| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Copyright (C) 2009-2011 Red Hat, Inc. |
| 4 | * |
| 5 | * Author: Mikulas Patocka <mpatocka@redhat.com> |
| 6 | * |
| 7 | * This file is released under the GPL. |
| 8 | */ |
| 9 | |
| 10 | #include <linux/dm-bufio.h> |
| 11 | |
| 12 | #include <linux/device-mapper.h> |
| 13 | #include <linux/dm-io.h> |
| 14 | #include <linux/slab.h> |
| 15 | #include <linux/sched/mm.h> |
| 16 | #include <linux/jiffies.h> |
| 17 | #include <linux/vmalloc.h> |
| 18 | #include <linux/shrinker.h> |
| 19 | #include <linux/module.h> |
| 20 | #include <linux/rbtree.h> |
| 21 | #include <linux/stacktrace.h> |
| 22 | #include <linux/jump_label.h> |
| 23 | |
| 24 | #include "dm.h" |
| 25 | |
| 26 | #define DM_MSG_PREFIX "bufio" |
| 27 | |
| 28 | /* |
| 29 | * Memory management policy: |
| 30 | * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory |
| 31 | * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower). |
| 32 | * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers. |
| 33 | * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT |
| 34 | * dirty buffers. |
| 35 | */ |
| 36 | #define DM_BUFIO_MIN_BUFFERS 8 |
| 37 | |
| 38 | #define DM_BUFIO_MEMORY_PERCENT 2 |
| 39 | #define DM_BUFIO_VMALLOC_PERCENT 25 |
| 40 | #define DM_BUFIO_WRITEBACK_RATIO 3 |
| 41 | #define DM_BUFIO_LOW_WATERMARK_RATIO 16 |
| 42 | |
| 43 | /* |
| 44 | * The nr of bytes of cached data to keep around. |
| 45 | */ |
| 46 | #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024) |
| 47 | |
| 48 | /* |
| 49 | * Align buffer writes to this boundary. |
| 50 | * Tests show that SSDs have the highest IOPS when using 4k writes. |
| 51 | */ |
| 52 | #define DM_BUFIO_WRITE_ALIGN 4096 |
| 53 | |
| 54 | /* |
| 55 | * dm_buffer->list_mode |
| 56 | */ |
| 57 | #define LIST_CLEAN 0 |
| 58 | #define LIST_DIRTY 1 |
| 59 | #define LIST_SIZE 2 |
| 60 | |
| 61 | #define SCAN_RESCHED_CYCLE 16 |
| 62 | |
| 63 | /*--------------------------------------------------------------*/ |
| 64 | |
| 65 | /* |
| 66 | * Rather than use an LRU list, we use a clock algorithm where entries |
| 67 | * are held in a circular list. When an entry is 'hit' a reference bit |
| 68 | * is set. The least recently used entry is approximated by running a |
| 69 | * cursor around the list selecting unreferenced entries. Referenced |
| 70 | * entries have their reference bit cleared as the cursor passes them. |
| 71 | */ |
| 72 | struct lru_entry { |
| 73 | struct list_head list; |
| 74 | atomic_t referenced; |
| 75 | }; |
| 76 | |
| 77 | struct lru_iter { |
| 78 | struct lru *lru; |
| 79 | struct list_head list; |
| 80 | struct lru_entry *stop; |
| 81 | struct lru_entry *e; |
| 82 | }; |
| 83 | |
| 84 | struct lru { |
| 85 | struct list_head *cursor; |
| 86 | unsigned long count; |
| 87 | |
| 88 | struct list_head iterators; |
| 89 | }; |
| 90 | |
| 91 | /*--------------*/ |
| 92 | |
| 93 | static void lru_init(struct lru *lru) |
| 94 | { |
| 95 | lru->cursor = NULL; |
| 96 | lru->count = 0; |
| 97 | INIT_LIST_HEAD(&lru->iterators); |
| 98 | } |
| 99 | |
| 100 | static void lru_destroy(struct lru *lru) |
| 101 | { |
| 102 | WARN_ON_ONCE(lru->cursor); |
| 103 | WARN_ON_ONCE(!list_empty(&lru->iterators)); |
| 104 | } |
| 105 | |
| 106 | /* |
| 107 | * Insert a new entry into the lru. |
| 108 | */ |
| 109 | static void lru_insert(struct lru *lru, struct lru_entry *le) |
| 110 | { |
| 111 | /* |
| 112 | * Don't be tempted to set to 1, makes the lru aspect |
| 113 | * perform poorly. |
| 114 | */ |
| 115 | atomic_set(&le->referenced, 0); |
| 116 | |
| 117 | if (lru->cursor) { |
| 118 | list_add_tail(&le->list, lru->cursor); |
| 119 | } else { |
| 120 | INIT_LIST_HEAD(&le->list); |
| 121 | lru->cursor = &le->list; |
| 122 | } |
| 123 | lru->count++; |
| 124 | } |
| 125 | |
| 126 | /*--------------*/ |
| 127 | |
| 128 | /* |
| 129 | * Convert a list_head pointer to an lru_entry pointer. |
| 130 | */ |
| 131 | static inline struct lru_entry *to_le(struct list_head *l) |
| 132 | { |
| 133 | return container_of(l, struct lru_entry, list); |
| 134 | } |
| 135 | |
| 136 | /* |
| 137 | * Initialize an lru_iter and add it to the list of cursors in the lru. |
| 138 | */ |
| 139 | static void lru_iter_begin(struct lru *lru, struct lru_iter *it) |
| 140 | { |
| 141 | it->lru = lru; |
| 142 | it->stop = lru->cursor ? to_le(lru->cursor->prev) : NULL; |
| 143 | it->e = lru->cursor ? to_le(lru->cursor) : NULL; |
| 144 | list_add(&it->list, &lru->iterators); |
| 145 | } |
| 146 | |
| 147 | /* |
| 148 | * Remove an lru_iter from the list of cursors in the lru. |
| 149 | */ |
| 150 | static inline void lru_iter_end(struct lru_iter *it) |
| 151 | { |
| 152 | list_del(&it->list); |
| 153 | } |
| 154 | |
| 155 | /* Predicate function type to be used with lru_iter_next */ |
| 156 | typedef bool (*iter_predicate)(struct lru_entry *le, void *context); |
| 157 | |
| 158 | /* |
| 159 | * Advance the cursor to the next entry that passes the |
| 160 | * predicate, and return that entry. Returns NULL if the |
| 161 | * iteration is complete. |
| 162 | */ |
| 163 | static struct lru_entry *lru_iter_next(struct lru_iter *it, |
| 164 | iter_predicate pred, void *context) |
| 165 | { |
| 166 | struct lru_entry *e; |
| 167 | |
| 168 | while (it->e) { |
| 169 | e = it->e; |
| 170 | |
| 171 | /* advance the cursor */ |
| 172 | if (it->e == it->stop) |
| 173 | it->e = NULL; |
| 174 | else |
| 175 | it->e = to_le(it->e->list.next); |
| 176 | |
| 177 | if (pred(e, context)) |
| 178 | return e; |
| 179 | } |
| 180 | |
| 181 | return NULL; |
| 182 | } |
| 183 | |
| 184 | /* |
| 185 | * Invalidate a specific lru_entry and update all cursors in |
| 186 | * the lru accordingly. |
| 187 | */ |
| 188 | static void lru_iter_invalidate(struct lru *lru, struct lru_entry *e) |
| 189 | { |
| 190 | struct lru_iter *it; |
| 191 | |
| 192 | list_for_each_entry(it, &lru->iterators, list) { |
| 193 | /* Move c->e forwards if necc. */ |
| 194 | if (it->e == e) { |
| 195 | it->e = to_le(it->e->list.next); |
| 196 | if (it->e == e) |
| 197 | it->e = NULL; |
| 198 | } |
| 199 | |
| 200 | /* Move it->stop backwards if necc. */ |
| 201 | if (it->stop == e) { |
| 202 | it->stop = to_le(it->stop->list.prev); |
| 203 | if (it->stop == e) |
| 204 | it->stop = NULL; |
| 205 | } |
| 206 | } |
| 207 | } |
| 208 | |
| 209 | /*--------------*/ |
| 210 | |
| 211 | /* |
| 212 | * Remove a specific entry from the lru. |
| 213 | */ |
| 214 | static void lru_remove(struct lru *lru, struct lru_entry *le) |
| 215 | { |
| 216 | lru_iter_invalidate(lru, le); |
| 217 | if (lru->count == 1) { |
| 218 | lru->cursor = NULL; |
| 219 | } else { |
| 220 | if (lru->cursor == &le->list) |
| 221 | lru->cursor = lru->cursor->next; |
| 222 | list_del(&le->list); |
| 223 | } |
| 224 | lru->count--; |
| 225 | } |
| 226 | |
| 227 | /* |
| 228 | * Mark as referenced. |
| 229 | */ |
| 230 | static inline void lru_reference(struct lru_entry *le) |
| 231 | { |
| 232 | atomic_set(&le->referenced, 1); |
| 233 | } |
| 234 | |
| 235 | /*--------------*/ |
| 236 | |
| 237 | /* |
| 238 | * Remove the least recently used entry (approx), that passes the predicate. |
| 239 | * Returns NULL on failure. |
| 240 | */ |
| 241 | enum evict_result { |
| 242 | ER_EVICT, |
| 243 | ER_DONT_EVICT, |
| 244 | ER_STOP, /* stop looking for something to evict */ |
| 245 | }; |
| 246 | |
| 247 | typedef enum evict_result (*le_predicate)(struct lru_entry *le, void *context); |
| 248 | |
| 249 | static struct lru_entry *lru_evict(struct lru *lru, le_predicate pred, void *context, bool no_sleep) |
| 250 | { |
| 251 | unsigned long tested = 0; |
| 252 | struct list_head *h = lru->cursor; |
| 253 | struct lru_entry *le; |
| 254 | |
| 255 | if (!h) |
| 256 | return NULL; |
| 257 | /* |
| 258 | * In the worst case we have to loop around twice. Once to clear |
| 259 | * the reference flags, and then again to discover the predicate |
| 260 | * fails for all entries. |
| 261 | */ |
| 262 | while (tested < lru->count) { |
| 263 | le = container_of(h, struct lru_entry, list); |
| 264 | |
| 265 | if (atomic_read(&le->referenced)) { |
| 266 | atomic_set(&le->referenced, 0); |
| 267 | } else { |
| 268 | tested++; |
| 269 | switch (pred(le, context)) { |
| 270 | case ER_EVICT: |
| 271 | /* |
| 272 | * Adjust the cursor, so we start the next |
| 273 | * search from here. |
| 274 | */ |
| 275 | lru->cursor = le->list.next; |
| 276 | lru_remove(lru, le); |
| 277 | return le; |
| 278 | |
| 279 | case ER_DONT_EVICT: |
| 280 | break; |
| 281 | |
| 282 | case ER_STOP: |
| 283 | lru->cursor = le->list.next; |
| 284 | return NULL; |
| 285 | } |
| 286 | } |
| 287 | |
| 288 | h = h->next; |
| 289 | |
| 290 | if (!no_sleep) |
| 291 | cond_resched(); |
| 292 | } |
| 293 | |
| 294 | return NULL; |
| 295 | } |
| 296 | |
| 297 | /*--------------------------------------------------------------*/ |
| 298 | |
| 299 | /* |
| 300 | * Buffer state bits. |
| 301 | */ |
| 302 | #define B_READING 0 |
| 303 | #define B_WRITING 1 |
| 304 | #define B_DIRTY 2 |
| 305 | |
| 306 | /* |
| 307 | * Describes how the block was allocated: |
| 308 | * kmem_cache_alloc(), __get_free_pages() or vmalloc(). |
| 309 | * See the comment at alloc_buffer_data. |
| 310 | */ |
| 311 | enum data_mode { |
| 312 | DATA_MODE_SLAB = 0, |
| 313 | DATA_MODE_KMALLOC = 1, |
| 314 | DATA_MODE_GET_FREE_PAGES = 2, |
| 315 | DATA_MODE_VMALLOC = 3, |
| 316 | DATA_MODE_LIMIT = 4 |
| 317 | }; |
| 318 | |
| 319 | struct dm_buffer { |
| 320 | /* protected by the locks in dm_buffer_cache */ |
| 321 | struct rb_node node; |
| 322 | |
| 323 | /* immutable, so don't need protecting */ |
| 324 | sector_t block; |
| 325 | void *data; |
| 326 | unsigned char data_mode; /* DATA_MODE_* */ |
| 327 | |
| 328 | /* |
| 329 | * These two fields are used in isolation, so do not need |
| 330 | * a surrounding lock. |
| 331 | */ |
| 332 | atomic_t hold_count; |
| 333 | unsigned long last_accessed; |
| 334 | |
| 335 | /* |
| 336 | * Everything else is protected by the mutex in |
| 337 | * dm_bufio_client |
| 338 | */ |
| 339 | unsigned long state; |
| 340 | struct lru_entry lru; |
| 341 | unsigned char list_mode; /* LIST_* */ |
| 342 | blk_status_t read_error; |
| 343 | blk_status_t write_error; |
| 344 | unsigned int dirty_start; |
| 345 | unsigned int dirty_end; |
| 346 | unsigned int write_start; |
| 347 | unsigned int write_end; |
| 348 | struct list_head write_list; |
| 349 | struct dm_bufio_client *c; |
| 350 | void (*end_io)(struct dm_buffer *b, blk_status_t bs); |
| 351 | #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING |
| 352 | #define MAX_STACK 10 |
| 353 | unsigned int stack_len; |
| 354 | unsigned long stack_entries[MAX_STACK]; |
| 355 | #endif |
| 356 | }; |
| 357 | |
| 358 | /*--------------------------------------------------------------*/ |
| 359 | |
| 360 | /* |
| 361 | * The buffer cache manages buffers, particularly: |
| 362 | * - inc/dec of holder count |
| 363 | * - setting the last_accessed field |
| 364 | * - maintains clean/dirty state along with lru |
| 365 | * - selecting buffers that match predicates |
| 366 | * |
| 367 | * It does *not* handle: |
| 368 | * - allocation/freeing of buffers. |
| 369 | * - IO |
| 370 | * - Eviction or cache sizing. |
| 371 | * |
| 372 | * cache_get() and cache_put() are threadsafe, you do not need to |
| 373 | * protect these calls with a surrounding mutex. All the other |
| 374 | * methods are not threadsafe; they do use locking primitives, but |
| 375 | * only enough to ensure get/put are threadsafe. |
| 376 | */ |
| 377 | |
| 378 | struct buffer_tree { |
| 379 | union { |
| 380 | struct rw_semaphore lock; |
| 381 | rwlock_t spinlock; |
| 382 | } u; |
| 383 | struct rb_root root; |
| 384 | } ____cacheline_aligned_in_smp; |
| 385 | |
| 386 | struct dm_buffer_cache { |
| 387 | struct lru lru[LIST_SIZE]; |
| 388 | /* |
| 389 | * We spread entries across multiple trees to reduce contention |
| 390 | * on the locks. |
| 391 | */ |
| 392 | unsigned int num_locks; |
| 393 | bool no_sleep; |
| 394 | struct buffer_tree trees[]; |
| 395 | }; |
| 396 | |
| 397 | static DEFINE_STATIC_KEY_FALSE(no_sleep_enabled); |
