| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. |
| 4 | * Author: Marc Zyngier <marc.zyngier@arm.com> |
| 5 | */ |
| 6 | |
| 7 | #include <linux/acpi.h> |
| 8 | #include <linux/acpi_iort.h> |
| 9 | #include <linux/bitfield.h> |
| 10 | #include <linux/bitmap.h> |
| 11 | #include <linux/cpu.h> |
| 12 | #include <linux/crash_dump.h> |
| 13 | #include <linux/delay.h> |
| 14 | #include <linux/efi.h> |
| 15 | #include <linux/genalloc.h> |
| 16 | #include <linux/interrupt.h> |
| 17 | #include <linux/iommu.h> |
| 18 | #include <linux/iopoll.h> |
| 19 | #include <linux/irqdomain.h> |
| 20 | #include <linux/list.h> |
| 21 | #include <linux/log2.h> |
| 22 | #include <linux/mem_encrypt.h> |
| 23 | #include <linux/memblock.h> |
| 24 | #include <linux/mm.h> |
| 25 | #include <linux/msi.h> |
| 26 | #include <linux/of.h> |
| 27 | #include <linux/of_address.h> |
| 28 | #include <linux/of_irq.h> |
| 29 | #include <linux/of_pci.h> |
| 30 | #include <linux/of_platform.h> |
| 31 | #include <linux/percpu.h> |
| 32 | #include <linux/set_memory.h> |
| 33 | #include <linux/slab.h> |
| 34 | #include <linux/syscore_ops.h> |
| 35 | |
| 36 | #include <linux/irqchip.h> |
| 37 | #include <linux/irqchip/arm-gic-v3.h> |
| 38 | #include <linux/irqchip/arm-gic-v4.h> |
| 39 | |
| 40 | #include <asm/cputype.h> |
| 41 | #include <asm/exception.h> |
| 42 | |
| 43 | #include "irq-gic-common.h" |
| 44 | #include <linux/irqchip/irq-msi-lib.h> |
| 45 | |
| 46 | #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) |
| 47 | #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) |
| 48 | #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) |
| 49 | #define ITS_FLAGS_FORCE_NON_SHAREABLE (1ULL << 3) |
| 50 | #define ITS_FLAGS_WORKAROUND_HISILICON_162100801 (1ULL << 4) |
| 51 | |
| 52 | #define RD_LOCAL_LPI_ENABLED BIT(0) |
| 53 | #define RD_LOCAL_PENDTABLE_PREALLOCATED BIT(1) |
| 54 | #define RD_LOCAL_MEMRESERVE_DONE BIT(2) |
| 55 | |
| 56 | static u32 lpi_id_bits; |
| 57 | |
| 58 | /* |
| 59 | * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to |
| 60 | * deal with (one configuration byte per interrupt). PENDBASE has to |
| 61 | * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). |
| 62 | */ |
| 63 | #define LPI_NRBITS lpi_id_bits |
| 64 | #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) |
| 65 | #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) |
| 66 | |
| 67 | static u8 __ro_after_init lpi_prop_prio; |
| 68 | static struct its_node *find_4_1_its(void); |
| 69 | |
| 70 | /* |
| 71 | * Collection structure - just an ID, and a redistributor address to |
| 72 | * ping. We use one per CPU as a bag of interrupts assigned to this |
| 73 | * CPU. |
| 74 | */ |
| 75 | struct its_collection { |
| 76 | u64 target_address; |
| 77 | u16 col_id; |
| 78 | }; |
| 79 | |
| 80 | /* |
| 81 | * The ITS_BASER structure - contains memory information, cached |
| 82 | * value of BASER register configuration and ITS page size. |
| 83 | */ |
| 84 | struct its_baser { |
| 85 | void *base; |
| 86 | u64 val; |
| 87 | u32 order; |
| 88 | u32 psz; |
| 89 | }; |
| 90 | |
| 91 | struct its_device; |
| 92 | |
| 93 | /* |
| 94 | * The ITS structure - contains most of the infrastructure, with the |
| 95 | * top-level MSI domain, the command queue, the collections, and the |
| 96 | * list of devices writing to it. |
| 97 | * |
| 98 | * dev_alloc_lock has to be taken for device allocations, while the |
| 99 | * spinlock must be taken to parse data structures such as the device |
| 100 | * list. |
| 101 | */ |
| 102 | struct its_node { |
| 103 | raw_spinlock_t lock; |
| 104 | struct mutex dev_alloc_lock; |
| 105 | struct list_head entry; |
| 106 | void __iomem *base; |
| 107 | void __iomem *sgir_base; |
| 108 | phys_addr_t phys_base; |
| 109 | struct its_cmd_block *cmd_base; |
| 110 | struct its_cmd_block *cmd_write; |
| 111 | struct its_baser tables[GITS_BASER_NR_REGS]; |
| 112 | struct its_collection *collections; |
| 113 | struct fwnode_handle *fwnode_handle; |
| 114 | u64 (*get_msi_base)(struct its_device *its_dev); |
| 115 | u64 typer; |
| 116 | u64 cbaser_save; |
| 117 | u32 ctlr_save; |
| 118 | u32 mpidr; |
| 119 | struct list_head its_device_list; |
| 120 | u64 flags; |
| 121 | unsigned long list_nr; |
| 122 | int numa_node; |
| 123 | unsigned int msi_domain_flags; |
| 124 | u32 pre_its_base; /* for Socionext Synquacer */ |
| 125 | int vlpi_redist_offset; |
| 126 | }; |
| 127 | |
| 128 | static DEFINE_PER_CPU(struct its_node *, local_4_1_its); |
| 129 | |
| 130 | #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS)) |
| 131 | #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP)) |
| 132 | #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1) |
| 133 | |
| 134 | #define ITS_ITT_ALIGN SZ_256 |
| 135 | |
| 136 | /* The maximum number of VPEID bits supported by VLPI commands */ |
| 137 | #define ITS_MAX_VPEID_BITS \ |
| 138 | ({ \ |
| 139 | int nvpeid = 16; \ |
| 140 | if (gic_rdists->has_rvpeid && \ |
| 141 | gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \ |
| 142 | nvpeid = 1 + (gic_rdists->gicd_typer2 & \ |
| 143 | GICD_TYPER2_VID); \ |
| 144 | \ |
| 145 | nvpeid; \ |
| 146 | }) |
| 147 | #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) |
| 148 | |
| 149 | /* Convert page order to size in bytes */ |
| 150 | #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) |
| 151 | |
