Merge tag 'mm-hotfixes-stable-2025-07-11-16-16' of git://git.kernel.org/pub/scm/linux...
[linux-block.git] / drivers / irqchip / irq-gic-v3-its.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7#include <linux/acpi.h>
8#include <linux/acpi_iort.h>
9#include <linux/bitfield.h>
10#include <linux/bitmap.h>
11#include <linux/cpu.h>
12#include <linux/crash_dump.h>
13#include <linux/delay.h>
14#include <linux/efi.h>
15#include <linux/genalloc.h>
16#include <linux/interrupt.h>
17#include <linux/iommu.h>
18#include <linux/iopoll.h>
19#include <linux/irqdomain.h>
20#include <linux/list.h>
21#include <linux/log2.h>
22#include <linux/mem_encrypt.h>
23#include <linux/memblock.h>
24#include <linux/mm.h>
25#include <linux/msi.h>
26#include <linux/of.h>
27#include <linux/of_address.h>
28#include <linux/of_irq.h>
29#include <linux/of_pci.h>
30#include <linux/of_platform.h>
31#include <linux/percpu.h>
32#include <linux/set_memory.h>
33#include <linux/slab.h>
34#include <linux/syscore_ops.h>
35
36#include <linux/irqchip.h>
37#include <linux/irqchip/arm-gic-v3.h>
38#include <linux/irqchip/arm-gic-v4.h>
39
40#include <asm/cputype.h>
41#include <asm/exception.h>
42
43#include "irq-gic-common.h"
44#include <linux/irqchip/irq-msi-lib.h>
45
46#define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
47#define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
48#define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
49#define ITS_FLAGS_FORCE_NON_SHAREABLE (1ULL << 3)
50#define ITS_FLAGS_WORKAROUND_HISILICON_162100801 (1ULL << 4)
51
52#define RD_LOCAL_LPI_ENABLED BIT(0)
53#define RD_LOCAL_PENDTABLE_PREALLOCATED BIT(1)
54#define RD_LOCAL_MEMRESERVE_DONE BIT(2)
55
56static u32 lpi_id_bits;
57
58/*
59 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
60 * deal with (one configuration byte per interrupt). PENDBASE has to
61 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
62 */
63#define LPI_NRBITS lpi_id_bits
64#define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K)
65#define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
66
67static u8 __ro_after_init lpi_prop_prio;
68static struct its_node *find_4_1_its(void);
69
70/*
71 * Collection structure - just an ID, and a redistributor address to
72 * ping. We use one per CPU as a bag of interrupts assigned to this
73 * CPU.
74 */
75struct its_collection {
76 u64 target_address;
77 u16 col_id;
78};
79
80/*
81 * The ITS_BASER structure - contains memory information, cached
82 * value of BASER register configuration and ITS page size.
83 */
84struct its_baser {
85 void *base;
86 u64 val;
87 u32 order;
88 u32 psz;
89};
90
91struct its_device;
92
93/*
94 * The ITS structure - contains most of the infrastructure, with the
95 * top-level MSI domain, the command queue, the collections, and the
96 * list of devices writing to it.
97 *
98 * dev_alloc_lock has to be taken for device allocations, while the
99 * spinlock must be taken to parse data structures such as the device
100 * list.
101 */
102struct its_node {
103 raw_spinlock_t lock;
104 struct mutex dev_alloc_lock;
105 struct list_head entry;
106 void __iomem *base;
107 void __iomem *sgir_base;
108 phys_addr_t phys_base;
109 struct its_cmd_block *cmd_base;
110 struct its_cmd_block *cmd_write;
111 struct its_baser tables[GITS_BASER_NR_REGS];
112 struct its_collection *collections;
113 struct fwnode_handle *fwnode_handle;
114 u64 (*get_msi_base)(struct its_device *its_dev);
115 u64 typer;
116 u64 cbaser_save;
117 u32 ctlr_save;
118 u32 mpidr;
119 struct list_head its_device_list;
120 u64 flags;
121 unsigned long list_nr;
122 int numa_node;
123 unsigned int msi_domain_flags;
124 u32 pre_its_base; /* for Socionext Synquacer */
125 int vlpi_redist_offset;
126};
127
128static DEFINE_PER_CPU(struct its_node *, local_4_1_its);
129
130#define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS))
131#define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP))
132#define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
133
134#define ITS_ITT_ALIGN SZ_256
135
136/* The maximum number of VPEID bits supported by VLPI commands */
137#define ITS_MAX_VPEID_BITS \
138 ({ \
139 int nvpeid = 16; \
140 if (gic_rdists->has_rvpeid && \
141 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \
142 nvpeid = 1 + (gic_rdists->gicd_typer2 & \
143 GICD_TYPER2_VID); \
144 \
145 nvpeid; \
146 })
147#define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS))
148
149/* Convert page order to size in bytes */
150#define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
151
152struct event_lpi_map {
153 unsigned long *lpi_map;
154 u16 *col_map;
155 irq_hw_number_t lpi_base;
156 int nr_lpis;
157 raw_spinlock_t vlpi_lock;
158 struct its_vm *vm;
159 struct its_vlpi_map *vlpi_maps;
160 int nr_vlpis;
161};
162
163/*
164 * The ITS view of a device - belongs to an ITS, owns an interrupt
165 * translation table, and a list of interrupts. If it some of its
166 * LPIs are injected into a guest (GICv4), the event_map.vm field
167 * indicates which one.
168 */
169struct its_device {
170 struct list_head entry;
171 struct its_node *its;
172 struct event_lpi_map event_map;
173 void *itt;
174 u32 itt_sz;
175 u32 nr_ites;
176 u32 device_id;
177 bool shared;
178};
179
180static struct {
181 raw_spinlock_t lock;
182 struct its_device *dev;
183 struct its_vpe **vpes;
184 int next_victim;
185} vpe_proxy;
186
187struct cpu_lpi_count {
188 atomic_t managed;
189 atomic_t unmanaged;
190};
191
192static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
193
194static LIST_HEAD(its_nodes);
195static DEFINE_RAW_SPINLOCK(its_lock);
196static struct rdists *gic_rdists;
197static struct irq_domain *its_parent;
198
199static unsigned long its_list_map;
200static u16 vmovp_seq_num;
201static DEFINE_RAW_SPINLOCK(vmovp_lock);
202
203static DEFINE_IDA(its_vpeid_ida);
204
205#define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
206#define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu))
207#define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
208#define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K)
209
210static gfp_t gfp_flags_quirk;
211
212static struct page *its_alloc_pages_node(int node, gfp_t gfp,
213 unsigned int order)
214{
215 struct page *page;
216 int ret = 0;
217
218 page = alloc_pages_node(node, gfp | gfp_flags_quirk, order);
219
220 if (!page)
221 return NULL;
222
223 ret = set_memory_decrypted((unsigned long)page_address(page),
224 1 << order);
225 /*
226 * If set_memory_decrypted() fails then we don't know what state the
227 * page is in, so we can't free it. Instead we leak it.
228 * set_memory_decrypted() will already have WARNed.
229 */
230 if (ret)
231 return NULL;
232
233 return page;
234}
235
236static struct page *its_alloc_pages(gfp_t gfp, unsigned int order)
237{
238 return its_alloc_pages_node(NUMA_NO_NODE, gfp, order);
239}
240
241static void its_free_pages(void *addr, unsigned int order)
242{
243 /*
244 * If the memory cannot be encrypted again then we must leak the pages.
245 * set_memory_encrypted() will already have WARNed.
246 */
247 if (set_memory_encrypted((unsigned long)addr, 1 << order))
248 return;
249 free_pages((unsigned long)addr, order);
250}
251
252static struct gen_pool *itt_pool;
253
254static void *itt_alloc_pool(int node, int size)
255{
256 unsigned long addr;
257 struct page *page;
258
259 if (size >= PAGE_SIZE) {
260 page = its_alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, get_order(size));
261
262 return page ? page_address(page) : NULL;
263 }
264
265 do {
266 addr = gen_pool_alloc(itt_pool, size);
267 if (addr)
268 break;
269
270 page = its_alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
271 if (!page)
272 break;
273
274 gen_pool_add(itt_pool, (unsigned long)page_address(page), PAGE_SIZE, node);
275 } while (!addr);
276
277 return (void *)addr;
278}
279
280static void itt_free_pool(void *addr, int size)
281{
282 if (!addr)
283 return;
284
285 if (size >= PAGE_SIZE) {
286 its_free_pages(addr, get_order(size));
287 return;
288 }
289
290 gen_pool_free(itt_pool, (unsigned long)addr, size);
291}
292
293/*
294 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
295 * always have vSGIs mapped.
296 */
297static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
298{
299 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
300}
301
302static bool rdists_support_shareable(void)
303{
304 return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE);
305}
306
307static u16 get_its_list(struct its_vm *vm)
308{
309 struct its_node *its;
310 unsigned long its_list = 0;
311
312 list_for_each_entry(its, &its_nodes, entry) {
313 if (!is_v4(its))
314 continue;
315
316 if (require_its_list_vmovp(vm, its))
317 __set_bit(its->list_nr, &its_list);
318 }
319
320 return (u16)its_list;
321}
322
323static inline u32 its_get_event_id(struct irq_data *d)
324{
325 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
326 return d->hwirq - its_dev->event_map.lpi_base;
327}
328
329static struct its_collection *dev_event_to_col(struct its_device *its_dev,
330 u32 event)
331{
332 struct its_node *its = its_dev->its;
333
334 return its->collections + its_dev->event_map.col_map[event];
335}
336
337static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
338 u32 event)
339{
340 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
341 return NULL;
342
343 return &its_dev->event_map.vlpi_maps[event];
344}
345
346static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
347{
348 if (irqd_is_forwarded_to_vcpu(d)) {
349 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
350 u32 event = its_get_event_id(d);
351
352 return dev_event_to_vlpi_map(its_dev, event);
353 }
354
355 return NULL;
356}
357
358static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
359{
360 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
361 return vpe->col_idx;
362}
363
364static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
365{
366 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
367}
368
369static struct irq_chip its_vpe_irq_chip;
370
371static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
372{
373 struct its_vpe *vpe = NULL;
374 int cpu;
375
376 if (d->chip == &its_vpe_irq_chip) {
377 vpe = irq_data_get_irq_chip_data(d);
378 } else {
379 struct its_vlpi_map *map = get_vlpi_map(d);
380 if (map)
381 vpe = map->vpe;
382 }
383
384 if (vpe) {
385 cpu = vpe_to_cpuid_lock(vpe, flags);
386 } else {
387 /* Physical LPIs are already locked via the irq_desc lock */
388 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
389 cpu = its_dev->event_map.col_map[its_get_event_id(d)];
390 /* Keep GCC quiet... */
391 *flags = 0;
392 }
393
394 return cpu;
395}
396
397static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
398{
399 struct its_vpe *vpe = NULL;
400
401 if (d->chip == &its_vpe_irq_chip) {
402 vpe = irq_data_get_irq_chip_data(d);
403 } else {
404 struct its_vlpi_map *map = get_vlpi_map(d);
405 if (map)
406 vpe = map->vpe;
407 }
408
409 if (vpe)
410 vpe_to_cpuid_unlock(vpe, flags);
411}
412
413static struct its_collection *valid_col(struct its_collection *col)
414{
415 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
416 return NULL;
417
418 return col;
419}
420
421static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
422{
423 if (valid_col(its->collections + vpe->col_idx))
424 return vpe;
425
426 return NULL;
427}
428
429/*
430 * ITS command descriptors - parameters to be encoded in a command
431 * block.
432 */
433struct its_cmd_desc {
434 union {
435 struct {
436 struct its_device *dev;
437 u32 event_id;
438 } its_inv_cmd;
439
440 struct {
441 struct its_device *dev;
442 u32 event_id;
443 } its_clear_cmd;
444
445 struct {
446 struct its_device *dev;
447 u32 event_id;
448 } its_int_cmd;
449
450 struct {
451 struct its_device *dev;
452 int valid;
453 } its_mapd_cmd;
454
455 struct {
456 struct its_collection *col;
457 int valid;
458 } its_mapc_cmd;
459
460 struct {
461 struct its_device *dev;
462 u32 phys_id;
463 u32 event_id;
464 } its_mapti_cmd;
465
466 struct {
467 struct its_device *dev;
468 struct its_collection *col;
469 u32 event_id;
470 } its_movi_cmd;
471
472 struct {
473 struct its_device *dev;
474 u32 event_id;
475 } its_discard_cmd;
476
477 struct {
478 struct its_collection *col;
479 } its_invall_cmd;
480
481 struct {
482 struct its_vpe *vpe;
483 } its_vinvall_cmd;
484
485 struct {
486 struct its_vpe *vpe;
487 struct its_collection *col;
488 bool valid;
489 } its_vmapp_cmd;
490
491 struct {
492 struct its_vpe *vpe;
493 struct its_device *dev;
494 u32 virt_id;
495 u32 event_id;
496 bool db_enabled;
497 } its_vmapti_cmd;
498
499 struct {
500 struct its_vpe *vpe;
501 struct its_device *dev;
502 u32 event_id;
503 bool db_enabled;
504 } its_vmovi_cmd;
505
506 struct {
507 struct its_vpe *vpe;
508 struct its_collection *col;
509 u16 seq_num;
510 u16 its_list;
511 } its_vmovp_cmd;
512
513 struct {
514 struct its_vpe *vpe;
515 } its_invdb_cmd;
516
517 struct {
518 struct its_vpe *vpe;
519 u8 sgi;
520 u8 priority;
521 bool enable;
522 bool group;
523 bool clear;
524 } its_vsgi_cmd;
525 };
526};
527
528/*
529 * The ITS command block, which is what the ITS actually parses.
530 */
531struct its_cmd_block {
532 union {
533 u64 raw_cmd[4];
534 __le64 raw_cmd_le[4];
535 };
536};
537
538#define ITS_CMD_QUEUE_SZ SZ_64K
539#define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
540
541typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
542 struct its_cmd_block *,
543 struct its_cmd_desc *);
544
545typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
546 struct its_cmd_block *,
547 struct its_cmd_desc *);
548
549static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
550{
551 u64 mask = GENMASK_ULL(h, l);
552 *raw_cmd &= ~mask;
553 *raw_cmd |= (val << l) & mask;
554}
555
556static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
557{
558 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
559}
560
561static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
562{
563 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
564}
565
566static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
567{
568 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
569}
570
571static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
572{
573 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
574}
575
576static void its_encode_size(struct its_cmd_block *cmd, u8 size)
577{
578 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
579}
580
581static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
582{
583 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
584}
585
586static void its_encode_valid(struct its_cmd_block *cmd, int valid)
587{
588 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
589}
590
591static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
592{
593 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
594}
595
596static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
597{
598 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
599}
600
601static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
602{
603 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
604}
605
606static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
607{
608 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
609}
610
611static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
612{
613 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
614}
615
616static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
617{
618 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
619}
620
621static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
622{
623 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
624}
625
626static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
627{
628 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
629}
630
631static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
632{
633 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
634}
635
636static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
637{
638 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
639}
640
641static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
642{
643 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
644}
645
646static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
647{
648 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
649}
650
651static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
652{
653 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
654}
655
656static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
657 u32 vpe_db_lpi)
658{
659 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
660}
661
662static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
663 u32 vpe_db_lpi)
664{
665 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
666}
667
668static void its_encode_db(struct its_cmd_block *cmd, bool db)
669{
670 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
671}
672
673static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
674{
675 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
676}
677
678static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
679{
680 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
681}
682
683static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
684{
685 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
686}
687
688static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
689{
690 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
691}
692
693static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
694{
695 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
696}
697
698static inline void its_fixup_cmd(struct its_cmd_block *cmd)
699{
700 /* Let's fixup BE commands */
701 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
702 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
703 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
704 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
705}
706
707static struct its_collection *its_build_mapd_cmd(struct its_node *its,
708 struct its_cmd_block *cmd,
709 struct its_cmd_desc *desc)
710{
711 unsigned long itt_addr;
712 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
713
714 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
715
716 its_encode_cmd(cmd, GITS_CMD_MAPD);
717 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
718 its_encode_size(cmd, size - 1);
719 its_encode_itt(cmd, itt_addr);
720 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
721
722 its_fixup_cmd(cmd);
723
724 return NULL;
725}
726
727static struct its_collection *its_build_mapc_cmd(struct its_node *its,
728 struct its_cmd_block *cmd,
729 struct its_cmd_desc *desc)
730{
731 its_encode_cmd(cmd, GITS_CMD_MAPC);
732 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
733 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
734 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
735
736 its_fixup_cmd(cmd);
737
738 return desc->its_mapc_cmd.col;
739}
740
741static struct its_collection *its_build_mapti_cmd(struct its_node *its,
742 struct its_cmd_block *cmd,
743 struct its_cmd_desc *desc)
744{
745 struct its_collection *col;
746
747 col = dev_event_to_col(desc->its_mapti_cmd.dev,
748 desc->its_mapti_cmd.event_id);
749
750 its_encode_cmd(cmd, GITS_CMD_MAPTI);
751 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
752 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
753 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
754 its_encode_collection(cmd, col->col_id);
755
756 its_fixup_cmd(cmd);
757
758 return valid_col(col);
759}
760
761static struct its_collection *its_build_movi_cmd(struct its_node *its,
762 struct its_cmd_block *cmd,
763 struct its_cmd_desc *desc)
764{
765 struct its_collection *col;
766
767 col = dev_event_to_col(desc->its_movi_cmd.dev,
768 desc->its_movi_cmd.event_id);
769
770 its_encode_cmd(cmd, GITS_CMD_MOVI);
771 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
772 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
773 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
774
775 its_fixup_cmd(cmd);
776
777 return valid_col(col);
778}
779
780static struct its_collection *its_build_discard_cmd(struct its_node *its,
781 struct its_cmd_block *cmd,
782 struct its_cmd_desc *desc)
783{
784 struct its_collection *col;
785
786 col = dev_event_to_col(desc->its_discard_cmd.dev,
787 desc->its_discard_cmd.event_id);
788
789 its_encode_cmd(cmd, GITS_CMD_DISCARD);
790 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
791 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
792
793 its_fixup_cmd(cmd);
794
795 return valid_col(col);
796}
797
798static struct its_collection *its_build_inv_cmd(struct its_node *its,
799 struct its_cmd_block *cmd,
800 struct its_cmd_desc *desc)
801{
802 struct its_collection *col;
803
804 col = dev_event_to_col(desc->its_inv_cmd.dev,
805 desc->its_inv_cmd.event_id);
806
807 its_encode_cmd(cmd, GITS_CMD_INV);
808 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
809 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
810
811 its_fixup_cmd(cmd);
812
813 return valid_col(col);
814}
815
816static struct its_collection *its_build_int_cmd(struct its_node *its,
817 struct its_cmd_block *cmd,
818 struct its_cmd_desc *desc)
819{
820 struct its_collection *col;
821
822 col = dev_event_to_col(desc->its_int_cmd.dev,
823 desc->its_int_cmd.event_id);
824
825 its_encode_cmd(cmd, GITS_CMD_INT);
826 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
827 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
828
829 its_fixup_cmd(cmd);
830
831 return valid_col(col);
832}
833
834static struct its_collection *its_build_clear_cmd(struct its_node *its,
835 struct its_cmd_block *cmd,
836 struct its_cmd_desc *desc)
837{
838 struct its_collection *col;
839
840 col = dev_event_to_col(desc->its_clear_cmd.dev,
841 desc->its_clear_cmd.event_id);
842
843 its_encode_cmd(cmd, GITS_CMD_CLEAR);
844 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
845 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
846
847 its_fixup_cmd(cmd);
848
849 return valid_col(col);
850}
851
852static struct its_collection *its_build_invall_cmd(struct its_node *its,
853 struct its_cmd_block *cmd,
854 struct its_cmd_desc *desc)
855{
856 its_encode_cmd(cmd, GITS_CMD_INVALL);
857 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
858
859 its_fixup_cmd(cmd);
860
861 return desc->its_invall_cmd.col;
862}
863
864static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
865 struct its_cmd_block *cmd,
866 struct its_cmd_desc *desc)
867{
868 its_encode_cmd(cmd, GITS_CMD_VINVALL);
869 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
870
871 its_fixup_cmd(cmd);
872
873 return valid_vpe(its, desc->its_vinvall_cmd.vpe);
874}
875
876static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
877 struct its_cmd_block *cmd,
878 struct its_cmd_desc *desc)
879{
880 struct its_vpe *vpe = valid_vpe(its, desc->its_vmapp_cmd.vpe);
881 unsigned long vpt_addr, vconf_addr;
882 u64 target;
883 bool alloc;
884
885 its_encode_cmd(cmd, GITS_CMD_VMAPP);
886 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
887 its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
888
889 if (!desc->its_vmapp_cmd.valid) {
890 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
891 if (is_v4_1(its)) {
892 its_encode_alloc(cmd, alloc);
893 /*
894 * Unmapping a VPE is self-synchronizing on GICv4.1,
895 * no need to issue a VSYNC.