| 398 | |
| 399 | static inline unsigned int cache_index(sector_t block, unsigned int num_locks) |
| 400 | { |
| 401 | return dm_hash_locks_index(block, num_locks); |
| 402 | } |
| 403 | |
| 404 | static inline void cache_read_lock(struct dm_buffer_cache *bc, sector_t block) |
| 405 | { |
| 406 | if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep) |
| 407 | read_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock); |
| 408 | else |
| 409 | down_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock); |
| 410 | } |
| 411 | |
| 412 | static inline void cache_read_unlock(struct dm_buffer_cache *bc, sector_t block) |
| 413 | { |
| 414 | if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep) |
| 415 | read_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock); |
| 416 | else |
| 417 | up_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock); |
| 418 | } |
| 419 | |
| 420 | static inline void cache_write_lock(struct dm_buffer_cache *bc, sector_t block) |
| 421 | { |
| 422 | if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep) |
| 423 | write_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock); |
| 424 | else |
| 425 | down_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock); |
| 426 | } |
| 427 | |
| 428 | static inline void cache_write_unlock(struct dm_buffer_cache *bc, sector_t block) |
| 429 | { |
| 430 | if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep) |
| 431 | write_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock); |
| 432 | else |
| 433 | up_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock); |
| 434 | } |
| 435 | |
| 436 | /* |
| 437 | * Sometimes we want to repeatedly get and drop locks as part of an iteration. |
| 438 | * This struct helps avoid redundant drop and gets of the same lock. |
| 439 | */ |
| 440 | struct lock_history { |
| 441 | struct dm_buffer_cache *cache; |
| 442 | bool write; |
| 443 | unsigned int previous; |
| 444 | unsigned int no_previous; |
| 445 | }; |
| 446 | |
| 447 | static void lh_init(struct lock_history *lh, struct dm_buffer_cache *cache, bool write) |
| 448 | { |
| 449 | lh->cache = cache; |
| 450 | lh->write = write; |
| 451 | lh->no_previous = cache->num_locks; |
| 452 | lh->previous = lh->no_previous; |
| 453 | } |
| 454 | |
| 455 | static void __lh_lock(struct lock_history *lh, unsigned int index) |
| 456 | { |
| 457 | if (lh->write) { |
| 458 | if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep) |
| 459 | write_lock_bh(&lh->cache->trees[index].u.spinlock); |
| 460 | else |
| 461 | down_write(&lh->cache->trees[index].u.lock); |
| 462 | } else { |
| 463 | if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep) |
| 464 | read_lock_bh(&lh->cache->trees[index].u.spinlock); |
| 465 | else |
| 466 | down_read(&lh->cache->trees[index].u.lock); |
| 467 | } |
| 468 | } |
| 469 | |
| 470 | static void __lh_unlock(struct lock_history *lh, unsigned int index) |
| 471 | { |
| 472 | if (lh->write) { |
| 473 | if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep) |
| 474 | write_unlock_bh(&lh->cache->trees[index].u.spinlock); |
| 475 | else |
| 476 | up_write(&lh->cache->trees[index].u.lock); |
| 477 | } else { |
| 478 | if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep) |
| 479 | read_unlock_bh(&lh->cache->trees[index].u.spinlock); |
| 480 | else |
| 481 | up_read(&lh->cache->trees[index].u.lock); |
| 482 | } |
| 483 | } |
| 484 | |
| 485 | /* |
| 486 | * Make sure you call this since it will unlock the final lock. |
| 487 | */ |
| 488 | static void lh_exit(struct lock_history *lh) |
| 489 | { |
| 490 | if (lh->previous != lh->no_previous) { |
| 491 | __lh_unlock(lh, lh->previous); |
| 492 | lh->previous = lh->no_previous; |
| 493 | } |
| 494 | } |
| 495 | |
| 496 | /* |
| 497 | * Named 'next' because there is no corresponding |
| 498 | * 'up/unlock' call since it's done automatically. |
| 499 | */ |
| 500 | static void lh_next(struct lock_history *lh, sector_t b) |
| 501 | { |
| 502 | unsigned int index = cache_index(b, lh->no_previous); /* no_previous is num_locks */ |
| 503 | |
| 504 | if (lh->previous != lh->no_previous) { |
| 505 | if (lh->previous != index) { |
| 506 | __lh_unlock(lh, lh->previous); |
| 507 | __lh_lock(lh, index); |
| 508 | lh->previous = index; |
| 509 | } |
| 510 | } else { |
| 511 | __lh_lock(lh, index); |
| 512 | lh->previous = index; |
| 513 | } |
| 514 | } |
| 515 | |
| 516 | static inline struct dm_buffer *le_to_buffer(struct lru_entry *le) |
| 517 | { |
| 518 | return container_of(le, struct dm_buffer, lru); |
| 519 | } |
| 520 | |
| 521 | static struct dm_buffer *list_to_buffer(struct list_head *l) |
| 522 | { |
| 523 | struct lru_entry *le = list_entry(l, struct lru_entry, list); |
| 524 | |
| 525 | return le_to_buffer(le); |
| 526 | } |
| 527 | |
| 528 | static void cache_init(struct dm_buffer_cache *bc, unsigned int num_locks, bool no_sleep) |
| 529 | { |
| 530 | unsigned int i; |
| 531 | |
| 532 | bc->num_locks = num_locks; |
| 533 | bc->no_sleep = no_sleep; |
| 534 | |
| 535 | for (i = 0; i < bc->num_locks; i++) { |
| 536 | if (no_sleep) |
| 537 | rwlock_init(&bc->trees[i].u.spinlock); |
| 538 | else |
| 539 | init_rwsem(&bc->trees[i].u.lock); |
| 540 | bc->trees[i].root = RB_ROOT; |
| 541 | } |
| 542 | |
| 543 | lru_init(&bc->lru[LIST_CLEAN]); |
| 544 | lru_init(&bc->lru[LIST_DIRTY]); |
| 545 | } |
| 546 | |
| 547 | static void cache_destroy(struct dm_buffer_cache *bc) |
| 548 | { |
| 549 | unsigned int i; |
| 550 | |
| 551 | for (i = 0; i < bc->num_locks; i++) |
| 552 | WARN_ON_ONCE(!RB_EMPTY_ROOT(&bc->trees[i].root)); |
| 553 | |
| 554 | lru_destroy(&bc->lru[LIST_CLEAN]); |
| 555 | lru_destroy(&bc->lru[LIST_DIRTY]); |
| 556 | } |
| 557 | |
| 558 | /*--------------*/ |
| 559 | |
| 560 | /* |
| 561 | * not threadsafe, or racey depending how you look at it |
| 562 | */ |
| 563 | static inline unsigned long cache_count(struct dm_buffer_cache *bc, int list_mode) |
| 564 | { |
| 565 | return bc->lru[list_mode].count; |
| 566 | } |
| 567 | |
| 568 | static inline unsigned long cache_total(struct dm_buffer_cache *bc) |
| 569 | { |
| 570 | return cache_count(bc, LIST_CLEAN) + cache_count(bc, LIST_DIRTY); |
| 571 | } |
| 572 | |
| 573 | /*--------------*/ |
| 574 | |
| 575 | /* |
| 576 | * Gets a specific buffer, indexed by block. |
| 577 | * If the buffer is found then its holder count will be incremented and |
| 578 | * lru_reference will be called. |
| 579 | * |
| 580 | * threadsafe |
| 581 | */ |
| 582 | static struct dm_buffer *__cache_get(const struct rb_root *root, sector_t block) |
| 583 | { |
| 584 | struct rb_node *n = root->rb_node; |
| 585 | struct dm_buffer *b; |
| 586 | |
| 587 | while (n) { |
| 588 | b = container_of(n, struct dm_buffer, node); |
| 589 | |
| 590 | if (b->block == block) |
| 591 | return b; |
| 592 | |
| 593 | n = block < b->block ? n->rb_left : n->rb_right; |
| 594 | } |
| 595 | |
| 596 | return NULL; |
| 597 | } |
| 598 | |
| 599 | static void __cache_inc_buffer(struct dm_buffer *b) |
| 600 | { |
| 601 | atomic_inc(&b->hold_count); |
| 602 | WRITE_ONCE(b->last_accessed, jiffies); |
| 603 | } |
| 604 | |
| 605 | static struct dm_buffer *cache_get(struct dm_buffer_cache *bc, sector_t block) |
| 606 | { |
| 607 | struct dm_buffer *b; |
| 608 | |
| 609 | cache_read_lock(bc, block); |
| 610 | b = __cache_get(&bc->trees[cache_index(block, bc->num_locks)].root, block); |
| 611 | if (b) { |
| 612 | lru_reference(&b->lru); |
| 613 | __cache_inc_buffer(b); |
| 614 | } |
| 615 | cache_read_unlock(bc, block); |
| 616 | |
| 617 | return b; |
| 618 | } |
| 619 | |
| 620 | /*--------------*/ |
| 621 | |
| 622 | /* |
| 623 | * Returns true if the hold count hits zero. |
| 624 | * threadsafe |
| 625 | */ |
| 626 | static bool cache_put(struct dm_buffer_cache *bc, struct dm_buffer *b) |
| 627 | { |
| 628 | bool r; |
| 629 | |
| 630 | cache_read_lock(bc, b->block); |
| 631 | BUG_ON(!atomic_read(&b->hold_count)); |
| 632 | r = atomic_dec_and_test(&b->hold_count); |
| 633 | cache_read_unlock(bc, b->block); |
| 634 | |
| 635 | return r; |
| 636 | } |
| 637 | |
| 638 | /*--------------*/ |
| 639 | |
| 640 | typedef enum evict_result (*b_predicate)(struct dm_buffer *, void *); |
| 641 | |
| 642 | /* |
| 643 | * Evicts a buffer based on a predicate. The oldest buffer that |
| 644 | * matches the predicate will be selected. In addition to the |
| 645 | * predicate the hold_count of the selected buffer will be zero. |
| 646 | */ |
| 647 | struct evict_wrapper { |
| 648 | struct lock_history *lh; |
| 649 | b_predicate pred; |
| 650 | void *context; |
| 651 | }; |
| 652 | |
| 653 | /* |
| 654 | * Wraps the buffer predicate turning it into an lru predicate. Adds |
| 655 | * extra test for hold_count. |
| 656 | */ |
| 657 | static enum evict_result __evict_pred(struct lru_entry *le, void *context) |
| 658 | { |
| 659 | struct evict_wrapper *w = context; |
| 660 | struct dm_buffer *b = le_to_buffer(le); |
| 661 | |
| 662 | lh_next(w->lh, b->block); |
| 663 | |
| 664 | if (atomic_read(&b->hold_count)) |
| 665 | return ER_DONT_EVICT; |
| 666 | |
| 667 | return w->pred(b, w->context); |
| 668 | } |
| 669 | |
| 670 | static struct dm_buffer *__cache_evict(struct dm_buffer_cache *bc, int list_mode, |
| 671 | b_predicate pred, void *context, |
| 672 | struct lock_history *lh) |
| 673 | { |
| 674 | struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context}; |
| 675 | struct lru_entry *le; |
| 676 | struct dm_buffer *b; |
| 677 | |
| 678 | le = lru_evict(&bc->lru[list_mode], __evict_pred, &w, bc->no_sleep); |
| 679 | if (!le) |
| 680 | return NULL; |
| 681 | |
| 682 | b = le_to_buffer(le); |
| 683 | /* __evict_pred will have locked the appropriate tree. */ |
| 684 | rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root); |
| 685 | |
| 686 | return b; |
| 687 | } |
| 688 | |
| 689 | static struct dm_buffer *cache_evict(struct dm_buffer_cache *bc, int list_mode, |
| 690 | b_predicate pred, void *context) |
| 691 | { |
| 692 | struct dm_buffer *b; |
| 693 | struct lock_history lh; |
| 694 | |
| 695 | lh_init(&lh, bc, true); |
| 696 | b = __cache_evict(bc, list_mode, pred, context, &lh); |
| 697 | lh_exit(&lh); |
| 698 | |
| 699 | return b; |
| 700 | } |
| 701 | |
| 702 | /*--------------*/ |
| 703 | |
| 704 | /* |
| 705 | * Mark a buffer as clean or dirty. Not threadsafe. |
| 706 | */ |
| 707 | static void cache_mark(struct dm_buffer_cache *bc, struct dm_buffer *b, int list_mode) |
| 708 | { |
| 709 | cache_write_lock(bc, b->block); |
| 710 | if (list_mode != b->list_mode) { |
| 711 | lru_remove(&bc->lru[b->list_mode], &b->lru); |
| 712 | b->list_mode = list_mode; |
| 713 | lru_insert(&bc->lru[b->list_mode], &b->lru); |
| 714 | } |
| 715 | cache_write_unlock(bc, b->block); |
| 716 | } |
| 717 | |
| 718 | /*--------------*/ |
| 719 | |
| 720 | /* |
| 721 | * Runs through the lru associated with 'old_mode', if the predicate matches then |
| 722 | * it moves them to 'new_mode'. Not threadsafe. |
| 723 | */ |
| 724 | static void __cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode, |
| 725 | b_predicate pred, void *context, struct lock_history *lh) |
| 726 | { |
| 727 | struct lru_entry *le; |
| 728 | struct dm_buffer *b; |
| 729 | struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context}; |
| 730 | |
| 731 | while (true) { |
| 732 | le = lru_evict(&bc->lru[old_mode], __evict_pred, &w, bc->no_sleep); |
| 733 | if (!le) |
| 734 | break; |
| 735 | |
| 736 | b = le_to_buffer(le); |
| 737 | b->list_mode = new_mode; |
| 738 | lru_insert(&bc->lru[b->list_mode], &b->lru); |
| 739 | } |
| 740 | } |
| 741 | |
| 742 | static void cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode, |
| 743 | b_predicate pred, void *context) |
| 744 | { |
| 745 | struct lock_history lh; |
| 746 | |
| 747 | lh_init(&lh, bc, true); |
| 748 | __cache_mark_many(bc, old_mode, new_mode, pred, context, &lh); |
| 749 | lh_exit(&lh); |
| 750 | } |
| 751 | |
| 752 | /*--------------*/ |
| 753 | |
| 754 | /* |
| 755 | * Iterates through all clean or dirty entries calling a function for each |
| 756 | * entry. The callback may terminate the iteration early. Not threadsafe. |
