| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (C) 2018 Red Hat. All rights reserved. |
| 4 | * |
| 5 | * This file is released under the GPL. |
| 6 | */ |
| 7 | |
| 8 | #include <linux/device-mapper.h> |
| 9 | #include <linux/module.h> |
| 10 | #include <linux/init.h> |
| 11 | #include <linux/vmalloc.h> |
| 12 | #include <linux/kthread.h> |
| 13 | #include <linux/dm-io.h> |
| 14 | #include <linux/dm-kcopyd.h> |
| 15 | #include <linux/dax.h> |
| 16 | #include <linux/pfn_t.h> |
| 17 | #include <linux/libnvdimm.h> |
| 18 | #include <linux/delay.h> |
| 19 | #include "dm-io-tracker.h" |
| 20 | |
| 21 | #define DM_MSG_PREFIX "writecache" |
| 22 | |
| 23 | #define HIGH_WATERMARK 50 |
| 24 | #define LOW_WATERMARK 45 |
| 25 | #define MAX_WRITEBACK_JOBS min(0x10000000 / PAGE_SIZE, totalram_pages() / 16) |
| 26 | #define ENDIO_LATENCY 16 |
| 27 | #define WRITEBACK_LATENCY 64 |
| 28 | #define AUTOCOMMIT_BLOCKS_SSD 65536 |
| 29 | #define AUTOCOMMIT_BLOCKS_PMEM 64 |
| 30 | #define AUTOCOMMIT_MSEC 1000 |
| 31 | #define MAX_AGE_DIV 16 |
| 32 | #define MAX_AGE_UNSPECIFIED -1UL |
| 33 | #define PAUSE_WRITEBACK (HZ * 3) |
| 34 | |
| 35 | #define BITMAP_GRANULARITY 65536 |
| 36 | #if BITMAP_GRANULARITY < PAGE_SIZE |
| 37 | #undef BITMAP_GRANULARITY |
| 38 | #define BITMAP_GRANULARITY PAGE_SIZE |
| 39 | #endif |
| 40 | |
| 41 | #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_FS_DAX) |
| 42 | #define DM_WRITECACHE_HAS_PMEM |
| 43 | #endif |
| 44 | |
| 45 | #ifdef DM_WRITECACHE_HAS_PMEM |
| 46 | #define pmem_assign(dest, src) \ |
| 47 | do { \ |
| 48 | typeof(dest) uniq = (src); \ |
| 49 | memcpy_flushcache(&(dest), &uniq, sizeof(dest)); \ |
| 50 | } while (0) |
| 51 | #else |
| 52 | #define pmem_assign(dest, src) ((dest) = (src)) |
| 53 | #endif |
| 54 | |
| 55 | #if IS_ENABLED(CONFIG_ARCH_HAS_COPY_MC) && defined(DM_WRITECACHE_HAS_PMEM) |
| 56 | #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS |
| 57 | #endif |
| 58 | |
| 59 | #define MEMORY_SUPERBLOCK_MAGIC 0x23489321 |
| 60 | #define MEMORY_SUPERBLOCK_VERSION 1 |
| 61 | |
| 62 | struct wc_memory_entry { |
| 63 | __le64 original_sector; |
| 64 | __le64 seq_count; |
| 65 | }; |
| 66 | |
| 67 | struct wc_memory_superblock { |
| 68 | union { |
| 69 | struct { |
| 70 | __le32 magic; |
| 71 | __le32 version; |
| 72 | __le32 block_size; |
| 73 | __le32 pad; |
| 74 | __le64 n_blocks; |
| 75 | __le64 seq_count; |
| 76 | }; |
| 77 | __le64 padding[8]; |
| 78 | }; |
| 79 | struct wc_memory_entry entries[]; |
| 80 | }; |
| 81 | |
| 82 | struct wc_entry { |
| 83 | struct rb_node rb_node; |
| 84 | struct list_head lru; |
| 85 | unsigned short wc_list_contiguous; |
| 86 | bool write_in_progress |
| 87 | #if BITS_PER_LONG == 64 |
| 88 | :1 |
| 89 | #endif |
| 90 | ; |
| 91 | unsigned long index |
| 92 | #if BITS_PER_LONG == 64 |
| 93 | :47 |
| 94 | #endif |
| 95 | ; |
| 96 | unsigned long age; |
| 97 | #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS |
| 98 | uint64_t original_sector; |
| 99 | uint64_t seq_count; |
| 100 | #endif |
| 101 | }; |
| 102 | |
| 103 | #ifdef DM_WRITECACHE_HAS_PMEM |
| 104 | #define WC_MODE_PMEM(wc) ((wc)->pmem_mode) |
| 105 | #define WC_MODE_FUA(wc) ((wc)->writeback_fua) |
| 106 | #else |
| 107 | #define WC_MODE_PMEM(wc) false |
| 108 | #define WC_MODE_FUA(wc) false |
| 109 | #endif |
| 110 | #define WC_MODE_SORT_FREELIST(wc) (!WC_MODE_PMEM(wc)) |
| 111 | |
| 112 | struct dm_writecache { |
| 113 | struct mutex lock; |
| 114 | struct list_head lru; |
| 115 | union { |
| 116 | struct list_head freelist; |
| 117 | struct { |
| 118 | struct rb_root freetree; |
| 119 | struct wc_entry *current_free; |
| 120 | }; |
| 121 | }; |
| 122 | struct rb_root tree; |
| 123 | |
| 124 | size_t freelist_size; |
| 125 | size_t writeback_size; |
| 126 | size_t freelist_high_watermark; |
| 127 | size_t freelist_low_watermark; |
| 128 | unsigned long max_age; |
| 129 | unsigned long pause; |
| 130 | |
| 131 | unsigned uncommitted_blocks; |
| 132 | unsigned autocommit_blocks; |
| 133 | unsigned max_writeback_jobs; |
| 134 | |
| 135 | int error; |
| 136 | |
| 137 | unsigned long autocommit_jiffies; |
| 138 | struct timer_list autocommit_timer; |
| 139 | struct wait_queue_head freelist_wait; |
| 140 | |
| 141 | struct timer_list max_age_timer; |
| 142 | |
| 143 | atomic_t bio_in_progress[2]; |
| 144 | struct wait_queue_head bio_in_progress_wait[2]; |
| 145 | |
| 146 | struct dm_target *ti; |
| 147 | struct dm_dev *dev; |
| 148 | struct dm_dev *ssd_dev; |
| 149 | sector_t start_sector; |
| 150 | void *memory_map; |
| 151 | uint64_t memory_map_size; |
| 152 | size_t metadata_sectors; |
| 153 | size_t n_blocks; |
| 154 | uint64_t seq_count; |
| 155 | sector_t data_device_sectors; |
| 156 | void *block_start; |
| 157 | struct wc_entry *entries; |
| 158 | unsigned block_size; |
| 159 | unsigned char block_size_bits; |
| 160 | |
| 161 | bool pmem_mode:1; |
| 162 | bool writeback_fua:1; |
| 163 | |
| 164 | bool overwrote_committed:1; |
| 165 | bool memory_vmapped:1; |
| 166 | |
| 167 | bool start_sector_set:1; |
| 168 | bool high_wm_percent_set:1; |
| 169 | bool low_wm_percent_set:1; |
| 170 | bool max_writeback_jobs_set:1; |
| 171 | bool autocommit_blocks_set:1; |
| 172 | bool autocommit_time_set:1; |
| 173 | bool max_age_set:1; |
| 174 | bool writeback_fua_set:1; |
| 175 | bool flush_on_suspend:1; |
| 176 | bool cleaner:1; |
| 177 | bool cleaner_set:1; |
| 178 | bool metadata_only:1; |
| 179 | bool pause_set:1; |
| 180 | |
| 181 | unsigned high_wm_percent_value; |
| 182 | unsigned low_wm_percent_value; |
| 183 | unsigned autocommit_time_value; |
| 184 | unsigned max_age_value; |
| 185 | unsigned pause_value; |
| 186 | |
| 187 | unsigned writeback_all; |
| 188 | struct workqueue_struct *writeback_wq; |
| 189 | struct work_struct writeback_work; |
| 190 | struct work_struct flush_work; |
| 191 | |
| 192 | struct dm_io_tracker iot; |
| 193 | |
| 194 | struct dm_io_client *dm_io; |
| 195 | |
| 196 | raw_spinlock_t endio_list_lock; |
| 197 | struct list_head endio_list; |
| 198 | struct task_struct *endio_thread; |
| 199 | |
| 200 | struct task_struct *flush_thread; |
| 201 | struct bio_list flush_list; |
| 202 | |
| 203 | struct dm_kcopyd_client *dm_kcopyd; |
| 204 | unsigned long *dirty_bitmap; |
| 205 | unsigned dirty_bitmap_size; |
| 206 | |
| 207 | struct bio_set bio_set; |
| 208 | mempool_t copy_pool; |
| 209 | |
| 210 | struct { |
| 211 | unsigned long long reads; |
| 212 | unsigned long long read_hits; |
| 213 | unsigned long long writes; |
| 214 | unsigned long long write_hits_uncommitted; |
| 215 | unsigned long long write_hits_committed; |
| 216 | unsigned long long writes_around; |
| 217 | unsigned long long writes_allocate; |
| 218 | unsigned long long writes_blocked_on_freelist; |
| 219 | unsigned long long flushes; |
| 220 | unsigned long long discards; |
| 221 | } stats; |
| 222 | }; |
| 223 | |
| 224 | #define WB_LIST_INLINE 16 |
| 225 | |
| 226 | struct writeback_struct { |
| 227 | struct list_head endio_entry; |
| 228 | struct dm_writecache *wc; |
| 229 | struct wc_entry **wc_list; |
| 230 | unsigned wc_list_n; |
| 231 | struct wc_entry *wc_list_inline[WB_LIST_INLINE]; |
| 232 | struct bio bio; |
| 233 | }; |
| 234 | |
| 235 | struct copy_struct { |
| 236 | struct list_head endio_entry; |
| 237 | struct dm_writecache *wc; |
| 238 | struct wc_entry *e; |
| 239 | unsigned n_entries; |
| 240 | int error; |
| 241 | }; |
| 242 | |
| 243 | DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle, |
| 244 | "A percentage of time allocated for data copying"); |
| 245 | |
| 246 | static void wc_lock(struct dm_writecache *wc) |
| 247 | { |
| 248 | mutex_lock(&wc->lock); |
| 249 | } |
| 250 | |
| 251 | static void wc_unlock(struct dm_writecache *wc) |
| 252 | { |
| 253 | mutex_unlock(&wc->lock); |
| 254 | } |
| 255 | |
| 256 | #ifdef DM_WRITECACHE_HAS_PMEM |
| 257 | static int persistent_memory_claim(struct dm_writecache *wc) |
| 258 | { |
| 259 | int r; |
| 260 | loff_t s; |
| 261 | long p, da; |
| 262 | pfn_t pfn; |
| 263 | int id; |
| 264 | struct page **pages; |
| 265 | sector_t offset; |
| 266 | |
| 267 | wc->memory_vmapped = false; |
| 268 | |
| 269 | s = wc->memory_map_size; |
| 270 | p = s >> PAGE_SHIFT; |
| 271 | if (!p) { |
| 272 | r = -EINVAL; |
| 273 | goto err1; |
| 274 | } |
| 275 | if (p != s >> PAGE_SHIFT) { |
| 276 | r = -EOVERFLOW; |
| 277 | goto err1; |
| 278 | } |
| 279 | |
| 280 | offset = get_start_sect(wc->ssd_dev->bdev); |
| 281 | if (offset & (PAGE_SIZE / 512 - 1)) { |
| 282 | r = -EINVAL; |
| 283 | goto err1; |
| 284 | } |
| 285 | offset >>= PAGE_SHIFT - 9; |
| 286 | |
| 287 | id = dax_read_lock(); |
| 288 | |
| 289 | da = dax_direct_access(wc->ssd_dev->dax_dev, offset, p, DAX_ACCESS, |
| 290 | &wc->memory_map, &pfn); |
| 291 | if (da < 0) { |
| 292 | wc->memory_map = NULL; |
| 293 | r = da; |
| 294 | goto err2; |
| 295 | } |
| 296 | if (!pfn_t_has_page(pfn)) { |
| 297 | wc->memory_map = NULL; |
| 298 | r = -EOPNOTSUPP; |
| 299 | goto err2; |
| 300 | } |
| 301 | if (da != p) { |
| 302 | long i; |
| 303 | wc->memory_map = NULL; |
| 304 | pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL); |
| 305 | if (!pages) { |
| 306 | r = -ENOMEM; |
| 307 | goto err2; |
| 308 | } |
| 309 | i = 0; |
| 310 | do { |
| 311 | long daa; |
| 312 | daa = dax_direct_access(wc->ssd_dev->dax_dev, offset + i, |
| 313 | p - i, DAX_ACCESS, NULL, &pfn); |
| 314 | if (daa <= 0) { |
| 315 | r = daa ? daa : -EINVAL; |
| 316 | goto err3; |
| 317 | } |
| 318 | if (!pfn_t_has_page(pfn)) { |
| 319 | r = -EOPNOTSUPP; |
| 320 | goto err3; |
| 321 | } |
| 322 | while (daa-- && i < p) { |
| 323 | pages[i++] = pfn_t_to_page(pfn); |
| 324 | pfn.val++; |
| 325 | if (!(i & 15)) |
| 326 | cond_resched(); |
| 327 | } |
| 328 | } while (i < p); |
| 329 | wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL); |
| 330 | if (!wc->memory_map) { |
| 331 | r = -ENOMEM; |
| 332 | goto err3; |
| 333 | } |
| 334 | kvfree(pages); |
| 335 | wc->memory_vmapped = true; |
| 336 | } |
| 337 | |
| 338 | dax_read_unlock(id); |
| 339 | |
| 340 | wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT; |
| 341 | wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT; |
| 342 | |
| 343 | return 0; |
| 344 | err3: |
| 345 | kvfree(pages); |
| 346 | err2: |
| 347 | dax_read_unlock(id); |
| 348 | err1: |
| 349 | return r; |
| 350 | } |
| 351 | #else |
| 352 | static int persistent_memory_claim(struct dm_writecache *wc) |
| 353 | { |
| 354 | return -EOPNOTSUPP; |
| 355 | } |
| 356 | #endif |
| 357 | |
| 358 | static void persistent_memory_release(struct dm_writecache *wc) |
| 359 | { |
| 360 | if (wc->memory_vmapped) |
| 361 | vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT)); |
| 362 | } |
| 363 | |
| 364 | static struct page *persistent_memory_page(void *addr) |
| 365 | { |
| 366 | if (is_vmalloc_addr(addr)) |
| 367 | return vmalloc_to_page(addr); |
| 368 | else |
| 369 | return virt_to_page(addr); |
| 370 | } |
| 371 | |
| 372 | static unsigned persistent_memory_page_offset(void *addr) |
| 373 | { |
| 374 | return (unsigned long)addr & (PAGE_SIZE - 1); |
| 375 | } |
| 376 | |
| 377 | static void persistent_memory_flush_cache(void *ptr, size_t size) |
| 378 | { |
| 379 | if (is_vmalloc_addr(ptr)) |
| 380 | flush_kernel_vmap_range(ptr, size); |
| 381 | } |
| 382 | |
| 383 | static void persistent_memory_invalidate_cache(void *ptr, size_t size) |
| 384 | { |
| 385 | if (is_vmalloc_addr(ptr)) |
| 386 | invalidate_kernel_vmap_range(ptr, size); |
| 387 | } |
| 388 | |
| 389 | static struct wc_memory_superblock *sb(struct dm_writecache *wc) |
| 390 | { |
| 391 | return wc->memory_map; |
| 392 | } |
| 393 | |
| 394 | static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e) |
| 395 | { |
| 396 | return &sb(wc)->entries[e->index]; |