| 152 | struct event_lpi_map { |
| 153 | unsigned long *lpi_map; |
| 154 | u16 *col_map; |
| 155 | irq_hw_number_t lpi_base; |
| 156 | int nr_lpis; |
| 157 | raw_spinlock_t vlpi_lock; |
| 158 | struct its_vm *vm; |
| 159 | struct its_vlpi_map *vlpi_maps; |
| 160 | int nr_vlpis; |
| 161 | }; |
| 162 | |
| 163 | /* |
| 164 | * The ITS view of a device - belongs to an ITS, owns an interrupt |
| 165 | * translation table, and a list of interrupts. If it some of its |
| 166 | * LPIs are injected into a guest (GICv4), the event_map.vm field |
| 167 | * indicates which one. |
| 168 | */ |
| 169 | struct its_device { |
| 170 | struct list_head entry; |
| 171 | struct its_node *its; |
| 172 | struct event_lpi_map event_map; |
| 173 | void *itt; |
| 174 | u32 itt_sz; |
| 175 | u32 nr_ites; |
| 176 | u32 device_id; |
| 177 | bool shared; |
| 178 | }; |
| 179 | |
| 180 | static struct { |
| 181 | raw_spinlock_t lock; |
| 182 | struct its_device *dev; |
| 183 | struct its_vpe **vpes; |
| 184 | int next_victim; |
| 185 | } vpe_proxy; |
| 186 | |
| 187 | struct cpu_lpi_count { |
| 188 | atomic_t managed; |
| 189 | atomic_t unmanaged; |
| 190 | }; |
| 191 | |
| 192 | static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count); |
| 193 | |
| 194 | static LIST_HEAD(its_nodes); |
| 195 | static DEFINE_RAW_SPINLOCK(its_lock); |
| 196 | static struct rdists *gic_rdists; |
| 197 | static struct irq_domain *its_parent; |
| 198 | |
| 199 | static unsigned long its_list_map; |
| 200 | static u16 vmovp_seq_num; |
| 201 | static DEFINE_RAW_SPINLOCK(vmovp_lock); |
| 202 | |
| 203 | static DEFINE_IDA(its_vpeid_ida); |
| 204 | |
| 205 | #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) |
| 206 | #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu)) |
| 207 | #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) |
| 208 | #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) |
| 209 | |
| 210 | static gfp_t gfp_flags_quirk; |
| 211 | |
| 212 | static struct page *its_alloc_pages_node(int node, gfp_t gfp, |
| 213 | unsigned int order) |
| 214 | { |
| 215 | struct page *page; |
| 216 | int ret = 0; |
| 217 | |
| 218 | page = alloc_pages_node(node, gfp | gfp_flags_quirk, order); |
| 219 | |
| 220 | if (!page) |
| 221 | return NULL; |
| 222 | |
| 223 | ret = set_memory_decrypted((unsigned long)page_address(page), |
| 224 | 1 << order); |
| 225 | /* |
| 226 | * If set_memory_decrypted() fails then we don't know what state the |
| 227 | * page is in, so we can't free it. Instead we leak it. |
| 228 | * set_memory_decrypted() will already have WARNed. |
| 229 | */ |
| 230 | if (ret) |
| 231 | return NULL; |
| 232 | |
| 233 | return page; |
| 234 | } |
| 235 | |
| 236 | static struct page *its_alloc_pages(gfp_t gfp, unsigned int order) |
| 237 | { |
| 238 | return its_alloc_pages_node(NUMA_NO_NODE, gfp, order); |
| 239 | } |
| 240 | |
| 241 | static void its_free_pages(void *addr, unsigned int order) |
| 242 | { |
| 243 | /* |
| 244 | * If the memory cannot be encrypted again then we must leak the pages. |
| 245 | * set_memory_encrypted() will already have WARNed. |
| 246 | */ |
| 247 | if (set_memory_encrypted((unsigned long)addr, 1 << order)) |
| 248 | return; |
| 249 | free_pages((unsigned long)addr, order); |
| 250 | } |
| 251 | |
| 252 | static struct gen_pool *itt_pool; |
| 253 | |
| 254 | static void *itt_alloc_pool(int node, int size) |
| 255 | { |
| 256 | unsigned long addr; |
| 257 | struct page *page; |
| 258 | |
| 259 | if (size >= PAGE_SIZE) { |
| 260 | page = its_alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, get_order(size)); |
| 261 | |
| 262 | return page ? page_address(page) : NULL; |
| 263 | } |
| 264 | |
| 265 | do { |
| 266 | addr = gen_pool_alloc(itt_pool, size); |
| 267 | if (addr) |
| 268 | break; |
| 269 | |
| 270 | page = its_alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); |
| 271 | if (!page) |
| 272 | break; |
| 273 | |
| 274 | gen_pool_add(itt_pool, (unsigned long)page_address(page), PAGE_SIZE, node); |
| 275 | } while (!addr); |
| 276 | |
| 277 | return (void *)addr; |
| 278 | } |
| 279 | |
| 280 | static void itt_free_pool(void *addr, int size) |
| 281 | { |
| 282 | if (!addr) |
| 283 | return; |
| 284 | |
| 285 | if (size >= PAGE_SIZE) { |
| 286 | its_free_pages(addr, get_order(size)); |
| 287 | return; |
| 288 | } |
| 289 | |
| 290 | gen_pool_free(itt_pool, (unsigned long)addr, size); |
| 291 | } |
| 292 | |
| 293 | /* |
| 294 | * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we |
| 295 | * always have vSGIs mapped. |
| 296 | */ |
| 297 | static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its) |
| 298 | { |
| 299 | return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]); |
| 300 | } |
| 301 | |
| 302 | static bool rdists_support_shareable(void) |
| 303 | { |
| 304 | return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE); |
| 305 | } |
| 306 | |
| 307 | static u16 get_its_list(struct its_vm *vm) |
| 308 | { |
| 309 | struct its_node *its; |
| 310 | unsigned long its_list = 0; |
| 311 | |
| 312 | list_for_each_entry(its, &its_nodes, entry) { |
| 313 | if (!is_v4(its)) |
| 314 | continue; |
| 315 | |
| 316 | if (require_its_list_vmovp(vm, its)) |
| 317 | __set_bit(its->list_nr, &its_list); |
| 318 | } |
| 319 | |
| 320 | return (u16)its_list; |
| 321 | } |
| 322 | |
| 323 | static inline u32 its_get_event_id(struct irq_data *d) |