| 757 | */ |
| 758 | |
| 759 | /* |
| 760 | * Iterator functions should return one of these actions to indicate |
| 761 | * how the iteration should proceed. |
| 762 | */ |
| 763 | enum it_action { |
| 764 | IT_NEXT, |
| 765 | IT_COMPLETE, |
| 766 | }; |
| 767 | |
| 768 | typedef enum it_action (*iter_fn)(struct dm_buffer *b, void *context); |
| 769 | |
| 770 | static void __cache_iterate(struct dm_buffer_cache *bc, int list_mode, |
| 771 | iter_fn fn, void *context, struct lock_history *lh) |
| 772 | { |
| 773 | struct lru *lru = &bc->lru[list_mode]; |
| 774 | struct lru_entry *le, *first; |
| 775 | |
| 776 | if (!lru->cursor) |
| 777 | return; |
| 778 | |
| 779 | first = le = to_le(lru->cursor); |
| 780 | do { |
| 781 | struct dm_buffer *b = le_to_buffer(le); |
| 782 | |
| 783 | lh_next(lh, b->block); |
| 784 | |
| 785 | switch (fn(b, context)) { |
| 786 | case IT_NEXT: |
| 787 | break; |
| 788 | |
| 789 | case IT_COMPLETE: |
| 790 | return; |
| 791 | } |
| 792 | cond_resched(); |
| 793 | |
| 794 | le = to_le(le->list.next); |
| 795 | } while (le != first); |
| 796 | } |
| 797 | |
| 798 | static void cache_iterate(struct dm_buffer_cache *bc, int list_mode, |
| 799 | iter_fn fn, void *context) |
| 800 | { |
| 801 | struct lock_history lh; |
| 802 | |
| 803 | lh_init(&lh, bc, false); |
| 804 | __cache_iterate(bc, list_mode, fn, context, &lh); |
| 805 | lh_exit(&lh); |
| 806 | } |
| 807 | |
| 808 | /*--------------*/ |
| 809 | |
| 810 | /* |
| 811 | * Passes ownership of the buffer to the cache. Returns false if the |
| 812 | * buffer was already present (in which case ownership does not pass). |
| 813 | * eg, a race with another thread. |
| 814 | * |
| 815 | * Holder count should be 1 on insertion. |
| 816 | * |
| 817 | * Not threadsafe. |
| 818 | */ |
| 819 | static bool __cache_insert(struct rb_root *root, struct dm_buffer *b) |
| 820 | { |
| 821 | struct rb_node **new = &root->rb_node, *parent = NULL; |
| 822 | struct dm_buffer *found; |
| 823 | |
| 824 | while (*new) { |
| 825 | found = container_of(*new, struct dm_buffer, node); |
| 826 | |
| 827 | if (found->block == b->block) |
| 828 | return false; |
| 829 | |
| 830 | parent = *new; |
| 831 | new = b->block < found->block ? |
| 832 | &found->node.rb_left : &found->node.rb_right; |
| 833 | } |
| 834 | |
| 835 | rb_link_node(&b->node, parent, new); |
| 836 | rb_insert_color(&b->node, root); |
| 837 | |
| 838 | return true; |
| 839 | } |
| 840 | |
| 841 | static bool cache_insert(struct dm_buffer_cache *bc, struct dm_buffer *b) |
| 842 | { |
| 843 | bool r; |
| 844 | |
| 845 | if (WARN_ON_ONCE(b->list_mode >= LIST_SIZE)) |
| 846 | return false; |
| 847 | |
| 848 | cache_write_lock(bc, b->block); |
| 849 | BUG_ON(atomic_read(&b->hold_count) != 1); |
| 850 | r = __cache_insert(&bc->trees[cache_index(b->block, bc->num_locks)].root, b); |
| 851 | if (r) |
| 852 | lru_insert(&bc->lru[b->list_mode], &b->lru); |
| 853 | cache_write_unlock(bc, b->block); |
| 854 | |
| 855 | return r; |
| 856 | } |
| 857 | |
| 858 | /*--------------*/ |
| 859 | |
| 860 | /* |
| 861 | * Removes buffer from cache, ownership of the buffer passes back to the caller. |
| 862 | * Fails if the hold_count is not one (ie. the caller holds the only reference). |
| 863 | * |
| 864 | * Not threadsafe. |
| 865 | */ |
| 866 | static bool cache_remove(struct dm_buffer_cache *bc, struct dm_buffer *b) |
| 867 | { |
| 868 | bool r; |
| 869 | |
| 870 | cache_write_lock(bc, b->block); |
| 871 | |
| 872 | if (atomic_read(&b->hold_count) != 1) { |
| 873 | r = false; |
| 874 | } else { |
| 875 | r = true; |
| 876 | rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root); |
| 877 | lru_remove(&bc->lru[b->list_mode], &b->lru); |
| 878 | } |
| 879 | |
| 880 | cache_write_unlock(bc, b->block); |
| 881 | |
| 882 | return r; |
| 883 | } |
| 884 | |
| 885 | /*--------------*/ |
| 886 | |
| 887 | typedef void (*b_release)(struct dm_buffer *); |
| 888 | |
| 889 | static struct dm_buffer *__find_next(struct rb_root *root, sector_t block) |
| 890 | { |
| 891 | struct rb_node *n = root->rb_node; |
| 892 | struct dm_buffer *b; |
| 893 | struct dm_buffer *best = NULL; |
| 894 | |
| 895 | while (n) { |
| 896 | b = container_of(n, struct dm_buffer, node); |
| 897 | |
| 898 | if (b->block == block) |
| 899 | return b; |
| 900 | |
| 901 | if (block <= b->block) { |
| 902 | n = n->rb_left; |
| 903 | best = b; |
| 904 | } else { |
| 905 | n = n->rb_right; |
| 906 | } |
| 907 | } |
| 908 | |
| 909 | return best; |
| 910 | } |
| 911 | |
| 912 | static void __remove_range(struct dm_buffer_cache *bc, |
| 913 | struct rb_root *root, |
| 914 | sector_t begin, sector_t end, |
| 915 | b_predicate pred, b_release release) |
| 916 | { |
| 917 | struct dm_buffer *b; |
| 918 | |
| 919 | while (true) { |
| 920 | cond_resched(); |
| 921 | |
| 922 | b = __find_next(root, begin); |
| 923 | if (!b || (b->block >= end)) |
| 924 | break; |
| 925 | |
| 926 | begin = b->block + 1; |
| 927 | |
| 928 | if (atomic_read(&b->hold_count)) |
| 929 | continue; |
| 930 | |
| 931 | if (pred(b, NULL) == ER_EVICT) { |
| 932 | rb_erase(&b->node, root); |
| 933 | lru_remove(&bc->lru[b->list_mode], &b->lru); |
| 934 | release(b); |
| 935 | } |
| 936 | } |
| 937 | } |
| 938 | |
| 939 | static void cache_remove_range(struct dm_buffer_cache *bc, |
| 940 | sector_t begin, sector_t end, |
| 941 | b_predicate pred, b_release release) |
| 942 | { |
| 943 | unsigned int i; |
| 944 | |
| 945 | BUG_ON(bc->no_sleep); |
| 946 | for (i = 0; i < bc->num_locks; i++) { |
| 947 | down_write(&bc->trees[i].u.lock); |
| 948 | __remove_range(bc, &bc->trees[i].root, begin, end, pred, release); |
| 949 | up_write(&bc->trees[i].u.lock); |
| 950 | } |
| 951 | } |
| 952 | |
| 953 | /*----------------------------------------------------------------*/ |
| 954 | |
| 955 | /* |
| 956 | * Linking of buffers: |
| 957 | * All buffers are linked to buffer_cache with their node field. |
| 958 | * |
| 959 | * Clean buffers that are not being written (B_WRITING not set) |
| 960 | * are linked to lru[LIST_CLEAN] with their lru_list field. |
| 961 | * |
| 962 | * Dirty and clean buffers that are being written are linked to |
| 963 | * lru[LIST_DIRTY] with their lru_list field. When the write |
| 964 | * finishes, the buffer cannot be relinked immediately (because we |
| 965 | * are in an interrupt context and relinking requires process |
| 966 | * context), so some clean-not-writing buffers can be held on |
| 967 | * dirty_lru too. They are later added to lru in the process |
| 968 | * context. |
| 969 | */ |
| 970 | struct dm_bufio_client { |
| 971 | struct block_device *bdev; |
| 972 | unsigned int block_size; |
| 973 | s8 sectors_per_block_bits; |
| 974 | |
| 975 | bool no_sleep; |
| 976 | struct mutex lock; |
| 977 | spinlock_t spinlock; |
| 978 | |
| 979 | int async_write_error; |
| 980 | |
| 981 | void (*alloc_callback)(struct dm_buffer *buf); |
| 982 | void (*write_callback)(struct dm_buffer *buf); |
| 983 | struct kmem_cache *slab_buffer; |
| 984 | struct kmem_cache *slab_cache; |
| 985 | struct dm_io_client *dm_io; |
| 986 | |
| 987 | struct list_head reserved_buffers; |
| 988 | unsigned int need_reserved_buffers; |
| 989 | |
| 990 | unsigned int minimum_buffers; |
| 991 | |
| 992 | sector_t start; |
| 993 | |
| 994 | struct shrinker *shrinker; |
| 995 | struct work_struct shrink_work; |
| 996 | atomic_long_t need_shrink; |
| 997 | |
| 998 | wait_queue_head_t free_buffer_wait; |
| 999 | |
| 1000 | struct list_head client_list; |
| 1001 | |
| 1002 | /* |
| 1003 | * Used by global_cleanup to sort the clients list. |
| 1004 | */ |
| 1005 | unsigned long oldest_buffer; |
| 1006 | |
| 1007 | struct dm_buffer_cache cache; /* must be last member */ |
| 1008 | }; |
| 1009 | |
| 1010 | /*----------------------------------------------------------------*/ |
| 1011 | |
| 1012 | #define dm_bufio_in_request() (!!current->bio_list) |
| 1013 | |
| 1014 | static void dm_bufio_lock(struct dm_bufio_client *c) |
| 1015 | { |
| 1016 | if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep) |
| 1017 | spin_lock_bh(&c->spinlock); |
| 1018 | else |
| 1019 | mutex_lock_nested(&c->lock, dm_bufio_in_request()); |
| 1020 | } |
| 1021 | |
| 1022 | static void dm_bufio_unlock(struct dm_bufio_client *c) |
| 1023 | { |
| 1024 | if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep) |
| 1025 | spin_unlock_bh(&c->spinlock); |
| 1026 | else |
| 1027 | mutex_unlock(&c->lock); |
| 1028 | } |
| 1029 | |
| 1030 | /*----------------------------------------------------------------*/ |
| 1031 | |
| 1032 | /* |
| 1033 | * Default cache size: available memory divided by the ratio. |
| 1034 | */ |
| 1035 | static unsigned long dm_bufio_default_cache_size; |
| 1036 | |
| 1037 | /* |
| 1038 | * Total cache size set by the user. |
| 1039 | */ |
| 1040 | static unsigned long dm_bufio_cache_size; |
| 1041 | |
| 1042 | /* |
| 1043 | * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change |
| 1044 | * at any time. If it disagrees, the user has changed cache size. |
| 1045 | */ |
| 1046 | static unsigned long dm_bufio_cache_size_latch; |
| 1047 | |
| 1048 | static DEFINE_SPINLOCK(global_spinlock); |
| 1049 | |
| 1050 | static unsigned int dm_bufio_max_age; /* No longer does anything */ |
| 1051 | |
| 1052 | static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES; |
| 1053 | |
| 1054 | static unsigned long dm_bufio_peak_allocated; |
| 1055 | static unsigned long dm_bufio_allocated_kmem_cache; |
| 1056 | static unsigned long dm_bufio_allocated_kmalloc; |
| 1057 | static unsigned long dm_bufio_allocated_get_free_pages; |
| 1058 | static unsigned long dm_bufio_allocated_vmalloc; |
| 1059 | static unsigned long dm_bufio_current_allocated; |
| 1060 | |
| 1061 | /*----------------------------------------------------------------*/ |
| 1062 | |
| 1063 | /* |
| 1064 | * The current number of clients. |
| 1065 | */ |
| 1066 | static int dm_bufio_client_count; |
| 1067 | |
| 1068 | /* |
| 1069 | * The list of all clients. |
| 1070 | */ |
| 1071 | static LIST_HEAD(dm_bufio_all_clients); |
| 1072 | |
| 1073 | /* |
| 1074 | * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count |
| 1075 | */ |
| 1076 | static DEFINE_MUTEX(dm_bufio_clients_lock); |
| 1077 | |
| 1078 | static struct workqueue_struct *dm_bufio_wq; |
| 1079 | static struct work_struct dm_bufio_replacement_work; |
| 1080 | |
| 1081 | |
| 1082 | #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING |
| 1083 | static void buffer_record_stack(struct dm_buffer *b) |
| 1084 | { |
| 1085 | b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2); |
| 1086 | } |
| 1087 | #endif |
| 1088 | |
| 1089 | /*----------------------------------------------------------------*/ |
| 1090 | |
| 1091 | static void adjust_total_allocated(struct dm_buffer *b, bool unlink) |
| 1092 | { |
| 1093 | unsigned char data_mode; |
| 1094 | long diff; |
| 1095 | |
| 1096 | static unsigned long * const class_ptr[DATA_MODE_LIMIT] = { |
| 1097 | &dm_bufio_allocated_kmem_cache, |
| 1098 | &dm_bufio_allocated_kmalloc, |
| 1099 | &dm_bufio_allocated_get_free_pages, |
| 1100 | &dm_bufio_allocated_vmalloc, |
| 1101 | }; |
| 1102 | |
| 1103 | data_mode = b->data_mode; |
| 1104 | diff = (long)b->c->block_size; |
| 1105 | if (unlink) |
| 1106 | diff = -diff; |
| 1107 | |
| 1108 | spin_lock(&global_spinlock); |
| 1109 | |
| 1110 | *class_ptr[data_mode] += diff; |
| 1111 | |
| 1112 | dm_bufio_current_allocated += diff; |
| 1113 | |
| 1114 | if (dm_bufio_current_allocated > dm_bufio_peak_allocated) |
| 1115 | dm_bufio_peak_allocated = dm_bufio_current_allocated; |
| 1116 | |
| 1117 | if (!unlink) { |
| 1118 | if (dm_bufio_current_allocated > dm_bufio_cache_size) |
| 1119 | queue_work(dm_bufio_wq, &dm_bufio_replacement_work); |
| 1120 | } |
| 1121 | |
| 1122 | spin_unlock(&global_spinlock); |
| 1123 | } |
| 1124 | |
| 1125 | /* |
| 1126 | * Change the number of clients and recalculate per-client limit. |
| 1127 | */ |
| 1128 | static void __cache_size_refresh(void) |
| 1129 | { |
| 1130 | if (WARN_ON(!mutex_is_locked(&dm_bufio_clients_lock))) |
| 1131 | return; |
| 1132 | if (WARN_ON(dm_bufio_client_count < 0)) |