| 397 | } |
| 398 | |
| 399 | static void *memory_data(struct dm_writecache *wc, struct wc_entry *e) |
| 400 | { |
| 401 | return (char *)wc->block_start + (e->index << wc->block_size_bits); |
| 402 | } |
| 403 | |
| 404 | static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e) |
| 405 | { |
| 406 | return wc->start_sector + wc->metadata_sectors + |
| 407 | ((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT)); |
| 408 | } |
| 409 | |
| 410 | static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e) |
| 411 | { |
| 412 | #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS |
| 413 | return e->original_sector; |
| 414 | #else |
| 415 | return le64_to_cpu(memory_entry(wc, e)->original_sector); |
| 416 | #endif |
| 417 | } |
| 418 | |
| 419 | static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e) |
| 420 | { |
| 421 | #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS |
| 422 | return e->seq_count; |
| 423 | #else |
| 424 | return le64_to_cpu(memory_entry(wc, e)->seq_count); |
| 425 | #endif |
| 426 | } |
| 427 | |
| 428 | static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e) |
| 429 | { |
| 430 | #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS |
| 431 | e->seq_count = -1; |
| 432 | #endif |
| 433 | pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1)); |
| 434 | } |
| 435 | |
| 436 | static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e, |
| 437 | uint64_t original_sector, uint64_t seq_count) |
| 438 | { |
| 439 | struct wc_memory_entry me; |
| 440 | #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS |
| 441 | e->original_sector = original_sector; |
| 442 | e->seq_count = seq_count; |
| 443 | #endif |
| 444 | me.original_sector = cpu_to_le64(original_sector); |
| 445 | me.seq_count = cpu_to_le64(seq_count); |
| 446 | pmem_assign(*memory_entry(wc, e), me); |
| 447 | } |
| 448 | |
| 449 | #define writecache_error(wc, err, msg, arg...) \ |
| 450 | do { \ |
| 451 | if (!cmpxchg(&(wc)->error, 0, err)) \ |
| 452 | DMERR(msg, ##arg); \ |
| 453 | wake_up(&(wc)->freelist_wait); \ |
| 454 | } while (0) |
| 455 | |
| 456 | #define writecache_has_error(wc) (unlikely(READ_ONCE((wc)->error))) |
| 457 | |
| 458 | static void writecache_flush_all_metadata(struct dm_writecache *wc) |
| 459 | { |
| 460 | if (!WC_MODE_PMEM(wc)) |
| 461 | memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size); |
| 462 | } |
| 463 | |
| 464 | static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size) |
| 465 | { |
| 466 | if (!WC_MODE_PMEM(wc)) |
| 467 | __set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY, |
| 468 | wc->dirty_bitmap); |
| 469 | } |
| 470 | |
| 471 | static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev); |
| 472 | |
| 473 | struct io_notify { |
| 474 | struct dm_writecache *wc; |
| 475 | struct completion c; |
| 476 | atomic_t count; |
| 477 | }; |
| 478 | |
| 479 | static void writecache_notify_io(unsigned long error, void *context) |
| 480 | { |
| 481 | struct io_notify *endio = context; |
| 482 | |
| 483 | if (unlikely(error != 0)) |
| 484 | writecache_error(endio->wc, -EIO, "error writing metadata"); |
| 485 | BUG_ON(atomic_read(&endio->count) <= 0); |
| 486 | if (atomic_dec_and_test(&endio->count)) |
| 487 | complete(&endio->c); |
| 488 | } |
| 489 | |
| 490 | static void writecache_wait_for_ios(struct dm_writecache *wc, int direction) |
| 491 | { |
| 492 | wait_event(wc->bio_in_progress_wait[direction], |
| 493 | !atomic_read(&wc->bio_in_progress[direction])); |
| 494 | } |
| 495 | |
| 496 | static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios) |
| 497 | { |
| 498 | struct dm_io_region region; |
| 499 | struct dm_io_request req; |
| 500 | struct io_notify endio = { |
| 501 | wc, |
| 502 | COMPLETION_INITIALIZER_ONSTACK(endio.c), |
| 503 | ATOMIC_INIT(1), |
| 504 | }; |
| 505 | unsigned bitmap_bits = wc->dirty_bitmap_size * 8; |
| 506 | unsigned i = 0; |
| 507 | |
| 508 | while (1) { |
| 509 | unsigned j; |
| 510 | i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i); |
| 511 | if (unlikely(i == bitmap_bits)) |
| 512 | break; |
| 513 | j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i); |
| 514 | |
| 515 | region.bdev = wc->ssd_dev->bdev; |
| 516 | region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT); |
| 517 | region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT); |
| 518 | |
| 519 | if (unlikely(region.sector >= wc->metadata_sectors)) |
| 520 | break; |
| 521 | if (unlikely(region.sector + region.count > wc->metadata_sectors)) |
| 522 | region.count = wc->metadata_sectors - region.sector; |
| 523 | |
| 524 | region.sector += wc->start_sector; |
| 525 | atomic_inc(&endio.count); |
| 526 | req.bi_opf = REQ_OP_WRITE | REQ_SYNC; |
| 527 | req.mem.type = DM_IO_VMA; |
| 528 | req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY; |
| 529 | req.client = wc->dm_io; |
| 530 | req.notify.fn = writecache_notify_io; |
| 531 | req.notify.context = &endio; |
| 532 | |
| 533 | /* writing via async dm-io (implied by notify.fn above) won't return an error */ |
| 534 | (void) dm_io(&req, 1, ®ion, NULL); |
| 535 | i = j; |
| 536 | } |
| 537 | |
| 538 | writecache_notify_io(0, &endio); |
| 539 | wait_for_completion_io(&endio.c); |
| 540 | |
| 541 | if (wait_for_ios) |
| 542 | writecache_wait_for_ios(wc, WRITE); |
| 543 | |
| 544 | writecache_disk_flush(wc, wc->ssd_dev); |
| 545 | |
| 546 | memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size); |
| 547 | } |
| 548 | |
| 549 | static void ssd_commit_superblock(struct dm_writecache *wc) |
| 550 | { |
| 551 | int r; |
| 552 | struct dm_io_region region; |
| 553 | struct dm_io_request req; |
| 554 | |
| 555 | region.bdev = wc->ssd_dev->bdev; |
| 556 | region.sector = 0; |
| 557 | region.count = max(4096U, wc->block_size) >> SECTOR_SHIFT; |
| 558 | |
| 559 | if (unlikely(region.sector + region.count > wc->metadata_sectors)) |
| 560 | region.count = wc->metadata_sectors - region.sector; |
| 561 | |
| 562 | region.sector += wc->start_sector; |
| 563 | |
| 564 | req.bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_FUA; |
| 565 | req.mem.type = DM_IO_VMA; |
| 566 | req.mem.ptr.vma = (char *)wc->memory_map; |
| 567 | req.client = wc->dm_io; |
| 568 | req.notify.fn = NULL; |
| 569 | req.notify.context = NULL; |
| 570 | |
| 571 | r = dm_io(&req, 1, ®ion, NULL); |
| 572 | if (unlikely(r)) |
| 573 | writecache_error(wc, r, "error writing superblock"); |
| 574 | } |
| 575 | |
| 576 | static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios) |
| 577 | { |
| 578 | if (WC_MODE_PMEM(wc)) |
| 579 | pmem_wmb(); |
| 580 | else |
| 581 | ssd_commit_flushed(wc, wait_for_ios); |
| 582 | } |
| 583 | |
| 584 | static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev) |
| 585 | { |
| 586 | int r; |
| 587 | struct dm_io_region region; |
| 588 | struct dm_io_request req; |
| 589 | |
| 590 | region.bdev = dev->bdev; |
| 591 | region.sector = 0; |
| 592 | region.count = 0; |
| 593 | req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; |
| 594 | req.mem.type = DM_IO_KMEM; |
| 595 | req.mem.ptr.addr = NULL; |
| 596 | req.client = wc->dm_io; |
| 597 | req.notify.fn = NULL; |
| 598 | |
| 599 | r = dm_io(&req, 1, ®ion, NULL); |
| 600 | if (unlikely(r)) |
| 601 | writecache_error(wc, r, "error flushing metadata: %d", r); |
| 602 | } |
| 603 | |
| 604 | #define WFE_RETURN_FOLLOWING 1 |
| 605 | #define WFE_LOWEST_SEQ 2 |
| 606 | |
| 607 | static struct wc_entry *writecache_find_entry(struct dm_writecache *wc, |
| 608 | uint64_t block, int flags) |
| 609 | { |
| 610 | struct wc_entry *e; |
| 611 | struct rb_node *node = wc->tree.rb_node; |
| 612 | |
| 613 | if (unlikely(!node)) |
| 614 | return NULL; |
| 615 | |
| 616 | while (1) { |
| 617 | e = container_of(node, struct wc_entry, rb_node); |
| 618 | if (read_original_sector(wc, e) == block) |
| 619 | break; |
| 620 | |
| 621 | node = (read_original_sector(wc, e) >= block ? |
| 622 | e->rb_node.rb_left : e->rb_node.rb_right); |
| 623 | if (unlikely(!node)) { |
| 624 | if (!(flags & WFE_RETURN_FOLLOWING)) |
| 625 | return NULL; |
| 626 | if (read_original_sector(wc, e) >= block) { |
| 627 | return e; |
| 628 | } else { |
| 629 | node = rb_next(&e->rb_node); |
| 630 | if (unlikely(!node)) |
| 631 | return NULL; |
| 632 | e = container_of(node, struct wc_entry, rb_node); |
| 633 | return e; |
| 634 | } |
| 635 | } |
| 636 | } |
| 637 | |
| 638 | while (1) { |
| 639 | struct wc_entry *e2; |
| 640 | if (flags & WFE_LOWEST_SEQ) |
| 641 | node = rb_prev(&e->rb_node); |
| 642 | else |
| 643 | node = rb_next(&e->rb_node); |
| 644 | if (unlikely(!node)) |
| 645 | return e; |
| 646 | e2 = container_of(node, struct wc_entry, rb_node); |
| 647 | if (read_original_sector(wc, e2) != block) |
| 648 | return e; |
| 649 | e = e2; |
| 650 | } |
| 651 | } |
| 652 | |
| 653 | static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins) |
| 654 | { |
| 655 | struct wc_entry *e; |
| 656 | struct rb_node **node = &wc->tree.rb_node, *parent = NULL; |
| 657 | |
| 658 | while (*node) { |
| 659 | e = container_of(*node, struct wc_entry, rb_node); |
| 660 | parent = &e->rb_node; |
| 661 | if (read_original_sector(wc, e) > read_original_sector(wc, ins)) |
| 662 | node = &parent->rb_left; |
| 663 | else |
| 664 | node = &parent->rb_right; |
| 665 | } |
| 666 | rb_link_node(&ins->rb_node, parent, node); |
| 667 | rb_insert_color(&ins->rb_node, &wc->tree); |
| 668 | list_add(&ins->lru, &wc->lru); |
| 669 | ins->age = jiffies; |
| 670 | } |
| 671 | |
| 672 | static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e) |
| 673 | { |
| 674 | list_del(&e->lru); |
| 675 | rb_erase(&e->rb_node, &wc->tree); |
| 676 | } |
| 677 | |
| 678 | static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e) |
| 679 | { |
| 680 | if (WC_MODE_SORT_FREELIST(wc)) { |
| 681 | struct rb_node **node = &wc->freetree.rb_node, *parent = NULL; |
| 682 | if (unlikely(!*node)) |
| 683 | wc->current_free = e; |
| 684 | while (*node) { |
| 685 | parent = *node; |
| 686 | if (&e->rb_node < *node) |
| 687 | node = &parent->rb_left; |
| 688 | else |
| 689 | node = &parent->rb_right; |
| 690 | } |
| 691 | rb_link_node(&e->rb_node, parent, node); |
| 692 | rb_insert_color(&e->rb_node, &wc->freetree); |
| 693 | } else { |
| 694 | list_add_tail(&e->lru, &wc->freelist); |
| 695 | } |
| 696 | wc->freelist_size++; |
| 697 | } |
| 698 | |
| 699 | static inline void writecache_verify_watermark(struct dm_writecache *wc) |
| 700 | { |
| 701 | if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark)) |
| 702 | queue_work(wc->writeback_wq, &wc->writeback_work); |
| 703 | } |
| 704 | |
| 705 | static void writecache_max_age_timer(struct timer_list *t) |
| 706 | { |
| 707 | struct dm_writecache *wc = from_timer(wc, t, max_age_timer); |
| 708 | |
| 709 | if (!dm_suspended(wc->ti) && !writecache_has_error(wc)) { |
| 710 | queue_work(wc->writeback_wq, &wc->writeback_work); |
| 711 | mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV); |
| 712 | } |
| 713 | } |
| 714 | |
| 715 | static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc, sector_t expected_sector) |
| 716 | { |
| 717 | struct wc_entry *e; |
| 718 | |
| 719 | if (WC_MODE_SORT_FREELIST(wc)) { |
| 720 | struct rb_node *next; |
| 721 | if (unlikely(!wc->current_free)) |
| 722 | return NULL; |
| 723 | e = wc->current_free; |
| 724 | if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector)) |
| 725 | return NULL; |
| 726 | next = rb_next(&e->rb_node); |
| 727 | rb_erase(&e->rb_node, &wc->freetree); |
| 728 | if (unlikely(!next)) |
| 729 | next = rb_first(&wc->freetree); |
| 730 | wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL; |
| 731 | } else { |
| 732 | if (unlikely(list_empty(&wc->freelist))) |
| 733 | return NULL; |
| 734 | e = container_of(wc->freelist.next, struct wc_entry, lru); |
