block: add a separate operation type for secure erase
[linux-2.6-block.git] / drivers / md / raid10.c
... / ...
CommitLineData
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21#include <linux/slab.h>
22#include <linux/delay.h>
23#include <linux/blkdev.h>
24#include <linux/module.h>
25#include <linux/seq_file.h>
26#include <linux/ratelimit.h>
27#include <linux/kthread.h>
28#include "md.h"
29#include "raid10.h"
30#include "raid0.h"
31#include "bitmap.h"
32
33/*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
41 * use_far_sets (stored in bit 17 of layout )
42 * use_far_sets_bugfixed (stored in bit 18 of layout )
43 *
44 * The data to be stored is divided into chunks using chunksize. Each device
45 * is divided into far_copies sections. In each section, chunks are laid out
46 * in a style similar to raid0, but near_copies copies of each chunk is stored
47 * (each on a different drive). The starting device for each section is offset
48 * near_copies from the starting device of the previous section. Thus there
49 * are (near_copies * far_copies) of each chunk, and each is on a different
50 * drive. near_copies and far_copies must be at least one, and their product
51 * is at most raid_disks.
52 *
53 * If far_offset is true, then the far_copies are handled a bit differently.
54 * The copies are still in different stripes, but instead of being very far
55 * apart on disk, there are adjacent stripes.
56 *
57 * The far and offset algorithms are handled slightly differently if
58 * 'use_far_sets' is true. In this case, the array's devices are grouped into
59 * sets that are (near_copies * far_copies) in size. The far copied stripes
60 * are still shifted by 'near_copies' devices, but this shifting stays confined
61 * to the set rather than the entire array. This is done to improve the number
62 * of device combinations that can fail without causing the array to fail.
63 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
64 * on a device):
65 * A B C D A B C D E
66 * ... ...
67 * D A B C E A B C D
68 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
69 * [A B] [C D] [A B] [C D E]
70 * |...| |...| |...| | ... |
71 * [B A] [D C] [B A] [E C D]
72 */
73
74/*
75 * Number of guaranteed r10bios in case of extreme VM load:
76 */
77#define NR_RAID10_BIOS 256
78
79/* when we get a read error on a read-only array, we redirect to another
80 * device without failing the first device, or trying to over-write to
81 * correct the read error. To keep track of bad blocks on a per-bio
82 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
83 */
84#define IO_BLOCKED ((struct bio *)1)
85/* When we successfully write to a known bad-block, we need to remove the
86 * bad-block marking which must be done from process context. So we record
87 * the success by setting devs[n].bio to IO_MADE_GOOD
88 */
89#define IO_MADE_GOOD ((struct bio *)2)
90
91#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
92
93/* When there are this many requests queued to be written by
94 * the raid10 thread, we become 'congested' to provide back-pressure
95 * for writeback.
96 */
97static int max_queued_requests = 1024;
98
99static void allow_barrier(struct r10conf *conf);
100static void lower_barrier(struct r10conf *conf);
101static int _enough(struct r10conf *conf, int previous, int ignore);
102static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
103 int *skipped);
104static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
105static void end_reshape_write(struct bio *bio);
106static void end_reshape(struct r10conf *conf);
107
108static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
109{
110 struct r10conf *conf = data;
111 int size = offsetof(struct r10bio, devs[conf->copies]);
112
113 /* allocate a r10bio with room for raid_disks entries in the
114 * bios array */
115 return kzalloc(size, gfp_flags);
116}
117
118static void r10bio_pool_free(void *r10_bio, void *data)
119{
120 kfree(r10_bio);
121}
122
123/* Maximum size of each resync request */
124#define RESYNC_BLOCK_SIZE (64*1024)
125#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
126/* amount of memory to reserve for resync requests */
127#define RESYNC_WINDOW (1024*1024)
128/* maximum number of concurrent requests, memory permitting */
129#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
130
131/*
132 * When performing a resync, we need to read and compare, so
133 * we need as many pages are there are copies.
134 * When performing a recovery, we need 2 bios, one for read,
135 * one for write (we recover only one drive per r10buf)
136 *
137 */
138static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
139{
140 struct r10conf *conf = data;
141 struct page *page;
142 struct r10bio *r10_bio;
143 struct bio *bio;
144 int i, j;
145 int nalloc;
146
147 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
148 if (!r10_bio)
149 return NULL;
150
151 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
152 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
153 nalloc = conf->copies; /* resync */
154 else
155 nalloc = 2; /* recovery */
156
157 /*
158 * Allocate bios.
159 */
160 for (j = nalloc ; j-- ; ) {
161 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
162 if (!bio)
163 goto out_free_bio;
164 r10_bio->devs[j].bio = bio;
165 if (!conf->have_replacement)
166 continue;
167 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
168 if (!bio)
169 goto out_free_bio;
170 r10_bio->devs[j].repl_bio = bio;
171 }
172 /*
173 * Allocate RESYNC_PAGES data pages and attach them
174 * where needed.
175 */
176 for (j = 0 ; j < nalloc; j++) {
177 struct bio *rbio = r10_bio->devs[j].repl_bio;
178 bio = r10_bio->devs[j].bio;
179 for (i = 0; i < RESYNC_PAGES; i++) {
180 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
181 &conf->mddev->recovery)) {
182 /* we can share bv_page's during recovery
183 * and reshape */
184 struct bio *rbio = r10_bio->devs[0].bio;
185 page = rbio->bi_io_vec[i].bv_page;
186 get_page(page);
187 } else
188 page = alloc_page(gfp_flags);
189 if (unlikely(!page))
190 goto out_free_pages;
191
192 bio->bi_io_vec[i].bv_page = page;
193 if (rbio)
194 rbio->bi_io_vec[i].bv_page = page;
195 }
196 }
197
198 return r10_bio;
199
200out_free_pages:
201 for ( ; i > 0 ; i--)
202 safe_put_page(bio->bi_io_vec[i-1].bv_page);
203 while (j--)
204 for (i = 0; i < RESYNC_PAGES ; i++)
205 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
206 j = 0;
207out_free_bio:
208 for ( ; j < nalloc; j++) {
209 if (r10_bio->devs[j].bio)
210 bio_put(r10_bio->devs[j].bio);
211 if (r10_bio->devs[j].repl_bio)
212 bio_put(r10_bio->devs[j].repl_bio);
213 }
214 r10bio_pool_free(r10_bio, conf);
215 return NULL;
216}
217
218static void r10buf_pool_free(void *__r10_bio, void *data)
219{
220 int i;
221 struct r10conf *conf = data;
222 struct r10bio *r10bio = __r10_bio;
223 int j;
224
225 for (j=0; j < conf->copies; j++) {
226 struct bio *bio = r10bio->devs[j].bio;
227 if (bio) {
228 for (i = 0; i < RESYNC_PAGES; i++) {
229 safe_put_page(bio->bi_io_vec[i].bv_page);
230 bio->bi_io_vec[i].bv_page = NULL;
231 }
232 bio_put(bio);
233 }
234 bio = r10bio->devs[j].repl_bio;
235 if (bio)
236 bio_put(bio);
237 }
238 r10bio_pool_free(r10bio, conf);
239}
240
241static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
242{
243 int i;
244
245 for (i = 0; i < conf->copies; i++) {
246 struct bio **bio = & r10_bio->devs[i].bio;
247 if (!BIO_SPECIAL(*bio))
248 bio_put(*bio);
249 *bio = NULL;
250 bio = &r10_bio->devs[i].repl_bio;
251 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
252 bio_put(*bio);
253 *bio = NULL;
254 }
255}
256
257static void free_r10bio(struct r10bio *r10_bio)
258{
259 struct r10conf *conf = r10_bio->mddev->private;
260
261 put_all_bios(conf, r10_bio);
262 mempool_free(r10_bio, conf->r10bio_pool);
263}
264
265static void put_buf(struct r10bio *r10_bio)
266{
267 struct r10conf *conf = r10_bio->mddev->private;
268
269 mempool_free(r10_bio, conf->r10buf_pool);
270
271 lower_barrier(conf);
272}
273
274static void reschedule_retry(struct r10bio *r10_bio)
275{
276 unsigned long flags;
277 struct mddev *mddev = r10_bio->mddev;
278 struct r10conf *conf = mddev->private;
279
280 spin_lock_irqsave(&conf->device_lock, flags);
281 list_add(&r10_bio->retry_list, &conf->retry_list);
282 conf->nr_queued ++;
283 spin_unlock_irqrestore(&conf->device_lock, flags);
284
285 /* wake up frozen array... */
286 wake_up(&conf->wait_barrier);
287
288 md_wakeup_thread(mddev->thread);
289}
290
291/*
292 * raid_end_bio_io() is called when we have finished servicing a mirrored
293 * operation and are ready to return a success/failure code to the buffer
294 * cache layer.
295 */
296static void raid_end_bio_io(struct r10bio *r10_bio)
297{
298 struct bio *bio = r10_bio->master_bio;
299 int done;
300 struct r10conf *conf = r10_bio->mddev->private;
301
302 if (bio->bi_phys_segments) {
303 unsigned long flags;
304 spin_lock_irqsave(&conf->device_lock, flags);
305 bio->bi_phys_segments--;
306 done = (bio->bi_phys_segments == 0);
307 spin_unlock_irqrestore(&conf->device_lock, flags);
308 } else
309 done = 1;
310 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
311 bio->bi_error = -EIO;
312 if (done) {
313 bio_endio(bio);
314 /*
315 * Wake up any possible resync thread that waits for the device
316 * to go idle.
317 */
318 allow_barrier(conf);
319 }
320 free_r10bio(r10_bio);
321}
322
323/*
324 * Update disk head position estimator based on IRQ completion info.
325 */
326static inline void update_head_pos(int slot, struct r10bio *r10_bio)
327{
328 struct r10conf *conf = r10_bio->mddev->private;
329
330 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
331 r10_bio->devs[slot].addr + (r10_bio->sectors);
332}
333
334/*
335 * Find the disk number which triggered given bio
336 */
337static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
338 struct bio *bio, int *slotp, int *replp)
339{
340 int slot;
341 int repl = 0;
342
343 for (slot = 0; slot < conf->copies; slot++) {
344 if (r10_bio->devs[slot].bio == bio)
345 break;
346 if (r10_bio->devs[slot].repl_bio == bio) {
347 repl = 1;
348 break;
349 }
350 }
351
352 BUG_ON(slot == conf->copies);
353 update_head_pos(slot, r10_bio);
354
355 if (slotp)
356 *slotp = slot;
357 if (replp)
358 *replp = repl;
359 return r10_bio->devs[slot].devnum;
360}
361
362static void raid10_end_read_request(struct bio *bio)
363{
364 int uptodate = !bio->bi_error;
365 struct r10bio *r10_bio = bio->bi_private;
366 int slot, dev;
367 struct md_rdev *rdev;
368 struct r10conf *conf = r10_bio->mddev->private;
369
370 slot = r10_bio->read_slot;
371 dev = r10_bio->devs[slot].devnum;
372 rdev = r10_bio->devs[slot].rdev;
373 /*
374 * this branch is our 'one mirror IO has finished' event handler:
375 */
376 update_head_pos(slot, r10_bio);
377
378 if (uptodate) {
379 /*
380 * Set R10BIO_Uptodate in our master bio, so that
381 * we will return a good error code to the higher
382 * levels even if IO on some other mirrored buffer fails.
383 *
384 * The 'master' represents the composite IO operation to
385 * user-side. So if something waits for IO, then it will
386 * wait for the 'master' bio.
387 */
388 set_bit(R10BIO_Uptodate, &r10_bio->state);
389 } else {
390 /* If all other devices that store this block have
391 * failed, we want to return the error upwards rather
392 * than fail the last device. Here we redefine
393 * "uptodate" to mean "Don't want to retry"
394 */
395 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396 rdev->raid_disk))
397 uptodate = 1;
398 }
399 if (uptodate) {
400 raid_end_bio_io(r10_bio);
401 rdev_dec_pending(rdev, conf->mddev);
402 } else {
403 /*
404 * oops, read error - keep the refcount on the rdev
405 */
406 char b[BDEVNAME_SIZE];
407 printk_ratelimited(KERN_ERR
408 "md/raid10:%s: %s: rescheduling sector %llu\n",
409 mdname(conf->mddev),
410 bdevname(rdev->bdev, b),
411 (unsigned long long)r10_bio->sector);
412 set_bit(R10BIO_ReadError, &r10_bio->state);
413 reschedule_retry(r10_bio);
414 }
415}
416
417static void close_write(struct r10bio *r10_bio)
418{
419 /* clear the bitmap if all writes complete successfully */
420 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421 r10_bio->sectors,
422 !test_bit(R10BIO_Degraded, &r10_bio->state),
423 0);
424 md_write_end(r10_bio->mddev);
425}
426
427static void one_write_done(struct r10bio *r10_bio)
428{
429 if (atomic_dec_and_test(&r10_bio->remaining)) {
430 if (test_bit(R10BIO_WriteError, &r10_bio->state))
431 reschedule_retry(r10_bio);
432 else {
433 close_write(r10_bio);
434 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435 reschedule_retry(r10_bio);
436 else
437 raid_end_bio_io(r10_bio);
438 }
439 }
440}
441
442static void raid10_end_write_request(struct bio *bio)
443{
444 struct r10bio *r10_bio = bio->bi_private;
445 int dev;
446 int dec_rdev = 1;
447 struct r10conf *conf = r10_bio->mddev->private;
448 int slot, repl;
449 struct md_rdev *rdev = NULL;
450
451 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
452
453 if (repl)
454 rdev = conf->mirrors[dev].replacement;
455 if (!rdev) {
456 smp_rmb();
457 repl = 0;
458 rdev = conf->mirrors[dev].rdev;
459 }
460 /*
461 * this branch is our 'one mirror IO has finished' event handler:
462 */
463 if (bio->bi_error) {
464 if (repl)
465 /* Never record new bad blocks to replacement,
466 * just fail it.
467 */
468 md_error(rdev->mddev, rdev);
469 else {
470 set_bit(WriteErrorSeen, &rdev->flags);
471 if (!test_and_set_bit(WantReplacement, &rdev->flags))
472 set_bit(MD_RECOVERY_NEEDED,
473 &rdev->mddev->recovery);
474 set_bit(R10BIO_WriteError, &r10_bio->state);
475 dec_rdev = 0;
476 }
477 } else {
478 /*
479 * Set R10BIO_Uptodate in our master bio, so that
480 * we will return a good error code for to the higher
481 * levels even if IO on some other mirrored buffer fails.
482 *
483 * The 'master' represents the composite IO operation to
484 * user-side. So if something waits for IO, then it will
485 * wait for the 'master' bio.
486 */
487 sector_t first_bad;
488 int bad_sectors;
489
490 /*
491 * Do not set R10BIO_Uptodate if the current device is
492 * rebuilding or Faulty. This is because we cannot use
493 * such device for properly reading the data back (we could
494 * potentially use it, if the current write would have felt
495 * before rdev->recovery_offset, but for simplicity we don't
496 * check this here.
497 */
498 if (test_bit(In_sync, &rdev->flags) &&
499 !test_bit(Faulty, &rdev->flags))
500 set_bit(R10BIO_Uptodate, &r10_bio->state);
501
502 /* Maybe we can clear some bad blocks. */
503 if (is_badblock(rdev,
504 r10_bio->devs[slot].addr,
505 r10_bio->sectors,
506 &first_bad, &bad_sectors)) {
507 bio_put(bio);
508 if (repl)
509 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
510 else
511 r10_bio->devs[slot].bio = IO_MADE_GOOD;
512 dec_rdev = 0;
513 set_bit(R10BIO_MadeGood, &r10_bio->state);
514 }
515 }
516
517 /*
518 *
519 * Let's see if all mirrored write operations have finished
520 * already.
521 */
522 one_write_done(r10_bio);
523 if (dec_rdev)
524 rdev_dec_pending(rdev, conf->mddev);
525}
526
527/*
528 * RAID10 layout manager
529 * As well as the chunksize and raid_disks count, there are two
530 * parameters: near_copies and far_copies.
531 * near_copies * far_copies must be <= raid_disks.
532 * Normally one of these will be 1.
533 * If both are 1, we get raid0.
534 * If near_copies == raid_disks, we get raid1.
535 *
536 * Chunks are laid out in raid0 style with near_copies copies of the
537 * first chunk, followed by near_copies copies of the next chunk and
538 * so on.
539 * If far_copies > 1, then after 1/far_copies of the array has been assigned
540 * as described above, we start again with a device offset of near_copies.
541 * So we effectively have another copy of the whole array further down all
542 * the drives, but with blocks on different drives.
543 * With this layout, and block is never stored twice on the one device.
544 *
545 * raid10_find_phys finds the sector offset of a given virtual sector
546 * on each device that it is on.
547 *
548 * raid10_find_virt does the reverse mapping, from a device and a
549 * sector offset to a virtual address
550 */
551
552static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
553{
554 int n,f;
555 sector_t sector;
556 sector_t chunk;
557 sector_t stripe;
558 int dev;
559 int slot = 0;
560 int last_far_set_start, last_far_set_size;
561
562 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
563 last_far_set_start *= geo->far_set_size;
564
565 last_far_set_size = geo->far_set_size;
566 last_far_set_size += (geo->raid_disks % geo->far_set_size);
567
568 /* now calculate first sector/dev */
569 chunk = r10bio->sector >> geo->chunk_shift;
570 sector = r10bio->sector & geo->chunk_mask;
571
572 chunk *= geo->near_copies;
573 stripe = chunk;
574 dev = sector_div(stripe, geo->raid_disks);
575 if (geo->far_offset)
576 stripe *= geo->far_copies;
577
578 sector += stripe << geo->chunk_shift;
579
580 /* and calculate all the others */
581 for (n = 0; n < geo->near_copies; n++) {
582 int d = dev;
583 int set;
584 sector_t s = sector;
585 r10bio->devs[slot].devnum = d;
586 r10bio->devs[slot].addr = s;
587 slot++;
588
589 for (f = 1; f < geo->far_copies; f++) {
590 set = d / geo->far_set_size;
591 d += geo->near_copies;
592
593 if ((geo->raid_disks % geo->far_set_size) &&
594 (d > last_far_set_start)) {
595 d -= last_far_set_start;
596 d %= last_far_set_size;
597 d += last_far_set_start;
598 } else {
599 d %= geo->far_set_size;
600 d += geo->far_set_size * set;
601 }
602 s += geo->stride;
603 r10bio->devs[slot].devnum = d;
604 r10bio->devs[slot].addr = s;
605 slot++;
606 }
607 dev++;
608 if (dev >= geo->raid_disks) {
609 dev = 0;
610 sector += (geo->chunk_mask + 1);
611 }
612 }
613}
614
615static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
616{
617 struct geom *geo = &conf->geo;
618
619 if (conf->reshape_progress != MaxSector &&
620 ((r10bio->sector >= conf->reshape_progress) !=
621 conf->mddev->reshape_backwards)) {
622 set_bit(R10BIO_Previous, &r10bio->state);
623 geo = &conf->prev;
624 } else
625 clear_bit(R10BIO_Previous, &r10bio->state);
626
627 __raid10_find_phys(geo, r10bio);
628}
629
630static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
631{
632 sector_t offset, chunk, vchunk;
633 /* Never use conf->prev as this is only called during resync
634 * or recovery, so reshape isn't happening
635 */
636 struct geom *geo = &conf->geo;
637 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
638 int far_set_size = geo->far_set_size;
639 int last_far_set_start;
640
641 if (geo->raid_disks % geo->far_set_size) {
642 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
643 last_far_set_start *= geo->far_set_size;
644
645 if (dev >= last_far_set_start) {
646 far_set_size = geo->far_set_size;
647 far_set_size += (geo->raid_disks % geo->far_set_size);
648 far_set_start = last_far_set_start;
649 }
650 }
651
652 offset = sector & geo->chunk_mask;
653 if (geo->far_offset) {
654 int fc;
655 chunk = sector >> geo->chunk_shift;
656 fc = sector_div(chunk, geo->far_copies);
657 dev -= fc * geo->near_copies;
658 if (dev < far_set_start)
659 dev += far_set_size;
660 } else {
661 while (sector >= geo->stride) {
662 sector -= geo->stride;
663 if (dev < (geo->near_copies + far_set_start))
664 dev += far_set_size - geo->near_copies;
665 else
666 dev -= geo->near_copies;
667 }
668 chunk = sector >> geo->chunk_shift;
669 }
670 vchunk = chunk * geo->raid_disks + dev;
671 sector_div(vchunk, geo->near_copies);
672 return (vchunk << geo->chunk_shift) + offset;
673}
674
675/*
676 * This routine returns the disk from which the requested read should
677 * be done. There is a per-array 'next expected sequential IO' sector
678 * number - if this matches on the next IO then we use the last disk.
