| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | // rc-main.c - Remote Controller core module |
| 3 | // |
| 4 | // Copyright (C) 2009-2010 by Mauro Carvalho Chehab |
| 5 | |
| 6 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 7 | |
| 8 | #include <media/rc-core.h> |
| 9 | #include <linux/bsearch.h> |
| 10 | #include <linux/spinlock.h> |
| 11 | #include <linux/delay.h> |
| 12 | #include <linux/input.h> |
| 13 | #include <linux/leds.h> |
| 14 | #include <linux/slab.h> |
| 15 | #include <linux/idr.h> |
| 16 | #include <linux/device.h> |
| 17 | #include <linux/module.h> |
| 18 | #include "rc-core-priv.h" |
| 19 | |
| 20 | /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */ |
| 21 | #define IR_TAB_MIN_SIZE 256 |
| 22 | #define IR_TAB_MAX_SIZE 8192 |
| 23 | |
| 24 | static const struct { |
| 25 | const char *name; |
| 26 | unsigned int repeat_period; |
| 27 | unsigned int scancode_bits; |
| 28 | } protocols[] = { |
| 29 | [RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 125 }, |
| 30 | [RC_PROTO_OTHER] = { .name = "other", .repeat_period = 125 }, |
| 31 | [RC_PROTO_RC5] = { .name = "rc-5", |
| 32 | .scancode_bits = 0x1f7f, .repeat_period = 114 }, |
| 33 | [RC_PROTO_RC5X_20] = { .name = "rc-5x-20", |
| 34 | .scancode_bits = 0x1f7f3f, .repeat_period = 114 }, |
| 35 | [RC_PROTO_RC5_SZ] = { .name = "rc-5-sz", |
| 36 | .scancode_bits = 0x2fff, .repeat_period = 114 }, |
| 37 | [RC_PROTO_JVC] = { .name = "jvc", |
| 38 | .scancode_bits = 0xffff, .repeat_period = 125 }, |
| 39 | [RC_PROTO_SONY12] = { .name = "sony-12", |
| 40 | .scancode_bits = 0x1f007f, .repeat_period = 100 }, |
| 41 | [RC_PROTO_SONY15] = { .name = "sony-15", |
| 42 | .scancode_bits = 0xff007f, .repeat_period = 100 }, |
| 43 | [RC_PROTO_SONY20] = { .name = "sony-20", |
| 44 | .scancode_bits = 0x1fff7f, .repeat_period = 100 }, |
| 45 | [RC_PROTO_NEC] = { .name = "nec", |
| 46 | .scancode_bits = 0xffff, .repeat_period = 110 }, |
| 47 | [RC_PROTO_NECX] = { .name = "nec-x", |
| 48 | .scancode_bits = 0xffffff, .repeat_period = 110 }, |
| 49 | [RC_PROTO_NEC32] = { .name = "nec-32", |
| 50 | .scancode_bits = 0xffffffff, .repeat_period = 110 }, |
| 51 | [RC_PROTO_SANYO] = { .name = "sanyo", |
| 52 | .scancode_bits = 0x1fffff, .repeat_period = 125 }, |
| 53 | [RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd", |
| 54 | .scancode_bits = 0xffffff, .repeat_period = 100 }, |
| 55 | [RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse", |
| 56 | .scancode_bits = 0x1fffff, .repeat_period = 100 }, |
| 57 | [RC_PROTO_RC6_0] = { .name = "rc-6-0", |
| 58 | .scancode_bits = 0xffff, .repeat_period = 114 }, |
| 59 | [RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20", |
| 60 | .scancode_bits = 0xfffff, .repeat_period = 114 }, |
| 61 | [RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24", |
| 62 | .scancode_bits = 0xffffff, .repeat_period = 114 }, |
| 63 | [RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32", |
| 64 | .scancode_bits = 0xffffffff, .repeat_period = 114 }, |
| 65 | [RC_PROTO_RC6_MCE] = { .name = "rc-6-mce", |
| 66 | .scancode_bits = 0xffff7fff, .repeat_period = 114 }, |
| 67 | [RC_PROTO_SHARP] = { .name = "sharp", |
| 68 | .scancode_bits = 0x1fff, .repeat_period = 125 }, |
| 69 | [RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 125 }, |
| 70 | [RC_PROTO_CEC] = { .name = "cec", .repeat_period = 0 }, |
| 71 | [RC_PROTO_IMON] = { .name = "imon", |
| 72 | .scancode_bits = 0x7fffffff, .repeat_period = 114 }, |
| 73 | [RC_PROTO_RCMM12] = { .name = "rc-mm-12", |
| 74 | .scancode_bits = 0x00000fff, .repeat_period = 114 }, |
| 75 | [RC_PROTO_RCMM24] = { .name = "rc-mm-24", |
| 76 | .scancode_bits = 0x00ffffff, .repeat_period = 114 }, |
| 77 | [RC_PROTO_RCMM32] = { .name = "rc-mm-32", |
| 78 | .scancode_bits = 0xffffffff, .repeat_period = 114 }, |
| 79 | [RC_PROTO_XBOX_DVD] = { .name = "xbox-dvd", .repeat_period = 64 }, |
| 80 | }; |
| 81 | |
| 82 | /* Used to keep track of known keymaps */ |
| 83 | static LIST_HEAD(rc_map_list); |
| 84 | static DEFINE_SPINLOCK(rc_map_lock); |
| 85 | static struct led_trigger *led_feedback; |
| 86 | |
| 87 | /* Used to keep track of rc devices */ |
| 88 | static DEFINE_IDA(rc_ida); |
| 89 | |
| 90 | static struct rc_map_list *seek_rc_map(const char *name) |
| 91 | { |
| 92 | struct rc_map_list *map = NULL; |
| 93 | |
| 94 | spin_lock(&rc_map_lock); |
| 95 | list_for_each_entry(map, &rc_map_list, list) { |
| 96 | if (!strcmp(name, map->map.name)) { |
| 97 | spin_unlock(&rc_map_lock); |
| 98 | return map; |
| 99 | } |
| 100 | } |
| 101 | spin_unlock(&rc_map_lock); |
| 102 | |
| 103 | return NULL; |
| 104 | } |
| 105 | |
| 106 | struct rc_map *rc_map_get(const char *name) |
| 107 | { |
| 108 | |
| 109 | struct rc_map_list *map; |
| 110 | |
| 111 | map = seek_rc_map(name); |
| 112 | #ifdef CONFIG_MODULES |
| 113 | if (!map) { |
| 114 | int rc = request_module("%s", name); |
| 115 | if (rc < 0) { |
| 116 | pr_err("Couldn't load IR keymap %s\n", name); |
| 117 | return NULL; |
| 118 | } |
| 119 | msleep(20); /* Give some time for IR to register */ |
| 120 | |
| 121 | map = seek_rc_map(name); |
| 122 | } |
| 123 | #endif |
| 124 | if (!map) { |
| 125 | pr_err("IR keymap %s not found\n", name); |
| 126 | return NULL; |
| 127 | } |
| 128 | |
| 129 | printk(KERN_INFO "Registered IR keymap %s\n", map->map.name); |
| 130 | |
| 131 | return &map->map; |
| 132 | } |
| 133 | EXPORT_SYMBOL_GPL(rc_map_get); |
| 134 | |
| 135 | int rc_map_register(struct rc_map_list *map) |
| 136 | { |
| 137 | spin_lock(&rc_map_lock); |
| 138 | list_add_tail(&map->list, &rc_map_list); |
| 139 | spin_unlock(&rc_map_lock); |
| 140 | return 0; |
| 141 | } |
| 142 | EXPORT_SYMBOL_GPL(rc_map_register); |
| 143 | |
| 144 | void rc_map_unregister(struct rc_map_list *map) |
| 145 | { |
| 146 | spin_lock(&rc_map_lock); |
| 147 | list_del(&map->list); |
| 148 | spin_unlock(&rc_map_lock); |
| 149 | } |
| 150 | EXPORT_SYMBOL_GPL(rc_map_unregister); |
| 151 | |
| 152 | |
| 153 | static struct rc_map_table empty[] = { |
| 154 | { 0x2a, KEY_COFFEE }, |
| 155 | }; |
| 156 | |
| 157 | static struct rc_map_list empty_map = { |
| 158 | .map = { |
| 159 | .scan = empty, |
| 160 | .size = ARRAY_SIZE(empty), |
| 161 | .rc_proto = RC_PROTO_UNKNOWN, /* Legacy IR type */ |
| 162 | .name = RC_MAP_EMPTY, |
| 163 | } |
| 164 | }; |
| 165 | |
| 166 | /** |
| 167 | * scancode_to_u64() - converts scancode in &struct input_keymap_entry |
| 168 | * @ke: keymap entry containing scancode to be converted. |
| 169 | * @scancode: pointer to the location where converted scancode should |
| 170 | * be stored. |
| 171 | * |
| 172 | * This function is a version of input_scancode_to_scalar specialized for |
| 173 | * rc-core. |
| 174 | */ |
| 175 | static int scancode_to_u64(const struct input_keymap_entry *ke, u64 *scancode) |
| 176 | { |
| 177 | switch (ke->len) { |
| 178 | case 1: |
| 179 | *scancode = *((u8 *)ke->scancode); |
| 180 | break; |
| 181 | |
| 182 | case 2: |
| 183 | *scancode = *((u16 *)ke->scancode); |
| 184 | break; |
| 185 | |
| 186 | case 4: |
| 187 | *scancode = *((u32 *)ke->scancode); |
| 188 | break; |
| 189 | |
| 190 | case 8: |
| 191 | *scancode = *((u64 *)ke->scancode); |
| 192 | break; |
| 193 | |
| 194 | default: |
| 195 | return -EINVAL; |
| 196 | } |
| 197 | |
| 198 | return 0; |
| 199 | } |
| 200 | |
| 201 | /** |
| 202 | * ir_create_table() - initializes a scancode table |
| 203 | * @dev: the rc_dev device |
| 204 | * @rc_map: the rc_map to initialize |
| 205 | * @name: name to assign to the table |
| 206 | * @rc_proto: ir type to assign to the new table |
| 207 | * @size: initial size of the table |
| 208 | * |
| 209 | * This routine will initialize the rc_map and will allocate |
| 210 | * memory to hold at least the specified number of elements. |
| 211 | * |
| 212 | * return: zero on success or a negative error code |
| 213 | */ |
| 214 | static int ir_create_table(struct rc_dev *dev, struct rc_map *rc_map, |
| 215 | const char *name, u64 rc_proto, size_t size) |
| 216 | { |
| 217 | rc_map->name = kstrdup(name, GFP_KERNEL); |
| 218 | if (!rc_map->name) |
| 219 | return -ENOMEM; |
| 220 | rc_map->rc_proto = rc_proto; |
| 221 | rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table)); |
| 222 | rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); |
| 223 | rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL); |
| 224 | if (!rc_map->scan) { |
| 225 | kfree(rc_map->name); |
| 226 | rc_map->name = NULL; |
| 227 | return -ENOMEM; |
| 228 | } |
| 229 | |
| 230 | dev_dbg(&dev->dev, "Allocated space for %u keycode entries (%u bytes)\n", |
| 231 | rc_map->size, rc_map->alloc); |
| 232 | return 0; |
| 233 | } |
| 234 | |
| 235 | /** |
| 236 | * ir_free_table() - frees memory allocated by a scancode table |
| 237 | * @rc_map: the table whose mappings need to be freed |
| 238 | * |
| 239 | * This routine will free memory alloctaed for key mappings used by given |
| 240 | * scancode table. |
| 241 | */ |
| 242 | static void ir_free_table(struct rc_map *rc_map) |
| 243 | { |
| 244 | rc_map->size = 0; |
| 245 | kfree(rc_map->name); |
| 246 | rc_map->name = NULL; |
| 247 | kfree(rc_map->scan); |
| 248 | rc_map->scan = NULL; |
| 249 | } |
| 250 | |