| 735 | if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector)) |
| 736 | return NULL; |
| 737 | list_del(&e->lru); |
| 738 | } |
| 739 | wc->freelist_size--; |
| 740 | |
| 741 | writecache_verify_watermark(wc); |
| 742 | |
| 743 | return e; |
| 744 | } |
| 745 | |
| 746 | static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e) |
| 747 | { |
| 748 | writecache_unlink(wc, e); |
| 749 | writecache_add_to_freelist(wc, e); |
| 750 | clear_seq_count(wc, e); |
| 751 | writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry)); |
| 752 | if (unlikely(waitqueue_active(&wc->freelist_wait))) |
| 753 | wake_up(&wc->freelist_wait); |
| 754 | } |
| 755 | |
| 756 | static void writecache_wait_on_freelist(struct dm_writecache *wc) |
| 757 | { |
| 758 | DEFINE_WAIT(wait); |
| 759 | |
| 760 | prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE); |
| 761 | wc_unlock(wc); |
| 762 | io_schedule(); |
| 763 | finish_wait(&wc->freelist_wait, &wait); |
| 764 | wc_lock(wc); |
| 765 | } |
| 766 | |
| 767 | static void writecache_poison_lists(struct dm_writecache *wc) |
| 768 | { |
| 769 | /* |
| 770 | * Catch incorrect access to these values while the device is suspended. |
| 771 | */ |
| 772 | memset(&wc->tree, -1, sizeof wc->tree); |
| 773 | wc->lru.next = LIST_POISON1; |
| 774 | wc->lru.prev = LIST_POISON2; |
| 775 | wc->freelist.next = LIST_POISON1; |
| 776 | wc->freelist.prev = LIST_POISON2; |
| 777 | } |
| 778 | |
| 779 | static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e) |
| 780 | { |
| 781 | writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry)); |
| 782 | if (WC_MODE_PMEM(wc)) |
| 783 | writecache_flush_region(wc, memory_data(wc, e), wc->block_size); |
| 784 | } |
| 785 | |
| 786 | static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e) |
| 787 | { |
| 788 | return read_seq_count(wc, e) < wc->seq_count; |
| 789 | } |
| 790 | |
| 791 | static void writecache_flush(struct dm_writecache *wc) |
| 792 | { |
| 793 | struct wc_entry *e, *e2; |
| 794 | bool need_flush_after_free; |
| 795 | |
| 796 | wc->uncommitted_blocks = 0; |
| 797 | del_timer(&wc->autocommit_timer); |
| 798 | |
| 799 | if (list_empty(&wc->lru)) |
| 800 | return; |
| 801 | |
| 802 | e = container_of(wc->lru.next, struct wc_entry, lru); |
| 803 | if (writecache_entry_is_committed(wc, e)) { |
| 804 | if (wc->overwrote_committed) { |
| 805 | writecache_wait_for_ios(wc, WRITE); |
| 806 | writecache_disk_flush(wc, wc->ssd_dev); |
| 807 | wc->overwrote_committed = false; |
| 808 | } |
| 809 | return; |
| 810 | } |
| 811 | while (1) { |
| 812 | writecache_flush_entry(wc, e); |
| 813 | if (unlikely(e->lru.next == &wc->lru)) |
| 814 | break; |
| 815 | e2 = container_of(e->lru.next, struct wc_entry, lru); |
| 816 | if (writecache_entry_is_committed(wc, e2)) |
| 817 | break; |
| 818 | e = e2; |
| 819 | cond_resched(); |
| 820 | } |
| 821 | writecache_commit_flushed(wc, true); |
| 822 | |
| 823 | wc->seq_count++; |
| 824 | pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count)); |
| 825 | if (WC_MODE_PMEM(wc)) |
| 826 | writecache_commit_flushed(wc, false); |
| 827 | else |
| 828 | ssd_commit_superblock(wc); |
| 829 | |
| 830 | wc->overwrote_committed = false; |
| 831 | |
| 832 | need_flush_after_free = false; |
| 833 | while (1) { |
| 834 | /* Free another committed entry with lower seq-count */ |
| 835 | struct rb_node *rb_node = rb_prev(&e->rb_node); |
| 836 | |
| 837 | if (rb_node) { |
| 838 | e2 = container_of(rb_node, struct wc_entry, rb_node); |
| 839 | if (read_original_sector(wc, e2) == read_original_sector(wc, e) && |
| 840 | likely(!e2->write_in_progress)) { |
| 841 | writecache_free_entry(wc, e2); |
| 842 | need_flush_after_free = true; |
| 843 | } |
| 844 | } |
| 845 | if (unlikely(e->lru.prev == &wc->lru)) |
| 846 | break; |
| 847 | e = container_of(e->lru.prev, struct wc_entry, lru); |
| 848 | cond_resched(); |
| 849 | } |
| 850 | |
| 851 | if (need_flush_after_free) |
| 852 | writecache_commit_flushed(wc, false); |
| 853 | } |
| 854 | |
| 855 | static void writecache_flush_work(struct work_struct *work) |
| 856 | { |
| 857 | struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work); |
| 858 | |
| 859 | wc_lock(wc); |
| 860 | writecache_flush(wc); |
| 861 | wc_unlock(wc); |
| 862 | } |
| 863 | |
| 864 | static void writecache_autocommit_timer(struct timer_list *t) |
| 865 | { |
| 866 | struct dm_writecache *wc = from_timer(wc, t, autocommit_timer); |
| 867 | if (!writecache_has_error(wc)) |
| 868 | queue_work(wc->writeback_wq, &wc->flush_work); |
| 869 | } |
| 870 | |
| 871 | static void writecache_schedule_autocommit(struct dm_writecache *wc) |
| 872 | { |
| 873 | if (!timer_pending(&wc->autocommit_timer)) |
| 874 | mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies); |
| 875 | } |
| 876 | |
| 877 | static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end) |
| 878 | { |
| 879 | struct wc_entry *e; |
| 880 | bool discarded_something = false; |
| 881 | |
| 882 | e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ); |
| 883 | if (unlikely(!e)) |
| 884 | return; |
| 885 | |
| 886 | while (read_original_sector(wc, e) < end) { |
| 887 | struct rb_node *node = rb_next(&e->rb_node); |
| 888 | |
| 889 | if (likely(!e->write_in_progress)) { |
| 890 | if (!discarded_something) { |
| 891 | if (!WC_MODE_PMEM(wc)) { |
| 892 | writecache_wait_for_ios(wc, READ); |
| 893 | writecache_wait_for_ios(wc, WRITE); |
| 894 | } |
| 895 | discarded_something = true; |
| 896 | } |
| 897 | if (!writecache_entry_is_committed(wc, e)) |
| 898 | wc->uncommitted_blocks--; |
| 899 | writecache_free_entry(wc, e); |
| 900 | } |
| 901 | |
| 902 | if (unlikely(!node)) |
| 903 | break; |
| 904 | |
| 905 | e = container_of(node, struct wc_entry, rb_node); |
| 906 | } |
| 907 | |
| 908 | if (discarded_something) |
| 909 | writecache_commit_flushed(wc, false); |
| 910 | } |
| 911 | |
| 912 | static bool writecache_wait_for_writeback(struct dm_writecache *wc) |
| 913 | { |
| 914 | if (wc->writeback_size) { |
| 915 | writecache_wait_on_freelist(wc); |
| 916 | return true; |
| 917 | } |
| 918 | return false; |
| 919 | } |
| 920 | |
| 921 | static void writecache_suspend(struct dm_target *ti) |
| 922 | { |
| 923 | struct dm_writecache *wc = ti->private; |
| 924 | bool flush_on_suspend; |
| 925 | |
| 926 | del_timer_sync(&wc->autocommit_timer); |
| 927 | del_timer_sync(&wc->max_age_timer); |
| 928 | |
| 929 | wc_lock(wc); |
| 930 | writecache_flush(wc); |
| 931 | flush_on_suspend = wc->flush_on_suspend; |
| 932 | if (flush_on_suspend) { |
| 933 | wc->flush_on_suspend = false; |
| 934 | wc->writeback_all++; |
| 935 | queue_work(wc->writeback_wq, &wc->writeback_work); |
| 936 | } |
| 937 | wc_unlock(wc); |
| 938 | |
| 939 | drain_workqueue(wc->writeback_wq); |
| 940 | |
| 941 | wc_lock(wc); |
| 942 | if (flush_on_suspend) |
| 943 | wc->writeback_all--; |
| 944 | while (writecache_wait_for_writeback(wc)); |
| 945 | |
| 946 | if (WC_MODE_PMEM(wc)) |
| 947 | persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size); |
| 948 | |
| 949 | writecache_poison_lists(wc); |
| 950 | |
| 951 | wc_unlock(wc); |
| 952 | } |
| 953 | |
| 954 | static int writecache_alloc_entries(struct dm_writecache *wc) |
| 955 | { |
| 956 | size_t b; |
| 957 | |
| 958 | if (wc->entries) |
| 959 | return 0; |
| 960 | wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks)); |
| 961 | if (!wc->entries) |
| 962 | return -ENOMEM; |
| 963 | for (b = 0; b < wc->n_blocks; b++) { |
| 964 | struct wc_entry *e = &wc->entries[b]; |
| 965 | e->index = b; |
| 966 | e->write_in_progress = false; |
| 967 | cond_resched(); |
| 968 | } |
| 969 | |
| 970 | return 0; |
| 971 | } |
| 972 | |
| 973 | static int writecache_read_metadata(struct dm_writecache *wc, sector_t n_sectors) |
| 974 | { |
| 975 | struct dm_io_region region; |
| 976 | struct dm_io_request req; |
| 977 | |
| 978 | region.bdev = wc->ssd_dev->bdev; |
| 979 | region.sector = wc->start_sector; |
| 980 | region.count = n_sectors; |
| 981 | req.bi_opf = REQ_OP_READ | REQ_SYNC; |
| 982 | req.mem.type = DM_IO_VMA; |
| 983 | req.mem.ptr.vma = (char *)wc->memory_map; |
| 984 | req.client = wc->dm_io; |
| 985 | req.notify.fn = NULL; |
| 986 | |
| 987 | return dm_io(&req, 1, ®ion, NULL); |
| 988 | } |
| 989 | |
| 990 | static void writecache_resume(struct dm_target *ti) |
| 991 | { |
| 992 | struct dm_writecache *wc = ti->private; |
| 993 | size_t b; |
| 994 | bool need_flush = false; |
| 995 | __le64 sb_seq_count; |
| 996 | int r; |
| 997 | |
| 998 | wc_lock(wc); |
| 999 | |
| 1000 | wc->data_device_sectors = bdev_nr_sectors(wc->dev->bdev); |
| 1001 | |
| 1002 | if (WC_MODE_PMEM(wc)) { |
| 1003 | persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size); |
| 1004 | } else { |
| 1005 | r = writecache_read_metadata(wc, wc->metadata_sectors); |
| 1006 | if (r) { |
| 1007 | size_t sb_entries_offset; |
| 1008 | writecache_error(wc, r, "unable to read metadata: %d", r); |
| 1009 | sb_entries_offset = offsetof(struct wc_memory_superblock, entries); |
| 1010 | memset((char *)wc->memory_map + sb_entries_offset, -1, |
| 1011 | (wc->metadata_sectors << SECTOR_SHIFT) - sb_entries_offset); |
| 1012 | } |
| 1013 | } |
| 1014 | |
| 1015 | wc->tree = RB_ROOT; |
| 1016 | INIT_LIST_HEAD(&wc->lru); |
| 1017 | if (WC_MODE_SORT_FREELIST(wc)) { |
| 1018 | wc->freetree = RB_ROOT; |
| 1019 | wc->current_free = NULL; |
| 1020 | } else { |
| 1021 | INIT_LIST_HEAD(&wc->freelist); |
| 1022 | } |
| 1023 | wc->freelist_size = 0; |
| 1024 | |
| 1025 | r = copy_mc_to_kernel(&sb_seq_count, &sb(wc)->seq_count, |
| 1026 | sizeof(uint64_t)); |
| 1027 | if (r) { |
| 1028 | writecache_error(wc, r, "hardware memory error when reading superblock: %d", r); |
| 1029 | sb_seq_count = cpu_to_le64(0); |
| 1030 | } |
| 1031 | wc->seq_count = le64_to_cpu(sb_seq_count); |
| 1032 | |
| 1033 | #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS |
| 1034 | for (b = 0; b < wc->n_blocks; b++) { |
| 1035 | struct wc_entry *e = &wc->entries[b]; |
| 1036 | struct wc_memory_entry wme; |
| 1037 | if (writecache_has_error(wc)) { |
| 1038 | e->original_sector = -1; |
| 1039 | e->seq_count = -1; |
| 1040 | continue; |
| 1041 | } |
| 1042 | r = copy_mc_to_kernel(&wme, memory_entry(wc, e), |
| 1043 | sizeof(struct wc_memory_entry)); |
| 1044 | if (r) { |
| 1045 | writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d", |
| 1046 | (unsigned long)b, r); |
| 1047 | e->original_sector = -1; |
| 1048 | e->seq_count = -1; |
| 1049 | } else { |
| 1050 | e->original_sector = le64_to_cpu(wme.original_sector); |
| 1051 | e->seq_count = le64_to_cpu(wme.seq_count); |
| 1052 | } |
| 1053 | cond_resched(); |
| 1054 | } |
| 1055 | #endif |
| 1056 | for (b = 0; b < wc->n_blocks; b++) { |
| 1057 | struct wc_entry *e = &wc->entries[b]; |
| 1058 | if (!writecache_entry_is_committed(wc, e)) { |
| 1059 | if (read_seq_count(wc, e) != -1) { |
| 1060 | erase_this: |
| 1061 | clear_seq_count(wc, e); |
| 1062 | need_flush = true; |
| 1063 | } |
| 1064 | writecache_add_to_freelist(wc, e); |
| 1065 | } else { |
| 1066 | struct wc_entry *old; |
| 1067 | |
| 1068 | old = writecache_find_entry(wc, read_original_sector(wc, e), 0); |
| 1069 | if (!old) { |
| 1070 | writecache_insert_entry(wc, e); |
| 1071 | } else { |
| 1072 | if (read_seq_count(wc, old) == read_seq_count(wc, e)) { |
| 1073 | writecache_error(wc, -EINVAL, |
| 1074 | "two identical entries, position %llu, sector %llu, sequence %llu", |
| 1075 | (unsigned long long)b, (unsigned long long)read_original_sector(wc, e), |
| 1076 | (unsigned long long)read_seq_count(wc, e)); |
| 1077 | } |
| 1078 | if (read_seq_count(wc, old) > read_seq_count(wc, e)) { |
| 1079 | goto erase_this; |
| 1080 | } else { |
| 1081 | writecache_free_entry(wc, old); |
