Merge tag 'mm-hotfixes-stable-2025-07-11-16-16' of git://git.kernel.org/pub/scm/linux...
[linux-block.git] / drivers / md / dm.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9#include "dm-core.h"
10#include "dm-rq.h"
11#include "dm-uevent.h"
12#include "dm-ima.h"
13
14#include <linux/bio-integrity.h>
15#include <linux/init.h>
16#include <linux/module.h>
17#include <linux/mutex.h>
18#include <linux/sched/mm.h>
19#include <linux/sched/signal.h>
20#include <linux/blkpg.h>
21#include <linux/bio.h>
22#include <linux/mempool.h>
23#include <linux/dax.h>
24#include <linux/slab.h>
25#include <linux/idr.h>
26#include <linux/uio.h>
27#include <linux/hdreg.h>
28#include <linux/delay.h>
29#include <linux/wait.h>
30#include <linux/pr.h>
31#include <linux/refcount.h>
32#include <linux/part_stat.h>
33#include <linux/blk-crypto.h>
34#include <linux/blk-crypto-profile.h>
35
36#define DM_MSG_PREFIX "core"
37
38/*
39 * Cookies are numeric values sent with CHANGE and REMOVE
40 * uevents while resuming, removing or renaming the device.
41 */
42#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
43#define DM_COOKIE_LENGTH 24
44
45/*
46 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
47 * dm_io into one list, and reuse bio->bi_private as the list head. Before
48 * ending this fs bio, we will recover its ->bi_private.
49 */
50#define REQ_DM_POLL_LIST REQ_DRV
51
52static const char *_name = DM_NAME;
53
54static unsigned int major;
55static unsigned int _major;
56
57static DEFINE_IDR(_minor_idr);
58
59static DEFINE_SPINLOCK(_minor_lock);
60
61static void do_deferred_remove(struct work_struct *w);
62
63static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
64
65static struct workqueue_struct *deferred_remove_workqueue;
66
67atomic_t dm_global_event_nr = ATOMIC_INIT(0);
68DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
69
70void dm_issue_global_event(void)
71{
72 atomic_inc(&dm_global_event_nr);
73 wake_up(&dm_global_eventq);
74}
75
76DEFINE_STATIC_KEY_FALSE(stats_enabled);
77DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
78DEFINE_STATIC_KEY_FALSE(zoned_enabled);
79
80/*
81 * One of these is allocated (on-stack) per original bio.
82 */
83struct clone_info {
84 struct dm_table *map;
85 struct bio *bio;
86 struct dm_io *io;
87 sector_t sector;
88 unsigned int sector_count;
89 bool is_abnormal_io:1;
90 bool submit_as_polled:1;
91};
92
93static inline struct dm_target_io *clone_to_tio(struct bio *clone)
94{
95 return container_of(clone, struct dm_target_io, clone);
96}
97
98void *dm_per_bio_data(struct bio *bio, size_t data_size)
99{
100 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
101 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
102 return (char *)bio - DM_IO_BIO_OFFSET - data_size;
103}
104EXPORT_SYMBOL_GPL(dm_per_bio_data);
105
106struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
107{
108 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
109
110 if (io->magic == DM_IO_MAGIC)
111 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
112 BUG_ON(io->magic != DM_TIO_MAGIC);
113 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
114}
115EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
116
117unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
118{
119 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
120}
121EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
122
123#define MINOR_ALLOCED ((void *)-1)
124
125#define DM_NUMA_NODE NUMA_NO_NODE
126static int dm_numa_node = DM_NUMA_NODE;
127
128#define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
129static int swap_bios = DEFAULT_SWAP_BIOS;
130static int get_swap_bios(void)
131{
132 int latch = READ_ONCE(swap_bios);
133
134 if (unlikely(latch <= 0))
135 latch = DEFAULT_SWAP_BIOS;
136 return latch;
137}
138
139struct table_device {
140 struct list_head list;
141 refcount_t count;
142 struct dm_dev dm_dev;
143};
144
145/*
146 * Bio-based DM's mempools' reserved IOs set by the user.
147 */
148#define RESERVED_BIO_BASED_IOS 16
149static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
150
151static int __dm_get_module_param_int(int *module_param, int min, int max)
152{
153 int param = READ_ONCE(*module_param);
154 int modified_param = 0;
155 bool modified = true;
156
157 if (param < min)
158 modified_param = min;
159 else if (param > max)
160 modified_param = max;
161 else
162 modified = false;
163
164 if (modified) {
165 (void)cmpxchg(module_param, param, modified_param);
166 param = modified_param;
167 }
168
169 return param;
170}
171
172unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
173{
174 unsigned int param = READ_ONCE(*module_param);
175 unsigned int modified_param = 0;
176
177 if (!param)
178 modified_param = def;
179 else if (param > max)
180 modified_param = max;
181
182 if (modified_param) {
183 (void)cmpxchg(module_param, param, modified_param);
184 param = modified_param;
185 }
186
187 return param;
188}
189
190unsigned int dm_get_reserved_bio_based_ios(void)
191{
192 return __dm_get_module_param(&reserved_bio_based_ios,
193 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
194}
195EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
196
197static unsigned int dm_get_numa_node(void)
198{
199 return __dm_get_module_param_int(&dm_numa_node,
200 DM_NUMA_NODE, num_online_nodes() - 1);
201}
202
203static int __init local_init(void)
204{
205 int r;
206
207 r = dm_uevent_init();
208 if (r)
209 return r;
210
211 deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
212 if (!deferred_remove_workqueue) {
213 r = -ENOMEM;
214 goto out_uevent_exit;
215 }
216
217 _major = major;
218 r = register_blkdev(_major, _name);
219 if (r < 0)
220 goto out_free_workqueue;
221
222 if (!_major)
223 _major = r;
224
225 return 0;
226
227out_free_workqueue:
228 destroy_workqueue(deferred_remove_workqueue);
229out_uevent_exit:
230 dm_uevent_exit();
231
232 return r;
233}
234
235static void local_exit(void)
236{
237 destroy_workqueue(deferred_remove_workqueue);
238
239 unregister_blkdev(_major, _name);
240 dm_uevent_exit();
241
242 _major = 0;
243
244 DMINFO("cleaned up");
245}
246
247static int (*_inits[])(void) __initdata = {
248 local_init,
249 dm_target_init,
250 dm_linear_init,
251 dm_stripe_init,
252 dm_io_init,
253 dm_kcopyd_init,
254 dm_interface_init,
255 dm_statistics_init,
256};
257
258static void (*_exits[])(void) = {
259 local_exit,
260 dm_target_exit,
261 dm_linear_exit,
262 dm_stripe_exit,
263 dm_io_exit,
264 dm_kcopyd_exit,
265 dm_interface_exit,
266 dm_statistics_exit,
267};
268
269static int __init dm_init(void)
270{
271 const int count = ARRAY_SIZE(_inits);
272 int r, i;
273
274#if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
275 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
276 " Duplicate IMA measurements will not be recorded in the IMA log.");
277#endif
278
279 for (i = 0; i < count; i++) {
280 r = _inits[i]();
281 if (r)
282 goto bad;
283 }
284
285 return 0;
286bad:
287 while (i--)
288 _exits[i]();
289
290 return r;
291}
292
293static void __exit dm_exit(void)
294{
295 int i = ARRAY_SIZE(_exits);
296
297 while (i--)
298 _exits[i]();
299
300 /*
301 * Should be empty by this point.
302 */
303 idr_destroy(&_minor_idr);
304}
305
306/*
307 * Block device functions
308 */
309int dm_deleting_md(struct mapped_device *md)
310{
311 return test_bit(DMF_DELETING, &md->flags);
312}
313
314static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
315{
316 struct mapped_device *md;
317
318 spin_lock(&_minor_lock);
319
320 md = disk->private_data;
321 if (!md)
322 goto out;
323
324 if (test_bit(DMF_FREEING, &md->flags) ||
325 dm_deleting_md(md)) {
326 md = NULL;
327 goto out;
328 }
329
330 dm_get(md);
331 atomic_inc(&md->open_count);
332out:
333 spin_unlock(&_minor_lock);
334
335 return md ? 0 : -ENXIO;
336}
337
338static void dm_blk_close(struct gendisk *disk)
339{
340 struct mapped_device *md;
341
342 spin_lock(&_minor_lock);
343
344 md = disk->private_data;
345 if (WARN_ON(!md))
346 goto out;
347
348 if (atomic_dec_and_test(&md->open_count) &&
349 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
350 queue_work(deferred_remove_workqueue, &deferred_remove_work);
351
352 dm_put(md);
353out:
354 spin_unlock(&_minor_lock);
355}
356
357int dm_open_count(struct mapped_device *md)
358{
359 return atomic_read(&md->open_count);
360}
361
362/*
363 * Guarantees nothing is using the device before it's deleted.
364 */
365int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
366{
367 int r = 0;
368
369 spin_lock(&_minor_lock);
370
371 if (dm_open_count(md)) {
372 r = -EBUSY;
373 if (mark_deferred)
374 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
375 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
376 r = -EEXIST;
377 else
378 set_bit(DMF_DELETING, &md->flags);
379
380 spin_unlock(&_minor_lock);
381
382 return r;
383}
384
385int dm_cancel_deferred_remove(struct mapped_device *md)
386{
387 int r = 0;
388
389 spin_lock(&_minor_lock);
390
391 if (test_bit(DMF_DELETING, &md->flags))
392 r = -EBUSY;
393 else
394 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
395
396 spin_unlock(&_minor_lock);
397
398 return r;
399}
400
401static void do_deferred_remove(struct work_struct *w)
402{
403 dm_deferred_remove();
404}
405
406static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
407{
408 struct mapped_device *md = bdev->bd_disk->private_data;
409
410 return dm_get_geometry(md, geo);
411}
412
413static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
414 struct block_device **bdev, unsigned int cmd,
415 unsigned long arg, bool *forward)
416{
417 struct dm_target *ti;
418 struct dm_table *map;
419 int r;
420
421retry:
422 r = -ENOTTY;
423 map = dm_get_live_table(md, srcu_idx);
424 if (!map || !dm_table_get_size(map))
425 return r;
426
427 /* We only support devices that have a single target */
428 if (map->num_targets != 1)
429 return r;
430
431 ti = dm_table_get_target(map, 0);
432 if (!ti->type->prepare_ioctl)
433 return r;
434
435 if (dm_suspended_md(md))
436 return -EAGAIN;
437
438 r = ti->type->prepare_ioctl(ti, bdev, cmd, arg, forward);
439 if (r == -ENOTCONN && *forward && !fatal_signal_pending(current)) {
440 dm_put_live_table(md, *srcu_idx);
441 fsleep(10000);
442 goto retry;
443 }
444
445 return r;
446}
447
448static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
449{
450 dm_put_live_table(md, srcu_idx);
451}
452
453static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
454 unsigned int cmd, unsigned long arg)
455{
456 struct mapped_device *md = bdev->bd_disk->private_data;
457 int r, srcu_idx;
458 bool forward = true;
459
460 r = dm_prepare_ioctl(md, &srcu_idx, &bdev, cmd, arg, &forward);
461 if (!forward || r < 0)
462 goto out;
463
464 if (r > 0) {
465 /*
466 * Target determined this ioctl is being issued against a
467 * subset of the parent bdev; require extra privileges.
468 */
469 if (!capable(CAP_SYS_RAWIO)) {
470 DMDEBUG_LIMIT(
471 "%s: sending ioctl %x to DM device without required privilege.",
472 current->comm, cmd);
473 r = -ENOIOCTLCMD;
474 goto out;
475 }
476 }
477
478 if (!bdev->bd_disk->fops->ioctl)
479 r = -ENOTTY;
480 else
481 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
482out:
483 dm_unprepare_ioctl(md, srcu_idx);
484 return r;
485}
486
487u64 dm_start_time_ns_from_clone(struct bio *bio)
488{
489 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
490}
491EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
492
493static inline bool bio_is_flush_with_data(struct bio *bio)
494{
495 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
496}
497
498static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
499{
500 /*
501 * If REQ_PREFLUSH set, don't account payload, it will be
502 * submitted (and accounted) after this flush completes.
503 */
504 if (bio_is_flush_with_data(bio))
505 return 0;
506 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
507 return io->sectors;
508 return bio_sectors(bio);
509}
510
511static void dm_io_acct(struct dm_io *io, bool end)
512{
513 struct bio *bio = io->orig_bio;
514
515 if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
516 if (!end)
517 bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
518 io->start_time);
519 else
520 bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
521 dm_io_sectors(io, bio),
522 io->start_time);
523 }
524
525 if (static_branch_unlikely(&stats_enabled) &&
526 unlikely(dm_stats_used(&io->md->stats))) {
527 sector_t sector;
528
529 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
530 sector = bio_end_sector(bio) - io->sector_offset;
531 else
532 sector = bio->bi_iter.bi_sector;
533
534 dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
535 sector, dm_io_sectors(io, bio),
536 end, io->start_time, &io->stats_aux);
537 }
538}
539
540static void __dm_start_io_acct(struct dm_io *io)
541{
542 dm_io_acct(io, false);
543}
544
545static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
546{
547 /*
548 * Ensure IO accounting is only ever started once.