679 * There is also a per-disk 'last know head position' sector that is
680 * maintained from IRQ contexts, both the normal and the resync IO
681 * completion handlers update this position correctly. If there is no
682 * perfect sequential match then we pick the disk whose head is closest.
683 *
684 * If there are 2 mirrors in the same 2 devices, performance degrades
685 * because position is mirror, not device based.
686 *
687 * The rdev for the device selected will have nr_pending incremented.
688 */
689
690/*
691 * FIXME: possibly should rethink readbalancing and do it differently
692 * depending on near_copies / far_copies geometry.
693 */
694static struct md_rdev *read_balance(struct r10conf *conf,
695 struct r10bio *r10_bio,
696 int *max_sectors)
697{
698 const sector_t this_sector = r10_bio->sector;
699 int disk, slot;
700 int sectors = r10_bio->sectors;
701 int best_good_sectors;
702 sector_t new_distance, best_dist;
703 struct md_rdev *best_rdev, *rdev = NULL;
704 int do_balance;
705 int best_slot;
706 struct geom *geo = &conf->geo;
707
708 raid10_find_phys(conf, r10_bio);
709 rcu_read_lock();
710retry:
711 sectors = r10_bio->sectors;
712 best_slot = -1;
713 best_rdev = NULL;
714 best_dist = MaxSector;
715 best_good_sectors = 0;
716 do_balance = 1;
717 /*
718 * Check if we can balance. We can balance on the whole
719 * device if no resync is going on (recovery is ok), or below
720 * the resync window. We take the first readable disk when
721 * above the resync window.
722 */
723 if (conf->mddev->recovery_cp < MaxSector
724 && (this_sector + sectors >= conf->next_resync))
725 do_balance = 0;
726
727 for (slot = 0; slot < conf->copies ; slot++) {
728 sector_t first_bad;
729 int bad_sectors;
730 sector_t dev_sector;
731
732 if (r10_bio->devs[slot].bio == IO_BLOCKED)
733 continue;
734 disk = r10_bio->devs[slot].devnum;
735 rdev = rcu_dereference(conf->mirrors[disk].replacement);
736 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
737 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
738 rdev = rcu_dereference(conf->mirrors[disk].rdev);
739 if (rdev == NULL ||
740 test_bit(Faulty, &rdev->flags))
741 continue;
742 if (!test_bit(In_sync, &rdev->flags) &&
743 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
744 continue;
745
746 dev_sector = r10_bio->devs[slot].addr;
747 if (is_badblock(rdev, dev_sector, sectors,
748 &first_bad, &bad_sectors)) {
749 if (best_dist < MaxSector)
750 /* Already have a better slot */
751 continue;
752 if (first_bad <= dev_sector) {
753 /* Cannot read here. If this is the
754 * 'primary' device, then we must not read
755 * beyond 'bad_sectors' from another device.
756 */
757 bad_sectors -= (dev_sector - first_bad);
758 if (!do_balance && sectors > bad_sectors)
759 sectors = bad_sectors;
760 if (best_good_sectors > sectors)
761 best_good_sectors = sectors;
762 } else {
763 sector_t good_sectors =
764 first_bad - dev_sector;
765 if (good_sectors > best_good_sectors) {
766 best_good_sectors = good_sectors;
767 best_slot = slot;
768 best_rdev = rdev;
769 }
770 if (!do_balance)
771 /* Must read from here */
772 break;
773 }
774 continue;
775 } else
776 best_good_sectors = sectors;
777
778 if (!do_balance)
779 break;
780
781 /* This optimisation is debatable, and completely destroys
782 * sequential read speed for 'far copies' arrays. So only
783 * keep it for 'near' arrays, and review those later.
784 */
785 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
786 break;
787
788 /* for far > 1 always use the lowest address */
789 if (geo->far_copies > 1)
790 new_distance = r10_bio->devs[slot].addr;
791 else
792 new_distance = abs(r10_bio->devs[slot].addr -
793 conf->mirrors[disk].head_position);
794 if (new_distance < best_dist) {
795 best_dist = new_distance;
796 best_slot = slot;
797 best_rdev = rdev;
798 }
799 }
800 if (slot >= conf->copies) {
801 slot = best_slot;
802 rdev = best_rdev;
803 }
804
805 if (slot >= 0) {
806 atomic_inc(&rdev->nr_pending);
807 if (test_bit(Faulty, &rdev->flags)) {
808 /* Cannot risk returning a device that failed
809 * before we inc'ed nr_pending
810 */
811 rdev_dec_pending(rdev, conf->mddev);
812 goto retry;
813 }
814 r10_bio->read_slot = slot;
815 } else
816 rdev = NULL;
817 rcu_read_unlock();
818 *max_sectors = best_good_sectors;
819
820 return rdev;
821}
822
823static int raid10_congested(struct mddev *mddev, int bits)
824{
825 struct r10conf *conf = mddev->private;
826 int i, ret = 0;
827
828 if ((bits & (1 << WB_async_congested)) &&
829 conf->pending_count >= max_queued_requests)
830 return 1;
831
832 rcu_read_lock();
833 for (i = 0;
834 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
835 && ret == 0;
836 i++) {
837 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
838 if (rdev && !test_bit(Faulty, &rdev->flags)) {
839 struct request_queue *q = bdev_get_queue(rdev->bdev);
840
841 ret |= bdi_congested(&q->backing_dev_info, bits);
842 }
843 }
844 rcu_read_unlock();
845 return ret;
846}
847
848static void flush_pending_writes(struct r10conf *conf)
849{
850 /* Any writes that have been queued but are awaiting
851 * bitmap updates get flushed here.
852 */
853 spin_lock_irq(&conf->device_lock);
854
855 if (conf->pending_bio_list.head) {
856 struct bio *bio;
857 bio = bio_list_get(&conf->pending_bio_list);
858 conf->pending_count = 0;
859 spin_unlock_irq(&conf->device_lock);
860 /* flush any pending bitmap writes to disk
861 * before proceeding w/ I/O */
862 bitmap_unplug(conf->mddev->bitmap);
863 wake_up(&conf->wait_barrier);
864
865 while (bio) { /* submit pending writes */
866 struct bio *next = bio->bi_next;
867 bio->bi_next = NULL;
868 if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
869 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
870 /* Just ignore it */
871 bio_endio(bio);
872 else
873 generic_make_request(bio);
874 bio = next;
875 }
876 } else
877 spin_unlock_irq(&conf->device_lock);
878}
879
880/* Barriers....
881 * Sometimes we need to suspend IO while we do something else,
882 * either some resync/recovery, or reconfigure the array.
883 * To do this we raise a 'barrier'.
884 * The 'barrier' is a counter that can be raised multiple times
885 * to count how many activities are happening which preclude
886 * normal IO.
887 * We can only raise the barrier if there is no pending IO.
888 * i.e. if nr_pending == 0.
889 * We choose only to raise the barrier if no-one is waiting for the
890 * barrier to go down. This means that as soon as an IO request
891 * is ready, no other operations which require a barrier will start
892 * until the IO request has had a chance.
893 *
894 * So: regular IO calls 'wait_barrier'. When that returns there
895 * is no backgroup IO happening, It must arrange to call
896 * allow_barrier when it has finished its IO.
897 * backgroup IO calls must call raise_barrier. Once that returns
898 * there is no normal IO happeing. It must arrange to call
899 * lower_barrier when the particular background IO completes.
900 */
901
902static void raise_barrier(struct r10conf *conf, int force)
903{
904 BUG_ON(force && !conf->barrier);
905 spin_lock_irq(&conf->resync_lock);
906
907 /* Wait until no block IO is waiting (unless 'force') */
908 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
909 conf->resync_lock);
910
911 /* block any new IO from starting */
912 conf->barrier++;
913
914 /* Now wait for all pending IO to complete */
915 wait_event_lock_irq(conf->wait_barrier,
916 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
917 conf->resync_lock);
918
919 spin_unlock_irq(&conf->resync_lock);
920}
921
922static void lower_barrier(struct r10conf *conf)
923{
924 unsigned long flags;
925 spin_lock_irqsave(&conf->resync_lock, flags);
926 conf->barrier--;
927 spin_unlock_irqrestore(&conf->resync_lock, flags);
928 wake_up(&conf->wait_barrier);
929}
930
931static void wait_barrier(struct r10conf *conf)
932{
933 spin_lock_irq(&conf->resync_lock);
934 if (conf->barrier) {
935 conf->nr_waiting++;
936 /* Wait for the barrier to drop.
937 * However if there are already pending
938 * requests (preventing the barrier from
939 * rising completely), and the
940 * pre-process bio queue isn't empty,
941 * then don't wait, as we need to empty
942 * that queue to get the nr_pending
943 * count down.
944 */
945 wait_event_lock_irq(conf->wait_barrier,
946 !conf->barrier ||
947 (conf->nr_pending &&
948 current->bio_list &&
949 !bio_list_empty(current->bio_list)),
950 conf->resync_lock);
951 conf->nr_waiting--;
952 }
953 conf->nr_pending++;
954 spin_unlock_irq(&conf->resync_lock);
955}
956
957static void allow_barrier(struct r10conf *conf)
958{
959 unsigned long flags;
960 spin_lock_irqsave(&conf->resync_lock, flags);
961 conf->nr_pending--;
962 spin_unlock_irqrestore(&conf->resync_lock, flags);
963 wake_up(&conf->wait_barrier);
964}
965
966static void freeze_array(struct r10conf *conf, int extra)
967{
968 /* stop syncio and normal IO and wait for everything to
969 * go quiet.
970 * We increment barrier and nr_waiting, and then
971 * wait until nr_pending match nr_queued+extra
972 * This is called in the context of one normal IO request
973 * that has failed. Thus any sync request that might be pending
974 * will be blocked by nr_pending, and we need to wait for
975 * pending IO requests to complete or be queued for re-try.
976 * Thus the number queued (nr_queued) plus this request (extra)
977 * must match the number of pending IOs (nr_pending) before
978 * we continue.
979 */
980 spin_lock_irq(&conf->resync_lock);
981 conf->barrier++;
982 conf->nr_waiting++;
983 wait_event_lock_irq_cmd(conf->wait_barrier,
984 conf->nr_pending == conf->nr_queued+extra,
985 conf->resync_lock,
986 flush_pending_writes(conf));
987
988 spin_unlock_irq(&conf->resync_lock);
989}
990
991static void unfreeze_array(struct r10conf *conf)
992{
993 /* reverse the effect of the freeze */
994 spin_lock_irq(&conf->resync_lock);
995 conf->barrier--;
996 conf->nr_waiting--;
997 wake_up(&conf->wait_barrier);
998 spin_unlock_irq(&conf->resync_lock);
999}
1000
1001static sector_t choose_data_offset(struct r10bio *r10_bio,
1002 struct md_rdev *rdev)
1003{
1004 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1005 test_bit(R10BIO_Previous, &r10_bio->state))
1006 return rdev->data_offset;
1007 else
1008 return rdev->new_data_offset;
1009}
1010
1011struct raid10_plug_cb {
1012 struct blk_plug_cb cb;
1013 struct bio_list pending;
1014 int pending_cnt;
1015};
1016
1017static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1018{
1019 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1020 cb);
1021 struct mddev *mddev = plug->cb.data;
1022 struct r10conf *conf = mddev->private;
1023 struct bio *bio;
1024
1025 if (from_schedule || current->bio_list) {
1026 spin_lock_irq(&conf->device_lock);
1027 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1028 conf->pending_count += plug->pending_cnt;
1029 spin_unlock_irq(&conf->device_lock);
1030 wake_up(&conf->wait_barrier);
1031 md_wakeup_thread(mddev->thread);
1032 kfree(plug);
1033 return;
1034 }
1035
1036 /* we aren't scheduling, so we can do the write-out directly. */
1037 bio = bio_list_get(&plug->pending);
1038 bitmap_unplug(mddev->bitmap);
1039 wake_up(&conf->wait_barrier);
1040
1041 while (bio) { /* submit pending writes */
1042 struct bio *next = bio->bi_next;
1043 bio->bi_next = NULL;
1044 if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1045 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1046 /* Just ignore it */
1047 bio_endio(bio);
1048 else
1049 generic_make_request(bio);
1050 bio = next;
1051 }
1052 kfree(plug);
1053}
1054
1055static void __make_request(struct mddev *mddev, struct bio *bio)
1056{
1057 struct r10conf *conf = mddev->private;
1058 struct r10bio *r10_bio;
1059 struct bio *read_bio;
1060 int i;
1061 const int op = bio_op(bio);
1062 const int rw = bio_data_dir(bio);
1063 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1064 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1065 unsigned long flags;
1066 struct md_rdev *blocked_rdev;
1067 struct blk_plug_cb *cb;
1068 struct raid10_plug_cb *plug = NULL;
1069 int sectors_handled;
1070 int max_sectors;
1071 int sectors;
1072
1073 /*
1074 * Register the new request and wait if the reconstruction
1075 * thread has put up a bar for new requests.
1076 * Continue immediately if no resync is active currently.
1077 */
1078 wait_barrier(conf);
1079
1080 sectors = bio_sectors(bio);
1081 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1082 bio->bi_iter.bi_sector < conf->reshape_progress &&
1083 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1084 /* IO spans the reshape position. Need to wait for
1085 * reshape to pass
1086 */
1087 allow_barrier(conf);
1088 wait_event(conf->wait_barrier,
1089 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1090 conf->reshape_progress >= bio->bi_iter.bi_sector +
1091 sectors);
1092 wait_barrier(conf);
1093 }
1094 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1095 bio_data_dir(bio) == WRITE &&
1096 (mddev->reshape_backwards
1097 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1098 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1099 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1100 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1101 /* Need to update reshape_position in metadata */
1102 mddev->reshape_position = conf->reshape_progress;
1103 set_mask_bits(&mddev->flags, 0,
1104 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1105 md_wakeup_thread(mddev->thread);
1106 wait_event(mddev->sb_wait,
1107 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1108
1109 conf->reshape_safe = mddev->reshape_position;
1110 }
1111
1112 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1113
1114 r10_bio->master_bio = bio;
1115 r10_bio->sectors = sectors;
1116
1117 r10_bio->mddev = mddev;
1118 r10_bio->sector = bio->bi_iter.bi_sector;
1119 r10_bio->state = 0;
1120
1121 /* We might need to issue multiple reads to different
1122 * devices if there are bad blocks around, so we keep
1123 * track of the number of reads in bio->bi_phys_segments.
1124 * If this is 0, there is only one r10_bio and no locking
1125 * will be needed when the request completes. If it is
1126 * non-zero, then it is the number of not-completed requests.
1127 */
1128 bio->bi_phys_segments = 0;
1129 bio_clear_flag(bio, BIO_SEG_VALID);
1130
1131 if (rw == READ) {
1132 /*
1133 * read balancing logic:
1134 */
1135 struct md_rdev *rdev;
1136 int slot;
1137
1138read_again:
1139 rdev = read_balance(conf, r10_bio, &max_sectors);
1140 if (!rdev) {
1141 raid_end_bio_io(r10_bio);
1142 return;
1143 }
1144 slot = r10_bio->read_slot;
1145
1146 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1147 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1148 max_sectors);
1149
1150 r10_bio->devs[slot].bio = read_bio;
1151 r10_bio->devs[slot].rdev = rdev;
1152
1153 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1154 choose_data_offset(r10_bio, rdev);
1155 read_bio->bi_bdev = rdev->bdev;
1156 read_bio->bi_end_io = raid10_end_read_request;
1157 bio_set_op_attrs(read_bio, op, do_sync);
1158 read_bio->bi_private = r10_bio;
1159
1160 if (max_sectors < r10_bio->sectors) {
1161 /* Could not read all from this device, so we will
1162 * need another r10_bio.
1163 */
1164 sectors_handled = (r10_bio->sector + max_sectors
1165 - bio->bi_iter.bi_sector);
1166 r10_bio->sectors = max_sectors;
1167 spin_lock_irq(&conf->device_lock);
1168 if (bio->bi_phys_segments == 0)
1169 bio->bi_phys_segments = 2;
1170 else
1171 bio->bi_phys_segments++;
1172 spin_unlock_irq(&conf->device_lock);
1173 /* Cannot call generic_make_request directly
1174 * as that will be queued in __generic_make_request
1175 * and subsequent mempool_alloc might block
1176 * waiting for it. so hand bio over to raid10d.
1177 */
1178 reschedule_retry(r10_bio);
1179
1180 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1181
1182 r10_bio->master_bio = bio;
1183 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1184 r10_bio->state = 0;
1185 r10_bio->mddev = mddev;
1186 r10_bio->sector = bio->bi_iter.bi_sector +
1187 sectors_handled;
1188 goto read_again;
1189 } else
1190 generic_make_request(read_bio);
1191 return;
1192 }
1193
1194 /*
1195 * WRITE:
1196 */
1197 if (conf->pending_count >= max_queued_requests) {
1198 md_wakeup_thread(mddev->thread);
1199 wait_event(conf->wait_barrier,
1200 conf->pending_count < max_queued_requests);
1201 }
1202 /* first select target devices under rcu_lock and
1203 * inc refcount on their rdev. Record them by setting
1204 * bios[x] to bio
1205 * If there are known/acknowledged bad blocks on any device
1206 * on which we have seen a write error, we want to avoid
1207 * writing to those blocks. This potentially requires several
1208 * writes to write around the bad blocks. Each set of writes
1209 * gets its own r10_bio with a set of bios attached. The number
1210 * of r10_bios is recored in bio->bi_phys_segments just as with
1211 * the read case.
