| 1 | /* |
| 2 | * This file is subject to the terms and conditions of the GNU General Public |
| 3 | * License. See the file "COPYING" in the main directory of this archive |
| 4 | * for more details. |
| 5 | * |
| 6 | * Copyright (C) 2008 Ralf Baechle (ralf@linux-mips.org) |
| 7 | * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved. |
| 8 | */ |
| 9 | |
| 10 | #define pr_fmt(fmt) "irq-mips-gic: " fmt |
| 11 | |
| 12 | #include <linux/bitfield.h> |
| 13 | #include <linux/bitmap.h> |
| 14 | #include <linux/clocksource.h> |
| 15 | #include <linux/cpuhotplug.h> |
| 16 | #include <linux/init.h> |
| 17 | #include <linux/interrupt.h> |
| 18 | #include <linux/irq.h> |
| 19 | #include <linux/irqchip.h> |
| 20 | #include <linux/irqdomain.h> |
| 21 | #include <linux/of_address.h> |
| 22 | #include <linux/percpu.h> |
| 23 | #include <linux/sched.h> |
| 24 | #include <linux/smp.h> |
| 25 | |
| 26 | #include <asm/mips-cps.h> |
| 27 | #include <asm/setup.h> |
| 28 | #include <asm/traps.h> |
| 29 | |
| 30 | #include <dt-bindings/interrupt-controller/mips-gic.h> |
| 31 | |
| 32 | #define GIC_MAX_INTRS 256 |
| 33 | #define GIC_MAX_LONGS BITS_TO_LONGS(GIC_MAX_INTRS) |
| 34 | |
| 35 | /* Add 2 to convert GIC CPU pin to core interrupt */ |
| 36 | #define GIC_CPU_PIN_OFFSET 2 |
| 37 | |
| 38 | /* Mapped interrupt to pin X, then GIC will generate the vector (X+1). */ |
| 39 | #define GIC_PIN_TO_VEC_OFFSET 1 |
| 40 | |
| 41 | /* Convert between local/shared IRQ number and GIC HW IRQ number. */ |
| 42 | #define GIC_LOCAL_HWIRQ_BASE 0 |
| 43 | #define GIC_LOCAL_TO_HWIRQ(x) (GIC_LOCAL_HWIRQ_BASE + (x)) |
| 44 | #define GIC_HWIRQ_TO_LOCAL(x) ((x) - GIC_LOCAL_HWIRQ_BASE) |
| 45 | #define GIC_SHARED_HWIRQ_BASE GIC_NUM_LOCAL_INTRS |
| 46 | #define GIC_SHARED_TO_HWIRQ(x) (GIC_SHARED_HWIRQ_BASE + (x)) |
| 47 | #define GIC_HWIRQ_TO_SHARED(x) ((x) - GIC_SHARED_HWIRQ_BASE) |
| 48 | |
| 49 | void __iomem *mips_gic_base; |
| 50 | |
| 51 | static DEFINE_PER_CPU_READ_MOSTLY(unsigned long[GIC_MAX_LONGS], pcpu_masks); |
| 52 | |
| 53 | static DEFINE_RAW_SPINLOCK(gic_lock); |
| 54 | static struct irq_domain *gic_irq_domain; |
| 55 | static int gic_shared_intrs; |
| 56 | static unsigned int gic_cpu_pin; |
| 57 | static struct irq_chip gic_level_irq_controller, gic_edge_irq_controller; |
| 58 | |
| 59 | #ifdef CONFIG_GENERIC_IRQ_IPI |
| 60 | static DECLARE_BITMAP(ipi_resrv, GIC_MAX_INTRS); |
| 61 | static DECLARE_BITMAP(ipi_available, GIC_MAX_INTRS); |
| 62 | #endif /* CONFIG_GENERIC_IRQ_IPI */ |
| 63 | |
| 64 | static struct gic_all_vpes_chip_data { |
| 65 | u32 map; |
| 66 | bool mask; |
| 67 | } gic_all_vpes_chip_data[GIC_NUM_LOCAL_INTRS]; |
| 68 | |
| 69 | static int __gic_with_next_online_cpu(int prev) |
| 70 | { |
| 71 | unsigned int cpu; |
| 72 | |
| 73 | /* Discover the next online CPU */ |
| 74 | cpu = cpumask_next(prev, cpu_online_mask); |
| 75 | |
| 76 | /* If there isn't one, we're done */ |
| 77 | if (cpu >= nr_cpu_ids) |
| 78 | return cpu; |
| 79 | |
| 80 | /* |
| 81 | * Move the access lock to the next CPU's GIC local register block. |
| 82 | * |
| 83 | * Set GIC_VL_OTHER. Since the caller holds gic_lock nothing can |
| 84 | * clobber the written value. |
| 85 | */ |
| 86 | write_gic_vl_other(mips_cm_vp_id(cpu)); |
| 87 | |
| 88 | return cpu; |
| 89 | } |
| 90 | |
| 91 | static inline void gic_unlock_cluster(void) |
| 92 | { |
| 93 | if (mips_cps_multicluster_cpus()) |
| 94 | mips_cm_unlock_other(); |
| 95 | } |
| 96 | |
| 97 | /** |
| 98 | * for_each_online_cpu_gic() - Iterate over online CPUs, access local registers |
| 99 | * @cpu: An integer variable to hold the current CPU number |
| 100 | * @gic_lock: A pointer to raw spin lock used as a guard |
| 101 | * |
| 102 | * Iterate over online CPUs & configure the other/redirect register region to |
| 103 | * access each CPUs GIC local register block, which can be accessed from the |
| 104 | * loop body using read_gic_vo_*() or write_gic_vo_*() accessor functions or |
| 105 | * their derivatives. |
| 106 | */ |
| 107 | #define for_each_online_cpu_gic(cpu, gic_lock) \ |
| 108 | guard(raw_spinlock_irqsave)(gic_lock); \ |
| 109 | for ((cpu) = __gic_with_next_online_cpu(-1); \ |
| 110 | (cpu) < nr_cpu_ids; \ |
| 111 | gic_unlock_cluster(), \ |
| 112 | (cpu) = __gic_with_next_online_cpu(cpu)) |
| 113 | |