| 1082 | writecache_insert_entry(wc, e); |
| 1083 | need_flush = true; |
| 1084 | } |
| 1085 | } |
| 1086 | } |
| 1087 | cond_resched(); |
| 1088 | } |
| 1089 | |
| 1090 | if (need_flush) { |
| 1091 | writecache_flush_all_metadata(wc); |
| 1092 | writecache_commit_flushed(wc, false); |
| 1093 | } |
| 1094 | |
| 1095 | writecache_verify_watermark(wc); |
| 1096 | |
| 1097 | if (wc->max_age != MAX_AGE_UNSPECIFIED) |
| 1098 | mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV); |
| 1099 | |
| 1100 | wc_unlock(wc); |
| 1101 | } |
| 1102 | |
| 1103 | static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc) |
| 1104 | { |
| 1105 | if (argc != 1) |
| 1106 | return -EINVAL; |
| 1107 | |
| 1108 | wc_lock(wc); |
| 1109 | if (dm_suspended(wc->ti)) { |
| 1110 | wc_unlock(wc); |
| 1111 | return -EBUSY; |
| 1112 | } |
| 1113 | if (writecache_has_error(wc)) { |
| 1114 | wc_unlock(wc); |
| 1115 | return -EIO; |
| 1116 | } |
| 1117 | |
| 1118 | writecache_flush(wc); |
| 1119 | wc->writeback_all++; |
| 1120 | queue_work(wc->writeback_wq, &wc->writeback_work); |
| 1121 | wc_unlock(wc); |
| 1122 | |
| 1123 | flush_workqueue(wc->writeback_wq); |
| 1124 | |
| 1125 | wc_lock(wc); |
| 1126 | wc->writeback_all--; |
| 1127 | if (writecache_has_error(wc)) { |
| 1128 | wc_unlock(wc); |
| 1129 | return -EIO; |
| 1130 | } |
| 1131 | wc_unlock(wc); |
| 1132 | |
| 1133 | return 0; |
| 1134 | } |
| 1135 | |
| 1136 | static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc) |
| 1137 | { |
| 1138 | if (argc != 1) |
| 1139 | return -EINVAL; |
| 1140 | |
| 1141 | wc_lock(wc); |
| 1142 | wc->flush_on_suspend = true; |
| 1143 | wc_unlock(wc); |
| 1144 | |
| 1145 | return 0; |
| 1146 | } |
| 1147 | |
| 1148 | static void activate_cleaner(struct dm_writecache *wc) |
| 1149 | { |
| 1150 | wc->flush_on_suspend = true; |
| 1151 | wc->cleaner = true; |
| 1152 | wc->freelist_high_watermark = wc->n_blocks; |
| 1153 | wc->freelist_low_watermark = wc->n_blocks; |
| 1154 | } |
| 1155 | |
| 1156 | static int process_cleaner_mesg(unsigned argc, char **argv, struct dm_writecache *wc) |
| 1157 | { |
| 1158 | if (argc != 1) |
| 1159 | return -EINVAL; |
| 1160 | |
| 1161 | wc_lock(wc); |
| 1162 | activate_cleaner(wc); |
| 1163 | if (!dm_suspended(wc->ti)) |
| 1164 | writecache_verify_watermark(wc); |
| 1165 | wc_unlock(wc); |
| 1166 | |
| 1167 | return 0; |
| 1168 | } |
| 1169 | |
| 1170 | static int process_clear_stats_mesg(unsigned argc, char **argv, struct dm_writecache *wc) |
| 1171 | { |
| 1172 | if (argc != 1) |
| 1173 | return -EINVAL; |
| 1174 | |
| 1175 | wc_lock(wc); |
| 1176 | memset(&wc->stats, 0, sizeof wc->stats); |
| 1177 | wc_unlock(wc); |
| 1178 | |
| 1179 | return 0; |
| 1180 | } |
| 1181 | |
| 1182 | static int writecache_message(struct dm_target *ti, unsigned argc, char **argv, |
| 1183 | char *result, unsigned maxlen) |
| 1184 | { |
| 1185 | int r = -EINVAL; |
| 1186 | struct dm_writecache *wc = ti->private; |
| 1187 | |
| 1188 | if (!strcasecmp(argv[0], "flush")) |
| 1189 | r = process_flush_mesg(argc, argv, wc); |
| 1190 | else if (!strcasecmp(argv[0], "flush_on_suspend")) |
| 1191 | r = process_flush_on_suspend_mesg(argc, argv, wc); |
| 1192 | else if (!strcasecmp(argv[0], "cleaner")) |
| 1193 | r = process_cleaner_mesg(argc, argv, wc); |
| 1194 | else if (!strcasecmp(argv[0], "clear_stats")) |
| 1195 | r = process_clear_stats_mesg(argc, argv, wc); |
| 1196 | else |
| 1197 | DMERR("unrecognised message received: %s", argv[0]); |
| 1198 | |
| 1199 | return r; |
| 1200 | } |
| 1201 | |
| 1202 | static void memcpy_flushcache_optimized(void *dest, void *source, size_t size) |
| 1203 | { |
| 1204 | /* |
| 1205 | * clflushopt performs better with block size 1024, 2048, 4096 |
| 1206 | * non-temporal stores perform better with block size 512 |
| 1207 | * |
| 1208 | * block size 512 1024 2048 4096 |
| 1209 | * movnti 496 MB/s 642 MB/s 725 MB/s 744 MB/s |
| 1210 | * clflushopt 373 MB/s 688 MB/s 1.1 GB/s 1.2 GB/s |
| 1211 | * |
| 1212 | * We see that movnti performs better for 512-byte blocks, and |
| 1213 | * clflushopt performs better for 1024-byte and larger blocks. So, we |
| 1214 | * prefer clflushopt for sizes >= 768. |
| 1215 | * |
| 1216 | * NOTE: this happens to be the case now (with dm-writecache's single |
| 1217 | * threaded model) but re-evaluate this once memcpy_flushcache() is |
| 1218 | * enabled to use movdir64b which might invalidate this performance |
| 1219 | * advantage seen with cache-allocating-writes plus flushing. |
| 1220 | */ |
| 1221 | #ifdef CONFIG_X86 |
| 1222 | if (static_cpu_has(X86_FEATURE_CLFLUSHOPT) && |
| 1223 | likely(boot_cpu_data.x86_clflush_size == 64) && |
| 1224 | likely(size >= 768)) { |
| 1225 | do { |
| 1226 | memcpy((void *)dest, (void *)source, 64); |
| 1227 | clflushopt((void *)dest); |
| 1228 | dest += 64; |
| 1229 | source += 64; |
| 1230 | size -= 64; |
| 1231 | } while (size >= 64); |
| 1232 | return; |
| 1233 | } |
| 1234 | #endif |
| 1235 | memcpy_flushcache(dest, source, size); |
| 1236 | } |
| 1237 | |
| 1238 | static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data) |
| 1239 | { |
| 1240 | void *buf; |
| 1241 | unsigned size; |
| 1242 | int rw = bio_data_dir(bio); |
| 1243 | unsigned remaining_size = wc->block_size; |
| 1244 | |
| 1245 | do { |
| 1246 | struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter); |
| 1247 | buf = bvec_kmap_local(&bv); |
| 1248 | size = bv.bv_len; |
| 1249 | if (unlikely(size > remaining_size)) |
| 1250 | size = remaining_size; |
| 1251 | |
| 1252 | if (rw == READ) { |
| 1253 | int r; |
| 1254 | r = copy_mc_to_kernel(buf, data, size); |
| 1255 | flush_dcache_page(bio_page(bio)); |
| 1256 | if (unlikely(r)) { |
| 1257 | writecache_error(wc, r, "hardware memory error when reading data: %d", r); |
| 1258 | bio->bi_status = BLK_STS_IOERR; |
| 1259 | } |
| 1260 | } else { |
| 1261 | flush_dcache_page(bio_page(bio)); |
| 1262 | memcpy_flushcache_optimized(data, buf, size); |
| 1263 | } |
| 1264 | |
| 1265 | kunmap_local(buf); |
| 1266 | |
| 1267 | data = (char *)data + size; |
| 1268 | remaining_size -= size; |
| 1269 | bio_advance(bio, size); |
| 1270 | } while (unlikely(remaining_size)); |
| 1271 | } |
| 1272 | |
| 1273 | static int writecache_flush_thread(void *data) |
| 1274 | { |
| 1275 | struct dm_writecache *wc = data; |
| 1276 | |
| 1277 | while (1) { |
| 1278 | struct bio *bio; |
| 1279 | |
| 1280 | wc_lock(wc); |
| 1281 | bio = bio_list_pop(&wc->flush_list); |
| 1282 | if (!bio) { |
| 1283 | set_current_state(TASK_INTERRUPTIBLE); |
| 1284 | wc_unlock(wc); |
| 1285 | |
| 1286 | if (unlikely(kthread_should_stop())) { |
| 1287 | set_current_state(TASK_RUNNING); |
| 1288 | break; |
| 1289 | } |
| 1290 | |
| 1291 | schedule(); |
| 1292 | continue; |
| 1293 | } |
| 1294 | |
| 1295 | if (bio_op(bio) == REQ_OP_DISCARD) { |
| 1296 | writecache_discard(wc, bio->bi_iter.bi_sector, |
| 1297 | bio_end_sector(bio)); |
| 1298 | wc_unlock(wc); |
| 1299 | bio_set_dev(bio, wc->dev->bdev); |
| 1300 | submit_bio_noacct(bio); |
| 1301 | } else { |
| 1302 | writecache_flush(wc); |
| 1303 | wc_unlock(wc); |
| 1304 | if (writecache_has_error(wc)) |
| 1305 | bio->bi_status = BLK_STS_IOERR; |
| 1306 | bio_endio(bio); |
| 1307 | } |
| 1308 | } |
| 1309 | |
| 1310 | return 0; |
| 1311 | } |
| 1312 | |
| 1313 | static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio) |
| 1314 | { |
| 1315 | if (bio_list_empty(&wc->flush_list)) |
| 1316 | wake_up_process(wc->flush_thread); |
| 1317 | bio_list_add(&wc->flush_list, bio); |
| 1318 | } |
| 1319 | |
| 1320 | enum wc_map_op { |
| 1321 | WC_MAP_SUBMIT, |
| 1322 | WC_MAP_REMAP, |
| 1323 | WC_MAP_REMAP_ORIGIN, |
| 1324 | WC_MAP_RETURN, |
| 1325 | WC_MAP_ERROR, |
| 1326 | }; |
| 1327 | |
| 1328 | static void writecache_map_remap_origin(struct dm_writecache *wc, struct bio *bio, |
| 1329 | struct wc_entry *e) |
| 1330 | { |
| 1331 | if (e) { |
| 1332 | sector_t next_boundary = |
| 1333 | read_original_sector(wc, e) - bio->bi_iter.bi_sector; |
| 1334 | if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) |
| 1335 | dm_accept_partial_bio(bio, next_boundary); |
| 1336 | } |
| 1337 | } |
| 1338 | |
| 1339 | static enum wc_map_op writecache_map_read(struct dm_writecache *wc, struct bio *bio) |
| 1340 | { |
| 1341 | enum wc_map_op map_op; |
| 1342 | struct wc_entry *e; |
| 1343 | |
| 1344 | read_next_block: |
| 1345 | wc->stats.reads++; |
| 1346 | e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING); |
| 1347 | if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) { |
| 1348 | wc->stats.read_hits++; |
| 1349 | if (WC_MODE_PMEM(wc)) { |
| 1350 | bio_copy_block(wc, bio, memory_data(wc, e)); |
| 1351 | if (bio->bi_iter.bi_size) |
| 1352 | goto read_next_block; |
| 1353 | map_op = WC_MAP_SUBMIT; |
| 1354 | } else { |
| 1355 | dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT); |
| 1356 | bio_set_dev(bio, wc->ssd_dev->bdev); |
| 1357 | bio->bi_iter.bi_sector = cache_sector(wc, e); |
| 1358 | if (!writecache_entry_is_committed(wc, e)) |
| 1359 | writecache_wait_for_ios(wc, WRITE); |
| 1360 | map_op = WC_MAP_REMAP; |
| 1361 | } |
| 1362 | } else { |
| 1363 | writecache_map_remap_origin(wc, bio, e); |
| 1364 | wc->stats.reads += (bio->bi_iter.bi_size - wc->block_size) >> wc->block_size_bits; |
| 1365 | map_op = WC_MAP_REMAP_ORIGIN; |
| 1366 | } |
| 1367 | |
| 1368 | return map_op; |
| 1369 | } |
| 1370 | |
| 1371 | static void writecache_bio_copy_ssd(struct dm_writecache *wc, struct bio *bio, |
| 1372 | struct wc_entry *e, bool search_used) |
| 1373 | { |
| 1374 | unsigned bio_size = wc->block_size; |
| 1375 | sector_t start_cache_sec = cache_sector(wc, e); |
| 1376 | sector_t current_cache_sec = start_cache_sec + (bio_size >> SECTOR_SHIFT); |
| 1377 | |
| 1378 | while (bio_size < bio->bi_iter.bi_size) { |
| 1379 | if (!search_used) { |
| 1380 | struct wc_entry *f = writecache_pop_from_freelist(wc, current_cache_sec); |
| 1381 | if (!f) |
| 1382 | break; |
| 1383 | write_original_sector_seq_count(wc, f, bio->bi_iter.bi_sector + |
| 1384 | (bio_size >> SECTOR_SHIFT), wc->seq_count); |
| 1385 | writecache_insert_entry(wc, f); |
| 1386 | wc->uncommitted_blocks++; |
| 1387 | } else { |
| 1388 | struct wc_entry *f; |
| 1389 | struct rb_node *next = rb_next(&e->rb_node); |
| 1390 | if (!next) |
| 1391 | break; |
| 1392 | f = container_of(next, struct wc_entry, rb_node); |
| 1393 | if (f != e + 1) |
| 1394 | break; |
| 1395 | if (read_original_sector(wc, f) != |
| 1396 | read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT)) |
| 1397 | break; |
| 1398 | if (unlikely(f->write_in_progress)) |
| 1399 | break; |
| 1400 | if (writecache_entry_is_committed(wc, f)) |
| 1401 | wc->overwrote_committed = true; |
| 1402 | e = f; |
| 1403 | } |
| 1404 | bio_size += wc->block_size; |
| 1405 | current_cache_sec += wc->block_size >> SECTOR_SHIFT; |
| 1406 | } |
| 1407 | |
| 1408 | bio_set_dev(bio, wc->ssd_dev->bdev); |
| 1409 | bio->bi_iter.bi_sector = start_cache_sec; |
| 1410 | dm_accept_partial_bio(bio, bio_size >> SECTOR_SHIFT); |
| 1411 | |
| 1412 | wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits; |
| 1413 | wc->stats.writes_allocate += (bio->bi_iter.bi_size - wc->block_size) >> wc->block_size_bits; |
| 1414 | |
| 1415 | if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) { |
| 1416 | wc->uncommitted_blocks = 0; |
| 1417 | queue_work(wc->writeback_wq, &wc->flush_work); |
| 1418 | } else { |
| 1419 | writecache_schedule_autocommit(wc); |
| 1420 | } |
| 1421 | } |
| 1422 | |
| 1423 | static enum wc_map_op writecache_map_write(struct dm_writecache *wc, struct bio *bio) |
| 1424 | { |
| 1425 | struct wc_entry *e; |
| 1426 | |
| 1427 | do { |
| 1428 | bool found_entry = false; |
| 1429 | bool search_used = false; |
| 1430 | if (writecache_has_error(wc)) { |