549 */
550 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
551 return;
552
553 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
554 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
555 dm_io_set_flag(io, DM_IO_ACCOUNTED);
556 } else {
557 unsigned long flags;
558 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
559 spin_lock_irqsave(&io->lock, flags);
560 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
561 spin_unlock_irqrestore(&io->lock, flags);
562 return;
563 }
564 dm_io_set_flag(io, DM_IO_ACCOUNTED);
565 spin_unlock_irqrestore(&io->lock, flags);
566 }
567
568 __dm_start_io_acct(io);
569}
570
571static void dm_end_io_acct(struct dm_io *io)
572{
573 dm_io_acct(io, true);
574}
575
576static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask)
577{
578 struct dm_io *io;
579 struct dm_target_io *tio;
580 struct bio *clone;
581
582 clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs);
583 if (unlikely(!clone))
584 return NULL;
585 tio = clone_to_tio(clone);
586 tio->flags = 0;
587 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
588 tio->io = NULL;
589
590 io = container_of(tio, struct dm_io, tio);
591 io->magic = DM_IO_MAGIC;
592 io->status = BLK_STS_OK;
593
594 /* one ref is for submission, the other is for completion */
595 atomic_set(&io->io_count, 2);
596 this_cpu_inc(*md->pending_io);
597 io->orig_bio = bio;
598 io->md = md;
599 spin_lock_init(&io->lock);
600 io->start_time = jiffies;
601 io->flags = 0;
602 if (blk_queue_io_stat(md->queue))
603 dm_io_set_flag(io, DM_IO_BLK_STAT);
604
605 if (static_branch_unlikely(&stats_enabled) &&
606 unlikely(dm_stats_used(&md->stats)))
607 dm_stats_record_start(&md->stats, &io->stats_aux);
608
609 return io;
610}
611
612static void free_io(struct dm_io *io)
613{
614 bio_put(&io->tio.clone);
615}
616
617static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
618 unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
619{
620 struct mapped_device *md = ci->io->md;
621 struct dm_target_io *tio;
622 struct bio *clone;
623
624 if (!ci->io->tio.io) {
625 /* the dm_target_io embedded in ci->io is available */
626 tio = &ci->io->tio;
627 /* alloc_io() already initialized embedded clone */
628 clone = &tio->clone;
629 } else {
630 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
631 &md->mempools->bs);
632 if (!clone)
633 return NULL;
634
635 /* REQ_DM_POLL_LIST shouldn't be inherited */
636 clone->bi_opf &= ~REQ_DM_POLL_LIST;
637
638 tio = clone_to_tio(clone);
639 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
640 }
641
642 tio->magic = DM_TIO_MAGIC;
643 tio->io = ci->io;
644 tio->ti = ti;
645 tio->target_bio_nr = target_bio_nr;
646 tio->len_ptr = len;
647 tio->old_sector = 0;
648
649 /* Set default bdev, but target must bio_set_dev() before issuing IO */
650 clone->bi_bdev = md->disk->part0;
651 if (likely(ti != NULL) && unlikely(ti->needs_bio_set_dev))
652 bio_set_dev(clone, md->disk->part0);
653
654 if (len) {
655 clone->bi_iter.bi_size = to_bytes(*len);
656 if (bio_integrity(clone))
657 bio_integrity_trim(clone);
658 }
659
660 return clone;
661}
662
663static void free_tio(struct bio *clone)
664{
665 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
666 return;
667 bio_put(clone);
668}
669
670/*
671 * Add the bio to the list of deferred io.
672 */
673static void queue_io(struct mapped_device *md, struct bio *bio)
674{
675 unsigned long flags;
676
677 spin_lock_irqsave(&md->deferred_lock, flags);
678 bio_list_add(&md->deferred, bio);
679 spin_unlock_irqrestore(&md->deferred_lock, flags);
680 queue_work(md->wq, &md->work);
681}
682
683/*
684 * Everyone (including functions in this file), should use this
685 * function to access the md->map field, and make sure they call
686 * dm_put_live_table() when finished.
687 */
688struct dm_table *dm_get_live_table(struct mapped_device *md,
689 int *srcu_idx) __acquires(md->io_barrier)
690{
691 *srcu_idx = srcu_read_lock(&md->io_barrier);
692
693 return srcu_dereference(md->map, &md->io_barrier);
694}
695
696void dm_put_live_table(struct mapped_device *md,
697 int srcu_idx) __releases(md->io_barrier)
698{
699 srcu_read_unlock(&md->io_barrier, srcu_idx);
700}
701
702void dm_sync_table(struct mapped_device *md)
703{
704 synchronize_srcu(&md->io_barrier);
705 synchronize_rcu_expedited();
706}
707
708/*
709 * A fast alternative to dm_get_live_table/dm_put_live_table.
710 * The caller must not block between these two functions.
711 */
712static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
713{
714 rcu_read_lock();
715 return rcu_dereference(md->map);
716}
717
718static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
719{
720 rcu_read_unlock();
721}
722
723static char *_dm_claim_ptr = "I belong to device-mapper";
724
725/*
726 * Open a table device so we can use it as a map destination.
727 */
728static struct table_device *open_table_device(struct mapped_device *md,
729 dev_t dev, blk_mode_t mode)
730{
731 struct table_device *td;
732 struct file *bdev_file;
733 struct block_device *bdev;
734 u64 part_off;
735 int r;
736
737 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
738 if (!td)
739 return ERR_PTR(-ENOMEM);
740 refcount_set(&td->count, 1);
741
742 bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL);
743 if (IS_ERR(bdev_file)) {
744 r = PTR_ERR(bdev_file);
745 goto out_free_td;
746 }
747
748 bdev = file_bdev(bdev_file);
749
750 /*
751 * We can be called before the dm disk is added. In that case we can't
752 * register the holder relation here. It will be done once add_disk was
753 * called.
754 */
755 if (md->disk->slave_dir) {
756 r = bd_link_disk_holder(bdev, md->disk);
757 if (r)
758 goto out_blkdev_put;
759 }
760
761 td->dm_dev.mode = mode;
762 td->dm_dev.bdev = bdev;
763 td->dm_dev.bdev_file = bdev_file;
764 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off,
765 NULL, NULL);
766 format_dev_t(td->dm_dev.name, dev);
767 list_add(&td->list, &md->table_devices);
768 return td;
769
770out_blkdev_put:
771 __fput_sync(bdev_file);
772out_free_td:
773 kfree(td);
774 return ERR_PTR(r);
775}
776
777/*
778 * Close a table device that we've been using.
779 */
780static void close_table_device(struct table_device *td, struct mapped_device *md)
781{
782 if (md->disk->slave_dir)
783 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
784
785 /* Leverage async fput() if DMF_DEFERRED_REMOVE set */
786 if (unlikely(test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
787 fput(td->dm_dev.bdev_file);
788 else
789 __fput_sync(td->dm_dev.bdev_file);
790
791 put_dax(td->dm_dev.dax_dev);
792 list_del(&td->list);
793 kfree(td);
794}
795
796static struct table_device *find_table_device(struct list_head *l, dev_t dev,
797 blk_mode_t mode)
798{
799 struct table_device *td;
800
801 list_for_each_entry(td, l, list)
802 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
803 return td;
804
805 return NULL;
806}
807
808int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
809 struct dm_dev **result)
810{
811 struct table_device *td;
812
813 mutex_lock(&md->table_devices_lock);
814 td = find_table_device(&md->table_devices, dev, mode);
815 if (!td) {
816 td = open_table_device(md, dev, mode);
817 if (IS_ERR(td)) {
818 mutex_unlock(&md->table_devices_lock);
819 return PTR_ERR(td);
820 }
821 } else {
822 refcount_inc(&td->count);
823 }
824 mutex_unlock(&md->table_devices_lock);
825
826 *result = &td->dm_dev;
827 return 0;
828}
829
830void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
831{
832 struct table_device *td = container_of(d, struct table_device, dm_dev);
833
834 mutex_lock(&md->table_devices_lock);
835 if (refcount_dec_and_test(&td->count))
836 close_table_device(td, md);
837 mutex_unlock(&md->table_devices_lock);
838}
839
840/*
841 * Get the geometry associated with a dm device
842 */
843int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
844{
845 *geo = md->geometry;
846
847 return 0;
848}
849
850/*
851 * Set the geometry of a device.
852 */
853int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
854{
855 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
856
857 if (geo->start > sz) {
858 DMERR("Start sector is beyond the geometry limits.");
859 return -EINVAL;
860 }
861
862 md->geometry = *geo;
863
864 return 0;
865}
866
867static int __noflush_suspending(struct mapped_device *md)
868{
869 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
870}
871
872static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
873{
874 struct mapped_device *md = io->md;
875
876 if (first_stage) {
877 struct dm_io *next = md->requeue_list;
878
879 md->requeue_list = io;
880 io->next = next;
881 } else {
882 bio_list_add_head(&md->deferred, io->orig_bio);
883 }
884}
885
886static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
887{
888 if (first_stage)
889 queue_work(md->wq, &md->requeue_work);
890 else
891 queue_work(md->wq, &md->work);
892}
893
894/*
895 * Return true if the dm_io's original bio is requeued.
896 * io->status is updated with error if requeue disallowed.
897 */
898static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
899{
900 struct bio *bio = io->orig_bio;
901 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
902 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
903 (bio->bi_opf & REQ_POLLED));
904 struct mapped_device *md = io->md;
905 bool requeued = false;
906
907 if (handle_requeue || handle_polled_eagain) {
908 unsigned long flags;
909
910 if (bio->bi_opf & REQ_POLLED) {
911 /*
912 * Upper layer won't help us poll split bio
913 * (io->orig_bio may only reflect a subset of the
914 * pre-split original) so clear REQ_POLLED.
915 */
916 bio_clear_polled(bio);
917 }
918
919 /*
920 * Target requested pushing back the I/O or
921 * polled IO hit BLK_STS_AGAIN.
922 */
923 spin_lock_irqsave(&md->deferred_lock, flags);
924 if ((__noflush_suspending(md) &&
925 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
926 handle_polled_eagain || first_stage) {
927 dm_requeue_add_io(io, first_stage);
928 requeued = true;
929 } else {
930 /*
931 * noflush suspend was interrupted or this is
932 * a write to a zoned target.
933 */
934 io->status = BLK_STS_IOERR;
935 }
936 spin_unlock_irqrestore(&md->deferred_lock, flags);
937 }
938
939 if (requeued)
940 dm_kick_requeue(md, first_stage);
941
942 return requeued;
943}
944
945static void __dm_io_complete(struct dm_io *io, bool first_stage)
946{
947 struct bio *bio = io->orig_bio;
948 struct mapped_device *md = io->md;
949 blk_status_t io_error;
950 bool requeued;
951
952 requeued = dm_handle_requeue(io, first_stage);
953 if (requeued && first_stage)
954 return;
955
956 io_error = io->status;
957 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
958 dm_end_io_acct(io);
959 else if (!io_error) {
960 /*
961 * Must handle target that DM_MAPIO_SUBMITTED only to
962 * then bio_endio() rather than dm_submit_bio_remap()
963 */
964 __dm_start_io_acct(io);
965 dm_end_io_acct(io);
966 }
967 free_io(io);
968 smp_wmb();
969 this_cpu_dec(*md->pending_io);
970
971 /* nudge anyone waiting on suspend queue */
972 if (unlikely(wq_has_sleeper(&md->wait)))
973 wake_up(&md->wait);
974
975 /* Return early if the original bio was requeued */
976 if (requeued)
977 return;
978
979 if (bio_is_flush_with_data(bio)) {
980 /*
981 * Preflush done for flush with data, reissue
982 * without REQ_PREFLUSH.
983 */
984 bio->bi_opf &= ~REQ_PREFLUSH;
985 queue_io(md, bio);
986 } else {
987 /* done with normal IO or empty flush */
988 if (io_error)
989 bio->bi_status = io_error;
990 bio_endio(bio);
991 }
992}
993
994static void dm_wq_requeue_work(struct work_struct *work)
995{
996 struct mapped_device *md = container_of(work, struct mapped_device,
997 requeue_work);
998 unsigned long flags;
999 struct dm_io *io;
1000
1001 /* reuse deferred lock to simplify dm_handle_requeue */
1002 spin_lock_irqsave(&md->deferred_lock, flags);
1003 io = md->requeue_list;
1004 md->requeue_list = NULL;
1005 spin_unlock_irqrestore(&md->deferred_lock, flags);
1006
1007 while (io) {
1008 struct dm_io *next = io->next;
1009
1010 dm_io_rewind(io, &md->disk->bio_split);
1011
1012 io->next = NULL;
1013 __dm_io_complete(io, false);
1014 io = next;
1015 cond_resched();
1016 }
1017}
1018
1019/*
1020 * Two staged requeue:
1021 *
1022 * 1) io->orig_bio points to the real original bio, and the part mapped to
1023 * this io must be requeued, instead of other parts of the original bio.
1024 *
1025 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1026 */
1027static void dm_io_complete(struct dm_io *io)
1028{
1029 bool first_requeue;
1030
1031 /*
1032 * Only dm_io that has been split needs two stage requeue, otherwise
1033 * we may run into long bio clone chain during suspend and OOM could
1034 * be triggered.
1035 *
1036 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1037 * also aren't handled via the first stage requeue.
1038 */
1039 if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1040 first_requeue = true;
1041 else
1042 first_requeue = false;
1043
1044 __dm_io_complete(io, first_requeue);
1045}
1046
1047/*
1048 * Decrements the number of outstanding ios that a bio has been
1049 * cloned into, completing the original io if necc.