| 114 | /** |
| 115 | * gic_irq_lock_cluster() - Lock redirect block access to IRQ's cluster |
| 116 | * @d: struct irq_data corresponding to the interrupt we're interested in |
| 117 | * |
| 118 | * Locks redirect register block access to the global register block of the GIC |
| 119 | * within the remote cluster that the IRQ corresponding to @d is affine to, |
| 120 | * returning true when this redirect block setup & locking has been performed. |
| 121 | * |
| 122 | * If @d is affine to the local cluster then no locking is performed and this |
| 123 | * function will return false, indicating to the caller that it should access |
| 124 | * the local clusters registers without the overhead of indirection through the |
| 125 | * redirect block. |
| 126 | * |
| 127 | * In summary, if this function returns true then the caller should access GIC |
| 128 | * registers using redirect register block accessors & then call |
| 129 | * mips_cm_unlock_other() when done. If this function returns false then the |
| 130 | * caller should trivially access GIC registers in the local cluster. |
| 131 | * |
| 132 | * Returns true if locking performed, else false. |
| 133 | */ |
| 134 | static bool gic_irq_lock_cluster(struct irq_data *d) |
| 135 | { |
| 136 | unsigned int cpu, cl; |
| 137 | |
| 138 | cpu = cpumask_first(irq_data_get_effective_affinity_mask(d)); |
| 139 | BUG_ON(cpu >= NR_CPUS); |
| 140 | |
| 141 | cl = cpu_cluster(&cpu_data[cpu]); |
| 142 | if (cl == cpu_cluster(¤t_cpu_data)) |
| 143 | return false; |
| 144 | if (mips_cps_numcores(cl) == 0) |
| 145 | return false; |
| 146 | mips_cm_lock_other(cl, 0, 0, CM_GCR_Cx_OTHER_BLOCK_GLOBAL); |
| 147 | return true; |
| 148 | } |
| 149 | |
| 150 | static void gic_clear_pcpu_masks(unsigned int intr) |
| 151 | { |
| 152 | unsigned int i; |
| 153 | |
| 154 | /* Clear the interrupt's bit in all pcpu_masks */ |
| 155 | for_each_possible_cpu(i) |
| 156 | clear_bit(intr, per_cpu_ptr(pcpu_masks, i)); |
| 157 | } |
| 158 | |
| 159 | static bool gic_local_irq_is_routable(int intr) |
| 160 | { |
| 161 | u32 vpe_ctl; |
| 162 | |
| 163 | /* All local interrupts are routable in EIC mode. */ |
| 164 | if (cpu_has_veic) |
| 165 | return true; |
| 166 | |
| 167 | vpe_ctl = read_gic_vl_ctl(); |
| 168 | switch (intr) { |
| 169 | case GIC_LOCAL_INT_TIMER: |
| 170 | return vpe_ctl & GIC_VX_CTL_TIMER_ROUTABLE; |
| 171 | case GIC_LOCAL_INT_PERFCTR: |
| 172 | return vpe_ctl & GIC_VX_CTL_PERFCNT_ROUTABLE; |
| 173 | case GIC_LOCAL_INT_FDC: |
| 174 | return vpe_ctl & GIC_VX_CTL_FDC_ROUTABLE; |
| 175 | case GIC_LOCAL_INT_SWINT0: |
| 176 | case GIC_LOCAL_INT_SWINT1: |
| 177 | return vpe_ctl & GIC_VX_CTL_SWINT_ROUTABLE; |
| 178 | default: |
| 179 | return true; |
| 180 | } |
| 181 | } |
| 182 | |
| 183 | static void gic_bind_eic_interrupt(int irq, int set) |
| 184 | { |
| 185 | /* Convert irq vector # to hw int # */ |
| 186 | irq -= GIC_PIN_TO_VEC_OFFSET; |
| 187 | |
| 188 | /* Set irq to use shadow set */ |
| 189 | write_gic_vl_eic_shadow_set(irq, set); |
| 190 | } |
| 191 | |
| 192 | static void gic_send_ipi(struct irq_data *d, unsigned int cpu) |
| 193 | { |
| 194 | irq_hw_number_t hwirq = GIC_HWIRQ_TO_SHARED(irqd_to_hwirq(d)); |
| 195 | |
| 196 | if (gic_irq_lock_cluster(d)) { |
| 197 | write_gic_redir_wedge(GIC_WEDGE_RW | hwirq); |
| 198 | mips_cm_unlock_other(); |
| 199 | } else { |
| 200 | write_gic_wedge(GIC_WEDGE_RW | hwirq); |
| 201 | } |
| 202 | } |
| 203 | |
| 204 | int gic_get_c0_compare_int(void) |
| 205 | { |
| 206 | if (!gic_local_irq_is_routable(GIC_LOCAL_INT_TIMER)) |
| 207 | return MIPS_CPU_IRQ_BASE + cp0_compare_irq; |
| 208 | return irq_create_mapping(gic_irq_domain, |
| 209 | GIC_LOCAL_TO_HWIRQ(GIC_LOCAL_INT_TIMER)); |
| 210 | } |
| 211 | |
| 212 | int gic_get_c0_perfcount_int(void) |
| 213 | { |
| 214 | if (!gic_local_irq_is_routable(GIC_LOCAL_INT_PERFCTR)) { |
| 215 | /* Is the performance counter shared with the timer? */ |
| 216 | if (cp0_perfcount_irq < 0) |
| 217 | return -1; |
| 218 | return MIPS_CPU_IRQ_BASE + cp0_perfcount_irq; |
| 219 | } |
| 220 | return irq_create_mapping(gic_irq_domain, |
| 221 | GIC_LOCAL_TO_HWIRQ(GIC_LOCAL_INT_PERFCTR)); |
| 222 | } |
| 223 | |
| 224 | int gic_get_c0_fdc_int(void) |
| 225 | { |
| 226 | if (!gic_local_irq_is_routable(GIC_LOCAL_INT_FDC)) { |
