 | emif->duplicate = true; |
| 958 | goto out; |
| 959 | } else if (emif1) { |
| 960 | dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n", |
| 961 | __func__); |
| 962 | } |
| 963 | |
| 964 | of_get_custom_configs(np_emif, emif); |
| 965 | emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev, |
| 966 | emif->plat_data->device_info->type, |
| 967 | &emif->plat_data->timings_arr_size); |
| 968 | |
| 969 | emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev); |
| 970 | goto out; |
| 971 | |
| 972 | error: |
| 973 | return NULL; |
| 974 | out: |
| 975 | return emif; |
| 976 | } |
| 977 | |
| 978 | static struct emif_data *get_device_details( |
| 979 | struct platform_device *pdev) |
| 980 | { |
| 981 | u32 size; |
| 982 | struct emif_data *emif = NULL; |
| 983 | struct ddr_device_info *dev_info; |
| 984 | struct emif_custom_configs *cust_cfgs; |
| 985 | struct emif_platform_data *pd; |
| 986 | struct device *dev; |
| 987 | void *temp; |
| 988 | |
| 989 | pd = pdev->dev.platform_data; |
| 990 | dev = &pdev->dev; |
| 991 | |
| 992 | if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type, |
| 993 | pd->device_info->density, pd->device_info->io_width, |
| 994 | pd->phy_type, pd->ip_rev, dev))) { |
| 995 | dev_err(dev, "%s: invalid device data\n", __func__); |
| 996 | goto error; |
| 997 | } |
| 998 | |
| 999 | emif = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL); |
| 1000 | temp = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); |
| 1001 | dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL); |
| 1002 | |
| 1003 | if (!emif || !temp || !dev_info) |
| 1004 | goto error; |
| 1005 | |
| 1006 | memcpy(temp, pd, sizeof(*pd)); |
| 1007 | pd = temp; |
| 1008 | memcpy(dev_info, pd->device_info, sizeof(*dev_info)); |
| 1009 | |
| 1010 | pd->device_info = dev_info; |
| 1011 | emif->plat_data = pd; |
| 1012 | emif->dev = dev; |
| 1013 | emif->temperature_level = SDRAM_TEMP_NOMINAL; |
| 1014 | |
| 1015 | /* |
| 1016 | * For EMIF instances other than EMIF1 see if the devices connected |
| 1017 | * are exactly same as on EMIF1(which is typically the case). If so, |
| 1018 | * mark it as a duplicate of EMIF1 and skip copying timings data. |
| 1019 | * This will save some memory and some computation later. |
| 1020 | */ |
| 1021 | emif->duplicate = emif1 && (memcmp(dev_info, |
| 1022 | emif1->plat_data->device_info, |
| 1023 | sizeof(struct ddr_device_info)) == 0); |
| 1024 | |
| 1025 | if (emif->duplicate) { |
| 1026 | pd->timings = NULL; |
| 1027 | pd->min_tck = NULL; |
| 1028 | goto out; |
| 1029 | } else if (emif1) { |
| 1030 | dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n", |
| 1031 | __func__); |
| 1032 | } |
| 1033 | |
| 1034 | /* |
| 1035 | * Copy custom configs - ignore allocation error, if any, as |
| 1036 | * custom_configs is not very critical |
| 1037 | */ |
| 1038 | cust_cfgs = pd->custom_configs; |
| 1039 | if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) { |
| 1040 | temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL); |
| 1041 | if (temp) |
| 1042 | memcpy(temp, cust_cfgs, sizeof(*cust_cfgs)); |
| 1043 | pd->custom_configs = temp; |
| 1044 | } |
| 1045 | |
| 1046 | /* |
| 1047 | * Copy timings and min-tck values from platform data. If it is not |
| 1048 | * available or if memory allocation fails, use JEDEC defaults |
| 1049 | */ |
| 1050 | size = sizeof(struct lpddr2_timings) * pd->timings_arr_size; |
| 1051 | if (pd->timings) { |
| 1052 | temp = devm_kzalloc(dev, size, GFP_KERNEL); |
| 1053 | if (temp) { |
| 1054 | memcpy(temp, pd->timings, size); |
| 1055 | pd->timings = temp; |
| 1056 | } else { |