| 251 | /** |
| 252 | * ir_resize_table() - resizes a scancode table if necessary |
| 253 | * @dev: the rc_dev device |
| 254 | * @rc_map: the rc_map to resize |
| 255 | * @gfp_flags: gfp flags to use when allocating memory |
| 256 | * |
| 257 | * This routine will shrink the rc_map if it has lots of |
| 258 | * unused entries and grow it if it is full. |
| 259 | * |
| 260 | * return: zero on success or a negative error code |
| 261 | */ |
| 262 | static int ir_resize_table(struct rc_dev *dev, struct rc_map *rc_map, |
| 263 | gfp_t gfp_flags) |
| 264 | { |
| 265 | unsigned int oldalloc = rc_map->alloc; |
| 266 | unsigned int newalloc = oldalloc; |
| 267 | struct rc_map_table *oldscan = rc_map->scan; |
| 268 | struct rc_map_table *newscan; |
| 269 | |
| 270 | if (rc_map->size == rc_map->len) { |
| 271 | /* All entries in use -> grow keytable */ |
| 272 | if (rc_map->alloc >= IR_TAB_MAX_SIZE) |
| 273 | return -ENOMEM; |
| 274 | |
| 275 | newalloc *= 2; |
| 276 | dev_dbg(&dev->dev, "Growing table to %u bytes\n", newalloc); |
| 277 | } |
| 278 | |
| 279 | if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) { |
| 280 | /* Less than 1/3 of entries in use -> shrink keytable */ |
| 281 | newalloc /= 2; |
| 282 | dev_dbg(&dev->dev, "Shrinking table to %u bytes\n", newalloc); |
| 283 | } |
| 284 | |
| 285 | if (newalloc == oldalloc) |
| 286 | return 0; |
| 287 | |
| 288 | newscan = kmalloc(newalloc, gfp_flags); |
| 289 | if (!newscan) |
| 290 | return -ENOMEM; |
| 291 | |
| 292 | memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table)); |
| 293 | rc_map->scan = newscan; |
| 294 | rc_map->alloc = newalloc; |
| 295 | rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); |
| 296 | kfree(oldscan); |
| 297 | return 0; |
| 298 | } |
| 299 | |
| 300 | /** |
| 301 | * ir_update_mapping() - set a keycode in the scancode->keycode table |
| 302 | * @dev: the struct rc_dev device descriptor |
| 303 | * @rc_map: scancode table to be adjusted |
| 304 | * @index: index of the mapping that needs to be updated |
| 305 | * @new_keycode: the desired keycode |
| 306 | * |
| 307 | * This routine is used to update scancode->keycode mapping at given |
| 308 | * position. |
| 309 | * |
| 310 | * return: previous keycode assigned to the mapping |
| 311 | * |
| 312 | */ |
| 313 | static unsigned int ir_update_mapping(struct rc_dev *dev, |
| 314 | struct rc_map *rc_map, |
| 315 | unsigned int index, |
| 316 | unsigned int new_keycode) |
| 317 | { |
| 318 | int old_keycode = rc_map->scan[index].keycode; |
| 319 | int i; |
| 320 | |
| 321 | /* Did the user wish to remove the mapping? */ |
| 322 | if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) { |
| 323 | dev_dbg(&dev->dev, "#%d: Deleting scan 0x%04llx\n", |
| 324 | index, rc_map->scan[index].scancode); |
| 325 | rc_map->len--; |
| 326 | memmove(&rc_map->scan[index], &rc_map->scan[index+ 1], |
| 327 | (rc_map->len - index) * sizeof(struct rc_map_table)); |
| 328 | } else { |
| 329 | dev_dbg(&dev->dev, "#%d: %s scan 0x%04llx with key 0x%04x\n", |
| 330 | index, |
| 331 | old_keycode == KEY_RESERVED ? "New" : "Replacing", |
| 332 | rc_map->scan[index].scancode, new_keycode); |
| 333 | rc_map->scan[index].keycode = new_keycode; |
| 334 | __set_bit(new_keycode, dev->input_dev->keybit); |
| 335 | } |
| 336 | |
| 337 | if (old_keycode != KEY_RESERVED) { |
| 338 | /* A previous mapping was updated... */ |
| 339 | __clear_bit(old_keycode, dev->input_dev->keybit); |
| 340 | /* ... but another scancode might use the same keycode */ |
| 341 | for (i = 0; i < rc_map->len; i++) { |
| 342 | if (rc_map->scan[i].keycode == old_keycode) { |
| 343 | __set_bit(old_keycode, dev->input_dev->keybit); |
| 344 | break; |
| 345 | } |
| 346 | } |
| 347 | |
| 348 | /* Possibly shrink the keytable, failure is not a problem */ |
| 349 | ir_resize_table(dev, rc_map, GFP_ATOMIC); |
| 350 | } |
| 351 | |
| 352 | return old_keycode; |
| 353 | } |
| 354 | |
| 355 | /** |
| 356 | * ir_establish_scancode() - set a keycode in the scancode->keycode table |
| 357 | * @dev: the struct rc_dev device descriptor |
| 358 | * @rc_map: scancode table to be searched |
| 359 | * @scancode: the desired scancode |
| 360 | * @resize: controls whether we allowed to resize the table to |
| 361 | * accommodate not yet present scancodes |
| 362 | * |
| 363 | * This routine is used to locate given scancode in rc_map. |
| 364 | * If scancode is not yet present the routine will allocate a new slot |
| 365 | * for it. |
| 366 | * |
| 367 | * return: index of the mapping containing scancode in question |
| 368 | * or -1U in case of failure. |
| 369 | */ |
| 370 | static unsigned int ir_establish_scancode(struct rc_dev *dev, |
| 371 | struct rc_map *rc_map, |
| 372 | u64 scancode, bool resize) |
| 373 | { |
| 374 | unsigned int i; |
| 375 | |
| 376 | /* |
| 377 | * Unfortunately, some hardware-based IR decoders don't provide |
| 378 | * all bits for the complete IR code. In general, they provide only |
| 379 | * the command part of the IR code. Yet, as it is possible to replace |
| 380 | * the provided IR with another one, it is needed to allow loading |
| 381 | * IR tables from other remotes. So, we support specifying a mask to |
| 382 | * indicate the valid bits of the scancodes. |
| 383 | */ |
| 384 | if (dev->scancode_mask) |
| 385 | scancode &= dev->scancode_mask; |
| 386 | |
| 387 | /* First check if we already have a mapping for this ir command */ |
| 388 | for (i = 0; i < rc_map->len; i++) { |
| 389 | if (rc_map->scan[i].scancode == scancode) |
| 390 | return i; |
| 391 | |
| 392 | /* Keytable is sorted from lowest to highest scancode */ |
| 393 | if (rc_map->scan[i].scancode >= scancode) |
| 394 | break; |
| 395 | } |
| 396 | |
| 397 | /* No previous mapping found, we might need to grow the table */ |
| 398 | if (rc_map->size == rc_map->len) { |
| 399 | if (!resize || ir_resize_table(dev, rc_map, GFP_ATOMIC)) |
| 400 | return -1U; |
| 401 | } |
| 402 | |
| 403 | /* i is the proper index to insert our new keycode */ |
| 404 | if (i < rc_map->len) |
| 405 | memmove(&rc_map->scan[i + 1], &rc_map->scan[i], |
| 406 | (rc_map->len - i) * sizeof(struct rc_map_table)); |
| 407 | rc_map->scan[i].scancode = scancode; |
| 408 | rc_map->scan[i].keycode = KEY_RESERVED; |
| 409 | rc_map->len++; |
| 410 | |
| 411 | return i; |
| 412 | } |
| 413 | |
| 414 | /** |
| 415 | * ir_setkeycode() - set a keycode in the scancode->keycode table |
| 416 | * @idev: the struct input_dev device descriptor |
| 417 | * @ke: Input keymap entry |
| 418 | * @old_keycode: result |
| 419 | * |
| 420 | * This routine is used to handle evdev EVIOCSKEY ioctl. |
| 421 | * |
| 422 | * return: -EINVAL if the keycode could not be inserted, otherwise zero. |
| 423 | */ |
| 424 | static int ir_setkeycode(struct input_dev *idev, |
| 425 | const struct input_keymap_entry *ke, |
| 426 | unsigned int *old_keycode) |
| 427 | { |
| 428 | struct rc_dev *rdev = input_get_drvdata(idev); |
| 429 | struct rc_map *rc_map = &rdev->rc_map; |
| 430 | unsigned int index; |
| 431 | u64 scancode; |
| 432 | int retval = 0; |
| 433 | unsigned long flags; |
| 434 | |
| 435 | spin_lock_irqsave(&rc_map->lock, flags); |
| 436 | |
| 437 | if (ke->flags & INPUT_KEYMAP_BY_INDEX) { |
| 438 | index = ke->index; |
| 439 | if (index >= rc_map->len) { |
| 440 | retval = -EINVAL; |
| 441 | goto out; |
| 442 | } |
| 443 | } else { |
| 444 | retval = scancode_to_u64(ke, &scancode); |
| 445 | if (retval) |
| 446 | goto out; |
| 447 | |
| 448 | index = ir_establish_scancode(rdev, rc_map, scancode, true); |
| 449 | if (index >= rc_map->len) { |
| 450 | retval = -ENOMEM; |
| 451 | goto out; |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode); |
| 456 | |
| 457 | out: |
| 458 | spin_unlock_irqrestore(&rc_map->lock, flags); |
| 459 | return retval; |
| 460 | } |
| 461 | |
| 462 | /** |
| 463 | * ir_setkeytable() - sets several entries in the scancode->keycode table |
| 464 | * @dev: the struct rc_dev device descriptor |
| 465 | * @from: the struct rc_map to copy entries from |
| 466 | * |
| 467 | * This routine is used to handle table initialization. |
| 468 | * |
| 469 | * return: -ENOMEM if all keycodes could not be inserted, otherwise zero. |
| 470 | */ |
| 471 | static int ir_setkeytable(struct rc_dev *dev, const struct rc_map *from) |
| 472 | { |
| 473 | struct rc_map *rc_map = &dev->rc_map; |
| 474 | unsigned int i, index; |
| 475 | int rc; |
| 476 | |
| 477 | rc = ir_create_table(dev, rc_map, from->name, from->rc_proto, |
| 478 | from->size); |
| 479 | if (rc) |
| 480 | return rc; |
| 481 | |
| 482 | for (i = 0; i < from->size; i++) { |
| 483 | index = ir_establish_scancode(dev, rc_map, |
| 484 | from->scan[i].scancode, false); |
| 485 | if (index >= rc_map->len) { |
| 486 | rc = -ENOMEM; |
| 487 | break; |
| 488 | } |
| 489 | |
| 490 | ir_update_mapping(dev, rc_map, index, |
| 491 | from->scan[i].keycode); |
| 492 | } |
| 493 | |
| 494 | if (rc) |
| 495 | ir_free_table(rc_map); |
| 496 | |
| 497 | return rc; |
| 498 | } |
| 499 | |
| 500 | static int rc_map_cmp(const void *key, const void *elt) |
| 501 | { |
| 502 | const u64 *scancode = key; |
| 503 | const struct rc_map_table *e = elt; |
| 504 | |