1050 */
1051static inline void __dm_io_dec_pending(struct dm_io *io)
1052{
1053 if (atomic_dec_and_test(&io->io_count))
1054 dm_io_complete(io);
1055}
1056
1057static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1058{
1059 unsigned long flags;
1060
1061 /* Push-back supersedes any I/O errors */
1062 spin_lock_irqsave(&io->lock, flags);
1063 if (!(io->status == BLK_STS_DM_REQUEUE &&
1064 __noflush_suspending(io->md))) {
1065 io->status = error;
1066 }
1067 spin_unlock_irqrestore(&io->lock, flags);
1068}
1069
1070static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1071{
1072 if (unlikely(error))
1073 dm_io_set_error(io, error);
1074
1075 __dm_io_dec_pending(io);
1076}
1077
1078/*
1079 * The queue_limits are only valid as long as you have a reference
1080 * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1081 */
1082static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1083{
1084 return &md->queue->limits;
1085}
1086
1087static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1088{
1089 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1090}
1091
1092static void clone_endio(struct bio *bio)
1093{
1094 blk_status_t error = bio->bi_status;
1095 struct dm_target_io *tio = clone_to_tio(bio);
1096 struct dm_target *ti = tio->ti;
1097 dm_endio_fn endio = likely(ti != NULL) ? ti->type->end_io : NULL;
1098 struct dm_io *io = tio->io;
1099 struct mapped_device *md = io->md;
1100
1101 if (unlikely(error == BLK_STS_TARGET)) {
1102 if (bio_op(bio) == REQ_OP_DISCARD &&
1103 !bdev_max_discard_sectors(bio->bi_bdev))
1104 blk_queue_disable_discard(md->queue);
1105 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1106 !bdev_write_zeroes_sectors(bio->bi_bdev))
1107 blk_queue_disable_write_zeroes(md->queue);
1108 }
1109
1110 if (static_branch_unlikely(&zoned_enabled) &&
1111 unlikely(bdev_is_zoned(bio->bi_bdev)))
1112 dm_zone_endio(io, bio);
1113
1114 if (endio) {
1115 int r = endio(ti, bio, &error);
1116
1117 switch (r) {
1118 case DM_ENDIO_REQUEUE:
1119 if (static_branch_unlikely(&zoned_enabled)) {
1120 /*
1121 * Requeuing writes to a sequential zone of a zoned
1122 * target will break the sequential write pattern:
1123 * fail such IO.
1124 */
1125 if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1126 error = BLK_STS_IOERR;
1127 else
1128 error = BLK_STS_DM_REQUEUE;
1129 } else
1130 error = BLK_STS_DM_REQUEUE;
1131 fallthrough;
1132 case DM_ENDIO_DONE:
1133 break;
1134 case DM_ENDIO_INCOMPLETE:
1135 /* The target will handle the io */
1136 return;
1137 default:
1138 DMCRIT("unimplemented target endio return value: %d", r);
1139 BUG();
1140 }
1141 }
1142
1143 if (static_branch_unlikely(&swap_bios_enabled) &&
1144 likely(ti != NULL) && unlikely(swap_bios_limit(ti, bio)))
1145 up(&md->swap_bios_semaphore);
1146
1147 free_tio(bio);
1148 dm_io_dec_pending(io, error);
1149}
1150
1151/*
1152 * Return maximum size of I/O possible at the supplied sector up to the current
1153 * target boundary.
1154 */
1155static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1156 sector_t target_offset)
1157{
1158 return ti->len - target_offset;
1159}
1160
1161static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1162 unsigned int max_granularity,
1163 unsigned int max_sectors)
1164{
1165 sector_t target_offset = dm_target_offset(ti, sector);
1166 sector_t len = max_io_len_target_boundary(ti, target_offset);
1167
1168 /*
1169 * Does the target need to split IO even further?
1170 * - varied (per target) IO splitting is a tenet of DM; this
1171 * explains why stacked chunk_sectors based splitting via
1172 * bio_split_to_limits() isn't possible here.
1173 */
1174 if (!max_granularity)
1175 return len;
1176 return min_t(sector_t, len,
1177 min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1178 blk_boundary_sectors_left(target_offset, max_granularity)));
1179}
1180
1181static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1182{
1183 return __max_io_len(ti, sector, ti->max_io_len, 0);
1184}
1185
1186int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1187{
1188 if (len > UINT_MAX) {
1189 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1190 (unsigned long long)len, UINT_MAX);
1191 ti->error = "Maximum size of target IO is too large";
1192 return -EINVAL;
1193 }
1194
1195 ti->max_io_len = (uint32_t) len;
1196
1197 return 0;
1198}
1199EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1200
1201static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1202 sector_t sector, int *srcu_idx)
1203 __acquires(md->io_barrier)
1204{
1205 struct dm_table *map;
1206 struct dm_target *ti;
1207
1208 map = dm_get_live_table(md, srcu_idx);
1209 if (!map)
1210 return NULL;
1211
1212 ti = dm_table_find_target(map, sector);
1213 if (!ti)
1214 return NULL;
1215
1216 return ti;
1217}
1218
1219static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1220 long nr_pages, enum dax_access_mode mode, void **kaddr,
1221 pfn_t *pfn)
1222{
1223 struct mapped_device *md = dax_get_private(dax_dev);
1224 sector_t sector = pgoff * PAGE_SECTORS;
1225 struct dm_target *ti;
1226 long len, ret = -EIO;
1227 int srcu_idx;
1228
1229 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1230
1231 if (!ti)
1232 goto out;
1233 if (!ti->type->direct_access)
1234 goto out;
1235 len = max_io_len(ti, sector) / PAGE_SECTORS;
1236 if (len < 1)
1237 goto out;
1238 nr_pages = min(len, nr_pages);
1239 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1240
1241 out:
1242 dm_put_live_table(md, srcu_idx);
1243
1244 return ret;
1245}
1246
1247static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1248 size_t nr_pages)
1249{
1250 struct mapped_device *md = dax_get_private(dax_dev);
1251 sector_t sector = pgoff * PAGE_SECTORS;
1252 struct dm_target *ti;
1253 int ret = -EIO;
1254 int srcu_idx;
1255
1256 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1257
1258 if (!ti)
1259 goto out;
1260 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1261 /*
1262 * ->zero_page_range() is mandatory dax operation. If we are
1263 * here, something is wrong.
1264 */
1265 goto out;
1266 }
1267 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1268 out:
1269 dm_put_live_table(md, srcu_idx);
1270
1271 return ret;
1272}
1273
1274static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1275 void *addr, size_t bytes, struct iov_iter *i)
1276{
1277 struct mapped_device *md = dax_get_private(dax_dev);
1278 sector_t sector = pgoff * PAGE_SECTORS;
1279 struct dm_target *ti;
1280 int srcu_idx;
1281 long ret = 0;
1282
1283 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1284 if (!ti || !ti->type->dax_recovery_write)
1285 goto out;
1286
1287 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1288out:
1289 dm_put_live_table(md, srcu_idx);
1290 return ret;
1291}
1292
1293/*
1294 * A target may call dm_accept_partial_bio only from the map routine. It is
1295 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1296 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1297 * __send_duplicate_bios().
1298 *
1299 * dm_accept_partial_bio informs the dm that the target only wants to process
1300 * additional n_sectors sectors of the bio and the rest of the data should be
1301 * sent in a next bio.
1302 *
1303 * A diagram that explains the arithmetics:
1304 * +--------------------+---------------+-------+
1305 * | 1 | 2 | 3 |
1306 * +--------------------+---------------+-------+
1307 *
1308 * <-------------- *tio->len_ptr --------------->
1309 * <----- bio_sectors ----->
1310 * <-- n_sectors -->
1311 *
1312 * Region 1 was already iterated over with bio_advance or similar function.
1313 * (it may be empty if the target doesn't use bio_advance)
1314 * Region 2 is the remaining bio size that the target wants to process.
1315 * (it may be empty if region 1 is non-empty, although there is no reason
1316 * to make it empty)
1317 * The target requires that region 3 is to be sent in the next bio.
1318 *
1319 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1320 * the partially processed part (the sum of regions 1+2) must be the same for all
1321 * copies of the bio.
1322 */
1323void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1324{
1325 struct dm_target_io *tio = clone_to_tio(bio);
1326 struct dm_io *io = tio->io;
1327 unsigned int bio_sectors = bio_sectors(bio);
1328
1329 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1330 BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1331 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1332 BUG_ON(bio_sectors > *tio->len_ptr);
1333 BUG_ON(n_sectors > bio_sectors);
1334
1335 *tio->len_ptr -= bio_sectors - n_sectors;
1336 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1337
1338 /*
1339 * __split_and_process_bio() may have already saved mapped part
1340 * for accounting but it is being reduced so update accordingly.
1341 */
1342 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1343 io->sectors = n_sectors;
1344 io->sector_offset = bio_sectors(io->orig_bio);
1345}
1346EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1347
1348/*
1349 * @clone: clone bio that DM core passed to target's .map function
1350 * @tgt_clone: clone of @clone bio that target needs submitted
1351 *
1352 * Targets should use this interface to submit bios they take
1353 * ownership of when returning DM_MAPIO_SUBMITTED.
1354 *
1355 * Target should also enable ti->accounts_remapped_io
1356 */
1357void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1358{
1359 struct dm_target_io *tio = clone_to_tio(clone);
1360 struct dm_io *io = tio->io;
1361
1362 /* establish bio that will get submitted */
1363 if (!tgt_clone)
1364 tgt_clone = clone;
1365
1366 /*
1367 * Account io->origin_bio to DM dev on behalf of target
1368 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1369 */
1370 dm_start_io_acct(io, clone);
1371
1372 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1373 tio->old_sector);
1374 submit_bio_noacct(tgt_clone);
1375}
1376EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1377
1378static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1379{
1380 mutex_lock(&md->swap_bios_lock);
1381 while (latch < md->swap_bios) {
1382 cond_resched();
1383 down(&md->swap_bios_semaphore);
1384 md->swap_bios--;
1385 }
1386 while (latch > md->swap_bios) {
1387 cond_resched();
1388 up(&md->swap_bios_semaphore);
1389 md->swap_bios++;
1390 }
1391 mutex_unlock(&md->swap_bios_lock);
1392}
1393
1394static void __map_bio(struct bio *clone)
1395{
1396 struct dm_target_io *tio = clone_to_tio(clone);
1397 struct dm_target *ti = tio->ti;
1398 struct dm_io *io = tio->io;
1399 struct mapped_device *md = io->md;
1400 int r;
1401
1402 clone->bi_end_io = clone_endio;
1403
1404 /*
1405 * Map the clone.
1406 */
1407 tio->old_sector = clone->bi_iter.bi_sector;
1408
1409 if (static_branch_unlikely(&swap_bios_enabled) &&
1410 unlikely(swap_bios_limit(ti, clone))) {
1411 int latch = get_swap_bios();
1412
1413 if (unlikely(latch != md->swap_bios))
1414 __set_swap_bios_limit(md, latch);
1415 down(&md->swap_bios_semaphore);
1416 }
1417
1418 if (likely(ti->type->map == linear_map))
1419 r = linear_map(ti, clone);
1420 else if (ti->type->map == stripe_map)
1421 r = stripe_map(ti, clone);
1422 else
1423 r = ti->type->map(ti, clone);
1424
1425 switch (r) {
1426 case DM_MAPIO_SUBMITTED:
1427 /* target has assumed ownership of this io */
1428 if (!ti->accounts_remapped_io)
1429 dm_start_io_acct(io, clone);
1430 break;
1431 case DM_MAPIO_REMAPPED:
1432 dm_submit_bio_remap(clone, NULL);
1433 break;
1434 case DM_MAPIO_KILL:
1435 case DM_MAPIO_REQUEUE:
1436 if (static_branch_unlikely(&swap_bios_enabled) &&
1437 unlikely(swap_bios_limit(ti, clone)))
1438 up(&md->swap_bios_semaphore);
1439 free_tio(clone);
1440 if (r == DM_MAPIO_KILL)
1441 dm_io_dec_pending(io, BLK_STS_IOERR);
1442 else
1443 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1444 break;
1445 default:
1446 DMCRIT("unimplemented target map return value: %d", r);
1447 BUG();
1448 }
1449}
1450
1451static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1452{
1453 struct dm_io *io = ci->io;
1454
1455 if (ci->sector_count > len) {
1456 /*
1457 * Split needed, save the mapped part for accounting.
1458 * NOTE: dm_accept_partial_bio() will update accordingly.
1459 */
1460 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1461 io->sectors = len;
1462 io->sector_offset = bio_sectors(ci->bio);
1463 }
1464}
1465
1466static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1467 struct dm_target *ti, unsigned int num_bios,
1468 unsigned *len)
1469{
1470 struct bio *bio;
1471 int try;
1472
1473 for (try = 0; try < 2; try++) {
1474 int bio_nr;
1475
1476 if (try && num_bios > 1)
1477 mutex_lock(&ci->io->md->table_devices_lock);
1478 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1479 bio = alloc_tio(ci, ti, bio_nr, len,
1480 try ? GFP_NOIO : GFP_NOWAIT);
1481 if (!bio)
1482 break;
1483
1484 bio_list_add(blist, bio);
1485 }
1486 if (try && num_bios > 1)
1487 mutex_unlock(&ci->io->md->table_devices_lock);
1488 if (bio_nr == num_bios)
1489 return;
1490
1491 while ((bio = bio_list_pop(blist)))
1492 free_tio(bio);
1493 }
1494}
1495
1496static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1497 unsigned int num_bios, unsigned int *len)
1498{
1499 struct bio_list blist = BIO_EMPTY_LIST;
1500 struct bio *clone;
1501 unsigned int ret = 0;
1502
1503 if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */
1504 return 0;
1505
1506 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1507 if (len)
1508 setup_split_accounting(ci, *len);
1509
1510 /*
1511 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently
1512 * support allocating using GFP_NOWAIT with GFP_NOIO fallback.