| 1133 | return; |
| 1134 | |
| 1135 | dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size); |
| 1136 | |
| 1137 | /* |
| 1138 | * Use default if set to 0 and report the actual cache size used. |
| 1139 | */ |
| 1140 | if (!dm_bufio_cache_size_latch) { |
| 1141 | (void)cmpxchg(&dm_bufio_cache_size, 0, |
| 1142 | dm_bufio_default_cache_size); |
| 1143 | dm_bufio_cache_size_latch = dm_bufio_default_cache_size; |
| 1144 | } |
| 1145 | } |
| 1146 | |
| 1147 | /* |
| 1148 | * Allocating buffer data. |
| 1149 | * |
| 1150 | * Small buffers are allocated with kmem_cache, to use space optimally. |
| 1151 | * |
| 1152 | * For large buffers, we choose between get_free_pages and vmalloc. |
| 1153 | * Each has advantages and disadvantages. |
| 1154 | * |
| 1155 | * __get_free_pages can randomly fail if the memory is fragmented. |
| 1156 | * __vmalloc won't randomly fail, but vmalloc space is limited (it may be |
| 1157 | * as low as 128M) so using it for caching is not appropriate. |
| 1158 | * |
| 1159 | * If the allocation may fail we use __get_free_pages. Memory fragmentation |
| 1160 | * won't have a fatal effect here, but it just causes flushes of some other |
| 1161 | * buffers and more I/O will be performed. Don't use __get_free_pages if it |
| 1162 | * always fails (i.e. order > MAX_PAGE_ORDER). |
| 1163 | * |
| 1164 | * If the allocation shouldn't fail we use __vmalloc. This is only for the |
| 1165 | * initial reserve allocation, so there's no risk of wasting all vmalloc |
| 1166 | * space. |
| 1167 | */ |
| 1168 | static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask, |
| 1169 | unsigned char *data_mode) |
| 1170 | { |
| 1171 | if (unlikely(c->slab_cache != NULL)) { |
| 1172 | *data_mode = DATA_MODE_SLAB; |
| 1173 | return kmem_cache_alloc(c->slab_cache, gfp_mask); |
| 1174 | } |
| 1175 | |
| 1176 | if (unlikely(c->block_size < PAGE_SIZE)) { |
| 1177 | *data_mode = DATA_MODE_KMALLOC; |
| 1178 | return kmalloc(c->block_size, gfp_mask | __GFP_RECLAIMABLE); |
| 1179 | } |
| 1180 | |
| 1181 | if (c->block_size <= KMALLOC_MAX_SIZE && |
| 1182 | gfp_mask & __GFP_NORETRY) { |
| 1183 | *data_mode = DATA_MODE_GET_FREE_PAGES; |
| 1184 | return (void *)__get_free_pages(gfp_mask, |
| 1185 | c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT)); |
| 1186 | } |
| 1187 | |
| 1188 | *data_mode = DATA_MODE_VMALLOC; |
| 1189 | |
| 1190 | return __vmalloc(c->block_size, gfp_mask); |
| 1191 | } |
| 1192 | |
| 1193 | /* |
| 1194 | * Free buffer's data. |
| 1195 | */ |
| 1196 | static void free_buffer_data(struct dm_bufio_client *c, |
| 1197 | void *data, unsigned char data_mode) |
| 1198 | { |
| 1199 | switch (data_mode) { |
| 1200 | case DATA_MODE_SLAB: |
| 1201 | kmem_cache_free(c->slab_cache, data); |
| 1202 | break; |
| 1203 | |
| 1204 | case DATA_MODE_KMALLOC: |
| 1205 | kfree(data); |
| 1206 | break; |
| 1207 | |
| 1208 | case DATA_MODE_GET_FREE_PAGES: |
| 1209 | free_pages((unsigned long)data, |
| 1210 | c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT)); |
| 1211 | break; |
| 1212 | |
| 1213 | case DATA_MODE_VMALLOC: |
| 1214 | vfree(data); |
| 1215 | break; |
| 1216 | |
| 1217 | default: |
| 1218 | DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d", |
| 1219 | data_mode); |
| 1220 | BUG(); |
| 1221 | } |
| 1222 | } |
| 1223 | |
| 1224 | /* |
| 1225 | * Allocate buffer and its data. |
| 1226 | */ |
| 1227 | static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask) |
| 1228 | { |
| 1229 | struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask); |
| 1230 | |
| 1231 | if (!b) |
| 1232 | return NULL; |
| 1233 | |
| 1234 | b->c = c; |
| 1235 | |
| 1236 | b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode); |
| 1237 | if (!b->data) { |
| 1238 | kmem_cache_free(c->slab_buffer, b); |
| 1239 | return NULL; |
| 1240 | } |
| 1241 | adjust_total_allocated(b, false); |
| 1242 | |
| 1243 | #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING |
| 1244 | b->stack_len = 0; |
| 1245 | #endif |
| 1246 | return b; |
| 1247 | } |
| 1248 | |
| 1249 | /* |
| 1250 | * Free buffer and its data. |
| 1251 | */ |
| 1252 | static void free_buffer(struct dm_buffer *b) |
| 1253 | { |
| 1254 | struct dm_bufio_client *c = b->c; |
| 1255 | |
| 1256 | adjust_total_allocated(b, true); |
| 1257 | free_buffer_data(c, b->data, b->data_mode); |
| 1258 | kmem_cache_free(c->slab_buffer, b); |
| 1259 | } |
| 1260 | |
| 1261 | /* |
| 1262 | *-------------------------------------------------------------------------- |
| 1263 | * Submit I/O on the buffer. |
| 1264 | * |
| 1265 | * Bio interface is faster but it has some problems: |
| 1266 | * the vector list is limited (increasing this limit increases |
| 1267 | * memory-consumption per buffer, so it is not viable); |
| 1268 | * |
| 1269 | * the memory must be direct-mapped, not vmalloced; |
| 1270 | * |
| 1271 | * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and |
| 1272 | * it is not vmalloced, try using the bio interface. |
| 1273 | * |
| 1274 | * If the buffer is big, if it is vmalloced or if the underlying device |
| 1275 | * rejects the bio because it is too large, use dm-io layer to do the I/O. |
| 1276 | * The dm-io layer splits the I/O into multiple requests, avoiding the above |
| 1277 | * shortcomings. |
| 1278 | *-------------------------------------------------------------------------- |
| 1279 | */ |
| 1280 | |
| 1281 | /* |
| 1282 | * dm-io completion routine. It just calls b->bio.bi_end_io, pretending |
| 1283 | * that the request was handled directly with bio interface. |
| 1284 | */ |
| 1285 | static void dmio_complete(unsigned long error, void *context) |
| 1286 | { |
| 1287 | struct dm_buffer *b = context; |
| 1288 | |
| 1289 | b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0); |
| 1290 | } |
| 1291 | |
| 1292 | static void use_dmio(struct dm_buffer *b, enum req_op op, sector_t sector, |
| 1293 | unsigned int n_sectors, unsigned int offset, |
| 1294 | unsigned short ioprio) |
| 1295 | { |
| 1296 | int r; |
| 1297 | struct dm_io_request io_req = { |
| 1298 | .bi_opf = op, |
| 1299 | .notify.fn = dmio_complete, |
| 1300 | .notify.context = b, |
| 1301 | .client = b->c->dm_io, |
| 1302 | }; |
| 1303 | struct dm_io_region region = { |
| 1304 | .bdev = b->c->bdev, |
| 1305 | .sector = sector, |
| 1306 | .count = n_sectors, |
| 1307 | }; |
| 1308 | |
| 1309 | if (b->data_mode != DATA_MODE_VMALLOC) { |
| 1310 | io_req.mem.type = DM_IO_KMEM; |
| 1311 | io_req.mem.ptr.addr = (char *)b->data + offset; |
| 1312 | } else { |
| 1313 | io_req.mem.type = DM_IO_VMA; |
| 1314 | io_req.mem.ptr.vma = (char *)b->data + offset; |
| 1315 | } |
| 1316 | |
| 1317 | r = dm_io(&io_req, 1, ®ion, NULL, ioprio); |
| 1318 | if (unlikely(r)) |
| 1319 | b->end_io(b, errno_to_blk_status(r)); |
| 1320 | } |
| 1321 | |
| 1322 | static void bio_complete(struct bio *bio) |
| 1323 | { |
| 1324 | struct dm_buffer *b = bio->bi_private; |
| 1325 | blk_status_t status = bio->bi_status; |
| 1326 | |
| 1327 | bio_uninit(bio); |
| 1328 | kfree(bio); |
| 1329 | b->end_io(b, status); |
| 1330 | } |
| 1331 | |
| 1332 | static void use_bio(struct dm_buffer *b, enum req_op op, sector_t sector, |
| 1333 | unsigned int n_sectors, unsigned int offset, |
| 1334 | unsigned short ioprio) |
| 1335 | { |
| 1336 | struct bio *bio; |
| 1337 | char *ptr; |
| 1338 | unsigned int len; |
| 1339 | |
| 1340 | bio = bio_kmalloc(1, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN); |
| 1341 | if (!bio) { |
| 1342 | use_dmio(b, op, sector, n_sectors, offset, ioprio); |
| 1343 | return; |
| 1344 | } |
| 1345 | bio_init(bio, b->c->bdev, bio->bi_inline_vecs, 1, op); |
| 1346 | bio->bi_iter.bi_sector = sector; |
| 1347 | bio->bi_end_io = bio_complete; |
| 1348 | bio->bi_private = b; |
| 1349 | bio->bi_ioprio = ioprio; |
| 1350 | |
| 1351 | ptr = (char *)b->data + offset; |
| 1352 | len = n_sectors << SECTOR_SHIFT; |
| 1353 | |
| 1354 | bio_add_virt_nofail(bio, ptr, len); |
| 1355 | |
| 1356 | submit_bio(bio); |
| 1357 | } |
| 1358 | |
| 1359 | static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block) |
| 1360 | { |
| 1361 | sector_t sector; |
| 1362 | |
| 1363 | if (likely(c->sectors_per_block_bits >= 0)) |
| 1364 | sector = block << c->sectors_per_block_bits; |
| 1365 | else |
| 1366 | sector = block * (c->block_size >> SECTOR_SHIFT); |
| 1367 | sector += c->start; |
| 1368 | |
| 1369 | return sector; |
| 1370 | } |
| 1371 | |
| 1372 | static void submit_io(struct dm_buffer *b, enum req_op op, unsigned short ioprio, |
| 1373 | void (*end_io)(struct dm_buffer *, blk_status_t)) |
| 1374 | { |
| 1375 | unsigned int n_sectors; |
| 1376 | sector_t sector; |
| 1377 | unsigned int offset, end; |
| 1378 | |
| 1379 | b->end_io = end_io; |
| 1380 | |
| 1381 | sector = block_to_sector(b->c, b->block); |
| 1382 | |
| 1383 | if (op != REQ_OP_WRITE) { |
| 1384 | n_sectors = b->c->block_size >> SECTOR_SHIFT; |
| 1385 | offset = 0; |
| 1386 | } else { |
| 1387 | if (b->c->write_callback) |
| 1388 | b->c->write_callback(b); |
| 1389 | offset = b->write_start; |
| 1390 | end = b->write_end; |
| 1391 | offset &= -DM_BUFIO_WRITE_ALIGN; |
| 1392 | end += DM_BUFIO_WRITE_ALIGN - 1; |
| 1393 | end &= -DM_BUFIO_WRITE_ALIGN; |
| 1394 | if (unlikely(end > b->c->block_size)) |
| 1395 | end = b->c->block_size; |
| 1396 | |
| 1397 | sector += offset >> SECTOR_SHIFT; |
| 1398 | n_sectors = (end - offset) >> SECTOR_SHIFT; |
| 1399 | } |
| 1400 | |
| 1401 | if (b->data_mode != DATA_MODE_VMALLOC) |
| 1402 | use_bio(b, op, sector, n_sectors, offset, ioprio); |
| 1403 | else |
| 1404 | use_dmio(b, op, sector, n_sectors, offset, ioprio); |
| 1405 | } |
| 1406 | |
| 1407 | /* |
| 1408 | *-------------------------------------------------------------- |
| 1409 | * Writing dirty buffers |
| 1410 | *-------------------------------------------------------------- |
| 1411 | */ |
| 1412 | |
| 1413 | /* |
| 1414 | * The endio routine for write. |
| 1415 | * |
| 1416 | * Set the error, clear B_WRITING bit and wake anyone who was waiting on |
| 1417 | * it. |
| 1418 | */ |
| 1419 | static void write_endio(struct dm_buffer *b, blk_status_t status) |
| 1420 | { |
| 1421 | b->write_error = status; |
| 1422 | if (unlikely(status)) { |
| 1423 | struct dm_bufio_client *c = b->c; |
| 1424 | |
| 1425 | (void)cmpxchg(&c->async_write_error, 0, |
| 1426 | blk_status_to_errno(status)); |
| 1427 | } |
| 1428 | |
| 1429 | BUG_ON(!test_bit(B_WRITING, &b->state)); |
| 1430 | |
| 1431 | smp_mb__before_atomic(); |
| 1432 | clear_bit(B_WRITING, &b->state); |
| 1433 | smp_mb__after_atomic(); |
| 1434 | |
| 1435 | wake_up_bit(&b->state, B_WRITING); |
| 1436 | } |
| 1437 | |
| 1438 | /* |
| 1439 | * Initiate a write on a dirty buffer, but don't wait for it. |
| 1440 | * |
| 1441 | * - If the buffer is not dirty, exit. |
| 1442 | * - If there some previous write going on, wait for it to finish (we can't |
| 1443 | * have two writes on the same buffer simultaneously). |
| 1444 | * - Submit our write and don't wait on it. We set B_WRITING indicating |
| 1445 | * that there is a write in progress. |
| 1446 | */ |
| 1447 | static void __write_dirty_buffer(struct dm_buffer *b, |
| 1448 | struct list_head *write_list) |
| 1449 | { |
| 1450 | if (!test_bit(B_DIRTY, &b->state)) |
| 1451 | return; |
| 1452 | |
| 1453 | clear_bit(B_DIRTY, &b->state); |
| 1454 | wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); |
| 1455 | |
| 1456 | b->write_start = b->dirty_start; |
| 1457 | b->write_end = b->dirty_end; |
| 1458 | |
| 1459 | if (!write_list) |
| 1460 | submit_io(b, REQ_OP_WRITE, IOPRIO_DEFAULT, write_endio); |
| 1461 | else |
| 1462 | list_add_tail(&b->write_list, write_list); |
| 1463 | } |
| 1464 | |
| 1465 | static void __flush_write_list(struct list_head *write_list) |
| 1466 | { |
| 1467 | struct blk_plug plug; |
| 1468 | |
| 1469 | blk_start_plug(&plug); |
| 1470 | while (!list_empty(write_list)) { |
| 1471 | struct dm_buffer *b = |
| 1472 | list_entry(write_list->next, struct dm_buffer, write_list); |
| 1473 | list_del(&b->write_list); |
| 1474 | submit_io(b, REQ_OP_WRITE, IOPRIO_DEFAULT, write_endio); |
| 1475 | cond_resched(); |
| 1476 | } |