| 505 | if (*scancode < e->scancode) |
| 506 | return -1; |
| 507 | else if (*scancode > e->scancode) |
| 508 | return 1; |
| 509 | return 0; |
| 510 | } |
| 511 | |
| 512 | /** |
| 513 | * ir_lookup_by_scancode() - locate mapping by scancode |
| 514 | * @rc_map: the struct rc_map to search |
| 515 | * @scancode: scancode to look for in the table |
| 516 | * |
| 517 | * This routine performs binary search in RC keykeymap table for |
| 518 | * given scancode. |
| 519 | * |
| 520 | * return: index in the table, -1U if not found |
| 521 | */ |
| 522 | static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map, |
| 523 | u64 scancode) |
| 524 | { |
| 525 | struct rc_map_table *res; |
| 526 | |
| 527 | res = bsearch(&scancode, rc_map->scan, rc_map->len, |
| 528 | sizeof(struct rc_map_table), rc_map_cmp); |
| 529 | if (!res) |
| 530 | return -1U; |
| 531 | else |
| 532 | return res - rc_map->scan; |
| 533 | } |
| 534 | |
| 535 | /** |
| 536 | * ir_getkeycode() - get a keycode from the scancode->keycode table |
| 537 | * @idev: the struct input_dev device descriptor |
| 538 | * @ke: Input keymap entry |
| 539 | * |
| 540 | * This routine is used to handle evdev EVIOCGKEY ioctl. |
| 541 | * |
| 542 | * return: always returns zero. |
| 543 | */ |
| 544 | static int ir_getkeycode(struct input_dev *idev, |
| 545 | struct input_keymap_entry *ke) |
| 546 | { |
| 547 | struct rc_dev *rdev = input_get_drvdata(idev); |
| 548 | struct rc_map *rc_map = &rdev->rc_map; |
| 549 | struct rc_map_table *entry; |
| 550 | unsigned long flags; |
| 551 | unsigned int index; |
| 552 | u64 scancode; |
| 553 | int retval; |
| 554 | |
| 555 | spin_lock_irqsave(&rc_map->lock, flags); |
| 556 | |
| 557 | if (ke->flags & INPUT_KEYMAP_BY_INDEX) { |
| 558 | index = ke->index; |
| 559 | } else { |
| 560 | retval = scancode_to_u64(ke, &scancode); |
| 561 | if (retval) |
| 562 | goto out; |
| 563 | |
| 564 | index = ir_lookup_by_scancode(rc_map, scancode); |
| 565 | } |
| 566 | |
| 567 | if (index < rc_map->len) { |
| 568 | entry = &rc_map->scan[index]; |
| 569 | |
| 570 | ke->index = index; |
| 571 | ke->keycode = entry->keycode; |
| 572 | ke->len = sizeof(entry->scancode); |
| 573 | memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode)); |
| 574 | } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) { |
| 575 | /* |
| 576 | * We do not really know the valid range of scancodes |
| 577 | * so let's respond with KEY_RESERVED to anything we |
| 578 | * do not have mapping for [yet]. |
| 579 | */ |
| 580 | ke->index = index; |
| 581 | ke->keycode = KEY_RESERVED; |
| 582 | } else { |
| 583 | retval = -EINVAL; |
| 584 | goto out; |
| 585 | } |
| 586 | |
| 587 | retval = 0; |
| 588 | |
| 589 | out: |
| 590 | spin_unlock_irqrestore(&rc_map->lock, flags); |
| 591 | return retval; |
| 592 | } |
| 593 | |
| 594 | /** |
| 595 | * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode |
| 596 | * @dev: the struct rc_dev descriptor of the device |
| 597 | * @scancode: the scancode to look for |
| 598 | * |
| 599 | * This routine is used by drivers which need to convert a scancode to a |
| 600 | * keycode. Normally it should not be used since drivers should have no |
| 601 | * interest in keycodes. |
| 602 | * |
| 603 | * return: the corresponding keycode, or KEY_RESERVED |
| 604 | */ |
| 605 | u32 rc_g_keycode_from_table(struct rc_dev *dev, u64 scancode) |
| 606 | { |
| 607 | struct rc_map *rc_map = &dev->rc_map; |
| 608 | unsigned int keycode; |
| 609 | unsigned int index; |
| 610 | unsigned long flags; |
| 611 | |
| 612 | spin_lock_irqsave(&rc_map->lock, flags); |
| 613 | |
| 614 | index = ir_lookup_by_scancode(rc_map, scancode); |
| 615 | keycode = index < rc_map->len ? |
| 616 | rc_map->scan[index].keycode : KEY_RESERVED; |
| 617 | |
| 618 | spin_unlock_irqrestore(&rc_map->lock, flags); |
| 619 | |
| 620 | if (keycode != KEY_RESERVED) |
| 621 | dev_dbg(&dev->dev, "%s: scancode 0x%04llx keycode 0x%02x\n", |
| 622 | dev->device_name, scancode, keycode); |
| 623 | |
| 624 | return keycode; |
| 625 | } |
| 626 | EXPORT_SYMBOL_GPL(rc_g_keycode_from_table); |
| 627 | |
| 628 | /** |
| 629 | * ir_do_keyup() - internal function to signal the release of a keypress |
| 630 | * @dev: the struct rc_dev descriptor of the device |
| 631 | * @sync: whether or not to call input_sync |
| 632 | * |
| 633 | * This function is used internally to release a keypress, it must be |
| 634 | * called with keylock held. |
| 635 | */ |
| 636 | static void ir_do_keyup(struct rc_dev *dev, bool sync) |
| 637 | { |
| 638 | if (!dev->keypressed) |
| 639 | return; |
| 640 | |
| 641 | dev_dbg(&dev->dev, "keyup key 0x%04x\n", dev->last_keycode); |
| 642 | timer_delete(&dev->timer_repeat); |
| 643 | input_report_key(dev->input_dev, dev->last_keycode, 0); |
| 644 | led_trigger_event(led_feedback, LED_OFF); |
| 645 | if (sync) |
| 646 | input_sync(dev->input_dev); |
| 647 | dev->keypressed = false; |
| 648 | } |
| 649 | |
| 650 | /** |
| 651 | * rc_keyup() - signals the release of a keypress |
| 652 | * @dev: the struct rc_dev descriptor of the device |
| 653 | * |
| 654 | * This routine is used to signal that a key has been released on the |
| 655 | * remote control. |
| 656 | */ |
| 657 | void rc_keyup(struct rc_dev *dev) |
| 658 | { |
| 659 | unsigned long flags; |
| 660 | |
| 661 | spin_lock_irqsave(&dev->keylock, flags); |
| 662 | ir_do_keyup(dev, true); |
| 663 | spin_unlock_irqrestore(&dev->keylock, flags); |
| 664 | } |
| 665 | EXPORT_SYMBOL_GPL(rc_keyup); |
| 666 | |
| 667 | /** |
| 668 | * ir_timer_keyup() - generates a keyup event after a timeout |
| 669 | * |
| 670 | * @t: a pointer to the struct timer_list |
| 671 | * |
| 672 | * This routine will generate a keyup event some time after a keydown event |
| 673 | * is generated when no further activity has been detected. |
| 674 | */ |
| 675 | static void ir_timer_keyup(struct timer_list *t) |
| 676 | { |
| 677 | struct rc_dev *dev = timer_container_of(dev, t, timer_keyup); |
| 678 | unsigned long flags; |
| 679 | |
| 680 | /* |
| 681 | * ir->keyup_jiffies is used to prevent a race condition if a |
| 682 | * hardware interrupt occurs at this point and the keyup timer |
| 683 | * event is moved further into the future as a result. |
| 684 | * |
| 685 | * The timer will then be reactivated and this function called |
| 686 | * again in the future. We need to exit gracefully in that case |
| 687 | * to allow the input subsystem to do its auto-repeat magic or |
| 688 | * a keyup event might follow immediately after the keydown. |
| 689 | */ |
| 690 | spin_lock_irqsave(&dev->keylock, flags); |
| 691 | if (time_is_before_eq_jiffies(dev->keyup_jiffies)) |
| 692 | ir_do_keyup(dev, true); |
| 693 | spin_unlock_irqrestore(&dev->keylock, flags); |
| 694 | } |
| 695 | |
| 696 | /** |
| 697 | * ir_timer_repeat() - generates a repeat event after a timeout |
| 698 | * |
| 699 | * @t: a pointer to the struct timer_list |
| 700 | * |
| 701 | * This routine will generate a soft repeat event every REP_PERIOD |
| 702 | * milliseconds. |
| 703 | */ |
| 704 | static void ir_timer_repeat(struct timer_list *t) |
| 705 | { |
| 706 | struct rc_dev *dev = timer_container_of(dev, t, timer_repeat); |
| 707 | struct input_dev *input = dev->input_dev; |
| 708 | unsigned long flags; |
| 709 | |
| 710 | spin_lock_irqsave(&dev->keylock, flags); |
| 711 | if (dev->keypressed) { |
| 712 | input_event(input, EV_KEY, dev->last_keycode, 2); |
| 713 | input_sync(input); |
| 714 | if (input->rep[REP_PERIOD]) |
| 715 | mod_timer(&dev->timer_repeat, jiffies + |
| 716 | msecs_to_jiffies(input->rep[REP_PERIOD])); |
| 717 | } |
| 718 | spin_unlock_irqrestore(&dev->keylock, flags); |
| 719 | } |
| 720 | |
| 721 | static unsigned int repeat_period(int protocol) |
| 722 | { |
| 723 | if (protocol >= ARRAY_SIZE(protocols)) |
| 724 | return 100; |
| 725 | |
| 726 | return protocols[protocol].repeat_period; |
| 727 | } |
| 728 | |
| 729 | /** |
| 730 | * rc_repeat() - signals that a key is still pressed |
| 731 | * @dev: the struct rc_dev descriptor of the device |
| 732 | * |
| 733 | * This routine is used by IR decoders when a repeat message which does |
| 734 | * not include the necessary bits to reproduce the scancode has been |
| 735 | * received. |
| 736 | */ |
| 737 | void rc_repeat(struct rc_dev *dev) |
| 738 | { |
| 739 | unsigned long flags; |
| 740 | unsigned int timeout = usecs_to_jiffies(dev->timeout) + |
| 741 | msecs_to_jiffies(repeat_period(dev->last_protocol)); |
| 742 | struct lirc_scancode sc = { |
| 743 | .scancode = dev->last_scancode, .rc_proto = dev->last_protocol, |
| 744 | .keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED, |
| 745 | .flags = LIRC_SCANCODE_FLAG_REPEAT | |
| 746 | (dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0) |
| 747 | }; |
| 748 | |
| 749 | if (dev->allowed_protocols != RC_PROTO_BIT_CEC) |
| 750 | lirc_scancode_event(dev, &sc); |
| 751 | |
| 752 | spin_lock_irqsave(&dev->keylock, flags); |
| 753 | |
| 754 | if (dev->last_scancode <= U32_MAX) { |
| 755 | input_event(dev->input_dev, EV_MSC, MSC_SCAN, |
| 756 | dev->last_scancode); |
| 757 | input_sync(dev->input_dev); |
| 758 | } |
| 759 | |
| 760 | if (dev->keypressed) { |