| 227 | /* Is the FDC IRQ even present? */ |
| 228 | if (cp0_fdc_irq < 0) |
| 229 | return -1; |
| 230 | return MIPS_CPU_IRQ_BASE + cp0_fdc_irq; |
| 231 | } |
| 232 | |
| 233 | return irq_create_mapping(gic_irq_domain, |
| 234 | GIC_LOCAL_TO_HWIRQ(GIC_LOCAL_INT_FDC)); |
| 235 | } |
| 236 | |
| 237 | static void gic_handle_shared_int(bool chained) |
| 238 | { |
| 239 | unsigned int intr; |
| 240 | unsigned long *pcpu_mask; |
| 241 | DECLARE_BITMAP(pending, GIC_MAX_INTRS); |
| 242 | |
| 243 | /* Get per-cpu bitmaps */ |
| 244 | pcpu_mask = this_cpu_ptr(pcpu_masks); |
| 245 | |
| 246 | if (mips_cm_is64) |
| 247 | __ioread64_copy(pending, addr_gic_pend(), |
| 248 | DIV_ROUND_UP(gic_shared_intrs, 64)); |
| 249 | else |
| 250 | __ioread32_copy(pending, addr_gic_pend(), |
| 251 | DIV_ROUND_UP(gic_shared_intrs, 32)); |
| 252 | |
| 253 | bitmap_and(pending, pending, pcpu_mask, gic_shared_intrs); |
| 254 | |
| 255 | for_each_set_bit(intr, pending, gic_shared_intrs) { |
| 256 | if (chained) |
| 257 | generic_handle_domain_irq(gic_irq_domain, |
| 258 | GIC_SHARED_TO_HWIRQ(intr)); |
| 259 | else |
| 260 | do_domain_IRQ(gic_irq_domain, |
| 261 | GIC_SHARED_TO_HWIRQ(intr)); |
| 262 | } |
| 263 | } |
| 264 | |
| 265 | static void gic_mask_irq(struct irq_data *d) |
| 266 | { |
| 267 | unsigned int intr = GIC_HWIRQ_TO_SHARED(d->hwirq); |
| 268 | |
| 269 | if (gic_irq_lock_cluster(d)) { |
| 270 | write_gic_redir_rmask(intr); |
| 271 | mips_cm_unlock_other(); |
| 272 | } else { |
| 273 | write_gic_rmask(intr); |
| 274 | } |
| 275 | |
| 276 | gic_clear_pcpu_masks(intr); |
| 277 | } |
| 278 | |
| 279 | static void gic_unmask_irq(struct irq_data *d) |
| 280 | { |
| 281 | unsigned int intr = GIC_HWIRQ_TO_SHARED(d->hwirq); |
| 282 | unsigned int cpu; |
| 283 | |
| 284 | if (gic_irq_lock_cluster(d)) { |
| 285 | write_gic_redir_smask(intr); |
| 286 | mips_cm_unlock_other(); |
| 287 | } else { |
| 288 | write_gic_smask(intr); |
| 289 | } |
| 290 | |
| 291 | gic_clear_pcpu_masks(intr); |
| 292 | cpu = cpumask_first(irq_data_get_effective_affinity_mask(d)); |
| 293 | set_bit(intr, per_cpu_ptr(pcpu_masks, cpu)); |
| 294 | } |
| 295 | |
| 296 | static void gic_ack_irq(struct irq_data *d) |
| 297 | { |
| 298 | unsigned int irq = GIC_HWIRQ_TO_SHARED(d->hwirq); |
| 299 | |
| 300 | if (gic_irq_lock_cluster(d)) { |
| 301 | write_gic_redir_wedge(irq); |
| 302 | mips_cm_unlock_other(); |
| 303 | } else { |
| 304 | write_gic_wedge(irq); |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | static int gic_set_type(struct irq_data *d, unsigned int type) |
| 309 | { |
| 310 | unsigned int irq, pol, trig, dual; |
| 311 | unsigned long flags; |
| 312 | |
| 313 | irq = GIC_HWIRQ_TO_SHARED(d->hwirq); |
| 314 | |
| 315 | raw_spin_lock_irqsave(&gic_lock, flags); |
| 316 | switch (type & IRQ_TYPE_SENSE_MASK) { |
| 317 | case IRQ_TYPE_EDGE_FALLING: |
| 318 | pol = GIC_POL_FALLING_EDGE; |
| 319 | trig = GIC_TRIG_EDGE; |
| 320 | dual = GIC_DUAL_SINGLE; |
| 321 | break; |
| 322 | case IRQ_TYPE_EDGE_RISING: |
| 323 | pol = GIC_POL_RISING_EDGE; |
| 324 | trig = GIC_TRIG_EDGE; |
| 325 | dual = GIC_DUAL_SINGLE; |
| 326 | break; |
| 327 | case IRQ_TYPE_EDGE_BOTH: |
| 328 | pol = 0; /* Doesn't matter */ |
| 329 | trig = GIC_TRIG_EDGE; |
| 330 | dual = GIC_DUAL_DUAL; |
| 331 | break; |
| 332 | case IRQ_TYPE_LEVEL_LOW: |
| 333 | pol = GIC_POL_ACTIVE_LOW; |
| 334 | trig = GIC_TRIG_LEVEL; |
| 335 | dual = GIC_DUAL_SINGLE; |
| 336 | break; |
| 337 | case IRQ_TYPE_LEVEL_HIGH: |
| 338 | default: |
| 339 | pol = GIC_POL_ACTIVE_HIGH; |
| 340 | trig = GIC_TRIG_LEVEL; |
| 341 | dual = GIC_DUAL_SINGLE; |
| 342 | break; |
| 343 | } |
| 344 | |
| 345 | if (gic_irq_lock_cluster(d)) { |
| 346 | change_gic_redir_pol(irq, pol); |
| 347 | change_gic_redir_trig(irq, trig); |
| 348 | change_gic_redir_dual(irq, dual); |
| 349 | mips_cm_unlock_other(); |
| 350 | } else { |
| 351 | change_gic_pol(irq, pol); |
| 352 | change_gic_trig(irq, trig); |
| 353 | change_gic_dual(irq, dual); |
| 354 | } |
| 355 | |
| 356 | if (trig == GIC_TRIG_EDGE) |
| 357 | irq_set_chip_handler_name_locked(d, &gic_edge_irq_controller, |
| 358 | handle_edge_irq, NULL); |
| 359 | else |
| 360 | irq_set_chip_handler_name_locked(d, &gic_level_irq_controller, |
| 361 | handle_level_irq, NULL); |
| 362 | raw_spin_unlock_irqrestore(&gic_lock, flags); |