896 */
897 vpe = NULL;
898 }
899
900 goto out;
901 }
902
903 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
904 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
905
906 its_encode_target(cmd, target);
907 its_encode_vpt_addr(cmd, vpt_addr);
908 its_encode_vpt_size(cmd, LPI_NRBITS - 1);
909
910 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
911
912 if (!is_v4_1(its))
913 goto out;
914
915 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
916
917 its_encode_alloc(cmd, alloc);
918
919 /*
920 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
921 * to be unmapped first, and in this case, we may remap the vPE
922 * back while the VPT is not empty. So we can't assume that the
923 * VPT is empty on map. This is why we never advertise PTZ.
924 */
925 its_encode_ptz(cmd, false);
926 its_encode_vconf_addr(cmd, vconf_addr);
927 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
928
929out:
930 its_fixup_cmd(cmd);
931
932 return vpe;
933}
934
935static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
936 struct its_cmd_block *cmd,
937 struct its_cmd_desc *desc)
938{
939 u32 db;
940
941 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
942 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
943 else
944 db = 1023;
945
946 its_encode_cmd(cmd, GITS_CMD_VMAPTI);
947 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
948 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
949 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
950 its_encode_db_phys_id(cmd, db);
951 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
952
953 its_fixup_cmd(cmd);
954
955 return valid_vpe(its, desc->its_vmapti_cmd.vpe);
956}
957
958static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
959 struct its_cmd_block *cmd,
960 struct its_cmd_desc *desc)
961{
962 u32 db;
963
964 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
965 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
966 else
967 db = 1023;
968
969 its_encode_cmd(cmd, GITS_CMD_VMOVI);
970 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
971 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
972 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
973 its_encode_db_phys_id(cmd, db);
974 its_encode_db_valid(cmd, true);
975
976 its_fixup_cmd(cmd);
977
978 return valid_vpe(its, desc->its_vmovi_cmd.vpe);
979}
980
981static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
982 struct its_cmd_block *cmd,
983 struct its_cmd_desc *desc)
984{
985 u64 target;
986
987 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
988 its_encode_cmd(cmd, GITS_CMD_VMOVP);
989 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
990 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
991 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
992 its_encode_target(cmd, target);
993
994 if (is_v4_1(its)) {
995 its_encode_db(cmd, true);
996 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
997 }
998
999 its_fixup_cmd(cmd);
1000
1001 return valid_vpe(its, desc->its_vmovp_cmd.vpe);
1002}
1003
1004static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
1005 struct its_cmd_block *cmd,
1006 struct its_cmd_desc *desc)
1007{
1008 struct its_vlpi_map *map;
1009
1010 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
1011 desc->its_inv_cmd.event_id);
1012
1013 its_encode_cmd(cmd, GITS_CMD_INV);
1014 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
1015 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
1016
1017 its_fixup_cmd(cmd);
1018
1019 return valid_vpe(its, map->vpe);
1020}
1021
1022static struct its_vpe *its_build_vint_cmd(struct its_node *its,
1023 struct its_cmd_block *cmd,
1024 struct its_cmd_desc *desc)
1025{
1026 struct its_vlpi_map *map;
1027
1028 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
1029 desc->its_int_cmd.event_id);
1030
1031 its_encode_cmd(cmd, GITS_CMD_INT);
1032 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
1033 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
1034
1035 its_fixup_cmd(cmd);
1036
1037 return valid_vpe(its, map->vpe);
1038}
1039
1040static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
1041 struct its_cmd_block *cmd,
1042 struct its_cmd_desc *desc)
1043{
1044 struct its_vlpi_map *map;
1045
1046 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
1047 desc->its_clear_cmd.event_id);
1048
1049 its_encode_cmd(cmd, GITS_CMD_CLEAR);
1050 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
1051 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
1052
1053 its_fixup_cmd(cmd);
1054
1055 return valid_vpe(its, map->vpe);
1056}
1057
1058static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
1059 struct its_cmd_block *cmd,
1060 struct its_cmd_desc *desc)
1061{
1062 if (WARN_ON(!is_v4_1(its)))
1063 return NULL;
1064
1065 its_encode_cmd(cmd, GITS_CMD_INVDB);
1066 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
1067
1068 its_fixup_cmd(cmd);
1069
1070 return valid_vpe(its, desc->its_invdb_cmd.vpe);
1071}
1072
1073static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
1074 struct its_cmd_block *cmd,
1075 struct its_cmd_desc *desc)
1076{
1077 if (WARN_ON(!is_v4_1(its)))
1078 return NULL;
1079
1080 its_encode_cmd(cmd, GITS_CMD_VSGI);
1081 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
1082 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
1083 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
1084 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
1085 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
1086 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
1087
1088 its_fixup_cmd(cmd);
1089
1090 return valid_vpe(its, desc->its_vsgi_cmd.vpe);
1091}
1092
1093static u64 its_cmd_ptr_to_offset(struct its_node *its,
1094 struct its_cmd_block *ptr)
1095{
1096 return (ptr - its->cmd_base) * sizeof(*ptr);
1097}
1098
1099static int its_queue_full(struct its_node *its)
1100{
1101 int widx;
1102 int ridx;
1103
1104 widx = its->cmd_write - its->cmd_base;
1105 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
1106
1107 /* This is incredibly unlikely to happen, unless the ITS locks up. */
1108 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1109 return 1;
1110
1111 return 0;
1112}
1113
1114static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1115{
1116 struct its_cmd_block *cmd;
1117 u32 count = 1000000; /* 1s! */
1118
1119 while (its_queue_full(its)) {
1120 count--;
1121 if (!count) {
1122 pr_err_ratelimited("ITS queue not draining\n");
1123 return NULL;
1124 }
1125 cpu_relax();
1126 udelay(1);
1127 }
1128
1129 cmd = its->cmd_write++;
1130
1131 /* Handle queue wrapping */
1132 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1133 its->cmd_write = its->cmd_base;
1134
1135 /* Clear command */
1136 cmd->raw_cmd[0] = 0;
1137 cmd->raw_cmd[1] = 0;
1138 cmd->raw_cmd[2] = 0;
1139 cmd->raw_cmd[3] = 0;
1140
1141 return cmd;
1142}
1143
1144static struct its_cmd_block *its_post_commands(struct its_node *its)
1145{
1146 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1147
1148 writel_relaxed(wr, its->base + GITS_CWRITER);
1149
1150 return its->cmd_write;
1151}
1152
1153static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1154{
1155 /*
1156 * Make sure the commands written to memory are observable by
1157 * the ITS.
1158 */
1159 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1160 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1161 else
1162 dsb(ishst);
1163}
1164
1165static int its_wait_for_range_completion(struct its_node *its,
1166 u64 prev_idx,
1167 struct its_cmd_block *to)
1168{
1169 u64 rd_idx, to_idx, linear_idx;
1170 u32 count = 1000000; /* 1s! */
1171
1172 /* Linearize to_idx if the command set has wrapped around */
1173 to_idx = its_cmd_ptr_to_offset(its, to);
1174 if (to_idx < prev_idx)
1175 to_idx += ITS_CMD_QUEUE_SZ;
1176
1177 linear_idx = prev_idx;
1178
1179 while (1) {
1180 s64 delta;
1181
1182 rd_idx = readl_relaxed(its->base + GITS_CREADR);
1183
1184 /*
1185 * Compute the read pointer progress, taking the
1186 * potential wrap-around into account.
1187 */
1188 delta = rd_idx - prev_idx;
1189 if (rd_idx < prev_idx)
1190 delta += ITS_CMD_QUEUE_SZ;
1191
1192 linear_idx += delta;
1193 if (linear_idx >= to_idx)
1194 break;
1195
1196 count--;
1197 if (!count) {
1198 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1199 to_idx, linear_idx);
1200 return -1;
1201 }
1202 prev_idx = rd_idx;
1203 cpu_relax();
1204 udelay(1);
1205 }
1206
1207 return 0;
1208}
1209
1210/* Warning, macro hell follows */
1211#define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \
1212void name(struct its_node *its, \
1213 buildtype builder, \
1214 struct its_cmd_desc *desc) \
1215{ \
1216 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \
1217 synctype *sync_obj; \
1218 unsigned long flags; \
1219 u64 rd_idx; \
1220 \
1221 raw_spin_lock_irqsave(&its->lock, flags); \
1222 \
1223 cmd = its_allocate_entry(its); \
1224 if (!cmd) { /* We're soooooo screewed... */ \
1225 raw_spin_unlock_irqrestore(&its->lock, flags); \
1226 return; \
1227 } \
1228 sync_obj = builder(its, cmd, desc); \
1229 its_flush_cmd(its, cmd); \
1230 \
1231 if (sync_obj) { \
1232 sync_cmd = its_allocate_entry(its); \
1233 if (!sync_cmd) \
1234 goto post; \
1235 \
1236 buildfn(its, sync_cmd, sync_obj); \
1237 its_flush_cmd(its, sync_cmd); \
1238 } \
1239 \
1240post: \
1241 rd_idx = readl_relaxed(its->base + GITS_CREADR); \
1242 next_cmd = its_post_commands(its); \
1243 raw_spin_unlock_irqrestore(&its->lock, flags); \
1244 \
1245 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \
1246 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \
1247}
1248
1249static void its_build_sync_cmd(struct its_node *its,
1250 struct its_cmd_block *sync_cmd,
1251 struct its_collection *sync_col)
1252{
1253 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1254 its_encode_target(sync_cmd, sync_col->target_address);
1255
1256 its_fixup_cmd(sync_cmd);
1257}
1258
1259static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1260 struct its_collection, its_build_sync_cmd)
1261
1262static void its_build_vsync_cmd(struct its_node *its,
1263 struct its_cmd_block *sync_cmd,
1264 struct its_vpe *sync_vpe)
1265{
1266 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1267 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1268
1269 its_fixup_cmd(sync_cmd);
1270}
1271
1272static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1273 struct its_vpe, its_build_vsync_cmd)
1274
1275static void its_send_int(struct its_device *dev, u32 event_id)
1276{
1277 struct its_cmd_desc desc;
1278
1279 desc.its_int_cmd.dev = dev;
1280 desc.its_int_cmd.event_id = event_id;
1281
1282 its_send_single_command(dev->its, its_build_int_cmd, &desc);
1283}
1284
1285static void its_send_clear(struct its_device *dev, u32 event_id)
1286{
1287 struct its_cmd_desc desc;
1288
1289 desc.its_clear_cmd.dev = dev;
1290 desc.its_clear_cmd.event_id = event_id;
1291
1292 its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1293}
1294
1295static void its_send_inv(struct its_device *dev, u32 event_id)
1296{
1297 struct its_cmd_desc desc;
1298
1299 desc.its_inv_cmd.dev = dev;
1300 desc.its_inv_cmd.event_id = event_id;
1301
1302 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1303}
1304
1305static void its_send_mapd(struct its_device *dev, int valid)
1306{
1307 struct its_cmd_desc desc;
1308
1309 desc.its_mapd_cmd.dev = dev;
1310 desc.its_mapd_cmd.valid = !!valid;
1311
1312 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1313}
1314
1315static void its_send_mapc(struct its_node *its, struct its_collection *col,
1316 int valid)
1317{
1318 struct its_cmd_desc desc;
1319
1320 desc.its_mapc_cmd.col = col;
1321 desc.its_mapc_cmd.valid = !!valid;
1322
1323 its_send_single_command(its, its_build_mapc_cmd, &desc);
1324}
1325
1326static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1327{
1328 struct its_cmd_desc desc;
1329
1330 desc.its_mapti_cmd.dev = dev;
1331 desc.its_mapti_cmd.phys_id = irq_id;
1332 desc.its_mapti_cmd.event_id = id;
1333
1334 its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1335}
1336
1337static void its_send_movi(struct its_device *dev,
1338 struct its_collection *col, u32 id)
1339{
1340 struct its_cmd_desc desc;
1341
1342 desc.its_movi_cmd.dev = dev;
1343 desc.its_movi_cmd.col = col;
1344 desc.its_movi_cmd.event_id = id;
1345
1346 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1347}
1348
1349static void its_send_discard(struct its_device *dev, u32 id)
1350{
1351 struct its_cmd_desc desc;
1352
1353 desc.its_discard_cmd.dev = dev;
1354 desc.its_discard_cmd.event_id = id;
1355
1356 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1357}
1358
1359static void its_send_invall(struct its_node *its, struct its_collection *col)
1360{
1361 struct its_cmd_desc desc;
1362
1363 desc.its_invall_cmd.col = col;
1364
1365 its_send_single_command(its, its_build_invall_cmd, &desc);
1366}
1367
1368static void its_send_vmapti(struct its_device *dev, u32 id)
1369{
1370 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1371 struct its_cmd_desc desc;
1372
1373 desc.its_vmapti_cmd.vpe = map->vpe;
1374 desc.its_vmapti_cmd.dev = dev;
1375 desc.its_vmapti_cmd.virt_id = map->vintid;
1376 desc.its_vmapti_cmd.event_id = id;
1377 desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1378
1379 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1380}
1381
1382static void its_send_vmovi(struct its_device *dev, u32 id)
1383{
1384 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1385 struct its_cmd_desc desc;
1386
1387 desc.its_vmovi_cmd.vpe = map->vpe;
1388 desc.its_vmovi_cmd.dev = dev;
1389 desc.its_vmovi_cmd.event_id = id;
1390 desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1391
1392 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1393}
1394
1395static void its_send_vmapp(struct its_node *its,
1396 struct its_vpe *vpe, bool valid)
1397{
1398 struct its_cmd_desc desc;
1399
1400 desc.its_vmapp_cmd.vpe = vpe;
1401 desc.its_vmapp_cmd.valid = valid;
1402 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1403
1404 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1405}
1406
1407static void its_send_vmovp(struct its_vpe *vpe)
1408{
1409 struct its_cmd_desc desc = {};
1410 struct its_node *its;
1411 int col_id = vpe->col_idx;
1412
1413 desc.its_vmovp_cmd.vpe = vpe;
1414
1415 if (!its_list_map) {
1416 its = list_first_entry(&its_nodes, struct its_node, entry);
1417 desc.its_vmovp_cmd.col = &its->collections[col_id];
1418 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1419 return;
1420 }
1421
1422 /*
1423 * Yet another marvel of the architecture. If using the
1424 * its_list "feature", we need to make sure that all ITSs
1425 * receive all VMOVP commands in the same order. The only way
1426 * to guarantee this is to make vmovp a serialization point.
1427 *
1428 * Wall <-- Head.
1429 */
1430 guard(raw_spinlock)(&vmovp_lock);
1431 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1432 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1433
1434 /* Emit VMOVPs */
1435 list_for_each_entry(its, &its_nodes, entry) {
1436 if (!is_v4(its))
1437 continue;
1438
1439 if (!require_its_list_vmovp(vpe->its_vm, its))
1440 continue;
1441
1442 desc.its_vmovp_cmd.col = &its->collections[col_id];
1443 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1444 }
1445}
1446
1447static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1448{
1449 struct its_cmd_desc desc;
1450
1451 desc.its_vinvall_cmd.vpe = vpe;
1452 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1453}
1454
1455static void its_send_vinv(struct its_device *dev, u32 event_id)
1456{
1457 struct its_cmd_desc desc;
1458
1459 /*
1460 * There is no real VINV command. This is just a normal INV,
1461 * with a VSYNC instead of a SYNC.
1462 */
1463 desc.its_inv_cmd.dev = dev;
1464 desc.its_inv_cmd.event_id = event_id;
1465
1466 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1467}
1468
1469static void its_send_vint(struct its_device *dev, u32 event_id)
1470{
1471 struct its_cmd_desc desc;
1472
1473 /*
1474 * There is no real VINT command. This is just a normal INT,
1475 * with a VSYNC instead of a SYNC.
1476 */
1477 desc.its_int_cmd.dev = dev;
1478 desc.its_int_cmd.event_id = event_id;
1479
1480 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1481}
1482
1483static void its_send_vclear(struct its_device *dev, u32 event_id)
1484{
1485 struct its_cmd_desc desc;
1486
1487 /*
1488 * There is no real VCLEAR command. This is just a normal CLEAR,
1489 * with a VSYNC instead of a SYNC.
1490 */
1491 desc.its_clear_cmd.dev = dev;
1492 desc.its_clear_cmd.event_id = event_id;
1493
1494 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1495}
1496
1497static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1498{
1499 struct its_cmd_desc desc;
1500
1501 desc.its_invdb_cmd.vpe = vpe;
1502 its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1503}
1504
1505/*
1506 * irqchip functions - assumes MSI, mostly.
1507 */
1508static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1509{
1510 struct its_vlpi_map *map = get_vlpi_map(d);
1511 irq_hw_number_t hwirq;
1512 void *va;
1513 u8 *cfg;
1514
1515 if (map) {
1516 va = page_address(map->vm->vprop_page);
1517 hwirq = map->vintid;
1518
1519 /* Remember the updated property */
1520 map->properties &= ~clr;
1521 map->properties |= set | LPI_PROP_GROUP1;
1522 } else {
1523 va = gic_rdists->prop_table_va;
1524 hwirq = d->hwirq;
1525 }
1526
1527 cfg = va + hwirq - 8192;
1528 *cfg &= ~clr;
1529 *cfg |= set | LPI_PROP_GROUP1;
1530
1531 /*
1532 * Make the above write visible to the redistributors.
1533 * And yes, we're flushing exactly: One. Single. Byte.
1534 * Humpf...
1535 */
1536 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1537 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1538 else
1539 dsb(ishst);
1540}
1541
1542static void wait_for_syncr(void __iomem *rdbase)
1543{
1544 while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1545 cpu_relax();
1546}
1547
1548static void __direct_lpi_inv(struct irq_data *d, u64 val)
1549{
1550 void __iomem *rdbase;
1551 unsigned long flags;
1552 int cpu;
1553
1554 /* Target the redistributor this LPI is currently routed to */
1555 cpu = irq_to_cpuid_lock(d, &flags);
1556 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1557
1558 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1559 gic_write_lpir(val, rdbase + GICR_INVLPIR);
1560 wait_for_syncr(rdbase);
1561
1562 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1563 irq_to_cpuid_unlock(d, flags);
1564}
1565
1566static void direct_lpi_inv(struct irq_data *d)
1567{
1568 struct its_vlpi_map *map = get_vlpi_map(d);
1569 u64 val;
1570
1571 if (map) {
1572 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1573
1574 WARN_ON(!is_v4_1(its_dev->its));
1575
1576 val = GICR_INVLPIR_V;
1577 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1578 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1579 } else {
1580 val = d->hwirq;
1581 }
1582
1583 __direct_lpi_inv(d, val);
1584}
1585
1586static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1587{
1588 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1589
1590 lpi_write_config(d, clr, set);
1591 if (gic_rdists->has_direct_lpi &&
1592 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1593 direct_lpi_inv(d);
1594 else if (!irqd_is_forwarded_to_vcpu(d))
1595 its_send_inv(its_dev, its_get_event_id(d));
1596 else
1597 its_send_vinv(its_dev, its_get_event_id(d));
1598}
1599
1600static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1601{
1602 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1603 u32 event = its_get_event_id(d);
1604 struct its_vlpi_map *map;
1605
1606 /*
1607 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1608 * here.
