| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* Maximum size of each resync request */ |
| 3 | #define RESYNC_BLOCK_SIZE (64*1024) |
| 4 | #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) |
| 5 | |
| 6 | /* |
| 7 | * Number of guaranteed raid bios in case of extreme VM load: |
| 8 | */ |
| 9 | #define NR_RAID_BIOS 256 |
| 10 | |
| 11 | /* when we get a read error on a read-only array, we redirect to another |
| 12 | * device without failing the first device, or trying to over-write to |
| 13 | * correct the read error. To keep track of bad blocks on a per-bio |
| 14 | * level, we store IO_BLOCKED in the appropriate 'bios' pointer |
| 15 | */ |
| 16 | #define IO_BLOCKED ((struct bio *)1) |
| 17 | /* When we successfully write to a known bad-block, we need to remove the |
| 18 | * bad-block marking which must be done from process context. So we record |
| 19 | * the success by setting devs[n].bio to IO_MADE_GOOD |
| 20 | */ |
| 21 | #define IO_MADE_GOOD ((struct bio *)2) |
| 22 | |
| 23 | #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) |
| 24 | #define MAX_PLUG_BIO 32 |
| 25 | |
| 26 | /* for managing resync I/O pages */ |
| 27 | struct resync_pages { |
| 28 | void *raid_bio; |
| 29 | struct page *pages[RESYNC_PAGES]; |
| 30 | }; |
| 31 | |
| 32 | struct raid1_plug_cb { |
| 33 | struct blk_plug_cb cb; |
| 34 | struct bio_list pending; |
| 35 | unsigned int count; |
| 36 | }; |
| 37 | |
| 38 | static void rbio_pool_free(void *rbio, void *data) |
| 39 | { |
| 40 | kfree(rbio); |
| 41 | } |
| 42 | |
| 43 | static inline int resync_alloc_pages(struct resync_pages *rp, |
| 44 | gfp_t gfp_flags) |
| 45 | { |
| 46 | int i; |
| 47 | |
| 48 | for (i = 0; i < RESYNC_PAGES; i++) { |
| 49 | rp->pages[i] = alloc_page(gfp_flags); |
| 50 | if (!rp->pages[i]) |
| 51 | goto out_free; |
| 52 | } |
| 53 | |
| 54 | return 0; |
| 55 | |
| 56 | out_free: |
| 57 | while (--i >= 0) |
| 58 | put_page(rp->pages[i]); |
| 59 | return -ENOMEM; |
| 60 | } |
| 61 | |
| 62 | static inline void resync_free_pages(struct resync_pages *rp) |
| 63 | { |
| 64 | int i; |
| 65 | |
| 66 | for (i = 0; i < RESYNC_PAGES; i++) |
| 67 | put_page(rp->pages[i]); |
| 68 | } |
| 69 | |
| 70 | static inline void resync_get_all_pages(struct resync_pages *rp) |
| 71 | { |
| 72 | int i; |
| 73 | |
| 74 | for (i = 0; i < RESYNC_PAGES; i++) |
| 75 | get_page(rp->pages[i]); |
| 76 | } |
| 77 | |
| 78 | static inline struct page *resync_fetch_page(struct resync_pages *rp, |
| 79 | unsigned idx) |
| 80 | { |
| 81 | if (WARN_ON_ONCE(idx >= RESYNC_PAGES)) |
| 82 | return NULL; |
| 83 | return rp->pages[idx]; |
| 84 | } |
| 85 | |
| 86 | /* |
| 87 | * 'strct resync_pages' stores actual pages used for doing the resync |
| 88 | * IO, and it is per-bio, so make .bi_private points to it. |
| 89 | */ |
| 90 | static inline struct resync_pages *get_resync_pages(struct bio *bio) |
| 91 | { |
| 92 | return bio->bi_private; |
| 93 | } |
| 94 | |
| 95 | /* generally called after bio_reset() for reseting bvec */ |
| 96 | static void md_bio_reset_resync_pages(struct bio *bio, struct resync_pages *rp, |
| 97 | int size) |
| 98 | { |
| 99 | int idx = 0; |
| 100 | |
| 101 | /* initialize bvec table again */ |
| 102 | do { |
| 103 | struct page *page = resync_fetch_page(rp, idx); |
| 104 | int len = min_t(int, size, PAGE_SIZE); |
| 105 | |
| 106 | if (WARN_ON(!bio_add_page(bio, page, len, 0))) { |
| 107 | bio->bi_status = BLK_STS_RESOURCE; |
| 108 | bio_endio(bio); |
| 109 | return; |
| 110 | } |
| 111 | |
| 112 | size -= len; |
| 113 | } while (idx++ < RESYNC_PAGES && size > 0); |