| 324 | { |
| 325 | struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| 326 | return d->hwirq - its_dev->event_map.lpi_base; |
| 327 | } |
| 328 | |
| 329 | static struct its_collection *dev_event_to_col(struct its_device *its_dev, |
| 330 | u32 event) |
| 331 | { |
| 332 | struct its_node *its = its_dev->its; |
| 333 | |
| 334 | return its->collections + its_dev->event_map.col_map[event]; |
| 335 | } |
| 336 | |
| 337 | static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev, |
| 338 | u32 event) |
| 339 | { |
| 340 | if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis)) |
| 341 | return NULL; |
| 342 | |
| 343 | return &its_dev->event_map.vlpi_maps[event]; |
| 344 | } |
| 345 | |
| 346 | static struct its_vlpi_map *get_vlpi_map(struct irq_data *d) |
| 347 | { |
| 348 | if (irqd_is_forwarded_to_vcpu(d)) { |
| 349 | struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| 350 | u32 event = its_get_event_id(d); |
| 351 | |
| 352 | return dev_event_to_vlpi_map(its_dev, event); |
| 353 | } |
| 354 | |
| 355 | return NULL; |
| 356 | } |
| 357 | |
| 358 | static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags) |
| 359 | { |
| 360 | raw_spin_lock_irqsave(&vpe->vpe_lock, *flags); |
| 361 | return vpe->col_idx; |
| 362 | } |
| 363 | |
| 364 | static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags) |
| 365 | { |
| 366 | raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); |
| 367 | } |
| 368 | |
| 369 | static struct irq_chip its_vpe_irq_chip; |
| 370 | |
| 371 | static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags) |
| 372 | { |
| 373 | struct its_vpe *vpe = NULL; |
| 374 | int cpu; |
| 375 | |
| 376 | if (d->chip == &its_vpe_irq_chip) { |
| 377 | vpe = irq_data_get_irq_chip_data(d); |
| 378 | } else { |
| 379 | struct its_vlpi_map *map = get_vlpi_map(d); |
| 380 | if (map) |
| 381 | vpe = map->vpe; |
| 382 | } |
| 383 | |
| 384 | if (vpe) { |
| 385 | cpu = vpe_to_cpuid_lock(vpe, flags); |
| 386 | } else { |
| 387 | /* Physical LPIs are already locked via the irq_desc lock */ |
| 388 | struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| 389 | cpu = its_dev->event_map.col_map[its_get_event_id(d)]; |
| 390 | /* Keep GCC quiet... */ |
| 391 | *flags = 0; |
| 392 | } |
| 393 | |
| 394 | return cpu; |
| 395 | } |
| 396 | |
| 397 | static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags) |
| 398 | { |
| 399 | struct its_vpe *vpe = NULL; |
| 400 | |
| 401 | if (d->chip == &its_vpe_irq_chip) { |
| 402 | vpe = irq_data_get_irq_chip_data(d); |
| 403 | } else { |
| 404 | struct its_vlpi_map *map = get_vlpi_map(d); |
| 405 | if (map) |
| 406 | vpe = map->vpe; |
| 407 | } |
| 408 | |
| 409 | if (vpe) |
| 410 | vpe_to_cpuid_unlock(vpe, flags); |
| 411 | } |
| 412 | |
| 413 | static struct its_collection *valid_col(struct its_collection *col) |
| 414 | { |
| 415 | if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0))) |
| 416 | return NULL; |
| 417 | |
| 418 | return col; |
| 419 | } |
| 420 | |
| 421 | static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) |
| 422 | { |
| 423 | if (valid_col(its->collections + vpe->col_idx)) |
| 424 | return vpe; |
| 425 | |
| 426 | return NULL; |
| 427 | } |
| 428 | |
| 429 | /* |
| 430 | * ITS command descriptors - parameters to be encoded in a command |
| 431 | * block. |
| 432 | */ |
| 433 | struct its_cmd_desc { |
| 434 | union { |
| 435 | struct { |
| 436 | struct its_device *dev; |
| 437 | u32 event_id; |
| 438 | } its_inv_cmd; |
| 439 | |
| 440 | struct { |
| 441 | struct its_device *dev; |
| 442 | u32 event_id; |
| 443 | } its_clear_cmd; |
| 444 | |
| 445 | struct { |
| 446 | struct its_device *dev; |
| 447 | u32 event_id; |
| 448 | } its_int_cmd; |
| 449 | |
| 450 | struct { |
| 451 | struct its_device *dev; |
| 452 | int valid; |
| 453 | } its_mapd_cmd; |
| 454 | |
| 455 | struct { |
| 456 | struct its_collection *col; |
| 457 | int valid; |
| 458 | } its_mapc_cmd; |
| 459 | |
| 460 | struct { |
| 461 | struct its_device *dev; |
| 462 | u32 phys_id; |
| 463 | u32 event_id; |
| 464 | } its_mapti_cmd; |
| 465 | |
| 466 | struct { |
| 467 | struct its_device *dev; |
| 468 | struct its_collection *col; |
| 469 | u32 event_id; |
| 470 | } its_movi_cmd; |
| 471 | |
| 472 | struct { |
| 473 | struct its_device *dev; |
| 474 | u32 event_id; |
| 475 | } its_discard_cmd; |
| 476 | |
| 477 | struct { |
| 478 | struct its_collection *col; |
| 479 | } its_invall_cmd; |
| 480 | |
| 481 | struct { |
| 482 | struct its_vpe *vpe; |
| 483 | } its_vinvall_cmd; |
| 484 | |
| 485 | struct { |
| 486 | struct its_vpe *vpe; |
| 487 | struct its_collection *col; |
| 488 | bool valid; |
| 489 | } its_vmapp_cmd; |
| 490 | |
| 491 | struct { |
| 492 | struct its_vpe *vpe; |
| 493 | struct its_device *dev; |
| 494 | u32 virt_id; |
| 495 | u32 event_id; |
| 496 | bool db_enabled; |
| 497 | } its_vmapti_cmd; |
| 498 | |
| 499 | struct { |
| 500 | struct its_vpe *vpe; |
| 501 | struct its_device *dev; |
| 502 | u32 event_id; |
| 503 | bool db_enabled; |
| 504 | } its_vmovi_cmd; |
| 505 | |
| 506 | struct { |
| 507 | struct its_vpe *vpe; |
| 508 | struct its_collection *col; |
| 509 | u16 seq_num; |
| 510 | u16 its_list; |
| 511 | } its_vmovp_cmd; |
| 512 | |
| 513 | struct { |
| 514 | struct its_vpe *vpe; |
| 515 | } its_invdb_cmd; |
| 516 | |
| 517 | struct { |
| 518 | struct its_vpe *vpe; |
| 519 | u8 sgi; |