| 1477 | blk_finish_plug(&plug); |
| 1478 | } |
| 1479 | |
| 1480 | /* |
| 1481 | * Wait until any activity on the buffer finishes. Possibly write the |
| 1482 | * buffer if it is dirty. When this function finishes, there is no I/O |
| 1483 | * running on the buffer and the buffer is not dirty. |
| 1484 | */ |
| 1485 | static void __make_buffer_clean(struct dm_buffer *b) |
| 1486 | { |
| 1487 | BUG_ON(atomic_read(&b->hold_count)); |
| 1488 | |
| 1489 | /* smp_load_acquire() pairs with read_endio()'s smp_mb__before_atomic() */ |
| 1490 | if (!smp_load_acquire(&b->state)) /* fast case */ |
| 1491 | return; |
| 1492 | |
| 1493 | wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); |
| 1494 | __write_dirty_buffer(b, NULL); |
| 1495 | wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); |
| 1496 | } |
| 1497 | |
| 1498 | static enum evict_result is_clean(struct dm_buffer *b, void *context) |
| 1499 | { |
| 1500 | struct dm_bufio_client *c = context; |
| 1501 | |
| 1502 | /* These should never happen */ |
| 1503 | if (WARN_ON_ONCE(test_bit(B_WRITING, &b->state))) |
| 1504 | return ER_DONT_EVICT; |
| 1505 | if (WARN_ON_ONCE(test_bit(B_DIRTY, &b->state))) |
| 1506 | return ER_DONT_EVICT; |
| 1507 | if (WARN_ON_ONCE(b->list_mode != LIST_CLEAN)) |
| 1508 | return ER_DONT_EVICT; |
| 1509 | |
| 1510 | if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep && |
| 1511 | unlikely(test_bit(B_READING, &b->state))) |
| 1512 | return ER_DONT_EVICT; |
| 1513 | |
| 1514 | return ER_EVICT; |
| 1515 | } |
| 1516 | |
| 1517 | static enum evict_result is_dirty(struct dm_buffer *b, void *context) |
| 1518 | { |
| 1519 | /* These should never happen */ |
| 1520 | if (WARN_ON_ONCE(test_bit(B_READING, &b->state))) |
| 1521 | return ER_DONT_EVICT; |
| 1522 | if (WARN_ON_ONCE(b->list_mode != LIST_DIRTY)) |
| 1523 | return ER_DONT_EVICT; |
| 1524 | |
| 1525 | return ER_EVICT; |
| 1526 | } |
| 1527 | |
| 1528 | /* |
| 1529 | * Find some buffer that is not held by anybody, clean it, unlink it and |
| 1530 | * return it. |
| 1531 | */ |
| 1532 | static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c) |
| 1533 | { |
| 1534 | struct dm_buffer *b; |
| 1535 | |
| 1536 | b = cache_evict(&c->cache, LIST_CLEAN, is_clean, c); |
| 1537 | if (b) { |
| 1538 | /* this also waits for pending reads */ |
| 1539 | __make_buffer_clean(b); |
| 1540 | return b; |
| 1541 | } |
| 1542 | |
| 1543 | if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep) |
| 1544 | return NULL; |
| 1545 | |
| 1546 | b = cache_evict(&c->cache, LIST_DIRTY, is_dirty, NULL); |
| 1547 | if (b) { |
| 1548 | __make_buffer_clean(b); |
| 1549 | return b; |
| 1550 | } |
| 1551 | |
| 1552 | return NULL; |
| 1553 | } |
| 1554 | |
| 1555 | /* |
| 1556 | * Wait until some other threads free some buffer or release hold count on |
| 1557 | * some buffer. |
| 1558 | * |
| 1559 | * This function is entered with c->lock held, drops it and regains it |
| 1560 | * before exiting. |
| 1561 | */ |
| 1562 | static void __wait_for_free_buffer(struct dm_bufio_client *c) |
| 1563 | { |
| 1564 | DECLARE_WAITQUEUE(wait, current); |
| 1565 | |
| 1566 | add_wait_queue(&c->free_buffer_wait, &wait); |
| 1567 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 1568 | dm_bufio_unlock(c); |
| 1569 | |
| 1570 | /* |
| 1571 | * It's possible to miss a wake up event since we don't always |
| 1572 | * hold c->lock when wake_up is called. So we have a timeout here, |
| 1573 | * just in case. |
| 1574 | */ |
| 1575 | io_schedule_timeout(5 * HZ); |
| 1576 | |
| 1577 | remove_wait_queue(&c->free_buffer_wait, &wait); |
| 1578 | |
| 1579 | dm_bufio_lock(c); |
| 1580 | } |
| 1581 | |
| 1582 | enum new_flag { |
| 1583 | NF_FRESH = 0, |
| 1584 | NF_READ = 1, |
| 1585 | NF_GET = 2, |
| 1586 | NF_PREFETCH = 3 |
| 1587 | }; |
| 1588 | |
| 1589 | /* |
| 1590 | * Allocate a new buffer. If the allocation is not possible, wait until |
| 1591 | * some other thread frees a buffer. |
| 1592 | * |
| 1593 | * May drop the lock and regain it. |
| 1594 | */ |
| 1595 | static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf) |
| 1596 | { |
| 1597 | struct dm_buffer *b; |
| 1598 | bool tried_noio_alloc = false; |
| 1599 | |
| 1600 | /* |
| 1601 | * dm-bufio is resistant to allocation failures (it just keeps |
| 1602 | * one buffer reserved in cases all the allocations fail). |
| 1603 | * So set flags to not try too hard: |
| 1604 | * GFP_NOWAIT: don't wait; if we need to sleep we'll release our |
| 1605 | * mutex and wait ourselves. |
| 1606 | * __GFP_NORETRY: don't retry and rather return failure |
| 1607 | * __GFP_NOMEMALLOC: don't use emergency reserves |
| 1608 | * __GFP_NOWARN: don't print a warning in case of failure |
| 1609 | * |
| 1610 | * For debugging, if we set the cache size to 1, no new buffers will |
| 1611 | * be allocated. |
| 1612 | */ |
| 1613 | while (1) { |
| 1614 | if (dm_bufio_cache_size_latch != 1) { |
| 1615 | b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); |
| 1616 | if (b) |
| 1617 | return b; |
| 1618 | } |
| 1619 | |
| 1620 | if (nf == NF_PREFETCH) |
| 1621 | return NULL; |
| 1622 | |
| 1623 | if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) { |
| 1624 | dm_bufio_unlock(c); |
| 1625 | b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); |
| 1626 | dm_bufio_lock(c); |
| 1627 | if (b) |
| 1628 | return b; |
| 1629 | tried_noio_alloc = true; |
| 1630 | } |
| 1631 | |
| 1632 | if (!list_empty(&c->reserved_buffers)) { |
| 1633 | b = list_to_buffer(c->reserved_buffers.next); |
| 1634 | list_del(&b->lru.list); |
| 1635 | c->need_reserved_buffers++; |
| 1636 | |
| 1637 | return b; |
| 1638 | } |
| 1639 | |
| 1640 | b = __get_unclaimed_buffer(c); |
| 1641 | if (b) |
| 1642 | return b; |
| 1643 | |
| 1644 | __wait_for_free_buffer(c); |
| 1645 | } |
| 1646 | } |
| 1647 | |
| 1648 | static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf) |
| 1649 | { |
| 1650 | struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf); |
| 1651 | |
| 1652 | if (!b) |
| 1653 | return NULL; |
| 1654 | |
| 1655 | if (c->alloc_callback) |
| 1656 | c->alloc_callback(b); |
| 1657 | |
| 1658 | return b; |
| 1659 | } |
| 1660 | |
| 1661 | /* |
| 1662 | * Free a buffer and wake other threads waiting for free buffers. |
| 1663 | */ |
| 1664 | static void __free_buffer_wake(struct dm_buffer *b) |
| 1665 | { |
| 1666 | struct dm_bufio_client *c = b->c; |
| 1667 | |
| 1668 | b->block = -1; |
| 1669 | if (!c->need_reserved_buffers) |
| 1670 | free_buffer(b); |
| 1671 | else { |
| 1672 | list_add(&b->lru.list, &c->reserved_buffers); |
| 1673 | c->need_reserved_buffers--; |
| 1674 | } |
| 1675 | |
| 1676 | /* |
| 1677 | * We hold the bufio lock here, so no one can add entries to the |
| 1678 | * wait queue anyway. |
| 1679 | */ |
| 1680 | if (unlikely(waitqueue_active(&c->free_buffer_wait))) |
| 1681 | wake_up(&c->free_buffer_wait); |
| 1682 | } |
| 1683 | |
| 1684 | static enum evict_result cleaned(struct dm_buffer *b, void *context) |
| 1685 | { |
| 1686 | if (WARN_ON_ONCE(test_bit(B_READING, &b->state))) |
| 1687 | return ER_DONT_EVICT; /* should never happen */ |
| 1688 | |
| 1689 | if (test_bit(B_DIRTY, &b->state) || test_bit(B_WRITING, &b->state)) |
| 1690 | return ER_DONT_EVICT; |
| 1691 | else |
| 1692 | return ER_EVICT; |
| 1693 | } |
| 1694 | |
| 1695 | static void __move_clean_buffers(struct dm_bufio_client *c) |
| 1696 | { |
| 1697 | cache_mark_many(&c->cache, LIST_DIRTY, LIST_CLEAN, cleaned, NULL); |
| 1698 | } |
| 1699 | |
| 1700 | struct write_context { |
| 1701 | int no_wait; |
| 1702 | struct list_head *write_list; |
| 1703 | }; |
| 1704 | |
| 1705 | static enum it_action write_one(struct dm_buffer *b, void *context) |
| 1706 | { |
| 1707 | struct write_context *wc = context; |
| 1708 | |
| 1709 | if (wc->no_wait && test_bit(B_WRITING, &b->state)) |
| 1710 | return IT_COMPLETE; |
| 1711 | |
| 1712 | __write_dirty_buffer(b, wc->write_list); |
| 1713 | return IT_NEXT; |
| 1714 | } |
| 1715 | |
| 1716 | static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait, |
| 1717 | struct list_head *write_list) |
| 1718 | { |
| 1719 | struct write_context wc = {.no_wait = no_wait, .write_list = write_list}; |
| 1720 | |
| 1721 | __move_clean_buffers(c); |
| 1722 | cache_iterate(&c->cache, LIST_DIRTY, write_one, &wc); |
| 1723 | } |
| 1724 | |
| 1725 | /* |
| 1726 | * Check if we're over watermark. |
| 1727 | * If we are over threshold_buffers, start freeing buffers. |
| 1728 | * If we're over "limit_buffers", block until we get under the limit. |
| 1729 | */ |
| 1730 | static void __check_watermark(struct dm_bufio_client *c, |
| 1731 | struct list_head *write_list) |
| 1732 | { |
| 1733 | if (cache_count(&c->cache, LIST_DIRTY) > |
| 1734 | cache_count(&c->cache, LIST_CLEAN) * DM_BUFIO_WRITEBACK_RATIO) |
| 1735 | __write_dirty_buffers_async(c, 1, write_list); |
| 1736 | } |
| 1737 | |
| 1738 | /* |
| 1739 | *-------------------------------------------------------------- |
| 1740 | * Getting a buffer |
| 1741 | *-------------------------------------------------------------- |
| 1742 | */ |
| 1743 | |
| 1744 | static void cache_put_and_wake(struct dm_bufio_client *c, struct dm_buffer *b) |
| 1745 | { |
| 1746 | /* |
| 1747 | * Relying on waitqueue_active() is racey, but we sleep |
| 1748 | * with schedule_timeout anyway. |
| 1749 | */ |
| 1750 | if (cache_put(&c->cache, b) && |
| 1751 | unlikely(waitqueue_active(&c->free_buffer_wait))) |
| 1752 | wake_up(&c->free_buffer_wait); |
| 1753 | } |
| 1754 | |
| 1755 | /* |
| 1756 | * This assumes you have already checked the cache to see if the buffer |
| 1757 | * is already present (it will recheck after dropping the lock for allocation). |
| 1758 | */ |
| 1759 | static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block, |
| 1760 | enum new_flag nf, int *need_submit, |
| 1761 | struct list_head *write_list) |
| 1762 | { |
| 1763 | struct dm_buffer *b, *new_b = NULL; |
| 1764 | |
| 1765 | *need_submit = 0; |
| 1766 | |
| 1767 | /* This can't be called with NF_GET */ |
| 1768 | if (WARN_ON_ONCE(nf == NF_GET)) |
| 1769 | return NULL; |
| 1770 | |
| 1771 | new_b = __alloc_buffer_wait(c, nf); |
| 1772 | if (!new_b) |
| 1773 | return NULL; |
| 1774 | |
| 1775 | /* |
| 1776 | * We've had a period where the mutex was unlocked, so need to |
| 1777 | * recheck the buffer tree. |
| 1778 | */ |
| 1779 | b = cache_get(&c->cache, block); |
| 1780 | if (b) { |
| 1781 | __free_buffer_wake(new_b); |
| 1782 | goto found_buffer; |
| 1783 | } |
| 1784 | |
| 1785 | __check_watermark(c, write_list); |
| 1786 | |
| 1787 | b = new_b; |
| 1788 | atomic_set(&b->hold_count, 1); |
| 1789 | WRITE_ONCE(b->last_accessed, jiffies); |
| 1790 | b->block = block; |
| 1791 | b->read_error = 0; |
| 1792 | b->write_error = 0; |
| 1793 | b->list_mode = LIST_CLEAN; |
| 1794 | |
| 1795 | if (nf == NF_FRESH) |
| 1796 | b->state = 0; |
| 1797 | else { |
| 1798 | b->state = 1 << B_READING; |
| 1799 | *need_submit = 1; |
| 1800 | } |
| 1801 | |
| 1802 | /* |
| 1803 | * We mustn't insert into the cache until the B_READING state |
| 1804 | * is set. Otherwise another thread could get it and use |
| 1805 | * it before it had been read. |
| 1806 | */ |
| 1807 | cache_insert(&c->cache, b); |
| 1808 | |
| 1809 | return b; |
| 1810 | |
| 1811 | found_buffer: |
| 1812 | if (nf == NF_PREFETCH) { |
| 1813 | cache_put_and_wake(c, b); |
| 1814 | return NULL; |
| 1815 | } |
| 1816 | |
| 1817 | /* |
| 1818 | * Note: it is essential that we don't wait for the buffer to be |
| 1819 | * read if dm_bufio_get function is used. Both dm_bufio_get and |
| 1820 | * dm_bufio_prefetch can be used in the driver request routine. |
| 1821 | * If the user called both dm_bufio_prefetch and dm_bufio_get on |
| 1822 | * the same buffer, it would deadlock if we waited. |
| 1823 | */ |
| 1824 | if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) { |
| 1825 | cache_put_and_wake(c, b); |
| 1826 | return NULL; |
| 1827 | } |
| 1828 | |
| 1829 | return b; |
| 1830 | } |
| 1831 | |
| 1832 | /* |
| 1833 | * The endio routine for reading: set the error, clear the bit and wake up |
| 1834 | * anyone waiting on the buffer. |
| 1835 | */ |