1513 */
1514 alloc_multiple_bios(&blist, ci, ti, num_bios, len);
1515 while ((clone = bio_list_pop(&blist))) {
1516 if (num_bios > 1)
1517 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1518 __map_bio(clone);
1519 ret += 1;
1520 }
1521
1522 return ret;
1523}
1524
1525static void __send_empty_flush(struct clone_info *ci)
1526{
1527 struct dm_table *t = ci->map;
1528 struct bio flush_bio;
1529 blk_opf_t opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1530
1531 if ((ci->io->orig_bio->bi_opf & (REQ_IDLE | REQ_SYNC)) ==
1532 (REQ_IDLE | REQ_SYNC))
1533 opf |= REQ_IDLE;
1534
1535 /*
1536 * Use an on-stack bio for this, it's safe since we don't
1537 * need to reference it after submit. It's just used as
1538 * the basis for the clone(s).
1539 */
1540 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, opf);
1541
1542 ci->bio = &flush_bio;
1543 ci->sector_count = 0;
1544 ci->io->tio.clone.bi_iter.bi_size = 0;
1545
1546 if (!t->flush_bypasses_map) {
1547 for (unsigned int i = 0; i < t->num_targets; i++) {
1548 unsigned int bios;
1549 struct dm_target *ti = dm_table_get_target(t, i);
1550
1551 if (unlikely(ti->num_flush_bios == 0))
1552 continue;
1553
1554 atomic_add(ti->num_flush_bios, &ci->io->io_count);
1555 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios,
1556 NULL);
1557 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1558 }
1559 } else {
1560 /*
1561 * Note that there's no need to grab t->devices_lock here
1562 * because the targets that support flush optimization don't
1563 * modify the list of devices.
1564 */
1565 struct list_head *devices = dm_table_get_devices(t);
1566 unsigned int len = 0;
1567 struct dm_dev_internal *dd;
1568 list_for_each_entry(dd, devices, list) {
1569 struct bio *clone;
1570 /*
1571 * Note that the structure dm_target_io is not
1572 * associated with any target (because the device may be
1573 * used by multiple targets), so we set tio->ti = NULL.
1574 * We must check for NULL in the I/O processing path, to
1575 * avoid NULL pointer dereference.
1576 */
1577 clone = alloc_tio(ci, NULL, 0, &len, GFP_NOIO);
1578 atomic_add(1, &ci->io->io_count);
1579 bio_set_dev(clone, dd->dm_dev->bdev);
1580 clone->bi_end_io = clone_endio;
1581 dm_submit_bio_remap(clone, NULL);
1582 }
1583 }
1584
1585 /*
1586 * alloc_io() takes one extra reference for submission, so the
1587 * reference won't reach 0 without the following subtraction
1588 */
1589 atomic_sub(1, &ci->io->io_count);
1590
1591 bio_uninit(ci->bio);
1592}
1593
1594static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1595 unsigned int num_bios, unsigned int max_granularity,
1596 unsigned int max_sectors)
1597{
1598 unsigned int len, bios;
1599
1600 len = min_t(sector_t, ci->sector_count,
1601 __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1602
1603 atomic_add(num_bios, &ci->io->io_count);
1604 bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1605 /*
1606 * alloc_io() takes one extra reference for submission, so the
1607 * reference won't reach 0 without the following (+1) subtraction
1608 */
1609 atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1610
1611 ci->sector += len;
1612 ci->sector_count -= len;
1613}
1614
1615static bool is_abnormal_io(struct bio *bio)
1616{
1617 switch (bio_op(bio)) {
1618 case REQ_OP_READ:
1619 case REQ_OP_WRITE:
1620 case REQ_OP_FLUSH:
1621 return false;
1622 case REQ_OP_DISCARD:
1623 case REQ_OP_SECURE_ERASE:
1624 case REQ_OP_WRITE_ZEROES:
1625 case REQ_OP_ZONE_RESET_ALL:
1626 return true;
1627 default:
1628 return false;
1629 }
1630}
1631
1632static blk_status_t __process_abnormal_io(struct clone_info *ci,
1633 struct dm_target *ti)
1634{
1635 unsigned int num_bios = 0;
1636 unsigned int max_granularity = 0;
1637 unsigned int max_sectors = 0;
1638 struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1639
1640 switch (bio_op(ci->bio)) {
1641 case REQ_OP_DISCARD:
1642 num_bios = ti->num_discard_bios;
1643 max_sectors = limits->max_discard_sectors;
1644 if (ti->max_discard_granularity)
1645 max_granularity = max_sectors;
1646 break;
1647 case REQ_OP_SECURE_ERASE:
1648 num_bios = ti->num_secure_erase_bios;
1649 max_sectors = limits->max_secure_erase_sectors;
1650 break;
1651 case REQ_OP_WRITE_ZEROES:
1652 num_bios = ti->num_write_zeroes_bios;
1653 max_sectors = limits->max_write_zeroes_sectors;
1654 break;
1655 default:
1656 break;
1657 }
1658
1659 /*
1660 * Even though the device advertised support for this type of
1661 * request, that does not mean every target supports it, and
1662 * reconfiguration might also have changed that since the
1663 * check was performed.
1664 */
1665 if (unlikely(!num_bios))
1666 return BLK_STS_NOTSUPP;
1667
1668 __send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors);
1669
1670 return BLK_STS_OK;
1671}
1672
1673/*
1674 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1675 * associated with this bio, and this bio's bi_private needs to be
1676 * stored in dm_io->data before the reuse.
1677 *
1678 * bio->bi_private is owned by fs or upper layer, so block layer won't
1679 * touch it after splitting. Meantime it won't be changed by anyone after
1680 * bio is submitted. So this reuse is safe.
1681 */
1682static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1683{
1684 return (struct dm_io **)&bio->bi_private;
1685}
1686
1687static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1688{
1689 struct dm_io **head = dm_poll_list_head(bio);
1690
1691 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1692 bio->bi_opf |= REQ_DM_POLL_LIST;
1693 /*
1694 * Save .bi_private into dm_io, so that we can reuse
1695 * .bi_private as dm_io list head for storing dm_io list
1696 */
1697 io->data = bio->bi_private;
1698
1699 /* tell block layer to poll for completion */
1700 bio->bi_cookie = ~BLK_QC_T_NONE;
1701
1702 io->next = NULL;
1703 } else {
1704 /*
1705 * bio recursed due to split, reuse original poll list,
1706 * and save bio->bi_private too.
1707 */
1708 io->data = (*head)->data;
1709 io->next = *head;
1710 }
1711
1712 *head = io;
1713}
1714
1715/*
1716 * Select the correct strategy for processing a non-flush bio.
1717 */
1718static blk_status_t __split_and_process_bio(struct clone_info *ci)
1719{
1720 struct bio *clone;
1721 struct dm_target *ti;
1722 unsigned int len;
1723
1724 ti = dm_table_find_target(ci->map, ci->sector);
1725 if (unlikely(!ti))
1726 return BLK_STS_IOERR;
1727
1728 if (unlikely(ci->is_abnormal_io))
1729 return __process_abnormal_io(ci, ti);
1730
1731 /*
1732 * Only support bio polling for normal IO, and the target io is
1733 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1734 */
1735 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1736
1737 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1738 if (ci->bio->bi_opf & REQ_ATOMIC && len != ci->sector_count)
1739 return BLK_STS_IOERR;
1740
1741 setup_split_accounting(ci, len);
1742
1743 if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) {
1744 if (unlikely(!dm_target_supports_nowait(ti->type)))
1745 return BLK_STS_NOTSUPP;
1746
1747 clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT);
1748 if (unlikely(!clone))
1749 return BLK_STS_AGAIN;
1750 } else {
1751 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1752 }
1753 __map_bio(clone);
1754
1755 ci->sector += len;
1756 ci->sector_count -= len;
1757
1758 return BLK_STS_OK;
1759}
1760
1761static void init_clone_info(struct clone_info *ci, struct dm_io *io,
1762 struct dm_table *map, struct bio *bio, bool is_abnormal)
1763{
1764 ci->map = map;
1765 ci->io = io;
1766 ci->bio = bio;
1767 ci->is_abnormal_io = is_abnormal;
1768 ci->submit_as_polled = false;
1769 ci->sector = bio->bi_iter.bi_sector;
1770 ci->sector_count = bio_sectors(bio);
1771
1772 /* Shouldn't happen but sector_count was being set to 0 so... */
1773 if (static_branch_unlikely(&zoned_enabled) &&
1774 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1775 ci->sector_count = 0;
1776}
1777
1778#ifdef CONFIG_BLK_DEV_ZONED
1779static inline bool dm_zone_bio_needs_split(struct mapped_device *md,
1780 struct bio *bio)
1781{
1782 /*
1783 * For mapped device that need zone append emulation, we must
1784 * split any large BIO that straddles zone boundaries.
1785 */
1786 return dm_emulate_zone_append(md) && bio_straddles_zones(bio) &&
1787 !bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING);
1788}
1789static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1790{
1791 return dm_emulate_zone_append(md) && blk_zone_plug_bio(bio, 0);
1792}
1793
1794static blk_status_t __send_zone_reset_all_emulated(struct clone_info *ci,
1795 struct dm_target *ti)
1796{
1797 struct bio_list blist = BIO_EMPTY_LIST;
1798 struct mapped_device *md = ci->io->md;
1799 unsigned int zone_sectors = md->disk->queue->limits.chunk_sectors;
1800 unsigned long *need_reset;
1801 unsigned int i, nr_zones, nr_reset;
1802 unsigned int num_bios = 0;
1803 blk_status_t sts = BLK_STS_OK;
1804 sector_t sector = ti->begin;
1805 struct bio *clone;
1806 int ret;
1807
1808 nr_zones = ti->len >> ilog2(zone_sectors);
1809 need_reset = bitmap_zalloc(nr_zones, GFP_NOIO);
1810 if (!need_reset)
1811 return BLK_STS_RESOURCE;
1812
1813 ret = dm_zone_get_reset_bitmap(md, ci->map, ti->begin,
1814 nr_zones, need_reset);
1815 if (ret) {
1816 sts = BLK_STS_IOERR;
1817 goto free_bitmap;
1818 }
1819
1820 /* If we have no zone to reset, we are done. */
1821 nr_reset = bitmap_weight(need_reset, nr_zones);
1822 if (!nr_reset)
1823 goto free_bitmap;
1824
1825 atomic_add(nr_zones, &ci->io->io_count);
1826
1827 for (i = 0; i < nr_zones; i++) {
1828
1829 if (!test_bit(i, need_reset)) {
1830 sector += zone_sectors;
1831 continue;
1832 }
1833
1834 if (bio_list_empty(&blist)) {
1835 /* This may take a while, so be nice to others */
1836 if (num_bios)
1837 cond_resched();
1838
1839 /*
1840 * We may need to reset thousands of zones, so let's
1841 * not go crazy with the clone allocation.
1842 */
1843 alloc_multiple_bios(&blist, ci, ti, min(nr_reset, 32),
1844 NULL);
1845 }
1846
1847 /* Get a clone and change it to a regular reset operation. */
1848 clone = bio_list_pop(&blist);
1849 clone->bi_opf &= ~REQ_OP_MASK;
1850 clone->bi_opf |= REQ_OP_ZONE_RESET | REQ_SYNC;
1851 clone->bi_iter.bi_sector = sector;
1852 clone->bi_iter.bi_size = 0;
1853 __map_bio(clone);
1854
1855 sector += zone_sectors;
1856 num_bios++;
1857 nr_reset--;
1858 }
1859
1860 WARN_ON_ONCE(!bio_list_empty(&blist));
1861 atomic_sub(nr_zones - num_bios, &ci->io->io_count);
1862 ci->sector_count = 0;
1863
1864free_bitmap:
1865 bitmap_free(need_reset);
1866
1867 return sts;
1868}
1869
1870static void __send_zone_reset_all_native(struct clone_info *ci,
1871 struct dm_target *ti)
1872{
1873 unsigned int bios;
1874
1875 atomic_add(1, &ci->io->io_count);
1876 bios = __send_duplicate_bios(ci, ti, 1, NULL);
1877 atomic_sub(1 - bios, &ci->io->io_count);
1878
1879 ci->sector_count = 0;
1880}
1881
1882static blk_status_t __send_zone_reset_all(struct clone_info *ci)
1883{
1884 struct dm_table *t = ci->map;
1885 blk_status_t sts = BLK_STS_OK;
1886
1887 for (unsigned int i = 0; i < t->num_targets; i++) {
1888 struct dm_target *ti = dm_table_get_target(t, i);
1889
1890 if (ti->zone_reset_all_supported) {
1891 __send_zone_reset_all_native(ci, ti);
1892 continue;
1893 }
1894
1895 sts = __send_zone_reset_all_emulated(ci, ti);
1896 if (sts != BLK_STS_OK)
1897 break;
1898 }
1899
1900 /* Release the reference that alloc_io() took for submission. */
1901 atomic_sub(1, &ci->io->io_count);
1902
1903 return sts;
1904}
1905
1906#else
1907static inline bool dm_zone_bio_needs_split(struct mapped_device *md,
1908 struct bio *bio)
1909{
1910 return false;
1911}
1912static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1913{
1914 return false;
1915}
1916static blk_status_t __send_zone_reset_all(struct clone_info *ci)
1917{
1918 return BLK_STS_NOTSUPP;
1919}
1920#endif
1921
1922/*
1923 * Entry point to split a bio into clones and submit them to the targets.