1212 */
1213
1214 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1215 raid10_find_phys(conf, r10_bio);
1216retry_write:
1217 blocked_rdev = NULL;
1218 rcu_read_lock();
1219 max_sectors = r10_bio->sectors;
1220
1221 for (i = 0; i < conf->copies; i++) {
1222 int d = r10_bio->devs[i].devnum;
1223 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1224 struct md_rdev *rrdev = rcu_dereference(
1225 conf->mirrors[d].replacement);
1226 if (rdev == rrdev)
1227 rrdev = NULL;
1228 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1229 atomic_inc(&rdev->nr_pending);
1230 blocked_rdev = rdev;
1231 break;
1232 }
1233 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1234 atomic_inc(&rrdev->nr_pending);
1235 blocked_rdev = rrdev;
1236 break;
1237 }
1238 if (rdev && (test_bit(Faulty, &rdev->flags)))
1239 rdev = NULL;
1240 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1241 rrdev = NULL;
1242
1243 r10_bio->devs[i].bio = NULL;
1244 r10_bio->devs[i].repl_bio = NULL;
1245
1246 if (!rdev && !rrdev) {
1247 set_bit(R10BIO_Degraded, &r10_bio->state);
1248 continue;
1249 }
1250 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1251 sector_t first_bad;
1252 sector_t dev_sector = r10_bio->devs[i].addr;
1253 int bad_sectors;
1254 int is_bad;
1255
1256 is_bad = is_badblock(rdev, dev_sector,
1257 max_sectors,
1258 &first_bad, &bad_sectors);
1259 if (is_bad < 0) {
1260 /* Mustn't write here until the bad block
1261 * is acknowledged
1262 */
1263 atomic_inc(&rdev->nr_pending);
1264 set_bit(BlockedBadBlocks, &rdev->flags);
1265 blocked_rdev = rdev;
1266 break;
1267 }
1268 if (is_bad && first_bad <= dev_sector) {
1269 /* Cannot write here at all */
1270 bad_sectors -= (dev_sector - first_bad);
1271 if (bad_sectors < max_sectors)
1272 /* Mustn't write more than bad_sectors
1273 * to other devices yet
1274 */
1275 max_sectors = bad_sectors;
1276 /* We don't set R10BIO_Degraded as that
1277 * only applies if the disk is missing,
1278 * so it might be re-added, and we want to
1279 * know to recover this chunk.
1280 * In this case the device is here, and the
1281 * fact that this chunk is not in-sync is
1282 * recorded in the bad block log.
1283 */
1284 continue;
1285 }
1286 if (is_bad) {
1287 int good_sectors = first_bad - dev_sector;
1288 if (good_sectors < max_sectors)
1289 max_sectors = good_sectors;
1290 }
1291 }
1292 if (rdev) {
1293 r10_bio->devs[i].bio = bio;
1294 atomic_inc(&rdev->nr_pending);
1295 }
1296 if (rrdev) {
1297 r10_bio->devs[i].repl_bio = bio;
1298 atomic_inc(&rrdev->nr_pending);
1299 }
1300 }
1301 rcu_read_unlock();
1302
1303 if (unlikely(blocked_rdev)) {
1304 /* Have to wait for this device to get unblocked, then retry */
1305 int j;
1306 int d;
1307
1308 for (j = 0; j < i; j++) {
1309 if (r10_bio->devs[j].bio) {
1310 d = r10_bio->devs[j].devnum;
1311 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1312 }
1313 if (r10_bio->devs[j].repl_bio) {
1314 struct md_rdev *rdev;
1315 d = r10_bio->devs[j].devnum;
1316 rdev = conf->mirrors[d].replacement;
1317 if (!rdev) {
1318 /* Race with remove_disk */
1319 smp_mb();
1320 rdev = conf->mirrors[d].rdev;
1321 }
1322 rdev_dec_pending(rdev, mddev);
1323 }
1324 }
1325 allow_barrier(conf);
1326 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1327 wait_barrier(conf);
1328 goto retry_write;
1329 }
1330
1331 if (max_sectors < r10_bio->sectors) {
1332 /* We are splitting this into multiple parts, so
1333 * we need to prepare for allocating another r10_bio.
1334 */
1335 r10_bio->sectors = max_sectors;
1336 spin_lock_irq(&conf->device_lock);
1337 if (bio->bi_phys_segments == 0)
1338 bio->bi_phys_segments = 2;
1339 else
1340 bio->bi_phys_segments++;
1341 spin_unlock_irq(&conf->device_lock);
1342 }
1343 sectors_handled = r10_bio->sector + max_sectors -
1344 bio->bi_iter.bi_sector;
1345
1346 atomic_set(&r10_bio->remaining, 1);
1347 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1348
1349 for (i = 0; i < conf->copies; i++) {
1350 struct bio *mbio;
1351 int d = r10_bio->devs[i].devnum;
1352 if (r10_bio->devs[i].bio) {
1353 struct md_rdev *rdev = conf->mirrors[d].rdev;
1354 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1355 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1356 max_sectors);
1357 r10_bio->devs[i].bio = mbio;
1358
1359 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1360 choose_data_offset(r10_bio,
1361 rdev));
1362 mbio->bi_bdev = rdev->bdev;
1363 mbio->bi_end_io = raid10_end_write_request;
1364 bio_set_op_attrs(mbio, op, do_sync | do_fua);
1365 mbio->bi_private = r10_bio;
1366
1367 atomic_inc(&r10_bio->remaining);
1368
1369 cb = blk_check_plugged(raid10_unplug, mddev,
1370 sizeof(*plug));
1371 if (cb)
1372 plug = container_of(cb, struct raid10_plug_cb,
1373 cb);
1374 else
1375 plug = NULL;
1376 spin_lock_irqsave(&conf->device_lock, flags);
1377 if (plug) {
1378 bio_list_add(&plug->pending, mbio);
1379 plug->pending_cnt++;
1380 } else {
1381 bio_list_add(&conf->pending_bio_list, mbio);
1382 conf->pending_count++;
1383 }
1384 spin_unlock_irqrestore(&conf->device_lock, flags);
1385 if (!plug)
1386 md_wakeup_thread(mddev->thread);
1387 }
1388
1389 if (r10_bio->devs[i].repl_bio) {
1390 struct md_rdev *rdev = conf->mirrors[d].replacement;
1391 if (rdev == NULL) {
1392 /* Replacement just got moved to main 'rdev' */
1393 smp_mb();
1394 rdev = conf->mirrors[d].rdev;
1395 }
1396 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1397 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1398 max_sectors);
1399 r10_bio->devs[i].repl_bio = mbio;
1400
1401 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1402 choose_data_offset(
1403 r10_bio, rdev));
1404 mbio->bi_bdev = rdev->bdev;
1405 mbio->bi_end_io = raid10_end_write_request;
1406 bio_set_op_attrs(mbio, op, do_sync | do_fua);
1407 mbio->bi_private = r10_bio;
1408
1409 atomic_inc(&r10_bio->remaining);
1410 spin_lock_irqsave(&conf->device_lock, flags);
1411 bio_list_add(&conf->pending_bio_list, mbio);
1412 conf->pending_count++;
1413 spin_unlock_irqrestore(&conf->device_lock, flags);
1414 if (!mddev_check_plugged(mddev))
1415 md_wakeup_thread(mddev->thread);
1416 }
1417 }
1418
1419 /* Don't remove the bias on 'remaining' (one_write_done) until
1420 * after checking if we need to go around again.
1421 */
1422
1423 if (sectors_handled < bio_sectors(bio)) {
1424 one_write_done(r10_bio);
1425 /* We need another r10_bio. It has already been counted
1426 * in bio->bi_phys_segments.
1427 */
1428 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1429
1430 r10_bio->master_bio = bio;
1431 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1432
1433 r10_bio->mddev = mddev;
1434 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1435 r10_bio->state = 0;
1436 goto retry_write;
1437 }
1438 one_write_done(r10_bio);
1439}
1440
1441static void raid10_make_request(struct mddev *mddev, struct bio *bio)
1442{
1443 struct r10conf *conf = mddev->private;
1444 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1445 int chunk_sects = chunk_mask + 1;
1446
1447 struct bio *split;
1448
1449 if (unlikely(bio->bi_rw & REQ_PREFLUSH)) {
1450 md_flush_request(mddev, bio);
1451 return;
1452 }
1453
1454 md_write_start(mddev, bio);
1455
1456 do {
1457
1458 /*
1459 * If this request crosses a chunk boundary, we need to split
1460 * it.
1461 */
1462 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1463 bio_sectors(bio) > chunk_sects
1464 && (conf->geo.near_copies < conf->geo.raid_disks
1465 || conf->prev.near_copies <
1466 conf->prev.raid_disks))) {
1467 split = bio_split(bio, chunk_sects -
1468 (bio->bi_iter.bi_sector &
1469 (chunk_sects - 1)),
1470 GFP_NOIO, fs_bio_set);
1471 bio_chain(split, bio);
1472 } else {
1473 split = bio;
1474 }
1475
1476 __make_request(mddev, split);
1477 } while (split != bio);
1478
1479 /* In case raid10d snuck in to freeze_array */
1480 wake_up(&conf->wait_barrier);
1481}
1482
1483static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1484{
1485 struct r10conf *conf = mddev->private;
1486 int i;
1487
1488 if (conf->geo.near_copies < conf->geo.raid_disks)
1489 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1490 if (conf->geo.near_copies > 1)
1491 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1492 if (conf->geo.far_copies > 1) {
1493 if (conf->geo.far_offset)
1494 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1495 else
1496 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1497 if (conf->geo.far_set_size != conf->geo.raid_disks)
1498 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1499 }
1500 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1501 conf->geo.raid_disks - mddev->degraded);
1502 for (i = 0; i < conf->geo.raid_disks; i++)
1503 seq_printf(seq, "%s",
1504 conf->mirrors[i].rdev &&
1505 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1506 seq_printf(seq, "]");
1507}
1508
1509/* check if there are enough drives for
1510 * every block to appear on atleast one.
1511 * Don't consider the device numbered 'ignore'
1512 * as we might be about to remove it.
1513 */
1514static int _enough(struct r10conf *conf, int previous, int ignore)
1515{
1516 int first = 0;
1517 int has_enough = 0;
1518 int disks, ncopies;
1519 if (previous) {
1520 disks = conf->prev.raid_disks;
1521 ncopies = conf->prev.near_copies;
1522 } else {
1523 disks = conf->geo.raid_disks;
1524 ncopies = conf->geo.near_copies;
1525 }
1526
1527 rcu_read_lock();
1528 do {
1529 int n = conf->copies;
1530 int cnt = 0;
1531 int this = first;
1532 while (n--) {
1533 struct md_rdev *rdev;
1534 if (this != ignore &&
1535 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1536 test_bit(In_sync, &rdev->flags))
1537 cnt++;
1538 this = (this+1) % disks;
1539 }
1540 if (cnt == 0)
1541 goto out;
1542 first = (first + ncopies) % disks;
1543 } while (first != 0);
1544 has_enough = 1;
1545out:
1546 rcu_read_unlock();
1547 return has_enough;
1548}
1549
1550static int enough(struct r10conf *conf, int ignore)
1551{
1552 /* when calling 'enough', both 'prev' and 'geo' must
1553 * be stable.
1554 * This is ensured if ->reconfig_mutex or ->device_lock
1555 * is held.
1556 */
1557 return _enough(conf, 0, ignore) &&
1558 _enough(conf, 1, ignore);
1559}
1560
1561static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1562{
1563 char b[BDEVNAME_SIZE];
1564 struct r10conf *conf = mddev->private;
1565 unsigned long flags;
1566
1567 /*
1568 * If it is not operational, then we have already marked it as dead
1569 * else if it is the last working disks, ignore the error, let the
1570 * next level up know.
1571 * else mark the drive as failed
1572 */
1573 spin_lock_irqsave(&conf->device_lock, flags);
1574 if (test_bit(In_sync, &rdev->flags)
1575 && !enough(conf, rdev->raid_disk)) {
1576 /*
1577 * Don't fail the drive, just return an IO error.
1578 */
1579 spin_unlock_irqrestore(&conf->device_lock, flags);
1580 return;
1581 }
1582 if (test_and_clear_bit(In_sync, &rdev->flags))
1583 mddev->degraded++;
1584 /*
1585 * If recovery is running, make sure it aborts.
1586 */
1587 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1588 set_bit(Blocked, &rdev->flags);
1589 set_bit(Faulty, &rdev->flags);
1590 set_mask_bits(&mddev->flags, 0,
1591 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1592 spin_unlock_irqrestore(&conf->device_lock, flags);
1593 printk(KERN_ALERT
1594 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1595 "md/raid10:%s: Operation continuing on %d devices.\n",
1596 mdname(mddev), bdevname(rdev->bdev, b),
1597 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1598}
1599
1600static void print_conf(struct r10conf *conf)
1601{
1602 int i;
1603 struct raid10_info *tmp;
1604
1605 printk(KERN_DEBUG "RAID10 conf printout:\n");
1606 if (!conf) {
1607 printk(KERN_DEBUG "(!conf)\n");
1608 return;
1609 }
1610 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1611 conf->geo.raid_disks);
1612
1613 for (i = 0; i < conf->geo.raid_disks; i++) {
1614 char b[BDEVNAME_SIZE];
1615 tmp = conf->mirrors + i;
1616 if (tmp->rdev)
1617 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1618 i, !test_bit(In_sync, &tmp->rdev->flags),
1619 !test_bit(Faulty, &tmp->rdev->flags),
1620 bdevname(tmp->rdev->bdev,b));
1621 }
1622}
1623
1624static void close_sync(struct r10conf *conf)
1625{
1626 wait_barrier(conf);
1627 allow_barrier(conf);
1628
1629 mempool_destroy(conf->r10buf_pool);
1630 conf->r10buf_pool = NULL;
1631}
1632
1633static int raid10_spare_active(struct mddev *mddev)
1634{
1635 int i;
1636 struct r10conf *conf = mddev->private;
1637 struct raid10_info *tmp;
1638 int count = 0;
1639 unsigned long flags;
1640
1641 /*
1642 * Find all non-in_sync disks within the RAID10 configuration
1643 * and mark them in_sync
1644 */
1645 for (i = 0; i < conf->geo.raid_disks; i++) {
1646 tmp = conf->mirrors + i;
1647 if (tmp->replacement
1648 && tmp->replacement->recovery_offset == MaxSector
1649 && !test_bit(Faulty, &tmp->replacement->flags)
1650 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1651 /* Replacement has just become active */
1652 if (!tmp->rdev
1653 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1654 count++;
1655 if (tmp->rdev) {
1656 /* Replaced device not technically faulty,
1657 * but we need to be sure it gets removed
1658 * and never re-added.
1659 */
1660 set_bit(Faulty, &tmp->rdev->flags);
1661 sysfs_notify_dirent_safe(
1662 tmp->rdev->sysfs_state);
1663 }
1664 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1665 } else if (tmp->rdev
1666 && tmp->rdev->recovery_offset == MaxSector
1667 && !test_bit(Faulty, &tmp->rdev->flags)
1668 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1669 count++;
1670 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1671 }
1672 }
1673 spin_lock_irqsave(&conf->device_lock, flags);
1674 mddev->degraded -= count;
1675 spin_unlock_irqrestore(&conf->device_lock, flags);
1676
1677 print_conf(conf);
1678 return count;
1679}
1680
1681static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1682{
1683 struct r10conf *conf = mddev->private;
1684 int err = -EEXIST;
1685 int mirror;
1686 int first = 0;
1687 int last = conf->geo.raid_disks - 1;
1688
1689 if (mddev->recovery_cp < MaxSector)
1690 /* only hot-add to in-sync arrays, as recovery is
1691 * very different from resync
1692 */
1693 return -EBUSY;
1694 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1695 return -EINVAL;
1696
1697 if (md_integrity_add_rdev(rdev, mddev))
1698 return -ENXIO;
1699
1700 if (rdev->raid_disk >= 0)
1701 first = last = rdev->raid_disk;
1702
1703 if (rdev->saved_raid_disk >= first &&
1704 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1705 mirror = rdev->saved_raid_disk;
1706 else
1707 mirror = first;
1708 for ( ; mirror <= last ; mirror++) {
1709 struct raid10_info *p = &conf->mirrors[mirror];
1710 if (p->recovery_disabled == mddev->recovery_disabled)
1711 continue;
1712 if (p->rdev) {
1713 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1714 p->replacement != NULL)
1715 continue;
1716 clear_bit(In_sync, &rdev->flags);
1717 set_bit(Replacement, &rdev->flags);
1718 rdev->raid_disk = mirror;
1719 err = 0;
1720 if (mddev->gendisk)
1721 disk_stack_limits(mddev->gendisk, rdev->bdev,
1722 rdev->data_offset << 9);
1723 conf->fullsync = 1;
1724 rcu_assign_pointer(p->replacement, rdev);
1725 break;
1726 }
1727
1728 if (mddev->gendisk)
1729 disk_stack_limits(mddev->gendisk, rdev->bdev,
1730 rdev->data_offset << 9);
1731
1732 p->head_position = 0;
1733 p->recovery_disabled = mddev->recovery_disabled - 1;
1734 rdev->raid_disk = mirror;
1735 err = 0;
1736 if (rdev->saved_raid_disk != mirror)
1737 conf->fullsync = 1;
1738 rcu_assign_pointer(p->rdev, rdev);
1739 break;
1740 }
1741 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1742 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1743
1744 print_conf(conf);
1745 return err;
1746}
1747
1748static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1749{
1750 struct r10conf *conf = mddev->private;
1751 int err = 0;
1752 int number = rdev->raid_disk;
1753 struct md_rdev **rdevp;
1754 struct raid10_info *p = conf->mirrors + number;
1755
1756 print_conf(conf);
1757 if (rdev == p->rdev)
1758 rdevp = &p->rdev;
1759 else if (rdev == p->replacement)
1760 rdevp = &p->replacement;
1761 else
1762 return 0;
1763
1764 if (test_bit(In_sync, &rdev->flags) ||
1765 atomic_read(&rdev->nr_pending)) {
1766 err = -EBUSY;
1767 goto abort;
1768 }
1769 /* Only remove faulty devices if recovery
1770 * is not possible.
1771 */
1772 if (!test_bit(Faulty, &rdev->flags) &&
1773 mddev->recovery_disabled != p->recovery_disabled &&
1774 (!p->replacement || p->replacement == rdev) &&
1775 number < conf->geo.raid_disks &&
1776 enough(conf, -1)) {
1777 err = -EBUSY;
1778 goto abort;
1779 }
1780 *rdevp = NULL;
1781 synchronize_rcu();
1782 if (atomic_read(&rdev->nr_pending)) {
1783 /* lost the race, try later */
1784 err = -EBUSY;
1785 *rdevp = rdev;
1786 goto abort;
1787 } else if (p->replacement) {
1788 /* We must have just cleared 'rdev' */
1789 p->rdev = p->replacement;
1790 clear_bit(Replacement, &p->replacement->flags);
1791 smp_mb(); /* Make sure other CPUs may see both as identical
1792 * but will never see neither -- if they are careful.