1609 */
1610 if (is_v4_1(its_dev->its))
1611 return;
1612
1613 map = dev_event_to_vlpi_map(its_dev, event);
1614
1615 if (map->db_enabled == enable)
1616 return;
1617
1618 map->db_enabled = enable;
1619
1620 /*
1621 * More fun with the architecture:
1622 *
1623 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1624 * value or to 1023, depending on the enable bit. But that
1625 * would be issuing a mapping for an /existing/ DevID+EventID
1626 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1627 * to the /same/ vPE, using this opportunity to adjust the
1628 * doorbell. Mouahahahaha. We loves it, Precious.
1629 */
1630 its_send_vmovi(its_dev, event);
1631}
1632
1633static void its_mask_irq(struct irq_data *d)
1634{
1635 if (irqd_is_forwarded_to_vcpu(d))
1636 its_vlpi_set_doorbell(d, false);
1637
1638 lpi_update_config(d, LPI_PROP_ENABLED, 0);
1639}
1640
1641static void its_unmask_irq(struct irq_data *d)
1642{
1643 if (irqd_is_forwarded_to_vcpu(d))
1644 its_vlpi_set_doorbell(d, true);
1645
1646 lpi_update_config(d, 0, LPI_PROP_ENABLED);
1647}
1648
1649static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1650{
1651 if (irqd_affinity_is_managed(d))
1652 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1653
1654 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1655}
1656
1657static void its_inc_lpi_count(struct irq_data *d, int cpu)
1658{
1659 if (irqd_affinity_is_managed(d))
1660 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1661 else
1662 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1663}
1664
1665static void its_dec_lpi_count(struct irq_data *d, int cpu)
1666{
1667 if (irqd_affinity_is_managed(d))
1668 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1669 else
1670 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1671}
1672
1673static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1674 const struct cpumask *cpu_mask)
1675{
1676 unsigned int cpu = nr_cpu_ids, tmp;
1677 int count = S32_MAX;
1678
1679 for_each_cpu(tmp, cpu_mask) {
1680 int this_count = its_read_lpi_count(d, tmp);
1681 if (this_count < count) {
1682 cpu = tmp;
1683 count = this_count;
1684 }
1685 }
1686
1687 return cpu;
1688}
1689
1690/*
1691 * As suggested by Thomas Gleixner in:
1692 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1693 */
1694static int its_select_cpu(struct irq_data *d,
1695 const struct cpumask *aff_mask)
1696{
1697 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1698 static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1699 static struct cpumask __tmpmask;
1700 struct cpumask *tmpmask;
1701 unsigned long flags;
1702 int cpu, node;
1703 node = its_dev->its->numa_node;
1704 tmpmask = &__tmpmask;
1705
1706 raw_spin_lock_irqsave(&tmpmask_lock, flags);
1707
1708 if (!irqd_affinity_is_managed(d)) {
1709 /* First try the NUMA node */
1710 if (node != NUMA_NO_NODE) {
1711 /*
1712 * Try the intersection of the affinity mask and the
1713 * node mask (and the online mask, just to be safe).
1714 */
1715 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1716 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1717
1718 /*
1719 * Ideally, we would check if the mask is empty, and
1720 * try again on the full node here.
1721 *
1722 * But it turns out that the way ACPI describes the
1723 * affinity for ITSs only deals about memory, and
1724 * not target CPUs, so it cannot describe a single
1725 * ITS placed next to two NUMA nodes.
1726 *
1727 * Instead, just fallback on the online mask. This
1728 * diverges from Thomas' suggestion above.
1729 */
1730 cpu = cpumask_pick_least_loaded(d, tmpmask);
1731 if (cpu < nr_cpu_ids)
1732 goto out;
1733
1734 /* If we can't cross sockets, give up */
1735 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1736 goto out;
1737
1738 /* If the above failed, expand the search */
1739 }
1740
1741 /* Try the intersection of the affinity and online masks */
1742 cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1743
1744 /* If that doesn't fly, the online mask is the last resort */
1745 if (cpumask_empty(tmpmask))
1746 cpumask_copy(tmpmask, cpu_online_mask);
1747
1748 cpu = cpumask_pick_least_loaded(d, tmpmask);
1749 } else {
1750 cpumask_copy(tmpmask, aff_mask);
1751
1752 /* If we cannot cross sockets, limit the search to that node */
1753 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1754 node != NUMA_NO_NODE)
1755 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1756
1757 cpu = cpumask_pick_least_loaded(d, tmpmask);
1758 }
1759out:
1760 raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1761
1762 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1763 return cpu;
1764}
1765
1766static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1767 bool force)
1768{
1769 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1770 struct its_collection *target_col;
1771 u32 id = its_get_event_id(d);
1772 int cpu, prev_cpu;
1773
1774 /* A forwarded interrupt should use irq_set_vcpu_affinity */
1775 if (irqd_is_forwarded_to_vcpu(d))
1776 return -EINVAL;
1777
1778 prev_cpu = its_dev->event_map.col_map[id];
1779 its_dec_lpi_count(d, prev_cpu);
1780
1781 if (!force)
1782 cpu = its_select_cpu(d, mask_val);
1783 else
1784 cpu = cpumask_pick_least_loaded(d, mask_val);
1785
1786 if (cpu < 0 || cpu >= nr_cpu_ids)
1787 goto err;
1788
1789 /* don't set the affinity when the target cpu is same as current one */
1790 if (cpu != prev_cpu) {
1791 target_col = &its_dev->its->collections[cpu];
1792 its_send_movi(its_dev, target_col, id);
1793 its_dev->event_map.col_map[id] = cpu;
1794 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1795 }
1796
1797 its_inc_lpi_count(d, cpu);
1798
1799 return IRQ_SET_MASK_OK_DONE;
1800
1801err:
1802 its_inc_lpi_count(d, prev_cpu);
1803 return -EINVAL;
1804}
1805
1806static u64 its_irq_get_msi_base(struct its_device *its_dev)
1807{
1808 struct its_node *its = its_dev->its;
1809
1810 return its->phys_base + GITS_TRANSLATER;
1811}
1812
1813static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1814{
1815 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1816
1817 msg->data = its_get_event_id(d);
1818 msi_msg_set_addr(irq_data_get_msi_desc(d), msg,
1819 its_dev->its->get_msi_base(its_dev));
1820}
1821
1822static int its_irq_set_irqchip_state(struct irq_data *d,
1823 enum irqchip_irq_state which,
1824 bool state)
1825{
1826 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1827 u32 event = its_get_event_id(d);
1828
1829 if (which != IRQCHIP_STATE_PENDING)
1830 return -EINVAL;
1831
1832 if (irqd_is_forwarded_to_vcpu(d)) {
1833 if (state)
1834 its_send_vint(its_dev, event);
1835 else
1836 its_send_vclear(its_dev, event);
1837 } else {
1838 if (state)
1839 its_send_int(its_dev, event);
1840 else
1841 its_send_clear(its_dev, event);
1842 }
1843
1844 return 0;
1845}
1846
1847static int its_irq_retrigger(struct irq_data *d)
1848{
1849 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1850}
1851
1852/*
1853 * Two favourable cases:
1854 *
1855 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1856 * for vSGI delivery
1857 *
1858 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1859 * and we're better off mapping all VPEs always
1860 *
1861 * If neither (a) nor (b) is true, then we map vPEs on demand.
1862 *
1863 */
1864static bool gic_requires_eager_mapping(void)
1865{
1866 if (!its_list_map || gic_rdists->has_rvpeid)
1867 return true;
1868
1869 return false;
1870}
1871
1872static void its_map_vm(struct its_node *its, struct its_vm *vm)
1873{
1874 if (gic_requires_eager_mapping())
1875 return;
1876
1877 guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
1878
1879 /*
1880 * If the VM wasn't mapped yet, iterate over the vpes and get
1881 * them mapped now.
1882 */
1883 vm->vlpi_count[its->list_nr]++;
1884
1885 if (vm->vlpi_count[its->list_nr] == 1) {
1886 int i;
1887
1888 for (i = 0; i < vm->nr_vpes; i++) {
1889 struct its_vpe *vpe = vm->vpes[i];
1890
1891 scoped_guard(raw_spinlock, &vpe->vpe_lock)
1892 its_send_vmapp(its, vpe, true);
1893
1894 its_send_vinvall(its, vpe);
1895 }
1896 }
1897}
1898
1899static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1900{
1901 /* Not using the ITS list? Everything is always mapped. */
1902 if (gic_requires_eager_mapping())
1903 return;
1904
1905 guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
1906
1907 if (!--vm->vlpi_count[its->list_nr]) {
1908 int i;
1909
1910 for (i = 0; i < vm->nr_vpes; i++) {
1911 guard(raw_spinlock)(&vm->vpes[i]->vpe_lock);
1912 its_send_vmapp(its, vm->vpes[i], false);
1913 }
1914 }
1915}
1916
1917static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1918{
1919 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1920 u32 event = its_get_event_id(d);
1921
1922 if (!info->map)
1923 return -EINVAL;
1924
1925 if (!its_dev->event_map.vm) {
1926 struct its_vlpi_map *maps;
1927
1928 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1929 GFP_ATOMIC);
1930 if (!maps)
1931 return -ENOMEM;
1932
1933 its_dev->event_map.vm = info->map->vm;
1934 its_dev->event_map.vlpi_maps = maps;
1935 } else if (its_dev->event_map.vm != info->map->vm) {
1936 return -EINVAL;
1937 }
1938
1939 /* Get our private copy of the mapping information */
1940 its_dev->event_map.vlpi_maps[event] = *info->map;
1941
1942 if (irqd_is_forwarded_to_vcpu(d)) {
1943 /* Already mapped, move it around */
1944 its_send_vmovi(its_dev, event);
1945 } else {
1946 /* Ensure all the VPEs are mapped on this ITS */
1947 its_map_vm(its_dev->its, info->map->vm);
1948
1949 /*
1950 * Flag the interrupt as forwarded so that we can
1951 * start poking the virtual property table.
1952 */
1953 irqd_set_forwarded_to_vcpu(d);
1954
1955 /* Write out the property to the prop table */
1956 lpi_write_config(d, 0xff, info->map->properties);
1957
1958 /* Drop the physical mapping */
1959 its_send_discard(its_dev, event);
1960
1961 /* and install the virtual one */
1962 its_send_vmapti(its_dev, event);
1963
1964 /* Increment the number of VLPIs */
1965 its_dev->event_map.nr_vlpis++;
1966 }
1967
1968 return 0;
1969}
1970
1971static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1972{
1973 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1974 struct its_vlpi_map *map;
1975
1976 map = get_vlpi_map(d);
1977
1978 if (!its_dev->event_map.vm || !map)
1979 return -EINVAL;
1980
1981 /* Copy our mapping information to the incoming request */
1982 *info->map = *map;
1983
1984 return 0;
1985}
1986
1987static int its_vlpi_unmap(struct irq_data *d)
1988{
1989 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1990 u32 event = its_get_event_id(d);
1991
1992 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1993 return -EINVAL;
1994
1995 /* Drop the virtual mapping */
1996 its_send_discard(its_dev, event);
1997
1998 /* and restore the physical one */
1999 irqd_clr_forwarded_to_vcpu(d);
2000 its_send_mapti(its_dev, d->hwirq, event);
2001 lpi_update_config(d, 0xff, (lpi_prop_prio |
2002 LPI_PROP_ENABLED |
2003 LPI_PROP_GROUP1));
2004
2005 /* Potentially unmap the VM from this ITS */
2006 its_unmap_vm(its_dev->its, its_dev->event_map.vm);
2007
2008 /*
2009 * Drop the refcount and make the device available again if
2010 * this was the last VLPI.
2011 */
2012 if (!--its_dev->event_map.nr_vlpis) {
2013 its_dev->event_map.vm = NULL;
2014 kfree(its_dev->event_map.vlpi_maps);
2015 }
2016
2017 return 0;
2018}
2019
2020static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
2021{
2022 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2023
2024 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
2025 return -EINVAL;
2026
2027 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
2028 lpi_update_config(d, 0xff, info->config);
2029 else
2030 lpi_write_config(d, 0xff, info->config);
2031 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
2032
2033 return 0;
2034}
2035
2036static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2037{
2038 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2039 struct its_cmd_info *info = vcpu_info;
2040
2041 /* Need a v4 ITS */
2042 if (!is_v4(its_dev->its))
2043 return -EINVAL;
2044
2045 guard(raw_spinlock)(&its_dev->event_map.vlpi_lock);
2046
2047 /* Unmap request? */
2048 if (!info)
2049 return its_vlpi_unmap(d);
2050
2051 switch (info->cmd_type) {
2052 case MAP_VLPI:
2053 return its_vlpi_map(d, info);
2054
2055 case GET_VLPI:
2056 return its_vlpi_get(d, info);
2057
2058 case PROP_UPDATE_VLPI:
2059 case PROP_UPDATE_AND_INV_VLPI:
2060 return its_vlpi_prop_update(d, info);
2061
2062 default:
2063 return -EINVAL;
2064 }
2065}
2066
2067static struct irq_chip its_irq_chip = {
2068 .name = "ITS",
2069 .irq_mask = its_mask_irq,
2070 .irq_unmask = its_unmask_irq,
2071 .irq_eoi = irq_chip_eoi_parent,
2072 .irq_set_affinity = its_set_affinity,
2073 .irq_compose_msi_msg = its_irq_compose_msi_msg,
2074 .irq_set_irqchip_state = its_irq_set_irqchip_state,
2075 .irq_retrigger = its_irq_retrigger,
2076 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity,
2077};
2078
2079
2080/*
2081 * How we allocate LPIs:
2082 *
2083 * lpi_range_list contains ranges of LPIs that are to available to
2084 * allocate from. To allocate LPIs, just pick the first range that
2085 * fits the required allocation, and reduce it by the required
2086 * amount. Once empty, remove the range from the list.
2087 *
2088 * To free a range of LPIs, add a free range to the list, sort it and
2089 * merge the result if the new range happens to be adjacent to an
2090 * already free block.
2091 *
2092 * The consequence of the above is that allocation is cost is low, but
2093 * freeing is expensive. We assumes that freeing rarely occurs.
2094 */
2095#define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
2096
2097static DEFINE_MUTEX(lpi_range_lock);
2098static LIST_HEAD(lpi_range_list);
2099
2100struct lpi_range {
2101 struct list_head entry;
2102 u32 base_id;
2103 u32 span;
2104};
2105
2106static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2107{
2108 struct lpi_range *range;
2109
2110 range = kmalloc(sizeof(*range), GFP_KERNEL);
2111 if (range) {
2112 range->base_id = base;
2113 range->span = span;
2114 }
2115
2116 return range;
2117}
2118
2119static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2120{
2121 struct lpi_range *range, *tmp;
2122 int err = -ENOSPC;
2123
2124 mutex_lock(&lpi_range_lock);
2125
2126 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2127 if (range->span >= nr_lpis) {
2128 *base = range->base_id;
2129 range->base_id += nr_lpis;
2130 range->span -= nr_lpis;
2131
2132 if (range->span == 0) {
2133 list_del(&range->entry);
2134 kfree(range);
2135 }
2136
2137 err = 0;
2138 break;
2139 }
2140 }
2141
2142 mutex_unlock(&lpi_range_lock);
2143
2144 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2145 return err;
2146}
2147
2148static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2149{
2150 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2151 return;
2152 if (a->base_id + a->span != b->base_id)
2153 return;
2154 b->base_id = a->base_id;
2155 b->span += a->span;
2156 list_del(&a->entry);
2157 kfree(a);
2158}
2159
2160static int free_lpi_range(u32 base, u32 nr_lpis)
2161{
2162 struct lpi_range *new, *old;
2163
2164 new = mk_lpi_range(base, nr_lpis);
2165 if (!new)
2166 return -ENOMEM;
2167
2168 mutex_lock(&lpi_range_lock);
2169
2170 list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2171 if (old->base_id < base)
2172 break;
2173 }
2174 /*
2175 * old is the last element with ->base_id smaller than base,
2176 * so new goes right after it. If there are no elements with
2177 * ->base_id smaller than base, &old->entry ends up pointing
2178 * at the head of the list, and inserting new it the start of
2179 * the list is the right thing to do in that case as well.
2180 */
2181 list_add(&new->entry, &old->entry);
2182 /*
2183 * Now check if we can merge with the preceding and/or
2184 * following ranges.
2185 */
2186 merge_lpi_ranges(old, new);
2187 merge_lpi_ranges(new, list_next_entry(new, entry));
2188
2189 mutex_unlock(&lpi_range_lock);
2190 return 0;
2191}
2192
2193static int __init its_lpi_init(u32 id_bits)
2194{
2195 u32 lpis = (1UL << id_bits) - 8192;
2196 u32 numlpis;
2197 int err;
2198
2199 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2200
2201 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2202 lpis = numlpis;
2203 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2204 lpis);
2205 }
2206
2207 /*
2208 * Initializing the allocator is just the same as freeing the
2209 * full range of LPIs.
2210 */
2211 err = free_lpi_range(8192, lpis);
2212 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2213 return err;
2214}
2215
2216static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2217{
2218 unsigned long *bitmap = NULL;
2219 int err = 0;
2220
2221 do {
2222 err = alloc_lpi_range(nr_irqs, base);
2223 if (!err)
2224 break;
2225
2226 nr_irqs /= 2;
2227 } while (nr_irqs > 0);
2228
2229 if (!nr_irqs)
2230 err = -ENOSPC;
2231
2232 if (err)
2233 goto out;
2234
2235 bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2236 if (!bitmap)
2237 goto out;
2238
2239 *nr_ids = nr_irqs;
2240
2241out:
2242 if (!bitmap)
2243 *base = *nr_ids = 0;
2244
2245 return bitmap;
2246}
2247
2248static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2249{
2250 WARN_ON(free_lpi_range(base, nr_ids));
2251 bitmap_free(bitmap);
2252}
2253
2254static void gic_reset_prop_table(void *va)
2255{
2256 /* Regular IRQ priority, Group-1, disabled */
2257 memset(va, lpi_prop_prio | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2258
2259 /* Make sure the GIC will observe the written configuration */
2260 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2261}
2262
2263static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2264{
2265 struct page *prop_page;
2266
2267 prop_page = its_alloc_pages(gfp_flags,
2268 get_order(LPI_PROPBASE_SZ));
2269 if (!prop_page)
2270 return NULL;
2271
2272 gic_reset_prop_table(page_address(prop_page));
2273
2274 return prop_page;
2275}
2276
2277static void its_free_prop_table(struct page *prop_page)
2278{
2279 its_free_pages(page_address(prop_page), get_order(LPI_PROPBASE_SZ));
2280}
2281
2282static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2283{
2284 phys_addr_t start, end, addr_end;
2285 u64 i;
2286
2287 /*
2288 * We don't bother checking for a kdump kernel as by
2289 * construction, the LPI tables are out of this kernel's
2290 * memory map.