| 363 | |
| 364 | return 0; |
| 365 | } |
| 366 | |
| 367 | #ifdef CONFIG_SMP |
| 368 | static int gic_set_affinity(struct irq_data *d, const struct cpumask *cpumask, |
| 369 | bool force) |
| 370 | { |
| 371 | unsigned int irq = GIC_HWIRQ_TO_SHARED(d->hwirq); |
| 372 | unsigned int cpu, cl, old_cpu, old_cl; |
| 373 | unsigned long flags; |
| 374 | |
| 375 | /* |
| 376 | * The GIC specifies that we can only route an interrupt to one VP(E), |
| 377 | * ie. CPU in Linux parlance, at a time. Therefore we always route to |
| 378 | * the first online CPU in the mask. |
| 379 | */ |
| 380 | cpu = cpumask_first_and(cpumask, cpu_online_mask); |
| 381 | if (cpu >= NR_CPUS) |
| 382 | return -EINVAL; |
| 383 | |
| 384 | old_cpu = cpumask_first(irq_data_get_effective_affinity_mask(d)); |
| 385 | old_cl = cpu_cluster(&cpu_data[old_cpu]); |
| 386 | cl = cpu_cluster(&cpu_data[cpu]); |
| 387 | |
| 388 | raw_spin_lock_irqsave(&gic_lock, flags); |
| 389 | |
| 390 | /* |
| 391 | * If we're moving affinity between clusters, stop routing the |
| 392 | * interrupt to any VP(E) in the old cluster. |
| 393 | */ |
| 394 | if (cl != old_cl) { |
| 395 | if (gic_irq_lock_cluster(d)) { |
| 396 | write_gic_redir_map_vp(irq, 0); |
| 397 | mips_cm_unlock_other(); |
| 398 | } else { |
| 399 | write_gic_map_vp(irq, 0); |
| 400 | } |
| 401 | } |
| 402 | |
| 403 | /* |
| 404 | * Update effective affinity - after this gic_irq_lock_cluster() will |
| 405 | * begin operating on the new cluster. |
| 406 | */ |
| 407 | irq_data_update_effective_affinity(d, cpumask_of(cpu)); |
| 408 | |
| 409 | /* |
| 410 | * If we're moving affinity between clusters, configure the interrupt |
| 411 | * trigger type in the new cluster. |
| 412 | */ |
| 413 | if (cl != old_cl) |
| 414 | gic_set_type(d, irqd_get_trigger_type(d)); |
| 415 | |
| 416 | /* Route the interrupt to its new VP(E) */ |
| 417 | if (gic_irq_lock_cluster(d)) { |
| 418 | write_gic_redir_map_pin(irq, |
| 419 | GIC_MAP_PIN_MAP_TO_PIN | gic_cpu_pin); |
| 420 | write_gic_redir_map_vp(irq, BIT(mips_cm_vp_id(cpu))); |
| 421 | |
| 422 | /* Update the pcpu_masks */ |
| 423 | gic_clear_pcpu_masks(irq); |
| 424 | if (read_gic_redir_mask(irq)) |
| 425 | set_bit(irq, per_cpu_ptr(pcpu_masks, cpu)); |
| 426 | |
| 427 | mips_cm_unlock_other(); |
| 428 | } else { |
| 429 | write_gic_map_pin(irq, GIC_MAP_PIN_MAP_TO_PIN | gic_cpu_pin); |
| 430 | write_gic_map_vp(irq, BIT(mips_cm_vp_id(cpu))); |
| 431 | |
| 432 | /* Update the pcpu_masks */ |
| 433 | gic_clear_pcpu_masks(irq); |
| 434 | if (read_gic_mask(irq)) |
| 435 | set_bit(irq, per_cpu_ptr(pcpu_masks, cpu)); |
| 436 | } |
| 437 | |
| 438 | raw_spin_unlock_irqrestore(&gic_lock, flags); |
| 439 | |
| 440 | return IRQ_SET_MASK_OK; |
| 441 | } |
| 442 | #endif |
| 443 | |
| 444 | static struct irq_chip gic_level_irq_controller = { |
| 445 | .name = "MIPS GIC", |
| 446 | .irq_mask = gic_mask_irq, |
| 447 | .irq_unmask = gic_unmask_irq, |
| 448 | .irq_set_type = gic_set_type, |
| 449 | #ifdef CONFIG_SMP |
| 450 | .irq_set_affinity = gic_set_affinity, |
| 451 | #endif |
| 452 | }; |
| 453 | |
| 454 | static struct irq_chip gic_edge_irq_controller = { |
| 455 | .name = "MIPS GIC", |
| 456 | .irq_ack = gic_ack_irq, |
| 457 | .irq_mask = gic_mask_irq, |
| 458 | .irq_unmask = gic_unmask_irq, |
| 459 | .irq_set_type = gic_set_type, |
| 460 | #ifdef CONFIG_SMP |
| 461 | .irq_set_affinity = gic_set_affinity, |
| 462 | #endif |
| 463 | .ipi_send_single = gic_send_ipi, |
| 464 | }; |
| 465 | |
| 466 | static void gic_handle_local_int(bool chained) |
| 467 | { |
| 468 | unsigned long pending, masked; |
| 469 | unsigned int intr; |
| 470 | |
| 471 | pending = read_gic_vl_pend(); |
| 472 | masked = read_gic_vl_mask(); |
| 473 | |
| 474 | bitmap_and(&pending, &pending, &masked, GIC_NUM_LOCAL_INTRS); |
| 475 | |
| 476 | for_each_set_bit(intr, &pending, GIC_NUM_LOCAL_INTRS) { |
| 477 | if (chained) |
| 478 | generic_handle_domain_irq(gic_irq_domain, |
| 479 | GIC_LOCAL_TO_HWIRQ(intr)); |
| 480 | else |
| 481 | do_domain_IRQ(gic_irq_domain, |
| 482 | GIC_LOCAL_TO_HWIRQ(intr)); |
| 483 | } |
| 484 | } |
| 485 | |
| 486 | static void gic_mask_local_irq(struct irq_data *d) |
| 487 | { |
| 488 | int intr = GIC_HWIRQ_TO_LOCAL(d->hwirq); |
| 489 | |
| 490 | write_gic_vl_rmask(BIT(intr)); |
| 491 | } |