| 520 | u8 priority; |
| 521 | bool enable; |
| 522 | bool group; |
| 523 | bool clear; |
| 524 | } its_vsgi_cmd; |
| 525 | }; |
| 526 | }; |
| 527 | |
| 528 | /* |
| 529 | * The ITS command block, which is what the ITS actually parses. |
| 530 | */ |
| 531 | struct its_cmd_block { |
| 532 | union { |
| 533 | u64 raw_cmd[4]; |
| 534 | __le64 raw_cmd_le[4]; |
| 535 | }; |
| 536 | }; |
| 537 | |
| 538 | #define ITS_CMD_QUEUE_SZ SZ_64K |
| 539 | #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) |
| 540 | |
| 541 | typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, |
| 542 | struct its_cmd_block *, |
| 543 | struct its_cmd_desc *); |
| 544 | |
| 545 | typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, |
| 546 | struct its_cmd_block *, |
| 547 | struct its_cmd_desc *); |
| 548 | |
| 549 | static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) |
| 550 | { |
| 551 | u64 mask = GENMASK_ULL(h, l); |
| 552 | *raw_cmd &= ~mask; |
| 553 | *raw_cmd |= (val << l) & mask; |
| 554 | } |
| 555 | |
| 556 | static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) |
| 557 | { |
| 558 | its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); |
| 559 | } |
| 560 | |
| 561 | static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) |
| 562 | { |
| 563 | its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); |
| 564 | } |
| 565 | |
| 566 | static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) |
| 567 | { |
| 568 | its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); |
| 569 | } |
| 570 | |
| 571 | static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) |
| 572 | { |
| 573 | its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); |
| 574 | } |
| 575 | |
| 576 | static void its_encode_size(struct its_cmd_block *cmd, u8 size) |
| 577 | { |
| 578 | its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); |
| 579 | } |
| 580 | |
| 581 | static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) |
| 582 | { |
| 583 | its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); |
| 584 | } |
| 585 | |
| 586 | static void its_encode_valid(struct its_cmd_block *cmd, int valid) |
| 587 | { |
| 588 | its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); |
| 589 | } |
| 590 | |
| 591 | static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) |
| 592 | { |
| 593 | its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); |
| 594 | } |
| 595 | |
| 596 | static void its_encode_collection(struct its_cmd_block *cmd, u16 col) |
| 597 | { |
| 598 | its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); |
| 599 | } |
| 600 | |
| 601 | static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) |
| 602 | { |
| 603 | its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); |
| 604 | } |
| 605 | |
| 606 | static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) |
| 607 | { |
| 608 | its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); |
| 609 | } |
| 610 | |
| 611 | static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) |
| 612 | { |
| 613 | its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); |
| 614 | } |
| 615 | |
| 616 | static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) |
| 617 | { |
| 618 | its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); |
| 619 | } |
| 620 | |
| 621 | static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) |
| 622 | { |
| 623 | its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); |
| 624 | } |
| 625 | |
| 626 | static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) |
| 627 | { |
| 628 | its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); |
| 629 | } |
| 630 | |
| 631 | static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) |
| 632 | { |
| 633 | its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); |
| 634 | } |
| 635 | |
| 636 | static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) |
| 637 | { |
| 638 | its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); |
| 639 | } |
| 640 | |
| 641 | static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa) |
| 642 | { |
| 643 | its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16); |
| 644 | } |
| 645 | |
| 646 | static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc) |
| 647 | { |
| 648 | its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8); |
| 649 | } |
| 650 | |
| 651 | static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz) |
| 652 | { |
| 653 | its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9); |
| 654 | } |
| 655 | |
| 656 | static void its_encode_vmapp_default_db(struct its_cmd_block *cmd, |
| 657 | u32 vpe_db_lpi) |
| 658 | { |
| 659 | its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0); |
| 660 | } |
| 661 | |
| 662 | static void its_encode_vmovp_default_db(struct its_cmd_block *cmd, |
| 663 | u32 vpe_db_lpi) |
| 664 | { |
| 665 | its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0); |
| 666 | } |
| 667 | |
| 668 | static void its_encode_db(struct its_cmd_block *cmd, bool db) |
| 669 | { |
| 670 | its_mask_encode(&cmd->raw_cmd[2], db, 63, 63); |
| 671 | } |
| 672 | |
| 673 | static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi) |
| 674 | { |
| 675 | its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32); |
| 676 | } |
| 677 | |
| 678 | static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio) |
| 679 | { |