2291 */
2292 if (is_kdump_kernel())
2293 return true;
2294
2295 addr_end = addr + size - 1;
2296
2297 for_each_reserved_mem_range(i, &start, &end) {
2298 if (addr >= start && addr_end <= end)
2299 return true;
2300 }
2301
2302 /* Not found, not a good sign... */
2303 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2304 &addr, &addr_end);
2305 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2306 return false;
2307}
2308
2309static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2310{
2311 if (efi_enabled(EFI_CONFIG_TABLES))
2312 return efi_mem_reserve_persistent(addr, size);
2313
2314 return 0;
2315}
2316
2317static int __init its_setup_lpi_prop_table(void)
2318{
2319 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2320 u64 val;
2321
2322 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2323 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2324
2325 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2326 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2327 LPI_PROPBASE_SZ,
2328 MEMREMAP_WB);
2329 gic_reset_prop_table(gic_rdists->prop_table_va);
2330 } else {
2331 struct page *page;
2332
2333 lpi_id_bits = min_t(u32,
2334 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2335 ITS_MAX_LPI_NRBITS);
2336 page = its_allocate_prop_table(GFP_NOWAIT);
2337 if (!page) {
2338 pr_err("Failed to allocate PROPBASE\n");
2339 return -ENOMEM;
2340 }
2341
2342 gic_rdists->prop_table_pa = page_to_phys(page);
2343 gic_rdists->prop_table_va = page_address(page);
2344 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2345 LPI_PROPBASE_SZ));
2346 }
2347
2348 pr_info("GICv3: using LPI property table @%pa\n",
2349 &gic_rdists->prop_table_pa);
2350
2351 return its_lpi_init(lpi_id_bits);
2352}
2353
2354static const char *its_base_type_string[] = {
2355 [GITS_BASER_TYPE_DEVICE] = "Devices",
2356 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
2357 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)",
2358 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
2359 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
2360 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
2361 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
2362};
2363
2364static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2365{
2366 u32 idx = baser - its->tables;
2367
2368 return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2369}
2370
2371static void its_write_baser(struct its_node *its, struct its_baser *baser,
2372 u64 val)
2373{
2374 u32 idx = baser - its->tables;
2375
2376 gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2377 baser->val = its_read_baser(its, baser);
2378}
2379
2380static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2381 u64 cache, u64 shr, u32 order, bool indirect)
2382{
2383 u64 val = its_read_baser(its, baser);
2384 u64 esz = GITS_BASER_ENTRY_SIZE(val);
2385 u64 type = GITS_BASER_TYPE(val);
2386 u64 baser_phys, tmp;
2387 u32 alloc_pages, psz;
2388 struct page *page;
2389 void *base;
2390
2391 psz = baser->psz;
2392 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2393 if (alloc_pages > GITS_BASER_PAGES_MAX) {
2394 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2395 &its->phys_base, its_base_type_string[type],
2396 alloc_pages, GITS_BASER_PAGES_MAX);
2397 alloc_pages = GITS_BASER_PAGES_MAX;
2398 order = get_order(GITS_BASER_PAGES_MAX * psz);
2399 }
2400
2401 page = its_alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2402 if (!page)
2403 return -ENOMEM;
2404
2405 base = (void *)page_address(page);
2406 baser_phys = virt_to_phys(base);
2407
2408 /* Check if the physical address of the memory is above 48bits */
2409 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2410
2411 /* 52bit PA is supported only when PageSize=64K */
2412 if (psz != SZ_64K) {
2413 pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2414 its_free_pages(base, order);
2415 return -ENXIO;
2416 }
2417
2418 /* Convert 52bit PA to 48bit field */
2419 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2420 }
2421
2422retry_baser:
2423 val = (baser_phys |
2424 (type << GITS_BASER_TYPE_SHIFT) |
2425 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
2426 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) |
2427 cache |
2428 shr |
2429 GITS_BASER_VALID);
2430
2431 val |= indirect ? GITS_BASER_INDIRECT : 0x0;
2432
2433 switch (psz) {
2434 case SZ_4K:
2435 val |= GITS_BASER_PAGE_SIZE_4K;
2436 break;
2437 case SZ_16K:
2438 val |= GITS_BASER_PAGE_SIZE_16K;
2439 break;
2440 case SZ_64K:
2441 val |= GITS_BASER_PAGE_SIZE_64K;
2442 break;
2443 }
2444
2445 if (!shr)
2446 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2447
2448 its_write_baser(its, baser, val);
2449 tmp = baser->val;
2450
2451 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2452 /*
2453 * Shareability didn't stick. Just use
2454 * whatever the read reported, which is likely
2455 * to be the only thing this redistributor
2456 * supports. If that's zero, make it
2457 * non-cacheable as well.
2458 */
2459 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2460 if (!shr)
2461 cache = GITS_BASER_nC;
2462
2463 goto retry_baser;
2464 }
2465
2466 if (val != tmp) {
2467 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2468 &its->phys_base, its_base_type_string[type],
2469 val, tmp);
2470 its_free_pages(base, order);
2471 return -ENXIO;
2472 }
2473
2474 baser->order = order;
2475 baser->base = base;
2476 baser->psz = psz;
2477 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2478
2479 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2480 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2481 its_base_type_string[type],
2482 (unsigned long)virt_to_phys(base),
2483 indirect ? "indirect" : "flat", (int)esz,
2484 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2485
2486 return 0;
2487}
2488
2489static bool its_parse_indirect_baser(struct its_node *its,
2490 struct its_baser *baser,
2491 u32 *order, u32 ids)
2492{
2493 u64 tmp = its_read_baser(its, baser);
2494 u64 type = GITS_BASER_TYPE(tmp);
2495 u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2496 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2497 u32 new_order = *order;
2498 u32 psz = baser->psz;
2499 bool indirect = false;
2500
2501 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2502 if ((esz << ids) > (psz * 2)) {
2503 /*
2504 * Find out whether hw supports a single or two-level table by
2505 * table by reading bit at offset '62' after writing '1' to it.
2506 */
2507 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2508 indirect = !!(baser->val & GITS_BASER_INDIRECT);
2509
2510 if (indirect) {
2511 /*
2512 * The size of the lvl2 table is equal to ITS page size
2513 * which is 'psz'. For computing lvl1 table size,
2514 * subtract ID bits that sparse lvl2 table from 'ids'
2515 * which is reported by ITS hardware times lvl1 table
2516 * entry size.
2517 */
2518 ids -= ilog2(psz / (int)esz);
2519 esz = GITS_LVL1_ENTRY_SIZE;
2520 }
2521 }
2522
2523 /*
2524 * Allocate as many entries as required to fit the
2525 * range of device IDs that the ITS can grok... The ID
2526 * space being incredibly sparse, this results in a
2527 * massive waste of memory if two-level device table
2528 * feature is not supported by hardware.
2529 */
2530 new_order = max_t(u32, get_order(esz << ids), new_order);
2531 if (new_order > MAX_PAGE_ORDER) {
2532 new_order = MAX_PAGE_ORDER;
2533 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2534 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2535 &its->phys_base, its_base_type_string[type],
2536 device_ids(its), ids);
2537 }
2538
2539 *order = new_order;
2540
2541 return indirect;
2542}
2543
2544static u32 compute_common_aff(u64 val)
2545{
2546 u32 aff, clpiaff;
2547
2548 aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2549 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2550
2551 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2552}
2553
2554static u32 compute_its_aff(struct its_node *its)
2555{
2556 u64 val;
2557 u32 svpet;
2558
2559 /*
2560 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2561 * the resulting affinity. We then use that to see if this match
2562 * our own affinity.
2563 */
2564 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2565 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2566 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2567 return compute_common_aff(val);
2568}
2569
2570static struct its_node *find_sibling_its(struct its_node *cur_its)
2571{
2572 struct its_node *its;
2573 u32 aff;
2574
2575 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2576 return NULL;
2577
2578 aff = compute_its_aff(cur_its);
2579
2580 list_for_each_entry(its, &its_nodes, entry) {
2581 u64 baser;
2582
2583 if (!is_v4_1(its) || its == cur_its)
2584 continue;
2585
2586 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2587 continue;
2588
2589 if (aff != compute_its_aff(its))
2590 continue;
2591
2592 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2593 baser = its->tables[2].val;
2594 if (!(baser & GITS_BASER_VALID))
2595 continue;
2596
2597 return its;
2598 }
2599
2600 return NULL;
2601}
2602
2603static void its_free_tables(struct its_node *its)
2604{
2605 int i;
2606
2607 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2608 if (its->tables[i].base) {
2609 its_free_pages(its->tables[i].base, its->tables[i].order);
2610 its->tables[i].base = NULL;
2611 }
2612 }
2613}
2614
2615static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2616{
2617 u64 psz = SZ_64K;
2618
2619 while (psz) {
2620 u64 val, gpsz;
2621
2622 val = its_read_baser(its, baser);
2623 val &= ~GITS_BASER_PAGE_SIZE_MASK;
2624
2625 switch (psz) {
2626 case SZ_64K:
2627 gpsz = GITS_BASER_PAGE_SIZE_64K;
2628 break;
2629 case SZ_16K:
2630 gpsz = GITS_BASER_PAGE_SIZE_16K;
2631 break;
2632 case SZ_4K:
2633 default:
2634 gpsz = GITS_BASER_PAGE_SIZE_4K;
2635 break;
2636 }
2637
2638 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2639
2640 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2641 its_write_baser(its, baser, val);
2642
2643 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2644 break;
2645
2646 switch (psz) {
2647 case SZ_64K:
2648 psz = SZ_16K;
2649 break;
2650 case SZ_16K:
2651 psz = SZ_4K;
2652 break;
2653 case SZ_4K:
2654 default:
2655 return -1;
2656 }
2657 }
2658
2659 baser->psz = psz;
2660 return 0;
2661}
2662
2663static int its_alloc_tables(struct its_node *its)
2664{
2665 u64 shr = GITS_BASER_InnerShareable;
2666 u64 cache = GITS_BASER_RaWaWb;
2667 int err, i;
2668
2669 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2670 /* erratum 24313: ignore memory access type */
2671 cache = GITS_BASER_nCnB;
2672
2673 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) {
2674 cache = GITS_BASER_nC;
2675 shr = 0;
2676 }
2677
2678 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2679 struct its_baser *baser = its->tables + i;
2680 u64 val = its_read_baser(its, baser);
2681 u64 type = GITS_BASER_TYPE(val);
2682 bool indirect = false;
2683 u32 order;
2684
2685 if (type == GITS_BASER_TYPE_NONE)
2686 continue;
2687
2688 if (its_probe_baser_psz(its, baser)) {
2689 its_free_tables(its);
2690 return -ENXIO;
2691 }
2692
2693 order = get_order(baser->psz);
2694
2695 switch (type) {
2696 case GITS_BASER_TYPE_DEVICE:
2697 indirect = its_parse_indirect_baser(its, baser, &order,
2698 device_ids(its));
2699 break;
2700
2701 case GITS_BASER_TYPE_VCPU:
2702 if (is_v4_1(its)) {
2703 struct its_node *sibling;
2704
2705 WARN_ON(i != 2);
2706 if ((sibling = find_sibling_its(its))) {
2707 *baser = sibling->tables[2];
2708 its_write_baser(its, baser, baser->val);
2709 continue;
2710 }
2711 }
2712
2713 indirect = its_parse_indirect_baser(its, baser, &order,
2714 ITS_MAX_VPEID_BITS);
2715 break;
2716 }
2717
2718 err = its_setup_baser(its, baser, cache, shr, order, indirect);
2719 if (err < 0) {
2720 its_free_tables(its);
2721 return err;
2722 }
2723
2724 /* Update settings which will be used for next BASERn */
2725 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2726 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2727 }
2728
2729 return 0;
2730}
2731
2732static u64 inherit_vpe_l1_table_from_its(void)
2733{
2734 struct its_node *its;
2735 u64 val;
2736 u32 aff;
2737
2738 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2739 aff = compute_common_aff(val);
2740
2741 list_for_each_entry(its, &its_nodes, entry) {
2742 u64 baser, addr;
2743
2744 if (!is_v4_1(its))
2745 continue;
2746
2747 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2748 continue;
2749
2750 if (aff != compute_its_aff(its))
2751 continue;
2752
2753 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2754 baser = its->tables[2].val;
2755 if (!(baser & GITS_BASER_VALID))
2756 continue;
2757
2758 /* We have a winner! */
2759 gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2760
2761 val = GICR_VPROPBASER_4_1_VALID;
2762 if (baser & GITS_BASER_INDIRECT)
2763 val |= GICR_VPROPBASER_4_1_INDIRECT;
2764 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2765 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2766 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2767 case GIC_PAGE_SIZE_64K:
2768 addr = GITS_BASER_ADDR_48_to_52(baser);
2769 break;
2770 default:
2771 addr = baser & GENMASK_ULL(47, 12);
2772 break;
2773 }
2774 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2775 if (rdists_support_shareable()) {
2776 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2777 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2778 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2779 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2780 }
2781 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2782
2783 *this_cpu_ptr(&local_4_1_its) = its;
2784 return val;
2785 }
2786
2787 return 0;
2788}
2789
2790static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2791{
2792 u32 aff;
2793 u64 val;
2794 int cpu;
2795
2796 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2797 aff = compute_common_aff(val);
2798
2799 for_each_possible_cpu(cpu) {
2800 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2801
2802 if (!base || cpu == smp_processor_id())
2803 continue;
2804
2805 val = gic_read_typer(base + GICR_TYPER);
2806 if (aff != compute_common_aff(val))
2807 continue;
2808
2809 /*
2810 * At this point, we have a victim. This particular CPU
2811 * has already booted, and has an affinity that matches
2812 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2813 * Make sure we don't write the Z bit in that case.
2814 */
2815 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2816 val &= ~GICR_VPROPBASER_4_1_Z;
2817
2818 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2819 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2820
2821 *this_cpu_ptr(&local_4_1_its) = *per_cpu_ptr(&local_4_1_its, cpu);
2822 return val;
2823 }
2824
2825 return 0;
2826}
2827
2828static bool allocate_vpe_l2_table(int cpu, u32 id)
2829{
2830 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2831 unsigned int psz, esz, idx, npg, gpsz;
2832 u64 val;
2833 struct page *page;
2834 __le64 *table;
2835
2836 if (!gic_rdists->has_rvpeid)
2837 return true;
2838
2839 /* Skip non-present CPUs */
2840 if (!base)
2841 return true;
2842
2843 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2844
2845 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2846 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2847 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2848
2849 switch (gpsz) {
2850 default:
2851 WARN_ON(1);
2852 fallthrough;
2853 case GIC_PAGE_SIZE_4K:
2854 psz = SZ_4K;
2855 break;
2856 case GIC_PAGE_SIZE_16K:
2857 psz = SZ_16K;
2858 break;
2859 case GIC_PAGE_SIZE_64K:
2860 psz = SZ_64K;
2861 break;
2862 }
2863
2864 /* Don't allow vpe_id that exceeds single, flat table limit */
2865 if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2866 return (id < (npg * psz / (esz * SZ_8)));
2867
2868 /* Compute 1st level table index & check if that exceeds table limit */
2869 idx = id >> ilog2(psz / (esz * SZ_8));
2870 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2871 return false;
2872
2873 table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2874
2875 /* Allocate memory for 2nd level table */
2876 if (!table[idx]) {
2877 page = its_alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2878 if (!page)
2879 return false;
2880
2881 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2882 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2883 gic_flush_dcache_to_poc(page_address(page), psz);
2884
2885 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2886
2887 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2888 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2889 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2890
2891 /* Ensure updated table contents are visible to RD hardware */
2892 dsb(sy);
2893 }
2894
2895 return true;
2896}
2897
2898static int allocate_vpe_l1_table(void)
2899{
2900 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2901 u64 val, gpsz, npg, pa;
2902 unsigned int psz = SZ_64K;
2903 unsigned int np, epp, esz;
2904 struct page *page;
2905
2906 if (!gic_rdists->has_rvpeid)
2907 return 0;
2908
2909 /*
2910 * if VPENDBASER.Valid is set, disable any previously programmed
2911 * VPE by setting PendingLast while clearing Valid. This has the
2912 * effect of making sure no doorbell will be generated and we can
2913 * then safely clear VPROPBASER.Valid.
2914 */
2915 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2916 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2917 vlpi_base + GICR_VPENDBASER);
2918
2919 /*
2920 * If we can inherit the configuration from another RD, let's do
2921 * so. Otherwise, we have to go through the allocation process. We
2922 * assume that all RDs have the exact same requirements, as
2923 * nothing will work otherwise.
2924 */
2925 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2926 if (val & GICR_VPROPBASER_4_1_VALID)
2927 goto out;
2928
2929 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2930 if (!gic_data_rdist()->vpe_table_mask)
2931 return -ENOMEM;
2932
2933 val = inherit_vpe_l1_table_from_its();
2934 if (val & GICR_VPROPBASER_4_1_VALID)
2935 goto out;
2936
2937 /* First probe the page size */
2938 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2939 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2940 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2941 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2942 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2943
2944 switch (gpsz) {
2945 default:
2946 gpsz = GIC_PAGE_SIZE_4K;
2947 fallthrough;
2948 case GIC_PAGE_SIZE_4K:
2949 psz = SZ_4K;
2950 break;
2951 case GIC_PAGE_SIZE_16K:
2952 psz = SZ_16K;
2953 break;
2954 case GIC_PAGE_SIZE_64K:
2955 psz = SZ_64K;
2956 break;
2957 }
2958
2959 /*
2960 * Start populating the register from scratch, including RO fields
2961 * (which we want to print in debug cases...)
2962 */
2963 val = 0;
2964 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2965 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2966
2967 /* How many entries per GIC page? */
2968 esz++;
2969 epp = psz / (esz * SZ_8);
2970
2971 /*
2972 * If we need more than just a single L1 page, flag the table
2973 * as indirect and compute the number of required L1 pages.
2974 */
2975 if (epp < ITS_MAX_VPEID) {
2976 int nl2;
2977
2978 val |= GICR_VPROPBASER_4_1_INDIRECT;
2979
2980 /* Number of L2 pages required to cover the VPEID space */
2981 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2982
2983 /* Number of L1 pages to point to the L2 pages */
2984 npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2985 } else {
2986 npg = 1;
2987 }
2988
2989 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2990
2991 /* Right, that's the number of CPU pages we need for L1 */
2992 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2993
2994 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2995 np, npg, psz, epp, esz);
2996 page = its_alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2997 if (!page)
2998 return -ENOMEM;
2999
3000 gic_data_rdist()->vpe_l1_base = page_address(page);
3001 pa = virt_to_phys(page_address(page));
3002 WARN_ON(!IS_ALIGNED(pa, psz));
3003
3004 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
3005 if (rdists_support_shareable()) {
3006 val |= GICR_VPROPBASER_RaWb;
3007 val |= GICR_VPROPBASER_InnerShareable;
3008 }
3009 val |= GICR_VPROPBASER_4_1_Z;
3010 val |= GICR_VPROPBASER_4_1_VALID;
3011
3012out:
3013 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3014 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
3015
3016 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
3017 smp_processor_id(), val,
3018 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
3019
3020 return 0;
3021}
3022
3023static int its_alloc_collections(struct its_node *its)
3024{
3025 int i;
3026
3027 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
3028 GFP_KERNEL);
3029 if (!its->collections)
3030 return -ENOMEM;
3031
3032 for (i = 0; i < nr_cpu_ids; i++)
3033 its->collections[i].target_address = ~0ULL;
3034
3035 return 0;
3036}
3037
3038static struct page *its_allocate_pending_table(gfp_t gfp_flags)
3039{
3040 struct page *pend_page;
3041
3042 pend_page = its_alloc_pages(gfp_flags | __GFP_ZERO, get_order(LPI_PENDBASE_SZ));
3043 if (!pend_page)
3044 return NULL;
3045
3046 /* Make sure the GIC will observe the zero-ed page */
3047 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
3048
3049 return pend_page;
3050}
3051
3052static void its_free_pending_table(struct page *pt)
3053{
3054 its_free_pages(page_address(pt), get_order(LPI_PENDBASE_SZ));
3055}
3056
3057/*
3058 * Booting with kdump and LPIs enabled is generally fine. Any other
3059 * case is wrong in the absence of firmware/EFI support.
3060 */
3061static bool enabled_lpis_allowed(void)
3062{
3063 phys_addr_t addr;
3064 u64 val;
3065
3066 /* Check whether the property table is in a reserved region */
3067 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
3068 addr = val & GENMASK_ULL(51, 12);
3069
3070 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
3071}
3072
3073static int __init allocate_lpi_tables(void)
3074{
3075 u64 val;
3076 int err, cpu;
3077
3078 /*
3079 * If LPIs are enabled while we run this from the boot CPU,
3080 * flag the RD tables as pre-allocated if the stars do align.