| 492 | |
| 493 | static void gic_unmask_local_irq(struct irq_data *d) |
| 494 | { |
| 495 | int intr = GIC_HWIRQ_TO_LOCAL(d->hwirq); |
| 496 | |
| 497 | write_gic_vl_smask(BIT(intr)); |
| 498 | } |
| 499 | |
| 500 | static struct irq_chip gic_local_irq_controller = { |
| 501 | .name = "MIPS GIC Local", |
| 502 | .irq_mask = gic_mask_local_irq, |
| 503 | .irq_unmask = gic_unmask_local_irq, |
| 504 | }; |
| 505 | |
| 506 | static void gic_mask_local_irq_all_vpes(struct irq_data *d) |
| 507 | { |
| 508 | struct gic_all_vpes_chip_data *cd; |
| 509 | int intr, cpu; |
| 510 | |
| 511 | if (!mips_cps_multicluster_cpus()) |
| 512 | return; |
| 513 | |
| 514 | intr = GIC_HWIRQ_TO_LOCAL(d->hwirq); |
| 515 | cd = irq_data_get_irq_chip_data(d); |
| 516 | cd->mask = false; |
| 517 | |
| 518 | for_each_online_cpu_gic(cpu, &gic_lock) |
| 519 | write_gic_vo_rmask(BIT(intr)); |
| 520 | } |
| 521 | |
| 522 | static void gic_unmask_local_irq_all_vpes(struct irq_data *d) |
| 523 | { |
| 524 | struct gic_all_vpes_chip_data *cd; |
| 525 | int intr, cpu; |
| 526 | |
| 527 | if (!mips_cps_multicluster_cpus()) |
| 528 | return; |
| 529 | |
| 530 | intr = GIC_HWIRQ_TO_LOCAL(d->hwirq); |
| 531 | cd = irq_data_get_irq_chip_data(d); |
| 532 | cd->mask = true; |
| 533 | |
| 534 | for_each_online_cpu_gic(cpu, &gic_lock) |
| 535 | write_gic_vo_smask(BIT(intr)); |
| 536 | } |
| 537 | |
| 538 | static void gic_all_vpes_irq_cpu_online(void) |
| 539 | { |
| 540 | static const unsigned int local_intrs[] = { |
| 541 | GIC_LOCAL_INT_TIMER, |
| 542 | GIC_LOCAL_INT_PERFCTR, |
| 543 | GIC_LOCAL_INT_FDC, |
| 544 | }; |
| 545 | unsigned long flags; |
| 546 | int i; |
| 547 | |
| 548 | raw_spin_lock_irqsave(&gic_lock, flags); |
| 549 | |
| 550 | for (i = 0; i < ARRAY_SIZE(local_intrs); i++) { |
| 551 | unsigned int intr = local_intrs[i]; |
| 552 | struct gic_all_vpes_chip_data *cd; |
| 553 | |
| 554 | if (!gic_local_irq_is_routable(intr)) |
| 555 | continue; |
| 556 | cd = &gic_all_vpes_chip_data[intr]; |
| 557 | write_gic_vl_map(mips_gic_vx_map_reg(intr), cd->map); |
| 558 | if (cd->mask) |
| 559 | write_gic_vl_smask(BIT(intr)); |
| 560 | } |
| 561 | |
| 562 | raw_spin_unlock_irqrestore(&gic_lock, flags); |
| 563 | } |
| 564 | |
| 565 | static struct irq_chip gic_all_vpes_local_irq_controller = { |
| 566 | .name = "MIPS GIC Local", |
| 567 | .irq_mask = gic_mask_local_irq_all_vpes, |
| 568 | .irq_unmask = gic_unmask_local_irq_all_vpes, |
| 569 | }; |
| 570 | |
| 571 | static void __gic_irq_dispatch(void) |
| 572 | { |
| 573 | gic_handle_local_int(false); |
| 574 | gic_handle_shared_int(false); |
| 575 | } |
| 576 | |
| 577 | static void gic_irq_dispatch(struct irq_desc *desc) |
| 578 | { |
| 579 | gic_handle_local_int(true); |
| 580 | gic_handle_shared_int(true); |
| 581 | } |
| 582 | |
| 583 | static int gic_shared_irq_domain_map(struct irq_domain *d, unsigned int virq, |
| 584 | irq_hw_number_t hw, unsigned int cpu) |
| 585 | { |
| 586 | int intr = GIC_HWIRQ_TO_SHARED(hw); |
| 587 | struct irq_data *data; |
| 588 | unsigned long flags; |
| 589 | |
| 590 | data = irq_get_irq_data(virq); |
| 591 | irq_data_update_effective_affinity(data, cpumask_of(cpu)); |
| 592 | |
| 593 | raw_spin_lock_irqsave(&gic_lock, flags); |
| 594 | |
| 595 | /* Route the interrupt to its VP(E) */ |
| 596 | if (gic_irq_lock_cluster(data)) { |
| 597 | write_gic_redir_map_pin(intr, |
| 598 | GIC_MAP_PIN_MAP_TO_PIN | gic_cpu_pin); |
| 599 | write_gic_redir_map_vp(intr, BIT(mips_cm_vp_id(cpu))); |
| 600 | mips_cm_unlock_other(); |
| 601 | } else { |
| 602 | write_gic_map_pin(intr, GIC_MAP_PIN_MAP_TO_PIN | gic_cpu_pin); |
| 603 | write_gic_map_vp(intr, BIT(mips_cm_vp_id(cpu))); |
| 604 | } |
| 605 | |
| 606 | raw_spin_unlock_irqrestore(&gic_lock, flags); |
| 607 | |
| 608 | return 0; |
| 609 | } |
| 610 | |
| 611 | static int gic_irq_domain_xlate(struct irq_domain *d, struct device_node *ctrlr, |
| 612 | const u32 *intspec, unsigned int intsize, |
| 613 | irq_hw_number_t *out_hwirq, |
| 614 | unsigned int *out_type) |
| 615 | { |
| 616 | if (intsize != 3) |
| 617 | return -EINVAL; |
| 618 | |
| 619 | if (intspec[0] == GIC_SHARED) |
| 620 | *out_hwirq = GIC_SHARED_TO_HWIRQ(intspec[1]); |
| 621 | else if (intspec[0] == GIC_LOCAL) |
| 622 | *out_hwirq = GIC_LOCAL_TO_HWIRQ(intspec[1]); |
| 623 | else |