1924 */
1925static void dm_split_and_process_bio(struct mapped_device *md,
1926 struct dm_table *map, struct bio *bio)
1927{
1928 struct clone_info ci;
1929 struct dm_io *io;
1930 blk_status_t error = BLK_STS_OK;
1931 bool is_abnormal, need_split;
1932
1933 is_abnormal = is_abnormal_io(bio);
1934 if (static_branch_unlikely(&zoned_enabled)) {
1935 /* Special case REQ_OP_ZONE_RESET_ALL as it cannot be split. */
1936 need_split = (bio_op(bio) != REQ_OP_ZONE_RESET_ALL) &&
1937 (is_abnormal || dm_zone_bio_needs_split(md, bio));
1938 } else {
1939 need_split = is_abnormal;
1940 }
1941
1942 if (unlikely(need_split)) {
1943 /*
1944 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1945 * otherwise associated queue_limits won't be imposed.
1946 * Also split the BIO for mapped devices needing zone append
1947 * emulation to ensure that the BIO does not cross zone
1948 * boundaries.
1949 */
1950 bio = bio_split_to_limits(bio);
1951 if (!bio)
1952 return;
1953 }
1954
1955 /*
1956 * Use the block layer zone write plugging for mapped devices that
1957 * need zone append emulation (e.g. dm-crypt).
1958 */
1959 if (static_branch_unlikely(&zoned_enabled) && dm_zone_plug_bio(md, bio))
1960 return;
1961
1962 /* Only support nowait for normal IO */
1963 if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) {
1964 /*
1965 * Don't support NOWAIT for FLUSH because it may allocate
1966 * multiple bios and there's no easy way how to undo the
1967 * allocations.
1968 */
1969 if (bio->bi_opf & REQ_PREFLUSH) {
1970 bio_wouldblock_error(bio);
1971 return;
1972 }
1973 io = alloc_io(md, bio, GFP_NOWAIT);
1974 if (unlikely(!io)) {
1975 /* Unable to do anything without dm_io. */
1976 bio_wouldblock_error(bio);
1977 return;
1978 }
1979 } else {
1980 io = alloc_io(md, bio, GFP_NOIO);
1981 }
1982 init_clone_info(&ci, io, map, bio, is_abnormal);
1983
1984 if (bio->bi_opf & REQ_PREFLUSH) {
1985 __send_empty_flush(&ci);
1986 /* dm_io_complete submits any data associated with flush */
1987 goto out;
1988 }
1989
1990 if (static_branch_unlikely(&zoned_enabled) &&
1991 (bio_op(bio) == REQ_OP_ZONE_RESET_ALL)) {
1992 error = __send_zone_reset_all(&ci);
1993 goto out;
1994 }
1995
1996 error = __split_and_process_bio(&ci);
1997 if (error || !ci.sector_count)
1998 goto out;
1999 /*
2000 * Remainder must be passed to submit_bio_noacct() so it gets handled
2001 * *after* bios already submitted have been completely processed.
2002 */
2003 bio_trim(bio, io->sectors, ci.sector_count);
2004 trace_block_split(bio, bio->bi_iter.bi_sector);
2005 bio_inc_remaining(bio);
2006 submit_bio_noacct(bio);
2007out:
2008 /*
2009 * Drop the extra reference count for non-POLLED bio, and hold one
2010 * reference for POLLED bio, which will be released in dm_poll_bio
2011 *
2012 * Add every dm_io instance into the dm_io list head which is stored
2013 * in bio->bi_private, so that dm_poll_bio can poll them all.
2014 */
2015 if (error || !ci.submit_as_polled) {
2016 /*
2017 * In case of submission failure, the extra reference for
2018 * submitting io isn't consumed yet
2019 */
2020 if (error)
2021 atomic_dec(&io->io_count);
2022 dm_io_dec_pending(io, error);
2023 } else
2024 dm_queue_poll_io(bio, io);
2025}
2026
2027static void dm_submit_bio(struct bio *bio)
2028{
2029 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
2030 int srcu_idx;
2031 struct dm_table *map;
2032
2033 map = dm_get_live_table(md, &srcu_idx);
2034 if (unlikely(!map)) {
2035 DMERR_LIMIT("%s: mapping table unavailable, erroring io",
2036 dm_device_name(md));
2037 bio_io_error(bio);
2038 goto out;
2039 }
2040
2041 /* If suspended, queue this IO for later */
2042 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
2043 if (bio->bi_opf & REQ_NOWAIT)
2044 bio_wouldblock_error(bio);
2045 else if (bio->bi_opf & REQ_RAHEAD)
2046 bio_io_error(bio);
2047 else
2048 queue_io(md, bio);
2049 goto out;
2050 }
2051
2052 dm_split_and_process_bio(md, map, bio);
2053out:
2054 dm_put_live_table(md, srcu_idx);
2055}
2056
2057static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
2058 unsigned int flags)
2059{
2060 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
2061
2062 /* don't poll if the mapped io is done */
2063 if (atomic_read(&io->io_count) > 1)
2064 bio_poll(&io->tio.clone, iob, flags);
2065
2066 /* bio_poll holds the last reference */
2067 return atomic_read(&io->io_count) == 1;
2068}
2069
2070static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
2071 unsigned int flags)
2072{
2073 struct dm_io **head = dm_poll_list_head(bio);
2074 struct dm_io *list = *head;
2075 struct dm_io *tmp = NULL;
2076 struct dm_io *curr, *next;
2077
2078 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
2079 if (!(bio->bi_opf & REQ_DM_POLL_LIST))
2080 return 0;
2081
2082 WARN_ON_ONCE(!list);
2083
2084 /*
2085 * Restore .bi_private before possibly completing dm_io.
2086 *
2087 * bio_poll() is only possible once @bio has been completely
2088 * submitted via submit_bio_noacct()'s depth-first submission.
2089 * So there is no dm_queue_poll_io() race associated with
2090 * clearing REQ_DM_POLL_LIST here.
2091 */
2092 bio->bi_opf &= ~REQ_DM_POLL_LIST;
2093 bio->bi_private = list->data;
2094
2095 for (curr = list, next = curr->next; curr; curr = next, next =
2096 curr ? curr->next : NULL) {
2097 if (dm_poll_dm_io(curr, iob, flags)) {
2098 /*
2099 * clone_endio() has already occurred, so no
2100 * error handling is needed here.
2101 */
2102 __dm_io_dec_pending(curr);
2103 } else {
2104 curr->next = tmp;
2105 tmp = curr;
2106 }
2107 }
2108
2109 /* Not done? */
2110 if (tmp) {
2111 bio->bi_opf |= REQ_DM_POLL_LIST;
2112 /* Reset bio->bi_private to dm_io list head */
2113 *head = tmp;
2114 return 0;
2115 }
2116 return 1;
2117}
2118
2119/*
2120 *---------------------------------------------------------------
2121 * An IDR is used to keep track of allocated minor numbers.
2122 *---------------------------------------------------------------
2123 */
2124static void free_minor(int minor)
2125{
2126 spin_lock(&_minor_lock);
2127 idr_remove(&_minor_idr, minor);
2128 spin_unlock(&_minor_lock);
2129}
2130
2131/*
2132 * See if the device with a specific minor # is free.
2133 */
2134static int specific_minor(int minor)
2135{
2136 int r;
2137
2138 if (minor >= (1 << MINORBITS))
2139 return -EINVAL;
2140
2141 idr_preload(GFP_KERNEL);
2142 spin_lock(&_minor_lock);
2143
2144 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2145
2146 spin_unlock(&_minor_lock);
2147 idr_preload_end();
2148 if (r < 0)
2149 return r == -ENOSPC ? -EBUSY : r;
2150 return 0;
2151}
2152
2153static int next_free_minor(int *minor)
2154{
2155 int r;
2156
2157 idr_preload(GFP_KERNEL);
2158 spin_lock(&_minor_lock);
2159
2160 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2161
2162 spin_unlock(&_minor_lock);
2163 idr_preload_end();
2164 if (r < 0)
2165 return r;
2166 *minor = r;
2167 return 0;
2168}
2169
2170static const struct block_device_operations dm_blk_dops;
2171static const struct block_device_operations dm_rq_blk_dops;
2172static const struct dax_operations dm_dax_ops;
2173
2174static void dm_wq_work(struct work_struct *work);
2175
2176#ifdef CONFIG_BLK_INLINE_ENCRYPTION
2177static void dm_queue_destroy_crypto_profile(struct request_queue *q)
2178{
2179 dm_destroy_crypto_profile(q->crypto_profile);
2180}
2181
2182#else /* CONFIG_BLK_INLINE_ENCRYPTION */
2183
2184static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
2185{
2186}
2187#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
2188
2189static void cleanup_mapped_device(struct mapped_device *md)
2190{
2191 if (md->wq)
2192 destroy_workqueue(md->wq);
2193 dm_free_md_mempools(md->mempools);
2194
2195 if (md->dax_dev) {
2196 dax_remove_host(md->disk);
2197 kill_dax(md->dax_dev);
2198 put_dax(md->dax_dev);
2199 md->dax_dev = NULL;
2200 }
2201
2202 if (md->disk) {
2203 spin_lock(&_minor_lock);
2204 md->disk->private_data = NULL;
2205 spin_unlock(&_minor_lock);
2206 if (dm_get_md_type(md) != DM_TYPE_NONE) {
2207 struct table_device *td;
2208
2209 dm_sysfs_exit(md);
2210 list_for_each_entry(td, &md->table_devices, list) {
2211 bd_unlink_disk_holder(td->dm_dev.bdev,
2212 md->disk);
2213 }
2214
2215 /*
2216 * Hold lock to make sure del_gendisk() won't concurrent
2217 * with open/close_table_device().
2218 */
2219 mutex_lock(&md->table_devices_lock);
2220 del_gendisk(md->disk);
2221 mutex_unlock(&md->table_devices_lock);
2222 }
2223 dm_queue_destroy_crypto_profile(md->queue);
2224 put_disk(md->disk);
2225 }
2226
2227 if (md->pending_io) {
2228 free_percpu(md->pending_io);
2229 md->pending_io = NULL;
2230 }
2231
2232 cleanup_srcu_struct(&md->io_barrier);
2233
2234 mutex_destroy(&md->suspend_lock);
2235 mutex_destroy(&md->type_lock);
2236 mutex_destroy(&md->table_devices_lock);
2237 mutex_destroy(&md->swap_bios_lock);
2238
2239 dm_mq_cleanup_mapped_device(md);
2240}
2241
2242/*
2243 * Allocate and initialise a blank device with a given minor.
2244 */
2245static struct mapped_device *alloc_dev(int minor)
2246{
2247 int r, numa_node_id = dm_get_numa_node();
2248 struct dax_device *dax_dev;
2249 struct mapped_device *md;
2250 void *old_md;
2251
2252 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2253 if (!md) {
2254 DMERR("unable to allocate device, out of memory.");
2255 return NULL;
2256 }
2257
2258 if (!try_module_get(THIS_MODULE))
2259 goto bad_module_get;
2260
2261 /* get a minor number for the dev */
2262 if (minor == DM_ANY_MINOR)
2263 r = next_free_minor(&minor);
2264 else
2265 r = specific_minor(minor);
2266 if (r < 0)
2267 goto bad_minor;
2268
2269 r = init_srcu_struct(&md->io_barrier);
2270 if (r < 0)
2271 goto bad_io_barrier;
2272
2273 md->numa_node_id = numa_node_id;
2274 md->init_tio_pdu = false;
2275 md->type = DM_TYPE_NONE;
2276 mutex_init(&md->suspend_lock);
2277 mutex_init(&md->type_lock);
2278 mutex_init(&md->table_devices_lock);
2279 spin_lock_init(&md->deferred_lock);
2280 atomic_set(&md->holders, 1);
2281 atomic_set(&md->open_count, 0);
2282 atomic_set(&md->event_nr, 0);
2283 atomic_set(&md->uevent_seq, 0);
2284 INIT_LIST_HEAD(&md->uevent_list);
2285 INIT_LIST_HEAD(&md->table_devices);
2286 spin_lock_init(&md->uevent_lock);
2287
2288 /*
2289 * default to bio-based until DM table is loaded and md->type
2290 * established. If request-based table is loaded: blk-mq will
2291 * override accordingly.