| 680 | its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20); |
| 681 | } |
| 682 | |
| 683 | static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp) |
| 684 | { |
| 685 | its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10); |
| 686 | } |
| 687 | |
| 688 | static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr) |
| 689 | { |
| 690 | its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9); |
| 691 | } |
| 692 | |
| 693 | static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en) |
| 694 | { |
| 695 | its_mask_encode(&cmd->raw_cmd[0], en, 8, 8); |
| 696 | } |
| 697 | |
| 698 | static inline void its_fixup_cmd(struct its_cmd_block *cmd) |
| 699 | { |
| 700 | /* Let's fixup BE commands */ |
| 701 | cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]); |
| 702 | cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]); |
| 703 | cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]); |
| 704 | cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]); |
| 705 | } |
| 706 | |
| 707 | static struct its_collection *its_build_mapd_cmd(struct its_node *its, |
| 708 | struct its_cmd_block *cmd, |
| 709 | struct its_cmd_desc *desc) |
| 710 | { |
| 711 | unsigned long itt_addr; |
| 712 | u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); |
| 713 | |
| 714 | itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); |
| 715 | |
| 716 | its_encode_cmd(cmd, GITS_CMD_MAPD); |
| 717 | its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); |
| 718 | its_encode_size(cmd, size - 1); |
| 719 | its_encode_itt(cmd, itt_addr); |
| 720 | its_encode_valid(cmd, desc->its_mapd_cmd.valid); |
| 721 | |
| 722 | its_fixup_cmd(cmd); |
| 723 | |
| 724 | return NULL; |
| 725 | } |
| 726 | |
| 727 | static struct its_collection *its_build_mapc_cmd(struct its_node *its, |
| 728 | struct its_cmd_block *cmd, |
| 729 | struct its_cmd_desc *desc) |
| 730 | { |
| 731 | its_encode_cmd(cmd, GITS_CMD_MAPC); |
| 732 | its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); |
| 733 | its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); |
| 734 | its_encode_valid(cmd, desc->its_mapc_cmd.valid); |
| 735 | |
| 736 | its_fixup_cmd(cmd); |
| 737 | |
| 738 | return desc->its_mapc_cmd.col; |
| 739 | } |
| 740 | |
| 741 | static struct its_collection *its_build_mapti_cmd(struct its_node *its, |
| 742 | struct its_cmd_block *cmd, |
| 743 | struct its_cmd_desc *desc) |
| 744 | { |
| 745 | struct its_collection *col; |
| 746 | |
| 747 | col = dev_event_to_col(desc->its_mapti_cmd.dev, |
| 748 | desc->its_mapti_cmd.event_id); |
| 749 | |
| 750 | its_encode_cmd(cmd, GITS_CMD_MAPTI); |
| 751 | its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); |
| 752 | its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); |
| 753 | its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); |
| 754 | its_encode_collection(cmd, col->col_id); |
| 755 | |
| 756 | its_fixup_cmd(cmd); |
| 757 | |
| 758 | return valid_col(col); |
| 759 | } |
| 760 | |
| 761 | static struct its_collection *its_build_movi_cmd(struct its_node *its, |
| 762 | struct its_cmd_block *cmd, |
| 763 | struct its_cmd_desc *desc) |
| 764 | { |
| 765 | struct its_collection *col; |
| 766 | |
| 767 | col = dev_event_to_col(desc->its_movi_cmd.dev, |
| 768 | desc->its_movi_cmd.event_id); |
| 769 | |
| 770 | its_encode_cmd(cmd, GITS_CMD_MOVI); |
| 771 | its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); |
| 772 | its_encode_event_id(cmd, desc->its_movi_cmd.event_id); |
| 773 | its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); |
| 774 | |
| 775 | its_fixup_cmd(cmd); |
| 776 | |
| 777 | return valid_col(col); |
| 778 | } |
| 779 | |
| 780 | static struct its_collection *its_build_discard_cmd(struct its_node *its, |
| 781 | struct its_cmd_block *cmd, |
| 782 | struct its_cmd_desc *desc) |
| 783 | { |
| 784 | struct its_collection *col; |
| 785 | |
| 786 | col = dev_event_to_col(desc->its_discard_cmd.dev, |
| 787 | desc->its_discard_cmd.event_id); |
| 788 | |
| 789 | its_encode_cmd(cmd, GITS_CMD_DISCARD); |
| 790 | its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); |
| 791 | its_encode_event_id(cmd, desc->its_discard_cmd.event_id); |
| 792 | |
| 793 | its_fixup_cmd(cmd); |
| 794 | |
| 795 | return valid_col(col); |
| 796 | } |
| 797 | |
| 798 | static struct its_collection *its_build_inv_cmd(struct its_node *its, |
| 799 | struct its_cmd_block *cmd, |
| 800 | struct its_cmd_desc *desc) |
| 801 | { |
| 802 | struct its_collection *col; |
| 803 | |
| 804 | col = dev_event_to_col(desc->its_inv_cmd.dev, |
| 805 | desc->its_inv_cmd.event_id); |
| 806 | |
| 807 | its_encode_cmd(cmd, GITS_CMD_INV); |
| 808 | its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); |
| 809 | its_encode_event_id(cmd, desc->its_inv_cmd.event_id); |
| 810 | |
| 811 | its_fixup_cmd(cmd); |
| 812 | |
| 813 | return valid_col(col); |
| 814 | } |
| 815 | |
| 816 | static struct its_collection *its_build_int_cmd(struct its_node *its, |
| 817 | struct its_cmd_block *cmd, |
| 818 | struct its_cmd_desc *desc) |
| 819 | { |
| 820 | struct its_collection *col; |
| 821 | |
| 822 | col = dev_event_to_col(desc->its_int_cmd.dev, |
| 823 | desc->its_int_cmd.event_id); |
| 824 | |
| 825 | its_encode_cmd(cmd, GITS_CMD_INT); |
| 826 | its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); |
| 827 | its_encode_event_id(cmd, desc->its_int_cmd.event_id); |