| 624 | return -EINVAL; |
| 625 | *out_type = intspec[2] & IRQ_TYPE_SENSE_MASK; |
| 626 | |
| 627 | return 0; |
| 628 | } |
| 629 | |
| 630 | static int gic_irq_domain_map(struct irq_domain *d, unsigned int virq, |
| 631 | irq_hw_number_t hwirq) |
| 632 | { |
| 633 | struct gic_all_vpes_chip_data *cd; |
| 634 | unsigned int intr; |
| 635 | int err, cpu; |
| 636 | u32 map; |
| 637 | |
| 638 | if (hwirq >= GIC_SHARED_HWIRQ_BASE) { |
| 639 | #ifdef CONFIG_GENERIC_IRQ_IPI |
| 640 | /* verify that shared irqs don't conflict with an IPI irq */ |
| 641 | if (test_bit(GIC_HWIRQ_TO_SHARED(hwirq), ipi_resrv)) |
| 642 | return -EBUSY; |
| 643 | #endif /* CONFIG_GENERIC_IRQ_IPI */ |
| 644 | |
| 645 | err = irq_domain_set_hwirq_and_chip(d, virq, hwirq, |
| 646 | &gic_level_irq_controller, |
| 647 | NULL); |
| 648 | if (err) |
| 649 | return err; |
| 650 | |
| 651 | irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq))); |
| 652 | return gic_shared_irq_domain_map(d, virq, hwirq, 0); |
| 653 | } |
| 654 | |
| 655 | intr = GIC_HWIRQ_TO_LOCAL(hwirq); |
| 656 | map = GIC_MAP_PIN_MAP_TO_PIN | gic_cpu_pin; |
| 657 | |
| 658 | /* |
| 659 | * If adding support for more per-cpu interrupts, keep the |
| 660 | * array in gic_all_vpes_irq_cpu_online() in sync. |
| 661 | */ |
| 662 | switch (intr) { |
| 663 | case GIC_LOCAL_INT_TIMER: |
| 664 | case GIC_LOCAL_INT_PERFCTR: |
| 665 | case GIC_LOCAL_INT_FDC: |
| 666 | /* |
| 667 | * HACK: These are all really percpu interrupts, but |
| 668 | * the rest of the MIPS kernel code does not use the |
| 669 | * percpu IRQ API for them. |
| 670 | */ |
| 671 | cd = &gic_all_vpes_chip_data[intr]; |
| 672 | cd->map = map; |
| 673 | err = irq_domain_set_hwirq_and_chip(d, virq, hwirq, |
| 674 | &gic_all_vpes_local_irq_controller, |
| 675 | cd); |
| 676 | if (err) |
| 677 | return err; |
| 678 | |
| 679 | irq_set_handler(virq, handle_percpu_irq); |
| 680 | break; |
| 681 | |
| 682 | default: |
| 683 | err = irq_domain_set_hwirq_and_chip(d, virq, hwirq, |
| 684 | &gic_local_irq_controller, |
| 685 | NULL); |
| 686 | if (err) |
| 687 | return err; |
| 688 | |
| 689 | irq_set_handler(virq, handle_percpu_devid_irq); |
| 690 | irq_set_percpu_devid(virq); |
| 691 | break; |
| 692 | } |
| 693 | |
| 694 | if (!gic_local_irq_is_routable(intr)) |
| 695 | return -EPERM; |
| 696 | |
| 697 | if (mips_cps_multicluster_cpus()) { |
| 698 | for_each_online_cpu_gic(cpu, &gic_lock) |
| 699 | write_gic_vo_map(mips_gic_vx_map_reg(intr), map); |
| 700 | } |
| 701 | |
| 702 | return 0; |
| 703 | } |
| 704 | |
| 705 | static int gic_irq_domain_alloc(struct irq_domain *d, unsigned int virq, |
| 706 | unsigned int nr_irqs, void *arg) |
| 707 | { |
| 708 | struct irq_fwspec *fwspec = arg; |
| 709 | irq_hw_number_t hwirq; |
| 710 | |
| 711 | if (fwspec->param[0] == GIC_SHARED) |
| 712 | hwirq = GIC_SHARED_TO_HWIRQ(fwspec->param[1]); |
| 713 | else |
| 714 | hwirq = GIC_LOCAL_TO_HWIRQ(fwspec->param[1]); |
| 715 | |
| 716 | return gic_irq_domain_map(d, virq, hwirq); |
| 717 | } |
| 718 | |
| 719 | static void gic_irq_domain_free(struct irq_domain *d, unsigned int virq, |
| 720 | unsigned int nr_irqs) |
| 721 | { |
| 722 | } |
| 723 | |
| 724 | static const struct irq_domain_ops gic_irq_domain_ops = { |
| 725 | .xlate = gic_irq_domain_xlate, |
| 726 | .alloc = gic_irq_domain_alloc, |
| 727 | .free = gic_irq_domain_free, |
| 728 | .map = gic_irq_domain_map, |
| 729 | }; |
| 730 | |
| 731 | #ifdef CONFIG_GENERIC_IRQ_IPI |
| 732 | |
| 733 | static int gic_ipi_domain_xlate(struct irq_domain *d, struct device_node *ctrlr, |
| 734 | const u32 *intspec, unsigned int intsize, |
| 735 | irq_hw_number_t *out_hwirq, |
| 736 | unsigned int *out_type) |
| 737 | { |
| 738 | /* |
| 739 | * There's nothing to translate here. hwirq is dynamically allocated and |
| 740 | * the irq type is always edge triggered. |
| 741 | * */ |
| 742 | *out_hwirq = 0; |
| 743 | *out_type = IRQ_TYPE_EDGE_RISING; |
| 744 | |
| 745 | return 0; |
| 746 | } |
| 747 | |
| 748 | static int gic_ipi_domain_alloc(struct irq_domain *d, unsigned int virq, |
| 749 | unsigned int nr_irqs, void *arg) |
| 750 | { |
| 751 | struct cpumask *ipimask = arg; |
| 752 | irq_hw_number_t hwirq, base_hwirq; |
| 753 | int cpu, ret, i; |
| 754 | |
| 755 | base_hwirq = find_first_bit(ipi_available, gic_shared_intrs); |