2292 */
2293 md->disk = blk_alloc_disk(NULL, md->numa_node_id);
2294 if (IS_ERR(md->disk)) {
2295 md->disk = NULL;
2296 goto bad;
2297 }
2298 md->queue = md->disk->queue;
2299
2300 init_waitqueue_head(&md->wait);
2301 INIT_WORK(&md->work, dm_wq_work);
2302 INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2303 init_waitqueue_head(&md->eventq);
2304 init_completion(&md->kobj_holder.completion);
2305
2306 md->requeue_list = NULL;
2307 md->swap_bios = get_swap_bios();
2308 sema_init(&md->swap_bios_semaphore, md->swap_bios);
2309 mutex_init(&md->swap_bios_lock);
2310
2311 md->disk->major = _major;
2312 md->disk->first_minor = minor;
2313 md->disk->minors = 1;
2314 md->disk->flags |= GENHD_FL_NO_PART;
2315 md->disk->fops = &dm_blk_dops;
2316 md->disk->private_data = md;
2317 sprintf(md->disk->disk_name, "dm-%d", minor);
2318
2319 dax_dev = alloc_dax(md, &dm_dax_ops);
2320 if (IS_ERR(dax_dev)) {
2321 if (PTR_ERR(dax_dev) != -EOPNOTSUPP)
2322 goto bad;
2323 } else {
2324 set_dax_nocache(dax_dev);
2325 set_dax_nomc(dax_dev);
2326 md->dax_dev = dax_dev;
2327 if (dax_add_host(dax_dev, md->disk))
2328 goto bad;
2329 }
2330
2331 format_dev_t(md->name, MKDEV(_major, minor));
2332
2333 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2334 if (!md->wq)
2335 goto bad;
2336
2337 md->pending_io = alloc_percpu(unsigned long);
2338 if (!md->pending_io)
2339 goto bad;
2340
2341 r = dm_stats_init(&md->stats);
2342 if (r < 0)
2343 goto bad;
2344
2345 /* Populate the mapping, nobody knows we exist yet */
2346 spin_lock(&_minor_lock);
2347 old_md = idr_replace(&_minor_idr, md, minor);
2348 spin_unlock(&_minor_lock);
2349
2350 BUG_ON(old_md != MINOR_ALLOCED);
2351
2352 return md;
2353
2354bad:
2355 cleanup_mapped_device(md);
2356bad_io_barrier:
2357 free_minor(minor);
2358bad_minor:
2359 module_put(THIS_MODULE);
2360bad_module_get:
2361 kvfree(md);
2362 return NULL;
2363}
2364
2365static void unlock_fs(struct mapped_device *md);
2366
2367static void free_dev(struct mapped_device *md)
2368{
2369 int minor = MINOR(disk_devt(md->disk));
2370
2371 unlock_fs(md);
2372
2373 cleanup_mapped_device(md);
2374
2375 WARN_ON_ONCE(!list_empty(&md->table_devices));
2376 dm_stats_cleanup(&md->stats);
2377 free_minor(minor);
2378
2379 module_put(THIS_MODULE);
2380 kvfree(md);
2381}
2382
2383/*
2384 * Bind a table to the device.
2385 */
2386static void event_callback(void *context)
2387{
2388 unsigned long flags;
2389 LIST_HEAD(uevents);
2390 struct mapped_device *md = context;
2391
2392 spin_lock_irqsave(&md->uevent_lock, flags);
2393 list_splice_init(&md->uevent_list, &uevents);
2394 spin_unlock_irqrestore(&md->uevent_lock, flags);
2395
2396 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2397
2398 atomic_inc(&md->event_nr);
2399 wake_up(&md->eventq);
2400 dm_issue_global_event();
2401}
2402
2403/*
2404 * Returns old map, which caller must destroy.
2405 */
2406static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2407 struct queue_limits *limits)
2408{
2409 struct dm_table *old_map;
2410 sector_t size, old_size;
2411 int ret;
2412
2413 lockdep_assert_held(&md->suspend_lock);
2414
2415 size = dm_table_get_size(t);
2416
2417 old_size = dm_get_size(md);
2418
2419 if (!dm_table_supports_size_change(t, old_size, size)) {
2420 old_map = ERR_PTR(-EINVAL);
2421 goto out;
2422 }
2423
2424 set_capacity(md->disk, size);
2425
2426 ret = dm_table_set_restrictions(t, md->queue, limits);
2427 if (ret) {
2428 set_capacity(md->disk, old_size);
2429 old_map = ERR_PTR(ret);
2430 goto out;
2431 }
2432
2433 /*
2434 * Wipe any geometry if the size of the table changed.
2435 */
2436 if (size != old_size)
2437 memset(&md->geometry, 0, sizeof(md->geometry));
2438
2439 dm_table_event_callback(t, event_callback, md);
2440
2441 if (dm_table_request_based(t)) {
2442 /*
2443 * Leverage the fact that request-based DM targets are
2444 * immutable singletons - used to optimize dm_mq_queue_rq.
2445 */
2446 md->immutable_target = dm_table_get_immutable_target(t);
2447
2448 /*
2449 * There is no need to reload with request-based dm because the
2450 * size of front_pad doesn't change.
2451 *
2452 * Note for future: If you are to reload bioset, prep-ed
2453 * requests in the queue may refer to bio from the old bioset,
2454 * so you must walk through the queue to unprep.
2455 */
2456 if (!md->mempools)
2457 md->mempools = t->mempools;
2458 else
2459 dm_free_md_mempools(t->mempools);
2460 } else {
2461 /*
2462 * The md may already have mempools that need changing.
2463 * If so, reload bioset because front_pad may have changed
2464 * because a different table was loaded.
2465 */
2466 dm_free_md_mempools(md->mempools);
2467 md->mempools = t->mempools;
2468 }
2469 t->mempools = NULL;
2470
2471 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2472 rcu_assign_pointer(md->map, (void *)t);
2473 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2474
2475 if (old_map)
2476 dm_sync_table(md);
2477out:
2478 return old_map;
2479}
2480
2481/*
2482 * Returns unbound table for the caller to free.
2483 */
2484static struct dm_table *__unbind(struct mapped_device *md)
2485{
2486 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2487
2488 if (!map)
2489 return NULL;
2490
2491 dm_table_event_callback(map, NULL, NULL);
2492 RCU_INIT_POINTER(md->map, NULL);
2493 dm_sync_table(md);
2494
2495 return map;
2496}
2497
2498/*
2499 * Constructor for a new device.
2500 */
2501int dm_create(int minor, struct mapped_device **result)
2502{
2503 struct mapped_device *md;
2504
2505 md = alloc_dev(minor);
2506 if (!md)
2507 return -ENXIO;
2508
2509 dm_ima_reset_data(md);
2510
2511 *result = md;
2512 return 0;
2513}
2514
2515/*
2516 * Functions to manage md->type.
2517 * All are required to hold md->type_lock.
2518 */
2519void dm_lock_md_type(struct mapped_device *md)
2520{
2521 mutex_lock(&md->type_lock);
2522}
2523
2524void dm_unlock_md_type(struct mapped_device *md)
2525{
2526 mutex_unlock(&md->type_lock);
2527}
2528
2529enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2530{
2531 return md->type;
2532}
2533
2534struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2535{
2536 return md->immutable_target_type;
2537}
2538
2539/*
2540 * Setup the DM device's queue based on md's type
2541 */
2542int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2543{
2544 enum dm_queue_mode type = dm_table_get_type(t);
2545 struct queue_limits limits;
2546 struct table_device *td;
2547 int r;
2548
2549 WARN_ON_ONCE(type == DM_TYPE_NONE);
2550
2551 if (type == DM_TYPE_REQUEST_BASED) {
2552 md->disk->fops = &dm_rq_blk_dops;
2553 r = dm_mq_init_request_queue(md, t);
2554 if (r) {
2555 DMERR("Cannot initialize queue for request-based dm mapped device");
2556 return r;
2557 }
2558 }
2559
2560 r = dm_calculate_queue_limits(t, &limits);
2561 if (r) {
2562 DMERR("Cannot calculate initial queue limits");
2563 return r;
2564 }
2565 r = dm_table_set_restrictions(t, md->queue, &limits);
2566 if (r)
2567 return r;
2568
2569 /*
2570 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2571 * with open_table_device() and close_table_device().
2572 */
2573 mutex_lock(&md->table_devices_lock);
2574 r = add_disk(md->disk);
2575 mutex_unlock(&md->table_devices_lock);
2576 if (r)
2577 return r;
2578
2579 /*
2580 * Register the holder relationship for devices added before the disk
2581 * was live.
2582 */
2583 list_for_each_entry(td, &md->table_devices, list) {
2584 r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2585 if (r)
2586 goto out_undo_holders;
2587 }
2588
2589 r = dm_sysfs_init(md);
2590 if (r)
2591 goto out_undo_holders;
2592
2593 md->type = type;
2594 return 0;
2595
2596out_undo_holders:
2597 list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2598 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2599 mutex_lock(&md->table_devices_lock);
2600 del_gendisk(md->disk);
2601 mutex_unlock(&md->table_devices_lock);
2602 return r;
2603}
2604
2605struct mapped_device *dm_get_md(dev_t dev)
2606{
2607 struct mapped_device *md;
2608 unsigned int minor = MINOR(dev);
2609
2610 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2611 return NULL;
2612
2613 spin_lock(&_minor_lock);
2614
2615 md = idr_find(&_minor_idr, minor);
2616 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2617 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2618 md = NULL;
2619 goto out;
2620 }
2621 dm_get(md);
2622out:
2623 spin_unlock(&_minor_lock);
2624
2625 return md;
2626}
2627EXPORT_SYMBOL_GPL(dm_get_md);
2628
2629void *dm_get_mdptr(struct mapped_device *md)
2630{
2631 return md->interface_ptr;
2632}
2633
2634void dm_set_mdptr(struct mapped_device *md, void *ptr)
2635{
2636 md->interface_ptr = ptr;
2637}
2638
2639void dm_get(struct mapped_device *md)
2640{
2641 atomic_inc(&md->holders);
2642 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2643}
2644
2645int dm_hold(struct mapped_device *md)
2646{
2647 spin_lock(&_minor_lock);
2648 if (test_bit(DMF_FREEING, &md->flags)) {
2649 spin_unlock(&_minor_lock);
2650 return -EBUSY;
2651 }
2652 dm_get(md);
2653 spin_unlock(&_minor_lock);
2654 return 0;
2655}
2656EXPORT_SYMBOL_GPL(dm_hold);
2657
2658const char *dm_device_name(struct mapped_device *md)
2659{
2660 return md->name;
2661}
2662EXPORT_SYMBOL_GPL(dm_device_name);
2663
2664static void __dm_destroy(struct mapped_device *md, bool wait)
2665{
2666 struct dm_table *map;
2667 int srcu_idx;
2668
2669 might_sleep();
2670
2671 spin_lock(&_minor_lock);
2672 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2673 set_bit(DMF_FREEING, &md->flags);
2674 spin_unlock(&_minor_lock);
2675
2676 blk_mark_disk_dead(md->disk);
2677
2678 /*
2679 * Take suspend_lock so that presuspend and postsuspend methods
2680 * do not race with internal suspend.
2681 */
2682 mutex_lock(&md->suspend_lock);
2683 map = dm_get_live_table(md, &srcu_idx);
2684 if (!dm_suspended_md(md)) {
2685 dm_table_presuspend_targets(map);
2686 set_bit(DMF_SUSPENDED, &md->flags);
2687 set_bit(DMF_POST_SUSPENDING, &md->flags);
2688 dm_table_postsuspend_targets(map);
2689 }
2690 /* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2691 dm_put_live_table(md, srcu_idx);
2692 mutex_unlock(&md->suspend_lock);
2693
2694 /*
2695 * Rare, but there may be I/O requests still going to complete,
2696 * for example. Wait for all references to disappear.
2697 * No one should increment the reference count of the mapped_device,
2698 * after the mapped_device state becomes DMF_FREEING.
2699 */
2700 if (wait)
2701 while (atomic_read(&md->holders))
2702 fsleep(1000);
2703 else if (atomic_read(&md->holders))
2704 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2705 dm_device_name(md), atomic_read(&md->holders));
2706
2707 dm_table_destroy(__unbind(md));
2708 free_dev(md);
2709}
2710
2711void dm_destroy(struct mapped_device *md)
2712{
2713 __dm_destroy(md, true);
2714}
2715
2716void dm_destroy_immediate(struct mapped_device *md)
2717{
2718 __dm_destroy(md, false);
2719}
2720
2721void dm_put(struct mapped_device *md)
2722{
2723 atomic_dec(&md->holders);
2724}
2725EXPORT_SYMBOL_GPL(dm_put);
2726
2727static bool dm_in_flight_bios(struct mapped_device *md)
2728{
2729 int cpu;
2730 unsigned long sum = 0;
2731
2732 for_each_possible_cpu(cpu)
2733 sum += *per_cpu_ptr(md->pending_io, cpu);
2734
2735 return sum != 0;
2736}
2737
2738static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2739{
2740 int r = 0;
2741 DEFINE_WAIT(wait);
2742
2743 while (true) {
2744 prepare_to_wait(&md->wait, &wait, task_state);
2745
2746 if (!dm_in_flight_bios(md))
2747 break;
2748
2749 if (signal_pending_state(task_state, current)) {
2750 r = -ERESTARTSYS;
2751 break;
2752 }
2753
2754 io_schedule();
2755 }
2756 finish_wait(&md->wait, &wait);
2757
2758 smp_rmb();
2759
2760 return r;
2761}
2762
2763static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2764{
2765 int r = 0;
2766
2767 if (!queue_is_mq(md->queue))
2768 return dm_wait_for_bios_completion(md, task_state);
2769
2770 while (true) {
2771 if (!blk_mq_queue_inflight(md->queue))
2772 break;
2773
2774 if (signal_pending_state(task_state, current)) {
2775 r = -ERESTARTSYS;
2776 break;
2777 }
2778
2779 fsleep(5000);
2780 }
2781
2782 return r;
2783}
2784
2785/*
2786 * Process the deferred bios
2787 */
2788static void dm_wq_work(struct work_struct *work)
2789{
2790 struct mapped_device *md = container_of(work, struct mapped_device, work);
2791 struct bio *bio;
2792
2793 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2794 spin_lock_irq(&md->deferred_lock);
2795 bio = bio_list_pop(&md->deferred);
2796 spin_unlock_irq(&md->deferred_lock);
2797
2798 if (!bio)
2799 break;
2800
2801 submit_bio_noacct(bio);
2802 cond_resched();
2803 }
2804}
2805
2806static void dm_queue_flush(struct mapped_device *md)
2807{
2808 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2809 smp_mb__after_atomic();
2810 queue_work(md->wq, &md->work);
2811}
2812
2813/*
2814 * Swap in a new table, returning the old one for the caller to destroy.