| 1836 | static void read_endio(struct dm_buffer *b, blk_status_t status) |
| 1837 | { |
| 1838 | b->read_error = status; |
| 1839 | |
| 1840 | BUG_ON(!test_bit(B_READING, &b->state)); |
| 1841 | |
| 1842 | smp_mb__before_atomic(); |
| 1843 | clear_bit(B_READING, &b->state); |
| 1844 | smp_mb__after_atomic(); |
| 1845 | |
| 1846 | wake_up_bit(&b->state, B_READING); |
| 1847 | } |
| 1848 | |
| 1849 | /* |
| 1850 | * A common routine for dm_bufio_new and dm_bufio_read. Operation of these |
| 1851 | * functions is similar except that dm_bufio_new doesn't read the |
| 1852 | * buffer from the disk (assuming that the caller overwrites all the data |
| 1853 | * and uses dm_bufio_mark_buffer_dirty to write new data back). |
| 1854 | */ |
| 1855 | static void *new_read(struct dm_bufio_client *c, sector_t block, |
| 1856 | enum new_flag nf, struct dm_buffer **bp, |
| 1857 | unsigned short ioprio) |
| 1858 | { |
| 1859 | int need_submit = 0; |
| 1860 | struct dm_buffer *b; |
| 1861 | |
| 1862 | LIST_HEAD(write_list); |
| 1863 | |
| 1864 | *bp = NULL; |
| 1865 | |
| 1866 | /* |
| 1867 | * Fast path, hopefully the block is already in the cache. No need |
| 1868 | * to get the client lock for this. |
| 1869 | */ |
| 1870 | b = cache_get(&c->cache, block); |
| 1871 | if (b) { |
| 1872 | if (nf == NF_PREFETCH) { |
| 1873 | cache_put_and_wake(c, b); |
| 1874 | return NULL; |
| 1875 | } |
| 1876 | |
| 1877 | /* |
| 1878 | * Note: it is essential that we don't wait for the buffer to be |
| 1879 | * read if dm_bufio_get function is used. Both dm_bufio_get and |
| 1880 | * dm_bufio_prefetch can be used in the driver request routine. |
| 1881 | * If the user called both dm_bufio_prefetch and dm_bufio_get on |
| 1882 | * the same buffer, it would deadlock if we waited. |
| 1883 | */ |
| 1884 | if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) { |
| 1885 | cache_put_and_wake(c, b); |
| 1886 | return NULL; |
| 1887 | } |
| 1888 | } |
| 1889 | |
| 1890 | if (!b) { |
| 1891 | if (nf == NF_GET) |
| 1892 | return NULL; |
| 1893 | |
| 1894 | dm_bufio_lock(c); |
| 1895 | b = __bufio_new(c, block, nf, &need_submit, &write_list); |
| 1896 | dm_bufio_unlock(c); |
| 1897 | } |
| 1898 | |
| 1899 | #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING |
| 1900 | if (b && (atomic_read(&b->hold_count) == 1)) |
| 1901 | buffer_record_stack(b); |
| 1902 | #endif |
| 1903 | |
| 1904 | __flush_write_list(&write_list); |
| 1905 | |
| 1906 | if (!b) |
| 1907 | return NULL; |
| 1908 | |
| 1909 | if (need_submit) |
| 1910 | submit_io(b, REQ_OP_READ, ioprio, read_endio); |
| 1911 | |
| 1912 | if (nf != NF_GET) /* we already tested this condition above */ |
| 1913 | wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); |
| 1914 | |
| 1915 | if (b->read_error) { |
| 1916 | int error = blk_status_to_errno(b->read_error); |
| 1917 | |
| 1918 | dm_bufio_release(b); |
| 1919 | |
| 1920 | return ERR_PTR(error); |
| 1921 | } |
| 1922 | |
| 1923 | *bp = b; |
| 1924 | |
| 1925 | return b->data; |
| 1926 | } |
| 1927 | |
| 1928 | void *dm_bufio_get(struct dm_bufio_client *c, sector_t block, |
| 1929 | struct dm_buffer **bp) |
| 1930 | { |
| 1931 | return new_read(c, block, NF_GET, bp, IOPRIO_DEFAULT); |
| 1932 | } |
| 1933 | EXPORT_SYMBOL_GPL(dm_bufio_get); |
| 1934 | |
| 1935 | static void *__dm_bufio_read(struct dm_bufio_client *c, sector_t block, |
| 1936 | struct dm_buffer **bp, unsigned short ioprio) |
| 1937 | { |
| 1938 | if (WARN_ON_ONCE(dm_bufio_in_request())) |
| 1939 | return ERR_PTR(-EINVAL); |
| 1940 | |
| 1941 | return new_read(c, block, NF_READ, bp, ioprio); |
| 1942 | } |
| 1943 | |
| 1944 | void *dm_bufio_read(struct dm_bufio_client *c, sector_t block, |
| 1945 | struct dm_buffer **bp) |
| 1946 | { |
| 1947 | return __dm_bufio_read(c, block, bp, IOPRIO_DEFAULT); |
| 1948 | } |
| 1949 | EXPORT_SYMBOL_GPL(dm_bufio_read); |
| 1950 | |
| 1951 | void *dm_bufio_read_with_ioprio(struct dm_bufio_client *c, sector_t block, |
| 1952 | struct dm_buffer **bp, unsigned short ioprio) |
| 1953 | { |
| 1954 | return __dm_bufio_read(c, block, bp, ioprio); |
| 1955 | } |
| 1956 | EXPORT_SYMBOL_GPL(dm_bufio_read_with_ioprio); |
| 1957 | |
| 1958 | void *dm_bufio_new(struct dm_bufio_client *c, sector_t block, |
| 1959 | struct dm_buffer **bp) |
| 1960 | { |
| 1961 | if (WARN_ON_ONCE(dm_bufio_in_request())) |
| 1962 | return ERR_PTR(-EINVAL); |
| 1963 | |
| 1964 | return new_read(c, block, NF_FRESH, bp, IOPRIO_DEFAULT); |
| 1965 | } |
| 1966 | EXPORT_SYMBOL_GPL(dm_bufio_new); |
| 1967 | |
| 1968 | static void __dm_bufio_prefetch(struct dm_bufio_client *c, |
| 1969 | sector_t block, unsigned int n_blocks, |
| 1970 | unsigned short ioprio) |
| 1971 | { |
| 1972 | struct blk_plug plug; |
| 1973 | |
| 1974 | LIST_HEAD(write_list); |
| 1975 | |
| 1976 | if (WARN_ON_ONCE(dm_bufio_in_request())) |
| 1977 | return; /* should never happen */ |
| 1978 | |
| 1979 | blk_start_plug(&plug); |
| 1980 | |
| 1981 | for (; n_blocks--; block++) { |
| 1982 | int need_submit; |
| 1983 | struct dm_buffer *b; |
| 1984 | |
| 1985 | b = cache_get(&c->cache, block); |
| 1986 | if (b) { |
| 1987 | /* already in cache */ |
| 1988 | cache_put_and_wake(c, b); |
| 1989 | continue; |
| 1990 | } |
| 1991 | |
| 1992 | dm_bufio_lock(c); |
| 1993 | b = __bufio_new(c, block, NF_PREFETCH, &need_submit, |
| 1994 | &write_list); |
| 1995 | if (unlikely(!list_empty(&write_list))) { |
| 1996 | dm_bufio_unlock(c); |
| 1997 | blk_finish_plug(&plug); |
| 1998 | __flush_write_list(&write_list); |
| 1999 | blk_start_plug(&plug); |
| 2000 | dm_bufio_lock(c); |
| 2001 | } |
| 2002 | if (unlikely(b != NULL)) { |
| 2003 | dm_bufio_unlock(c); |
| 2004 | |
| 2005 | if (need_submit) |
| 2006 | submit_io(b, REQ_OP_READ, ioprio, read_endio); |
| 2007 | dm_bufio_release(b); |
| 2008 | |
| 2009 | cond_resched(); |
| 2010 | |
| 2011 | if (!n_blocks) |
| 2012 | goto flush_plug; |
| 2013 | dm_bufio_lock(c); |
| 2014 | } |
| 2015 | dm_bufio_unlock(c); |
| 2016 | } |
| 2017 | |
| 2018 | flush_plug: |
| 2019 | blk_finish_plug(&plug); |
| 2020 | } |
| 2021 | |
| 2022 | void dm_bufio_prefetch(struct dm_bufio_client *c, sector_t block, unsigned int n_blocks) |
| 2023 | { |
| 2024 | return __dm_bufio_prefetch(c, block, n_blocks, IOPRIO_DEFAULT); |
| 2025 | } |
| 2026 | EXPORT_SYMBOL_GPL(dm_bufio_prefetch); |
| 2027 | |
| 2028 | void dm_bufio_prefetch_with_ioprio(struct dm_bufio_client *c, sector_t block, |
| 2029 | unsigned int n_blocks, unsigned short ioprio) |
| 2030 | { |
| 2031 | return __dm_bufio_prefetch(c, block, n_blocks, ioprio); |
| 2032 | } |
| 2033 | EXPORT_SYMBOL_GPL(dm_bufio_prefetch_with_ioprio); |
| 2034 | |
| 2035 | void dm_bufio_release(struct dm_buffer *b) |
| 2036 | { |
| 2037 | struct dm_bufio_client *c = b->c; |
| 2038 | |
| 2039 | /* |
| 2040 | * If there were errors on the buffer, and the buffer is not |
| 2041 | * to be written, free the buffer. There is no point in caching |
| 2042 | * invalid buffer. |
| 2043 | */ |
| 2044 | if ((b->read_error || b->write_error) && |
| 2045 | !test_bit_acquire(B_READING, &b->state) && |
| 2046 | !test_bit(B_WRITING, &b->state) && |
| 2047 | !test_bit(B_DIRTY, &b->state)) { |
| 2048 | dm_bufio_lock(c); |
| 2049 | |
| 2050 | /* cache remove can fail if there are other holders */ |
| 2051 | if (cache_remove(&c->cache, b)) { |
| 2052 | __free_buffer_wake(b); |
| 2053 | dm_bufio_unlock(c); |
| 2054 | return; |
| 2055 | } |
| 2056 | |
| 2057 | dm_bufio_unlock(c); |
| 2058 | } |
| 2059 | |
| 2060 | cache_put_and_wake(c, b); |
| 2061 | } |
| 2062 | EXPORT_SYMBOL_GPL(dm_bufio_release); |
| 2063 | |
| 2064 | void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b, |
| 2065 | unsigned int start, unsigned int end) |
| 2066 | { |
| 2067 | struct dm_bufio_client *c = b->c; |
| 2068 | |
| 2069 | BUG_ON(start >= end); |
| 2070 | BUG_ON(end > b->c->block_size); |
| 2071 | |
| 2072 | dm_bufio_lock(c); |
| 2073 | |
| 2074 | BUG_ON(test_bit(B_READING, &b->state)); |
| 2075 | |
| 2076 | if (!test_and_set_bit(B_DIRTY, &b->state)) { |
| 2077 | b->dirty_start = start; |
| 2078 | b->dirty_end = end; |
| 2079 | cache_mark(&c->cache, b, LIST_DIRTY); |
| 2080 | } else { |
| 2081 | if (start < b->dirty_start) |
| 2082 | b->dirty_start = start; |
| 2083 | if (end > b->dirty_end) |
| 2084 | b->dirty_end = end; |
| 2085 | } |
| 2086 | |
| 2087 | dm_bufio_unlock(c); |
| 2088 | } |
| 2089 | EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty); |
| 2090 | |
| 2091 | void dm_bufio_mark_buffer_dirty(struct dm_buffer *b) |
| 2092 | { |
| 2093 | dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size); |
| 2094 | } |
| 2095 | EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty); |
| 2096 | |
| 2097 | void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c) |
| 2098 | { |
| 2099 | LIST_HEAD(write_list); |
| 2100 | |
| 2101 | if (WARN_ON_ONCE(dm_bufio_in_request())) |
| 2102 | return; /* should never happen */ |
| 2103 | |
| 2104 | dm_bufio_lock(c); |
| 2105 | __write_dirty_buffers_async(c, 0, &write_list); |
| 2106 | dm_bufio_unlock(c); |
| 2107 | __flush_write_list(&write_list); |
| 2108 | } |
| 2109 | EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async); |
| 2110 | |
| 2111 | /* |
| 2112 | * For performance, it is essential that the buffers are written asynchronously |
| 2113 | * and simultaneously (so that the block layer can merge the writes) and then |
| 2114 | * waited upon. |
| 2115 | * |
| 2116 | * Finally, we flush hardware disk cache. |
| 2117 | */ |
| 2118 | static bool is_writing(struct lru_entry *e, void *context) |
| 2119 | { |
| 2120 | struct dm_buffer *b = le_to_buffer(e); |
| 2121 | |
| 2122 | return test_bit(B_WRITING, &b->state); |
| 2123 | } |
| 2124 | |
| 2125 | int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c) |
| 2126 | { |
| 2127 | int a, f; |
| 2128 | unsigned long nr_buffers; |
| 2129 | struct lru_entry *e; |
| 2130 | struct lru_iter it; |
| 2131 | |
| 2132 | LIST_HEAD(write_list); |
| 2133 | |
| 2134 | dm_bufio_lock(c); |
| 2135 | __write_dirty_buffers_async(c, 0, &write_list); |
| 2136 | dm_bufio_unlock(c); |
| 2137 | __flush_write_list(&write_list); |
| 2138 | dm_bufio_lock(c); |
| 2139 | |
| 2140 | nr_buffers = cache_count(&c->cache, LIST_DIRTY); |
| 2141 | lru_iter_begin(&c->cache.lru[LIST_DIRTY], &it); |
| 2142 | while ((e = lru_iter_next(&it, is_writing, c))) { |
| 2143 | struct dm_buffer *b = le_to_buffer(e); |
| 2144 | __cache_inc_buffer(b); |
| 2145 | |
| 2146 | BUG_ON(test_bit(B_READING, &b->state)); |
| 2147 | |
| 2148 | if (nr_buffers) { |
| 2149 | nr_buffers--; |
| 2150 | dm_bufio_unlock(c); |
| 2151 | wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); |
| 2152 | dm_bufio_lock(c); |
| 2153 | } else { |
| 2154 | wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); |
| 2155 | } |
| 2156 | |
| 2157 | if (!test_bit(B_DIRTY, &b->state) && !test_bit(B_WRITING, &b->state)) |
| 2158 | cache_mark(&c->cache, b, LIST_CLEAN); |
| 2159 | |
| 2160 | cache_put_and_wake(c, b); |
| 2161 | |
| 2162 | cond_resched(); |
| 2163 | } |
| 2164 | lru_iter_end(&it); |
| 2165 | |
| 2166 | wake_up(&c->free_buffer_wait); |
| 2167 | dm_bufio_unlock(c); |
| 2168 | |
| 2169 | a = xchg(&c->async_write_error, 0); |
| 2170 | f = dm_bufio_issue_flush(c); |
| 2171 | if (a) |
| 2172 | return a; |
| 2173 | |
| 2174 | return f; |
| 2175 | } |
| 2176 | EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers); |
| 2177 | |
| 2178 | /* |
| 2179 | * Use dm-io to send an empty barrier to flush the device. |
| 2180 | */ |
| 2181 | int dm_bufio_issue_flush(struct dm_bufio_client *c) |
| 2182 | { |
| 2183 | struct dm_io_request io_req = { |
| 2184 | .bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC, |
| 2185 | .mem.type = DM_IO_KMEM, |
| 2186 | .mem.ptr.addr = NULL, |
| 2187 | .client = c->dm_io, |
| 2188 | }; |
| 2189 | struct dm_io_region io_reg = { |
| 2190 | .bdev = c->bdev, |
| 2191 | .sector = 0, |
| 2192 | .count = 0, |
| 2193 | }; |
| 2194 | |
| 2195 | if (WARN_ON_ONCE(dm_bufio_in_request())) |
| 2196 | return -EINVAL; |
| 2197 | |
| 2198 | return dm_io(&io_req, 1, &io_reg, NULL, IOPRIO_DEFAULT); |
| 2199 | } |
| 2200 | EXPORT_SYMBOL_GPL(dm_bufio_issue_flush); |