| 828 | |
| 829 | its_fixup_cmd(cmd); |
| 830 | |
| 831 | return valid_col(col); |
| 832 | } |
| 833 | |
| 834 | static struct its_collection *its_build_clear_cmd(struct its_node *its, |
| 835 | struct its_cmd_block *cmd, |
| 836 | struct its_cmd_desc *desc) |
| 837 | { |
| 838 | struct its_collection *col; |
| 839 | |
| 840 | col = dev_event_to_col(desc->its_clear_cmd.dev, |
| 841 | desc->its_clear_cmd.event_id); |
| 842 | |
| 843 | its_encode_cmd(cmd, GITS_CMD_CLEAR); |
| 844 | its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); |
| 845 | its_encode_event_id(cmd, desc->its_clear_cmd.event_id); |
| 846 | |
| 847 | its_fixup_cmd(cmd); |
| 848 | |
| 849 | return valid_col(col); |
| 850 | } |
| 851 | |
| 852 | static struct its_collection *its_build_invall_cmd(struct its_node *its, |
| 853 | struct its_cmd_block *cmd, |
| 854 | struct its_cmd_desc *desc) |
| 855 | { |
| 856 | its_encode_cmd(cmd, GITS_CMD_INVALL); |
| 857 | its_encode_collection(cmd, desc->its_invall_cmd.col->col_id); |
| 858 | |
| 859 | its_fixup_cmd(cmd); |
| 860 | |
| 861 | return desc->its_invall_cmd.col; |
| 862 | } |
| 863 | |
| 864 | static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, |
| 865 | struct its_cmd_block *cmd, |
| 866 | struct its_cmd_desc *desc) |
| 867 | { |
| 868 | its_encode_cmd(cmd, GITS_CMD_VINVALL); |
| 869 | its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); |
| 870 | |
| 871 | its_fixup_cmd(cmd); |
| 872 | |
| 873 | return valid_vpe(its, desc->its_vinvall_cmd.vpe); |
| 874 | } |
| 875 | |
| 876 | static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, |
| 877 | struct its_cmd_block *cmd, |
| 878 | struct its_cmd_desc *desc) |
| 879 | { |
| 880 | struct its_vpe *vpe = valid_vpe(its, desc->its_vmapp_cmd.vpe); |
| 881 | unsigned long vpt_addr, vconf_addr; |
| 882 | u64 target; |
| 883 | bool alloc; |
| 884 | |
| 885 | its_encode_cmd(cmd, GITS_CMD_VMAPP); |
| 886 | its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); |
| 887 | its_encode_valid(cmd, desc->its_vmapp_cmd.valid); |
| 888 | |
| 889 | if (!desc->its_vmapp_cmd.valid) { |
| 890 | alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count); |
| 891 | if (is_v4_1(its)) { |
| 892 | its_encode_alloc(cmd, alloc); |
| 893 | /* |
| 894 | * Unmapping a VPE is self-synchronizing on GICv4.1, |
| 895 | * no need to issue a VSYNC. |
| 896 | */ |
| 897 | vpe = NULL; |
| 898 | } |
| 899 | |
| 900 | goto out; |
| 901 | } |
| 902 | |
| 903 | vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); |
| 904 | target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; |
| 905 | |
| 906 | its_encode_target(cmd, target); |
| 907 | its_encode_vpt_addr(cmd, vpt_addr); |
| 908 | its_encode_vpt_size(cmd, LPI_NRBITS - 1); |
| 909 | |
| 910 | alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count); |
| 911 | |
| 912 | if (!is_v4_1(its)) |
| 913 | goto out; |
| 914 | |
| 915 | vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page)); |
| 916 | |
| 917 | its_encode_alloc(cmd, alloc); |
| 918 | |
| 919 | /* |
| 920 | * GICv4.1 provides a way to get the VLPI state, which needs the vPE |
| 921 | * to be unmapped first, and in this case, we may remap the vPE |
| 922 | * back while the VPT is not empty. So we can't assume that the |
| 923 | * VPT is empty on map. This is why we never advertise PTZ. |
| 924 | */ |
| 925 | its_encode_ptz(cmd, false); |
| 926 | its_encode_vconf_addr(cmd, vconf_addr); |
| 927 | its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi); |
| 928 | |
| 929 | out: |
| 930 | its_fixup_cmd(cmd); |
| 931 | |
| 932 | return vpe; |
| 933 | } |
| 934 | |
| 935 | static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, |
| 936 | struct its_cmd_block *cmd, |
| 937 | struct its_cmd_desc *desc) |
| 938 | { |
| 939 | u32 db; |
| 940 | |
| 941 | if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled) |
| 942 | db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; |
| 943 | else |
| 944 | db = 1023; |
| 945 | |
| 946 | its_encode_cmd(cmd, GITS_CMD_VMAPTI); |
| 947 | its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); |
| 948 | its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); |
| 949 | its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); |
| 950 | its_encode_db_phys_id(cmd, db); |
| 951 | its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); |
| 952 | |
| 953 | its_fixup_cmd(cmd); |
| 954 | |
| 955 | return valid_vpe(its, desc->its_vmapti_cmd.vpe); |
| 956 | } |
| 957 | |
| 958 | static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, |
| 959 | struct its_cmd_block *cmd, |
| 960 | struct its_cmd_desc *desc) |
| 961 | { |
| 962 | u32 db; |
| 963 | |
| 964 | if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled) |
| 965 | db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; |
| 966 | else |
| 967 | db = 1023; |
| 968 | |
| 969 | its_encode_cmd(cmd, GITS_CMD_VMOVI); |
| 970 | its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); |
| 971 | its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); |
| 972 | its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); |
| 973 | its_encode_db_phys_id(cmd, db); |
| 974 | its_encode_db_valid(cmd, true); |
| 975 | |
| 976 | its_fixup_cmd(cmd); |
| 977 | |
| 978 | return valid_vpe(its, desc->its_vmovi_cmd.vpe); |
| 979 | } |
| 980 | |
| 981 | static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, |