| 761 | dev->keyup_jiffies = jiffies + timeout; |
| 762 | mod_timer(&dev->timer_keyup, dev->keyup_jiffies); |
| 763 | } |
| 764 | |
| 765 | spin_unlock_irqrestore(&dev->keylock, flags); |
| 766 | } |
| 767 | EXPORT_SYMBOL_GPL(rc_repeat); |
| 768 | |
| 769 | /** |
| 770 | * ir_do_keydown() - internal function to process a keypress |
| 771 | * @dev: the struct rc_dev descriptor of the device |
| 772 | * @protocol: the protocol of the keypress |
| 773 | * @scancode: the scancode of the keypress |
| 774 | * @keycode: the keycode of the keypress |
| 775 | * @toggle: the toggle value of the keypress |
| 776 | * |
| 777 | * This function is used internally to register a keypress, it must be |
| 778 | * called with keylock held. |
| 779 | */ |
| 780 | static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol, |
| 781 | u64 scancode, u32 keycode, u8 toggle) |
| 782 | { |
| 783 | bool new_event = (!dev->keypressed || |
| 784 | dev->last_protocol != protocol || |
| 785 | dev->last_scancode != scancode || |
| 786 | dev->last_toggle != toggle); |
| 787 | struct lirc_scancode sc = { |
| 788 | .scancode = scancode, .rc_proto = protocol, |
| 789 | .flags = (toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0) | |
| 790 | (!new_event ? LIRC_SCANCODE_FLAG_REPEAT : 0), |
| 791 | .keycode = keycode |
| 792 | }; |
| 793 | |
| 794 | if (dev->allowed_protocols != RC_PROTO_BIT_CEC) |
| 795 | lirc_scancode_event(dev, &sc); |
| 796 | |
| 797 | if (new_event && dev->keypressed) |
| 798 | ir_do_keyup(dev, false); |
| 799 | |
| 800 | if (scancode <= U32_MAX) |
| 801 | input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode); |
| 802 | |
| 803 | dev->last_protocol = protocol; |
| 804 | dev->last_scancode = scancode; |
| 805 | dev->last_toggle = toggle; |
| 806 | dev->last_keycode = keycode; |
| 807 | |
| 808 | if (new_event && keycode != KEY_RESERVED) { |
| 809 | /* Register a keypress */ |
| 810 | dev->keypressed = true; |
| 811 | |
| 812 | dev_dbg(&dev->dev, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08llx\n", |
| 813 | dev->device_name, keycode, protocol, scancode); |
| 814 | input_report_key(dev->input_dev, keycode, 1); |
| 815 | |
| 816 | led_trigger_event(led_feedback, LED_FULL); |
| 817 | } |
| 818 | |
| 819 | /* |
| 820 | * For CEC, start sending repeat messages as soon as the first |
| 821 | * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD |
| 822 | * is non-zero. Otherwise, the input layer will generate repeat |
| 823 | * messages. |
| 824 | */ |
| 825 | if (!new_event && keycode != KEY_RESERVED && |
| 826 | dev->allowed_protocols == RC_PROTO_BIT_CEC && |
| 827 | !timer_pending(&dev->timer_repeat) && |
| 828 | dev->input_dev->rep[REP_PERIOD] && |
| 829 | !dev->input_dev->rep[REP_DELAY]) { |
| 830 | input_event(dev->input_dev, EV_KEY, keycode, 2); |
| 831 | mod_timer(&dev->timer_repeat, jiffies + |
| 832 | msecs_to_jiffies(dev->input_dev->rep[REP_PERIOD])); |
| 833 | } |
| 834 | |
| 835 | input_sync(dev->input_dev); |
| 836 | } |
| 837 | |
| 838 | /** |
| 839 | * rc_keydown() - generates input event for a key press |
| 840 | * @dev: the struct rc_dev descriptor of the device |
| 841 | * @protocol: the protocol for the keypress |
| 842 | * @scancode: the scancode for the keypress |
| 843 | * @toggle: the toggle value (protocol dependent, if the protocol doesn't |
| 844 | * support toggle values, this should be set to zero) |
| 845 | * |
| 846 | * This routine is used to signal that a key has been pressed on the |
| 847 | * remote control. |
| 848 | */ |
| 849 | void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u64 scancode, |
| 850 | u8 toggle) |
| 851 | { |
| 852 | unsigned long flags; |
| 853 | u32 keycode = rc_g_keycode_from_table(dev, scancode); |
| 854 | |
| 855 | spin_lock_irqsave(&dev->keylock, flags); |
| 856 | ir_do_keydown(dev, protocol, scancode, keycode, toggle); |
| 857 | |
| 858 | if (dev->keypressed) { |
| 859 | dev->keyup_jiffies = jiffies + usecs_to_jiffies(dev->timeout) + |
| 860 | msecs_to_jiffies(repeat_period(protocol)); |
| 861 | mod_timer(&dev->timer_keyup, dev->keyup_jiffies); |
| 862 | } |
| 863 | spin_unlock_irqrestore(&dev->keylock, flags); |
| 864 | } |
| 865 | EXPORT_SYMBOL_GPL(rc_keydown); |
| 866 | |
| 867 | /** |
| 868 | * rc_keydown_notimeout() - generates input event for a key press without |
| 869 | * an automatic keyup event at a later time |
| 870 | * @dev: the struct rc_dev descriptor of the device |
| 871 | * @protocol: the protocol for the keypress |
| 872 | * @scancode: the scancode for the keypress |
| 873 | * @toggle: the toggle value (protocol dependent, if the protocol doesn't |
| 874 | * support toggle values, this should be set to zero) |
| 875 | * |
| 876 | * This routine is used to signal that a key has been pressed on the |
| 877 | * remote control. The driver must manually call rc_keyup() at a later stage. |
| 878 | */ |
| 879 | void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol, |
| 880 | u64 scancode, u8 toggle) |
| 881 | { |
| 882 | unsigned long flags; |
| 883 | u32 keycode = rc_g_keycode_from_table(dev, scancode); |
| 884 | |
| 885 | spin_lock_irqsave(&dev->keylock, flags); |
| 886 | ir_do_keydown(dev, protocol, scancode, keycode, toggle); |
| 887 | spin_unlock_irqrestore(&dev->keylock, flags); |
| 888 | } |
| 889 | EXPORT_SYMBOL_GPL(rc_keydown_notimeout); |
| 890 | |
| 891 | /** |
| 892 | * rc_validate_scancode() - checks that a scancode is valid for a protocol. |
| 893 | * For nec, it should do the opposite of ir_nec_bytes_to_scancode() |
| 894 | * @proto: protocol |
| 895 | * @scancode: scancode |
| 896 | */ |
| 897 | bool rc_validate_scancode(enum rc_proto proto, u32 scancode) |
| 898 | { |
| 899 | switch (proto) { |
| 900 | /* |
| 901 | * NECX has a 16-bit address; if the lower 8 bits match the upper |
| 902 | * 8 bits inverted, then the address would match regular nec. |
| 903 | */ |
| 904 | case RC_PROTO_NECX: |
| 905 | if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0) |
| 906 | return false; |
| 907 | break; |
| 908 | /* |
| 909 | * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits |
| 910 | * of the command match the upper 8 bits inverted, then it would |
| 911 | * be either NEC or NECX. |
| 912 | */ |
| 913 | case RC_PROTO_NEC32: |
| 914 | if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0) |
| 915 | return false; |
| 916 | break; |
| 917 | /* |
| 918 | * If the customer code (top 32-bit) is 0x800f, it is MCE else it |
| 919 | * is regular mode-6a 32 bit |
| 920 | */ |
| 921 | case RC_PROTO_RC6_MCE: |
| 922 | if ((scancode & 0xffff0000) != 0x800f0000) |
| 923 | return false; |
| 924 | break; |
| 925 | case RC_PROTO_RC6_6A_32: |
| 926 | if ((scancode & 0xffff0000) == 0x800f0000) |
| 927 | return false; |
| 928 | break; |
| 929 | default: |
| 930 | break; |
| 931 | } |
| 932 | |
| 933 | return true; |
| 934 | } |
| 935 | |
| 936 | /** |
| 937 | * rc_validate_filter() - checks that the scancode and mask are valid and |
| 938 | * provides sensible defaults |
| 939 | * @dev: the struct rc_dev descriptor of the device |
| 940 | * @filter: the scancode and mask |
| 941 | * |
| 942 | * return: 0 or -EINVAL if the filter is not valid |
| 943 | */ |
| 944 | static int rc_validate_filter(struct rc_dev *dev, |
| 945 | struct rc_scancode_filter *filter) |
| 946 | { |
| 947 | u32 mask, s = filter->data; |
| 948 | enum rc_proto protocol = dev->wakeup_protocol; |
| 949 | |
| 950 | if (protocol >= ARRAY_SIZE(protocols)) |
| 951 | return -EINVAL; |
| 952 | |
| 953 | mask = protocols[protocol].scancode_bits; |
| 954 | |
| 955 | if (!rc_validate_scancode(protocol, s)) |
| 956 | return -EINVAL; |
| 957 | |
| 958 | filter->data &= mask; |
| 959 | filter->mask &= mask; |
| 960 | |
| 961 | /* |
| 962 | * If we have to raw encode the IR for wakeup, we cannot have a mask |
| 963 | */ |
| 964 | if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask) |
| 965 | return -EINVAL; |
| 966 | |
| 967 | return 0; |
| 968 | } |
| 969 | |
| 970 | int rc_open(struct rc_dev *rdev) |
| 971 | { |
| 972 | int rval = 0; |
| 973 | |
| 974 | if (!rdev) |
| 975 | return -EINVAL; |
| 976 | |
| 977 | mutex_lock(&rdev->lock); |
| 978 | |
| 979 | if (!rdev->registered) { |
| 980 | rval = -ENODEV; |
| 981 | } else { |
| 982 | if (!rdev->users++ && rdev->open) |
| 983 | rval = rdev->open(rdev); |
| 984 | |
| 985 | if (rval) |
| 986 | rdev->users--; |
| 987 | } |
| 988 | |
| 989 | mutex_unlock(&rdev->lock); |
| 990 | |
| 991 | return rval; |
| 992 | } |
| 993 | |
| 994 | static int ir_open(struct input_dev *idev) |
| 995 | { |
| 996 | struct rc_dev *rdev = input_get_drvdata(idev); |
| 997 | |
| 998 | return rc_open(rdev); |
| 999 | } |
| 1000 | |
| 1001 | void rc_close(struct rc_dev *rdev) |
| 1002 | { |
| 1003 | if (rdev) { |
| 1004 | mutex_lock(&rdev->lock); |
| 1005 | |
| 1006 | if (!--rdev->users && rdev->close && rdev->registered) |
| 1007 | rdev->close(rdev); |
| 1008 | |
| 1009 | mutex_unlock(&rdev->lock); |
| 1010 | } |
| 1011 | } |
| 1012 | |
| 1013 | static void ir_close(struct input_dev *idev) |
| 1014 | { |
| 1015 | struct rc_dev *rdev = input_get_drvdata(idev); |
| 1016 | rc_close(rdev); |
| 1017 | } |
| 1018 | |
| 1019 | /* class for /sys/class/rc */ |