2815 */
2816struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2817{
2818 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2819 struct queue_limits limits;
2820 int r;
2821
2822 mutex_lock(&md->suspend_lock);
2823
2824 /* device must be suspended */
2825 if (!dm_suspended_md(md))
2826 goto out;
2827
2828 /*
2829 * If the new table has no data devices, retain the existing limits.
2830 * This helps multipath with queue_if_no_path if all paths disappear,
2831 * then new I/O is queued based on these limits, and then some paths
2832 * reappear.
2833 */
2834 if (dm_table_has_no_data_devices(table)) {
2835 live_map = dm_get_live_table_fast(md);
2836 if (live_map)
2837 limits = md->queue->limits;
2838 dm_put_live_table_fast(md);
2839 }
2840
2841 if (!live_map) {
2842 r = dm_calculate_queue_limits(table, &limits);
2843 if (r) {
2844 map = ERR_PTR(r);
2845 goto out;
2846 }
2847 }
2848
2849 map = __bind(md, table, &limits);
2850 dm_issue_global_event();
2851
2852out:
2853 mutex_unlock(&md->suspend_lock);
2854 return map;
2855}
2856
2857/*
2858 * Functions to lock and unlock any filesystem running on the
2859 * device.
2860 */
2861static int lock_fs(struct mapped_device *md)
2862{
2863 int r;
2864
2865 WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2866
2867 r = bdev_freeze(md->disk->part0);
2868 if (!r)
2869 set_bit(DMF_FROZEN, &md->flags);
2870 return r;
2871}
2872
2873static void unlock_fs(struct mapped_device *md)
2874{
2875 if (!test_bit(DMF_FROZEN, &md->flags))
2876 return;
2877 bdev_thaw(md->disk->part0);
2878 clear_bit(DMF_FROZEN, &md->flags);
2879}
2880
2881/*
2882 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2883 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2884 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2885 *
2886 * If __dm_suspend returns 0, the device is completely quiescent
2887 * now. There is no request-processing activity. All new requests
2888 * are being added to md->deferred list.
2889 */
2890static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2891 unsigned int suspend_flags, unsigned int task_state,
2892 int dmf_suspended_flag)
2893{
2894 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2895 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2896 int r;
2897
2898 lockdep_assert_held(&md->suspend_lock);
2899
2900 /*
2901 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2902 * This flag is cleared before dm_suspend returns.
2903 */
2904 if (noflush)
2905 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2906 else
2907 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2908
2909 /*
2910 * This gets reverted if there's an error later and the targets
2911 * provide the .presuspend_undo hook.
2912 */
2913 dm_table_presuspend_targets(map);
2914
2915 /*
2916 * Flush I/O to the device.
2917 * Any I/O submitted after lock_fs() may not be flushed.
2918 * noflush takes precedence over do_lockfs.
2919 * (lock_fs() flushes I/Os and waits for them to complete.)
2920 */
2921 if (!noflush && do_lockfs) {
2922 r = lock_fs(md);
2923 if (r) {
2924 dm_table_presuspend_undo_targets(map);
2925 return r;
2926 }
2927 }
2928
2929 /*
2930 * Here we must make sure that no processes are submitting requests
2931 * to target drivers i.e. no one may be executing
2932 * dm_split_and_process_bio from dm_submit_bio.
2933 *
2934 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2935 * we take the write lock. To prevent any process from reentering
2936 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2937 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2938 * flush_workqueue(md->wq).
2939 */
2940 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2941 if (map)
2942 synchronize_srcu(&md->io_barrier);
2943
2944 /*
2945 * Stop md->queue before flushing md->wq in case request-based
2946 * dm defers requests to md->wq from md->queue.
2947 */
2948 if (dm_request_based(md))
2949 dm_stop_queue(md->queue);
2950
2951 flush_workqueue(md->wq);
2952
2953 /*
2954 * At this point no more requests are entering target request routines.
2955 * We call dm_wait_for_completion to wait for all existing requests
2956 * to finish.
2957 */
2958 r = dm_wait_for_completion(md, task_state);
2959 if (!r)
2960 set_bit(dmf_suspended_flag, &md->flags);
2961
2962 if (noflush)
2963 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2964 if (map)
2965 synchronize_srcu(&md->io_barrier);
2966
2967 /* were we interrupted ? */
2968 if (r < 0) {
2969 dm_queue_flush(md);
2970
2971 if (dm_request_based(md))
2972 dm_start_queue(md->queue);
2973
2974 unlock_fs(md);
2975 dm_table_presuspend_undo_targets(map);
2976 /* pushback list is already flushed, so skip flush */
2977 }
2978
2979 return r;
2980}
2981
2982/*
2983 * We need to be able to change a mapping table under a mounted
2984 * filesystem. For example we might want to move some data in
2985 * the background. Before the table can be swapped with
2986 * dm_bind_table, dm_suspend must be called to flush any in
2987 * flight bios and ensure that any further io gets deferred.
2988 */
2989/*
2990 * Suspend mechanism in request-based dm.
2991 *
2992 * 1. Flush all I/Os by lock_fs() if needed.
2993 * 2. Stop dispatching any I/O by stopping the request_queue.
2994 * 3. Wait for all in-flight I/Os to be completed or requeued.
2995 *
2996 * To abort suspend, start the request_queue.
2997 */
2998int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2999{
3000 struct dm_table *map = NULL;
3001 int r = 0;
3002
3003retry:
3004 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3005
3006 if (dm_suspended_md(md)) {
3007 r = -EINVAL;
3008 goto out_unlock;
3009 }
3010
3011 if (dm_suspended_internally_md(md)) {
3012 /* already internally suspended, wait for internal resume */
3013 mutex_unlock(&md->suspend_lock);
3014 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3015 if (r)
3016 return r;
3017 goto retry;
3018 }
3019
3020 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3021 if (!map) {
3022 /* avoid deadlock with fs/namespace.c:do_mount() */
3023 suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
3024 }
3025
3026 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
3027 if (r)
3028 goto out_unlock;
3029
3030 set_bit(DMF_POST_SUSPENDING, &md->flags);
3031 dm_table_postsuspend_targets(map);
3032 clear_bit(DMF_POST_SUSPENDING, &md->flags);
3033
3034out_unlock:
3035 mutex_unlock(&md->suspend_lock);
3036 return r;
3037}
3038
3039static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3040{
3041 if (map) {
3042 int r = dm_table_resume_targets(map);
3043
3044 if (r)
3045 return r;
3046 }
3047
3048 dm_queue_flush(md);
3049
3050 /*
3051 * Flushing deferred I/Os must be done after targets are resumed
3052 * so that mapping of targets can work correctly.
3053 * Request-based dm is queueing the deferred I/Os in its request_queue.
3054 */
3055 if (dm_request_based(md))
3056 dm_start_queue(md->queue);
3057
3058 unlock_fs(md);
3059
3060 return 0;
3061}
3062
3063int dm_resume(struct mapped_device *md)
3064{
3065 int r;
3066 struct dm_table *map = NULL;
3067
3068retry:
3069 r = -EINVAL;
3070 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3071
3072 if (!dm_suspended_md(md))
3073 goto out;
3074
3075 if (dm_suspended_internally_md(md)) {
3076 /* already internally suspended, wait for internal resume */
3077 mutex_unlock(&md->suspend_lock);
3078 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3079 if (r)
3080 return r;
3081 goto retry;
3082 }
3083
3084 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3085 if (!map || !dm_table_get_size(map))
3086 goto out;
3087
3088 r = __dm_resume(md, map);
3089 if (r)
3090 goto out;
3091
3092 clear_bit(DMF_SUSPENDED, &md->flags);
3093out:
3094 mutex_unlock(&md->suspend_lock);
3095
3096 return r;
3097}
3098
3099/*
3100 * Internal suspend/resume works like userspace-driven suspend. It waits
3101 * until all bios finish and prevents issuing new bios to the target drivers.
3102 * It may be used only from the kernel.
3103 */
3104
3105static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
3106{
3107 struct dm_table *map = NULL;
3108
3109 lockdep_assert_held(&md->suspend_lock);
3110
3111 if (md->internal_suspend_count++)
3112 return; /* nested internal suspend */
3113
3114 if (dm_suspended_md(md)) {
3115 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3116 return; /* nest suspend */
3117 }
3118
3119 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3120
3121 /*
3122 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3123 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3124 * would require changing .presuspend to return an error -- avoid this
3125 * until there is a need for more elaborate variants of internal suspend.
3126 */
3127 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
3128 DMF_SUSPENDED_INTERNALLY);
3129
3130 set_bit(DMF_POST_SUSPENDING, &md->flags);
3131 dm_table_postsuspend_targets(map);
3132 clear_bit(DMF_POST_SUSPENDING, &md->flags);
3133}
3134
3135static void __dm_internal_resume(struct mapped_device *md)
3136{
3137 int r;
3138 struct dm_table *map;
3139
3140 BUG_ON(!md->internal_suspend_count);
3141
3142 if (--md->internal_suspend_count)
3143 return; /* resume from nested internal suspend */
3144
3145 if (dm_suspended_md(md))
3146 goto done; /* resume from nested suspend */
3147
3148 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3149 r = __dm_resume(md, map);
3150 if (r) {
3151 /*
3152 * If a preresume method of some target failed, we are in a
3153 * tricky situation. We can't return an error to the caller. We
3154 * can't fake success because then the "resume" and
3155 * "postsuspend" methods would not be paired correctly, and it
3156 * would break various targets, for example it would cause list
3157 * corruption in the "origin" target.
3158 *
3159 * So, we fake normal suspend here, to make sure that the
3160 * "resume" and "postsuspend" methods will be paired correctly.
3161 */
3162 DMERR("Preresume method failed: %d", r);
3163 set_bit(DMF_SUSPENDED, &md->flags);
3164 }
3165done:
3166 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3167 smp_mb__after_atomic();
3168 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3169}
3170
3171void dm_internal_suspend_noflush(struct mapped_device *md)
3172{
3173 mutex_lock(&md->suspend_lock);
3174 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3175 mutex_unlock(&md->suspend_lock);
3176}
3177EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3178
3179void dm_internal_resume(struct mapped_device *md)
3180{
3181 mutex_lock(&md->suspend_lock);
3182 __dm_internal_resume(md);
3183 mutex_unlock(&md->suspend_lock);
3184}
3185EXPORT_SYMBOL_GPL(dm_internal_resume);
3186
3187/*
3188 * Fast variants of internal suspend/resume hold md->suspend_lock,
3189 * which prevents interaction with userspace-driven suspend.
3190 */
3191
3192void dm_internal_suspend_fast(struct mapped_device *md)
3193{
3194 mutex_lock(&md->suspend_lock);
3195 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3196 return;
3197
3198 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3199 synchronize_srcu(&md->io_barrier);
3200 flush_workqueue(md->wq);
3201 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3202}
3203EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3204
3205void dm_internal_resume_fast(struct mapped_device *md)
3206{
3207 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3208 goto done;
3209
3210 dm_queue_flush(md);
3211
3212done:
3213 mutex_unlock(&md->suspend_lock);
3214}
3215EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3216
3217/*
3218 *---------------------------------------------------------------
3219 * Event notification.
3220 *---------------------------------------------------------------
3221 */
3222int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3223 unsigned int cookie, bool need_resize_uevent)
3224{
3225 int r;
3226 unsigned int noio_flag;
3227 char udev_cookie[DM_COOKIE_LENGTH];
3228 char *envp[3] = { NULL, NULL, NULL };
3229 char **envpp = envp;
3230 if (cookie) {
3231 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3232 DM_COOKIE_ENV_VAR_NAME, cookie);
3233 *envpp++ = udev_cookie;
3234 }
3235 if (need_resize_uevent) {
3236 *envpp++ = "RESIZE=1";
3237 }
3238
3239 noio_flag = memalloc_noio_save();
3240
3241 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3242
3243 memalloc_noio_restore(noio_flag);
3244
3245 return r;
3246}
3247
3248uint32_t dm_next_uevent_seq(struct mapped_device *md)
3249{
3250 return atomic_add_return(1, &md->uevent_seq);
3251}
3252
3253uint32_t dm_get_event_nr(struct mapped_device *md)
3254{
3255 return atomic_read(&md->event_nr);
3256}
3257
3258int dm_wait_event(struct mapped_device *md, int event_nr)
3259{
3260 return wait_event_interruptible(md->eventq,
3261 (event_nr != atomic_read(&md->event_nr)));
3262}
3263
3264void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3265{
3266 unsigned long flags;
3267
3268 spin_lock_irqsave(&md->uevent_lock, flags);
3269 list_add(elist, &md->uevent_list);
3270 spin_unlock_irqrestore(&md->uevent_lock, flags);
3271}
3272
3273/*
3274 * The gendisk is only valid as long as you have a reference
3275 * count on 'md'.