3081 */
3082 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3083 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3084 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3085 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3086 pr_info("GICv3: Using preallocated redistributor tables\n");
3087 }
3088
3089 err = its_setup_lpi_prop_table();
3090 if (err)
3091 return err;
3092
3093 /*
3094 * We allocate all the pending tables anyway, as we may have a
3095 * mix of RDs that have had LPIs enabled, and some that
3096 * don't. We'll free the unused ones as each CPU comes online.
3097 */
3098 for_each_possible_cpu(cpu) {
3099 struct page *pend_page;
3100
3101 pend_page = its_allocate_pending_table(GFP_NOWAIT);
3102 if (!pend_page) {
3103 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3104 return -ENOMEM;
3105 }
3106
3107 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3108 }
3109
3110 return 0;
3111}
3112
3113static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3114{
3115 u32 count = 1000000; /* 1s! */
3116 bool clean;
3117 u64 val;
3118
3119 do {
3120 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3121 clean = !(val & GICR_VPENDBASER_Dirty);
3122 if (!clean) {
3123 count--;
3124 cpu_relax();
3125 udelay(1);
3126 }
3127 } while (!clean && count);
3128
3129 if (unlikely(!clean))
3130 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3131
3132 return val;
3133}
3134
3135static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3136{
3137 u64 val;
3138
3139 /* Make sure we wait until the RD is done with the initial scan */
3140 val = read_vpend_dirty_clear(vlpi_base);
3141 val &= ~GICR_VPENDBASER_Valid;
3142 val &= ~clr;
3143 val |= set;
3144 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3145
3146 val = read_vpend_dirty_clear(vlpi_base);
3147 if (unlikely(val & GICR_VPENDBASER_Dirty))
3148 val |= GICR_VPENDBASER_PendingLast;
3149
3150 return val;
3151}
3152
3153static void its_cpu_init_lpis(void)
3154{
3155 void __iomem *rbase = gic_data_rdist_rd_base();
3156 struct page *pend_page;
3157 phys_addr_t paddr;
3158 u64 val, tmp;
3159
3160 if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3161 return;
3162
3163 val = readl_relaxed(rbase + GICR_CTLR);
3164 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3165 (val & GICR_CTLR_ENABLE_LPIS)) {
3166 /*
3167 * Check that we get the same property table on all
3168 * RDs. If we don't, this is hopeless.
3169 */
3170 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3171 paddr &= GENMASK_ULL(51, 12);
3172 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3173 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3174
3175 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3176 paddr &= GENMASK_ULL(51, 16);
3177
3178 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3179 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3180
3181 goto out;
3182 }
3183
3184 pend_page = gic_data_rdist()->pend_page;
3185 paddr = page_to_phys(pend_page);
3186
3187 /* set PROPBASE */
3188 val = (gic_rdists->prop_table_pa |
3189 GICR_PROPBASER_InnerShareable |
3190 GICR_PROPBASER_RaWaWb |
3191 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3192
3193 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3194 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3195
3196 if (!rdists_support_shareable())
3197 tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3198
3199 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3200 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3201 /*
3202 * The HW reports non-shareable, we must
3203 * remove the cacheability attributes as
3204 * well.
3205 */
3206 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3207 GICR_PROPBASER_CACHEABILITY_MASK);
3208 val |= GICR_PROPBASER_nC;
3209 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3210 }
3211 pr_info_once("GIC: using cache flushing for LPI property table\n");
3212 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3213 }
3214
3215 /* set PENDBASE */
3216 val = (page_to_phys(pend_page) |
3217 GICR_PENDBASER_InnerShareable |
3218 GICR_PENDBASER_RaWaWb);
3219
3220 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3221 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3222
3223 if (!rdists_support_shareable())
3224 tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3225
3226 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3227 /*
3228 * The HW reports non-shareable, we must remove the
3229 * cacheability attributes as well.
3230 */
3231 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3232 GICR_PENDBASER_CACHEABILITY_MASK);
3233 val |= GICR_PENDBASER_nC;
3234 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3235 }
3236
3237 /* Enable LPIs */
3238 val = readl_relaxed(rbase + GICR_CTLR);
3239 val |= GICR_CTLR_ENABLE_LPIS;
3240 writel_relaxed(val, rbase + GICR_CTLR);
3241
3242out:
3243 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3244 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3245
3246 /*
3247 * It's possible for CPU to receive VLPIs before it is
3248 * scheduled as a vPE, especially for the first CPU, and the
3249 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3250 * as out of range and dropped by GIC.
3251 * So we initialize IDbits to known value to avoid VLPI drop.
3252 */
3253 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3254 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3255 smp_processor_id(), val);
3256 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3257
3258 /*
3259 * Also clear Valid bit of GICR_VPENDBASER, in case some
3260 * ancient programming gets left in and has possibility of
3261 * corrupting memory.
3262 */
3263 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3264 }
3265
3266 if (allocate_vpe_l1_table()) {
3267 /*
3268 * If the allocation has failed, we're in massive trouble.
3269 * Disable direct injection, and pray that no VM was
3270 * already running...
3271 */
3272 gic_rdists->has_rvpeid = false;
3273 gic_rdists->has_vlpis = false;
3274 }
3275
3276 /* Make sure the GIC has seen the above */
3277 dsb(sy);
3278 gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3279 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3280 smp_processor_id(),
3281 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3282 "reserved" : "allocated",
3283 &paddr);
3284}
3285
3286static void its_cpu_init_collection(struct its_node *its)
3287{
3288 int cpu = smp_processor_id();
3289 u64 target;
3290
3291 /* avoid cross node collections and its mapping */
3292 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3293 struct device_node *cpu_node;
3294
3295 cpu_node = of_get_cpu_node(cpu, NULL);
3296 if (its->numa_node != NUMA_NO_NODE &&
3297 its->numa_node != of_node_to_nid(cpu_node))
3298 return;
3299 }
3300
3301 /*
3302 * We now have to bind each collection to its target
3303 * redistributor.
3304 */
3305 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3306 /*
3307 * This ITS wants the physical address of the
3308 * redistributor.
3309 */
3310 target = gic_data_rdist()->phys_base;
3311 } else {
3312 /* This ITS wants a linear CPU number. */
3313 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3314 target = GICR_TYPER_CPU_NUMBER(target) << 16;
3315 }
3316
3317 /* Perform collection mapping */
3318 its->collections[cpu].target_address = target;
3319 its->collections[cpu].col_id = cpu;
3320
3321 its_send_mapc(its, &its->collections[cpu], 1);
3322 its_send_invall(its, &its->collections[cpu]);
3323}
3324
3325static void its_cpu_init_collections(void)
3326{
3327 struct its_node *its;
3328
3329 raw_spin_lock(&its_lock);
3330
3331 list_for_each_entry(its, &its_nodes, entry)
3332 its_cpu_init_collection(its);
3333
3334 raw_spin_unlock(&its_lock);
3335}
3336
3337static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3338{
3339 struct its_device *its_dev = NULL, *tmp;
3340 unsigned long flags;
3341
3342 raw_spin_lock_irqsave(&its->lock, flags);
3343
3344 list_for_each_entry(tmp, &its->its_device_list, entry) {
3345 if (tmp->device_id == dev_id) {
3346 its_dev = tmp;
3347 break;
3348 }
3349 }
3350
3351 raw_spin_unlock_irqrestore(&its->lock, flags);
3352
3353 return its_dev;
3354}
3355
3356static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3357{
3358 int i;
3359
3360 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3361 if (GITS_BASER_TYPE(its->tables[i].val) == type)
3362 return &its->tables[i];
3363 }
3364
3365 return NULL;
3366}
3367
3368static bool its_alloc_table_entry(struct its_node *its,
3369 struct its_baser *baser, u32 id)
3370{
3371 struct page *page;
3372 u32 esz, idx;
3373 __le64 *table;
3374
3375 /* Don't allow device id that exceeds single, flat table limit */
3376 esz = GITS_BASER_ENTRY_SIZE(baser->val);
3377 if (!(baser->val & GITS_BASER_INDIRECT))
3378 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3379
3380 /* Compute 1st level table index & check if that exceeds table limit */
3381 idx = id >> ilog2(baser->psz / esz);
3382 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3383 return false;
3384
3385 table = baser->base;
3386
3387 /* Allocate memory for 2nd level table */
3388 if (!table[idx]) {
3389 page = its_alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3390 get_order(baser->psz));
3391 if (!page)
3392 return false;
3393
3394 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
3395 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3396 gic_flush_dcache_to_poc(page_address(page), baser->psz);
3397
3398 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3399
3400 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3401 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3402 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3403
3404 /* Ensure updated table contents are visible to ITS hardware */
3405 dsb(sy);
3406 }
3407
3408 return true;
3409}
3410
3411static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3412{
3413 struct its_baser *baser;
3414
3415 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3416
3417 /* Don't allow device id that exceeds ITS hardware limit */
3418 if (!baser)
3419 return (ilog2(dev_id) < device_ids(its));
3420
3421 return its_alloc_table_entry(its, baser, dev_id);
3422}
3423
3424static bool its_alloc_vpe_table(u32 vpe_id)
3425{
3426 struct its_node *its;
3427 int cpu;
3428
3429 /*
3430 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3431 * could try and only do it on ITSs corresponding to devices
3432 * that have interrupts targeted at this VPE, but the
3433 * complexity becomes crazy (and you have tons of memory
3434 * anyway, right?).
3435 */
3436 list_for_each_entry(its, &its_nodes, entry) {
3437 struct its_baser *baser;
3438
3439 if (!is_v4(its))
3440 continue;
3441
3442 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3443 if (!baser)
3444 return false;
3445
3446 if (!its_alloc_table_entry(its, baser, vpe_id))
3447 return false;
3448 }
3449
3450 /* Non v4.1? No need to iterate RDs and go back early. */
3451 if (!gic_rdists->has_rvpeid)
3452 return true;
3453
3454 /*
3455 * Make sure the L2 tables are allocated for all copies of
3456 * the L1 table on *all* v4.1 RDs.
3457 */
3458 for_each_possible_cpu(cpu) {
3459 if (!allocate_vpe_l2_table(cpu, vpe_id))
3460 return false;
3461 }
3462
3463 return true;
3464}
3465
3466static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3467 int nvecs, bool alloc_lpis)
3468{
3469 struct its_device *dev;
3470 unsigned long *lpi_map = NULL;
3471 unsigned long flags;
3472 u16 *col_map = NULL;
3473 void *itt;
3474 int lpi_base;
3475 int nr_lpis;
3476 int nr_ites;
3477 int sz;
3478
3479 if (!its_alloc_device_table(its, dev_id))
3480 return NULL;
3481
3482 if (WARN_ON(!is_power_of_2(nvecs)))
3483 nvecs = roundup_pow_of_two(nvecs);
3484
3485 /*
3486 * Even if the device wants a single LPI, the ITT must be
3487 * sized as a power of two (and you need at least one bit...).
3488 */
3489 nr_ites = max(2, nvecs);
3490 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3491 sz = max(sz, ITS_ITT_ALIGN);
3492
3493 itt = itt_alloc_pool(its->numa_node, sz);
3494
3495 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3496
3497 if (alloc_lpis) {
3498 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3499 if (lpi_map)
3500 col_map = kcalloc(nr_lpis, sizeof(*col_map),
3501 GFP_KERNEL);
3502 } else {
3503 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3504 nr_lpis = 0;
3505 lpi_base = 0;
3506 }
3507
3508 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) {
3509 kfree(dev);
3510 itt_free_pool(itt, sz);
3511 bitmap_free(lpi_map);
3512 kfree(col_map);
3513 return NULL;
3514 }
3515
3516 gic_flush_dcache_to_poc(itt, sz);
3517
3518 dev->its = its;
3519 dev->itt = itt;
3520 dev->itt_sz = sz;
3521 dev->nr_ites = nr_ites;
3522 dev->event_map.lpi_map = lpi_map;
3523 dev->event_map.col_map = col_map;
3524 dev->event_map.lpi_base = lpi_base;
3525 dev->event_map.nr_lpis = nr_lpis;
3526 raw_spin_lock_init(&dev->event_map.vlpi_lock);
3527 dev->device_id = dev_id;
3528 INIT_LIST_HEAD(&dev->entry);
3529
3530 raw_spin_lock_irqsave(&its->lock, flags);
3531 list_add(&dev->entry, &its->its_device_list);
3532 raw_spin_unlock_irqrestore(&its->lock, flags);
3533
3534 /* Map device to its ITT */
3535 its_send_mapd(dev, 1);
3536
3537 return dev;
3538}
3539
3540static void its_free_device(struct its_device *its_dev)
3541{
3542 unsigned long flags;
3543
3544 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3545 list_del(&its_dev->entry);
3546 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3547 kfree(its_dev->event_map.col_map);
3548 itt_free_pool(its_dev->itt, its_dev->itt_sz);
3549 kfree(its_dev);
3550}
3551
3552static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3553{
3554 int idx;
3555
3556 /* Find a free LPI region in lpi_map and allocate them. */
3557 idx = bitmap_find_free_region(dev->event_map.lpi_map,
3558 dev->event_map.nr_lpis,
3559 get_count_order(nvecs));
3560 if (idx < 0)
3561 return -ENOSPC;
3562
3563 *hwirq = dev->event_map.lpi_base + idx;
3564
3565 return 0;
3566}
3567
3568static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3569 int nvec, msi_alloc_info_t *info)
3570{
3571 struct its_node *its;
3572 struct its_device *its_dev;
3573 struct msi_domain_info *msi_info;
3574 u32 dev_id;
3575 int err = 0;
3576
3577 /*
3578 * We ignore "dev" entirely, and rely on the dev_id that has
3579 * been passed via the scratchpad. This limits this domain's
3580 * usefulness to upper layers that definitely know that they
3581 * are built on top of the ITS.
3582 */
3583 dev_id = info->scratchpad[0].ul;
3584
3585 msi_info = msi_get_domain_info(domain);
3586 its = msi_info->data;
3587
3588 if (!gic_rdists->has_direct_lpi &&
3589 vpe_proxy.dev &&
3590 vpe_proxy.dev->its == its &&
3591 dev_id == vpe_proxy.dev->device_id) {
3592 /* Bad luck. Get yourself a better implementation */
3593 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3594 dev_id);
3595 return -EINVAL;
3596 }
3597
3598 mutex_lock(&its->dev_alloc_lock);
3599 its_dev = its_find_device(its, dev_id);
3600 if (its_dev) {
3601 /*
3602 * We already have seen this ID, probably through
3603 * another alias (PCI bridge of some sort). No need to
3604 * create the device.
3605 */
3606 its_dev->shared = true;
3607 pr_debug("Reusing ITT for devID %x\n", dev_id);
3608 goto out;
3609 }
3610
3611 its_dev = its_create_device(its, dev_id, nvec, true);
3612 if (!its_dev) {
3613 err = -ENOMEM;
3614 goto out;
3615 }
3616
3617 if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3618 its_dev->shared = true;
3619
3620 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3621out:
3622 mutex_unlock(&its->dev_alloc_lock);
3623 info->scratchpad[0].ptr = its_dev;
3624 return err;
3625}
3626
3627static void its_msi_teardown(struct irq_domain *domain, msi_alloc_info_t *info)
3628{
3629 struct its_device *its_dev = info->scratchpad[0].ptr;
3630
3631 guard(mutex)(&its_dev->its->dev_alloc_lock);
3632
3633 /* If the device is shared, keep everything around */
3634 if (its_dev->shared)
3635 return;
3636
3637 /* LPIs should have been already unmapped at this stage */
3638 if (WARN_ON_ONCE(!bitmap_empty(its_dev->event_map.lpi_map,
3639 its_dev->event_map.nr_lpis)))
3640 return;
3641
3642 its_lpi_free(its_dev->event_map.lpi_map,
3643 its_dev->event_map.lpi_base,
3644 its_dev->event_map.nr_lpis);
3645
3646 /* Unmap device/itt, and get rid of the tracking */
3647 its_send_mapd(its_dev, 0);
3648 its_free_device(its_dev);
3649}
3650
3651static struct msi_domain_ops its_msi_domain_ops = {
3652 .msi_prepare = its_msi_prepare,
3653 .msi_teardown = its_msi_teardown,
3654};
3655
3656static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3657 unsigned int virq,
3658 irq_hw_number_t hwirq)
3659{
3660 struct irq_fwspec fwspec;
3661
3662 if (irq_domain_get_of_node(domain->parent)) {
3663 fwspec.fwnode = domain->parent->fwnode;
3664 fwspec.param_count = 3;
3665 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3666 fwspec.param[1] = hwirq;
3667 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3668 } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3669 fwspec.fwnode = domain->parent->fwnode;
3670 fwspec.param_count = 2;
3671 fwspec.param[0] = hwirq;
3672 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3673 } else {
3674 return -EINVAL;
3675 }
3676
3677 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3678}
3679
3680static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3681 unsigned int nr_irqs, void *args)
3682{
3683 msi_alloc_info_t *info = args;
3684 struct its_device *its_dev = info->scratchpad[0].ptr;
3685 struct its_node *its = its_dev->its;
3686 struct irq_data *irqd;
3687 irq_hw_number_t hwirq;
3688 int err;
3689 int i;
3690
3691 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3692 if (err)
3693 return err;
3694
3695 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3696 if (err)
3697 return err;
3698
3699 for (i = 0; i < nr_irqs; i++) {
3700 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3701 if (err)
3702 return err;
3703
3704 irq_domain_set_hwirq_and_chip(domain, virq + i,
3705 hwirq + i, &its_irq_chip, its_dev);
3706 irqd = irq_get_irq_data(virq + i);
3707 irqd_set_single_target(irqd);
3708 irqd_set_affinity_on_activate(irqd);
3709 irqd_set_resend_when_in_progress(irqd);
3710 pr_debug("ID:%d pID:%d vID:%d\n",
3711 (int)(hwirq + i - its_dev->event_map.lpi_base),
3712 (int)(hwirq + i), virq + i);
3713 }
3714
3715 return 0;
3716}
3717
3718static int its_irq_domain_activate(struct irq_domain *domain,
3719 struct irq_data *d, bool reserve)
3720{
3721 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3722 u32 event = its_get_event_id(d);
3723 int cpu;
3724
3725 cpu = its_select_cpu(d, cpu_online_mask);
3726 if (cpu < 0 || cpu >= nr_cpu_ids)
3727 return -EINVAL;
3728
3729 its_inc_lpi_count(d, cpu);
3730 its_dev->event_map.col_map[event] = cpu;
3731 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3732
3733 /* Map the GIC IRQ and event to the device */
3734 its_send_mapti(its_dev, d->hwirq, event);
3735 return 0;
3736}
3737
3738static void its_irq_domain_deactivate(struct irq_domain *domain,
3739 struct irq_data *d)
3740{
3741 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3742 u32 event = its_get_event_id(d);
3743
3744 its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3745 /* Stop the delivery of interrupts */
3746 its_send_discard(its_dev, event);
3747}
3748
3749static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3750 unsigned int nr_irqs)
3751{
3752 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3753 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3754 int i;
3755
3756 bitmap_release_region(its_dev->event_map.lpi_map,
3757 its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3758 get_count_order(nr_irqs));
3759
3760 for (i = 0; i < nr_irqs; i++) {
3761 struct irq_data *data = irq_domain_get_irq_data(domain,
3762 virq + i);
3763 /* Nuke the entry in the domain */
3764 irq_domain_reset_irq_data(data);
3765 }
3766
3767 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3768}
3769
3770static const struct irq_domain_ops its_domain_ops = {
3771 .select = msi_lib_irq_domain_select,
3772 .alloc = its_irq_domain_alloc,
3773 .free = its_irq_domain_free,
3774 .activate = its_irq_domain_activate,
3775 .deactivate = its_irq_domain_deactivate,
3776};
3777
3778/*
3779 * This is insane.
3780 *
3781 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3782 * likely), the only way to perform an invalidate is to use a fake
3783 * device to issue an INV command, implying that the LPI has first
3784 * been mapped to some event on that device. Since this is not exactly
3785 * cheap, we try to keep that mapping around as long as possible, and
3786 * only issue an UNMAP if we're short on available slots.