| 1020 | static char *rc_devnode(const struct device *dev, umode_t *mode) |
| 1021 | { |
| 1022 | return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev)); |
| 1023 | } |
| 1024 | |
| 1025 | static struct class rc_class = { |
| 1026 | .name = "rc", |
| 1027 | .devnode = rc_devnode, |
| 1028 | }; |
| 1029 | |
| 1030 | /* |
| 1031 | * These are the protocol textual descriptions that are |
| 1032 | * used by the sysfs protocols file. Note that the order |
| 1033 | * of the entries is relevant. |
| 1034 | */ |
| 1035 | static const struct { |
| 1036 | u64 type; |
| 1037 | const char *name; |
| 1038 | const char *module_name; |
| 1039 | } proto_names[] = { |
| 1040 | { RC_PROTO_BIT_NONE, "none", NULL }, |
| 1041 | { RC_PROTO_BIT_OTHER, "other", NULL }, |
| 1042 | { RC_PROTO_BIT_UNKNOWN, "unknown", NULL }, |
| 1043 | { RC_PROTO_BIT_RC5 | |
| 1044 | RC_PROTO_BIT_RC5X_20, "rc-5", "ir-rc5-decoder" }, |
| 1045 | { RC_PROTO_BIT_NEC | |
| 1046 | RC_PROTO_BIT_NECX | |
| 1047 | RC_PROTO_BIT_NEC32, "nec", "ir-nec-decoder" }, |
| 1048 | { RC_PROTO_BIT_RC6_0 | |
| 1049 | RC_PROTO_BIT_RC6_6A_20 | |
| 1050 | RC_PROTO_BIT_RC6_6A_24 | |
| 1051 | RC_PROTO_BIT_RC6_6A_32 | |
| 1052 | RC_PROTO_BIT_RC6_MCE, "rc-6", "ir-rc6-decoder" }, |
| 1053 | { RC_PROTO_BIT_JVC, "jvc", "ir-jvc-decoder" }, |
| 1054 | { RC_PROTO_BIT_SONY12 | |
| 1055 | RC_PROTO_BIT_SONY15 | |
| 1056 | RC_PROTO_BIT_SONY20, "sony", "ir-sony-decoder" }, |
| 1057 | { RC_PROTO_BIT_RC5_SZ, "rc-5-sz", "ir-rc5-decoder" }, |
| 1058 | { RC_PROTO_BIT_SANYO, "sanyo", "ir-sanyo-decoder" }, |
| 1059 | { RC_PROTO_BIT_SHARP, "sharp", "ir-sharp-decoder" }, |
| 1060 | { RC_PROTO_BIT_MCIR2_KBD | |
| 1061 | RC_PROTO_BIT_MCIR2_MSE, "mce_kbd", "ir-mce_kbd-decoder" }, |
| 1062 | { RC_PROTO_BIT_XMP, "xmp", "ir-xmp-decoder" }, |
| 1063 | { RC_PROTO_BIT_CEC, "cec", NULL }, |
| 1064 | { RC_PROTO_BIT_IMON, "imon", "ir-imon-decoder" }, |
| 1065 | { RC_PROTO_BIT_RCMM12 | |
| 1066 | RC_PROTO_BIT_RCMM24 | |
| 1067 | RC_PROTO_BIT_RCMM32, "rc-mm", "ir-rcmm-decoder" }, |
| 1068 | { RC_PROTO_BIT_XBOX_DVD, "xbox-dvd", NULL }, |
| 1069 | }; |
| 1070 | |
| 1071 | /** |
| 1072 | * struct rc_filter_attribute - Device attribute relating to a filter type. |
| 1073 | * @attr: Device attribute. |
| 1074 | * @type: Filter type. |
| 1075 | * @mask: false for filter value, true for filter mask. |
| 1076 | */ |
| 1077 | struct rc_filter_attribute { |
| 1078 | struct device_attribute attr; |
| 1079 | enum rc_filter_type type; |
| 1080 | bool mask; |
| 1081 | }; |
| 1082 | #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr) |
| 1083 | |
| 1084 | #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \ |
| 1085 | struct rc_filter_attribute dev_attr_##_name = { \ |
| 1086 | .attr = __ATTR(_name, _mode, _show, _store), \ |
| 1087 | .type = (_type), \ |
| 1088 | .mask = (_mask), \ |
| 1089 | } |
| 1090 | |
| 1091 | /** |
| 1092 | * show_protocols() - shows the current IR protocol(s) |
| 1093 | * @device: the device descriptor |
| 1094 | * @mattr: the device attribute struct |
| 1095 | * @buf: a pointer to the output buffer |
| 1096 | * |
| 1097 | * This routine is a callback routine for input read the IR protocol type(s). |
| 1098 | * it is triggered by reading /sys/class/rc/rc?/protocols. |
| 1099 | * It returns the protocol names of supported protocols. |
| 1100 | * Enabled protocols are printed in brackets. |
| 1101 | * |
| 1102 | * dev->lock is taken to guard against races between |
| 1103 | * store_protocols and show_protocols. |
| 1104 | */ |
| 1105 | static ssize_t show_protocols(struct device *device, |
| 1106 | struct device_attribute *mattr, char *buf) |
| 1107 | { |
| 1108 | struct rc_dev *dev = to_rc_dev(device); |
| 1109 | u64 allowed, enabled; |
| 1110 | char *tmp = buf; |
| 1111 | int i; |
| 1112 | |
| 1113 | mutex_lock(&dev->lock); |
| 1114 | |
| 1115 | enabled = dev->enabled_protocols; |
| 1116 | allowed = dev->allowed_protocols; |
| 1117 | if (dev->raw && !allowed) |
| 1118 | allowed = ir_raw_get_allowed_protocols(); |
| 1119 | |
| 1120 | mutex_unlock(&dev->lock); |
| 1121 | |
| 1122 | dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - 0x%llx\n", |
| 1123 | __func__, (long long)allowed, (long long)enabled); |
| 1124 | |
| 1125 | for (i = 0; i < ARRAY_SIZE(proto_names); i++) { |
| 1126 | if (allowed & enabled & proto_names[i].type) |
| 1127 | tmp += sprintf(tmp, "[%s] ", proto_names[i].name); |
| 1128 | else if (allowed & proto_names[i].type) |
| 1129 | tmp += sprintf(tmp, "%s ", proto_names[i].name); |
| 1130 | |
| 1131 | if (allowed & proto_names[i].type) |
| 1132 | allowed &= ~proto_names[i].type; |
| 1133 | } |
| 1134 | |
| 1135 | #ifdef CONFIG_LIRC |
| 1136 | if (dev->driver_type == RC_DRIVER_IR_RAW) |
| 1137 | tmp += sprintf(tmp, "[lirc] "); |
| 1138 | #endif |
| 1139 | |
| 1140 | if (tmp != buf) |
| 1141 | tmp--; |
| 1142 | *tmp = '\n'; |
| 1143 | |
| 1144 | return tmp + 1 - buf; |
| 1145 | } |
| 1146 | |
| 1147 | /** |
| 1148 | * parse_protocol_change() - parses a protocol change request |
| 1149 | * @dev: rc_dev device |
| 1150 | * @protocols: pointer to the bitmask of current protocols |
| 1151 | * @buf: pointer to the buffer with a list of changes |
| 1152 | * |
| 1153 | * Writing "+proto" will add a protocol to the protocol mask. |
| 1154 | * Writing "-proto" will remove a protocol from protocol mask. |
| 1155 | * Writing "proto" will enable only "proto". |
| 1156 | * Writing "none" will disable all protocols. |
| 1157 | * Returns the number of changes performed or a negative error code. |
| 1158 | */ |
| 1159 | static int parse_protocol_change(struct rc_dev *dev, u64 *protocols, |
| 1160 | const char *buf) |
| 1161 | { |
| 1162 | const char *tmp; |
| 1163 | unsigned count = 0; |
| 1164 | bool enable, disable; |
| 1165 | u64 mask; |
| 1166 | int i; |
| 1167 | |
| 1168 | while ((tmp = strsep((char **)&buf, " \n")) != NULL) { |
| 1169 | if (!*tmp) |
| 1170 | break; |
| 1171 | |
| 1172 | if (*tmp == '+') { |
| 1173 | enable = true; |
| 1174 | disable = false; |
| 1175 | tmp++; |
| 1176 | } else if (*tmp == '-') { |
| 1177 | enable = false; |
| 1178 | disable = true; |
| 1179 | tmp++; |
| 1180 | } else { |
| 1181 | enable = false; |
| 1182 | disable = false; |
| 1183 | } |
| 1184 | |
| 1185 | for (i = 0; i < ARRAY_SIZE(proto_names); i++) { |
| 1186 | if (!strcasecmp(tmp, proto_names[i].name)) { |
| 1187 | mask = proto_names[i].type; |
| 1188 | break; |
| 1189 | } |
| 1190 | } |
| 1191 | |
| 1192 | if (i == ARRAY_SIZE(proto_names)) { |
| 1193 | if (!strcasecmp(tmp, "lirc")) |
| 1194 | mask = 0; |
| 1195 | else { |
| 1196 | dev_dbg(&dev->dev, "Unknown protocol: '%s'\n", |
| 1197 | tmp); |
| 1198 | return -EINVAL; |
| 1199 | } |
| 1200 | } |
| 1201 | |
| 1202 | count++; |
| 1203 | |
| 1204 | if (enable) |
| 1205 | *protocols |= mask; |
| 1206 | else if (disable) |
| 1207 | *protocols &= ~mask; |
| 1208 | else |
| 1209 | *protocols = mask; |
| 1210 | } |
| 1211 | |
| 1212 | if (!count) { |
| 1213 | dev_dbg(&dev->dev, "Protocol not specified\n"); |
| 1214 | return -EINVAL; |
| 1215 | } |
| 1216 | |
| 1217 | return count; |
| 1218 | } |
| 1219 | |
| 1220 | void ir_raw_load_modules(u64 *protocols) |
| 1221 | { |
| 1222 | u64 available; |
| 1223 | int i, ret; |
| 1224 | |
| 1225 | for (i = 0; i < ARRAY_SIZE(proto_names); i++) { |
| 1226 | if (proto_names[i].type == RC_PROTO_BIT_NONE || |
| 1227 | proto_names[i].type & (RC_PROTO_BIT_OTHER | |
| 1228 | RC_PROTO_BIT_UNKNOWN)) |
| 1229 | continue; |
| 1230 | |
| 1231 | available = ir_raw_get_allowed_protocols(); |
| 1232 | if (!(*protocols & proto_names[i].type & ~available)) |
| 1233 | continue; |
| 1234 | |
| 1235 | if (!proto_names[i].module_name) { |
| 1236 | pr_err("Can't enable IR protocol %s\n", |
| 1237 | proto_names[i].name); |
| 1238 | *protocols &= ~proto_names[i].type; |
| 1239 | continue; |
| 1240 | } |
| 1241 | |
| 1242 | ret = request_module("%s", proto_names[i].module_name); |
| 1243 | if (ret < 0) { |
| 1244 | pr_err("Couldn't load IR protocol module %s\n", |
| 1245 | proto_names[i].module_name); |
| 1246 | *protocols &= ~proto_names[i].type; |
| 1247 | continue; |
| 1248 | } |
| 1249 | msleep(20); |
| 1250 | available = ir_raw_get_allowed_protocols(); |
| 1251 | if (!(*protocols & proto_names[i].type & ~available)) |
| 1252 | continue; |
| 1253 | |
| 1254 | pr_err("Loaded IR protocol module %s, but protocol %s still not available\n", |
| 1255 | proto_names[i].module_name, |
| 1256 | proto_names[i].name); |
| 1257 | *protocols &= ~proto_names[i].type; |
| 1258 | } |
| 1259 | } |
| 1260 | |
| 1261 | /** |
| 1262 | * store_protocols() - changes the current/wakeup IR protocol(s) |
| 1263 | * @device: the device descriptor |
| 1264 | * @mattr: the device attribute struct |
| 1265 | * @buf: a pointer to the input buffer |
| 1266 | * @len: length of the input buffer |
| 1267 | * |
| 1268 | * This routine is for changing the IR protocol type. |
| 1269 | * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]protocols. |
| 1270 | * See parse_protocol_change() for the valid commands. |
| 1271 | * Returns @len on success or a negative error code. |
| 1272 | * |
| 1273 | * dev->lock is taken to guard against races between |
| 1274 | * store_protocols and show_protocols. |
| 1275 | */ |