| 1431 | wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits; |
| 1432 | return WC_MAP_ERROR; |
| 1433 | } |
| 1434 | e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0); |
| 1435 | if (e) { |
| 1436 | if (!writecache_entry_is_committed(wc, e)) { |
| 1437 | wc->stats.write_hits_uncommitted++; |
| 1438 | search_used = true; |
| 1439 | goto bio_copy; |
| 1440 | } |
| 1441 | wc->stats.write_hits_committed++; |
| 1442 | if (!WC_MODE_PMEM(wc) && !e->write_in_progress) { |
| 1443 | wc->overwrote_committed = true; |
| 1444 | search_used = true; |
| 1445 | goto bio_copy; |
| 1446 | } |
| 1447 | found_entry = true; |
| 1448 | } else { |
| 1449 | if (unlikely(wc->cleaner) || |
| 1450 | (wc->metadata_only && !(bio->bi_opf & REQ_META))) |
| 1451 | goto direct_write; |
| 1452 | } |
| 1453 | e = writecache_pop_from_freelist(wc, (sector_t)-1); |
| 1454 | if (unlikely(!e)) { |
| 1455 | if (!WC_MODE_PMEM(wc) && !found_entry) { |
| 1456 | direct_write: |
| 1457 | e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING); |
| 1458 | writecache_map_remap_origin(wc, bio, e); |
| 1459 | wc->stats.writes_around += bio->bi_iter.bi_size >> wc->block_size_bits; |
| 1460 | wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits; |
| 1461 | return WC_MAP_REMAP_ORIGIN; |
| 1462 | } |
| 1463 | wc->stats.writes_blocked_on_freelist++; |
| 1464 | writecache_wait_on_freelist(wc); |
| 1465 | continue; |
| 1466 | } |
| 1467 | write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count); |
| 1468 | writecache_insert_entry(wc, e); |
| 1469 | wc->uncommitted_blocks++; |
| 1470 | wc->stats.writes_allocate++; |
| 1471 | bio_copy: |
| 1472 | if (WC_MODE_PMEM(wc)) { |
| 1473 | bio_copy_block(wc, bio, memory_data(wc, e)); |
| 1474 | wc->stats.writes++; |
| 1475 | } else { |
| 1476 | writecache_bio_copy_ssd(wc, bio, e, search_used); |
| 1477 | return WC_MAP_REMAP; |
| 1478 | } |
| 1479 | } while (bio->bi_iter.bi_size); |
| 1480 | |
| 1481 | if (unlikely(bio->bi_opf & REQ_FUA || wc->uncommitted_blocks >= wc->autocommit_blocks)) |
| 1482 | writecache_flush(wc); |
| 1483 | else |
| 1484 | writecache_schedule_autocommit(wc); |
| 1485 | |
| 1486 | return WC_MAP_SUBMIT; |
| 1487 | } |
| 1488 | |
| 1489 | static enum wc_map_op writecache_map_flush(struct dm_writecache *wc, struct bio *bio) |
| 1490 | { |
| 1491 | if (writecache_has_error(wc)) |
| 1492 | return WC_MAP_ERROR; |
| 1493 | |
| 1494 | if (WC_MODE_PMEM(wc)) { |
| 1495 | wc->stats.flushes++; |
| 1496 | writecache_flush(wc); |
| 1497 | if (writecache_has_error(wc)) |
| 1498 | return WC_MAP_ERROR; |
| 1499 | else if (unlikely(wc->cleaner) || unlikely(wc->metadata_only)) |
| 1500 | return WC_MAP_REMAP_ORIGIN; |
| 1501 | return WC_MAP_SUBMIT; |
| 1502 | } |
| 1503 | /* SSD: */ |
| 1504 | if (dm_bio_get_target_bio_nr(bio)) |
| 1505 | return WC_MAP_REMAP_ORIGIN; |
| 1506 | wc->stats.flushes++; |
| 1507 | writecache_offload_bio(wc, bio); |
| 1508 | return WC_MAP_RETURN; |
| 1509 | } |
| 1510 | |
| 1511 | static enum wc_map_op writecache_map_discard(struct dm_writecache *wc, struct bio *bio) |
| 1512 | { |
| 1513 | wc->stats.discards += bio->bi_iter.bi_size >> wc->block_size_bits; |
| 1514 | |
| 1515 | if (writecache_has_error(wc)) |
| 1516 | return WC_MAP_ERROR; |
| 1517 | |
| 1518 | if (WC_MODE_PMEM(wc)) { |
| 1519 | writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio)); |
| 1520 | return WC_MAP_REMAP_ORIGIN; |
| 1521 | } |
| 1522 | /* SSD: */ |
| 1523 | writecache_offload_bio(wc, bio); |
| 1524 | return WC_MAP_RETURN; |
| 1525 | } |
| 1526 | |
| 1527 | static int writecache_map(struct dm_target *ti, struct bio *bio) |
| 1528 | { |
| 1529 | struct dm_writecache *wc = ti->private; |
| 1530 | enum wc_map_op map_op; |
| 1531 | |
| 1532 | bio->bi_private = NULL; |
| 1533 | |
| 1534 | wc_lock(wc); |
| 1535 | |
| 1536 | if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { |
| 1537 | map_op = writecache_map_flush(wc, bio); |
| 1538 | goto done; |
| 1539 | } |
| 1540 | |
| 1541 | bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); |
| 1542 | |
| 1543 | if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) & |
| 1544 | (wc->block_size / 512 - 1)) != 0)) { |
| 1545 | DMERR("I/O is not aligned, sector %llu, size %u, block size %u", |
| 1546 | (unsigned long long)bio->bi_iter.bi_sector, |
| 1547 | bio->bi_iter.bi_size, wc->block_size); |
| 1548 | map_op = WC_MAP_ERROR; |
| 1549 | goto done; |
| 1550 | } |
| 1551 | |
| 1552 | if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) { |
| 1553 | map_op = writecache_map_discard(wc, bio); |
| 1554 | goto done; |
| 1555 | } |
| 1556 | |
| 1557 | if (bio_data_dir(bio) == READ) |
| 1558 | map_op = writecache_map_read(wc, bio); |
| 1559 | else |
| 1560 | map_op = writecache_map_write(wc, bio); |
| 1561 | done: |
| 1562 | switch (map_op) { |
| 1563 | case WC_MAP_REMAP_ORIGIN: |
| 1564 | if (likely(wc->pause != 0)) { |
| 1565 | if (bio_op(bio) == REQ_OP_WRITE) { |
| 1566 | dm_iot_io_begin(&wc->iot, 1); |
| 1567 | bio->bi_private = (void *)2; |
| 1568 | } |
| 1569 | } |
| 1570 | bio_set_dev(bio, wc->dev->bdev); |
| 1571 | wc_unlock(wc); |
| 1572 | return DM_MAPIO_REMAPPED; |
| 1573 | |
| 1574 | case WC_MAP_REMAP: |
| 1575 | /* make sure that writecache_end_io decrements bio_in_progress: */ |
| 1576 | bio->bi_private = (void *)1; |
| 1577 | atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]); |
| 1578 | wc_unlock(wc); |
| 1579 | return DM_MAPIO_REMAPPED; |
| 1580 | |
| 1581 | case WC_MAP_SUBMIT: |
| 1582 | wc_unlock(wc); |
| 1583 | bio_endio(bio); |
| 1584 | return DM_MAPIO_SUBMITTED; |
| 1585 | |
| 1586 | case WC_MAP_RETURN: |
| 1587 | wc_unlock(wc); |
| 1588 | return DM_MAPIO_SUBMITTED; |
| 1589 | |
| 1590 | case WC_MAP_ERROR: |
| 1591 | wc_unlock(wc); |
| 1592 | bio_io_error(bio); |
| 1593 | return DM_MAPIO_SUBMITTED; |
| 1594 | |
| 1595 | default: |
| 1596 | BUG(); |
| 1597 | return -1; |
| 1598 | } |
| 1599 | } |
| 1600 | |
| 1601 | static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status) |
| 1602 | { |
| 1603 | struct dm_writecache *wc = ti->private; |
| 1604 | |
| 1605 | if (bio->bi_private == (void *)1) { |
| 1606 | int dir = bio_data_dir(bio); |
| 1607 | if (atomic_dec_and_test(&wc->bio_in_progress[dir])) |
| 1608 | if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir]))) |
| 1609 | wake_up(&wc->bio_in_progress_wait[dir]); |
| 1610 | } else if (bio->bi_private == (void *)2) { |
| 1611 | dm_iot_io_end(&wc->iot, 1); |
| 1612 | } |
| 1613 | return 0; |
| 1614 | } |
| 1615 | |
| 1616 | static int writecache_iterate_devices(struct dm_target *ti, |
| 1617 | iterate_devices_callout_fn fn, void *data) |
| 1618 | { |
| 1619 | struct dm_writecache *wc = ti->private; |
| 1620 | |
| 1621 | return fn(ti, wc->dev, 0, ti->len, data); |
| 1622 | } |
| 1623 | |
| 1624 | static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits) |
| 1625 | { |
| 1626 | struct dm_writecache *wc = ti->private; |
| 1627 | |
| 1628 | if (limits->logical_block_size < wc->block_size) |
| 1629 | limits->logical_block_size = wc->block_size; |
| 1630 | |
| 1631 | if (limits->physical_block_size < wc->block_size) |
| 1632 | limits->physical_block_size = wc->block_size; |
| 1633 | |
| 1634 | if (limits->io_min < wc->block_size) |
| 1635 | limits->io_min = wc->block_size; |
| 1636 | } |
| 1637 | |
| 1638 | |
| 1639 | static void writecache_writeback_endio(struct bio *bio) |
| 1640 | { |
| 1641 | struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio); |
| 1642 | struct dm_writecache *wc = wb->wc; |
| 1643 | unsigned long flags; |
| 1644 | |
| 1645 | raw_spin_lock_irqsave(&wc->endio_list_lock, flags); |
| 1646 | if (unlikely(list_empty(&wc->endio_list))) |
| 1647 | wake_up_process(wc->endio_thread); |
| 1648 | list_add_tail(&wb->endio_entry, &wc->endio_list); |
| 1649 | raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags); |
| 1650 | } |
| 1651 | |
| 1652 | static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr) |
| 1653 | { |
| 1654 | struct copy_struct *c = ptr; |
| 1655 | struct dm_writecache *wc = c->wc; |
| 1656 | |
| 1657 | c->error = likely(!(read_err | write_err)) ? 0 : -EIO; |
| 1658 | |
| 1659 | raw_spin_lock_irq(&wc->endio_list_lock); |
| 1660 | if (unlikely(list_empty(&wc->endio_list))) |
| 1661 | wake_up_process(wc->endio_thread); |
| 1662 | list_add_tail(&c->endio_entry, &wc->endio_list); |
| 1663 | raw_spin_unlock_irq(&wc->endio_list_lock); |
| 1664 | } |
| 1665 | |
| 1666 | static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list) |
| 1667 | { |
| 1668 | unsigned i; |
| 1669 | struct writeback_struct *wb; |
| 1670 | struct wc_entry *e; |
| 1671 | unsigned long n_walked = 0; |
| 1672 | |
| 1673 | do { |
| 1674 | wb = list_entry(list->next, struct writeback_struct, endio_entry); |
| 1675 | list_del(&wb->endio_entry); |
| 1676 | |
| 1677 | if (unlikely(wb->bio.bi_status != BLK_STS_OK)) |
| 1678 | writecache_error(wc, blk_status_to_errno(wb->bio.bi_status), |
| 1679 | "write error %d", wb->bio.bi_status); |
| 1680 | i = 0; |
| 1681 | do { |
| 1682 | e = wb->wc_list[i]; |
| 1683 | BUG_ON(!e->write_in_progress); |
| 1684 | e->write_in_progress = false; |
| 1685 | INIT_LIST_HEAD(&e->lru); |
| 1686 | if (!writecache_has_error(wc)) |
| 1687 | writecache_free_entry(wc, e); |
| 1688 | BUG_ON(!wc->writeback_size); |
| 1689 | wc->writeback_size--; |
| 1690 | n_walked++; |
| 1691 | if (unlikely(n_walked >= ENDIO_LATENCY)) { |
| 1692 | writecache_commit_flushed(wc, false); |
| 1693 | wc_unlock(wc); |
| 1694 | wc_lock(wc); |
| 1695 | n_walked = 0; |
| 1696 | } |
| 1697 | } while (++i < wb->wc_list_n); |
| 1698 | |
| 1699 | if (wb->wc_list != wb->wc_list_inline) |
| 1700 | kfree(wb->wc_list); |
| 1701 | bio_put(&wb->bio); |
| 1702 | } while (!list_empty(list)); |
| 1703 | } |
| 1704 | |
| 1705 | static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list) |
| 1706 | { |
| 1707 | struct copy_struct *c; |
| 1708 | struct wc_entry *e; |
| 1709 | |
| 1710 | do { |
| 1711 | c = list_entry(list->next, struct copy_struct, endio_entry); |
| 1712 | list_del(&c->endio_entry); |
| 1713 | |
| 1714 | if (unlikely(c->error)) |
| 1715 | writecache_error(wc, c->error, "copy error"); |
| 1716 | |
| 1717 | e = c->e; |
| 1718 | do { |
| 1719 | BUG_ON(!e->write_in_progress); |
| 1720 | e->write_in_progress = false; |
| 1721 | INIT_LIST_HEAD(&e->lru); |
| 1722 | if (!writecache_has_error(wc)) |
| 1723 | writecache_free_entry(wc, e); |
| 1724 | |
| 1725 | BUG_ON(!wc->writeback_size); |
| 1726 | wc->writeback_size--; |
| 1727 | e++; |
| 1728 | } while (--c->n_entries); |
| 1729 | mempool_free(c, &wc->copy_pool); |
| 1730 | } while (!list_empty(list)); |
| 1731 | } |
| 1732 | |
| 1733 | static int writecache_endio_thread(void *data) |
| 1734 | { |
| 1735 | struct dm_writecache *wc = data; |
| 1736 | |
| 1737 | while (1) { |
| 1738 | struct list_head list; |
| 1739 | |
| 1740 | raw_spin_lock_irq(&wc->endio_list_lock); |
| 1741 | if (!list_empty(&wc->endio_list)) |
| 1742 | goto pop_from_list; |
| 1743 | set_current_state(TASK_INTERRUPTIBLE); |
| 1744 | raw_spin_unlock_irq(&wc->endio_list_lock); |
| 1745 | |
| 1746 | if (unlikely(kthread_should_stop())) { |
| 1747 | set_current_state(TASK_RUNNING); |
| 1748 | break; |
| 1749 | } |
| 1750 | |
| 1751 | schedule(); |
| 1752 | |
| 1753 | continue; |
| 1754 | |
| 1755 | pop_from_list: |
| 1756 | list = wc->endio_list; |
| 1757 | list.next->prev = list.prev->next = &list; |
| 1758 | INIT_LIST_HEAD(&wc->endio_list); |
| 1759 | raw_spin_unlock_irq(&wc->endio_list_lock); |
| 1760 | |
| 1761 | if (!WC_MODE_FUA(wc)) |
| 1762 | writecache_disk_flush(wc, wc->dev); |
| 1763 | |
| 1764 | wc_lock(wc); |
| 1765 | |
| 1766 | if (WC_MODE_PMEM(wc)) { |
| 1767 | __writecache_endio_pmem(wc, &list); |
| 1768 | } else { |
| 1769 | __writecache_endio_ssd(wc, &list); |