| 982 | struct its_cmd_block *cmd, |
| 983 | struct its_cmd_desc *desc) |
| 984 | { |
| 985 | u64 target; |
| 986 | |
| 987 | target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; |
| 988 | its_encode_cmd(cmd, GITS_CMD_VMOVP); |
| 989 | its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); |
| 990 | its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); |
| 991 | its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); |
| 992 | its_encode_target(cmd, target); |
| 993 | |
| 994 | if (is_v4_1(its)) { |
| 995 | its_encode_db(cmd, true); |
| 996 | its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi); |
| 997 | } |
| 998 | |
| 999 | its_fixup_cmd(cmd); |
| 1000 | |
| 1001 | return valid_vpe(its, desc->its_vmovp_cmd.vpe); |
| 1002 | } |
| 1003 | |
| 1004 | static struct its_vpe *its_build_vinv_cmd(struct its_node *its, |
| 1005 | struct its_cmd_block *cmd, |
| 1006 | struct its_cmd_desc *desc) |
| 1007 | { |
| 1008 | struct its_vlpi_map *map; |
| 1009 | |
| 1010 | map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev, |
| 1011 | desc->its_inv_cmd.event_id); |
| 1012 | |
| 1013 | its_encode_cmd(cmd, GITS_CMD_INV); |
| 1014 | its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); |
| 1015 | its_encode_event_id(cmd, desc->its_inv_cmd.event_id); |
| 1016 | |
| 1017 | its_fixup_cmd(cmd); |
| 1018 | |
| 1019 | return valid_vpe(its, map->vpe); |
| 1020 | } |
| 1021 | |
| 1022 | static struct its_vpe *its_build_vint_cmd(struct its_node *its, |
| 1023 | struct its_cmd_block *cmd, |
| 1024 | struct its_cmd_desc *desc) |
| 1025 | { |
| 1026 | struct its_vlpi_map *map; |
| 1027 | |
| 1028 | map = dev_event_to_vlpi_map(desc->its_int_cmd.dev, |
| 1029 | desc->its_int_cmd.event_id); |
| 1030 | |
| 1031 | its_encode_cmd(cmd, GITS_CMD_INT); |
| 1032 | its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); |
| 1033 | its_encode_event_id(cmd, desc->its_int_cmd.event_id); |
| 1034 | |
| 1035 | its_fixup_cmd(cmd); |
| 1036 | |
| 1037 | return valid_vpe(its, map->vpe); |
| 1038 | } |
| 1039 | |
| 1040 | static struct its_vpe *its_build_vclear_cmd(struct its_node *its, |
| 1041 | struct its_cmd_block *cmd, |
| 1042 | struct its_cmd_desc *desc) |
| 1043 | { |
| 1044 | struct its_vlpi_map *map; |
| 1045 | |
| 1046 | map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev, |
| 1047 | desc->its_clear_cmd.event_id); |
| 1048 | |
| 1049 | its_encode_cmd(cmd, GITS_CMD_CLEAR); |
| 1050 | its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); |
| 1051 | its_encode_event_id(cmd, desc->its_clear_cmd.event_id); |
| 1052 | |
| 1053 | its_fixup_cmd(cmd); |
| 1054 | |
| 1055 | return valid_vpe(its, map->vpe); |
| 1056 | } |
| 1057 | |
| 1058 | static struct its_vpe *its_build_invdb_cmd(struct its_node *its, |
| 1059 | struct its_cmd_block *cmd, |
| 1060 | struct its_cmd_desc *desc) |
| 1061 | { |
| 1062 | if (WARN_ON(!is_v4_1(its))) |
| 1063 | return NULL; |
| 1064 | |
| 1065 | its_encode_cmd(cmd, GITS_CMD_INVDB); |
| 1066 | its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id); |
| 1067 | |
| 1068 | its_fixup_cmd(cmd); |
| 1069 | |
| 1070 | return valid_vpe(its, desc->its_invdb_cmd.vpe); |
| 1071 | } |
| 1072 | |
| 1073 | static struct its_vpe *its_build_vsgi_cmd(struct its_node *its, |
| 1074 | struct its_cmd_block *cmd, |
| 1075 | struct its_cmd_desc *desc) |
| 1076 | { |
| 1077 | if (WARN_ON(!is_v4_1(its))) |
| 1078 | return NULL; |
| 1079 | |
| 1080 | its_encode_cmd(cmd, GITS_CMD_VSGI); |
| 1081 | its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id); |
| 1082 | its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi); |
| 1083 | its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority); |
| 1084 | its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group); |
| 1085 | its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear); |
| 1086 | its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable); |
| 1087 | |
| 1088 | its_fixup_cmd(cmd); |
| 1089 | |
| 1090 | return valid_vpe(its, desc->its_vsgi_cmd.vpe); |
| 1091 | } |
| 1092 | |
| 1093 | static u64 its_cmd_ptr_to_offset(struct its_node *its, |
| 1094 | struct its_cmd_block *ptr) |
| 1095 | { |
| 1096 | return (ptr - its->cmd_base) * sizeof(*ptr); |
| 1097 | } |
| 1098 | |
| 1099 | static int its_queue_full(struct its_node *its) |
| 1100 | { |
| 1101 | int widx; |
| 1102 | int ridx; |
| 1103 | |
| 1104 | widx = its->cmd_write - its->cmd_base; |
| 1105 | ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); |
| 1106 | |
| 1107 | /* This is incredibly unlikely to happen, unless the ITS locks up. */ |
| 1108 | if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) |
| 1109 | return 1; |
| 1110 | |
| 1111 | return 0; |
| 1112 | } |
| 1113 | |
| 1114 | static struct its_cmd_block *its_allocate_entry(struct its_node *its) |
| 1115 | { |
| 1116 | struct its_cmd_block *cmd; |
| 1117 | u32 count = 1000000; /* 1s! */ |
| 1118 | |
| 1119 | while (its_queue_full(its)) { |
| 1120 | count--; |
| 1121 | if (!count) { |
| 1122 | pr_err_ratelimited("ITS queue not draining\n"); |
| 1123 | return NULL; |
| 1124 | } |
| 1125 | cpu_relax(); |
| 1126 | udelay(1); |
| 1127 | } |
| 1128 | |
| 1129 | cmd = its->cmd_write++; |
| 1130 | |
| 1131 | /* Handle queue wrapping */ |
| 1132 | if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) |
| 1133 | its->cmd_write = its->cmd_base; |
| 1134 | |
| 1135 | /* Clear command */ |