| 1276 | static ssize_t store_protocols(struct device *device, |
| 1277 | struct device_attribute *mattr, |
| 1278 | const char *buf, size_t len) |
| 1279 | { |
| 1280 | struct rc_dev *dev = to_rc_dev(device); |
| 1281 | u64 *current_protocols; |
| 1282 | struct rc_scancode_filter *filter; |
| 1283 | u64 old_protocols, new_protocols; |
| 1284 | ssize_t rc; |
| 1285 | |
| 1286 | dev_dbg(&dev->dev, "Normal protocol change requested\n"); |
| 1287 | current_protocols = &dev->enabled_protocols; |
| 1288 | filter = &dev->scancode_filter; |
| 1289 | |
| 1290 | if (!dev->change_protocol) { |
| 1291 | dev_dbg(&dev->dev, "Protocol switching not supported\n"); |
| 1292 | return -EINVAL; |
| 1293 | } |
| 1294 | |
| 1295 | mutex_lock(&dev->lock); |
| 1296 | if (!dev->registered) { |
| 1297 | mutex_unlock(&dev->lock); |
| 1298 | return -ENODEV; |
| 1299 | } |
| 1300 | |
| 1301 | old_protocols = *current_protocols; |
| 1302 | new_protocols = old_protocols; |
| 1303 | rc = parse_protocol_change(dev, &new_protocols, buf); |
| 1304 | if (rc < 0) |
| 1305 | goto out; |
| 1306 | |
| 1307 | if (dev->driver_type == RC_DRIVER_IR_RAW) |
| 1308 | ir_raw_load_modules(&new_protocols); |
| 1309 | |
| 1310 | rc = dev->change_protocol(dev, &new_protocols); |
| 1311 | if (rc < 0) { |
| 1312 | dev_dbg(&dev->dev, "Error setting protocols to 0x%llx\n", |
| 1313 | (long long)new_protocols); |
| 1314 | goto out; |
| 1315 | } |
| 1316 | |
| 1317 | if (new_protocols != old_protocols) { |
| 1318 | *current_protocols = new_protocols; |
| 1319 | dev_dbg(&dev->dev, "Protocols changed to 0x%llx\n", |
| 1320 | (long long)new_protocols); |
| 1321 | } |
| 1322 | |
| 1323 | /* |
| 1324 | * If a protocol change was attempted the filter may need updating, even |
| 1325 | * if the actual protocol mask hasn't changed (since the driver may have |
| 1326 | * cleared the filter). |
| 1327 | * Try setting the same filter with the new protocol (if any). |
| 1328 | * Fall back to clearing the filter. |
| 1329 | */ |
| 1330 | if (dev->s_filter && filter->mask) { |
| 1331 | if (new_protocols) |
| 1332 | rc = dev->s_filter(dev, filter); |
| 1333 | else |
| 1334 | rc = -1; |
| 1335 | |
| 1336 | if (rc < 0) { |
| 1337 | filter->data = 0; |
| 1338 | filter->mask = 0; |
| 1339 | dev->s_filter(dev, filter); |
| 1340 | } |
| 1341 | } |
| 1342 | |
| 1343 | rc = len; |
| 1344 | |
| 1345 | out: |
| 1346 | mutex_unlock(&dev->lock); |
| 1347 | return rc; |
| 1348 | } |
| 1349 | |
| 1350 | /** |
| 1351 | * show_filter() - shows the current scancode filter value or mask |
| 1352 | * @device: the device descriptor |
| 1353 | * @attr: the device attribute struct |
| 1354 | * @buf: a pointer to the output buffer |
| 1355 | * |
| 1356 | * This routine is a callback routine to read a scancode filter value or mask. |
| 1357 | * It is triggered by reading /sys/class/rc/rc?/[wakeup_]filter[_mask]. |
| 1358 | * It prints the current scancode filter value or mask of the appropriate filter |
| 1359 | * type in hexadecimal into @buf and returns the size of the buffer. |
| 1360 | * |
| 1361 | * Bits of the filter value corresponding to set bits in the filter mask are |
| 1362 | * compared against input scancodes and non-matching scancodes are discarded. |
| 1363 | * |
| 1364 | * dev->lock is taken to guard against races between |
| 1365 | * store_filter and show_filter. |
| 1366 | */ |
| 1367 | static ssize_t show_filter(struct device *device, |
| 1368 | struct device_attribute *attr, |
| 1369 | char *buf) |
| 1370 | { |
| 1371 | struct rc_dev *dev = to_rc_dev(device); |
| 1372 | struct rc_filter_attribute *fattr = to_rc_filter_attr(attr); |
| 1373 | struct rc_scancode_filter *filter; |
| 1374 | u32 val; |
| 1375 | |
| 1376 | mutex_lock(&dev->lock); |
| 1377 | |
| 1378 | if (fattr->type == RC_FILTER_NORMAL) |
| 1379 | filter = &dev->scancode_filter; |
| 1380 | else |
| 1381 | filter = &dev->scancode_wakeup_filter; |
| 1382 | |
| 1383 | if (fattr->mask) |
| 1384 | val = filter->mask; |
| 1385 | else |
| 1386 | val = filter->data; |
| 1387 | mutex_unlock(&dev->lock); |
| 1388 | |
| 1389 | return sprintf(buf, "%#x\n", val); |
| 1390 | } |
| 1391 | |
| 1392 | /** |
| 1393 | * store_filter() - changes the scancode filter value |
| 1394 | * @device: the device descriptor |
| 1395 | * @attr: the device attribute struct |
| 1396 | * @buf: a pointer to the input buffer |
| 1397 | * @len: length of the input buffer |
| 1398 | * |
| 1399 | * This routine is for changing a scancode filter value or mask. |
| 1400 | * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask]. |
| 1401 | * Returns -EINVAL if an invalid filter value for the current protocol was |
| 1402 | * specified or if scancode filtering is not supported by the driver, otherwise |
| 1403 | * returns @len. |
| 1404 | * |
| 1405 | * Bits of the filter value corresponding to set bits in the filter mask are |
| 1406 | * compared against input scancodes and non-matching scancodes are discarded. |
| 1407 | * |
| 1408 | * dev->lock is taken to guard against races between |
| 1409 | * store_filter and show_filter. |
| 1410 | */ |
| 1411 | static ssize_t store_filter(struct device *device, |
| 1412 | struct device_attribute *attr, |
| 1413 | const char *buf, size_t len) |
| 1414 | { |
| 1415 | struct rc_dev *dev = to_rc_dev(device); |
| 1416 | struct rc_filter_attribute *fattr = to_rc_filter_attr(attr); |
| 1417 | struct rc_scancode_filter new_filter, *filter; |
| 1418 | int ret; |
| 1419 | unsigned long val; |
| 1420 | int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter); |
| 1421 | |
| 1422 | ret = kstrtoul(buf, 0, &val); |
| 1423 | if (ret < 0) |
| 1424 | return ret; |
| 1425 | |
| 1426 | if (fattr->type == RC_FILTER_NORMAL) { |
| 1427 | set_filter = dev->s_filter; |
| 1428 | filter = &dev->scancode_filter; |
| 1429 | } else { |
| 1430 | set_filter = dev->s_wakeup_filter; |
| 1431 | filter = &dev->scancode_wakeup_filter; |
| 1432 | } |
| 1433 | |
| 1434 | if (!set_filter) |
| 1435 | return -EINVAL; |
| 1436 | |
| 1437 | mutex_lock(&dev->lock); |
| 1438 | if (!dev->registered) { |
| 1439 | mutex_unlock(&dev->lock); |
| 1440 | return -ENODEV; |
| 1441 | } |
| 1442 | |
| 1443 | new_filter = *filter; |
| 1444 | if (fattr->mask) |
| 1445 | new_filter.mask = val; |
| 1446 | else |
| 1447 | new_filter.data = val; |
| 1448 | |
| 1449 | if (fattr->type == RC_FILTER_WAKEUP) { |
| 1450 | /* |
| 1451 | * Refuse to set a filter unless a protocol is enabled |
| 1452 | * and the filter is valid for that protocol |
| 1453 | */ |
| 1454 | if (dev->wakeup_protocol != RC_PROTO_UNKNOWN) |
| 1455 | ret = rc_validate_filter(dev, &new_filter); |
| 1456 | else |
| 1457 | ret = -EINVAL; |
| 1458 | |
| 1459 | if (ret != 0) |
| 1460 | goto unlock; |
| 1461 | } |
| 1462 | |
| 1463 | if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols && |
| 1464 | val) { |
| 1465 | /* refuse to set a filter unless a protocol is enabled */ |
| 1466 | ret = -EINVAL; |
| 1467 | goto unlock; |
| 1468 | } |
| 1469 | |
| 1470 | ret = set_filter(dev, &new_filter); |
| 1471 | if (ret < 0) |
| 1472 | goto unlock; |
| 1473 | |
| 1474 | *filter = new_filter; |
| 1475 | |
| 1476 | unlock: |
| 1477 | mutex_unlock(&dev->lock); |
| 1478 | return (ret < 0) ? ret : len; |
| 1479 | } |
| 1480 | |
| 1481 | /** |
| 1482 | * show_wakeup_protocols() - shows the wakeup IR protocol |
| 1483 | * @device: the device descriptor |
| 1484 | * @mattr: the device attribute struct |
| 1485 | * @buf: a pointer to the output buffer |
| 1486 | * |
| 1487 | * This routine is a callback routine for input read the IR protocol type(s). |
| 1488 | * it is triggered by reading /sys/class/rc/rc?/wakeup_protocols. |
| 1489 | * It returns the protocol names of supported protocols. |
| 1490 | * The enabled protocols are printed in brackets. |
| 1491 | * |
| 1492 | * dev->lock is taken to guard against races between |
| 1493 | * store_wakeup_protocols and show_wakeup_protocols. |
| 1494 | */ |
| 1495 | static ssize_t show_wakeup_protocols(struct device *device, |
| 1496 | struct device_attribute *mattr, |
| 1497 | char *buf) |
| 1498 | { |
| 1499 | struct rc_dev *dev = to_rc_dev(device); |
| 1500 | u64 allowed; |
| 1501 | enum rc_proto enabled; |
| 1502 | char *tmp = buf; |
| 1503 | int i; |
| 1504 | |
| 1505 | mutex_lock(&dev->lock); |
| 1506 | |
| 1507 | allowed = dev->allowed_wakeup_protocols; |
| 1508 | enabled = dev->wakeup_protocol; |
| 1509 | |
| 1510 | mutex_unlock(&dev->lock); |
| 1511 | |
| 1512 | dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - %d\n", |
| 1513 | __func__, (long long)allowed, enabled); |
| 1514 | |
| 1515 | for (i = 0; i < ARRAY_SIZE(protocols); i++) { |
| 1516 | if (allowed & (1ULL << i)) { |
| 1517 | if (i == enabled) |
| 1518 | tmp += sprintf(tmp, "[%s] ", protocols[i].name); |
| 1519 | else |
| 1520 | tmp += sprintf(tmp, "%s ", protocols[i].name); |
| 1521 | } |
| 1522 | } |
| 1523 | |
| 1524 | if (tmp != buf) |
| 1525 | tmp--; |
| 1526 | *tmp = '\n'; |
| 1527 | |
| 1528 | return tmp + 1 - buf; |
| 1529 | } |
| 1530 | |
| 1531 | /** |
| 1532 | * store_wakeup_protocols() - changes the wakeup IR protocol(s) |
| 1533 | * @device: the device descriptor |
| 1534 | * @mattr: the device attribute struct |