| 1770 | writecache_wait_for_ios(wc, READ); |
| 1771 | } |
| 1772 | |
| 1773 | writecache_commit_flushed(wc, false); |
| 1774 | |
| 1775 | wc_unlock(wc); |
| 1776 | } |
| 1777 | |
| 1778 | return 0; |
| 1779 | } |
| 1780 | |
| 1781 | static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e) |
| 1782 | { |
| 1783 | struct dm_writecache *wc = wb->wc; |
| 1784 | unsigned block_size = wc->block_size; |
| 1785 | void *address = memory_data(wc, e); |
| 1786 | |
| 1787 | persistent_memory_flush_cache(address, block_size); |
| 1788 | |
| 1789 | if (unlikely(bio_end_sector(&wb->bio) >= wc->data_device_sectors)) |
| 1790 | return true; |
| 1791 | |
| 1792 | return bio_add_page(&wb->bio, persistent_memory_page(address), |
| 1793 | block_size, persistent_memory_page_offset(address)) != 0; |
| 1794 | } |
| 1795 | |
| 1796 | struct writeback_list { |
| 1797 | struct list_head list; |
| 1798 | size_t size; |
| 1799 | }; |
| 1800 | |
| 1801 | static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl) |
| 1802 | { |
| 1803 | if (unlikely(wc->max_writeback_jobs)) { |
| 1804 | if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) { |
| 1805 | wc_lock(wc); |
| 1806 | while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs) |
| 1807 | writecache_wait_on_freelist(wc); |
| 1808 | wc_unlock(wc); |
| 1809 | } |
| 1810 | } |
| 1811 | cond_resched(); |
| 1812 | } |
| 1813 | |
| 1814 | static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl) |
| 1815 | { |
| 1816 | struct wc_entry *e, *f; |
| 1817 | struct bio *bio; |
| 1818 | struct writeback_struct *wb; |
| 1819 | unsigned max_pages; |
| 1820 | |
| 1821 | while (wbl->size) { |
| 1822 | wbl->size--; |
| 1823 | e = container_of(wbl->list.prev, struct wc_entry, lru); |
| 1824 | list_del(&e->lru); |
| 1825 | |
| 1826 | max_pages = e->wc_list_contiguous; |
| 1827 | |
| 1828 | bio = bio_alloc_bioset(wc->dev->bdev, max_pages, REQ_OP_WRITE, |
| 1829 | GFP_NOIO, &wc->bio_set); |
| 1830 | wb = container_of(bio, struct writeback_struct, bio); |
| 1831 | wb->wc = wc; |
| 1832 | bio->bi_end_io = writecache_writeback_endio; |
| 1833 | bio->bi_iter.bi_sector = read_original_sector(wc, e); |
| 1834 | if (max_pages <= WB_LIST_INLINE || |
| 1835 | unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *), |
| 1836 | GFP_NOIO | __GFP_NORETRY | |
| 1837 | __GFP_NOMEMALLOC | __GFP_NOWARN)))) { |
| 1838 | wb->wc_list = wb->wc_list_inline; |
| 1839 | max_pages = WB_LIST_INLINE; |
| 1840 | } |
| 1841 | |
| 1842 | BUG_ON(!wc_add_block(wb, e)); |
| 1843 | |
| 1844 | wb->wc_list[0] = e; |
| 1845 | wb->wc_list_n = 1; |
| 1846 | |
| 1847 | while (wbl->size && wb->wc_list_n < max_pages) { |
| 1848 | f = container_of(wbl->list.prev, struct wc_entry, lru); |
| 1849 | if (read_original_sector(wc, f) != |
| 1850 | read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT)) |
| 1851 | break; |
| 1852 | if (!wc_add_block(wb, f)) |
| 1853 | break; |
| 1854 | wbl->size--; |
| 1855 | list_del(&f->lru); |
| 1856 | wb->wc_list[wb->wc_list_n++] = f; |
| 1857 | e = f; |
| 1858 | } |
| 1859 | if (WC_MODE_FUA(wc)) |
| 1860 | bio->bi_opf |= REQ_FUA; |
| 1861 | if (writecache_has_error(wc)) { |
| 1862 | bio->bi_status = BLK_STS_IOERR; |
| 1863 | bio_endio(bio); |
| 1864 | } else if (unlikely(!bio_sectors(bio))) { |
| 1865 | bio->bi_status = BLK_STS_OK; |
| 1866 | bio_endio(bio); |
| 1867 | } else { |
| 1868 | submit_bio(bio); |
| 1869 | } |
| 1870 | |
| 1871 | __writeback_throttle(wc, wbl); |
| 1872 | } |
| 1873 | } |
| 1874 | |
| 1875 | static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl) |
| 1876 | { |
| 1877 | struct wc_entry *e, *f; |
| 1878 | struct dm_io_region from, to; |
| 1879 | struct copy_struct *c; |
| 1880 | |
| 1881 | while (wbl->size) { |
| 1882 | unsigned n_sectors; |
| 1883 | |
| 1884 | wbl->size--; |
| 1885 | e = container_of(wbl->list.prev, struct wc_entry, lru); |
| 1886 | list_del(&e->lru); |
| 1887 | |
| 1888 | n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT); |
| 1889 | |
| 1890 | from.bdev = wc->ssd_dev->bdev; |
| 1891 | from.sector = cache_sector(wc, e); |
| 1892 | from.count = n_sectors; |
| 1893 | to.bdev = wc->dev->bdev; |
| 1894 | to.sector = read_original_sector(wc, e); |
| 1895 | to.count = n_sectors; |
| 1896 | |
| 1897 | c = mempool_alloc(&wc->copy_pool, GFP_NOIO); |
| 1898 | c->wc = wc; |
| 1899 | c->e = e; |
| 1900 | c->n_entries = e->wc_list_contiguous; |
| 1901 | |
| 1902 | while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) { |
| 1903 | wbl->size--; |
| 1904 | f = container_of(wbl->list.prev, struct wc_entry, lru); |
| 1905 | BUG_ON(f != e + 1); |
| 1906 | list_del(&f->lru); |
| 1907 | e = f; |
| 1908 | } |
| 1909 | |
| 1910 | if (unlikely(to.sector + to.count > wc->data_device_sectors)) { |
| 1911 | if (to.sector >= wc->data_device_sectors) { |
| 1912 | writecache_copy_endio(0, 0, c); |
| 1913 | continue; |
| 1914 | } |
| 1915 | from.count = to.count = wc->data_device_sectors - to.sector; |
| 1916 | } |
| 1917 | |
| 1918 | dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c); |
| 1919 | |
| 1920 | __writeback_throttle(wc, wbl); |
| 1921 | } |
| 1922 | } |
| 1923 | |
| 1924 | static void writecache_writeback(struct work_struct *work) |
| 1925 | { |
| 1926 | struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work); |
| 1927 | struct blk_plug plug; |
| 1928 | struct wc_entry *f, *g, *e = NULL; |
| 1929 | struct rb_node *node, *next_node; |
| 1930 | struct list_head skipped; |
| 1931 | struct writeback_list wbl; |
| 1932 | unsigned long n_walked; |
| 1933 | |
| 1934 | if (!WC_MODE_PMEM(wc)) { |
| 1935 | /* Wait for any active kcopyd work on behalf of ssd writeback */ |
| 1936 | dm_kcopyd_client_flush(wc->dm_kcopyd); |
| 1937 | } |
| 1938 | |
| 1939 | if (likely(wc->pause != 0)) { |
| 1940 | while (1) { |
| 1941 | unsigned long idle; |
| 1942 | if (unlikely(wc->cleaner) || unlikely(wc->writeback_all) || |
| 1943 | unlikely(dm_suspended(wc->ti))) |
| 1944 | break; |
| 1945 | idle = dm_iot_idle_time(&wc->iot); |
| 1946 | if (idle >= wc->pause) |
| 1947 | break; |
| 1948 | idle = wc->pause - idle; |
| 1949 | if (idle > HZ) |
| 1950 | idle = HZ; |
| 1951 | schedule_timeout_idle(idle); |
| 1952 | } |
| 1953 | } |
| 1954 | |
| 1955 | wc_lock(wc); |
| 1956 | restart: |
| 1957 | if (writecache_has_error(wc)) { |
| 1958 | wc_unlock(wc); |
| 1959 | return; |
| 1960 | } |
| 1961 | |
| 1962 | if (unlikely(wc->writeback_all)) { |
| 1963 | if (writecache_wait_for_writeback(wc)) |
| 1964 | goto restart; |
| 1965 | } |
| 1966 | |
| 1967 | if (wc->overwrote_committed) { |
| 1968 | writecache_wait_for_ios(wc, WRITE); |
| 1969 | } |
| 1970 | |
| 1971 | n_walked = 0; |
| 1972 | INIT_LIST_HEAD(&skipped); |
| 1973 | INIT_LIST_HEAD(&wbl.list); |
| 1974 | wbl.size = 0; |
| 1975 | while (!list_empty(&wc->lru) && |
| 1976 | (wc->writeback_all || |
| 1977 | wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark || |
| 1978 | (jiffies - container_of(wc->lru.prev, struct wc_entry, lru)->age >= |
| 1979 | wc->max_age - wc->max_age / MAX_AGE_DIV))) { |
| 1980 | |
| 1981 | n_walked++; |
| 1982 | if (unlikely(n_walked > WRITEBACK_LATENCY) && |
| 1983 | likely(!wc->writeback_all)) { |
| 1984 | if (likely(!dm_suspended(wc->ti))) |
| 1985 | queue_work(wc->writeback_wq, &wc->writeback_work); |
| 1986 | break; |
| 1987 | } |
| 1988 | |
| 1989 | if (unlikely(wc->writeback_all)) { |
| 1990 | if (unlikely(!e)) { |
| 1991 | writecache_flush(wc); |
| 1992 | e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node); |
| 1993 | } else |
| 1994 | e = g; |
| 1995 | } else |
| 1996 | e = container_of(wc->lru.prev, struct wc_entry, lru); |
| 1997 | BUG_ON(e->write_in_progress); |
| 1998 | if (unlikely(!writecache_entry_is_committed(wc, e))) { |
| 1999 | writecache_flush(wc); |
| 2000 | } |
| 2001 | node = rb_prev(&e->rb_node); |
| 2002 | if (node) { |
| 2003 | f = container_of(node, struct wc_entry, rb_node); |
| 2004 | if (unlikely(read_original_sector(wc, f) == |
| 2005 | read_original_sector(wc, e))) { |
| 2006 | BUG_ON(!f->write_in_progress); |
| 2007 | list_move(&e->lru, &skipped); |
| 2008 | cond_resched(); |
| 2009 | continue; |
| 2010 | } |
| 2011 | } |
| 2012 | wc->writeback_size++; |
| 2013 | list_move(&e->lru, &wbl.list); |
| 2014 | wbl.size++; |
| 2015 | e->write_in_progress = true; |
| 2016 | e->wc_list_contiguous = 1; |
| 2017 | |
| 2018 | f = e; |
| 2019 | |
| 2020 | while (1) { |
| 2021 | next_node = rb_next(&f->rb_node); |
| 2022 | if (unlikely(!next_node)) |
| 2023 | break; |
| 2024 | g = container_of(next_node, struct wc_entry, rb_node); |
| 2025 | if (unlikely(read_original_sector(wc, g) == |
| 2026 | read_original_sector(wc, f))) { |
| 2027 | f = g; |
| 2028 | continue; |
| 2029 | } |
| 2030 | if (read_original_sector(wc, g) != |
| 2031 | read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT)) |
| 2032 | break; |
| 2033 | if (unlikely(g->write_in_progress)) |
| 2034 | break; |
| 2035 | if (unlikely(!writecache_entry_is_committed(wc, g))) |
| 2036 | break; |
| 2037 | |
| 2038 | if (!WC_MODE_PMEM(wc)) { |
| 2039 | if (g != f + 1) |
| 2040 | break; |
| 2041 | } |
| 2042 | |
| 2043 | n_walked++; |
| 2044 | //if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all)) |
| 2045 | // break; |
| 2046 | |
| 2047 | wc->writeback_size++; |
| 2048 | list_move(&g->lru, &wbl.list); |
| 2049 | wbl.size++; |
| 2050 | g->write_in_progress = true; |
| 2051 | g->wc_list_contiguous = BIO_MAX_VECS; |
| 2052 | f = g; |
| 2053 | e->wc_list_contiguous++; |
| 2054 | if (unlikely(e->wc_list_contiguous == BIO_MAX_VECS)) { |
| 2055 | if (unlikely(wc->writeback_all)) { |
| 2056 | next_node = rb_next(&f->rb_node); |
| 2057 | if (likely(next_node)) |
| 2058 | g = container_of(next_node, struct wc_entry, rb_node); |
| 2059 | } |
| 2060 | break; |
| 2061 | } |
| 2062 | } |
| 2063 | cond_resched(); |
| 2064 | } |
| 2065 | |
| 2066 | if (!list_empty(&skipped)) { |
| 2067 | list_splice_tail(&skipped, &wc->lru); |
| 2068 | /* |
| 2069 | * If we didn't do any progress, we must wait until some |
| 2070 | * writeback finishes to avoid burning CPU in a loop |
| 2071 | */ |
| 2072 | if (unlikely(!wbl.size)) |
| 2073 | writecache_wait_for_writeback(wc); |
| 2074 | } |
| 2075 | |
| 2076 | wc_unlock(wc); |
| 2077 | |
| 2078 | blk_start_plug(&plug); |
| 2079 | |
| 2080 | if (WC_MODE_PMEM(wc)) |
| 2081 | __writecache_writeback_pmem(wc, &wbl); |
| 2082 | else |
| 2083 | __writecache_writeback_ssd(wc, &wbl); |
| 2084 | |
| 2085 | blk_finish_plug(&plug); |
| 2086 | |
| 2087 | if (unlikely(wc->writeback_all)) { |
| 2088 | wc_lock(wc); |
| 2089 | while (writecache_wait_for_writeback(wc)); |
| 2090 | wc_unlock(wc); |
| 2091 | } |
| 2092 | } |
| 2093 | |
| 2094 | static int calculate_memory_size(uint64_t device_size, unsigned block_size, |
| 2095 | size_t *n_blocks_p, size_t *n_metadata_blocks_p) |
| 2096 | { |
| 2097 | uint64_t n_blocks, offset; |
| 2098 | struct wc_entry e; |
| 2099 | |
| 2100 | n_blocks = device_size; |
| 2101 | do_div(n_blocks, block_size + sizeof(struct wc_memory_entry)); |
| 2102 | |
| 2103 | while (1) { |
| 2104 | if (!n_blocks) |
| 2105 | return -ENOSPC; |
| 2106 | /* Verify the following entries[n_blocks] won't overflow */ |
| 2107 | if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) / |
| 2108 | sizeof(struct wc_memory_entry))) |
| 2109 | return -EFBIG; |
| 2110 | offset = offsetof(struct wc_memory_superblock, entries[n_blocks]); |
| 2111 | offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1); |
| 2112 | if (offset + n_blocks * block_size <= device_size) |
| 2113 | break; |
| 2114 | n_blocks--; |
| 2115 | } |
| 2116 | |
| 2117 | /* check if the bit field overflows */ |
| 2118 | e.index = n_blocks; |
| 2119 | if (e.index != n_blocks) |
| 2120 | return -EFBIG; |
| 2121 | |
| 2122 | if (n_blocks_p) |
| 2123 | *n_blocks_p = n_blocks; |