1793 */
1794 p->replacement = NULL;
1795 clear_bit(WantReplacement, &rdev->flags);
1796 } else
1797 /* We might have just remove the Replacement as faulty
1798 * Clear the flag just in case
1799 */
1800 clear_bit(WantReplacement, &rdev->flags);
1801
1802 err = md_integrity_register(mddev);
1803
1804abort:
1805
1806 print_conf(conf);
1807 return err;
1808}
1809
1810static void end_sync_read(struct bio *bio)
1811{
1812 struct r10bio *r10_bio = bio->bi_private;
1813 struct r10conf *conf = r10_bio->mddev->private;
1814 int d;
1815
1816 if (bio == r10_bio->master_bio) {
1817 /* this is a reshape read */
1818 d = r10_bio->read_slot; /* really the read dev */
1819 } else
1820 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1821
1822 if (!bio->bi_error)
1823 set_bit(R10BIO_Uptodate, &r10_bio->state);
1824 else
1825 /* The write handler will notice the lack of
1826 * R10BIO_Uptodate and record any errors etc
1827 */
1828 atomic_add(r10_bio->sectors,
1829 &conf->mirrors[d].rdev->corrected_errors);
1830
1831 /* for reconstruct, we always reschedule after a read.
1832 * for resync, only after all reads
1833 */
1834 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1835 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1836 atomic_dec_and_test(&r10_bio->remaining)) {
1837 /* we have read all the blocks,
1838 * do the comparison in process context in raid10d
1839 */
1840 reschedule_retry(r10_bio);
1841 }
1842}
1843
1844static void end_sync_request(struct r10bio *r10_bio)
1845{
1846 struct mddev *mddev = r10_bio->mddev;
1847
1848 while (atomic_dec_and_test(&r10_bio->remaining)) {
1849 if (r10_bio->master_bio == NULL) {
1850 /* the primary of several recovery bios */
1851 sector_t s = r10_bio->sectors;
1852 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1853 test_bit(R10BIO_WriteError, &r10_bio->state))
1854 reschedule_retry(r10_bio);
1855 else
1856 put_buf(r10_bio);
1857 md_done_sync(mddev, s, 1);
1858 break;
1859 } else {
1860 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1861 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1862 test_bit(R10BIO_WriteError, &r10_bio->state))
1863 reschedule_retry(r10_bio);
1864 else
1865 put_buf(r10_bio);
1866 r10_bio = r10_bio2;
1867 }
1868 }
1869}
1870
1871static void end_sync_write(struct bio *bio)
1872{
1873 struct r10bio *r10_bio = bio->bi_private;
1874 struct mddev *mddev = r10_bio->mddev;
1875 struct r10conf *conf = mddev->private;
1876 int d;
1877 sector_t first_bad;
1878 int bad_sectors;
1879 int slot;
1880 int repl;
1881 struct md_rdev *rdev = NULL;
1882
1883 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1884 if (repl)
1885 rdev = conf->mirrors[d].replacement;
1886 else
1887 rdev = conf->mirrors[d].rdev;
1888
1889 if (bio->bi_error) {
1890 if (repl)
1891 md_error(mddev, rdev);
1892 else {
1893 set_bit(WriteErrorSeen, &rdev->flags);
1894 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1895 set_bit(MD_RECOVERY_NEEDED,
1896 &rdev->mddev->recovery);
1897 set_bit(R10BIO_WriteError, &r10_bio->state);
1898 }
1899 } else if (is_badblock(rdev,
1900 r10_bio->devs[slot].addr,
1901 r10_bio->sectors,
1902 &first_bad, &bad_sectors))
1903 set_bit(R10BIO_MadeGood, &r10_bio->state);
1904
1905 rdev_dec_pending(rdev, mddev);
1906
1907 end_sync_request(r10_bio);
1908}
1909
1910/*
1911 * Note: sync and recover and handled very differently for raid10
1912 * This code is for resync.
1913 * For resync, we read through virtual addresses and read all blocks.
1914 * If there is any error, we schedule a write. The lowest numbered
1915 * drive is authoritative.
1916 * However requests come for physical address, so we need to map.
1917 * For every physical address there are raid_disks/copies virtual addresses,
1918 * which is always are least one, but is not necessarly an integer.
1919 * This means that a physical address can span multiple chunks, so we may
1920 * have to submit multiple io requests for a single sync request.
1921 */
1922/*
1923 * We check if all blocks are in-sync and only write to blocks that
1924 * aren't in sync
1925 */
1926static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1927{
1928 struct r10conf *conf = mddev->private;
1929 int i, first;
1930 struct bio *tbio, *fbio;
1931 int vcnt;
1932
1933 atomic_set(&r10_bio->remaining, 1);
1934
1935 /* find the first device with a block */
1936 for (i=0; i<conf->copies; i++)
1937 if (!r10_bio->devs[i].bio->bi_error)
1938 break;
1939
1940 if (i == conf->copies)
1941 goto done;
1942
1943 first = i;
1944 fbio = r10_bio->devs[i].bio;
1945 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
1946 fbio->bi_iter.bi_idx = 0;
1947
1948 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1949 /* now find blocks with errors */
1950 for (i=0 ; i < conf->copies ; i++) {
1951 int j, d;
1952
1953 tbio = r10_bio->devs[i].bio;
1954
1955 if (tbio->bi_end_io != end_sync_read)
1956 continue;
1957 if (i == first)
1958 continue;
1959 if (!r10_bio->devs[i].bio->bi_error) {
1960 /* We know that the bi_io_vec layout is the same for
1961 * both 'first' and 'i', so we just compare them.
1962 * All vec entries are PAGE_SIZE;
1963 */
1964 int sectors = r10_bio->sectors;
1965 for (j = 0; j < vcnt; j++) {
1966 int len = PAGE_SIZE;
1967 if (sectors < (len / 512))
1968 len = sectors * 512;
1969 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1970 page_address(tbio->bi_io_vec[j].bv_page),
1971 len))
1972 break;
1973 sectors -= len/512;
1974 }
1975 if (j == vcnt)
1976 continue;
1977 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
1978 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1979 /* Don't fix anything. */
1980 continue;
1981 }
1982 /* Ok, we need to write this bio, either to correct an
1983 * inconsistency or to correct an unreadable block.
1984 * First we need to fixup bv_offset, bv_len and
1985 * bi_vecs, as the read request might have corrupted these
1986 */
1987 bio_reset(tbio);
1988
1989 tbio->bi_vcnt = vcnt;
1990 tbio->bi_iter.bi_size = fbio->bi_iter.bi_size;
1991 tbio->bi_private = r10_bio;
1992 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1993 tbio->bi_end_io = end_sync_write;
1994 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
1995
1996 bio_copy_data(tbio, fbio);
1997
1998 d = r10_bio->devs[i].devnum;
1999 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2000 atomic_inc(&r10_bio->remaining);
2001 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2002
2003 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2004 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2005 generic_make_request(tbio);
2006 }
2007
2008 /* Now write out to any replacement devices
2009 * that are active
2010 */
2011 for (i = 0; i < conf->copies; i++) {
2012 int d;
2013
2014 tbio = r10_bio->devs[i].repl_bio;
2015 if (!tbio || !tbio->bi_end_io)
2016 continue;
2017 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2018 && r10_bio->devs[i].bio != fbio)
2019 bio_copy_data(tbio, fbio);
2020 d = r10_bio->devs[i].devnum;
2021 atomic_inc(&r10_bio->remaining);
2022 md_sync_acct(conf->mirrors[d].replacement->bdev,
2023 bio_sectors(tbio));
2024 generic_make_request(tbio);
2025 }
2026
2027done:
2028 if (atomic_dec_and_test(&r10_bio->remaining)) {
2029 md_done_sync(mddev, r10_bio->sectors, 1);
2030 put_buf(r10_bio);
2031 }
2032}
2033
2034/*
2035 * Now for the recovery code.
2036 * Recovery happens across physical sectors.
2037 * We recover all non-is_sync drives by finding the virtual address of
2038 * each, and then choose a working drive that also has that virt address.
2039 * There is a separate r10_bio for each non-in_sync drive.
2040 * Only the first two slots are in use. The first for reading,
2041 * The second for writing.
2042 *
2043 */
2044static void fix_recovery_read_error(struct r10bio *r10_bio)
2045{
2046 /* We got a read error during recovery.
2047 * We repeat the read in smaller page-sized sections.
2048 * If a read succeeds, write it to the new device or record
2049 * a bad block if we cannot.
2050 * If a read fails, record a bad block on both old and
2051 * new devices.
2052 */
2053 struct mddev *mddev = r10_bio->mddev;
2054 struct r10conf *conf = mddev->private;
2055 struct bio *bio = r10_bio->devs[0].bio;
2056 sector_t sect = 0;
2057 int sectors = r10_bio->sectors;
2058 int idx = 0;
2059 int dr = r10_bio->devs[0].devnum;
2060 int dw = r10_bio->devs[1].devnum;
2061
2062 while (sectors) {
2063 int s = sectors;
2064 struct md_rdev *rdev;
2065 sector_t addr;
2066 int ok;
2067
2068 if (s > (PAGE_SIZE>>9))
2069 s = PAGE_SIZE >> 9;
2070
2071 rdev = conf->mirrors[dr].rdev;
2072 addr = r10_bio->devs[0].addr + sect,
2073 ok = sync_page_io(rdev,
2074 addr,
2075 s << 9,
2076 bio->bi_io_vec[idx].bv_page,
2077 REQ_OP_READ, 0, false);
2078 if (ok) {
2079 rdev = conf->mirrors[dw].rdev;
2080 addr = r10_bio->devs[1].addr + sect;
2081 ok = sync_page_io(rdev,
2082 addr,
2083 s << 9,
2084 bio->bi_io_vec[idx].bv_page,
2085 REQ_OP_WRITE, 0, false);
2086 if (!ok) {
2087 set_bit(WriteErrorSeen, &rdev->flags);
2088 if (!test_and_set_bit(WantReplacement,
2089 &rdev->flags))
2090 set_bit(MD_RECOVERY_NEEDED,
2091 &rdev->mddev->recovery);
2092 }
2093 }
2094 if (!ok) {
2095 /* We don't worry if we cannot set a bad block -
2096 * it really is bad so there is no loss in not
2097 * recording it yet
2098 */
2099 rdev_set_badblocks(rdev, addr, s, 0);
2100
2101 if (rdev != conf->mirrors[dw].rdev) {
2102 /* need bad block on destination too */
2103 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2104 addr = r10_bio->devs[1].addr + sect;
2105 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2106 if (!ok) {
2107 /* just abort the recovery */
2108 printk(KERN_NOTICE
2109 "md/raid10:%s: recovery aborted"
2110 " due to read error\n",
2111 mdname(mddev));
2112
2113 conf->mirrors[dw].recovery_disabled
2114 = mddev->recovery_disabled;
2115 set_bit(MD_RECOVERY_INTR,
2116 &mddev->recovery);
2117 break;
2118 }
2119 }
2120 }
2121
2122 sectors -= s;
2123 sect += s;
2124 idx++;
2125 }
2126}
2127
2128static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2129{
2130 struct r10conf *conf = mddev->private;
2131 int d;
2132 struct bio *wbio, *wbio2;
2133
2134 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2135 fix_recovery_read_error(r10_bio);
2136 end_sync_request(r10_bio);
2137 return;
2138 }
2139
2140 /*
2141 * share the pages with the first bio
2142 * and submit the write request
2143 */
2144 d = r10_bio->devs[1].devnum;
2145 wbio = r10_bio->devs[1].bio;
2146 wbio2 = r10_bio->devs[1].repl_bio;
2147 /* Need to test wbio2->bi_end_io before we call
2148 * generic_make_request as if the former is NULL,
2149 * the latter is free to free wbio2.
2150 */
2151 if (wbio2 && !wbio2->bi_end_io)
2152 wbio2 = NULL;
2153 if (wbio->bi_end_io) {
2154 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2155 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2156 generic_make_request(wbio);
2157 }
2158 if (wbio2) {
2159 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2160 md_sync_acct(conf->mirrors[d].replacement->bdev,
2161 bio_sectors(wbio2));
2162 generic_make_request(wbio2);
2163 }
2164}
2165
2166/*
2167 * Used by fix_read_error() to decay the per rdev read_errors.
2168 * We halve the read error count for every hour that has elapsed
2169 * since the last recorded read error.
2170 *
2171 */
2172static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2173{
2174 struct timespec cur_time_mon;
2175 unsigned long hours_since_last;
2176 unsigned int read_errors = atomic_read(&rdev->read_errors);
2177
2178 ktime_get_ts(&cur_time_mon);
2179
2180 if (rdev->last_read_error.tv_sec == 0 &&
2181 rdev->last_read_error.tv_nsec == 0) {
2182 /* first time we've seen a read error */
2183 rdev->last_read_error = cur_time_mon;
2184 return;
2185 }
2186
2187 hours_since_last = (cur_time_mon.tv_sec -
2188 rdev->last_read_error.tv_sec) / 3600;
2189
2190 rdev->last_read_error = cur_time_mon;
2191
2192 /*
2193 * if hours_since_last is > the number of bits in read_errors
2194 * just set read errors to 0. We do this to avoid
2195 * overflowing the shift of read_errors by hours_since_last.
2196 */
2197 if (hours_since_last >= 8 * sizeof(read_errors))
2198 atomic_set(&rdev->read_errors, 0);
2199 else
2200 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2201}
2202
2203static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2204 int sectors, struct page *page, int rw)
2205{
2206 sector_t first_bad;
2207 int bad_sectors;
2208
2209 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2210 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2211 return -1;
2212 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2213 /* success */
2214 return 1;
2215 if (rw == WRITE) {
2216 set_bit(WriteErrorSeen, &rdev->flags);
2217 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2218 set_bit(MD_RECOVERY_NEEDED,
2219 &rdev->mddev->recovery);
2220 }
2221 /* need to record an error - either for the block or the device */
2222 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2223 md_error(rdev->mddev, rdev);
2224 return 0;
2225}
2226
2227/*
2228 * This is a kernel thread which:
2229 *
2230 * 1. Retries failed read operations on working mirrors.
2231 * 2. Updates the raid superblock when problems encounter.
2232 * 3. Performs writes following reads for array synchronising.
2233 */
2234
2235static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2236{
2237 int sect = 0; /* Offset from r10_bio->sector */
2238 int sectors = r10_bio->sectors;
2239 struct md_rdev*rdev;
2240 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2241 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2242
2243 /* still own a reference to this rdev, so it cannot
2244 * have been cleared recently.
2245 */
2246 rdev = conf->mirrors[d].rdev;
2247
2248 if (test_bit(Faulty, &rdev->flags))
2249 /* drive has already been failed, just ignore any
2250 more fix_read_error() attempts */
2251 return;
2252
2253 check_decay_read_errors(mddev, rdev);
2254 atomic_inc(&rdev->read_errors);
2255 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2256 char b[BDEVNAME_SIZE];
2257 bdevname(rdev->bdev, b);
2258
2259 printk(KERN_NOTICE
2260 "md/raid10:%s: %s: Raid device exceeded "
2261 "read_error threshold [cur %d:max %d]\n",
2262 mdname(mddev), b,
2263 atomic_read(&rdev->read_errors), max_read_errors);
2264 printk(KERN_NOTICE
2265 "md/raid10:%s: %s: Failing raid device\n",
2266 mdname(mddev), b);
2267 md_error(mddev, conf->mirrors[d].rdev);
2268 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2269 return;
2270 }
2271
2272 while(sectors) {
2273 int s = sectors;
2274 int sl = r10_bio->read_slot;
2275 int success = 0;
2276 int start;
2277
2278 if (s > (PAGE_SIZE>>9))
2279 s = PAGE_SIZE >> 9;
2280
2281 rcu_read_lock();
2282 do {
2283 sector_t first_bad;
2284 int bad_sectors;
2285
2286 d = r10_bio->devs[sl].devnum;
2287 rdev = rcu_dereference(conf->mirrors[d].rdev);
2288 if (rdev &&
2289 test_bit(In_sync, &rdev->flags) &&
2290 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2291 &first_bad, &bad_sectors) == 0) {
2292 atomic_inc(&rdev->nr_pending);
2293 rcu_read_unlock();
2294 success = sync_page_io(rdev,
2295 r10_bio->devs[sl].addr +
2296 sect,
2297 s<<9,
2298 conf->tmppage,
2299 REQ_OP_READ, 0, false);
2300 rdev_dec_pending(rdev, mddev);
2301 rcu_read_lock();
2302 if (success)
2303 break;
2304 }
2305 sl++;
2306 if (sl == conf->copies)
2307 sl = 0;
2308 } while (!success && sl != r10_bio->read_slot);
2309 rcu_read_unlock();
2310
2311 if (!success) {
2312 /* Cannot read from anywhere, just mark the block
2313 * as bad on the first device to discourage future
2314 * reads.
2315 */
2316 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2317 rdev = conf->mirrors[dn].rdev;
2318
2319 if (!rdev_set_badblocks(
2320 rdev,
2321 r10_bio->devs[r10_bio->read_slot].addr
2322 + sect,
2323 s, 0)) {
2324 md_error(mddev, rdev);
2325 r10_bio->devs[r10_bio->read_slot].bio
2326 = IO_BLOCKED;
2327 }
2328 break;
2329 }
2330
2331 start = sl;
2332 /* write it back and re-read */
2333 rcu_read_lock();
2334 while (sl != r10_bio->read_slot) {
2335 char b[BDEVNAME_SIZE];
2336
2337 if (sl==0)
2338 sl = conf->copies;
2339 sl--;
2340 d = r10_bio->devs[sl].devnum;
2341 rdev = rcu_dereference(conf->mirrors[d].rdev);
2342 if (!rdev ||
2343 !test_bit(In_sync, &rdev->flags))
2344 continue;
2345
2346 atomic_inc(&rdev->nr_pending);
2347 rcu_read_unlock();
2348 if (r10_sync_page_io(rdev,
2349 r10_bio->devs[sl].addr +
2350 sect,
2351 s, conf->tmppage, WRITE)
2352 == 0) {
2353 /* Well, this device is dead */
2354 printk(KERN_NOTICE
2355 "md/raid10:%s: read correction "
2356 "write failed"
2357 " (%d sectors at %llu on %s)\n",
2358 mdname(mddev), s,
2359 (unsigned long long)(
2360 sect +
2361 choose_data_offset(r10_bio,
2362 rdev)),
2363 bdevname(rdev->bdev, b));
2364 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2365 "drive\n",
2366 mdname(mddev),
2367 bdevname(rdev->bdev, b));
2368 }
2369 rdev_dec_pending(rdev, mddev);
2370 rcu_read_lock();
2371 }
2372 sl = start;
2373 while (sl != r10_bio->read_slot) {
2374 char b[BDEVNAME_SIZE];
2375
2376 if (sl==0)
2377 sl = conf->copies;
2378 sl--;
2379 d = r10_bio->devs[sl].devnum;
2380 rdev = rcu_dereference(conf->mirrors[d].rdev);
2381 if (!rdev ||
2382 !test_bit(In_sync, &rdev->flags))
2383 continue;
2384
2385 atomic_inc(&rdev->nr_pending);
2386 rcu_read_unlock();
2387 switch (r10_sync_page_io(rdev,
2388 r10_bio->devs[sl].addr +
2389 sect,
2390 s, conf->tmppage,
2391 READ)) {
2392 case 0:
2393 /* Well, this device is dead */
2394 printk(KERN_NOTICE
2395 "md/raid10:%s: unable to read back "
2396 "corrected sectors"
2397 " (%d sectors at %llu on %s)\n",
2398 mdname(mddev), s,
2399 (unsigned long long)(
2400 sect +
2401 choose_data_offset(r10_bio, rdev)),
2402 bdevname(rdev->bdev, b));
2403 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2404 "drive\n",
2405 mdname(mddev),
2406 bdevname(rdev->bdev, b));
2407 break;
2408 case 1:
2409 printk(KERN_INFO
2410 "md/raid10:%s: read error corrected"
2411 " (%d sectors at %llu on %s)\n",
2412 mdname(mddev), s,
2413 (unsigned long long)(
2414 sect +
2415 choose_data_offset(r10_bio, rdev)),
2416 bdevname(rdev->bdev, b));
2417 atomic_add(s, &rdev->corrected_errors);
2418 }
2419
2420 rdev_dec_pending(rdev, mddev);
2421 rcu_read_lock();
2422 }
2423 rcu_read_unlock();
2424
2425 sectors -= s;
2426 sect += s;
2427 }
2428}
2429
2430static int narrow_write_error(struct r10bio *r10_bio, int i)
2431{
2432 struct bio *bio = r10_bio->master_bio;
2433 struct mddev *mddev = r10_bio->mddev;
2434 struct r10conf *conf = mddev->private;
2435 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2436 /* bio has the data to be written to slot 'i' where
2437 * we just recently had a write error.