| 2201 | |
| 2202 | /* |
| 2203 | * Use dm-io to send a discard request to flush the device. |
| 2204 | */ |
| 2205 | int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count) |
| 2206 | { |
| 2207 | struct dm_io_request io_req = { |
| 2208 | .bi_opf = REQ_OP_DISCARD | REQ_SYNC, |
| 2209 | .mem.type = DM_IO_KMEM, |
| 2210 | .mem.ptr.addr = NULL, |
| 2211 | .client = c->dm_io, |
| 2212 | }; |
| 2213 | struct dm_io_region io_reg = { |
| 2214 | .bdev = c->bdev, |
| 2215 | .sector = block_to_sector(c, block), |
| 2216 | .count = block_to_sector(c, count), |
| 2217 | }; |
| 2218 | |
| 2219 | if (WARN_ON_ONCE(dm_bufio_in_request())) |
| 2220 | return -EINVAL; /* discards are optional */ |
| 2221 | |
| 2222 | return dm_io(&io_req, 1, &io_reg, NULL, IOPRIO_DEFAULT); |
| 2223 | } |
| 2224 | EXPORT_SYMBOL_GPL(dm_bufio_issue_discard); |
| 2225 | |
| 2226 | static void forget_buffer(struct dm_bufio_client *c, sector_t block) |
| 2227 | { |
| 2228 | struct dm_buffer *b; |
| 2229 | |
| 2230 | b = cache_get(&c->cache, block); |
| 2231 | if (b) { |
| 2232 | if (likely(!smp_load_acquire(&b->state))) { |
| 2233 | if (cache_remove(&c->cache, b)) |
| 2234 | __free_buffer_wake(b); |
| 2235 | else |
| 2236 | cache_put_and_wake(c, b); |
| 2237 | } else { |
| 2238 | cache_put_and_wake(c, b); |
| 2239 | } |
| 2240 | } |
| 2241 | } |
| 2242 | |
| 2243 | /* |
| 2244 | * Free the given buffer. |
| 2245 | * |
| 2246 | * This is just a hint, if the buffer is in use or dirty, this function |
| 2247 | * does nothing. |
| 2248 | */ |
| 2249 | void dm_bufio_forget(struct dm_bufio_client *c, sector_t block) |
| 2250 | { |
| 2251 | dm_bufio_lock(c); |
| 2252 | forget_buffer(c, block); |
| 2253 | dm_bufio_unlock(c); |
| 2254 | } |
| 2255 | EXPORT_SYMBOL_GPL(dm_bufio_forget); |
| 2256 | |
| 2257 | static enum evict_result idle(struct dm_buffer *b, void *context) |
| 2258 | { |
| 2259 | return b->state ? ER_DONT_EVICT : ER_EVICT; |
| 2260 | } |
| 2261 | |
| 2262 | void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks) |
| 2263 | { |
| 2264 | dm_bufio_lock(c); |
| 2265 | cache_remove_range(&c->cache, block, block + n_blocks, idle, __free_buffer_wake); |
| 2266 | dm_bufio_unlock(c); |
| 2267 | } |
| 2268 | EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers); |
| 2269 | |
| 2270 | void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned int n) |
| 2271 | { |
| 2272 | c->minimum_buffers = n; |
| 2273 | } |
| 2274 | EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers); |
| 2275 | |
| 2276 | unsigned int dm_bufio_get_block_size(struct dm_bufio_client *c) |
| 2277 | { |
| 2278 | return c->block_size; |
| 2279 | } |
| 2280 | EXPORT_SYMBOL_GPL(dm_bufio_get_block_size); |
| 2281 | |
| 2282 | sector_t dm_bufio_get_device_size(struct dm_bufio_client *c) |
| 2283 | { |
| 2284 | sector_t s = bdev_nr_sectors(c->bdev); |
| 2285 | |
| 2286 | if (s >= c->start) |
| 2287 | s -= c->start; |
| 2288 | else |
| 2289 | s = 0; |
| 2290 | if (likely(c->sectors_per_block_bits >= 0)) |
| 2291 | s >>= c->sectors_per_block_bits; |
| 2292 | else |
| 2293 | sector_div(s, c->block_size >> SECTOR_SHIFT); |
| 2294 | return s; |
| 2295 | } |
| 2296 | EXPORT_SYMBOL_GPL(dm_bufio_get_device_size); |
| 2297 | |
| 2298 | struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c) |
| 2299 | { |
| 2300 | return c->dm_io; |
| 2301 | } |
| 2302 | EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client); |
| 2303 | |
| 2304 | sector_t dm_bufio_get_block_number(struct dm_buffer *b) |
| 2305 | { |
| 2306 | return b->block; |
| 2307 | } |
| 2308 | EXPORT_SYMBOL_GPL(dm_bufio_get_block_number); |
| 2309 | |
| 2310 | void *dm_bufio_get_block_data(struct dm_buffer *b) |
| 2311 | { |
| 2312 | return b->data; |
| 2313 | } |
| 2314 | EXPORT_SYMBOL_GPL(dm_bufio_get_block_data); |
| 2315 | |
| 2316 | void *dm_bufio_get_aux_data(struct dm_buffer *b) |
| 2317 | { |
| 2318 | return b + 1; |
| 2319 | } |
| 2320 | EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data); |
| 2321 | |
| 2322 | struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b) |
| 2323 | { |
| 2324 | return b->c; |
| 2325 | } |
| 2326 | EXPORT_SYMBOL_GPL(dm_bufio_get_client); |
| 2327 | |
| 2328 | static enum it_action warn_leak(struct dm_buffer *b, void *context) |
| 2329 | { |
| 2330 | bool *warned = context; |
| 2331 | |
| 2332 | WARN_ON(!(*warned)); |
| 2333 | *warned = true; |
| 2334 | DMERR("leaked buffer %llx, hold count %u, list %d", |
| 2335 | (unsigned long long)b->block, atomic_read(&b->hold_count), b->list_mode); |
| 2336 | #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING |
| 2337 | stack_trace_print(b->stack_entries, b->stack_len, 1); |
| 2338 | /* mark unclaimed to avoid WARN_ON at end of drop_buffers() */ |
| 2339 | atomic_set(&b->hold_count, 0); |
| 2340 | #endif |
| 2341 | return IT_NEXT; |
| 2342 | } |
| 2343 | |
| 2344 | static void drop_buffers(struct dm_bufio_client *c) |
| 2345 | { |
| 2346 | int i; |
| 2347 | struct dm_buffer *b; |
| 2348 | |
| 2349 | if (WARN_ON(dm_bufio_in_request())) |
| 2350 | return; /* should never happen */ |
| 2351 | |
| 2352 | /* |
| 2353 | * An optimization so that the buffers are not written one-by-one. |
| 2354 | */ |
| 2355 | dm_bufio_write_dirty_buffers_async(c); |
| 2356 | |
| 2357 | dm_bufio_lock(c); |
| 2358 | |
| 2359 | while ((b = __get_unclaimed_buffer(c))) |
| 2360 | __free_buffer_wake(b); |
| 2361 | |
| 2362 | for (i = 0; i < LIST_SIZE; i++) { |
| 2363 | bool warned = false; |
| 2364 | |
| 2365 | cache_iterate(&c->cache, i, warn_leak, &warned); |
| 2366 | } |
| 2367 | |
| 2368 | #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING |
| 2369 | while ((b = __get_unclaimed_buffer(c))) |
| 2370 | __free_buffer_wake(b); |
| 2371 | #endif |
| 2372 | |
| 2373 | for (i = 0; i < LIST_SIZE; i++) |
| 2374 | WARN_ON(cache_count(&c->cache, i)); |
| 2375 | |
| 2376 | dm_bufio_unlock(c); |
| 2377 | } |
| 2378 | |
| 2379 | static unsigned long get_retain_buffers(struct dm_bufio_client *c) |
| 2380 | { |
| 2381 | unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes); |
| 2382 | |
| 2383 | if (likely(c->sectors_per_block_bits >= 0)) |
| 2384 | retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT; |
| 2385 | else |
| 2386 | retain_bytes /= c->block_size; |
| 2387 | |
| 2388 | return retain_bytes; |
| 2389 | } |
| 2390 | |
| 2391 | static void __scan(struct dm_bufio_client *c) |
| 2392 | { |
| 2393 | int l; |
| 2394 | struct dm_buffer *b; |
| 2395 | unsigned long freed = 0; |
| 2396 | unsigned long retain_target = get_retain_buffers(c); |
| 2397 | unsigned long count = cache_total(&c->cache); |
| 2398 | |
| 2399 | for (l = 0; l < LIST_SIZE; l++) { |
| 2400 | while (true) { |
| 2401 | if (count - freed <= retain_target) |
| 2402 | atomic_long_set(&c->need_shrink, 0); |
| 2403 | if (!atomic_long_read(&c->need_shrink)) |
| 2404 | break; |
| 2405 | |
| 2406 | b = cache_evict(&c->cache, l, |
| 2407 | l == LIST_CLEAN ? is_clean : is_dirty, c); |
| 2408 | if (!b) |
| 2409 | break; |
| 2410 | |
| 2411 | __make_buffer_clean(b); |
| 2412 | __free_buffer_wake(b); |
| 2413 | |
| 2414 | atomic_long_dec(&c->need_shrink); |
| 2415 | freed++; |
| 2416 | |
| 2417 | if (unlikely(freed % SCAN_RESCHED_CYCLE == 0)) { |
| 2418 | dm_bufio_unlock(c); |
| 2419 | cond_resched(); |
| 2420 | dm_bufio_lock(c); |
| 2421 | } |
| 2422 | } |
| 2423 | } |
| 2424 | } |
| 2425 | |
| 2426 | static void shrink_work(struct work_struct *w) |
| 2427 | { |
| 2428 | struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work); |
| 2429 | |
| 2430 | dm_bufio_lock(c); |
| 2431 | __scan(c); |
| 2432 | dm_bufio_unlock(c); |
| 2433 | } |
| 2434 | |
| 2435 | static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) |
| 2436 | { |
| 2437 | struct dm_bufio_client *c; |
| 2438 | |
| 2439 | c = shrink->private_data; |
| 2440 | atomic_long_add(sc->nr_to_scan, &c->need_shrink); |
| 2441 | queue_work(dm_bufio_wq, &c->shrink_work); |
| 2442 | |
| 2443 | return sc->nr_to_scan; |
| 2444 | } |
| 2445 | |
| 2446 | static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc) |
| 2447 | { |
| 2448 | struct dm_bufio_client *c = shrink->private_data; |
| 2449 | unsigned long count = cache_total(&c->cache); |
| 2450 | unsigned long retain_target = get_retain_buffers(c); |
| 2451 | unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink); |
| 2452 | |
| 2453 | if (unlikely(count < retain_target)) |
| 2454 | count = 0; |
| 2455 | else |
| 2456 | count -= retain_target; |
| 2457 | |
| 2458 | if (unlikely(count < queued_for_cleanup)) |
| 2459 | count = 0; |
| 2460 | else |
| 2461 | count -= queued_for_cleanup; |
| 2462 | |
| 2463 | return count; |
| 2464 | } |
| 2465 | |
| 2466 | /* |
| 2467 | * Create the buffering interface |
| 2468 | */ |
| 2469 | struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned int block_size, |
| 2470 | unsigned int reserved_buffers, unsigned int aux_size, |
| 2471 | void (*alloc_callback)(struct dm_buffer *), |
| 2472 | void (*write_callback)(struct dm_buffer *), |
| 2473 | unsigned int flags) |
| 2474 | { |
| 2475 | int r; |
| 2476 | unsigned int num_locks; |
| 2477 | struct dm_bufio_client *c; |
| 2478 | char slab_name[64]; |
| 2479 | static atomic_t seqno = ATOMIC_INIT(0); |
| 2480 | |
| 2481 | if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) { |
| 2482 | DMERR("%s: block size not specified or is not multiple of 512b", __func__); |
| 2483 | r = -EINVAL; |
| 2484 | goto bad_client; |
| 2485 | } |
| 2486 | |
| 2487 | num_locks = dm_num_hash_locks(); |
| 2488 | c = kzalloc(sizeof(*c) + (num_locks * sizeof(struct buffer_tree)), GFP_KERNEL); |
| 2489 | if (!c) { |
| 2490 | r = -ENOMEM; |
| 2491 | goto bad_client; |
| 2492 | } |
| 2493 | cache_init(&c->cache, num_locks, (flags & DM_BUFIO_CLIENT_NO_SLEEP) != 0); |
| 2494 | |
| 2495 | c->bdev = bdev; |
| 2496 | c->block_size = block_size; |
| 2497 | if (is_power_of_2(block_size)) |
| 2498 | c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT; |
| 2499 | else |
| 2500 | c->sectors_per_block_bits = -1; |
| 2501 | |
| 2502 | c->alloc_callback = alloc_callback; |
| 2503 | c->write_callback = write_callback; |
| 2504 | |
| 2505 | if (flags & DM_BUFIO_CLIENT_NO_SLEEP) { |
| 2506 | c->no_sleep = true; |
| 2507 | static_branch_inc(&no_sleep_enabled); |
| 2508 | } |
| 2509 | |
| 2510 | mutex_init(&c->lock); |
| 2511 | spin_lock_init(&c->spinlock); |
| 2512 | INIT_LIST_HEAD(&c->reserved_buffers); |
| 2513 | c->need_reserved_buffers = reserved_buffers; |
| 2514 | |
| 2515 | dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS); |
| 2516 | |
| 2517 | init_waitqueue_head(&c->free_buffer_wait); |
| 2518 | c->async_write_error = 0; |
| 2519 | |
| 2520 | c->dm_io = dm_io_client_create(); |
| 2521 | if (IS_ERR(c->dm_io)) { |
| 2522 | r = PTR_ERR(c->dm_io); |
| 2523 | goto bad_dm_io; |
| 2524 | } |
| 2525 | |
| 2526 | if (block_size <= KMALLOC_MAX_SIZE && !is_power_of_2(block_size)) { |
| 2527 | unsigned int align = min(1U << __ffs(block_size), (unsigned int)PAGE_SIZE); |
| 2528 | |
| 2529 | snprintf(slab_name, sizeof(slab_name), "dm_bufio_cache-%u-%u", |
| 2530 | block_size, atomic_inc_return(&seqno)); |
| 2531 | c->slab_cache = kmem_cache_create(slab_name, block_size, align, |
| 2532 | SLAB_RECLAIM_ACCOUNT, NULL); |
| 2533 | if (!c->slab_cache) { |
| 2534 | r = -ENOMEM; |
| 2535 | goto bad; |
| 2536 | } |
| 2537 | } |
| 2538 | if (aux_size) |
| 2539 | snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer-%u-%u", |
| 2540 | aux_size, atomic_inc_return(&seqno)); |
| 2541 | else |
| 2542 | snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer-%u", |
| 2543 | atomic_inc_return(&seqno)); |
| 2544 | c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size, |
| 2545 | 0, SLAB_RECLAIM_ACCOUNT, NULL); |
| 2546 | if (!c->slab_buffer) { |
| 2547 | r = -ENOMEM; |
| 2548 | goto bad; |
| 2549 | } |
| 2550 | |
| 2551 | while (c->need_reserved_buffers) { |
| 2552 | struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL); |
| 2553 | |
| 2554 | if (!b) { |
| 2555 | r = -ENOMEM; |
| 2556 | goto bad; |
| 2557 | } |
| 2558 | __free_buffer_wake(b); |
| 2559 | } |
| 2560 | |
| 2561 | INIT_WORK(&c->shrink_work, shrink_work); |