| 2124 | if (n_metadata_blocks_p) |
| 2125 | *n_metadata_blocks_p = offset >> __ffs(block_size); |
| 2126 | return 0; |
| 2127 | } |
| 2128 | |
| 2129 | static int init_memory(struct dm_writecache *wc) |
| 2130 | { |
| 2131 | size_t b; |
| 2132 | int r; |
| 2133 | |
| 2134 | r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL); |
| 2135 | if (r) |
| 2136 | return r; |
| 2137 | |
| 2138 | r = writecache_alloc_entries(wc); |
| 2139 | if (r) |
| 2140 | return r; |
| 2141 | |
| 2142 | for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++) |
| 2143 | pmem_assign(sb(wc)->padding[b], cpu_to_le64(0)); |
| 2144 | pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION)); |
| 2145 | pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size)); |
| 2146 | pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks)); |
| 2147 | pmem_assign(sb(wc)->seq_count, cpu_to_le64(0)); |
| 2148 | |
| 2149 | for (b = 0; b < wc->n_blocks; b++) { |
| 2150 | write_original_sector_seq_count(wc, &wc->entries[b], -1, -1); |
| 2151 | cond_resched(); |
| 2152 | } |
| 2153 | |
| 2154 | writecache_flush_all_metadata(wc); |
| 2155 | writecache_commit_flushed(wc, false); |
| 2156 | pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC)); |
| 2157 | writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic); |
| 2158 | writecache_commit_flushed(wc, false); |
| 2159 | |
| 2160 | return 0; |
| 2161 | } |
| 2162 | |
| 2163 | static void writecache_dtr(struct dm_target *ti) |
| 2164 | { |
| 2165 | struct dm_writecache *wc = ti->private; |
| 2166 | |
| 2167 | if (!wc) |
| 2168 | return; |
| 2169 | |
| 2170 | if (wc->endio_thread) |
| 2171 | kthread_stop(wc->endio_thread); |
| 2172 | |
| 2173 | if (wc->flush_thread) |
| 2174 | kthread_stop(wc->flush_thread); |
| 2175 | |
| 2176 | bioset_exit(&wc->bio_set); |
| 2177 | |
| 2178 | mempool_exit(&wc->copy_pool); |
| 2179 | |
| 2180 | if (wc->writeback_wq) |
| 2181 | destroy_workqueue(wc->writeback_wq); |
| 2182 | |
| 2183 | if (wc->dev) |
| 2184 | dm_put_device(ti, wc->dev); |
| 2185 | |
| 2186 | if (wc->ssd_dev) |
| 2187 | dm_put_device(ti, wc->ssd_dev); |
| 2188 | |
| 2189 | vfree(wc->entries); |
| 2190 | |
| 2191 | if (wc->memory_map) { |
| 2192 | if (WC_MODE_PMEM(wc)) |
| 2193 | persistent_memory_release(wc); |
| 2194 | else |
| 2195 | vfree(wc->memory_map); |
| 2196 | } |
| 2197 | |
| 2198 | if (wc->dm_kcopyd) |
| 2199 | dm_kcopyd_client_destroy(wc->dm_kcopyd); |
| 2200 | |
| 2201 | if (wc->dm_io) |
| 2202 | dm_io_client_destroy(wc->dm_io); |
| 2203 | |
| 2204 | vfree(wc->dirty_bitmap); |
| 2205 | |
| 2206 | kfree(wc); |
| 2207 | } |
| 2208 | |
| 2209 | static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv) |
| 2210 | { |
| 2211 | struct dm_writecache *wc; |
| 2212 | struct dm_arg_set as; |
| 2213 | const char *string; |
| 2214 | unsigned opt_params; |
| 2215 | size_t offset, data_size; |
| 2216 | int i, r; |
| 2217 | char dummy; |
| 2218 | int high_wm_percent = HIGH_WATERMARK; |
| 2219 | int low_wm_percent = LOW_WATERMARK; |
| 2220 | uint64_t x; |
| 2221 | struct wc_memory_superblock s; |
| 2222 | |
| 2223 | static struct dm_arg _args[] = { |
| 2224 | {0, 18, "Invalid number of feature args"}, |
| 2225 | }; |
| 2226 | |
| 2227 | as.argc = argc; |
| 2228 | as.argv = argv; |
| 2229 | |
| 2230 | wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL); |
| 2231 | if (!wc) { |
| 2232 | ti->error = "Cannot allocate writecache structure"; |
| 2233 | r = -ENOMEM; |
| 2234 | goto bad; |
| 2235 | } |
| 2236 | ti->private = wc; |
| 2237 | wc->ti = ti; |
| 2238 | |
| 2239 | mutex_init(&wc->lock); |
| 2240 | wc->max_age = MAX_AGE_UNSPECIFIED; |
| 2241 | writecache_poison_lists(wc); |
| 2242 | init_waitqueue_head(&wc->freelist_wait); |
| 2243 | timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0); |
| 2244 | timer_setup(&wc->max_age_timer, writecache_max_age_timer, 0); |
| 2245 | |
| 2246 | for (i = 0; i < 2; i++) { |
| 2247 | atomic_set(&wc->bio_in_progress[i], 0); |
| 2248 | init_waitqueue_head(&wc->bio_in_progress_wait[i]); |
| 2249 | } |
| 2250 | |
| 2251 | wc->dm_io = dm_io_client_create(); |
| 2252 | if (IS_ERR(wc->dm_io)) { |
| 2253 | r = PTR_ERR(wc->dm_io); |
| 2254 | ti->error = "Unable to allocate dm-io client"; |
| 2255 | wc->dm_io = NULL; |
| 2256 | goto bad; |
| 2257 | } |
| 2258 | |
| 2259 | wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1); |
| 2260 | if (!wc->writeback_wq) { |
| 2261 | r = -ENOMEM; |
| 2262 | ti->error = "Could not allocate writeback workqueue"; |
| 2263 | goto bad; |
| 2264 | } |
| 2265 | INIT_WORK(&wc->writeback_work, writecache_writeback); |
| 2266 | INIT_WORK(&wc->flush_work, writecache_flush_work); |
| 2267 | |
| 2268 | dm_iot_init(&wc->iot); |
| 2269 | |
| 2270 | raw_spin_lock_init(&wc->endio_list_lock); |
| 2271 | INIT_LIST_HEAD(&wc->endio_list); |
| 2272 | wc->endio_thread = kthread_run(writecache_endio_thread, wc, "writecache_endio"); |
| 2273 | if (IS_ERR(wc->endio_thread)) { |
| 2274 | r = PTR_ERR(wc->endio_thread); |
| 2275 | wc->endio_thread = NULL; |
| 2276 | ti->error = "Couldn't spawn endio thread"; |
| 2277 | goto bad; |
| 2278 | } |
| 2279 | |
| 2280 | /* |
| 2281 | * Parse the mode (pmem or ssd) |
| 2282 | */ |
| 2283 | string = dm_shift_arg(&as); |
| 2284 | if (!string) |
| 2285 | goto bad_arguments; |
| 2286 | |
| 2287 | if (!strcasecmp(string, "s")) { |
| 2288 | wc->pmem_mode = false; |
| 2289 | } else if (!strcasecmp(string, "p")) { |
| 2290 | #ifdef DM_WRITECACHE_HAS_PMEM |
| 2291 | wc->pmem_mode = true; |
| 2292 | wc->writeback_fua = true; |
| 2293 | #else |
| 2294 | /* |
| 2295 | * If the architecture doesn't support persistent memory or |
| 2296 | * the kernel doesn't support any DAX drivers, this driver can |
| 2297 | * only be used in SSD-only mode. |
| 2298 | */ |
| 2299 | r = -EOPNOTSUPP; |
| 2300 | ti->error = "Persistent memory or DAX not supported on this system"; |
| 2301 | goto bad; |
| 2302 | #endif |
| 2303 | } else { |
| 2304 | goto bad_arguments; |
| 2305 | } |
| 2306 | |
| 2307 | if (WC_MODE_PMEM(wc)) { |
| 2308 | r = bioset_init(&wc->bio_set, BIO_POOL_SIZE, |
| 2309 | offsetof(struct writeback_struct, bio), |
| 2310 | BIOSET_NEED_BVECS); |
| 2311 | if (r) { |
| 2312 | ti->error = "Could not allocate bio set"; |
| 2313 | goto bad; |
| 2314 | } |
| 2315 | } else { |
| 2316 | wc->pause = PAUSE_WRITEBACK; |
| 2317 | r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct)); |
| 2318 | if (r) { |
| 2319 | ti->error = "Could not allocate mempool"; |
| 2320 | goto bad; |
| 2321 | } |
| 2322 | } |
| 2323 | |
| 2324 | /* |
| 2325 | * Parse the origin data device |
| 2326 | */ |
| 2327 | string = dm_shift_arg(&as); |
| 2328 | if (!string) |
| 2329 | goto bad_arguments; |
| 2330 | r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev); |
| 2331 | if (r) { |
| 2332 | ti->error = "Origin data device lookup failed"; |
| 2333 | goto bad; |
| 2334 | } |
| 2335 | |
| 2336 | /* |
| 2337 | * Parse cache data device (be it pmem or ssd) |
| 2338 | */ |
| 2339 | string = dm_shift_arg(&as); |
| 2340 | if (!string) |
| 2341 | goto bad_arguments; |
| 2342 | |
| 2343 | r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev); |
| 2344 | if (r) { |
| 2345 | ti->error = "Cache data device lookup failed"; |
| 2346 | goto bad; |
| 2347 | } |
| 2348 | wc->memory_map_size = bdev_nr_bytes(wc->ssd_dev->bdev); |
| 2349 | |
| 2350 | /* |
| 2351 | * Parse the cache block size |
| 2352 | */ |
| 2353 | string = dm_shift_arg(&as); |
| 2354 | if (!string) |
| 2355 | goto bad_arguments; |
| 2356 | if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 || |
| 2357 | wc->block_size < 512 || wc->block_size > PAGE_SIZE || |
| 2358 | (wc->block_size & (wc->block_size - 1))) { |
| 2359 | r = -EINVAL; |
| 2360 | ti->error = "Invalid block size"; |
| 2361 | goto bad; |
| 2362 | } |
| 2363 | if (wc->block_size < bdev_logical_block_size(wc->dev->bdev) || |
| 2364 | wc->block_size < bdev_logical_block_size(wc->ssd_dev->bdev)) { |
| 2365 | r = -EINVAL; |
| 2366 | ti->error = "Block size is smaller than device logical block size"; |
| 2367 | goto bad; |
| 2368 | } |
| 2369 | wc->block_size_bits = __ffs(wc->block_size); |
| 2370 | |
| 2371 | wc->max_writeback_jobs = MAX_WRITEBACK_JOBS; |
| 2372 | wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM; |
| 2373 | wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC); |
| 2374 | |
| 2375 | /* |
| 2376 | * Parse optional arguments |
| 2377 | */ |
| 2378 | r = dm_read_arg_group(_args, &as, &opt_params, &ti->error); |
| 2379 | if (r) |
| 2380 | goto bad; |
| 2381 | |
| 2382 | while (opt_params) { |
| 2383 | string = dm_shift_arg(&as), opt_params--; |
| 2384 | if (!strcasecmp(string, "start_sector") && opt_params >= 1) { |
| 2385 | unsigned long long start_sector; |
| 2386 | string = dm_shift_arg(&as), opt_params--; |
| 2387 | if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1) |
| 2388 | goto invalid_optional; |
| 2389 | wc->start_sector = start_sector; |
| 2390 | wc->start_sector_set = true; |
| 2391 | if (wc->start_sector != start_sector || |
| 2392 | wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT) |
| 2393 | goto invalid_optional; |
| 2394 | } else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) { |
| 2395 | string = dm_shift_arg(&as), opt_params--; |
| 2396 | if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1) |
| 2397 | goto invalid_optional; |
| 2398 | if (high_wm_percent < 0 || high_wm_percent > 100) |
| 2399 | goto invalid_optional; |
| 2400 | wc->high_wm_percent_value = high_wm_percent; |
| 2401 | wc->high_wm_percent_set = true; |
| 2402 | } else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) { |
| 2403 | string = dm_shift_arg(&as), opt_params--; |
| 2404 | if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1) |
| 2405 | goto invalid_optional; |
| 2406 | if (low_wm_percent < 0 || low_wm_percent > 100) |
| 2407 | goto invalid_optional; |
| 2408 | wc->low_wm_percent_value = low_wm_percent; |
| 2409 | wc->low_wm_percent_set = true; |
| 2410 | } else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) { |
| 2411 | string = dm_shift_arg(&as), opt_params--; |
| 2412 | if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1) |
| 2413 | goto invalid_optional; |
| 2414 | wc->max_writeback_jobs_set = true; |
| 2415 | } else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) { |
| 2416 | string = dm_shift_arg(&as), opt_params--; |
| 2417 | if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1) |
| 2418 | goto invalid_optional; |
| 2419 | wc->autocommit_blocks_set = true; |
| 2420 | } else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) { |
| 2421 | unsigned autocommit_msecs; |
| 2422 | string = dm_shift_arg(&as), opt_params--; |
| 2423 | if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1) |
| 2424 | goto invalid_optional; |
| 2425 | if (autocommit_msecs > 3600000) |
| 2426 | goto invalid_optional; |
| 2427 | wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs); |
| 2428 | wc->autocommit_time_value = autocommit_msecs; |
| 2429 | wc->autocommit_time_set = true; |
| 2430 | } else if (!strcasecmp(string, "max_age") && opt_params >= 1) { |
| 2431 | unsigned max_age_msecs; |
| 2432 | string = dm_shift_arg(&as), opt_params--; |
| 2433 | if (sscanf(string, "%u%c", &max_age_msecs, &dummy) != 1) |
| 2434 | goto invalid_optional; |
| 2435 | if (max_age_msecs > 86400000) |
| 2436 | goto invalid_optional; |
| 2437 | wc->max_age = msecs_to_jiffies(max_age_msecs); |
| 2438 | wc->max_age_set = true; |
| 2439 | wc->max_age_value = max_age_msecs; |
| 2440 | } else if (!strcasecmp(string, "cleaner")) { |
| 2441 | wc->cleaner_set = true; |
| 2442 | wc->cleaner = true; |
| 2443 | } else if (!strcasecmp(string, "fua")) { |
| 2444 | if (WC_MODE_PMEM(wc)) { |
| 2445 | wc->writeback_fua = true; |