2438 * We repeatedly clone the bio and trim down to one block,
2439 * then try the write. Where the write fails we record
2440 * a bad block.
2441 * It is conceivable that the bio doesn't exactly align with
2442 * blocks. We must handle this.
2443 *
2444 * We currently own a reference to the rdev.
2445 */
2446
2447 int block_sectors;
2448 sector_t sector;
2449 int sectors;
2450 int sect_to_write = r10_bio->sectors;
2451 int ok = 1;
2452
2453 if (rdev->badblocks.shift < 0)
2454 return 0;
2455
2456 block_sectors = roundup(1 << rdev->badblocks.shift,
2457 bdev_logical_block_size(rdev->bdev) >> 9);
2458 sector = r10_bio->sector;
2459 sectors = ((r10_bio->sector + block_sectors)
2460 & ~(sector_t)(block_sectors - 1))
2461 - sector;
2462
2463 while (sect_to_write) {
2464 struct bio *wbio;
2465 if (sectors > sect_to_write)
2466 sectors = sect_to_write;
2467 /* Write at 'sector' for 'sectors' */
2468 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2469 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2470 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2471 choose_data_offset(r10_bio, rdev) +
2472 (sector - r10_bio->sector));
2473 wbio->bi_bdev = rdev->bdev;
2474 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2475
2476 if (submit_bio_wait(wbio) < 0)
2477 /* Failure! */
2478 ok = rdev_set_badblocks(rdev, sector,
2479 sectors, 0)
2480 && ok;
2481
2482 bio_put(wbio);
2483 sect_to_write -= sectors;
2484 sector += sectors;
2485 sectors = block_sectors;
2486 }
2487 return ok;
2488}
2489
2490static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2491{
2492 int slot = r10_bio->read_slot;
2493 struct bio *bio;
2494 struct r10conf *conf = mddev->private;
2495 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2496 char b[BDEVNAME_SIZE];
2497 unsigned long do_sync;
2498 int max_sectors;
2499
2500 /* we got a read error. Maybe the drive is bad. Maybe just
2501 * the block and we can fix it.
2502 * We freeze all other IO, and try reading the block from
2503 * other devices. When we find one, we re-write
2504 * and check it that fixes the read error.
2505 * This is all done synchronously while the array is
2506 * frozen.
2507 */
2508 bio = r10_bio->devs[slot].bio;
2509 bdevname(bio->bi_bdev, b);
2510 bio_put(bio);
2511 r10_bio->devs[slot].bio = NULL;
2512
2513 if (mddev->ro == 0) {
2514 freeze_array(conf, 1);
2515 fix_read_error(conf, mddev, r10_bio);
2516 unfreeze_array(conf);
2517 } else
2518 r10_bio->devs[slot].bio = IO_BLOCKED;
2519
2520 rdev_dec_pending(rdev, mddev);
2521
2522read_more:
2523 rdev = read_balance(conf, r10_bio, &max_sectors);
2524 if (rdev == NULL) {
2525 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2526 " read error for block %llu\n",
2527 mdname(mddev), b,
2528 (unsigned long long)r10_bio->sector);
2529 raid_end_bio_io(r10_bio);
2530 return;
2531 }
2532
2533 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2534 slot = r10_bio->read_slot;
2535 printk_ratelimited(
2536 KERN_ERR
2537 "md/raid10:%s: %s: redirecting "
2538 "sector %llu to another mirror\n",
2539 mdname(mddev),
2540 bdevname(rdev->bdev, b),
2541 (unsigned long long)r10_bio->sector);
2542 bio = bio_clone_mddev(r10_bio->master_bio,
2543 GFP_NOIO, mddev);
2544 bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2545 r10_bio->devs[slot].bio = bio;
2546 r10_bio->devs[slot].rdev = rdev;
2547 bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2548 + choose_data_offset(r10_bio, rdev);
2549 bio->bi_bdev = rdev->bdev;
2550 bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2551 bio->bi_private = r10_bio;
2552 bio->bi_end_io = raid10_end_read_request;
2553 if (max_sectors < r10_bio->sectors) {
2554 /* Drat - have to split this up more */
2555 struct bio *mbio = r10_bio->master_bio;
2556 int sectors_handled =
2557 r10_bio->sector + max_sectors
2558 - mbio->bi_iter.bi_sector;
2559 r10_bio->sectors = max_sectors;
2560 spin_lock_irq(&conf->device_lock);
2561 if (mbio->bi_phys_segments == 0)
2562 mbio->bi_phys_segments = 2;
2563 else
2564 mbio->bi_phys_segments++;
2565 spin_unlock_irq(&conf->device_lock);
2566 generic_make_request(bio);
2567
2568 r10_bio = mempool_alloc(conf->r10bio_pool,
2569 GFP_NOIO);
2570 r10_bio->master_bio = mbio;
2571 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2572 r10_bio->state = 0;
2573 set_bit(R10BIO_ReadError,
2574 &r10_bio->state);
2575 r10_bio->mddev = mddev;
2576 r10_bio->sector = mbio->bi_iter.bi_sector
2577 + sectors_handled;
2578
2579 goto read_more;
2580 } else
2581 generic_make_request(bio);
2582}
2583
2584static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2585{
2586 /* Some sort of write request has finished and it
2587 * succeeded in writing where we thought there was a
2588 * bad block. So forget the bad block.
2589 * Or possibly if failed and we need to record
2590 * a bad block.
2591 */
2592 int m;
2593 struct md_rdev *rdev;
2594
2595 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2596 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2597 for (m = 0; m < conf->copies; m++) {
2598 int dev = r10_bio->devs[m].devnum;
2599 rdev = conf->mirrors[dev].rdev;
2600 if (r10_bio->devs[m].bio == NULL)
2601 continue;
2602 if (!r10_bio->devs[m].bio->bi_error) {
2603 rdev_clear_badblocks(
2604 rdev,
2605 r10_bio->devs[m].addr,
2606 r10_bio->sectors, 0);
2607 } else {
2608 if (!rdev_set_badblocks(
2609 rdev,
2610 r10_bio->devs[m].addr,
2611 r10_bio->sectors, 0))
2612 md_error(conf->mddev, rdev);
2613 }
2614 rdev = conf->mirrors[dev].replacement;
2615 if (r10_bio->devs[m].repl_bio == NULL)
2616 continue;
2617
2618 if (!r10_bio->devs[m].repl_bio->bi_error) {
2619 rdev_clear_badblocks(
2620 rdev,
2621 r10_bio->devs[m].addr,
2622 r10_bio->sectors, 0);
2623 } else {
2624 if (!rdev_set_badblocks(
2625 rdev,
2626 r10_bio->devs[m].addr,
2627 r10_bio->sectors, 0))
2628 md_error(conf->mddev, rdev);
2629 }
2630 }
2631 put_buf(r10_bio);
2632 } else {
2633 bool fail = false;
2634 for (m = 0; m < conf->copies; m++) {
2635 int dev = r10_bio->devs[m].devnum;
2636 struct bio *bio = r10_bio->devs[m].bio;
2637 rdev = conf->mirrors[dev].rdev;
2638 if (bio == IO_MADE_GOOD) {
2639 rdev_clear_badblocks(
2640 rdev,
2641 r10_bio->devs[m].addr,
2642 r10_bio->sectors, 0);
2643 rdev_dec_pending(rdev, conf->mddev);
2644 } else if (bio != NULL && bio->bi_error) {
2645 fail = true;
2646 if (!narrow_write_error(r10_bio, m)) {
2647 md_error(conf->mddev, rdev);
2648 set_bit(R10BIO_Degraded,
2649 &r10_bio->state);
2650 }
2651 rdev_dec_pending(rdev, conf->mddev);
2652 }
2653 bio = r10_bio->devs[m].repl_bio;
2654 rdev = conf->mirrors[dev].replacement;
2655 if (rdev && bio == IO_MADE_GOOD) {
2656 rdev_clear_badblocks(
2657 rdev,
2658 r10_bio->devs[m].addr,
2659 r10_bio->sectors, 0);
2660 rdev_dec_pending(rdev, conf->mddev);
2661 }
2662 }
2663 if (fail) {
2664 spin_lock_irq(&conf->device_lock);
2665 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2666 conf->nr_queued++;
2667 spin_unlock_irq(&conf->device_lock);
2668 md_wakeup_thread(conf->mddev->thread);
2669 } else {
2670 if (test_bit(R10BIO_WriteError,
2671 &r10_bio->state))
2672 close_write(r10_bio);
2673 raid_end_bio_io(r10_bio);
2674 }
2675 }
2676}
2677
2678static void raid10d(struct md_thread *thread)
2679{
2680 struct mddev *mddev = thread->mddev;
2681 struct r10bio *r10_bio;
2682 unsigned long flags;
2683 struct r10conf *conf = mddev->private;
2684 struct list_head *head = &conf->retry_list;
2685 struct blk_plug plug;
2686
2687 md_check_recovery(mddev);
2688
2689 if (!list_empty_careful(&conf->bio_end_io_list) &&
2690 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2691 LIST_HEAD(tmp);
2692 spin_lock_irqsave(&conf->device_lock, flags);
2693 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2694 while (!list_empty(&conf->bio_end_io_list)) {
2695 list_move(conf->bio_end_io_list.prev, &tmp);
2696 conf->nr_queued--;
2697 }
2698 }
2699 spin_unlock_irqrestore(&conf->device_lock, flags);
2700 while (!list_empty(&tmp)) {
2701 r10_bio = list_first_entry(&tmp, struct r10bio,
2702 retry_list);
2703 list_del(&r10_bio->retry_list);
2704 if (mddev->degraded)
2705 set_bit(R10BIO_Degraded, &r10_bio->state);
2706
2707 if (test_bit(R10BIO_WriteError,
2708 &r10_bio->state))
2709 close_write(r10_bio);
2710 raid_end_bio_io(r10_bio);
2711 }
2712 }
2713
2714 blk_start_plug(&plug);
2715 for (;;) {
2716
2717 flush_pending_writes(conf);
2718
2719 spin_lock_irqsave(&conf->device_lock, flags);
2720 if (list_empty(head)) {
2721 spin_unlock_irqrestore(&conf->device_lock, flags);
2722 break;
2723 }
2724 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2725 list_del(head->prev);
2726 conf->nr_queued--;
2727 spin_unlock_irqrestore(&conf->device_lock, flags);
2728
2729 mddev = r10_bio->mddev;
2730 conf = mddev->private;
2731 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2732 test_bit(R10BIO_WriteError, &r10_bio->state))
2733 handle_write_completed(conf, r10_bio);
2734 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2735 reshape_request_write(mddev, r10_bio);
2736 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2737 sync_request_write(mddev, r10_bio);
2738 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2739 recovery_request_write(mddev, r10_bio);
2740 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2741 handle_read_error(mddev, r10_bio);
2742 else {
2743 /* just a partial read to be scheduled from a
2744 * separate context
2745 */
2746 int slot = r10_bio->read_slot;
2747 generic_make_request(r10_bio->devs[slot].bio);
2748 }
2749
2750 cond_resched();
2751 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2752 md_check_recovery(mddev);
2753 }
2754 blk_finish_plug(&plug);
2755}
2756
2757static int init_resync(struct r10conf *conf)
2758{
2759 int buffs;
2760 int i;
2761
2762 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2763 BUG_ON(conf->r10buf_pool);
2764 conf->have_replacement = 0;
2765 for (i = 0; i < conf->geo.raid_disks; i++)
2766 if (conf->mirrors[i].replacement)
2767 conf->have_replacement = 1;
2768 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2769 if (!conf->r10buf_pool)
2770 return -ENOMEM;
2771 conf->next_resync = 0;
2772 return 0;
2773}
2774
2775/*
2776 * perform a "sync" on one "block"
2777 *
2778 * We need to make sure that no normal I/O request - particularly write
2779 * requests - conflict with active sync requests.
2780 *
2781 * This is achieved by tracking pending requests and a 'barrier' concept
2782 * that can be installed to exclude normal IO requests.
2783 *
2784 * Resync and recovery are handled very differently.
2785 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2786 *
2787 * For resync, we iterate over virtual addresses, read all copies,
2788 * and update if there are differences. If only one copy is live,
2789 * skip it.
2790 * For recovery, we iterate over physical addresses, read a good
2791 * value for each non-in_sync drive, and over-write.
2792 *
2793 * So, for recovery we may have several outstanding complex requests for a
2794 * given address, one for each out-of-sync device. We model this by allocating
2795 * a number of r10_bio structures, one for each out-of-sync device.
2796 * As we setup these structures, we collect all bio's together into a list
2797 * which we then process collectively to add pages, and then process again
2798 * to pass to generic_make_request.
2799 *
2800 * The r10_bio structures are linked using a borrowed master_bio pointer.
2801 * This link is counted in ->remaining. When the r10_bio that points to NULL
2802 * has its remaining count decremented to 0, the whole complex operation
2803 * is complete.
2804 *
2805 */
2806
2807static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2808 int *skipped)
2809{
2810 struct r10conf *conf = mddev->private;
2811 struct r10bio *r10_bio;
2812 struct bio *biolist = NULL, *bio;
2813 sector_t max_sector, nr_sectors;
2814 int i;
2815 int max_sync;
2816 sector_t sync_blocks;
2817 sector_t sectors_skipped = 0;
2818 int chunks_skipped = 0;
2819 sector_t chunk_mask = conf->geo.chunk_mask;
2820
2821 if (!conf->r10buf_pool)
2822 if (init_resync(conf))
2823 return 0;
2824
2825 /*
2826 * Allow skipping a full rebuild for incremental assembly
2827 * of a clean array, like RAID1 does.
2828 */
2829 if (mddev->bitmap == NULL &&
2830 mddev->recovery_cp == MaxSector &&
2831 mddev->reshape_position == MaxSector &&
2832 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2833 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2834 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2835 conf->fullsync == 0) {
2836 *skipped = 1;
2837 return mddev->dev_sectors - sector_nr;
2838 }
2839
2840 skipped:
2841 max_sector = mddev->dev_sectors;
2842 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2843 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2844 max_sector = mddev->resync_max_sectors;
2845 if (sector_nr >= max_sector) {
2846 /* If we aborted, we need to abort the
2847 * sync on the 'current' bitmap chucks (there can
2848 * be several when recovering multiple devices).
2849 * as we may have started syncing it but not finished.
2850 * We can find the current address in
2851 * mddev->curr_resync, but for recovery,
2852 * we need to convert that to several
2853 * virtual addresses.
2854 */
2855 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2856 end_reshape(conf);
2857 close_sync(conf);
2858 return 0;
2859 }
2860
2861 if (mddev->curr_resync < max_sector) { /* aborted */
2862 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2863 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2864 &sync_blocks, 1);
2865 else for (i = 0; i < conf->geo.raid_disks; i++) {
2866 sector_t sect =
2867 raid10_find_virt(conf, mddev->curr_resync, i);
2868 bitmap_end_sync(mddev->bitmap, sect,
2869 &sync_blocks, 1);
2870 }
2871 } else {
2872 /* completed sync */
2873 if ((!mddev->bitmap || conf->fullsync)
2874 && conf->have_replacement
2875 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2876 /* Completed a full sync so the replacements
2877 * are now fully recovered.
2878 */
2879 for (i = 0; i < conf->geo.raid_disks; i++)
2880 if (conf->mirrors[i].replacement)
2881 conf->mirrors[i].replacement
2882 ->recovery_offset
2883 = MaxSector;
2884 }
2885 conf->fullsync = 0;
2886 }
2887 bitmap_close_sync(mddev->bitmap);
2888 close_sync(conf);
2889 *skipped = 1;
2890 return sectors_skipped;
2891 }
2892
2893 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2894 return reshape_request(mddev, sector_nr, skipped);
2895
2896 if (chunks_skipped >= conf->geo.raid_disks) {
2897 /* if there has been nothing to do on any drive,
2898 * then there is nothing to do at all..
2899 */
2900 *skipped = 1;
2901 return (max_sector - sector_nr) + sectors_skipped;
2902 }
2903
2904 if (max_sector > mddev->resync_max)
2905 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2906
2907 /* make sure whole request will fit in a chunk - if chunks
2908 * are meaningful
2909 */
2910 if (conf->geo.near_copies < conf->geo.raid_disks &&
2911 max_sector > (sector_nr | chunk_mask))
2912 max_sector = (sector_nr | chunk_mask) + 1;
2913
2914 /* Again, very different code for resync and recovery.
2915 * Both must result in an r10bio with a list of bios that
2916 * have bi_end_io, bi_sector, bi_bdev set,
2917 * and bi_private set to the r10bio.
2918 * For recovery, we may actually create several r10bios
2919 * with 2 bios in each, that correspond to the bios in the main one.
2920 * In this case, the subordinate r10bios link back through a
2921 * borrowed master_bio pointer, and the counter in the master
2922 * includes a ref from each subordinate.
2923 */
2924 /* First, we decide what to do and set ->bi_end_io
2925 * To end_sync_read if we want to read, and
2926 * end_sync_write if we will want to write.
2927 */
2928
2929 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2930 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2931 /* recovery... the complicated one */
2932 int j;
2933 r10_bio = NULL;
2934
2935 for (i = 0 ; i < conf->geo.raid_disks; i++) {
2936 int still_degraded;
2937 struct r10bio *rb2;
2938 sector_t sect;
2939 int must_sync;
2940 int any_working;
2941 struct raid10_info *mirror = &conf->mirrors[i];
2942
2943 if ((mirror->rdev == NULL ||
2944 test_bit(In_sync, &mirror->rdev->flags))
2945 &&
2946 (mirror->replacement == NULL ||
2947 test_bit(Faulty,
2948 &mirror->replacement->flags)))
2949 continue;
2950
2951 still_degraded = 0;
2952 /* want to reconstruct this device */
2953 rb2 = r10_bio;
2954 sect = raid10_find_virt(conf, sector_nr, i);
2955 if (sect >= mddev->resync_max_sectors) {
2956 /* last stripe is not complete - don't
2957 * try to recover this sector.