| 1535 | * @buf: a pointer to the input buffer |
| 1536 | * @len: length of the input buffer |
| 1537 | * |
| 1538 | * This routine is for changing the IR protocol type. |
| 1539 | * It is triggered by writing to /sys/class/rc/rc?/wakeup_protocols. |
| 1540 | * Returns @len on success or a negative error code. |
| 1541 | * |
| 1542 | * dev->lock is taken to guard against races between |
| 1543 | * store_wakeup_protocols and show_wakeup_protocols. |
| 1544 | */ |
| 1545 | static ssize_t store_wakeup_protocols(struct device *device, |
| 1546 | struct device_attribute *mattr, |
| 1547 | const char *buf, size_t len) |
| 1548 | { |
| 1549 | struct rc_dev *dev = to_rc_dev(device); |
| 1550 | enum rc_proto protocol = RC_PROTO_UNKNOWN; |
| 1551 | ssize_t rc; |
| 1552 | u64 allowed; |
| 1553 | int i; |
| 1554 | |
| 1555 | mutex_lock(&dev->lock); |
| 1556 | if (!dev->registered) { |
| 1557 | mutex_unlock(&dev->lock); |
| 1558 | return -ENODEV; |
| 1559 | } |
| 1560 | |
| 1561 | allowed = dev->allowed_wakeup_protocols; |
| 1562 | |
| 1563 | if (!sysfs_streq(buf, "none")) { |
| 1564 | for (i = 0; i < ARRAY_SIZE(protocols); i++) { |
| 1565 | if ((allowed & (1ULL << i)) && |
| 1566 | sysfs_streq(buf, protocols[i].name)) { |
| 1567 | protocol = i; |
| 1568 | break; |
| 1569 | } |
| 1570 | } |
| 1571 | |
| 1572 | if (i == ARRAY_SIZE(protocols)) { |
| 1573 | rc = -EINVAL; |
| 1574 | goto out; |
| 1575 | } |
| 1576 | |
| 1577 | if (dev->encode_wakeup) { |
| 1578 | u64 mask = 1ULL << protocol; |
| 1579 | |
| 1580 | ir_raw_load_modules(&mask); |
| 1581 | if (!mask) { |
| 1582 | rc = -EINVAL; |
| 1583 | goto out; |
| 1584 | } |
| 1585 | } |
| 1586 | } |
| 1587 | |
| 1588 | if (dev->wakeup_protocol != protocol) { |
| 1589 | dev->wakeup_protocol = protocol; |
| 1590 | dev_dbg(&dev->dev, "Wakeup protocol changed to %d\n", protocol); |
| 1591 | |
| 1592 | if (protocol == RC_PROTO_RC6_MCE) |
| 1593 | dev->scancode_wakeup_filter.data = 0x800f0000; |
| 1594 | else |
| 1595 | dev->scancode_wakeup_filter.data = 0; |
| 1596 | dev->scancode_wakeup_filter.mask = 0; |
| 1597 | |
| 1598 | rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter); |
| 1599 | if (rc == 0) |
| 1600 | rc = len; |
| 1601 | } else { |
| 1602 | rc = len; |
| 1603 | } |
| 1604 | |
| 1605 | out: |
| 1606 | mutex_unlock(&dev->lock); |
| 1607 | return rc; |
| 1608 | } |
| 1609 | |
| 1610 | static void rc_dev_release(struct device *device) |
| 1611 | { |
| 1612 | struct rc_dev *dev = to_rc_dev(device); |
| 1613 | |
| 1614 | kfree(dev); |
| 1615 | } |
| 1616 | |
| 1617 | static int rc_dev_uevent(const struct device *device, struct kobj_uevent_env *env) |
| 1618 | { |
| 1619 | struct rc_dev *dev = to_rc_dev(device); |
| 1620 | int ret = 0; |
| 1621 | |
| 1622 | mutex_lock(&dev->lock); |
| 1623 | |
| 1624 | if (!dev->registered) |
| 1625 | ret = -ENODEV; |
| 1626 | if (ret == 0 && dev->rc_map.name) |
| 1627 | ret = add_uevent_var(env, "NAME=%s", dev->rc_map.name); |
| 1628 | if (ret == 0 && dev->driver_name) |
| 1629 | ret = add_uevent_var(env, "DRV_NAME=%s", dev->driver_name); |
| 1630 | if (ret == 0 && dev->device_name) |
| 1631 | ret = add_uevent_var(env, "DEV_NAME=%s", dev->device_name); |
| 1632 | |
| 1633 | mutex_unlock(&dev->lock); |
| 1634 | |
| 1635 | return ret; |
| 1636 | } |
| 1637 | |
| 1638 | /* |
| 1639 | * Static device attribute struct with the sysfs attributes for IR's |
| 1640 | */ |
| 1641 | static struct device_attribute dev_attr_ro_protocols = |
| 1642 | __ATTR(protocols, 0444, show_protocols, NULL); |
| 1643 | static struct device_attribute dev_attr_rw_protocols = |
| 1644 | __ATTR(protocols, 0644, show_protocols, store_protocols); |
| 1645 | static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols, |
| 1646 | store_wakeup_protocols); |
| 1647 | static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR, |
| 1648 | show_filter, store_filter, RC_FILTER_NORMAL, false); |
| 1649 | static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR, |
| 1650 | show_filter, store_filter, RC_FILTER_NORMAL, true); |
| 1651 | static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR, |
| 1652 | show_filter, store_filter, RC_FILTER_WAKEUP, false); |
| 1653 | static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR, |
| 1654 | show_filter, store_filter, RC_FILTER_WAKEUP, true); |
| 1655 | |
| 1656 | static struct attribute *rc_dev_rw_protocol_attrs[] = { |
| 1657 | &dev_attr_rw_protocols.attr, |
| 1658 | NULL, |
| 1659 | }; |
| 1660 | |
| 1661 | static const struct attribute_group rc_dev_rw_protocol_attr_grp = { |
| 1662 | .attrs = rc_dev_rw_protocol_attrs, |
| 1663 | }; |
| 1664 | |
| 1665 | static struct attribute *rc_dev_ro_protocol_attrs[] = { |
| 1666 | &dev_attr_ro_protocols.attr, |
| 1667 | NULL, |
| 1668 | }; |
| 1669 | |
| 1670 | static const struct attribute_group rc_dev_ro_protocol_attr_grp = { |
| 1671 | .attrs = rc_dev_ro_protocol_attrs, |
| 1672 | }; |
| 1673 | |
| 1674 | static struct attribute *rc_dev_filter_attrs[] = { |
| 1675 | &dev_attr_filter.attr.attr, |
| 1676 | &dev_attr_filter_mask.attr.attr, |
| 1677 | NULL, |
| 1678 | }; |
| 1679 | |
| 1680 | static const struct attribute_group rc_dev_filter_attr_grp = { |
| 1681 | .attrs = rc_dev_filter_attrs, |
| 1682 | }; |
| 1683 | |
| 1684 | static struct attribute *rc_dev_wakeup_filter_attrs[] = { |
| 1685 | &dev_attr_wakeup_filter.attr.attr, |
| 1686 | &dev_attr_wakeup_filter_mask.attr.attr, |
| 1687 | &dev_attr_wakeup_protocols.attr, |
| 1688 | NULL, |
| 1689 | }; |
| 1690 | |
| 1691 | static const struct attribute_group rc_dev_wakeup_filter_attr_grp = { |
| 1692 | .attrs = rc_dev_wakeup_filter_attrs, |
| 1693 | }; |
| 1694 | |
| 1695 | static const struct device_type rc_dev_type = { |
| 1696 | .release = rc_dev_release, |
| 1697 | .uevent = rc_dev_uevent, |
| 1698 | }; |
| 1699 | |
| 1700 | struct rc_dev *rc_allocate_device(enum rc_driver_type type) |
| 1701 | { |
| 1702 | struct rc_dev *dev; |
| 1703 | |
| 1704 | dev = kzalloc(sizeof(*dev), GFP_KERNEL); |
| 1705 | if (!dev) |
| 1706 | return NULL; |
| 1707 | |
| 1708 | if (type != RC_DRIVER_IR_RAW_TX) { |
| 1709 | dev->input_dev = input_allocate_device(); |
| 1710 | if (!dev->input_dev) { |
| 1711 | kfree(dev); |
| 1712 | return NULL; |
| 1713 | } |
| 1714 | |
| 1715 | dev->input_dev->getkeycode = ir_getkeycode; |
| 1716 | dev->input_dev->setkeycode = ir_setkeycode; |
| 1717 | input_set_drvdata(dev->input_dev, dev); |
| 1718 | |
| 1719 | dev->timeout = IR_DEFAULT_TIMEOUT; |
| 1720 | timer_setup(&dev->timer_keyup, ir_timer_keyup, 0); |
| 1721 | timer_setup(&dev->timer_repeat, ir_timer_repeat, 0); |
| 1722 | |
| 1723 | spin_lock_init(&dev->rc_map.lock); |
| 1724 | spin_lock_init(&dev->keylock); |
| 1725 | } |
| 1726 | mutex_init(&dev->lock); |
| 1727 | |
| 1728 | dev->dev.type = &rc_dev_type; |
| 1729 | dev->dev.class = &rc_class; |
| 1730 | device_initialize(&dev->dev); |
| 1731 | |
| 1732 | dev->driver_type = type; |
| 1733 | |
| 1734 | __module_get(THIS_MODULE); |
| 1735 | return dev; |
| 1736 | } |
| 1737 | EXPORT_SYMBOL_GPL(rc_allocate_device); |
| 1738 | |
| 1739 | void rc_free_device(struct rc_dev *dev) |
| 1740 | { |
| 1741 | if (!dev) |
| 1742 | return; |
| 1743 | |
| 1744 | input_free_device(dev->input_dev); |
| 1745 | |
| 1746 | put_device(&dev->dev); |
| 1747 | |
| 1748 | /* kfree(dev) will be called by the callback function |
| 1749 | rc_dev_release() */ |
| 1750 | |
| 1751 | module_put(THIS_MODULE); |
| 1752 | } |
| 1753 | EXPORT_SYMBOL_GPL(rc_free_device); |
| 1754 | |
| 1755 | static void devm_rc_alloc_release(struct device *dev, void *res) |
| 1756 | { |
| 1757 | rc_free_device(*(struct rc_dev **)res); |
| 1758 | } |
| 1759 | |
| 1760 | struct rc_dev *devm_rc_allocate_device(struct device *dev, |
| 1761 | enum rc_driver_type type) |
| 1762 | { |
| 1763 | struct rc_dev **dr, *rc; |
| 1764 | |
| 1765 | dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL); |
| 1766 | if (!dr) |
| 1767 | return NULL; |
| 1768 | |
| 1769 | rc = rc_allocate_device(type); |
| 1770 | if (!rc) { |
| 1771 | devres_free(dr); |
| 1772 | return NULL; |
| 1773 | } |
| 1774 | |
| 1775 | rc->dev.parent = dev; |
| 1776 | rc->managed_alloc = true; |
| 1777 | *dr = rc; |
| 1778 | devres_add(dev, dr); |
| 1779 | |
| 1780 | return rc; |
| 1781 | } |
| 1782 | EXPORT_SYMBOL_GPL(devm_rc_allocate_device); |
| 1783 | |
| 1784 | static int rc_prepare_rx_device(struct rc_dev *dev) |
| 1785 | { |
| 1786 | int rc; |
| 1787 | struct rc_map *rc_map; |
| 1788 | u64 rc_proto; |
| 1789 | |
| 1790 | if (!dev->map_name) |
| 1791 | return -EINVAL; |
| 1792 | |
| 1793 | rc_map = rc_map_get(dev->map_name); |
| 1794 | if (!rc_map) |
| 1795 | rc_map = rc_map_get(RC_MAP_EMPTY); |
| 1796 | if (!rc_map || !rc_map->scan || rc_map->size == 0) |
| 1797 | return -EINVAL; |
| 1798 | |
| 1799 | rc = ir_setkeytable(dev, rc_map); |
| 1800 | if (rc) |
| 1801 | return rc; |
| 1802 | |
| 1803 | rc_proto = BIT_ULL(rc_map->rc_proto); |
| 1804 | |
| 1805 | if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol) |
| 1806 | dev->enabled_protocols = dev->allowed_protocols; |
| 1807 | |
| 1808 | if (dev->driver_type == RC_DRIVER_IR_RAW) |
| 1809 | ir_raw_load_modules(&rc_proto); |
| 1810 | |