| 756 | if (base_hwirq == gic_shared_intrs) |
| 757 | return -ENOMEM; |
| 758 | |
| 759 | /* check that we have enough space */ |
| 760 | for (i = base_hwirq; i < nr_irqs; i++) { |
| 761 | if (!test_bit(i, ipi_available)) |
| 762 | return -EBUSY; |
| 763 | } |
| 764 | bitmap_clear(ipi_available, base_hwirq, nr_irqs); |
| 765 | |
| 766 | /* map the hwirq for each cpu consecutively */ |
| 767 | i = 0; |
| 768 | for_each_cpu(cpu, ipimask) { |
| 769 | hwirq = GIC_SHARED_TO_HWIRQ(base_hwirq + i); |
| 770 | |
| 771 | ret = irq_domain_set_hwirq_and_chip(d, virq + i, hwirq, |
| 772 | &gic_edge_irq_controller, |
| 773 | NULL); |
| 774 | if (ret) |
| 775 | goto error; |
| 776 | |
| 777 | ret = irq_domain_set_hwirq_and_chip(d->parent, virq + i, hwirq, |
| 778 | &gic_edge_irq_controller, |
| 779 | NULL); |
| 780 | if (ret) |
| 781 | goto error; |
| 782 | |
| 783 | /* Set affinity to cpu. */ |
| 784 | irq_data_update_effective_affinity(irq_get_irq_data(virq + i), |
| 785 | cpumask_of(cpu)); |
| 786 | ret = irq_set_irq_type(virq + i, IRQ_TYPE_EDGE_RISING); |
| 787 | if (ret) |
| 788 | goto error; |
| 789 | |
| 790 | ret = gic_shared_irq_domain_map(d, virq + i, hwirq, cpu); |
| 791 | if (ret) |
| 792 | goto error; |
| 793 | |
| 794 | i++; |
| 795 | } |
| 796 | |
| 797 | return 0; |
| 798 | error: |
| 799 | bitmap_set(ipi_available, base_hwirq, nr_irqs); |
| 800 | return ret; |
| 801 | } |
| 802 | |
| 803 | static void gic_ipi_domain_free(struct irq_domain *d, unsigned int virq, |
| 804 | unsigned int nr_irqs) |
| 805 | { |
| 806 | irq_hw_number_t base_hwirq; |
| 807 | struct irq_data *data; |
| 808 | |
| 809 | data = irq_get_irq_data(virq); |
| 810 | if (!data) |
| 811 | return; |
| 812 | |
| 813 | base_hwirq = GIC_HWIRQ_TO_SHARED(irqd_to_hwirq(data)); |
| 814 | bitmap_set(ipi_available, base_hwirq, nr_irqs); |
| 815 | } |
| 816 | |
| 817 | static int gic_ipi_domain_match(struct irq_domain *d, struct device_node *node, |
| 818 | enum irq_domain_bus_token bus_token) |
| 819 | { |
| 820 | bool is_ipi; |
| 821 | |
| 822 | switch (bus_token) { |
| 823 | case DOMAIN_BUS_IPI: |
| 824 | is_ipi = d->bus_token == bus_token; |
| 825 | return (!node || to_of_node(d->fwnode) == node) && is_ipi; |
| 826 | break; |
| 827 | default: |
| 828 | return 0; |
| 829 | } |
| 830 | } |
| 831 | |
| 832 | static const struct irq_domain_ops gic_ipi_domain_ops = { |
| 833 | .xlate = gic_ipi_domain_xlate, |
| 834 | .alloc = gic_ipi_domain_alloc, |
| 835 | .free = gic_ipi_domain_free, |
| 836 | .match = gic_ipi_domain_match, |
| 837 | }; |
| 838 | |
| 839 | static int gic_register_ipi_domain(struct device_node *node) |
| 840 | { |
| 841 | struct irq_domain *gic_ipi_domain; |
| 842 | unsigned int v[2], num_ipis; |
| 843 | |
| 844 | gic_ipi_domain = irq_domain_create_hierarchy(gic_irq_domain, IRQ_DOMAIN_FLAG_IPI_PER_CPU, |
| 845 | GIC_NUM_LOCAL_INTRS + gic_shared_intrs, |
| 846 | of_fwnode_handle(node), &gic_ipi_domain_ops, |
| 847 | NULL); |
| 848 | if (!gic_ipi_domain) { |
| 849 | pr_err("Failed to add IPI domain"); |
| 850 | return -ENXIO; |
| 851 | } |
| 852 | |
| 853 | irq_domain_update_bus_token(gic_ipi_domain, DOMAIN_BUS_IPI); |
| 854 | |
| 855 | if (node && |
| 856 | !of_property_read_u32_array(node, "mti,reserved-ipi-vectors", v, 2)) { |
| 857 | bitmap_set(ipi_resrv, v[0], v[1]); |
| 858 | } else { |
| 859 | /* |
| 860 | * Reserve 2 interrupts per possible CPU/VP for use as IPIs, |
| 861 | * meeting the requirements of arch/mips SMP. |
| 862 | */ |
| 863 | num_ipis = 2 * num_possible_cpus(); |
| 864 | bitmap_set(ipi_resrv, gic_shared_intrs - num_ipis, num_ipis); |
| 865 | } |
| 866 | |
| 867 | bitmap_copy(ipi_available, ipi_resrv, GIC_MAX_INTRS); |
| 868 | |
| 869 | return 0; |
| 870 | } |
| 871 | |
| 872 | #else /* !CONFIG_GENERIC_IRQ_IPI */ |
| 873 | |
| 874 | static inline int gic_register_ipi_domain(struct device_node *node) |
| 875 | { |
| 876 | return 0; |
| 877 | } |
| 878 | |
| 879 | #endif /* !CONFIG_GENERIC_IRQ_IPI */ |
| 880 | |
| 881 | static int gic_cpu_startup(unsigned int cpu) |
| 882 | { |
| 883 | /* Enable or disable EIC */ |
| 884 | change_gic_vl_ctl(GIC_VX_CTL_EIC, |
| 885 | cpu_has_veic ? GIC_VX_CTL_EIC : 0); |
| 886 | |
| 887 | /* Clear all local IRQ masks (ie. disable all local interrupts) */ |
| 888 | write_gic_vl_rmask(~0); |