| 114 | } |
| 115 | |
| 116 | |
| 117 | static inline void raid1_submit_write(struct bio *bio) |
| 118 | { |
| 119 | struct md_rdev *rdev = (void *)bio->bi_bdev; |
| 120 | |
| 121 | bio->bi_next = NULL; |
| 122 | bio_set_dev(bio, rdev->bdev); |
| 123 | if (test_bit(Faulty, &rdev->flags)) |
| 124 | bio_io_error(bio); |
| 125 | else if (unlikely(bio_op(bio) == REQ_OP_DISCARD && |
| 126 | !bdev_max_discard_sectors(bio->bi_bdev))) |
| 127 | /* Just ignore it */ |
| 128 | bio_endio(bio); |
| 129 | else |
| 130 | submit_bio_noacct(bio); |
| 131 | } |
| 132 | |
| 133 | static inline bool raid1_add_bio_to_plug(struct mddev *mddev, struct bio *bio, |
| 134 | blk_plug_cb_fn unplug, int copies) |
| 135 | { |
| 136 | struct raid1_plug_cb *plug = NULL; |
| 137 | struct blk_plug_cb *cb; |
| 138 | |
| 139 | /* |
| 140 | * If bitmap is not enabled, it's safe to submit the io directly, and |
| 141 | * this can get optimal performance. |
| 142 | */ |
| 143 | if (!mddev->bitmap_ops->enabled(mddev)) { |
| 144 | raid1_submit_write(bio); |
| 145 | return true; |
| 146 | } |
| 147 | |
| 148 | cb = blk_check_plugged(unplug, mddev, sizeof(*plug)); |
| 149 | if (!cb) |
| 150 | return false; |
| 151 | |
| 152 | plug = container_of(cb, struct raid1_plug_cb, cb); |
| 153 | bio_list_add(&plug->pending, bio); |
| 154 | if (++plug->count / MAX_PLUG_BIO >= copies) { |
| 155 | list_del(&cb->list); |
| 156 | cb->callback(cb, false); |
| 157 | } |
| 158 | |
| 159 | |
| 160 | return true; |
| 161 | } |
| 162 | |
| 163 | /* |
| 164 | * current->bio_list will be set under submit_bio() context, in this case bitmap |
| 165 | * io will be added to the list and wait for current io submission to finish, |
| 166 | * while current io submission must wait for bitmap io to be done. In order to |
| 167 | * avoid such deadlock, submit bitmap io asynchronously. |
| 168 | */ |
| 169 | static inline void raid1_prepare_flush_writes(struct mddev *mddev) |
| 170 | { |
| 171 | mddev->bitmap_ops->unplug(mddev, current->bio_list == NULL); |
| 172 | } |
| 173 | |
| 174 | /* |
| 175 | * Used by fix_read_error() to decay the per rdev read_errors. |
| 176 | * We halve the read error count for every hour that has elapsed |
| 177 | * since the last recorded read error. |
| 178 | */ |
| 179 | static inline void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) |
| 180 | { |
| 181 | long cur_time_mon; |
| 182 | unsigned long hours_since_last; |
| 183 | unsigned int read_errors = atomic_read(&rdev->read_errors); |
| 184 | |
| 185 | cur_time_mon = ktime_get_seconds(); |
| 186 | |
| 187 | if (rdev->last_read_error == 0) { |
| 188 | /* first time we've seen a read error */ |
| 189 | rdev->last_read_error = cur_time_mon; |
| 190 | return; |
| 191 | } |
| 192 | |
| 193 | hours_since_last = (long)(cur_time_mon - |
| 194 | rdev->last_read_error) / 3600; |
| 195 | |
| 196 | rdev->last_read_error = cur_time_mon; |
| 197 | |
| 198 | /* |
| 199 | * if hours_since_last is > the number of bits in read_errors |
| 200 | * just set read errors to 0. We do this to avoid |
| 201 | * overflowing the shift of read_errors by hours_since_last. |
| 202 | */ |
| 203 | if (hours_since_last >= 8 * sizeof(read_errors)) |
| 204 | atomic_set(&rdev->read_errors, 0); |
| 205 | else |
| 206 | atomic_set(&rdev->read_errors, read_errors >> hours_since_last); |
| 207 | } |
| 208 | |
| 209 | static inline bool exceed_read_errors(struct mddev *mddev, struct md_rdev *rdev) |
| 210 | { |
| 211 | int max_read_errors = atomic_read(&mddev->max_corr_read_errors); |
| 212 | int read_errors; |
| 213 | |