| 2562 | atomic_long_set(&c->need_shrink, 0); |
| 2563 | |
| 2564 | c->shrinker = shrinker_alloc(0, "dm-bufio:(%u:%u)", |
| 2565 | MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev)); |
| 2566 | if (!c->shrinker) { |
| 2567 | r = -ENOMEM; |
| 2568 | goto bad; |
| 2569 | } |
| 2570 | |
| 2571 | c->shrinker->count_objects = dm_bufio_shrink_count; |
| 2572 | c->shrinker->scan_objects = dm_bufio_shrink_scan; |
| 2573 | c->shrinker->seeks = 1; |
| 2574 | c->shrinker->batch = 0; |
| 2575 | c->shrinker->private_data = c; |
| 2576 | |
| 2577 | shrinker_register(c->shrinker); |
| 2578 | |
| 2579 | mutex_lock(&dm_bufio_clients_lock); |
| 2580 | dm_bufio_client_count++; |
| 2581 | list_add(&c->client_list, &dm_bufio_all_clients); |
| 2582 | __cache_size_refresh(); |
| 2583 | mutex_unlock(&dm_bufio_clients_lock); |
| 2584 | |
| 2585 | return c; |
| 2586 | |
| 2587 | bad: |
| 2588 | while (!list_empty(&c->reserved_buffers)) { |
| 2589 | struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next); |
| 2590 | |
| 2591 | list_del(&b->lru.list); |
| 2592 | free_buffer(b); |
| 2593 | } |
| 2594 | kmem_cache_destroy(c->slab_cache); |
| 2595 | kmem_cache_destroy(c->slab_buffer); |
| 2596 | dm_io_client_destroy(c->dm_io); |
| 2597 | bad_dm_io: |
| 2598 | mutex_destroy(&c->lock); |
| 2599 | if (c->no_sleep) |
| 2600 | static_branch_dec(&no_sleep_enabled); |
| 2601 | kfree(c); |
| 2602 | bad_client: |
| 2603 | return ERR_PTR(r); |
| 2604 | } |
| 2605 | EXPORT_SYMBOL_GPL(dm_bufio_client_create); |
| 2606 | |
| 2607 | /* |
| 2608 | * Free the buffering interface. |
| 2609 | * It is required that there are no references on any buffers. |
| 2610 | */ |
| 2611 | void dm_bufio_client_destroy(struct dm_bufio_client *c) |
| 2612 | { |
| 2613 | unsigned int i; |
| 2614 | |
| 2615 | drop_buffers(c); |
| 2616 | |
| 2617 | shrinker_free(c->shrinker); |
| 2618 | flush_work(&c->shrink_work); |
| 2619 | |
| 2620 | mutex_lock(&dm_bufio_clients_lock); |
| 2621 | |
| 2622 | list_del(&c->client_list); |
| 2623 | dm_bufio_client_count--; |
| 2624 | __cache_size_refresh(); |
| 2625 | |
| 2626 | mutex_unlock(&dm_bufio_clients_lock); |
| 2627 | |
| 2628 | WARN_ON(c->need_reserved_buffers); |
| 2629 | |
| 2630 | while (!list_empty(&c->reserved_buffers)) { |
| 2631 | struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next); |
| 2632 | |
| 2633 | list_del(&b->lru.list); |
| 2634 | free_buffer(b); |
| 2635 | } |
| 2636 | |
| 2637 | for (i = 0; i < LIST_SIZE; i++) |
| 2638 | if (cache_count(&c->cache, i)) |
| 2639 | DMERR("leaked buffer count %d: %lu", i, cache_count(&c->cache, i)); |
| 2640 | |
| 2641 | for (i = 0; i < LIST_SIZE; i++) |
| 2642 | WARN_ON(cache_count(&c->cache, i)); |
| 2643 | |
| 2644 | cache_destroy(&c->cache); |
| 2645 | kmem_cache_destroy(c->slab_cache); |
| 2646 | kmem_cache_destroy(c->slab_buffer); |
| 2647 | dm_io_client_destroy(c->dm_io); |
| 2648 | mutex_destroy(&c->lock); |
| 2649 | if (c->no_sleep) |
| 2650 | static_branch_dec(&no_sleep_enabled); |
| 2651 | kfree(c); |
| 2652 | } |
| 2653 | EXPORT_SYMBOL_GPL(dm_bufio_client_destroy); |
| 2654 | |
| 2655 | void dm_bufio_client_reset(struct dm_bufio_client *c) |
| 2656 | { |
| 2657 | drop_buffers(c); |
| 2658 | flush_work(&c->shrink_work); |
| 2659 | } |
| 2660 | EXPORT_SYMBOL_GPL(dm_bufio_client_reset); |
| 2661 | |
| 2662 | void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start) |
| 2663 | { |
| 2664 | c->start = start; |
| 2665 | } |
| 2666 | EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset); |
| 2667 | |
| 2668 | /*--------------------------------------------------------------*/ |
| 2669 | |
| 2670 | /* |
| 2671 | * Global cleanup tries to evict the oldest buffers from across _all_ |
| 2672 | * the clients. It does this by repeatedly evicting a few buffers from |
| 2673 | * the client that holds the oldest buffer. It's approximate, but hopefully |
| 2674 | * good enough. |
| 2675 | */ |
| 2676 | static struct dm_bufio_client *__pop_client(void) |
| 2677 | { |
| 2678 | struct list_head *h; |
| 2679 | |
| 2680 | if (list_empty(&dm_bufio_all_clients)) |
| 2681 | return NULL; |
| 2682 | |
| 2683 | h = dm_bufio_all_clients.next; |
| 2684 | list_del(h); |
| 2685 | return container_of(h, struct dm_bufio_client, client_list); |
| 2686 | } |
| 2687 | |
| 2688 | /* |
| 2689 | * Inserts the client in the global client list based on its |
| 2690 | * 'oldest_buffer' field. |
| 2691 | */ |
| 2692 | static void __insert_client(struct dm_bufio_client *new_client) |
| 2693 | { |
| 2694 | struct dm_bufio_client *c; |
| 2695 | struct list_head *h = dm_bufio_all_clients.next; |
| 2696 | |
| 2697 | while (h != &dm_bufio_all_clients) { |
| 2698 | c = container_of(h, struct dm_bufio_client, client_list); |
| 2699 | if (time_after_eq(c->oldest_buffer, new_client->oldest_buffer)) |
| 2700 | break; |
| 2701 | h = h->next; |
| 2702 | } |
| 2703 | |
| 2704 | list_add_tail(&new_client->client_list, h); |
| 2705 | } |
| 2706 | |
| 2707 | static enum evict_result select_for_evict(struct dm_buffer *b, void *context) |
| 2708 | { |
| 2709 | /* In no-sleep mode, we cannot wait on IO. */ |
| 2710 | if (static_branch_unlikely(&no_sleep_enabled) && b->c->no_sleep) { |
| 2711 | if (test_bit_acquire(B_READING, &b->state) || |
| 2712 | test_bit(B_WRITING, &b->state) || |
| 2713 | test_bit(B_DIRTY, &b->state)) |
| 2714 | return ER_DONT_EVICT; |
| 2715 | } |
| 2716 | return ER_EVICT; |
| 2717 | } |
| 2718 | |
| 2719 | static unsigned long __evict_a_few(unsigned long nr_buffers) |
| 2720 | { |
| 2721 | struct dm_bufio_client *c; |
| 2722 | unsigned long oldest_buffer = jiffies; |
| 2723 | unsigned long last_accessed; |
| 2724 | unsigned long count; |
| 2725 | struct dm_buffer *b; |
| 2726 | |
| 2727 | c = __pop_client(); |
| 2728 | if (!c) |
| 2729 | return 0; |
| 2730 | |
| 2731 | dm_bufio_lock(c); |
| 2732 | |
| 2733 | for (count = 0; count < nr_buffers; count++) { |
| 2734 | b = cache_evict(&c->cache, LIST_CLEAN, select_for_evict, NULL); |
| 2735 | if (!b) |
| 2736 | break; |
| 2737 | |
| 2738 | last_accessed = READ_ONCE(b->last_accessed); |
| 2739 | if (time_after_eq(oldest_buffer, last_accessed)) |
| 2740 | oldest_buffer = last_accessed; |
| 2741 | |
| 2742 | __make_buffer_clean(b); |
| 2743 | __free_buffer_wake(b); |
| 2744 | |
| 2745 | cond_resched(); |
| 2746 | } |
| 2747 | |
| 2748 | dm_bufio_unlock(c); |
| 2749 | |
| 2750 | if (count) |
| 2751 | c->oldest_buffer = oldest_buffer; |
| 2752 | __insert_client(c); |
| 2753 | |
| 2754 | return count; |
| 2755 | } |
| 2756 | |
| 2757 | static void check_watermarks(void) |
| 2758 | { |
| 2759 | LIST_HEAD(write_list); |
| 2760 | struct dm_bufio_client *c; |
| 2761 | |
| 2762 | mutex_lock(&dm_bufio_clients_lock); |
| 2763 | list_for_each_entry(c, &dm_bufio_all_clients, client_list) { |
| 2764 | dm_bufio_lock(c); |
| 2765 | __check_watermark(c, &write_list); |
| 2766 | dm_bufio_unlock(c); |
| 2767 | } |
| 2768 | mutex_unlock(&dm_bufio_clients_lock); |
| 2769 | |
| 2770 | __flush_write_list(&write_list); |
| 2771 | } |
| 2772 | |
| 2773 | static void evict_old(void) |
| 2774 | { |
| 2775 | unsigned long threshold = dm_bufio_cache_size - |
| 2776 | dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO; |
| 2777 | |
| 2778 | mutex_lock(&dm_bufio_clients_lock); |
| 2779 | while (dm_bufio_current_allocated > threshold) { |
| 2780 | if (!__evict_a_few(64)) |
| 2781 | break; |
| 2782 | cond_resched(); |
| 2783 | } |
| 2784 | mutex_unlock(&dm_bufio_clients_lock); |
| 2785 | } |
| 2786 | |
| 2787 | static void do_global_cleanup(struct work_struct *w) |
| 2788 | { |
| 2789 | check_watermarks(); |
| 2790 | evict_old(); |
| 2791 | } |
| 2792 | |
| 2793 | /* |
| 2794 | *-------------------------------------------------------------- |
| 2795 | * Module setup |
| 2796 | *-------------------------------------------------------------- |
| 2797 | */ |
| 2798 | |
| 2799 | /* |
| 2800 | * This is called only once for the whole dm_bufio module. |
| 2801 | * It initializes memory limit. |
| 2802 | */ |
| 2803 | static int __init dm_bufio_init(void) |
| 2804 | { |
| 2805 | __u64 mem; |
| 2806 | |
| 2807 | dm_bufio_allocated_kmem_cache = 0; |
| 2808 | dm_bufio_allocated_kmalloc = 0; |
| 2809 | dm_bufio_allocated_get_free_pages = 0; |
| 2810 | dm_bufio_allocated_vmalloc = 0; |
| 2811 | dm_bufio_current_allocated = 0; |
| 2812 | |
| 2813 | mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(), |
| 2814 | DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT; |
| 2815 | |
| 2816 | if (mem > ULONG_MAX) |
| 2817 | mem = ULONG_MAX; |
| 2818 | |
| 2819 | #ifdef CONFIG_MMU |
| 2820 | if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100)) |
| 2821 | mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100); |
| 2822 | #endif |
| 2823 | |
| 2824 | dm_bufio_default_cache_size = mem; |
| 2825 | |
| 2826 | mutex_lock(&dm_bufio_clients_lock); |
| 2827 | __cache_size_refresh(); |
| 2828 | mutex_unlock(&dm_bufio_clients_lock); |
| 2829 | |
| 2830 | dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0); |
| 2831 | if (!dm_bufio_wq) |
| 2832 | return -ENOMEM; |
| 2833 | |
| 2834 | INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup); |
| 2835 | |
| 2836 | return 0; |
| 2837 | } |
| 2838 | |
| 2839 | /* |
| 2840 | * This is called once when unloading the dm_bufio module. |
| 2841 | */ |
| 2842 | static void __exit dm_bufio_exit(void) |
| 2843 | { |
| 2844 | int bug = 0; |
| 2845 | |
| 2846 | destroy_workqueue(dm_bufio_wq); |
| 2847 | |
| 2848 | if (dm_bufio_client_count) { |
| 2849 | DMCRIT("%s: dm_bufio_client_count leaked: %d", |
| 2850 | __func__, dm_bufio_client_count); |
| 2851 | bug = 1; |
| 2852 | } |
| 2853 | |
| 2854 | if (dm_bufio_current_allocated) { |
| 2855 | DMCRIT("%s: dm_bufio_current_allocated leaked: %lu", |
| 2856 | __func__, dm_bufio_current_allocated); |
| 2857 | bug = 1; |
| 2858 | } |
| 2859 | |
| 2860 | if (dm_bufio_allocated_get_free_pages) { |
| 2861 | DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu", |
| 2862 | __func__, dm_bufio_allocated_get_free_pages); |
| 2863 | bug = 1; |
| 2864 | } |
| 2865 | |
| 2866 | if (dm_bufio_allocated_vmalloc) { |
| 2867 | DMCRIT("%s: dm_bufio_vmalloc leaked: %lu", |
| 2868 | __func__, dm_bufio_allocated_vmalloc); |
| 2869 | bug = 1; |
| 2870 | } |
| 2871 | |
| 2872 | WARN_ON(bug); /* leaks are not worth crashing the system */ |
| 2873 | } |
| 2874 | |
| 2875 | module_init(dm_bufio_init) |
| 2876 | module_exit(dm_bufio_exit) |
| 2877 | |
| 2878 | module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, 0644); |
| 2879 | MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache"); |
| 2880 | |
| 2881 | module_param_named(max_age_seconds, dm_bufio_max_age, uint, 0644); |
| 2882 | MODULE_PARM_DESC(max_age_seconds, "No longer does anything"); |
| 2883 | |
| 2884 | module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, 0644); |
| 2885 | MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory"); |
| 2886 | |
| 2887 | module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, 0644); |
| 2888 | MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory"); |
| 2889 | |
| 2890 | module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, 0444); |
| 2891 | MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc"); |
| 2892 | |
| 2893 | module_param_named(allocated_kmalloc_bytes, dm_bufio_allocated_kmalloc, ulong, 0444); |
| 2894 | MODULE_PARM_DESC(allocated_kmalloc_bytes, "Memory allocated with kmalloc_alloc"); |
| 2895 | |
| 2896 | module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, 0444); |
| 2897 | MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages"); |
| 2898 | |
| 2899 | module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, 0444); |
| 2900 | MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc"); |
| 2901 | |
| 2902 | module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, 0444); |
| 2903 | MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache"); |
| 2904 | |
| 2905 | MODULE_AUTHOR("Mikulas Patocka <dm-devel@lists.linux.dev>"); |
| 2906 | MODULE_DESCRIPTION(DM_NAME " buffered I/O library"); |
| 2907 | MODULE_LICENSE("GPL"); |