2958 */
2959 continue;
2960 }
2961 /* Unless we are doing a full sync, or a replacement
2962 * we only need to recover the block if it is set in
2963 * the bitmap
2964 */
2965 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2966 &sync_blocks, 1);
2967 if (sync_blocks < max_sync)
2968 max_sync = sync_blocks;
2969 if (!must_sync &&
2970 mirror->replacement == NULL &&
2971 !conf->fullsync) {
2972 /* yep, skip the sync_blocks here, but don't assume
2973 * that there will never be anything to do here
2974 */
2975 chunks_skipped = -1;
2976 continue;
2977 }
2978
2979 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2980 r10_bio->state = 0;
2981 raise_barrier(conf, rb2 != NULL);
2982 atomic_set(&r10_bio->remaining, 0);
2983
2984 r10_bio->master_bio = (struct bio*)rb2;
2985 if (rb2)
2986 atomic_inc(&rb2->remaining);
2987 r10_bio->mddev = mddev;
2988 set_bit(R10BIO_IsRecover, &r10_bio->state);
2989 r10_bio->sector = sect;
2990
2991 raid10_find_phys(conf, r10_bio);
2992
2993 /* Need to check if the array will still be
2994 * degraded
2995 */
2996 for (j = 0; j < conf->geo.raid_disks; j++)
2997 if (conf->mirrors[j].rdev == NULL ||
2998 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2999 still_degraded = 1;
3000 break;
3001 }
3002
3003 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3004 &sync_blocks, still_degraded);
3005
3006 any_working = 0;
3007 for (j=0; j<conf->copies;j++) {
3008 int k;
3009 int d = r10_bio->devs[j].devnum;
3010 sector_t from_addr, to_addr;
3011 struct md_rdev *rdev;
3012 sector_t sector, first_bad;
3013 int bad_sectors;
3014 if (!conf->mirrors[d].rdev ||
3015 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3016 continue;
3017 /* This is where we read from */
3018 any_working = 1;
3019 rdev = conf->mirrors[d].rdev;
3020 sector = r10_bio->devs[j].addr;
3021
3022 if (is_badblock(rdev, sector, max_sync,
3023 &first_bad, &bad_sectors)) {
3024 if (first_bad > sector)
3025 max_sync = first_bad - sector;
3026 else {
3027 bad_sectors -= (sector
3028 - first_bad);
3029 if (max_sync > bad_sectors)
3030 max_sync = bad_sectors;
3031 continue;
3032 }
3033 }
3034 bio = r10_bio->devs[0].bio;
3035 bio_reset(bio);
3036 bio->bi_next = biolist;
3037 biolist = bio;
3038 bio->bi_private = r10_bio;
3039 bio->bi_end_io = end_sync_read;
3040 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3041 from_addr = r10_bio->devs[j].addr;
3042 bio->bi_iter.bi_sector = from_addr +
3043 rdev->data_offset;
3044 bio->bi_bdev = rdev->bdev;
3045 atomic_inc(&rdev->nr_pending);
3046 /* and we write to 'i' (if not in_sync) */
3047
3048 for (k=0; k<conf->copies; k++)
3049 if (r10_bio->devs[k].devnum == i)
3050 break;
3051 BUG_ON(k == conf->copies);
3052 to_addr = r10_bio->devs[k].addr;
3053 r10_bio->devs[0].devnum = d;
3054 r10_bio->devs[0].addr = from_addr;
3055 r10_bio->devs[1].devnum = i;
3056 r10_bio->devs[1].addr = to_addr;
3057
3058 rdev = mirror->rdev;
3059 if (!test_bit(In_sync, &rdev->flags)) {
3060 bio = r10_bio->devs[1].bio;
3061 bio_reset(bio);
3062 bio->bi_next = biolist;
3063 biolist = bio;
3064 bio->bi_private = r10_bio;
3065 bio->bi_end_io = end_sync_write;
3066 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3067 bio->bi_iter.bi_sector = to_addr
3068 + rdev->data_offset;
3069 bio->bi_bdev = rdev->bdev;
3070 atomic_inc(&r10_bio->remaining);
3071 } else
3072 r10_bio->devs[1].bio->bi_end_io = NULL;
3073
3074 /* and maybe write to replacement */
3075 bio = r10_bio->devs[1].repl_bio;
3076 if (bio)
3077 bio->bi_end_io = NULL;
3078 rdev = mirror->replacement;
3079 /* Note: if rdev != NULL, then bio
3080 * cannot be NULL as r10buf_pool_alloc will
3081 * have allocated it.
3082 * So the second test here is pointless.
3083 * But it keeps semantic-checkers happy, and
3084 * this comment keeps human reviewers
3085 * happy.
3086 */
3087 if (rdev == NULL || bio == NULL ||
3088 test_bit(Faulty, &rdev->flags))
3089 break;
3090 bio_reset(bio);
3091 bio->bi_next = biolist;
3092 biolist = bio;
3093 bio->bi_private = r10_bio;
3094 bio->bi_end_io = end_sync_write;
3095 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3096 bio->bi_iter.bi_sector = to_addr +
3097 rdev->data_offset;
3098 bio->bi_bdev = rdev->bdev;
3099 atomic_inc(&r10_bio->remaining);
3100 break;
3101 }
3102 if (j == conf->copies) {
3103 /* Cannot recover, so abort the recovery or
3104 * record a bad block */
3105 if (any_working) {
3106 /* problem is that there are bad blocks
3107 * on other device(s)
3108 */
3109 int k;
3110 for (k = 0; k < conf->copies; k++)
3111 if (r10_bio->devs[k].devnum == i)
3112 break;
3113 if (!test_bit(In_sync,
3114 &mirror->rdev->flags)
3115 && !rdev_set_badblocks(
3116 mirror->rdev,
3117 r10_bio->devs[k].addr,
3118 max_sync, 0))
3119 any_working = 0;
3120 if (mirror->replacement &&
3121 !rdev_set_badblocks(
3122 mirror->replacement,
3123 r10_bio->devs[k].addr,
3124 max_sync, 0))
3125 any_working = 0;
3126 }
3127 if (!any_working) {
3128 if (!test_and_set_bit(MD_RECOVERY_INTR,
3129 &mddev->recovery))
3130 printk(KERN_INFO "md/raid10:%s: insufficient "
3131 "working devices for recovery.\n",
3132 mdname(mddev));
3133 mirror->recovery_disabled
3134 = mddev->recovery_disabled;
3135 }
3136 put_buf(r10_bio);
3137 if (rb2)
3138 atomic_dec(&rb2->remaining);
3139 r10_bio = rb2;
3140 break;
3141 }
3142 }
3143 if (biolist == NULL) {
3144 while (r10_bio) {
3145 struct r10bio *rb2 = r10_bio;
3146 r10_bio = (struct r10bio*) rb2->master_bio;
3147 rb2->master_bio = NULL;
3148 put_buf(rb2);
3149 }
3150 goto giveup;
3151 }
3152 } else {
3153 /* resync. Schedule a read for every block at this virt offset */
3154 int count = 0;
3155
3156 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3157
3158 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3159 &sync_blocks, mddev->degraded) &&
3160 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3161 &mddev->recovery)) {
3162 /* We can skip this block */
3163 *skipped = 1;
3164 return sync_blocks + sectors_skipped;
3165 }
3166 if (sync_blocks < max_sync)
3167 max_sync = sync_blocks;
3168 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3169 r10_bio->state = 0;
3170
3171 r10_bio->mddev = mddev;
3172 atomic_set(&r10_bio->remaining, 0);
3173 raise_barrier(conf, 0);
3174 conf->next_resync = sector_nr;
3175
3176 r10_bio->master_bio = NULL;
3177 r10_bio->sector = sector_nr;
3178 set_bit(R10BIO_IsSync, &r10_bio->state);
3179 raid10_find_phys(conf, r10_bio);
3180 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3181
3182 for (i = 0; i < conf->copies; i++) {
3183 int d = r10_bio->devs[i].devnum;
3184 sector_t first_bad, sector;
3185 int bad_sectors;
3186
3187 if (r10_bio->devs[i].repl_bio)
3188 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3189
3190 bio = r10_bio->devs[i].bio;
3191 bio_reset(bio);
3192 bio->bi_error = -EIO;
3193 if (conf->mirrors[d].rdev == NULL ||
3194 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3195 continue;
3196 sector = r10_bio->devs[i].addr;
3197 if (is_badblock(conf->mirrors[d].rdev,
3198 sector, max_sync,
3199 &first_bad, &bad_sectors)) {
3200 if (first_bad > sector)
3201 max_sync = first_bad - sector;
3202 else {
3203 bad_sectors -= (sector - first_bad);
3204 if (max_sync > bad_sectors)
3205 max_sync = bad_sectors;
3206 continue;
3207 }
3208 }
3209 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3210 atomic_inc(&r10_bio->remaining);
3211 bio->bi_next = biolist;
3212 biolist = bio;
3213 bio->bi_private = r10_bio;
3214 bio->bi_end_io = end_sync_read;
3215 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3216 bio->bi_iter.bi_sector = sector +
3217 conf->mirrors[d].rdev->data_offset;
3218 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3219 count++;
3220
3221 if (conf->mirrors[d].replacement == NULL ||
3222 test_bit(Faulty,
3223 &conf->mirrors[d].replacement->flags))
3224 continue;
3225
3226 /* Need to set up for writing to the replacement */
3227 bio = r10_bio->devs[i].repl_bio;
3228 bio_reset(bio);
3229 bio->bi_error = -EIO;
3230
3231 sector = r10_bio->devs[i].addr;
3232 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3233 bio->bi_next = biolist;
3234 biolist = bio;
3235 bio->bi_private = r10_bio;
3236 bio->bi_end_io = end_sync_write;
3237 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3238 bio->bi_iter.bi_sector = sector +
3239 conf->mirrors[d].replacement->data_offset;
3240 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3241 count++;
3242 }
3243
3244 if (count < 2) {
3245 for (i=0; i<conf->copies; i++) {
3246 int d = r10_bio->devs[i].devnum;
3247 if (r10_bio->devs[i].bio->bi_end_io)
3248 rdev_dec_pending(conf->mirrors[d].rdev,
3249 mddev);
3250 if (r10_bio->devs[i].repl_bio &&
3251 r10_bio->devs[i].repl_bio->bi_end_io)
3252 rdev_dec_pending(
3253 conf->mirrors[d].replacement,
3254 mddev);
3255 }
3256 put_buf(r10_bio);
3257 biolist = NULL;
3258 goto giveup;
3259 }
3260 }
3261
3262 nr_sectors = 0;
3263 if (sector_nr + max_sync < max_sector)
3264 max_sector = sector_nr + max_sync;
3265 do {
3266 struct page *page;
3267 int len = PAGE_SIZE;
3268 if (sector_nr + (len>>9) > max_sector)
3269 len = (max_sector - sector_nr) << 9;
3270 if (len == 0)
3271 break;
3272 for (bio= biolist ; bio ; bio=bio->bi_next) {
3273 struct bio *bio2;
3274 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3275 if (bio_add_page(bio, page, len, 0))
3276 continue;
3277
3278 /* stop here */
3279 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3280 for (bio2 = biolist;
3281 bio2 && bio2 != bio;
3282 bio2 = bio2->bi_next) {
3283 /* remove last page from this bio */
3284 bio2->bi_vcnt--;
3285 bio2->bi_iter.bi_size -= len;
3286 bio_clear_flag(bio2, BIO_SEG_VALID);
3287 }
3288 goto bio_full;
3289 }
3290 nr_sectors += len>>9;
3291 sector_nr += len>>9;
3292 } while (biolist->bi_vcnt < RESYNC_PAGES);
3293 bio_full:
3294 r10_bio->sectors = nr_sectors;
3295
3296 while (biolist) {
3297 bio = biolist;
3298 biolist = biolist->bi_next;
3299
3300 bio->bi_next = NULL;
3301 r10_bio = bio->bi_private;
3302 r10_bio->sectors = nr_sectors;
3303
3304 if (bio->bi_end_io == end_sync_read) {
3305 md_sync_acct(bio->bi_bdev, nr_sectors);
3306 bio->bi_error = 0;
3307 generic_make_request(bio);
3308 }
3309 }
3310
3311 if (sectors_skipped)
3312 /* pretend they weren't skipped, it makes
3313 * no important difference in this case
3314 */
3315 md_done_sync(mddev, sectors_skipped, 1);
3316
3317 return sectors_skipped + nr_sectors;
3318 giveup:
3319 /* There is nowhere to write, so all non-sync
3320 * drives must be failed or in resync, all drives
3321 * have a bad block, so try the next chunk...
3322 */
3323 if (sector_nr + max_sync < max_sector)
3324 max_sector = sector_nr + max_sync;
3325
3326 sectors_skipped += (max_sector - sector_nr);
3327 chunks_skipped ++;
3328 sector_nr = max_sector;
3329 goto skipped;
3330}
3331
3332static sector_t
3333raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3334{
3335 sector_t size;
3336 struct r10conf *conf = mddev->private;
3337
3338 if (!raid_disks)
3339 raid_disks = min(conf->geo.raid_disks,
3340 conf->prev.raid_disks);
3341 if (!sectors)
3342 sectors = conf->dev_sectors;
3343
3344 size = sectors >> conf->geo.chunk_shift;
3345 sector_div(size, conf->geo.far_copies);
3346 size = size * raid_disks;
3347 sector_div(size, conf->geo.near_copies);
3348
3349 return size << conf->geo.chunk_shift;
3350}
3351
3352static void calc_sectors(struct r10conf *conf, sector_t size)
3353{
3354 /* Calculate the number of sectors-per-device that will
3355 * actually be used, and set conf->dev_sectors and
3356 * conf->stride
3357 */
3358
3359 size = size >> conf->geo.chunk_shift;
3360 sector_div(size, conf->geo.far_copies);
3361 size = size * conf->geo.raid_disks;
3362 sector_div(size, conf->geo.near_copies);
3363 /* 'size' is now the number of chunks in the array */
3364 /* calculate "used chunks per device" */
3365 size = size * conf->copies;
3366
3367 /* We need to round up when dividing by raid_disks to
3368 * get the stride size.