3787 *
3788 * Broken by design(tm).
3789 *
3790 * GICv4.1, on the other hand, mandates that we're able to invalidate
3791 * by writing to a MMIO register. It doesn't implement the whole of
3792 * DirectLPI, but that's good enough. And most of the time, we don't
3793 * even have to invalidate anything, as the redistributor can be told
3794 * whether to generate a doorbell or not (we thus leave it enabled,
3795 * always).
3796 */
3797static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3798{
3799 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3800 if (gic_rdists->has_rvpeid)
3801 return;
3802
3803 /* Already unmapped? */
3804 if (vpe->vpe_proxy_event == -1)
3805 return;
3806
3807 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3808 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3809
3810 /*
3811 * We don't track empty slots at all, so let's move the
3812 * next_victim pointer if we can quickly reuse that slot
3813 * instead of nuking an existing entry. Not clear that this is
3814 * always a win though, and this might just generate a ripple
3815 * effect... Let's just hope VPEs don't migrate too often.
3816 */
3817 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3818 vpe_proxy.next_victim = vpe->vpe_proxy_event;
3819
3820 vpe->vpe_proxy_event = -1;
3821}
3822
3823static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3824{
3825 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3826 if (gic_rdists->has_rvpeid)
3827 return;
3828
3829 if (!gic_rdists->has_direct_lpi) {
3830 unsigned long flags;
3831
3832 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3833 its_vpe_db_proxy_unmap_locked(vpe);
3834 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3835 }
3836}
3837
3838static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3839{
3840 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3841 if (gic_rdists->has_rvpeid)
3842 return;
3843
3844 /* Already mapped? */
3845 if (vpe->vpe_proxy_event != -1)
3846 return;
3847
3848 /* This slot was already allocated. Kick the other VPE out. */
3849 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3850 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3851
3852 /* Map the new VPE instead */
3853 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3854 vpe->vpe_proxy_event = vpe_proxy.next_victim;
3855 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3856
3857 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3858 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3859}
3860
3861static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3862{
3863 unsigned long flags;
3864 struct its_collection *target_col;
3865
3866 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3867 if (gic_rdists->has_rvpeid)
3868 return;
3869
3870 if (gic_rdists->has_direct_lpi) {
3871 void __iomem *rdbase;
3872
3873 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3874 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3875 wait_for_syncr(rdbase);
3876
3877 return;
3878 }
3879
3880 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3881
3882 its_vpe_db_proxy_map_locked(vpe);
3883
3884 target_col = &vpe_proxy.dev->its->collections[to];
3885 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3886 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3887
3888 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3889}
3890
3891static void its_vpe_4_1_invall_locked(int cpu, struct its_vpe *vpe)
3892{
3893 void __iomem *rdbase;
3894 u64 val;
3895
3896 val = GICR_INVALLR_V;
3897 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
3898
3899 guard(raw_spinlock)(&gic_data_rdist_cpu(cpu)->rd_lock);
3900 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
3901 gic_write_lpir(val, rdbase + GICR_INVALLR);
3902 wait_for_syncr(rdbase);
3903}
3904
3905static int its_vpe_set_affinity(struct irq_data *d,
3906 const struct cpumask *mask_val,
3907 bool force)
3908{
3909 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3910 unsigned int from, cpu = nr_cpu_ids;
3911 struct cpumask *table_mask;
3912 struct its_node *its;
3913 unsigned long flags;
3914
3915 /*
3916 * Check if we're racing against a VPE being destroyed, for
3917 * which we don't want to allow a VMOVP.
3918 */
3919 if (!atomic_read(&vpe->vmapp_count)) {
3920 if (gic_requires_eager_mapping())
3921 return -EINVAL;
3922
3923 /*
3924 * If we lazily map the VPEs, this isn't an error and
3925 * we can exit cleanly.
3926 */
3927 cpu = cpumask_first(mask_val);
3928 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3929 return IRQ_SET_MASK_OK_DONE;
3930 }
3931
3932 /*
3933 * Changing affinity is mega expensive, so let's be as lazy as
3934 * we can and only do it if we really have to. Also, if mapped
3935 * into the proxy device, we need to move the doorbell
3936 * interrupt to its new location.
3937 *
3938 * Another thing is that changing the affinity of a vPE affects
3939 * *other interrupts* such as all the vLPIs that are routed to
3940 * this vPE. This means that the irq_desc lock is not enough to
3941 * protect us, and that we must ensure nobody samples vpe->col_idx
3942 * during the update, hence the lock below which must also be
3943 * taken on any vLPI handling path that evaluates vpe->col_idx.
3944 *
3945 * Finally, we must protect ourselves against concurrent updates of
3946 * the mapping state on this VM should the ITS list be in use (see
3947 * the shortcut in its_send_vmovp() otherewise).
3948 */
3949 if (its_list_map)
3950 raw_spin_lock(&vpe->its_vm->vmapp_lock);
3951
3952 from = vpe_to_cpuid_lock(vpe, &flags);
3953 table_mask = gic_data_rdist_cpu(from)->vpe_table_mask;
3954
3955 /*
3956 * If we are offered another CPU in the same GICv4.1 ITS
3957 * affinity, pick this one. Otherwise, any CPU will do.
3958 */
3959 if (table_mask)
3960 cpu = cpumask_any_and(mask_val, table_mask);
3961 if (cpu < nr_cpu_ids) {
3962 if (cpumask_test_cpu(from, mask_val) &&
3963 cpumask_test_cpu(from, table_mask))
3964 cpu = from;
3965 } else {
3966 cpu = cpumask_first(mask_val);
3967 }
3968
3969 if (from == cpu)
3970 goto out;
3971
3972 vpe->col_idx = cpu;
3973
3974 its_send_vmovp(vpe);
3975
3976 its = find_4_1_its();
3977 if (its && its->flags & ITS_FLAGS_WORKAROUND_HISILICON_162100801)
3978 its_vpe_4_1_invall_locked(cpu, vpe);
3979
3980 its_vpe_db_proxy_move(vpe, from, cpu);
3981
3982out:
3983 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3984 vpe_to_cpuid_unlock(vpe, flags);
3985
3986 if (its_list_map)
3987 raw_spin_unlock(&vpe->its_vm->vmapp_lock);
3988
3989 return IRQ_SET_MASK_OK_DONE;
3990}
3991
3992static void its_wait_vpt_parse_complete(void)
3993{
3994 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3995 u64 val;
3996
3997 if (!gic_rdists->has_vpend_valid_dirty)
3998 return;
3999
4000 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
4001 val,
4002 !(val & GICR_VPENDBASER_Dirty),
4003 1, 500));
4004}
4005
4006static void its_vpe_schedule(struct its_vpe *vpe)
4007{
4008 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4009 u64 val;
4010
4011 /* Schedule the VPE */
4012 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
4013 GENMASK_ULL(51, 12);
4014 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
4015 if (rdists_support_shareable()) {
4016 val |= GICR_VPROPBASER_RaWb;
4017 val |= GICR_VPROPBASER_InnerShareable;
4018 }
4019 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
4020
4021 val = virt_to_phys(page_address(vpe->vpt_page)) &
4022 GENMASK_ULL(51, 16);
4023 if (rdists_support_shareable()) {
4024 val |= GICR_VPENDBASER_RaWaWb;
4025 val |= GICR_VPENDBASER_InnerShareable;
4026 }
4027 /*
4028 * There is no good way of finding out if the pending table is
4029 * empty as we can race against the doorbell interrupt very
4030 * easily. So in the end, vpe->pending_last is only an
4031 * indication that the vcpu has something pending, not one
4032 * that the pending table is empty. A good implementation
4033 * would be able to read its coarse map pretty quickly anyway,
4034 * making this a tolerable issue.
4035 */
4036 val |= GICR_VPENDBASER_PendingLast;
4037 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
4038 val |= GICR_VPENDBASER_Valid;
4039 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4040}
4041
4042static void its_vpe_deschedule(struct its_vpe *vpe)
4043{
4044 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4045 u64 val;
4046
4047 val = its_clear_vpend_valid(vlpi_base, 0, 0);
4048
4049 vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
4050 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4051}
4052
4053static void its_vpe_invall(struct its_vpe *vpe)
4054{
4055 struct its_node *its;
4056
4057 guard(raw_spinlock_irqsave)(&vpe->its_vm->vmapp_lock);
4058
4059 list_for_each_entry(its, &its_nodes, entry) {
4060 if (!is_v4(its))
4061 continue;
4062
4063 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
4064 continue;
4065
4066 /*
4067 * Sending a VINVALL to a single ITS is enough, as all
4068 * we need is to reach the redistributors.
4069 */
4070 its_send_vinvall(its, vpe);
4071 return;
4072 }
4073}
4074
4075static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4076{
4077 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4078 struct its_cmd_info *info = vcpu_info;
4079
4080 switch (info->cmd_type) {
4081 case SCHEDULE_VPE:
4082 its_vpe_schedule(vpe);
4083 return 0;
4084
4085 case DESCHEDULE_VPE:
4086 its_vpe_deschedule(vpe);
4087 return 0;
4088
4089 case COMMIT_VPE:
4090 its_wait_vpt_parse_complete();
4091 return 0;
4092
4093 case INVALL_VPE:
4094 its_vpe_invall(vpe);
4095 return 0;
4096
4097 default:
4098 return -EINVAL;
4099 }
4100}
4101
4102static void its_vpe_send_cmd(struct its_vpe *vpe,
4103 void (*cmd)(struct its_device *, u32))
4104{
4105 unsigned long flags;
4106
4107 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
4108
4109 its_vpe_db_proxy_map_locked(vpe);
4110 cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
4111
4112 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
4113}
4114
4115static void its_vpe_send_inv(struct irq_data *d)
4116{
4117 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4118
4119 if (gic_rdists->has_direct_lpi)
4120 __direct_lpi_inv(d, d->parent_data->hwirq);
4121 else
4122 its_vpe_send_cmd(vpe, its_send_inv);
4123}
4124
4125static void its_vpe_mask_irq(struct irq_data *d)
4126{
4127 /*
4128 * We need to unmask the LPI, which is described by the parent
4129 * irq_data. Instead of calling into the parent (which won't
4130 * exactly do the right thing, let's simply use the
4131 * parent_data pointer. Yes, I'm naughty.
4132 */
4133 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4134 its_vpe_send_inv(d);
4135}
4136
4137static void its_vpe_unmask_irq(struct irq_data *d)
4138{
4139 /* Same hack as above... */
4140 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4141 its_vpe_send_inv(d);
4142}
4143
4144static int its_vpe_set_irqchip_state(struct irq_data *d,
4145 enum irqchip_irq_state which,
4146 bool state)
4147{
4148 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4149
4150 if (which != IRQCHIP_STATE_PENDING)
4151 return -EINVAL;
4152
4153 if (gic_rdists->has_direct_lpi) {
4154 void __iomem *rdbase;
4155
4156 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4157 if (state) {
4158 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4159 } else {
4160 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4161 wait_for_syncr(rdbase);
4162 }
4163 } else {
4164 if (state)
4165 its_vpe_send_cmd(vpe, its_send_int);
4166 else
4167 its_vpe_send_cmd(vpe, its_send_clear);
4168 }
4169
4170 return 0;
4171}
4172
4173static int its_vpe_retrigger(struct irq_data *d)
4174{
4175 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4176}
4177
4178static struct irq_chip its_vpe_irq_chip = {
4179 .name = "GICv4-vpe",
4180 .irq_mask = its_vpe_mask_irq,
4181 .irq_unmask = its_vpe_unmask_irq,
4182 .irq_eoi = irq_chip_eoi_parent,
4183 .irq_set_affinity = its_vpe_set_affinity,
4184 .irq_retrigger = its_vpe_retrigger,
4185 .irq_set_irqchip_state = its_vpe_set_irqchip_state,
4186 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity,
4187};
4188
4189static struct its_node *find_4_1_its(void)
4190{
4191 struct its_node *its = *this_cpu_ptr(&local_4_1_its);
4192
4193 if (!its) {
4194 list_for_each_entry(its, &its_nodes, entry) {
4195 if (is_v4_1(its))
4196 return its;
4197 }
4198
4199 /* Oops? */
4200 its = NULL;
4201 }
4202
4203 return its;
4204}
4205
4206static void its_vpe_4_1_send_inv(struct irq_data *d)
4207{
4208 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4209 struct its_node *its;
4210
4211 /*
4212 * GICv4.1 wants doorbells to be invalidated using the
4213 * INVDB command in order to be broadcast to all RDs. Send
4214 * it to the first valid ITS, and let the HW do its magic.
4215 */
4216 its = find_4_1_its();
4217 if (its)
4218 its_send_invdb(its, vpe);
4219}
4220
4221static void its_vpe_4_1_mask_irq(struct irq_data *d)
4222{
4223 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4224 its_vpe_4_1_send_inv(d);
4225}
4226
4227static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4228{
4229 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4230 its_vpe_4_1_send_inv(d);
4231}
4232
4233static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4234 struct its_cmd_info *info)
4235{
4236 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4237 u64 val = 0;
4238
4239 /* Schedule the VPE */
4240 val |= GICR_VPENDBASER_Valid;
4241 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4242 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4243 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4244
4245 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4246}
4247
4248static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4249 struct its_cmd_info *info)
4250{
4251 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4252 u64 val;
4253
4254 if (info->req_db) {
4255 unsigned long flags;
4256
4257 /*
4258 * vPE is going to block: make the vPE non-resident with
4259 * PendingLast clear and DB set. The GIC guarantees that if
4260 * we read-back PendingLast clear, then a doorbell will be
4261 * delivered when an interrupt comes.
4262 *
4263 * Note the locking to deal with the concurrent update of
4264 * pending_last from the doorbell interrupt handler that can
4265 * run concurrently.
4266 */
4267 raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4268 val = its_clear_vpend_valid(vlpi_base,
4269 GICR_VPENDBASER_PendingLast,
4270 GICR_VPENDBASER_4_1_DB);
4271 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4272 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4273 } else {
4274 /*
4275 * We're not blocking, so just make the vPE non-resident
4276 * with PendingLast set, indicating that we'll be back.
4277 */
4278 val = its_clear_vpend_valid(vlpi_base,
4279 0,
4280 GICR_VPENDBASER_PendingLast);
4281 vpe->pending_last = true;
4282 }
4283}
4284
4285static void its_vpe_4_1_invall(struct its_vpe *vpe)
4286{
4287 unsigned long flags;
4288 int cpu;
4289
4290 /* Target the redistributor this vPE is currently known on */
4291 cpu = vpe_to_cpuid_lock(vpe, &flags);
4292 its_vpe_4_1_invall_locked(cpu, vpe);
4293 vpe_to_cpuid_unlock(vpe, flags);
4294}
4295
4296static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4297{
4298 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4299 struct its_cmd_info *info = vcpu_info;
4300
4301 switch (info->cmd_type) {
4302 case SCHEDULE_VPE:
4303 its_vpe_4_1_schedule(vpe, info);
4304 return 0;
4305
4306 case DESCHEDULE_VPE:
4307 its_vpe_4_1_deschedule(vpe, info);
4308 return 0;
4309
4310 case COMMIT_VPE:
4311 its_wait_vpt_parse_complete();
4312 return 0;
4313
4314 case INVALL_VPE:
4315 its_vpe_4_1_invall(vpe);
4316 return 0;
4317
4318 default:
4319 return -EINVAL;
4320 }
4321}
4322
4323static struct irq_chip its_vpe_4_1_irq_chip = {
4324 .name = "GICv4.1-vpe",
4325 .irq_mask = its_vpe_4_1_mask_irq,
4326 .irq_unmask = its_vpe_4_1_unmask_irq,
4327 .irq_eoi = irq_chip_eoi_parent,
4328 .irq_set_affinity = its_vpe_set_affinity,
4329 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity,
4330};
4331
4332static void its_configure_sgi(struct irq_data *d, bool clear)
4333{
4334 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4335 struct its_cmd_desc desc;
4336
4337 desc.its_vsgi_cmd.vpe = vpe;
4338 desc.its_vsgi_cmd.sgi = d->hwirq;
4339 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4340 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4341 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4342 desc.its_vsgi_cmd.clear = clear;
4343
4344 /*
4345 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4346 * destination VPE is mapped there. Since we map them eagerly at
4347 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4348 */
4349 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4350}
4351
4352static void its_sgi_mask_irq(struct irq_data *d)
4353{
4354 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4355
4356 vpe->sgi_config[d->hwirq].enabled = false;
4357 its_configure_sgi(d, false);
4358}
4359
4360static void its_sgi_unmask_irq(struct irq_data *d)
4361{
4362 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4363
4364 vpe->sgi_config[d->hwirq].enabled = true;
4365 its_configure_sgi(d, false);
4366}
4367
4368static int its_sgi_set_affinity(struct irq_data *d,
4369 const struct cpumask *mask_val,
4370 bool force)
4371{
4372 /*
4373 * There is no notion of affinity for virtual SGIs, at least
4374 * not on the host (since they can only be targeting a vPE).
4375 * Tell the kernel we've done whatever it asked for.
4376 */
4377 irq_data_update_effective_affinity(d, mask_val);
4378 return IRQ_SET_MASK_OK;
4379}
4380
4381static int its_sgi_set_irqchip_state(struct irq_data *d,
4382 enum irqchip_irq_state which,
4383 bool state)
4384{
4385 if (which != IRQCHIP_STATE_PENDING)
4386 return -EINVAL;
4387
4388 if (state) {
4389 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4390 struct its_node *its = find_4_1_its();
4391 u64 val;
4392
4393 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4394 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4395 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4396 } else {
4397 its_configure_sgi(d, true);
4398 }
4399
4400 return 0;
4401}
4402
4403static int its_sgi_get_irqchip_state(struct irq_data *d,
4404 enum irqchip_irq_state which, bool *val)
4405{
4406 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4407 void __iomem *base;
4408 unsigned long flags;
4409 u32 count = 1000000; /* 1s! */
4410 u32 status;
4411 int cpu;
4412
4413 if (which != IRQCHIP_STATE_PENDING)
4414 return -EINVAL;
4415
4416 /*
4417 * Locking galore! We can race against two different events:
4418 *
4419 * - Concurrent vPE affinity change: we must make sure it cannot
4420 * happen, or we'll talk to the wrong redistributor. This is
4421 * identical to what happens with vLPIs.
4422 *
4423 * - Concurrent VSGIPENDR access: As it involves accessing two
4424 * MMIO registers, this must be made atomic one way or another.