| 2446 | wc->writeback_fua_set = true; |
| 2447 | } else goto invalid_optional; |
| 2448 | } else if (!strcasecmp(string, "nofua")) { |
| 2449 | if (WC_MODE_PMEM(wc)) { |
| 2450 | wc->writeback_fua = false; |
| 2451 | wc->writeback_fua_set = true; |
| 2452 | } else goto invalid_optional; |
| 2453 | } else if (!strcasecmp(string, "metadata_only")) { |
| 2454 | wc->metadata_only = true; |
| 2455 | } else if (!strcasecmp(string, "pause_writeback") && opt_params >= 1) { |
| 2456 | unsigned pause_msecs; |
| 2457 | if (WC_MODE_PMEM(wc)) |
| 2458 | goto invalid_optional; |
| 2459 | string = dm_shift_arg(&as), opt_params--; |
| 2460 | if (sscanf(string, "%u%c", &pause_msecs, &dummy) != 1) |
| 2461 | goto invalid_optional; |
| 2462 | if (pause_msecs > 60000) |
| 2463 | goto invalid_optional; |
| 2464 | wc->pause = msecs_to_jiffies(pause_msecs); |
| 2465 | wc->pause_set = true; |
| 2466 | wc->pause_value = pause_msecs; |
| 2467 | } else { |
| 2468 | invalid_optional: |
| 2469 | r = -EINVAL; |
| 2470 | ti->error = "Invalid optional argument"; |
| 2471 | goto bad; |
| 2472 | } |
| 2473 | } |
| 2474 | |
| 2475 | if (high_wm_percent < low_wm_percent) { |
| 2476 | r = -EINVAL; |
| 2477 | ti->error = "High watermark must be greater than or equal to low watermark"; |
| 2478 | goto bad; |
| 2479 | } |
| 2480 | |
| 2481 | if (WC_MODE_PMEM(wc)) { |
| 2482 | if (!dax_synchronous(wc->ssd_dev->dax_dev)) { |
| 2483 | r = -EOPNOTSUPP; |
| 2484 | ti->error = "Asynchronous persistent memory not supported as pmem cache"; |
| 2485 | goto bad; |
| 2486 | } |
| 2487 | |
| 2488 | r = persistent_memory_claim(wc); |
| 2489 | if (r) { |
| 2490 | ti->error = "Unable to map persistent memory for cache"; |
| 2491 | goto bad; |
| 2492 | } |
| 2493 | } else { |
| 2494 | size_t n_blocks, n_metadata_blocks; |
| 2495 | uint64_t n_bitmap_bits; |
| 2496 | |
| 2497 | wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT; |
| 2498 | |
| 2499 | bio_list_init(&wc->flush_list); |
| 2500 | wc->flush_thread = kthread_run(writecache_flush_thread, wc, "dm_writecache_flush"); |
| 2501 | if (IS_ERR(wc->flush_thread)) { |
| 2502 | r = PTR_ERR(wc->flush_thread); |
| 2503 | wc->flush_thread = NULL; |
| 2504 | ti->error = "Couldn't spawn flush thread"; |
| 2505 | goto bad; |
| 2506 | } |
| 2507 | |
| 2508 | r = calculate_memory_size(wc->memory_map_size, wc->block_size, |
| 2509 | &n_blocks, &n_metadata_blocks); |
| 2510 | if (r) { |
| 2511 | ti->error = "Invalid device size"; |
| 2512 | goto bad; |
| 2513 | } |
| 2514 | |
| 2515 | n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) + |
| 2516 | BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY; |
| 2517 | /* this is limitation of test_bit functions */ |
| 2518 | if (n_bitmap_bits > 1U << 31) { |
| 2519 | r = -EFBIG; |
| 2520 | ti->error = "Invalid device size"; |
| 2521 | goto bad; |
| 2522 | } |
| 2523 | |
| 2524 | wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits); |
| 2525 | if (!wc->memory_map) { |
| 2526 | r = -ENOMEM; |
| 2527 | ti->error = "Unable to allocate memory for metadata"; |
| 2528 | goto bad; |
| 2529 | } |
| 2530 | |
| 2531 | wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle); |
| 2532 | if (IS_ERR(wc->dm_kcopyd)) { |
| 2533 | r = PTR_ERR(wc->dm_kcopyd); |
| 2534 | ti->error = "Unable to allocate dm-kcopyd client"; |
| 2535 | wc->dm_kcopyd = NULL; |
| 2536 | goto bad; |
| 2537 | } |
| 2538 | |
| 2539 | wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT); |
| 2540 | wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) / |
| 2541 | BITS_PER_LONG * sizeof(unsigned long); |
| 2542 | wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size); |
| 2543 | if (!wc->dirty_bitmap) { |
| 2544 | r = -ENOMEM; |
| 2545 | ti->error = "Unable to allocate dirty bitmap"; |
| 2546 | goto bad; |
| 2547 | } |
| 2548 | |
| 2549 | r = writecache_read_metadata(wc, wc->block_size >> SECTOR_SHIFT); |
| 2550 | if (r) { |
| 2551 | ti->error = "Unable to read first block of metadata"; |
| 2552 | goto bad; |
| 2553 | } |
| 2554 | } |
| 2555 | |
| 2556 | r = copy_mc_to_kernel(&s, sb(wc), sizeof(struct wc_memory_superblock)); |
| 2557 | if (r) { |
| 2558 | ti->error = "Hardware memory error when reading superblock"; |
| 2559 | goto bad; |
| 2560 | } |
| 2561 | if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) { |
| 2562 | r = init_memory(wc); |
| 2563 | if (r) { |
| 2564 | ti->error = "Unable to initialize device"; |
| 2565 | goto bad; |
| 2566 | } |
| 2567 | r = copy_mc_to_kernel(&s, sb(wc), |
| 2568 | sizeof(struct wc_memory_superblock)); |
| 2569 | if (r) { |
| 2570 | ti->error = "Hardware memory error when reading superblock"; |
| 2571 | goto bad; |
| 2572 | } |
| 2573 | } |
| 2574 | |
| 2575 | if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) { |
| 2576 | ti->error = "Invalid magic in the superblock"; |
| 2577 | r = -EINVAL; |
| 2578 | goto bad; |
| 2579 | } |
| 2580 | |
| 2581 | if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) { |
| 2582 | ti->error = "Invalid version in the superblock"; |
| 2583 | r = -EINVAL; |
| 2584 | goto bad; |
| 2585 | } |
| 2586 | |
| 2587 | if (le32_to_cpu(s.block_size) != wc->block_size) { |
| 2588 | ti->error = "Block size does not match superblock"; |
| 2589 | r = -EINVAL; |
| 2590 | goto bad; |
| 2591 | } |
| 2592 | |
| 2593 | wc->n_blocks = le64_to_cpu(s.n_blocks); |
| 2594 | |
| 2595 | offset = wc->n_blocks * sizeof(struct wc_memory_entry); |
| 2596 | if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) { |
| 2597 | overflow: |
| 2598 | ti->error = "Overflow in size calculation"; |
| 2599 | r = -EINVAL; |
| 2600 | goto bad; |
| 2601 | } |
| 2602 | offset += sizeof(struct wc_memory_superblock); |
| 2603 | if (offset < sizeof(struct wc_memory_superblock)) |
| 2604 | goto overflow; |
| 2605 | offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1); |
| 2606 | data_size = wc->n_blocks * (size_t)wc->block_size; |
| 2607 | if (!offset || (data_size / wc->block_size != wc->n_blocks) || |
| 2608 | (offset + data_size < offset)) |
| 2609 | goto overflow; |
| 2610 | if (offset + data_size > wc->memory_map_size) { |
| 2611 | ti->error = "Memory area is too small"; |
| 2612 | r = -EINVAL; |
| 2613 | goto bad; |
| 2614 | } |
| 2615 | |
| 2616 | wc->metadata_sectors = offset >> SECTOR_SHIFT; |
| 2617 | wc->block_start = (char *)sb(wc) + offset; |
| 2618 | |
| 2619 | x = (uint64_t)wc->n_blocks * (100 - high_wm_percent); |
| 2620 | x += 50; |
| 2621 | do_div(x, 100); |
| 2622 | wc->freelist_high_watermark = x; |
| 2623 | x = (uint64_t)wc->n_blocks * (100 - low_wm_percent); |
| 2624 | x += 50; |
| 2625 | do_div(x, 100); |
| 2626 | wc->freelist_low_watermark = x; |
| 2627 | |
| 2628 | if (wc->cleaner) |
| 2629 | activate_cleaner(wc); |
| 2630 | |
| 2631 | r = writecache_alloc_entries(wc); |
| 2632 | if (r) { |
| 2633 | ti->error = "Cannot allocate memory"; |
| 2634 | goto bad; |
| 2635 | } |
| 2636 | |
| 2637 | ti->num_flush_bios = WC_MODE_PMEM(wc) ? 1 : 2; |
| 2638 | ti->flush_supported = true; |
| 2639 | ti->num_discard_bios = 1; |
| 2640 | |
| 2641 | if (WC_MODE_PMEM(wc)) |
| 2642 | persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size); |
| 2643 | |
| 2644 | return 0; |
| 2645 | |
| 2646 | bad_arguments: |
| 2647 | r = -EINVAL; |
| 2648 | ti->error = "Bad arguments"; |
| 2649 | bad: |
| 2650 | writecache_dtr(ti); |
| 2651 | return r; |
| 2652 | } |
| 2653 | |
| 2654 | static void writecache_status(struct dm_target *ti, status_type_t type, |
| 2655 | unsigned status_flags, char *result, unsigned maxlen) |
| 2656 | { |
| 2657 | struct dm_writecache *wc = ti->private; |
| 2658 | unsigned extra_args; |
| 2659 | unsigned sz = 0; |
| 2660 | |
| 2661 | switch (type) { |
| 2662 | case STATUSTYPE_INFO: |
| 2663 | DMEMIT("%ld %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu", |
| 2664 | writecache_has_error(wc), |
| 2665 | (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size, |
| 2666 | (unsigned long long)wc->writeback_size, |
| 2667 | wc->stats.reads, |
| 2668 | wc->stats.read_hits, |
| 2669 | wc->stats.writes, |
| 2670 | wc->stats.write_hits_uncommitted, |
| 2671 | wc->stats.write_hits_committed, |
| 2672 | wc->stats.writes_around, |
| 2673 | wc->stats.writes_allocate, |
| 2674 | wc->stats.writes_blocked_on_freelist, |
| 2675 | wc->stats.flushes, |
| 2676 | wc->stats.discards); |
| 2677 | break; |
| 2678 | case STATUSTYPE_TABLE: |
| 2679 | DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's', |
| 2680 | wc->dev->name, wc->ssd_dev->name, wc->block_size); |
| 2681 | extra_args = 0; |
| 2682 | if (wc->start_sector_set) |
| 2683 | extra_args += 2; |
| 2684 | if (wc->high_wm_percent_set) |
| 2685 | extra_args += 2; |
| 2686 | if (wc->low_wm_percent_set) |
| 2687 | extra_args += 2; |
| 2688 | if (wc->max_writeback_jobs_set) |
| 2689 | extra_args += 2; |
| 2690 | if (wc->autocommit_blocks_set) |
| 2691 | extra_args += 2; |
| 2692 | if (wc->autocommit_time_set) |
| 2693 | extra_args += 2; |
| 2694 | if (wc->max_age_set) |
| 2695 | extra_args += 2; |
| 2696 | if (wc->cleaner_set) |
| 2697 | extra_args++; |
| 2698 | if (wc->writeback_fua_set) |
| 2699 | extra_args++; |
| 2700 | if (wc->metadata_only) |
| 2701 | extra_args++; |
| 2702 | if (wc->pause_set) |
| 2703 | extra_args += 2; |
| 2704 | |
| 2705 | DMEMIT("%u", extra_args); |
| 2706 | if (wc->start_sector_set) |
| 2707 | DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector); |
| 2708 | if (wc->high_wm_percent_set) |
| 2709 | DMEMIT(" high_watermark %u", wc->high_wm_percent_value); |
| 2710 | if (wc->low_wm_percent_set) |
| 2711 | DMEMIT(" low_watermark %u", wc->low_wm_percent_value); |
| 2712 | if (wc->max_writeback_jobs_set) |
| 2713 | DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs); |
| 2714 | if (wc->autocommit_blocks_set) |
| 2715 | DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks); |
| 2716 | if (wc->autocommit_time_set) |
| 2717 | DMEMIT(" autocommit_time %u", wc->autocommit_time_value); |
| 2718 | if (wc->max_age_set) |
| 2719 | DMEMIT(" max_age %u", wc->max_age_value); |
| 2720 | if (wc->cleaner_set) |
| 2721 | DMEMIT(" cleaner"); |
| 2722 | if (wc->writeback_fua_set) |
| 2723 | DMEMIT(" %sfua", wc->writeback_fua ? "" : "no"); |
| 2724 | if (wc->metadata_only) |
| 2725 | DMEMIT(" metadata_only"); |
| 2726 | if (wc->pause_set) |
| 2727 | DMEMIT(" pause_writeback %u", wc->pause_value); |
| 2728 | break; |
| 2729 | case STATUSTYPE_IMA: |
| 2730 | *result = '\0'; |
| 2731 | break; |
| 2732 | } |
| 2733 | } |
| 2734 | |
| 2735 | static struct target_type writecache_target = { |
| 2736 | .name = "writecache", |
| 2737 | .version = {1, 6, 0}, |
| 2738 | .module = THIS_MODULE, |
| 2739 | .ctr = writecache_ctr, |
| 2740 | .dtr = writecache_dtr, |
| 2741 | .status = writecache_status, |
| 2742 | .postsuspend = writecache_suspend, |
| 2743 | .resume = writecache_resume, |
| 2744 | .message = writecache_message, |
| 2745 | .map = writecache_map, |
| 2746 | .end_io = writecache_end_io, |
| 2747 | .iterate_devices = writecache_iterate_devices, |
| 2748 | .io_hints = writecache_io_hints, |
| 2749 | }; |
| 2750 | |
| 2751 | static int __init dm_writecache_init(void) |
| 2752 | { |
| 2753 | int r; |
| 2754 | |
| 2755 | r = dm_register_target(&writecache_target); |
| 2756 | if (r < 0) { |
| 2757 | DMERR("register failed %d", r); |
| 2758 | return r; |
| 2759 | } |
| 2760 | |
| 2761 | return 0; |
| 2762 | } |
| 2763 | |
| 2764 | static void __exit dm_writecache_exit(void) |
| 2765 | { |
| 2766 | dm_unregister_target(&writecache_target); |
| 2767 | } |
| 2768 | |
| 2769 | module_init(dm_writecache_init); |
| 2770 | module_exit(dm_writecache_exit); |
| 2771 | |
| 2772 | MODULE_DESCRIPTION(DM_NAME " writecache target"); |
| 2773 | MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>"); |
| 2774 | MODULE_LICENSE("GPL"); |