3369 */
3370 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3371
3372 conf->dev_sectors = size << conf->geo.chunk_shift;
3373
3374 if (conf->geo.far_offset)
3375 conf->geo.stride = 1 << conf->geo.chunk_shift;
3376 else {
3377 sector_div(size, conf->geo.far_copies);
3378 conf->geo.stride = size << conf->geo.chunk_shift;
3379 }
3380}
3381
3382enum geo_type {geo_new, geo_old, geo_start};
3383static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3384{
3385 int nc, fc, fo;
3386 int layout, chunk, disks;
3387 switch (new) {
3388 case geo_old:
3389 layout = mddev->layout;
3390 chunk = mddev->chunk_sectors;
3391 disks = mddev->raid_disks - mddev->delta_disks;
3392 break;
3393 case geo_new:
3394 layout = mddev->new_layout;
3395 chunk = mddev->new_chunk_sectors;
3396 disks = mddev->raid_disks;
3397 break;
3398 default: /* avoid 'may be unused' warnings */
3399 case geo_start: /* new when starting reshape - raid_disks not
3400 * updated yet. */
3401 layout = mddev->new_layout;
3402 chunk = mddev->new_chunk_sectors;
3403 disks = mddev->raid_disks + mddev->delta_disks;
3404 break;
3405 }
3406 if (layout >> 19)
3407 return -1;
3408 if (chunk < (PAGE_SIZE >> 9) ||
3409 !is_power_of_2(chunk))
3410 return -2;
3411 nc = layout & 255;
3412 fc = (layout >> 8) & 255;
3413 fo = layout & (1<<16);
3414 geo->raid_disks = disks;
3415 geo->near_copies = nc;
3416 geo->far_copies = fc;
3417 geo->far_offset = fo;
3418 switch (layout >> 17) {
3419 case 0: /* original layout. simple but not always optimal */
3420 geo->far_set_size = disks;
3421 break;
3422 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3423 * actually using this, but leave code here just in case.*/
3424 geo->far_set_size = disks/fc;
3425 WARN(geo->far_set_size < fc,
3426 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3427 break;
3428 case 2: /* "improved" layout fixed to match documentation */
3429 geo->far_set_size = fc * nc;
3430 break;
3431 default: /* Not a valid layout */
3432 return -1;
3433 }
3434 geo->chunk_mask = chunk - 1;
3435 geo->chunk_shift = ffz(~chunk);
3436 return nc*fc;
3437}
3438
3439static struct r10conf *setup_conf(struct mddev *mddev)
3440{
3441 struct r10conf *conf = NULL;
3442 int err = -EINVAL;
3443 struct geom geo;
3444 int copies;
3445
3446 copies = setup_geo(&geo, mddev, geo_new);
3447
3448 if (copies == -2) {
3449 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3450 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3451 mdname(mddev), PAGE_SIZE);
3452 goto out;
3453 }
3454
3455 if (copies < 2 || copies > mddev->raid_disks) {
3456 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3457 mdname(mddev), mddev->new_layout);
3458 goto out;
3459 }
3460
3461 err = -ENOMEM;
3462 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3463 if (!conf)
3464 goto out;
3465
3466 /* FIXME calc properly */
3467 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3468 max(0,-mddev->delta_disks)),
3469 GFP_KERNEL);
3470 if (!conf->mirrors)
3471 goto out;
3472
3473 conf->tmppage = alloc_page(GFP_KERNEL);
3474 if (!conf->tmppage)
3475 goto out;
3476
3477 conf->geo = geo;
3478 conf->copies = copies;
3479 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3480 r10bio_pool_free, conf);
3481 if (!conf->r10bio_pool)
3482 goto out;
3483
3484 calc_sectors(conf, mddev->dev_sectors);
3485 if (mddev->reshape_position == MaxSector) {
3486 conf->prev = conf->geo;
3487 conf->reshape_progress = MaxSector;
3488 } else {
3489 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3490 err = -EINVAL;
3491 goto out;
3492 }
3493 conf->reshape_progress = mddev->reshape_position;
3494 if (conf->prev.far_offset)
3495 conf->prev.stride = 1 << conf->prev.chunk_shift;
3496 else
3497 /* far_copies must be 1 */
3498 conf->prev.stride = conf->dev_sectors;
3499 }
3500 conf->reshape_safe = conf->reshape_progress;
3501 spin_lock_init(&conf->device_lock);
3502 INIT_LIST_HEAD(&conf->retry_list);
3503 INIT_LIST_HEAD(&conf->bio_end_io_list);
3504
3505 spin_lock_init(&conf->resync_lock);
3506 init_waitqueue_head(&conf->wait_barrier);
3507
3508 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3509 if (!conf->thread)
3510 goto out;
3511
3512 conf->mddev = mddev;
3513 return conf;
3514
3515 out:
3516 if (err == -ENOMEM)
3517 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3518 mdname(mddev));
3519 if (conf) {
3520 mempool_destroy(conf->r10bio_pool);
3521 kfree(conf->mirrors);
3522 safe_put_page(conf->tmppage);
3523 kfree(conf);
3524 }
3525 return ERR_PTR(err);
3526}
3527
3528static int raid10_run(struct mddev *mddev)
3529{
3530 struct r10conf *conf;
3531 int i, disk_idx, chunk_size;
3532 struct raid10_info *disk;
3533 struct md_rdev *rdev;
3534 sector_t size;
3535 sector_t min_offset_diff = 0;
3536 int first = 1;
3537 bool discard_supported = false;
3538
3539 if (mddev->private == NULL) {
3540 conf = setup_conf(mddev);
3541 if (IS_ERR(conf))
3542 return PTR_ERR(conf);
3543 mddev->private = conf;
3544 }
3545 conf = mddev->private;
3546 if (!conf)
3547 goto out;
3548
3549 mddev->thread = conf->thread;
3550 conf->thread = NULL;
3551
3552 chunk_size = mddev->chunk_sectors << 9;
3553 if (mddev->queue) {
3554 blk_queue_max_discard_sectors(mddev->queue,
3555 mddev->chunk_sectors);
3556 blk_queue_max_write_same_sectors(mddev->queue, 0);
3557 blk_queue_io_min(mddev->queue, chunk_size);
3558 if (conf->geo.raid_disks % conf->geo.near_copies)
3559 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3560 else
3561 blk_queue_io_opt(mddev->queue, chunk_size *
3562 (conf->geo.raid_disks / conf->geo.near_copies));
3563 }
3564
3565 rdev_for_each(rdev, mddev) {
3566 long long diff;
3567 struct request_queue *q;
3568
3569 disk_idx = rdev->raid_disk;
3570 if (disk_idx < 0)
3571 continue;
3572 if (disk_idx >= conf->geo.raid_disks &&
3573 disk_idx >= conf->prev.raid_disks)
3574 continue;
3575 disk = conf->mirrors + disk_idx;
3576
3577 if (test_bit(Replacement, &rdev->flags)) {
3578 if (disk->replacement)
3579 goto out_free_conf;
3580 disk->replacement = rdev;
3581 } else {
3582 if (disk->rdev)
3583 goto out_free_conf;
3584 disk->rdev = rdev;
3585 }
3586 q = bdev_get_queue(rdev->bdev);
3587 diff = (rdev->new_data_offset - rdev->data_offset);
3588 if (!mddev->reshape_backwards)
3589 diff = -diff;
3590 if (diff < 0)
3591 diff = 0;
3592 if (first || diff < min_offset_diff)
3593 min_offset_diff = diff;
3594
3595 if (mddev->gendisk)
3596 disk_stack_limits(mddev->gendisk, rdev->bdev,
3597 rdev->data_offset << 9);
3598
3599 disk->head_position = 0;
3600
3601 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3602 discard_supported = true;
3603 }
3604
3605 if (mddev->queue) {
3606 if (discard_supported)
3607 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3608 mddev->queue);
3609 else
3610 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3611 mddev->queue);
3612 }
3613 /* need to check that every block has at least one working mirror */
3614 if (!enough(conf, -1)) {
3615 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3616 mdname(mddev));
3617 goto out_free_conf;
3618 }
3619
3620 if (conf->reshape_progress != MaxSector) {
3621 /* must ensure that shape change is supported */
3622 if (conf->geo.far_copies != 1 &&
3623 conf->geo.far_offset == 0)
3624 goto out_free_conf;
3625 if (conf->prev.far_copies != 1 &&
3626 conf->prev.far_offset == 0)
3627 goto out_free_conf;
3628 }
3629
3630 mddev->degraded = 0;
3631 for (i = 0;
3632 i < conf->geo.raid_disks
3633 || i < conf->prev.raid_disks;
3634 i++) {
3635
3636 disk = conf->mirrors + i;
3637
3638 if (!disk->rdev && disk->replacement) {
3639 /* The replacement is all we have - use it */
3640 disk->rdev = disk->replacement;
3641 disk->replacement = NULL;
3642 clear_bit(Replacement, &disk->rdev->flags);
3643 }
3644
3645 if (!disk->rdev ||
3646 !test_bit(In_sync, &disk->rdev->flags)) {
3647 disk->head_position = 0;
3648 mddev->degraded++;
3649 if (disk->rdev &&
3650 disk->rdev->saved_raid_disk < 0)
3651 conf->fullsync = 1;
3652 }
3653 disk->recovery_disabled = mddev->recovery_disabled - 1;
3654 }
3655
3656 if (mddev->recovery_cp != MaxSector)
3657 printk(KERN_NOTICE "md/raid10:%s: not clean"
3658 " -- starting background reconstruction\n",
3659 mdname(mddev));
3660 printk(KERN_INFO
3661 "md/raid10:%s: active with %d out of %d devices\n",
3662 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3663 conf->geo.raid_disks);
3664 /*
3665 * Ok, everything is just fine now
3666 */
3667 mddev->dev_sectors = conf->dev_sectors;
3668 size = raid10_size(mddev, 0, 0);
3669 md_set_array_sectors(mddev, size);
3670 mddev->resync_max_sectors = size;
3671
3672 if (mddev->queue) {
3673 int stripe = conf->geo.raid_disks *
3674 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3675
3676 /* Calculate max read-ahead size.
3677 * We need to readahead at least twice a whole stripe....
3678 * maybe...
3679 */
3680 stripe /= conf->geo.near_copies;
3681 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3682 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3683 }
3684
3685 if (md_integrity_register(mddev))
3686 goto out_free_conf;
3687
3688 if (conf->reshape_progress != MaxSector) {
3689 unsigned long before_length, after_length;
3690
3691 before_length = ((1 << conf->prev.chunk_shift) *
3692 conf->prev.far_copies);
3693 after_length = ((1 << conf->geo.chunk_shift) *
3694 conf->geo.far_copies);
3695
3696 if (max(before_length, after_length) > min_offset_diff) {
3697 /* This cannot work */
3698 printk("md/raid10: offset difference not enough to continue reshape\n");
3699 goto out_free_conf;
3700 }
3701 conf->offset_diff = min_offset_diff;
3702
3703 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3704 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3705 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3706 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3707 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3708 "reshape");
3709 }
3710
3711 return 0;
3712
3713out_free_conf:
3714 md_unregister_thread(&mddev->thread);
3715 mempool_destroy(conf->r10bio_pool);
3716 safe_put_page(conf->tmppage);
3717 kfree(conf->mirrors);
3718 kfree(conf);
3719 mddev->private = NULL;
3720out:
3721 return -EIO;
3722}
3723
3724static void raid10_free(struct mddev *mddev, void *priv)
3725{
3726 struct r10conf *conf = priv;
3727
3728 mempool_destroy(conf->r10bio_pool);
3729 safe_put_page(conf->tmppage);
3730 kfree(conf->mirrors);
3731 kfree(conf->mirrors_old);
3732 kfree(conf->mirrors_new);
3733 kfree(conf);
3734}
3735
3736static void raid10_quiesce(struct mddev *mddev, int state)
3737{
3738 struct r10conf *conf = mddev->private;
3739
3740 switch(state) {
3741 case 1:
3742 raise_barrier(conf, 0);
3743 break;
3744 case 0:
3745 lower_barrier(conf);
3746 break;
3747 }
3748}
3749
3750static int raid10_resize(struct mddev *mddev, sector_t sectors)
3751{
3752 /* Resize of 'far' arrays is not supported.
3753 * For 'near' and 'offset' arrays we can set the
3754 * number of sectors used to be an appropriate multiple
3755 * of the chunk size.
3756 * For 'offset', this is far_copies*chunksize.
3757 * For 'near' the multiplier is the LCM of
3758 * near_copies and raid_disks.
3759 * So if far_copies > 1 && !far_offset, fail.
3760 * Else find LCM(raid_disks, near_copy)*far_copies and
3761 * multiply by chunk_size. Then round to this number.
3762 * This is mostly done by raid10_size()
3763 */
3764 struct r10conf *conf = mddev->private;
3765 sector_t oldsize, size;
3766
3767 if (mddev->reshape_position != MaxSector)
3768 return -EBUSY;
3769
3770 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3771 return -EINVAL;
3772
3773 oldsize = raid10_size(mddev, 0, 0);
3774 size = raid10_size(mddev, sectors, 0);
3775 if (mddev->external_size &&
3776 mddev->array_sectors > size)
3777 return -EINVAL;
3778 if (mddev->bitmap) {
3779 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3780 if (ret)
3781 return ret;
3782 }
3783 md_set_array_sectors(mddev, size);
3784 if (mddev->queue) {
3785 set_capacity(mddev->gendisk, mddev->array_sectors);
3786 revalidate_disk(mddev->gendisk);
3787 }
3788 if (sectors > mddev->dev_sectors &&
3789 mddev->recovery_cp > oldsize) {
3790 mddev->recovery_cp = oldsize;
3791 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3792 }
3793 calc_sectors(conf, sectors);
3794 mddev->dev_sectors = conf->dev_sectors;
3795 mddev->resync_max_sectors = size;
3796 return 0;
3797}
3798
3799static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3800{
3801 struct md_rdev *rdev;
3802 struct r10conf *conf;
3803
3804 if (mddev->degraded > 0) {
3805 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3806 mdname(mddev));
3807 return ERR_PTR(-EINVAL);
3808 }
3809 sector_div(size, devs);
3810
3811 /* Set new parameters */
3812 mddev->new_level = 10;
3813 /* new layout: far_copies = 1, near_copies = 2 */
3814 mddev->new_layout = (1<<8) + 2;
3815 mddev->new_chunk_sectors = mddev->chunk_sectors;
3816 mddev->delta_disks = mddev->raid_disks;
3817 mddev->raid_disks *= 2;
3818 /* make sure it will be not marked as dirty */
3819 mddev->recovery_cp = MaxSector;
3820 mddev->dev_sectors = size;
3821
3822 conf = setup_conf(mddev);
3823 if (!IS_ERR(conf)) {
3824 rdev_for_each(rdev, mddev)
3825 if (rdev->raid_disk >= 0) {
3826 rdev->new_raid_disk = rdev->raid_disk * 2;
3827 rdev->sectors = size;
3828 }
3829 conf->barrier = 1;
3830 }
3831
3832 return conf;
3833}
3834
3835static void *raid10_takeover(struct mddev *mddev)
3836{
3837 struct r0conf *raid0_conf;
3838
3839 /* raid10 can take over:
3840 * raid0 - providing it has only two drives
3841 */
3842 if (mddev->level == 0) {
3843 /* for raid0 takeover only one zone is supported */
3844 raid0_conf = mddev->private;
3845 if (raid0_conf->nr_strip_zones > 1) {
3846 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3847 " with more than one zone.\n",
3848 mdname(mddev));
3849 return ERR_PTR(-EINVAL);
3850 }
3851 return raid10_takeover_raid0(mddev,
3852 raid0_conf->strip_zone->zone_end,
3853 raid0_conf->strip_zone->nb_dev);
3854 }
3855 return ERR_PTR(-EINVAL);
3856}
3857
3858static int raid10_check_reshape(struct mddev *mddev)
3859{
3860 /* Called when there is a request to change
3861 * - layout (to ->new_layout)
3862 * - chunk size (to ->new_chunk_sectors)
3863 * - raid_disks (by delta_disks)
3864 * or when trying to restart a reshape that was ongoing.
3865 *
3866 * We need to validate the request and possibly allocate
3867 * space if that might be an issue later.
3868 *
3869 * Currently we reject any reshape of a 'far' mode array,
3870 * allow chunk size to change if new is generally acceptable,
3871 * allow raid_disks to increase, and allow
3872 * a switch between 'near' mode and 'offset' mode.
3873 */
3874 struct r10conf *conf = mddev->private;
3875 struct geom geo;
3876
3877 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3878 return -EINVAL;
3879
3880 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3881 /* mustn't change number of copies */
3882 return -EINVAL;
3883 if (geo.far_copies > 1 && !geo.far_offset)
3884 /* Cannot switch to 'far' mode */
3885 return -EINVAL;
3886
3887 if (mddev->array_sectors & geo.chunk_mask)
3888 /* not factor of array size */
3889 return -EINVAL;
3890
3891 if (!enough(conf, -1))
3892 return -EINVAL;
3893
3894 kfree(conf->mirrors_new);
3895 conf->mirrors_new = NULL;
3896 if (mddev->delta_disks > 0) {
3897 /* allocate new 'mirrors' list */
3898 conf->mirrors_new = kzalloc(
3899 sizeof(struct raid10_info)
3900 *(mddev->raid_disks +
3901 mddev->delta_disks),
3902 GFP_KERNEL);
3903 if (!conf->mirrors_new)
3904 return -ENOMEM;
3905 }
3906 return 0;
3907}
3908
3909/*
3910 * Need to check if array has failed when deciding whether to:
3911 * - start an array
3912 * - remove non-faulty devices
3913 * - add a spare
3914 * - allow a reshape
3915 * This determination is simple when no reshape is happening.
3916 * However if there is a reshape, we need to carefully check
3917 * both the before and after sections.
3918 * This is because some failed devices may only affect one
3919 * of the two sections, and some non-in_sync devices may
3920 * be insync in the section most affected by failed devices.
3921 */
3922static int calc_degraded(struct r10conf *conf)
3923{
3924 int degraded, degraded2;
3925 int i;
3926
3927 rcu_read_lock();
3928 degraded = 0;
3929 /* 'prev' section first */
3930 for (i = 0; i < conf->prev.raid_disks; i++) {
3931 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3932 if (!rdev || test_bit(Faulty, &rdev->flags))
3933 degraded++;
3934 else if (!test_bit(In_sync, &rdev->flags))
3935 /* When we can reduce the number of devices in
3936 * an array, this might not contribute to
3937 * 'degraded'. It does now.
3938 */
3939 degraded++;
3940 }
3941 rcu_read_unlock();
3942 if (conf->geo.raid_disks == conf->prev.raid_disks)
3943 return degraded;
3944 rcu_read_lock();
3945 degraded2 = 0;
3946 for (i = 0; i < conf->geo.raid_disks; i++) {
3947 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3948 if (!rdev || test_bit(Faulty, &rdev->flags))
3949 degraded2++;
3950 else if (!test_bit(In_sync, &rdev->flags)) {
3951 /* If reshape is increasing the number of devices,
3952 * this section has already been recovered, so
3953 * it doesn't contribute to degraded.
3954 * else it does.
3955 */
3956 if (conf->geo.raid_disks <= conf->prev.raid_disks)
3957 degraded2++;
3958 }
3959 }
3960 rcu_read_unlock();
3961 if (degraded2 > degraded)
3962 return degraded2;
3963 return degraded;
3964}
3965
3966static int raid10_start_reshape(struct mddev *mddev)
3967{
3968 /* A 'reshape' has been requested. This commits
3969 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3970 * This also checks if there are enough spares and adds them
3971 * to the array.
3972 * We currently require enough spares to make the final
3973 * array non-degraded. We also require that the difference
3974 * between old and new data_offset - on each device - is
3975 * enough that we never risk over-writing.
3976 */
3977
3978 unsigned long before_length, after_length;
3979 sector_t min_offset_diff = 0;
3980 int first = 1;
3981 struct geom new;
3982 struct r10conf *conf = mddev->private;
3983 struct md_rdev *rdev;
3984 int spares = 0;
3985 int ret;
3986
3987 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3988 return -EBUSY;
3989
3990 if (setup_geo(&new, mddev, geo_start) != conf->copies)
3991 return -EINVAL;
3992
3993 before_length = ((1 << conf->prev.chunk_shift) *
3994 conf->prev.far_copies);
3995 after_length = ((1 << conf->geo.chunk_shift) *
3996 conf->geo.far_copies);
3997
3998 rdev_for_each(rdev, mddev) {
3999 if (!test_bit(In_sync, &rdev->flags)
4000 && !test_bit(Faulty, &rdev->flags))
4001 spares++;
4002 if (rdev->raid_disk >= 0) {
4003 long long diff = (rdev->new_data_offset
4004 - rdev->data_offset);
4005 if (!mddev->reshape_backwards)
4006 diff = -diff;
4007 if (diff < 0)
4008 diff = 0;
4009 if (first || diff < min_offset_diff)
4010 min_offset_diff = diff;
4011 }
4012 }
4013
4014 if (max(before_length, after_length) > min_offset_diff)
4015 return -EINVAL;
4016
4017 if (spares < mddev->delta_disks)
4018 return -EINVAL;
4019
4020 conf->offset_diff = min_offset_diff;
4021 spin_lock_irq(&conf->device_lock);
4022 if (conf->mirrors_new) {
4023 memcpy(conf->mirrors_new, conf->mirrors,
4024 sizeof(struct raid10_info)*conf->prev.raid_disks);
4025 smp_mb();
4026 kfree(conf->mirrors_old);
4027 conf->mirrors_old = conf->mirrors;
4028 conf->mirrors = conf->mirrors_new;
4029 conf->mirrors_new = NULL;
4030 }
4031 setup_geo(&conf->geo, mddev, geo_start);
4032 smp_mb();
4033 if (mddev->reshape_backwards) {
4034 sector_t size = raid10_size(mddev, 0, 0);
4035 if (size < mddev->array_sectors) {
4036 spin_unlock_irq(&conf->device_lock);
4037 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4038 mdname(mddev));
4039 return -EINVAL;
4040 }
4041 mddev->resync_max_sectors = size;
4042 conf->reshape_progress = size;
4043 } else
4044 conf->reshape_progress = 0;
4045 conf->reshape_safe = conf->reshape_progress;
4046 spin_unlock_irq(&conf->device_lock);
4047
4048 if (mddev->delta_disks && mddev->bitmap) {
4049 ret = bitmap_resize(mddev->bitmap,
4050 raid10_size(mddev, 0,
4051 conf->geo.raid_disks),
4052 0, 0);
4053 if (ret)
4054 goto abort;
4055 }
4056 if (mddev->delta_disks > 0) {
4057 rdev_for_each(rdev, mddev)
4058 if (rdev->raid_disk < 0 &&
4059 !test_bit(Faulty, &rdev->flags)) {
4060 if (raid10_add_disk(mddev, rdev) == 0) {
4061 if (rdev->raid_disk >=
4062 conf->prev.raid_disks)
4063 set_bit(In_sync, &rdev->flags);
4064 else
4065 rdev->recovery_offset = 0;
4066
4067 if (sysfs_link_rdev(mddev, rdev))
4068 /* Failure here is OK */;
4069 }
4070 } else if (rdev->raid_disk >= conf->prev.raid_disks
4071 && !test_bit(Faulty, &rdev->flags)) {
4072 /* This is a spare that was manually added */
4073 set_bit(In_sync, &rdev->flags);
4074 }
4075 }
4076 /* When a reshape changes the number of devices,
4077 * ->degraded is measured against the larger of the
4078 * pre and post numbers.