| 1057 | get_default_timings(emif); |
| 1058 | } |
| 1059 | } else { |
| 1060 | get_default_timings(emif); |
| 1061 | } |
| 1062 | |
| 1063 | if (pd->min_tck) { |
| 1064 | temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL); |
| 1065 | if (temp) { |
| 1066 | memcpy(temp, pd->min_tck, sizeof(*pd->min_tck)); |
| 1067 | pd->min_tck = temp; |
| 1068 | } else { |
| 1069 | pd->min_tck = &lpddr2_jedec_min_tck; |
| 1070 | } |
| 1071 | } else { |
| 1072 | pd->min_tck = &lpddr2_jedec_min_tck; |
| 1073 | } |
| 1074 | |
| 1075 | out: |
| 1076 | return emif; |
| 1077 | |
| 1078 | error: |
| 1079 | return NULL; |
| 1080 | } |
| 1081 | |
| 1082 | static int emif_probe(struct platform_device *pdev) |
| 1083 | { |
| 1084 | struct emif_data *emif; |
| 1085 | int irq, ret; |
| 1086 | |
| 1087 | if (pdev->dev.of_node) |
| 1088 | emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev); |
| 1089 | else |
| 1090 | emif = get_device_details(pdev); |
| 1091 | |
| 1092 | if (!emif) { |
| 1093 | pr_err("%s: error getting device data\n", __func__); |
| 1094 | goto error; |
| 1095 | } |
| 1096 | |
| 1097 | list_add(&emif->node, &device_list); |
| 1098 | |
| 1099 | /* Save pointers to each other in emif and device structures */ |
| 1100 | emif->dev = &pdev->dev; |
| 1101 | platform_set_drvdata(pdev, emif); |
| 1102 | |
| 1103 | emif->base = devm_platform_ioremap_resource(pdev, 0); |
| 1104 | if (IS_ERR(emif->base)) |
| 1105 | goto error; |
| 1106 | |
| 1107 | irq = platform_get_irq(pdev, 0); |
| 1108 | if (irq < 0) |
| 1109 | goto error; |
| 1110 | |
| 1111 | emif_onetime_settings(emif); |
| 1112 | emif_debugfs_init(emif); |
| 1113 | disable_and_clear_all_interrupts(emif); |
| 1114 | ret = setup_interrupts(emif, irq); |
| 1115 | if (ret) |
| 1116 | goto error; |
| 1117 | |
| 1118 | /* One-time actions taken on probing the first device */ |
| 1119 | if (!emif1) { |
| 1120 | emif1 = emif; |
| 1121 | |
| 1122 | /* |
| 1123 | * TODO: register notifiers for frequency and voltage |
| 1124 | * change here once the respective frameworks are |
| 1125 | * available |
| 1126 | */ |
| 1127 | } |
| 1128 | |
| 1129 | dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n", |
| 1130 | __func__, emif->base, irq); |
| 1131 | |
| 1132 | return 0; |
| 1133 | error: |
| 1134 | return -ENODEV; |
| 1135 | } |
| 1136 | |
| 1137 | static void emif_remove(struct platform_device *pdev) |
| 1138 | { |
| 1139 | struct emif_data *emif = platform_get_drvdata(pdev); |
| 1140 | |
| 1141 | emif_debugfs_exit(emif); |
| 1142 | } |
| 1143 | |
| 1144 | static void emif_shutdown(struct platform_device *pdev) |
| 1145 | { |
| 1146 | struct emif_data *emif = platform_get_drvdata(pdev); |
| 1147 | |
| 1148 | disable_and_clear_all_interrupts(emif); |
| 1149 | } |
| 1150 | |
| 1151 | #if defined(CONFIG_OF) |
| 1152 | static const struct of_device_id emif_of_match[] = { |
| 1153 | { .compatible = "ti,emif-4d" }, |
| 1154 | { .compatible = "ti,emif-4d5" }, |
| 1155 | {}, |
| 1156 | }; |
| 1157 | MODULE_DEVICE_TABLE(of, emif_of_match); |
| 1158 | #endif |
| 1159 | |
| 1160 | static struct platform_driver emif_driver = { |
| 1161 | .probe = emif_probe, |
| 1162 | .remove = emif_remove, |
| 1163 | .shutdown = emif_shutdown, |
| 1164 | .driver = { |
| 1165 | .name = "emif", |
| 1166 | .of_match_table = of_match_ptr(emif_of_match), |
| 1167 | }, |
| 1168 | }; |
| 1169 | |
| 1170 | module_platform_driver(emif_driver); |
| 1171 | |
| 1172 | MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver"); |
| 1173 | MODULE_LICENSE("GPL"); |
| 1174 | MODULE_ALIAS("platform:emif"); |
| 1175 | MODULE_AUTHOR("Texas Instruments Inc"); |