| 214 | check_decay_read_errors(mddev, rdev); |
| 215 | read_errors = atomic_inc_return(&rdev->read_errors); |
| 216 | if (read_errors > max_read_errors) { |
| 217 | pr_notice("md/"RAID_1_10_NAME":%s: %pg: Raid device exceeded read_error threshold [cur %d:max %d]\n", |
| 218 | mdname(mddev), rdev->bdev, read_errors, max_read_errors); |
| 219 | pr_notice("md/"RAID_1_10_NAME":%s: %pg: Failing raid device\n", |
| 220 | mdname(mddev), rdev->bdev); |
| 221 | md_error(mddev, rdev); |
| 222 | return true; |
| 223 | } |
| 224 | |
| 225 | return false; |
| 226 | } |
| 227 | |
| 228 | /** |
| 229 | * raid1_check_read_range() - check a given read range for bad blocks, |
| 230 | * available read length is returned; |
| 231 | * @rdev: the rdev to read; |
| 232 | * @this_sector: read position; |
| 233 | * @len: read length; |
| 234 | * |
| 235 | * helper function for read_balance() |
| 236 | * |
| 237 | * 1) If there are no bad blocks in the range, @len is returned; |
| 238 | * 2) If the range are all bad blocks, 0 is returned; |
| 239 | * 3) If there are partial bad blocks: |
| 240 | * - If the bad block range starts after @this_sector, the length of first |
| 241 | * good region is returned; |
| 242 | * - If the bad block range starts before @this_sector, 0 is returned and |
| 243 | * the @len is updated to the offset into the region before we get to the |
| 244 | * good blocks; |
| 245 | */ |
| 246 | static inline int raid1_check_read_range(struct md_rdev *rdev, |
| 247 | sector_t this_sector, int *len) |
| 248 | { |
| 249 | sector_t first_bad; |
| 250 | sector_t bad_sectors; |
| 251 | |
| 252 | /* no bad block overlap */ |
| 253 | if (!is_badblock(rdev, this_sector, *len, &first_bad, &bad_sectors)) |
| 254 | return *len; |
| 255 | |
| 256 | /* |
| 257 | * bad block range starts offset into our range so we can return the |
| 258 | * number of sectors before the bad blocks start. |
| 259 | */ |
| 260 | if (first_bad > this_sector) |
| 261 | return first_bad - this_sector; |
| 262 | |
| 263 | /* read range is fully consumed by bad blocks. */ |
| 264 | if (this_sector + *len <= first_bad + bad_sectors) |
| 265 | return 0; |
| 266 | |
| 267 | /* |
| 268 | * final case, bad block range starts before or at the start of our |
| 269 | * range but does not cover our entire range so we still return 0 but |
| 270 | * update the length with the number of sectors before we get to the |
| 271 | * good ones. |
| 272 | */ |
| 273 | *len = first_bad + bad_sectors - this_sector; |
| 274 | return 0; |
| 275 | } |
| 276 | |
| 277 | /* |
| 278 | * Check if read should choose the first rdev. |
| 279 | * |
| 280 | * Balance on the whole device if no resync is going on (recovery is ok) or |
| 281 | * below the resync window. Otherwise, take the first readable disk. |
| 282 | */ |
| 283 | static inline bool raid1_should_read_first(struct mddev *mddev, |
| 284 | sector_t this_sector, int len) |
| 285 | { |
| 286 | if ((mddev->recovery_cp < this_sector + len)) |
| 287 | return true; |
| 288 | |
| 289 | if (mddev_is_clustered(mddev) && |
| 290 | mddev->cluster_ops->area_resyncing(mddev, READ, this_sector, |
| 291 | this_sector + len)) |
| 292 | return true; |
| 293 | |
| 294 | return false; |
| 295 | } |
| 296 | |
| 297 | /* |
| 298 | * bio with REQ_RAHEAD or REQ_NOWAIT can fail at anytime, before such IO is |
| 299 | * submitted to the underlying disks, hence don't record badblocks or retry |
| 300 | * in this case. |
| 301 | */ |
| 302 | static inline bool raid1_should_handle_error(struct bio *bio) |
| 303 | { |
| 304 | return !(bio->bi_opf & (REQ_RAHEAD | REQ_NOWAIT)); |
| 305 | } |