| 889 | |
| 890 | /* Enable desired interrupts */ |
| 891 | gic_all_vpes_irq_cpu_online(); |
| 892 | |
| 893 | return 0; |
| 894 | } |
| 895 | |
| 896 | static int __init gic_of_init(struct device_node *node, |
| 897 | struct device_node *parent) |
| 898 | { |
| 899 | unsigned int cpu_vec, i, gicconfig, cl, nclusters; |
| 900 | unsigned long reserved; |
| 901 | phys_addr_t gic_base; |
| 902 | struct resource res; |
| 903 | size_t gic_len; |
| 904 | int ret; |
| 905 | |
| 906 | /* Find the first available CPU vector. */ |
| 907 | i = 0; |
| 908 | reserved = (C_SW0 | C_SW1) >> __ffs(C_SW0); |
| 909 | while (!of_property_read_u32_index(node, "mti,reserved-cpu-vectors", |
| 910 | i++, &cpu_vec)) |
| 911 | reserved |= BIT(cpu_vec); |
| 912 | |
| 913 | cpu_vec = find_first_zero_bit(&reserved, hweight_long(ST0_IM)); |
| 914 | if (cpu_vec == hweight_long(ST0_IM)) { |
| 915 | pr_err("No CPU vectors available\n"); |
| 916 | return -ENODEV; |
| 917 | } |
| 918 | |
| 919 | if (of_address_to_resource(node, 0, &res)) { |
| 920 | /* |
| 921 | * Probe the CM for the GIC base address if not specified |
| 922 | * in the device-tree. |
| 923 | */ |
| 924 | if (mips_cm_present()) { |
| 925 | gic_base = read_gcr_gic_base() & |
| 926 | ~CM_GCR_GIC_BASE_GICEN; |
| 927 | gic_len = 0x20000; |
| 928 | pr_warn("Using inherited base address %pa\n", |
| 929 | &gic_base); |
| 930 | } else { |
| 931 | pr_err("Failed to get memory range\n"); |
| 932 | return -ENODEV; |
| 933 | } |
| 934 | } else { |
| 935 | gic_base = res.start; |
| 936 | gic_len = resource_size(&res); |
| 937 | } |
| 938 | |
| 939 | if (mips_cm_present()) { |
| 940 | write_gcr_gic_base(gic_base | CM_GCR_GIC_BASE_GICEN); |
| 941 | /* Ensure GIC region is enabled before trying to access it */ |
| 942 | __sync(); |
| 943 | } |
| 944 | |
| 945 | mips_gic_base = ioremap(gic_base, gic_len); |
| 946 | if (!mips_gic_base) { |
| 947 | pr_err("Failed to ioremap gic_base\n"); |
| 948 | return -ENOMEM; |
| 949 | } |
| 950 | |
| 951 | gicconfig = read_gic_config(); |
| 952 | gic_shared_intrs = FIELD_GET(GIC_CONFIG_NUMINTERRUPTS, gicconfig); |
| 953 | gic_shared_intrs = (gic_shared_intrs + 1) * 8; |
| 954 | |
| 955 | if (cpu_has_veic) { |
| 956 | /* Always use vector 1 in EIC mode */ |
| 957 | gic_cpu_pin = 0; |
| 958 | set_vi_handler(gic_cpu_pin + GIC_PIN_TO_VEC_OFFSET, |
| 959 | __gic_irq_dispatch); |
| 960 | } else { |
| 961 | gic_cpu_pin = cpu_vec - GIC_CPU_PIN_OFFSET; |
| 962 | irq_set_chained_handler(MIPS_CPU_IRQ_BASE + cpu_vec, |
| 963 | gic_irq_dispatch); |
| 964 | } |
| 965 | |
| 966 | gic_irq_domain = irq_domain_create_simple(of_fwnode_handle(node), |
| 967 | GIC_NUM_LOCAL_INTRS + |
| 968 | gic_shared_intrs, 0, |
| 969 | &gic_irq_domain_ops, NULL); |
| 970 | if (!gic_irq_domain) { |
| 971 | pr_err("Failed to add IRQ domain"); |
| 972 | return -ENXIO; |
| 973 | } |
| 974 | |
| 975 | ret = gic_register_ipi_domain(node); |
| 976 | if (ret) |
| 977 | return ret; |
| 978 | |
| 979 | board_bind_eic_interrupt = &gic_bind_eic_interrupt; |
| 980 | |
| 981 | /* |
| 982 | * Initialise each cluster's GIC shared registers to sane default |
| 983 | * values. |
| 984 | * Otherwise, the IPI set up will be erased if we move code |
| 985 | * to gic_cpu_startup for each cpu. |
| 986 | */ |
| 987 | nclusters = mips_cps_numclusters(); |
| 988 | for (cl = 0; cl < nclusters; cl++) { |
| 989 | if (cl == cpu_cluster(¤t_cpu_data)) { |
| 990 | for (i = 0; i < gic_shared_intrs; i++) { |
| 991 | change_gic_pol(i, GIC_POL_ACTIVE_HIGH); |
| 992 | change_gic_trig(i, GIC_TRIG_LEVEL); |
| 993 | write_gic_rmask(i); |
| 994 | } |
| 995 | } else if (mips_cps_numcores(cl) != 0) { |
| 996 | mips_cm_lock_other(cl, 0, 0, CM_GCR_Cx_OTHER_BLOCK_GLOBAL); |
| 997 | for (i = 0; i < gic_shared_intrs; i++) { |
| 998 | change_gic_redir_pol(i, GIC_POL_ACTIVE_HIGH); |
| 999 | change_gic_redir_trig(i, GIC_TRIG_LEVEL); |
| 1000 | write_gic_redir_rmask(i); |
| 1001 | } |
| 1002 | mips_cm_unlock_other(); |
| 1003 | |
| 1004 | } else { |
| 1005 | pr_warn("No CPU cores on the cluster %d skip it\n", cl); |
| 1006 | } |
| 1007 | } |
| 1008 | |
| 1009 | return cpuhp_setup_state(CPUHP_AP_IRQ_MIPS_GIC_STARTING, |
| 1010 | "irqchip/mips/gic:starting", |
| 1011 | gic_cpu_startup, NULL); |
| 1012 | } |
| 1013 | IRQCHIP_DECLARE(mips_gic, "mti,gic", gic_of_init); |