4079 */
4080 spin_lock_irq(&conf->device_lock);
4081 mddev->degraded = calc_degraded(conf);
4082 spin_unlock_irq(&conf->device_lock);
4083 mddev->raid_disks = conf->geo.raid_disks;
4084 mddev->reshape_position = conf->reshape_progress;
4085 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4086
4087 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4088 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4089 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4090 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4091 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4092
4093 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4094 "reshape");
4095 if (!mddev->sync_thread) {
4096 ret = -EAGAIN;
4097 goto abort;
4098 }
4099 conf->reshape_checkpoint = jiffies;
4100 md_wakeup_thread(mddev->sync_thread);
4101 md_new_event(mddev);
4102 return 0;
4103
4104abort:
4105 mddev->recovery = 0;
4106 spin_lock_irq(&conf->device_lock);
4107 conf->geo = conf->prev;
4108 mddev->raid_disks = conf->geo.raid_disks;
4109 rdev_for_each(rdev, mddev)
4110 rdev->new_data_offset = rdev->data_offset;
4111 smp_wmb();
4112 conf->reshape_progress = MaxSector;
4113 conf->reshape_safe = MaxSector;
4114 mddev->reshape_position = MaxSector;
4115 spin_unlock_irq(&conf->device_lock);
4116 return ret;
4117}
4118
4119/* Calculate the last device-address that could contain
4120 * any block from the chunk that includes the array-address 's'
4121 * and report the next address.
4122 * i.e. the address returned will be chunk-aligned and after
4123 * any data that is in the chunk containing 's'.
4124 */
4125static sector_t last_dev_address(sector_t s, struct geom *geo)
4126{
4127 s = (s | geo->chunk_mask) + 1;
4128 s >>= geo->chunk_shift;
4129 s *= geo->near_copies;
4130 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4131 s *= geo->far_copies;
4132 s <<= geo->chunk_shift;
4133 return s;
4134}
4135
4136/* Calculate the first device-address that could contain
4137 * any block from the chunk that includes the array-address 's'.
4138 * This too will be the start of a chunk
4139 */
4140static sector_t first_dev_address(sector_t s, struct geom *geo)
4141{
4142 s >>= geo->chunk_shift;
4143 s *= geo->near_copies;
4144 sector_div(s, geo->raid_disks);
4145 s *= geo->far_copies;
4146 s <<= geo->chunk_shift;
4147 return s;
4148}
4149
4150static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4151 int *skipped)
4152{
4153 /* We simply copy at most one chunk (smallest of old and new)
4154 * at a time, possibly less if that exceeds RESYNC_PAGES,
4155 * or we hit a bad block or something.
4156 * This might mean we pause for normal IO in the middle of
4157 * a chunk, but that is not a problem as mddev->reshape_position
4158 * can record any location.
4159 *
4160 * If we will want to write to a location that isn't
4161 * yet recorded as 'safe' (i.e. in metadata on disk) then
4162 * we need to flush all reshape requests and update the metadata.
4163 *
4164 * When reshaping forwards (e.g. to more devices), we interpret
4165 * 'safe' as the earliest block which might not have been copied
4166 * down yet. We divide this by previous stripe size and multiply
4167 * by previous stripe length to get lowest device offset that we
4168 * cannot write to yet.
4169 * We interpret 'sector_nr' as an address that we want to write to.
4170 * From this we use last_device_address() to find where we might
4171 * write to, and first_device_address on the 'safe' position.
4172 * If this 'next' write position is after the 'safe' position,
4173 * we must update the metadata to increase the 'safe' position.
4174 *
4175 * When reshaping backwards, we round in the opposite direction
4176 * and perform the reverse test: next write position must not be
4177 * less than current safe position.
4178 *
4179 * In all this the minimum difference in data offsets
4180 * (conf->offset_diff - always positive) allows a bit of slack,
4181 * so next can be after 'safe', but not by more than offset_diff
4182 *
4183 * We need to prepare all the bios here before we start any IO
4184 * to ensure the size we choose is acceptable to all devices.
4185 * The means one for each copy for write-out and an extra one for
4186 * read-in.
4187 * We store the read-in bio in ->master_bio and the others in
4188 * ->devs[x].bio and ->devs[x].repl_bio.
4189 */
4190 struct r10conf *conf = mddev->private;
4191 struct r10bio *r10_bio;
4192 sector_t next, safe, last;
4193 int max_sectors;
4194 int nr_sectors;
4195 int s;
4196 struct md_rdev *rdev;
4197 int need_flush = 0;
4198 struct bio *blist;
4199 struct bio *bio, *read_bio;
4200 int sectors_done = 0;
4201
4202 if (sector_nr == 0) {
4203 /* If restarting in the middle, skip the initial sectors */
4204 if (mddev->reshape_backwards &&
4205 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4206 sector_nr = (raid10_size(mddev, 0, 0)
4207 - conf->reshape_progress);
4208 } else if (!mddev->reshape_backwards &&
4209 conf->reshape_progress > 0)
4210 sector_nr = conf->reshape_progress;
4211 if (sector_nr) {
4212 mddev->curr_resync_completed = sector_nr;
4213 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4214 *skipped = 1;
4215 return sector_nr;
4216 }
4217 }
4218
4219 /* We don't use sector_nr to track where we are up to
4220 * as that doesn't work well for ->reshape_backwards.
4221 * So just use ->reshape_progress.
4222 */
4223 if (mddev->reshape_backwards) {
4224 /* 'next' is the earliest device address that we might
4225 * write to for this chunk in the new layout
4226 */
4227 next = first_dev_address(conf->reshape_progress - 1,
4228 &conf->geo);
4229
4230 /* 'safe' is the last device address that we might read from
4231 * in the old layout after a restart
4232 */
4233 safe = last_dev_address(conf->reshape_safe - 1,
4234 &conf->prev);
4235
4236 if (next + conf->offset_diff < safe)
4237 need_flush = 1;
4238
4239 last = conf->reshape_progress - 1;
4240 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4241 & conf->prev.chunk_mask);
4242 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4243 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4244 } else {
4245 /* 'next' is after the last device address that we
4246 * might write to for this chunk in the new layout
4247 */
4248 next = last_dev_address(conf->reshape_progress, &conf->geo);
4249
4250 /* 'safe' is the earliest device address that we might
4251 * read from in the old layout after a restart
4252 */
4253 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4254
4255 /* Need to update metadata if 'next' might be beyond 'safe'
4256 * as that would possibly corrupt data
4257 */
4258 if (next > safe + conf->offset_diff)
4259 need_flush = 1;
4260
4261 sector_nr = conf->reshape_progress;
4262 last = sector_nr | (conf->geo.chunk_mask
4263 & conf->prev.chunk_mask);
4264
4265 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4266 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4267 }
4268
4269 if (need_flush ||
4270 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4271 /* Need to update reshape_position in metadata */
4272 wait_barrier(conf);
4273 mddev->reshape_position = conf->reshape_progress;
4274 if (mddev->reshape_backwards)
4275 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4276 - conf->reshape_progress;
4277 else
4278 mddev->curr_resync_completed = conf->reshape_progress;
4279 conf->reshape_checkpoint = jiffies;
4280 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4281 md_wakeup_thread(mddev->thread);
4282 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4283 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4284 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4285 allow_barrier(conf);
4286 return sectors_done;
4287 }
4288 conf->reshape_safe = mddev->reshape_position;
4289 allow_barrier(conf);
4290 }
4291
4292read_more:
4293 /* Now schedule reads for blocks from sector_nr to last */
4294 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4295 r10_bio->state = 0;
4296 raise_barrier(conf, sectors_done != 0);
4297 atomic_set(&r10_bio->remaining, 0);
4298 r10_bio->mddev = mddev;
4299 r10_bio->sector = sector_nr;
4300 set_bit(R10BIO_IsReshape, &r10_bio->state);
4301 r10_bio->sectors = last - sector_nr + 1;
4302 rdev = read_balance(conf, r10_bio, &max_sectors);
4303 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4304
4305 if (!rdev) {
4306 /* Cannot read from here, so need to record bad blocks
4307 * on all the target devices.
4308 */
4309 // FIXME
4310 mempool_free(r10_bio, conf->r10buf_pool);
4311 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4312 return sectors_done;
4313 }
4314
4315 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4316
4317 read_bio->bi_bdev = rdev->bdev;
4318 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4319 + rdev->data_offset);
4320 read_bio->bi_private = r10_bio;
4321 read_bio->bi_end_io = end_sync_read;
4322 bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4323 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4324 read_bio->bi_error = 0;
4325 read_bio->bi_vcnt = 0;
4326 read_bio->bi_iter.bi_size = 0;
4327 r10_bio->master_bio = read_bio;
4328 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4329
4330 /* Now find the locations in the new layout */
4331 __raid10_find_phys(&conf->geo, r10_bio);
4332
4333 blist = read_bio;
4334 read_bio->bi_next = NULL;
4335
4336 for (s = 0; s < conf->copies*2; s++) {
4337 struct bio *b;
4338 int d = r10_bio->devs[s/2].devnum;
4339 struct md_rdev *rdev2;
4340 if (s&1) {
4341 rdev2 = conf->mirrors[d].replacement;
4342 b = r10_bio->devs[s/2].repl_bio;
4343 } else {
4344 rdev2 = conf->mirrors[d].rdev;
4345 b = r10_bio->devs[s/2].bio;
4346 }
4347 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4348 continue;
4349
4350 bio_reset(b);
4351 b->bi_bdev = rdev2->bdev;
4352 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4353 rdev2->new_data_offset;
4354 b->bi_private = r10_bio;
4355 b->bi_end_io = end_reshape_write;
4356 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4357 b->bi_next = blist;
4358 blist = b;
4359 }
4360
4361 /* Now add as many pages as possible to all of these bios. */
4362
4363 nr_sectors = 0;
4364 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4365 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4366 int len = (max_sectors - s) << 9;
4367 if (len > PAGE_SIZE)
4368 len = PAGE_SIZE;
4369 for (bio = blist; bio ; bio = bio->bi_next) {
4370 struct bio *bio2;
4371 if (bio_add_page(bio, page, len, 0))
4372 continue;
4373
4374 /* Didn't fit, must stop */
4375 for (bio2 = blist;
4376 bio2 && bio2 != bio;
4377 bio2 = bio2->bi_next) {
4378 /* Remove last page from this bio */
4379 bio2->bi_vcnt--;
4380 bio2->bi_iter.bi_size -= len;
4381 bio_clear_flag(bio2, BIO_SEG_VALID);
4382 }
4383 goto bio_full;
4384 }
4385 sector_nr += len >> 9;
4386 nr_sectors += len >> 9;
4387 }
4388bio_full:
4389 r10_bio->sectors = nr_sectors;
4390
4391 /* Now submit the read */
4392 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4393 atomic_inc(&r10_bio->remaining);
4394 read_bio->bi_next = NULL;
4395 generic_make_request(read_bio);
4396 sector_nr += nr_sectors;
4397 sectors_done += nr_sectors;
4398 if (sector_nr <= last)
4399 goto read_more;
4400
4401 /* Now that we have done the whole section we can
4402 * update reshape_progress
4403 */
4404 if (mddev->reshape_backwards)
4405 conf->reshape_progress -= sectors_done;
4406 else
4407 conf->reshape_progress += sectors_done;
4408
4409 return sectors_done;
4410}
4411
4412static void end_reshape_request(struct r10bio *r10_bio);
4413static int handle_reshape_read_error(struct mddev *mddev,
4414 struct r10bio *r10_bio);
4415static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4416{
4417 /* Reshape read completed. Hopefully we have a block
4418 * to write out.
4419 * If we got a read error then we do sync 1-page reads from
4420 * elsewhere until we find the data - or give up.
4421 */
4422 struct r10conf *conf = mddev->private;
4423 int s;
4424
4425 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4426 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4427 /* Reshape has been aborted */
4428 md_done_sync(mddev, r10_bio->sectors, 0);
4429 return;
4430 }
4431
4432 /* We definitely have the data in the pages, schedule the
4433 * writes.
4434 */
4435 atomic_set(&r10_bio->remaining, 1);
4436 for (s = 0; s < conf->copies*2; s++) {
4437 struct bio *b;
4438 int d = r10_bio->devs[s/2].devnum;
4439 struct md_rdev *rdev;
4440 if (s&1) {
4441 rdev = conf->mirrors[d].replacement;
4442 b = r10_bio->devs[s/2].repl_bio;
4443 } else {
4444 rdev = conf->mirrors[d].rdev;
4445 b = r10_bio->devs[s/2].bio;
4446 }
4447 if (!rdev || test_bit(Faulty, &rdev->flags))
4448 continue;
4449 atomic_inc(&rdev->nr_pending);
4450 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4451 atomic_inc(&r10_bio->remaining);
4452 b->bi_next = NULL;
4453 generic_make_request(b);
4454 }
4455 end_reshape_request(r10_bio);
4456}
4457
4458static void end_reshape(struct r10conf *conf)
4459{
4460 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4461 return;
4462
4463 spin_lock_irq(&conf->device_lock);
4464 conf->prev = conf->geo;
4465 md_finish_reshape(conf->mddev);
4466 smp_wmb();
4467 conf->reshape_progress = MaxSector;
4468 conf->reshape_safe = MaxSector;
4469 spin_unlock_irq(&conf->device_lock);
4470
4471 /* read-ahead size must cover two whole stripes, which is
4472 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4473 */
4474 if (conf->mddev->queue) {
4475 int stripe = conf->geo.raid_disks *
4476 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4477 stripe /= conf->geo.near_copies;
4478 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4479 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4480 }
4481 conf->fullsync = 0;
4482}
4483
4484static int handle_reshape_read_error(struct mddev *mddev,
4485 struct r10bio *r10_bio)
4486{
4487 /* Use sync reads to get the blocks from somewhere else */
4488 int sectors = r10_bio->sectors;
4489 struct r10conf *conf = mddev->private;
4490 struct {
4491 struct r10bio r10_bio;
4492 struct r10dev devs[conf->copies];
4493 } on_stack;
4494 struct r10bio *r10b = &on_stack.r10_bio;
4495 int slot = 0;
4496 int idx = 0;
4497 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4498
4499 r10b->sector = r10_bio->sector;
4500 __raid10_find_phys(&conf->prev, r10b);
4501
4502 while (sectors) {
4503 int s = sectors;
4504 int success = 0;
4505 int first_slot = slot;
4506
4507 if (s > (PAGE_SIZE >> 9))
4508 s = PAGE_SIZE >> 9;
4509
4510 while (!success) {
4511 int d = r10b->devs[slot].devnum;
4512 struct md_rdev *rdev = conf->mirrors[d].rdev;
4513 sector_t addr;
4514 if (rdev == NULL ||
4515 test_bit(Faulty, &rdev->flags) ||
4516 !test_bit(In_sync, &rdev->flags))
4517 goto failed;
4518
4519 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4520 success = sync_page_io(rdev,
4521 addr,
4522 s << 9,
4523 bvec[idx].bv_page,
4524 REQ_OP_READ, 0, false);
4525 if (success)
4526 break;
4527 failed:
4528 slot++;
4529 if (slot >= conf->copies)
4530 slot = 0;
4531 if (slot == first_slot)
4532 break;
4533 }
4534 if (!success) {
4535 /* couldn't read this block, must give up */
4536 set_bit(MD_RECOVERY_INTR,
4537 &mddev->recovery);
4538 return -EIO;
4539 }
4540 sectors -= s;
4541 idx++;
4542 }
4543 return 0;
4544}
4545
4546static void end_reshape_write(struct bio *bio)
4547{
4548 struct r10bio *r10_bio = bio->bi_private;
4549 struct mddev *mddev = r10_bio->mddev;
4550 struct r10conf *conf = mddev->private;
4551 int d;
4552 int slot;
4553 int repl;
4554 struct md_rdev *rdev = NULL;
4555
4556 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4557 if (repl)
4558 rdev = conf->mirrors[d].replacement;
4559 if (!rdev) {
4560 smp_mb();
4561 rdev = conf->mirrors[d].rdev;
4562 }
4563
4564 if (bio->bi_error) {
4565 /* FIXME should record badblock */
4566 md_error(mddev, rdev);
4567 }
4568
4569 rdev_dec_pending(rdev, mddev);
4570 end_reshape_request(r10_bio);
4571}
4572
4573static void end_reshape_request(struct r10bio *r10_bio)
4574{
4575 if (!atomic_dec_and_test(&r10_bio->remaining))
4576 return;
4577 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4578 bio_put(r10_bio->master_bio);
4579 put_buf(r10_bio);
4580}
4581
4582static void raid10_finish_reshape(struct mddev *mddev)
4583{
4584 struct r10conf *conf = mddev->private;
4585
4586 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4587 return;
4588
4589 if (mddev->delta_disks > 0) {
4590 sector_t size = raid10_size(mddev, 0, 0);
4591 md_set_array_sectors(mddev, size);
4592 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4593 mddev->recovery_cp = mddev->resync_max_sectors;
4594 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4595 }
4596 mddev->resync_max_sectors = size;
4597 if (mddev->queue) {
4598 set_capacity(mddev->gendisk, mddev->array_sectors);
4599 revalidate_disk(mddev->gendisk);
4600 }
4601 } else {
4602 int d;
4603 for (d = conf->geo.raid_disks ;
4604 d < conf->geo.raid_disks - mddev->delta_disks;
4605 d++) {
4606 struct md_rdev *rdev = conf->mirrors[d].rdev;
4607 if (rdev)
4608 clear_bit(In_sync, &rdev->flags);
4609 rdev = conf->mirrors[d].replacement;
4610 if (rdev)
4611 clear_bit(In_sync, &rdev->flags);
4612 }
4613 }
4614 mddev->layout = mddev->new_layout;
4615 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4616 mddev->reshape_position = MaxSector;
4617 mddev->delta_disks = 0;
4618 mddev->reshape_backwards = 0;
4619}
4620
4621static struct md_personality raid10_personality =
4622{
4623 .name = "raid10",
4624 .level = 10,
4625 .owner = THIS_MODULE,
4626 .make_request = raid10_make_request,
4627 .run = raid10_run,
4628 .free = raid10_free,
4629 .status = raid10_status,
4630 .error_handler = raid10_error,
4631 .hot_add_disk = raid10_add_disk,
4632 .hot_remove_disk= raid10_remove_disk,
4633 .spare_active = raid10_spare_active,
4634 .sync_request = raid10_sync_request,
4635 .quiesce = raid10_quiesce,
4636 .size = raid10_size,
4637 .resize = raid10_resize,
4638 .takeover = raid10_takeover,
4639 .check_reshape = raid10_check_reshape,
4640 .start_reshape = raid10_start_reshape,
4641 .finish_reshape = raid10_finish_reshape,
4642 .congested = raid10_congested,
4643};
4644
4645static int __init raid_init(void)
4646{
4647 return register_md_personality(&raid10_personality);
4648}
4649
4650static void raid_exit(void)
4651{
4652 unregister_md_personality(&raid10_personality);
4653}
4654
4655module_init(raid_init);
4656module_exit(raid_exit);
4657MODULE_LICENSE("GPL");
4658MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4659MODULE_ALIAS("md-personality-9"); /* RAID10 */
4660MODULE_ALIAS("md-raid10");
4661MODULE_ALIAS("md-level-10");
4662
4663module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);