4425 */
4426 cpu = vpe_to_cpuid_lock(vpe, &flags);
4427 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4428 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4429 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4430 do {
4431 status = readl_relaxed(base + GICR_VSGIPENDR);
4432 if (!(status & GICR_VSGIPENDR_BUSY))
4433 goto out;
4434
4435 count--;
4436 if (!count) {
4437 pr_err_ratelimited("Unable to get SGI status\n");
4438 goto out;
4439 }
4440 cpu_relax();
4441 udelay(1);
4442 } while (count);
4443
4444out:
4445 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4446 vpe_to_cpuid_unlock(vpe, flags);
4447
4448 if (!count)
4449 return -ENXIO;
4450
4451 *val = !!(status & (1 << d->hwirq));
4452
4453 return 0;
4454}
4455
4456static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4457{
4458 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4459 struct its_cmd_info *info = vcpu_info;
4460
4461 switch (info->cmd_type) {
4462 case PROP_UPDATE_VSGI:
4463 vpe->sgi_config[d->hwirq].priority = info->priority;
4464 vpe->sgi_config[d->hwirq].group = info->group;
4465 its_configure_sgi(d, false);
4466 return 0;
4467
4468 default:
4469 return -EINVAL;
4470 }
4471}
4472
4473static struct irq_chip its_sgi_irq_chip = {
4474 .name = "GICv4.1-sgi",
4475 .irq_mask = its_sgi_mask_irq,
4476 .irq_unmask = its_sgi_unmask_irq,
4477 .irq_set_affinity = its_sgi_set_affinity,
4478 .irq_set_irqchip_state = its_sgi_set_irqchip_state,
4479 .irq_get_irqchip_state = its_sgi_get_irqchip_state,
4480 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity,
4481};
4482
4483static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4484 unsigned int virq, unsigned int nr_irqs,
4485 void *args)
4486{
4487 struct its_vpe *vpe = args;
4488 int i;
4489
4490 /* Yes, we do want 16 SGIs */
4491 WARN_ON(nr_irqs != 16);
4492
4493 for (i = 0; i < 16; i++) {
4494 vpe->sgi_config[i].priority = 0;
4495 vpe->sgi_config[i].enabled = false;
4496 vpe->sgi_config[i].group = false;
4497
4498 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4499 &its_sgi_irq_chip, vpe);
4500 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4501 }
4502
4503 return 0;
4504}
4505
4506static void its_sgi_irq_domain_free(struct irq_domain *domain,
4507 unsigned int virq,
4508 unsigned int nr_irqs)
4509{
4510 /* Nothing to do */
4511}
4512
4513static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4514 struct irq_data *d, bool reserve)
4515{
4516 /* Write out the initial SGI configuration */
4517 its_configure_sgi(d, false);
4518 return 0;
4519}
4520
4521static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4522 struct irq_data *d)
4523{
4524 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4525
4526 /*
4527 * The VSGI command is awkward:
4528 *
4529 * - To change the configuration, CLEAR must be set to false,
4530 * leaving the pending bit unchanged.
4531 * - To clear the pending bit, CLEAR must be set to true, leaving
4532 * the configuration unchanged.
4533 *
4534 * You just can't do both at once, hence the two commands below.
4535 */
4536 vpe->sgi_config[d->hwirq].enabled = false;
4537 its_configure_sgi(d, false);
4538 its_configure_sgi(d, true);
4539}
4540
4541static const struct irq_domain_ops its_sgi_domain_ops = {
4542 .alloc = its_sgi_irq_domain_alloc,
4543 .free = its_sgi_irq_domain_free,
4544 .activate = its_sgi_irq_domain_activate,
4545 .deactivate = its_sgi_irq_domain_deactivate,
4546};
4547
4548static int its_vpe_id_alloc(void)
4549{
4550 return ida_alloc_max(&its_vpeid_ida, ITS_MAX_VPEID - 1, GFP_KERNEL);
4551}
4552
4553static void its_vpe_id_free(u16 id)
4554{
4555 ida_free(&its_vpeid_ida, id);
4556}
4557
4558static int its_vpe_init(struct its_vpe *vpe)
4559{
4560 struct page *vpt_page;
4561 int vpe_id;
4562
4563 /* Allocate vpe_id */
4564 vpe_id = its_vpe_id_alloc();
4565 if (vpe_id < 0)
4566 return vpe_id;
4567
4568 /* Allocate VPT */
4569 vpt_page = its_allocate_pending_table(GFP_KERNEL);
4570 if (!vpt_page) {
4571 its_vpe_id_free(vpe_id);
4572 return -ENOMEM;
4573 }
4574
4575 if (!its_alloc_vpe_table(vpe_id)) {
4576 its_vpe_id_free(vpe_id);
4577 its_free_pending_table(vpt_page);
4578 return -ENOMEM;
4579 }
4580
4581 raw_spin_lock_init(&vpe->vpe_lock);
4582 vpe->vpe_id = vpe_id;
4583 vpe->vpt_page = vpt_page;
4584 atomic_set(&vpe->vmapp_count, 0);
4585 if (!gic_rdists->has_rvpeid)
4586 vpe->vpe_proxy_event = -1;
4587
4588 return 0;
4589}
4590
4591static void its_vpe_teardown(struct its_vpe *vpe)
4592{
4593 its_vpe_db_proxy_unmap(vpe);
4594 its_vpe_id_free(vpe->vpe_id);
4595 its_free_pending_table(vpe->vpt_page);
4596}
4597
4598static void its_vpe_irq_domain_free(struct irq_domain *domain,
4599 unsigned int virq,
4600 unsigned int nr_irqs)
4601{
4602 struct its_vm *vm = domain->host_data;
4603 int i;
4604
4605 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4606
4607 for (i = 0; i < nr_irqs; i++) {
4608 struct irq_data *data = irq_domain_get_irq_data(domain,
4609 virq + i);
4610 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4611
4612 BUG_ON(vm != vpe->its_vm);
4613
4614 clear_bit(data->hwirq, vm->db_bitmap);
4615 its_vpe_teardown(vpe);
4616 irq_domain_reset_irq_data(data);
4617 }
4618
4619 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4620 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4621 its_free_prop_table(vm->vprop_page);
4622 }
4623}
4624
4625static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4626 unsigned int nr_irqs, void *args)
4627{
4628 struct irq_chip *irqchip = &its_vpe_irq_chip;
4629 struct its_vm *vm = args;
4630 unsigned long *bitmap;
4631 struct page *vprop_page;
4632 int base, nr_ids, i, err = 0;
4633
4634 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4635 if (!bitmap)
4636 return -ENOMEM;
4637
4638 if (nr_ids < nr_irqs) {
4639 its_lpi_free(bitmap, base, nr_ids);
4640 return -ENOMEM;
4641 }
4642
4643 vprop_page = its_allocate_prop_table(GFP_KERNEL);
4644 if (!vprop_page) {
4645 its_lpi_free(bitmap, base, nr_ids);
4646 return -ENOMEM;
4647 }
4648
4649 vm->db_bitmap = bitmap;
4650 vm->db_lpi_base = base;
4651 vm->nr_db_lpis = nr_ids;
4652 vm->vprop_page = vprop_page;
4653 raw_spin_lock_init(&vm->vmapp_lock);
4654
4655 if (gic_rdists->has_rvpeid)
4656 irqchip = &its_vpe_4_1_irq_chip;
4657
4658 for (i = 0; i < nr_irqs; i++) {
4659 vm->vpes[i]->vpe_db_lpi = base + i;
4660 err = its_vpe_init(vm->vpes[i]);
4661 if (err)
4662 break;
4663 err = its_irq_gic_domain_alloc(domain, virq + i,
4664 vm->vpes[i]->vpe_db_lpi);
4665 if (err)
4666 break;
4667 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4668 irqchip, vm->vpes[i]);
4669 set_bit(i, bitmap);
4670 irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i));
4671 }
4672
4673 if (err)
4674 its_vpe_irq_domain_free(domain, virq, i);
4675
4676 return err;
4677}
4678
4679static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4680 struct irq_data *d, bool reserve)
4681{
4682 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4683 struct its_node *its;
4684
4685 /* Map the VPE to the first possible CPU */
4686 vpe->col_idx = cpumask_first(cpu_online_mask);
4687 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4688
4689 /*
4690 * If we use the list map, we issue VMAPP on demand... Unless
4691 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4692 * so that VSGIs can work.
4693 */
4694 if (!gic_requires_eager_mapping())
4695 return 0;
4696
4697 list_for_each_entry(its, &its_nodes, entry) {
4698 if (!is_v4(its))
4699 continue;
4700
4701 its_send_vmapp(its, vpe, true);
4702 its_send_vinvall(its, vpe);
4703 }
4704
4705 return 0;
4706}
4707
4708static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4709 struct irq_data *d)
4710{
4711 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4712 struct its_node *its;
4713
4714 /*
4715 * If we use the list map on GICv4.0, we unmap the VPE once no
4716 * VLPIs are associated with the VM.
4717 */
4718 if (!gic_requires_eager_mapping())
4719 return;
4720
4721 list_for_each_entry(its, &its_nodes, entry) {
4722 if (!is_v4(its))
4723 continue;
4724
4725 its_send_vmapp(its, vpe, false);
4726 }
4727
4728 /*
4729 * There may be a direct read to the VPT after unmapping the
4730 * vPE, to guarantee the validity of this, we make the VPT
4731 * memory coherent with the CPU caches here.
4732 */
4733 if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4734 gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4735 LPI_PENDBASE_SZ);
4736}
4737
4738static const struct irq_domain_ops its_vpe_domain_ops = {
4739 .alloc = its_vpe_irq_domain_alloc,
4740 .free = its_vpe_irq_domain_free,
4741 .activate = its_vpe_irq_domain_activate,
4742 .deactivate = its_vpe_irq_domain_deactivate,
4743};
4744
4745static int its_force_quiescent(void __iomem *base)
4746{
4747 u32 count = 1000000; /* 1s */
4748 u32 val;
4749
4750 val = readl_relaxed(base + GITS_CTLR);
4751 /*
4752 * GIC architecture specification requires the ITS to be both
4753 * disabled and quiescent for writes to GITS_BASER<n> or
4754 * GITS_CBASER to not have UNPREDICTABLE results.
4755 */
4756 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4757 return 0;
4758
4759 /* Disable the generation of all interrupts to this ITS */
4760 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4761 writel_relaxed(val, base + GITS_CTLR);
4762
4763 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4764 while (1) {
4765 val = readl_relaxed(base + GITS_CTLR);
4766 if (val & GITS_CTLR_QUIESCENT)
4767 return 0;
4768
4769 count--;
4770 if (!count)
4771 return -EBUSY;
4772
4773 cpu_relax();
4774 udelay(1);
4775 }
4776}
4777
4778static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4779{
4780 struct its_node *its = data;
4781
4782 /* erratum 22375: only alloc 8MB table size (20 bits) */
4783 its->typer &= ~GITS_TYPER_DEVBITS;
4784 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4785 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4786
4787 return true;
4788}
4789
4790static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4791{
4792 struct its_node *its = data;
4793
4794 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4795
4796 return true;
4797}
4798
4799static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4800{
4801 struct its_node *its = data;
4802
4803 /* On QDF2400, the size of the ITE is 16Bytes */
4804 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4805 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4806
4807 return true;
4808}
4809
4810static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4811{
4812 struct its_node *its = its_dev->its;
4813
4814 /*
4815 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4816 * which maps 32-bit writes targeted at a separate window of
4817 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4818 * with device ID taken from bits [device_id_bits + 1:2] of
4819 * the window offset.
4820 */
4821 return its->pre_its_base + (its_dev->device_id << 2);
4822}
4823
4824static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4825{
4826 struct its_node *its = data;
4827 u32 pre_its_window[2];
4828 u32 ids;
4829
4830 if (!fwnode_property_read_u32_array(its->fwnode_handle,
4831 "socionext,synquacer-pre-its",
4832 pre_its_window,
4833 ARRAY_SIZE(pre_its_window))) {
4834
4835 its->pre_its_base = pre_its_window[0];
4836 its->get_msi_base = its_irq_get_msi_base_pre_its;
4837
4838 ids = ilog2(pre_its_window[1]) - 2;
4839 if (device_ids(its) > ids) {
4840 its->typer &= ~GITS_TYPER_DEVBITS;
4841 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4842 }
4843
4844 /* the pre-ITS breaks isolation, so disable MSI remapping */
4845 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4846 return true;
4847 }
4848 return false;
4849}
4850
4851static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4852{
4853 struct its_node *its = data;
4854
4855 /*
4856 * Hip07 insists on using the wrong address for the VLPI
4857 * page. Trick it into doing the right thing...
4858 */
4859 its->vlpi_redist_offset = SZ_128K;
4860 return true;
4861}
4862
4863static bool __maybe_unused its_enable_rk3588001(void *data)
4864{
4865 struct its_node *its = data;
4866
4867 if (!of_machine_is_compatible("rockchip,rk3588") &&
4868 !of_machine_is_compatible("rockchip,rk3588s"))
4869 return false;
4870
4871 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4872 gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
4873
4874 return true;
4875}
4876
4877static bool its_set_non_coherent(void *data)
4878{
4879 struct its_node *its = data;
4880
4881 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4882 return true;
4883}
4884
4885static bool __maybe_unused its_enable_quirk_hip09_162100801(void *data)
4886{
4887 struct its_node *its = data;
4888
4889 its->flags |= ITS_FLAGS_WORKAROUND_HISILICON_162100801;
4890 return true;
4891}
4892
4893static bool __maybe_unused its_enable_rk3568002(void *data)
4894{
4895 if (!of_machine_is_compatible("rockchip,rk3566") &&
4896 !of_machine_is_compatible("rockchip,rk3568"))
4897 return false;
4898
4899 gfp_flags_quirk |= GFP_DMA32;
4900
4901 return true;
4902}
4903
4904static const struct gic_quirk its_quirks[] = {
4905#ifdef CONFIG_CAVIUM_ERRATUM_22375
4906 {
4907 .desc = "ITS: Cavium errata 22375, 24313",
4908 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4909 .mask = 0xffff0fff,
4910 .init = its_enable_quirk_cavium_22375,
4911 },
4912#endif
4913#ifdef CONFIG_CAVIUM_ERRATUM_23144
4914 {
4915 .desc = "ITS: Cavium erratum 23144",
4916 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4917 .mask = 0xffff0fff,
4918 .init = its_enable_quirk_cavium_23144,
4919 },
4920#endif
4921#ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4922 {
4923 .desc = "ITS: QDF2400 erratum 0065",
4924 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */
4925 .mask = 0xffffffff,
4926 .init = its_enable_quirk_qdf2400_e0065,
4927 },
4928#endif
4929#ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4930 {
4931 /*
4932 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4933 * implementation, but with a 'pre-ITS' added that requires
4934 * special handling in software.
4935 */
4936 .desc = "ITS: Socionext Synquacer pre-ITS",
4937 .iidr = 0x0001143b,
4938 .mask = 0xffffffff,
4939 .init = its_enable_quirk_socionext_synquacer,
4940 },
4941#endif
4942#ifdef CONFIG_HISILICON_ERRATUM_161600802
4943 {
4944 .desc = "ITS: Hip07 erratum 161600802",
4945 .iidr = 0x00000004,
4946 .mask = 0xffffffff,
4947 .init = its_enable_quirk_hip07_161600802,
4948 },
4949#endif
4950#ifdef CONFIG_HISILICON_ERRATUM_162100801
4951 {
4952 .desc = "ITS: Hip09 erratum 162100801",
4953 .iidr = 0x00051736,
4954 .mask = 0xffffffff,
4955 .init = its_enable_quirk_hip09_162100801,
4956 },
4957#endif
4958#ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
4959 {
4960 .desc = "ITS: Rockchip erratum RK3588001",
4961 .iidr = 0x0201743b,
4962 .mask = 0xffffffff,
4963 .init = its_enable_rk3588001,
4964 },
4965#endif
4966 {
4967 .desc = "ITS: non-coherent attribute",
4968 .property = "dma-noncoherent",
4969 .init = its_set_non_coherent,
4970 },
4971#ifdef CONFIG_ROCKCHIP_ERRATUM_3568002
4972 {
4973 .desc = "ITS: Rockchip erratum RK3568002",
4974 .iidr = 0x0201743b,
4975 .mask = 0xffffffff,
4976 .init = its_enable_rk3568002,
4977 },
4978#endif
4979 {
4980 }
4981};
4982
4983static void its_enable_quirks(struct its_node *its)
4984{
4985 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4986
4987 gic_enable_quirks(iidr, its_quirks, its);
4988
4989 if (is_of_node(its->fwnode_handle))
4990 gic_enable_of_quirks(to_of_node(its->fwnode_handle),
4991 its_quirks, its);
4992}
4993
4994static int its_save_disable(void)
4995{
4996 struct its_node *its;
4997 int err = 0;
4998
4999 raw_spin_lock(&its_lock);
5000 list_for_each_entry(its, &its_nodes, entry) {
5001 void __iomem *base;
5002
5003 base = its->base;
5004 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
5005 err = its_force_quiescent(base);
5006 if (err) {
5007 pr_err("ITS@%pa: failed to quiesce: %d\n",
5008 &its->phys_base, err);
5009 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
5010 goto err;
5011 }
5012
5013 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
5014 }
5015
5016err:
5017 if (err) {
5018 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
5019 void __iomem *base;
5020
5021 base = its->base;
5022 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
5023 }
5024 }
5025 raw_spin_unlock(&its_lock);
5026
5027 return err;
5028}
5029
5030static void its_restore_enable(void)
5031{
5032 struct its_node *its;
5033 int ret;
5034
5035 raw_spin_lock(&its_lock);
5036 list_for_each_entry(its, &its_nodes, entry) {
5037 void __iomem *base;
5038 int i;
5039
5040 base = its->base;
5041
5042 /*
5043 * Make sure that the ITS is disabled. If it fails to quiesce,
5044 * don't restore it since writing to CBASER or BASER<n>
5045 * registers is undefined according to the GIC v3 ITS
5046 * Specification.
5047 *
5048 * Firmware resuming with the ITS enabled is terminally broken.
5049 */
5050 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
5051 ret = its_force_quiescent(base);
5052 if (ret) {
5053 pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
5054 &its->phys_base, ret);
5055 continue;
5056 }
5057
5058 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
5059
5060 /*
5061 * Writing CBASER resets CREADR to 0, so make CWRITER and
5062 * cmd_write line up with it.
5063 */
5064 its->cmd_write = its->cmd_base;
5065 gits_write_cwriter(0, base + GITS_CWRITER);
5066
5067 /* Restore GITS_BASER from the value cache. */
5068 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
5069 struct its_baser *baser = &its->tables[i];
5070
5071 if (!(baser->val & GITS_BASER_VALID))
5072 continue;
5073
5074 its_write_baser(its, baser, baser->val);
5075 }
5076 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
5077
5078 /*
5079 * Reinit the collection if it's stored in the ITS. This is
5080 * indicated by the col_id being less than the HCC field.
5081 * CID < HCC as specified in the GIC v3 Documentation.
5082 */
5083 if (its->collections[smp_processor_id()].col_id <
5084 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
5085 its_cpu_init_collection(its);
5086 }
5087 raw_spin_unlock(&its_lock);
5088}
5089
5090static struct syscore_ops its_syscore_ops = {
5091 .suspend = its_save_disable,
5092 .resume = its_restore_enable,
5093};
5094
5095static void __init __iomem *its_map_one(struct resource *res, int *err)
5096{
5097 void __iomem *its_base;
5098 u32 val;
5099
5100 its_base = ioremap(res->start, SZ_64K);
5101 if (!its_base) {
5102 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
5103 *err = -ENOMEM;
5104 return NULL;
5105 }
5106
5107 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
5108 if (val != 0x30 && val != 0x40) {
5109 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
5110 *err = -ENODEV;
5111 goto out_unmap;
5112 }
5113
5114 *err = its_force_quiescent(its_base);
5115 if (*err) {
5116 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
5117 goto out_unmap;
5118 }
5119
5120 return its_base;
5121
5122out_unmap:
5123 iounmap(its_base);
5124 return NULL;
5125}
5126
5127static int its_init_domain(struct its_node *its)
5128{
5129 struct irq_domain_info dom_info = {
5130 .fwnode = its->fwnode_handle,
5131 .ops = &its_domain_ops,
5132 .domain_flags = its->msi_domain_flags,
5133 .parent = its_parent,
5134 };
5135 struct msi_domain_info *info;
5136
5137 info = kzalloc(sizeof(*info), GFP_KERNEL);
5138 if (!info)
5139 return -ENOMEM;
5140
5141 info->ops = &its_msi_domain_ops;
5142 info->data = its;
5143 dom_info.host_data = info;
5144
5145 if (!msi_create_parent_irq_domain(&dom_info, &gic_v3_its_msi_parent_ops)) {
5146 kfree(info);
5147 return -ENOMEM;
5148 }
5149 return 0;
5150}
5151
5152static int its_init_vpe_domain(void)
5153{
5154 struct its_node *its;
5155 u32 devid;
5156 int entries;
5157
5158 if (gic_rdists->has_direct_lpi) {
5159 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
5160 return 0;
5161 }
5162
5163 /* Any ITS will do, even if not v4 */
5164 its = list_first_entry(&its_nodes, struct its_node, entry);
5165
5166 entries = roundup_pow_of_two(nr_cpu_ids);
5167 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
5168 GFP_KERNEL);
5169 if (!vpe_proxy.vpes)
5170 return -ENOMEM;
5171
5172 /* Use the last possible DevID */
5173 devid = GENMASK(device_ids(its) - 1, 0);
5174 vpe_proxy.dev = its_create_device(its, devid, entries, false);
5175 if (!vpe_proxy.dev) {
5176 kfree(vpe_proxy.vpes);
5177 pr_err("ITS: Can't allocate GICv4 proxy device\n");
5178 return -ENOMEM;
5179 }
5180
5181 BUG_ON(entries > vpe_proxy.dev->nr_ites);
5182
5183 raw_spin_lock_init(&vpe_proxy.lock);
5184 vpe_proxy.next_victim = 0;
5185 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
5186 devid, vpe_proxy.dev->nr_ites);
5187
5188 return 0;
5189}
5190
5191static int __init its_compute_its_list_map(struct its_node *its)
5192{
5193 int its_number;
5194 u32 ctlr;
5195
5196 /*
5197 * This is assumed to be done early enough that we're
5198 * guaranteed to be single-threaded, hence no
5199 * locking. Should this change, we should address
5200 * this.