3276 */
3277struct gendisk *dm_disk(struct mapped_device *md)
3278{
3279 return md->disk;
3280}
3281EXPORT_SYMBOL_GPL(dm_disk);
3282
3283struct kobject *dm_kobject(struct mapped_device *md)
3284{
3285 return &md->kobj_holder.kobj;
3286}
3287
3288struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3289{
3290 struct mapped_device *md;
3291
3292 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3293
3294 spin_lock(&_minor_lock);
3295 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3296 md = NULL;
3297 goto out;
3298 }
3299 dm_get(md);
3300out:
3301 spin_unlock(&_minor_lock);
3302
3303 return md;
3304}
3305
3306int dm_suspended_md(struct mapped_device *md)
3307{
3308 return test_bit(DMF_SUSPENDED, &md->flags);
3309}
3310
3311static int dm_post_suspending_md(struct mapped_device *md)
3312{
3313 return test_bit(DMF_POST_SUSPENDING, &md->flags);
3314}
3315
3316int dm_suspended_internally_md(struct mapped_device *md)
3317{
3318 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3319}
3320
3321int dm_test_deferred_remove_flag(struct mapped_device *md)
3322{
3323 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3324}
3325
3326int dm_suspended(struct dm_target *ti)
3327{
3328 return dm_suspended_md(ti->table->md);
3329}
3330EXPORT_SYMBOL_GPL(dm_suspended);
3331
3332int dm_post_suspending(struct dm_target *ti)
3333{
3334 return dm_post_suspending_md(ti->table->md);
3335}
3336EXPORT_SYMBOL_GPL(dm_post_suspending);
3337
3338int dm_noflush_suspending(struct dm_target *ti)
3339{
3340 return __noflush_suspending(ti->table->md);
3341}
3342EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3343
3344void dm_free_md_mempools(struct dm_md_mempools *pools)
3345{
3346 if (!pools)
3347 return;
3348
3349 bioset_exit(&pools->bs);
3350 bioset_exit(&pools->io_bs);
3351
3352 kfree(pools);
3353}
3354
3355struct dm_blkdev_id {
3356 u8 *id;
3357 enum blk_unique_id type;
3358};
3359
3360static int __dm_get_unique_id(struct dm_target *ti, struct dm_dev *dev,
3361 sector_t start, sector_t len, void *data)
3362{
3363 struct dm_blkdev_id *dm_id = data;
3364 const struct block_device_operations *fops = dev->bdev->bd_disk->fops;
3365
3366 if (!fops->get_unique_id)
3367 return 0;
3368
3369 return fops->get_unique_id(dev->bdev->bd_disk, dm_id->id, dm_id->type);
3370}
3371
3372/*
3373 * Allow access to get_unique_id() for the first device returning a
3374 * non-zero result. Reasonable use expects all devices to have the
3375 * same unique id.
3376 */
3377static int dm_blk_get_unique_id(struct gendisk *disk, u8 *id,
3378 enum blk_unique_id type)
3379{
3380 struct mapped_device *md = disk->private_data;
3381 struct dm_table *table;
3382 struct dm_target *ti;
3383 int ret = 0, srcu_idx;
3384
3385 struct dm_blkdev_id dm_id = {
3386 .id = id,
3387 .type = type,
3388 };
3389
3390 table = dm_get_live_table(md, &srcu_idx);
3391 if (!table || !dm_table_get_size(table))
3392 goto out;
3393
3394 /* We only support devices that have a single target */
3395 if (table->num_targets != 1)
3396 goto out;
3397 ti = dm_table_get_target(table, 0);
3398
3399 if (!ti->type->iterate_devices)
3400 goto out;
3401
3402 ret = ti->type->iterate_devices(ti, __dm_get_unique_id, &dm_id);
3403out:
3404 dm_put_live_table(md, srcu_idx);
3405 return ret;
3406}
3407
3408struct dm_pr {
3409 u64 old_key;
3410 u64 new_key;
3411 u32 flags;
3412 bool abort;
3413 bool fail_early;
3414 int ret;
3415 enum pr_type type;
3416 struct pr_keys *read_keys;
3417 struct pr_held_reservation *rsv;
3418};
3419
3420static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3421 struct dm_pr *pr)
3422{
3423 struct mapped_device *md = bdev->bd_disk->private_data;
3424 struct dm_table *table;
3425 struct dm_target *ti;
3426 int ret = -ENOTTY, srcu_idx;
3427
3428 table = dm_get_live_table(md, &srcu_idx);
3429 if (!table || !dm_table_get_size(table))
3430 goto out;
3431
3432 /* We only support devices that have a single target */
3433 if (table->num_targets != 1)
3434 goto out;
3435 ti = dm_table_get_target(table, 0);
3436
3437 if (dm_suspended_md(md)) {
3438 ret = -EAGAIN;
3439 goto out;
3440 }
3441
3442 ret = -EINVAL;
3443 if (!ti->type->iterate_devices)
3444 goto out;
3445
3446 ti->type->iterate_devices(ti, fn, pr);
3447 ret = 0;
3448out:
3449 dm_put_live_table(md, srcu_idx);
3450 return ret;
3451}
3452
3453/*
3454 * For register / unregister we need to manually call out to every path.
3455 */
3456static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3457 sector_t start, sector_t len, void *data)
3458{
3459 struct dm_pr *pr = data;
3460 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3461 int ret;
3462
3463 if (!ops || !ops->pr_register) {
3464 pr->ret = -EOPNOTSUPP;
3465 return -1;
3466 }
3467
3468 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3469 if (!ret)
3470 return 0;
3471
3472 if (!pr->ret)
3473 pr->ret = ret;
3474
3475 if (pr->fail_early)
3476 return -1;
3477
3478 return 0;
3479}
3480
3481static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3482 u32 flags)
3483{
3484 struct dm_pr pr = {
3485 .old_key = old_key,
3486 .new_key = new_key,
3487 .flags = flags,
3488 .fail_early = true,
3489 .ret = 0,
3490 };
3491 int ret;
3492
3493 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3494 if (ret) {
3495 /* Didn't even get to register a path */
3496 return ret;
3497 }
3498
3499 if (!pr.ret)
3500 return 0;
3501 ret = pr.ret;
3502
3503 if (!new_key)
3504 return ret;
3505
3506 /* unregister all paths if we failed to register any path */
3507 pr.old_key = new_key;
3508 pr.new_key = 0;
3509 pr.flags = 0;
3510 pr.fail_early = false;
3511 (void) dm_call_pr(bdev, __dm_pr_register, &pr);
3512 return ret;
3513}
3514
3515
3516static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3517 sector_t start, sector_t len, void *data)
3518{
3519 struct dm_pr *pr = data;
3520 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3521
3522 if (!ops || !ops->pr_reserve) {
3523 pr->ret = -EOPNOTSUPP;
3524 return -1;
3525 }
3526
3527 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3528 if (!pr->ret)
3529 return -1;
3530
3531 return 0;
3532}
3533
3534static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3535 u32 flags)
3536{
3537 struct dm_pr pr = {
3538 .old_key = key,
3539 .flags = flags,
3540 .type = type,
3541 .fail_early = false,
3542 .ret = 0,
3543 };
3544 int ret;
3545
3546 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3547 if (ret)
3548 return ret;
3549
3550 return pr.ret;
3551}
3552
3553/*
3554 * If there is a non-All Registrants type of reservation, the release must be
3555 * sent down the holding path. For the cases where there is no reservation or
3556 * the path is not the holder the device will also return success, so we must
3557 * try each path to make sure we got the correct path.
3558 */
3559static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3560 sector_t start, sector_t len, void *data)
3561{
3562 struct dm_pr *pr = data;
3563 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3564
3565 if (!ops || !ops->pr_release) {
3566 pr->ret = -EOPNOTSUPP;
3567 return -1;
3568 }
3569
3570 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3571 if (pr->ret)
3572 return -1;
3573
3574 return 0;
3575}
3576
3577static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3578{
3579 struct dm_pr pr = {
3580 .old_key = key,
3581 .type = type,
3582 .fail_early = false,
3583 };
3584 int ret;
3585
3586 ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3587 if (ret)
3588 return ret;
3589
3590 return pr.ret;
3591}
3592
3593static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3594 sector_t start, sector_t len, void *data)
3595{
3596 struct dm_pr *pr = data;
3597 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3598
3599 if (!ops || !ops->pr_preempt) {
3600 pr->ret = -EOPNOTSUPP;
3601 return -1;
3602 }
3603
3604 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3605 pr->abort);
3606 if (!pr->ret)
3607 return -1;
3608
3609 return 0;
3610}
3611
3612static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3613 enum pr_type type, bool abort)
3614{
3615 struct dm_pr pr = {
3616 .new_key = new_key,
3617 .old_key = old_key,
3618 .type = type,
3619 .fail_early = false,
3620 };
3621 int ret;
3622
3623 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3624 if (ret)
3625 return ret;
3626
3627 return pr.ret;
3628}
3629
3630static int dm_pr_clear(struct block_device *bdev, u64 key)
3631{
3632 struct mapped_device *md = bdev->bd_disk->private_data;
3633 const struct pr_ops *ops;
3634 int r, srcu_idx;
3635 bool forward = true;
3636
3637 /* Not a real ioctl, but targets must not interpret non-DM ioctls */
3638 r = dm_prepare_ioctl(md, &srcu_idx, &bdev, 0, 0, &forward);
3639 if (r < 0)
3640 goto out;
3641 WARN_ON_ONCE(!forward);
3642
3643 ops = bdev->bd_disk->fops->pr_ops;
3644 if (ops && ops->pr_clear)
3645 r = ops->pr_clear(bdev, key);
3646 else
3647 r = -EOPNOTSUPP;
3648out:
3649 dm_unprepare_ioctl(md, srcu_idx);
3650 return r;
3651}
3652
3653static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3654 sector_t start, sector_t len, void *data)
3655{
3656 struct dm_pr *pr = data;
3657 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3658
3659 if (!ops || !ops->pr_read_keys) {
3660 pr->ret = -EOPNOTSUPP;
3661 return -1;
3662 }
3663
3664 pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3665 if (!pr->ret)
3666 return -1;
3667
3668 return 0;
3669}
3670
3671static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3672{
3673 struct dm_pr pr = {
3674 .read_keys = keys,
3675 };
3676 int ret;
3677
3678 ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3679 if (ret)
3680 return ret;
3681
3682 return pr.ret;
3683}
3684
3685static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3686 sector_t start, sector_t len, void *data)
3687{
3688 struct dm_pr *pr = data;
3689 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3690
3691 if (!ops || !ops->pr_read_reservation) {
3692 pr->ret = -EOPNOTSUPP;
3693 return -1;
3694 }
3695
3696 pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3697 if (!pr->ret)
3698 return -1;
3699
3700 return 0;
3701}
3702
3703static int dm_pr_read_reservation(struct block_device *bdev,
3704 struct pr_held_reservation *rsv)
3705{
3706 struct dm_pr pr = {
3707 .rsv = rsv,
3708 };
3709 int ret;
3710
3711 ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3712 if (ret)
3713 return ret;
3714
3715 return pr.ret;
3716}
3717
3718static const struct pr_ops dm_pr_ops = {
3719 .pr_register = dm_pr_register,
3720 .pr_reserve = dm_pr_reserve,
3721 .pr_release = dm_pr_release,
3722 .pr_preempt = dm_pr_preempt,
3723 .pr_clear = dm_pr_clear,
3724 .pr_read_keys = dm_pr_read_keys,
3725 .pr_read_reservation = dm_pr_read_reservation,
3726};
3727
3728static const struct block_device_operations dm_blk_dops = {
3729 .submit_bio = dm_submit_bio,
3730 .poll_bio = dm_poll_bio,
3731 .open = dm_blk_open,
3732 .release = dm_blk_close,
3733 .ioctl = dm_blk_ioctl,
3734 .getgeo = dm_blk_getgeo,
3735 .report_zones = dm_blk_report_zones,
3736 .get_unique_id = dm_blk_get_unique_id,
3737 .pr_ops = &dm_pr_ops,
3738 .owner = THIS_MODULE
3739};
3740
3741static const struct block_device_operations dm_rq_blk_dops = {
3742 .open = dm_blk_open,
3743 .release = dm_blk_close,
3744 .ioctl = dm_blk_ioctl,
3745 .getgeo = dm_blk_getgeo,
3746 .get_unique_id = dm_blk_get_unique_id,
3747 .pr_ops = &dm_pr_ops,
3748 .owner = THIS_MODULE
3749};
3750
3751static const struct dax_operations dm_dax_ops = {
3752 .direct_access = dm_dax_direct_access,
3753 .zero_page_range = dm_dax_zero_page_range,
3754 .recovery_write = dm_dax_recovery_write,
3755};
3756
3757/*
3758 * module hooks
3759 */
3760module_init(dm_init);
3761module_exit(dm_exit);
3762
3763module_param(major, uint, 0);
3764MODULE_PARM_DESC(major, "The major number of the device mapper");
3765
3766module_param(reserved_bio_based_ios, uint, 0644);
3767MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3768
3769module_param(dm_numa_node, int, 0644);
3770MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3771
3772module_param(swap_bios, int, 0644);
3773MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3774
3775MODULE_DESCRIPTION(DM_NAME " driver");
3776MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
3777MODULE_LICENSE("GPL");