| 1811 | if (dev->change_protocol) { |
| 1812 | rc = dev->change_protocol(dev, &rc_proto); |
| 1813 | if (rc < 0) |
| 1814 | goto out_table; |
| 1815 | dev->enabled_protocols = rc_proto; |
| 1816 | } |
| 1817 | |
| 1818 | /* Keyboard events */ |
| 1819 | set_bit(EV_KEY, dev->input_dev->evbit); |
| 1820 | set_bit(EV_REP, dev->input_dev->evbit); |
| 1821 | set_bit(EV_MSC, dev->input_dev->evbit); |
| 1822 | set_bit(MSC_SCAN, dev->input_dev->mscbit); |
| 1823 | |
| 1824 | /* Pointer/mouse events */ |
| 1825 | set_bit(INPUT_PROP_POINTING_STICK, dev->input_dev->propbit); |
| 1826 | set_bit(EV_REL, dev->input_dev->evbit); |
| 1827 | set_bit(REL_X, dev->input_dev->relbit); |
| 1828 | set_bit(REL_Y, dev->input_dev->relbit); |
| 1829 | |
| 1830 | if (dev->open) |
| 1831 | dev->input_dev->open = ir_open; |
| 1832 | if (dev->close) |
| 1833 | dev->input_dev->close = ir_close; |
| 1834 | |
| 1835 | dev->input_dev->dev.parent = &dev->dev; |
| 1836 | memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id)); |
| 1837 | dev->input_dev->phys = dev->input_phys; |
| 1838 | dev->input_dev->name = dev->device_name; |
| 1839 | |
| 1840 | return 0; |
| 1841 | |
| 1842 | out_table: |
| 1843 | ir_free_table(&dev->rc_map); |
| 1844 | |
| 1845 | return rc; |
| 1846 | } |
| 1847 | |
| 1848 | static int rc_setup_rx_device(struct rc_dev *dev) |
| 1849 | { |
| 1850 | int rc; |
| 1851 | |
| 1852 | /* rc_open will be called here */ |
| 1853 | rc = input_register_device(dev->input_dev); |
| 1854 | if (rc) |
| 1855 | return rc; |
| 1856 | |
| 1857 | /* |
| 1858 | * Default delay of 250ms is too short for some protocols, especially |
| 1859 | * since the timeout is currently set to 250ms. Increase it to 500ms, |
| 1860 | * to avoid wrong repetition of the keycodes. Note that this must be |
| 1861 | * set after the call to input_register_device(). |
| 1862 | */ |
| 1863 | if (dev->allowed_protocols == RC_PROTO_BIT_CEC) |
| 1864 | dev->input_dev->rep[REP_DELAY] = 0; |
| 1865 | else |
| 1866 | dev->input_dev->rep[REP_DELAY] = 500; |
| 1867 | |
| 1868 | /* |
| 1869 | * As a repeat event on protocols like RC-5 and NEC take as long as |
| 1870 | * 110/114ms, using 33ms as a repeat period is not the right thing |
| 1871 | * to do. |
| 1872 | */ |
| 1873 | dev->input_dev->rep[REP_PERIOD] = 125; |
| 1874 | |
| 1875 | return 0; |
| 1876 | } |
| 1877 | |
| 1878 | static void rc_free_rx_device(struct rc_dev *dev) |
| 1879 | { |
| 1880 | if (!dev) |
| 1881 | return; |
| 1882 | |
| 1883 | if (dev->input_dev) { |
| 1884 | input_unregister_device(dev->input_dev); |
| 1885 | dev->input_dev = NULL; |
| 1886 | } |
| 1887 | |
| 1888 | ir_free_table(&dev->rc_map); |
| 1889 | } |
| 1890 | |
| 1891 | int rc_register_device(struct rc_dev *dev) |
| 1892 | { |
| 1893 | const char *path; |
| 1894 | int attr = 0; |
| 1895 | int minor; |
| 1896 | int rc; |
| 1897 | |
| 1898 | if (!dev) |
| 1899 | return -EINVAL; |
| 1900 | |
| 1901 | minor = ida_alloc_max(&rc_ida, RC_DEV_MAX - 1, GFP_KERNEL); |
| 1902 | if (minor < 0) |
| 1903 | return minor; |
| 1904 | |
| 1905 | dev->minor = minor; |
| 1906 | dev_set_name(&dev->dev, "rc%u", dev->minor); |
| 1907 | dev_set_drvdata(&dev->dev, dev); |
| 1908 | |
| 1909 | dev->dev.groups = dev->sysfs_groups; |
| 1910 | if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol) |
| 1911 | dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp; |
| 1912 | else if (dev->driver_type != RC_DRIVER_IR_RAW_TX) |
| 1913 | dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp; |
| 1914 | if (dev->s_filter) |
| 1915 | dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp; |
| 1916 | if (dev->s_wakeup_filter) |
| 1917 | dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp; |
| 1918 | dev->sysfs_groups[attr++] = NULL; |
| 1919 | |
| 1920 | if (dev->driver_type == RC_DRIVER_IR_RAW) { |
| 1921 | rc = ir_raw_event_prepare(dev); |
| 1922 | if (rc < 0) |
| 1923 | goto out_minor; |
| 1924 | } |
| 1925 | |
| 1926 | if (dev->driver_type != RC_DRIVER_IR_RAW_TX) { |
| 1927 | rc = rc_prepare_rx_device(dev); |
| 1928 | if (rc) |
| 1929 | goto out_raw; |
| 1930 | } |
| 1931 | |
| 1932 | dev->registered = true; |
| 1933 | |
| 1934 | rc = device_add(&dev->dev); |
| 1935 | if (rc) |
| 1936 | goto out_rx_free; |
| 1937 | |
| 1938 | path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); |
| 1939 | dev_info(&dev->dev, "%s as %s\n", |
| 1940 | dev->device_name ?: "Unspecified device", path ?: "N/A"); |
| 1941 | kfree(path); |
| 1942 | |
| 1943 | /* |
| 1944 | * once the input device is registered in rc_setup_rx_device, |
| 1945 | * userspace can open the input device and rc_open() will be called |
| 1946 | * as a result. This results in driver code being allowed to submit |
| 1947 | * keycodes with rc_keydown, so lirc must be registered first. |
| 1948 | */ |
| 1949 | if (dev->allowed_protocols != RC_PROTO_BIT_CEC) { |
| 1950 | rc = lirc_register(dev); |
| 1951 | if (rc < 0) |
| 1952 | goto out_dev; |
| 1953 | } |
| 1954 | |
| 1955 | if (dev->driver_type != RC_DRIVER_IR_RAW_TX) { |
| 1956 | rc = rc_setup_rx_device(dev); |
| 1957 | if (rc) |
| 1958 | goto out_lirc; |
| 1959 | } |
| 1960 | |
| 1961 | if (dev->driver_type == RC_DRIVER_IR_RAW) { |
| 1962 | rc = ir_raw_event_register(dev); |
| 1963 | if (rc < 0) |
| 1964 | goto out_rx; |
| 1965 | } |
| 1966 | |
| 1967 | dev_dbg(&dev->dev, "Registered rc%u (driver: %s)\n", dev->minor, |
| 1968 | dev->driver_name ? dev->driver_name : "unknown"); |
| 1969 | |
| 1970 | return 0; |
| 1971 | |
| 1972 | out_rx: |
| 1973 | rc_free_rx_device(dev); |
| 1974 | out_lirc: |
| 1975 | if (dev->allowed_protocols != RC_PROTO_BIT_CEC) |
| 1976 | lirc_unregister(dev); |
| 1977 | out_dev: |
| 1978 | device_del(&dev->dev); |
| 1979 | out_rx_free: |
| 1980 | ir_free_table(&dev->rc_map); |
| 1981 | out_raw: |
| 1982 | ir_raw_event_free(dev); |
| 1983 | out_minor: |
| 1984 | ida_free(&rc_ida, minor); |
| 1985 | return rc; |
| 1986 | } |
| 1987 | EXPORT_SYMBOL_GPL(rc_register_device); |
| 1988 | |
| 1989 | static void devm_rc_release(struct device *dev, void *res) |
| 1990 | { |
| 1991 | rc_unregister_device(*(struct rc_dev **)res); |
| 1992 | } |
| 1993 | |
| 1994 | int devm_rc_register_device(struct device *parent, struct rc_dev *dev) |
| 1995 | { |
| 1996 | struct rc_dev **dr; |
| 1997 | int ret; |
| 1998 | |
| 1999 | dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL); |
| 2000 | if (!dr) |
| 2001 | return -ENOMEM; |
| 2002 | |
| 2003 | ret = rc_register_device(dev); |
| 2004 | if (ret) { |
| 2005 | devres_free(dr); |
| 2006 | return ret; |
| 2007 | } |
| 2008 | |
| 2009 | *dr = dev; |
| 2010 | devres_add(parent, dr); |
| 2011 | |
| 2012 | return 0; |
| 2013 | } |
| 2014 | EXPORT_SYMBOL_GPL(devm_rc_register_device); |
| 2015 | |
| 2016 | void rc_unregister_device(struct rc_dev *dev) |
| 2017 | { |
| 2018 | if (!dev) |
| 2019 | return; |
| 2020 | |
| 2021 | if (dev->driver_type == RC_DRIVER_IR_RAW) |
| 2022 | ir_raw_event_unregister(dev); |
| 2023 | |
| 2024 | timer_delete_sync(&dev->timer_keyup); |
| 2025 | timer_delete_sync(&dev->timer_repeat); |
| 2026 | |
| 2027 | mutex_lock(&dev->lock); |
| 2028 | if (dev->users && dev->close) |
| 2029 | dev->close(dev); |
| 2030 | dev->registered = false; |
| 2031 | mutex_unlock(&dev->lock); |
| 2032 | |
| 2033 | rc_free_rx_device(dev); |
| 2034 | |
| 2035 | /* |
| 2036 | * lirc device should be freed with dev->registered = false, so |
| 2037 | * that userspace polling will get notified. |
| 2038 | */ |
| 2039 | if (dev->allowed_protocols != RC_PROTO_BIT_CEC) |
| 2040 | lirc_unregister(dev); |
| 2041 | |
| 2042 | device_del(&dev->dev); |
| 2043 | |
| 2044 | ida_free(&rc_ida, dev->minor); |
| 2045 | |
| 2046 | if (!dev->managed_alloc) |
| 2047 | rc_free_device(dev); |
| 2048 | } |
| 2049 | |
| 2050 | EXPORT_SYMBOL_GPL(rc_unregister_device); |
| 2051 | |
| 2052 | /* |
| 2053 | * Init/exit code for the module. Basically, creates/removes /sys/class/rc |
| 2054 | */ |
| 2055 | |
| 2056 | static int __init rc_core_init(void) |
| 2057 | { |
| 2058 | int rc = class_register(&rc_class); |
| 2059 | if (rc) { |
| 2060 | pr_err("rc_core: unable to register rc class\n"); |
| 2061 | return rc; |
| 2062 | } |
| 2063 | |
| 2064 | rc = lirc_dev_init(); |
| 2065 | if (rc) { |
| 2066 | pr_err("rc_core: unable to init lirc\n"); |
| 2067 | class_unregister(&rc_class); |
| 2068 | return rc; |
| 2069 | } |
| 2070 | |
| 2071 | led_trigger_register_simple("rc-feedback", &led_feedback); |
| 2072 | rc_map_register(&empty_map); |
| 2073 | #ifdef CONFIG_MEDIA_CEC_RC |
| 2074 | rc_map_register(&cec_map); |
| 2075 | #endif |
| 2076 | |
| 2077 | return 0; |
| 2078 | } |
| 2079 | |
| 2080 | static void __exit rc_core_exit(void) |
| 2081 | { |
| 2082 | lirc_dev_exit(); |
| 2083 | class_unregister(&rc_class); |
| 2084 | led_trigger_unregister_simple(led_feedback); |
| 2085 | #ifdef CONFIG_MEDIA_CEC_RC |
| 2086 | rc_map_unregister(&cec_map); |
| 2087 | #endif |
| 2088 | rc_map_unregister(&empty_map); |
| 2089 | } |
| 2090 | |
| 2091 | subsys_initcall(rc_core_init); |
| 2092 | module_exit(rc_core_exit); |
| 2093 | |
| 2094 | MODULE_AUTHOR("Mauro Carvalho Chehab"); |
| 2095 | MODULE_DESCRIPTION("Remote Controller core module"); |
| 2096 | MODULE_LICENSE("GPL v2"); |