5201 */
5202 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
5203 if (its_number >= GICv4_ITS_LIST_MAX) {
5204 pr_err("ITS@%pa: No ITSList entry available!\n",
5205 &its->phys_base);
5206 return -EINVAL;
5207 }
5208
5209 ctlr = readl_relaxed(its->base + GITS_CTLR);
5210 ctlr &= ~GITS_CTLR_ITS_NUMBER;
5211 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
5212 writel_relaxed(ctlr, its->base + GITS_CTLR);
5213 ctlr = readl_relaxed(its->base + GITS_CTLR);
5214 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
5215 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5216 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5217 }
5218
5219 if (test_and_set_bit(its_number, &its_list_map)) {
5220 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5221 &its->phys_base, its_number);
5222 return -EINVAL;
5223 }
5224
5225 return its_number;
5226}
5227
5228static int __init its_probe_one(struct its_node *its)
5229{
5230 u64 baser, tmp;
5231 struct page *page;
5232 u32 ctlr;
5233 int err;
5234
5235 its_enable_quirks(its);
5236
5237 if (is_v4(its)) {
5238 if (!(its->typer & GITS_TYPER_VMOVP)) {
5239 err = its_compute_its_list_map(its);
5240 if (err < 0)
5241 goto out;
5242
5243 its->list_nr = err;
5244
5245 pr_info("ITS@%pa: Using ITS number %d\n",
5246 &its->phys_base, err);
5247 } else {
5248 pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base);
5249 }
5250
5251 if (is_v4_1(its)) {
5252 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
5253
5254 its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K);
5255 if (!its->sgir_base) {
5256 err = -ENOMEM;
5257 goto out;
5258 }
5259
5260 its->mpidr = readl_relaxed(its->base + GITS_MPIDR);
5261
5262 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5263 &its->phys_base, its->mpidr, svpet);
5264 }
5265 }
5266
5267 page = its_alloc_pages_node(its->numa_node,
5268 GFP_KERNEL | __GFP_ZERO,
5269 get_order(ITS_CMD_QUEUE_SZ));
5270 if (!page) {
5271 err = -ENOMEM;
5272 goto out_unmap_sgir;
5273 }
5274 its->cmd_base = (void *)page_address(page);
5275 its->cmd_write = its->cmd_base;
5276
5277 err = its_alloc_tables(its);
5278 if (err)
5279 goto out_free_cmd;
5280
5281 err = its_alloc_collections(its);
5282 if (err)
5283 goto out_free_tables;
5284
5285 baser = (virt_to_phys(its->cmd_base) |
5286 GITS_CBASER_RaWaWb |
5287 GITS_CBASER_InnerShareable |
5288 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
5289 GITS_CBASER_VALID);
5290
5291 gits_write_cbaser(baser, its->base + GITS_CBASER);
5292 tmp = gits_read_cbaser(its->base + GITS_CBASER);
5293
5294 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
5295 tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5296
5297 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5298 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5299 /*
5300 * The HW reports non-shareable, we must
5301 * remove the cacheability attributes as
5302 * well.
5303 */
5304 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5305 GITS_CBASER_CACHEABILITY_MASK);
5306 baser |= GITS_CBASER_nC;
5307 gits_write_cbaser(baser, its->base + GITS_CBASER);
5308 }
5309 pr_info("ITS: using cache flushing for cmd queue\n");
5310 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5311 }
5312
5313 gits_write_cwriter(0, its->base + GITS_CWRITER);
5314 ctlr = readl_relaxed(its->base + GITS_CTLR);
5315 ctlr |= GITS_CTLR_ENABLE;
5316 if (is_v4(its))
5317 ctlr |= GITS_CTLR_ImDe;
5318 writel_relaxed(ctlr, its->base + GITS_CTLR);
5319
5320 err = its_init_domain(its);
5321 if (err)
5322 goto out_free_tables;
5323
5324 raw_spin_lock(&its_lock);
5325 list_add(&its->entry, &its_nodes);
5326 raw_spin_unlock(&its_lock);
5327
5328 return 0;
5329
5330out_free_tables:
5331 its_free_tables(its);
5332out_free_cmd:
5333 its_free_pages(its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5334out_unmap_sgir:
5335 if (its->sgir_base)
5336 iounmap(its->sgir_base);
5337out:
5338 pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err);
5339 return err;
5340}
5341
5342static bool gic_rdists_supports_plpis(void)
5343{
5344 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5345}
5346
5347static int redist_disable_lpis(void)
5348{
5349 void __iomem *rbase = gic_data_rdist_rd_base();
5350 u64 timeout = USEC_PER_SEC;
5351 u64 val;
5352
5353 if (!gic_rdists_supports_plpis()) {
5354 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5355 return -ENXIO;
5356 }
5357
5358 val = readl_relaxed(rbase + GICR_CTLR);
5359 if (!(val & GICR_CTLR_ENABLE_LPIS))
5360 return 0;
5361
5362 /*
5363 * If coming via a CPU hotplug event, we don't need to disable
5364 * LPIs before trying to re-enable them. They are already
5365 * configured and all is well in the world.
5366 *
5367 * If running with preallocated tables, there is nothing to do.
5368 */
5369 if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5370 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5371 return 0;
5372
5373 /*
5374 * From that point on, we only try to do some damage control.
5375 */
5376 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5377 smp_processor_id());
5378 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5379
5380 /* Disable LPIs */
5381 val &= ~GICR_CTLR_ENABLE_LPIS;
5382 writel_relaxed(val, rbase + GICR_CTLR);
5383
5384 /* Make sure any change to GICR_CTLR is observable by the GIC */
5385 dsb(sy);
5386
5387 /*
5388 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5389 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5390 * Error out if we time out waiting for RWP to clear.
5391 */
5392 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5393 if (!timeout) {
5394 pr_err("CPU%d: Timeout while disabling LPIs\n",
5395 smp_processor_id());
5396 return -ETIMEDOUT;
5397 }
5398 udelay(1);
5399 timeout--;
5400 }
5401
5402 /*
5403 * After it has been written to 1, it is IMPLEMENTATION
5404 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5405 * cleared to 0. Error out if clearing the bit failed.
5406 */
5407 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5408 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5409 return -EBUSY;
5410 }
5411
5412 return 0;
5413}
5414
5415int its_cpu_init(void)
5416{
5417 if (!list_empty(&its_nodes)) {
5418 int ret;
5419
5420 ret = redist_disable_lpis();
5421 if (ret)
5422 return ret;
5423
5424 its_cpu_init_lpis();
5425 its_cpu_init_collections();
5426 }
5427
5428 return 0;
5429}
5430
5431static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5432{
5433 cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5434 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5435}
5436
5437static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5438 rdist_memreserve_cpuhp_cleanup_workfn);
5439
5440static int its_cpu_memreserve_lpi(unsigned int cpu)
5441{
5442 struct page *pend_page;
5443 int ret = 0;
5444
5445 /* This gets to run exactly once per CPU */
5446 if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5447 return 0;
5448
5449 pend_page = gic_data_rdist()->pend_page;
5450 if (WARN_ON(!pend_page)) {
5451 ret = -ENOMEM;
5452 goto out;
5453 }
5454 /*
5455 * If the pending table was pre-programmed, free the memory we
5456 * preemptively allocated. Otherwise, reserve that memory for
5457 * later kexecs.
5458 */
5459 if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5460 its_free_pending_table(pend_page);
5461 gic_data_rdist()->pend_page = NULL;
5462 } else {
5463 phys_addr_t paddr = page_to_phys(pend_page);
5464 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5465 }
5466
5467out:
5468 /* Last CPU being brought up gets to issue the cleanup */
5469 if (!IS_ENABLED(CONFIG_SMP) ||
5470 cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5471 schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5472
5473 gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5474 return ret;
5475}
5476
5477/* Mark all the BASER registers as invalid before they get reprogrammed */
5478static int __init its_reset_one(struct resource *res)
5479{
5480 void __iomem *its_base;
5481 int err, i;
5482
5483 its_base = its_map_one(res, &err);
5484 if (!its_base)
5485 return err;
5486
5487 for (i = 0; i < GITS_BASER_NR_REGS; i++)
5488 gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5489
5490 iounmap(its_base);
5491 return 0;
5492}
5493
5494static const struct of_device_id its_device_id[] = {
5495 { .compatible = "arm,gic-v3-its", },
5496 {},
5497};
5498
5499static struct its_node __init *its_node_init(struct resource *res,
5500 struct fwnode_handle *handle, int numa_node)
5501{
5502 void __iomem *its_base;
5503 struct its_node *its;
5504 int err;
5505
5506 its_base = its_map_one(res, &err);
5507 if (!its_base)
5508 return NULL;
5509
5510 pr_info("ITS %pR\n", res);
5511
5512 its = kzalloc(sizeof(*its), GFP_KERNEL);
5513 if (!its)
5514 goto out_unmap;
5515
5516 raw_spin_lock_init(&its->lock);
5517 mutex_init(&its->dev_alloc_lock);
5518 INIT_LIST_HEAD(&its->entry);
5519 INIT_LIST_HEAD(&its->its_device_list);
5520
5521 its->typer = gic_read_typer(its_base + GITS_TYPER);
5522 its->base = its_base;
5523 its->phys_base = res->start;
5524 its->get_msi_base = its_irq_get_msi_base;
5525 its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI | IRQ_DOMAIN_FLAG_MSI_IMMUTABLE;
5526
5527 its->numa_node = numa_node;
5528 its->fwnode_handle = handle;
5529
5530 return its;
5531
5532out_unmap:
5533 iounmap(its_base);
5534 return NULL;
5535}
5536
5537static void its_node_destroy(struct its_node *its)
5538{
5539 iounmap(its->base);
5540 kfree(its);
5541}
5542
5543static int __init its_of_probe(struct device_node *node)
5544{
5545 struct device_node *np;
5546 struct resource res;
5547 int err;
5548
5549 /*
5550 * Make sure *all* the ITS are reset before we probe any, as
5551 * they may be sharing memory. If any of the ITS fails to
5552 * reset, don't even try to go any further, as this could
5553 * result in something even worse.
5554 */
5555 for (np = of_find_matching_node(node, its_device_id); np;
5556 np = of_find_matching_node(np, its_device_id)) {
5557 if (!of_device_is_available(np) ||
5558 !of_property_read_bool(np, "msi-controller") ||
5559 of_address_to_resource(np, 0, &res))
5560 continue;
5561
5562 err = its_reset_one(&res);
5563 if (err)
5564 return err;
5565 }
5566
5567 for (np = of_find_matching_node(node, its_device_id); np;
5568 np = of_find_matching_node(np, its_device_id)) {
5569 struct its_node *its;
5570
5571 if (!of_device_is_available(np))
5572 continue;
5573 if (!of_property_read_bool(np, "msi-controller")) {
5574 pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5575 np);
5576 continue;
5577 }
5578
5579 if (of_address_to_resource(np, 0, &res)) {
5580 pr_warn("%pOF: no regs?\n", np);
5581 continue;
5582 }
5583
5584
5585 its = its_node_init(&res, &np->fwnode, of_node_to_nid(np));
5586 if (!its)
5587 return -ENOMEM;
5588
5589 err = its_probe_one(its);
5590 if (err) {
5591 its_node_destroy(its);
5592 return err;
5593 }
5594 }
5595 return 0;
5596}
5597
5598#ifdef CONFIG_ACPI
5599
5600#define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5601
5602#ifdef CONFIG_ACPI_NUMA
5603struct its_srat_map {
5604 /* numa node id */
5605 u32 numa_node;
5606 /* GIC ITS ID */
5607 u32 its_id;
5608};
5609
5610static struct its_srat_map *its_srat_maps __initdata;
5611static int its_in_srat __initdata;
5612
5613static int __init acpi_get_its_numa_node(u32 its_id)
5614{
5615 int i;
5616
5617 for (i = 0; i < its_in_srat; i++) {
5618 if (its_id == its_srat_maps[i].its_id)
5619 return its_srat_maps[i].numa_node;
5620 }
5621 return NUMA_NO_NODE;
5622}
5623
5624static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5625 const unsigned long end)
5626{
5627 return 0;
5628}
5629
5630static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5631 const unsigned long end)
5632{
5633 int node;
5634 struct acpi_srat_gic_its_affinity *its_affinity;
5635
5636 its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5637 if (!its_affinity)
5638 return -EINVAL;
5639
5640 if (its_affinity->header.length < sizeof(*its_affinity)) {
5641 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5642 its_affinity->header.length);
5643 return -EINVAL;
5644 }
5645
5646 /*
5647 * Note that in theory a new proximity node could be created by this
5648 * entry as it is an SRAT resource allocation structure.
5649 * We do not currently support doing so.
5650 */
5651 node = pxm_to_node(its_affinity->proximity_domain);
5652
5653 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5654 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5655 return 0;
5656 }
5657
5658 its_srat_maps[its_in_srat].numa_node = node;
5659 its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5660 its_in_srat++;
5661 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5662 its_affinity->proximity_domain, its_affinity->its_id, node);
5663
5664 return 0;
5665}
5666
5667static void __init acpi_table_parse_srat_its(void)
5668{
5669 int count;
5670
5671 count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5672 sizeof(struct acpi_table_srat),
5673 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5674 gic_acpi_match_srat_its, 0);
5675 if (count <= 0)
5676 return;
5677
5678 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5679 GFP_KERNEL);
5680 if (!its_srat_maps)
5681 return;
5682
5683 acpi_table_parse_entries(ACPI_SIG_SRAT,
5684 sizeof(struct acpi_table_srat),
5685 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5686 gic_acpi_parse_srat_its, 0);
5687}
5688
5689/* free the its_srat_maps after ITS probing */
5690static void __init acpi_its_srat_maps_free(void)
5691{
5692 kfree(its_srat_maps);
5693}
5694#else
5695static void __init acpi_table_parse_srat_its(void) { }
5696static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5697static void __init acpi_its_srat_maps_free(void) { }
5698#endif
5699
5700static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5701 const unsigned long end)
5702{
5703 struct acpi_madt_generic_translator *its_entry;
5704 struct fwnode_handle *dom_handle;
5705 struct its_node *its;
5706 struct resource res;
5707 int err;
5708
5709 its_entry = (struct acpi_madt_generic_translator *)header;
5710 memset(&res, 0, sizeof(res));
5711 res.start = its_entry->base_address;
5712 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5713 res.flags = IORESOURCE_MEM;
5714
5715 dom_handle = irq_domain_alloc_fwnode(&res.start);
5716 if (!dom_handle) {
5717 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5718 &res.start);
5719 return -ENOMEM;
5720 }
5721
5722 err = iort_register_domain_token(its_entry->translation_id, res.start,
5723 dom_handle);
5724 if (err) {
5725 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5726 &res.start, its_entry->translation_id);
5727 goto dom_err;
5728 }
5729
5730 its = its_node_init(&res, dom_handle,
5731 acpi_get_its_numa_node(its_entry->translation_id));
5732 if (!its) {
5733 err = -ENOMEM;
5734 goto node_err;
5735 }
5736
5737 if (acpi_get_madt_revision() >= 7 &&
5738 (its_entry->flags & ACPI_MADT_ITS_NON_COHERENT))
5739 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
5740
5741 err = its_probe_one(its);
5742 if (!err)
5743 return 0;
5744
5745node_err:
5746 iort_deregister_domain_token(its_entry->translation_id);
5747dom_err:
5748 irq_domain_free_fwnode(dom_handle);
5749 return err;
5750}
5751
5752static int __init its_acpi_reset(union acpi_subtable_headers *header,
5753 const unsigned long end)
5754{
5755 struct acpi_madt_generic_translator *its_entry;
5756 struct resource res;
5757
5758 its_entry = (struct acpi_madt_generic_translator *)header;
5759 res = (struct resource) {
5760 .start = its_entry->base_address,
5761 .end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5762 .flags = IORESOURCE_MEM,
5763 };
5764
5765 return its_reset_one(&res);
5766}
5767
5768static void __init its_acpi_probe(void)
5769{
5770 acpi_table_parse_srat_its();
5771 /*
5772 * Make sure *all* the ITS are reset before we probe any, as
5773 * they may be sharing memory. If any of the ITS fails to
5774 * reset, don't even try to go any further, as this could
5775 * result in something even worse.
5776 */
5777 if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5778 its_acpi_reset, 0) > 0)
5779 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5780 gic_acpi_parse_madt_its, 0);
5781 acpi_its_srat_maps_free();
5782}
5783#else
5784static void __init its_acpi_probe(void) { }
5785#endif
5786
5787int __init its_lpi_memreserve_init(void)
5788{
5789 int state;
5790
5791 if (!efi_enabled(EFI_CONFIG_TABLES))
5792 return 0;
5793
5794 if (list_empty(&its_nodes))
5795 return 0;
5796
5797 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5798 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5799 "irqchip/arm/gicv3/memreserve:online",
5800 its_cpu_memreserve_lpi,
5801 NULL);
5802 if (state < 0)
5803 return state;
5804
5805 gic_rdists->cpuhp_memreserve_state = state;
5806
5807 return 0;
5808}
5809
5810int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5811 struct irq_domain *parent_domain, u8 irq_prio)
5812{
5813 struct device_node *of_node;
5814 struct its_node *its;
5815 bool has_v4 = false;
5816 bool has_v4_1 = false;
5817 int err;
5818
5819 itt_pool = gen_pool_create(get_order(ITS_ITT_ALIGN), -1);
5820 if (!itt_pool)
5821 return -ENOMEM;
5822
5823 gic_rdists = rdists;
5824
5825 lpi_prop_prio = irq_prio;
5826 its_parent = parent_domain;
5827 of_node = to_of_node(handle);
5828 if (of_node)
5829 its_of_probe(of_node);
5830 else
5831 its_acpi_probe();
5832
5833 if (list_empty(&its_nodes)) {
5834 pr_warn("ITS: No ITS available, not enabling LPIs\n");
5835 return -ENXIO;
5836 }
5837
5838 err = allocate_lpi_tables();
5839 if (err)
5840 return err;
5841
5842 list_for_each_entry(its, &its_nodes, entry) {
5843 has_v4 |= is_v4(its);
5844 has_v4_1 |= is_v4_1(its);
5845 }
5846
5847 /* Don't bother with inconsistent systems */
5848 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5849 rdists->has_rvpeid = false;
5850
5851 if (has_v4 & rdists->has_vlpis) {
5852 const struct irq_domain_ops *sgi_ops;
5853
5854 if (has_v4_1)
5855 sgi_ops = &its_sgi_domain_ops;
5856 else
5857 sgi_ops = NULL;
5858
5859 if (its_init_vpe_domain() ||
5860 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5861 rdists->has_vlpis = false;
5862 pr_err("ITS: Disabling GICv4 support\n");
5863 }
5864 }
5865
5866 register_syscore_ops(&its_syscore_ops);
5867
5868 return 0;
5869}