| 1136 | cmd->raw_cmd[0] = 0; |
| 1137 | cmd->raw_cmd[1] = 0; |
| 1138 | cmd->raw_cmd[2] = 0; |
| 1139 | cmd->raw_cmd[3] = 0; |
| 1140 | |
| 1141 | return cmd; |
| 1142 | } |
| 1143 | |
| 1144 | static struct its_cmd_block *its_post_commands(struct its_node *its) |
| 1145 | { |
| 1146 | u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); |
| 1147 | |
| 1148 | writel_relaxed(wr, its->base + GITS_CWRITER); |
| 1149 | |
| 1150 | return its->cmd_write; |
| 1151 | } |
| 1152 | |
| 1153 | static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) |
| 1154 | { |
| 1155 | /* |
| 1156 | * Make sure the commands written to memory are observable by |
| 1157 | * the ITS. |
| 1158 | */ |
| 1159 | if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) |
| 1160 | gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); |
| 1161 | else |
| 1162 | dsb(ishst); |
| 1163 | } |
| 1164 | |
| 1165 | static int its_wait_for_range_completion(struct its_node *its, |
| 1166 | u64 prev_idx, |
| 1167 | struct its_cmd_block *to) |
| 1168 | { |
| 1169 | u64 rd_idx, to_idx, linear_idx; |
| 1170 | u32 count = 1000000; /* 1s! */ |
| 1171 | |
| 1172 | /* Linearize to_idx if the command set has wrapped around */ |
| 1173 | to_idx = its_cmd_ptr_to_offset(its, to); |
| 1174 | if (to_idx < prev_idx) |
| 1175 | to_idx += ITS_CMD_QUEUE_SZ; |
| 1176 | |
| 1177 | linear_idx = prev_idx; |
| 1178 | |
| 1179 | while (1) { |
| 1180 | s64 delta; |
| 1181 | |
| 1182 | rd_idx = readl_relaxed(its->base + GITS_CREADR); |
| 1183 | |
| 1184 | /* |
| 1185 | * Compute the read pointer progress, taking the |
| 1186 | * potential wrap-around into account. |
| 1187 | */ |
| 1188 | delta = rd_idx - prev_idx; |
| 1189 | if (rd_idx < prev_idx) |
| 1190 | delta += ITS_CMD_QUEUE_SZ; |
| 1191 | |
| 1192 | linear_idx += delta; |
| 1193 | if (linear_idx >= to_idx) |
| 1194 | break; |
| 1195 | |
| 1196 | count--; |
| 1197 | if (!count) { |
| 1198 | pr_err_ratelimited("ITS queue timeout (%llu %llu)\n", |
| 1199 | to_idx, linear_idx); |
| 1200 | return -1; |
| 1201 | } |
| 1202 | prev_idx = rd_idx; |
| 1203 | cpu_relax(); |
| 1204 | udelay(1); |
| 1205 | } |
| 1206 | |
| 1207 | return 0; |
| 1208 | } |
| 1209 | |
| 1210 | /* Warning, macro hell follows */ |
| 1211 | #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ |
| 1212 | void name(struct its_node *its, \ |
| 1213 | buildtype builder, \ |
| 1214 | struct its_cmd_desc *desc) \ |
| 1215 | { \ |
| 1216 | struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ |
| 1217 | synctype *sync_obj; \ |
| 1218 | unsigned long flags; \ |
| 1219 | u64 rd_idx; \ |
| 1220 | \ |
| 1221 | raw_spin_lock_irqsave(&its->lock, flags); \ |
| 1222 | \ |
| 1223 | cmd = its_allocate_entry(its); \ |
| 1224 | if (!cmd) { /* We're soooooo screewed... */ \ |
| 1225 | raw_spin_unlock_irqrestore(&its->lock, flags); \ |
| 1226 | return; \ |
| 1227 | } \ |
| 1228 | sync_obj = builder(its, cmd, desc); \ |
| 1229 | its_flush_cmd(its, cmd); \ |
| 1230 | \ |
| 1231 | if (sync_obj) { \ |
| 1232 | sync_cmd = its_allocate_entry(its); \ |
| 1233 | if (!sync_cmd) \ |
| 1234 | goto post; \ |
| 1235 | \ |
| 1236 | buildfn(its, sync_cmd, sync_obj); \ |
| 1237 | its_flush_cmd(its, sync_cmd); \ |
| 1238 | } \ |
| 1239 | \ |
| 1240 | post: \ |
| 1241 | rd_idx = readl_relaxed(its->base + GITS_CREADR); \ |
| 1242 | next_cmd = its_post_commands(its); \ |
| 1243 | raw_spin_unlock_irqrestore(&its->lock, flags); \ |
| 1244 | \ |
| 1245 | if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \ |
| 1246 | pr_err_ratelimited("ITS cmd %ps failed\n", builder); \ |
| 1247 | } |
| 1248 | |
| 1249 | static void its_build_sync_cmd(struct its_node *its, |
| 1250 | struct its_cmd_block *sync_cmd, |
| 1251 | struct its_collection *sync_col) |
| 1252 | { |
| 1253 | its_encode_cmd(sync_cmd, GITS_CMD_SYNC); |
| 1254 | its_encode_target(sync_cmd, sync_col->target_address); |
| 1255 | |
| 1256 | its_fixup_cmd(sync_cmd); |
| 1257 | } |
| 1258 | |
| 1259 | static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, |
| 1260 | struct its_collection, its_build_sync_cmd) |
| 1261 | |
| 1262 | static void its_build_vsync_cmd(struct its_node *its, |
| 1263 | struct its_cmd_block *sync_cmd, |
| 1264 | struct its_vpe *sync_vpe) |
| 1265 | { |
| 1266 | its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); |
| 1267 | its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); |
| 1268 | |
| 1269 | its_fixup_cmd(sync_cmd); |
| 1270 | } |
| 1271 | |
| 1272 | static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, |
| 1273 | struct its_vpe, its_build_vsync_cmd) |
| 1274 | |
| 1275 | static void its_send_int(struct its_device *dev, u32 event_id) |
| 1276 | { |
| 1277 | struct its_cmd_desc desc; |
| 1278 | |
| 1279 | desc.its_int_cmd.dev = dev; |
| 1280 | desc.its_int_cmd.event_id = event_id; |
| 1281 | |
| 1282 | its_send_single_command(dev->its, its_build_int_cmd, &desc); |
| 1283 | } |
| 1284 | |
| 1285 | static void its_send_clear(struct its_device *dev, u32 event_id) |
| 1286 | { |
| 1287 | struct its_cmd_desc desc; |
| 1288 | |
| 1289 | desc.its_clear_cmd.dev = dev; |
| 1290 | desc.its_clear_cmd.event_id = event_id; |
| 1291 | |
| 1292 | its_send_single_command(dev->its, its_build_clear_cmd, &desc); |
| 1293 | } |
| 1294 | |
| 1295 | static void its_send_inv(struct its_device *dev, u32 event_id) |
| 1296 | { |
| 1297 | struct its_cmd_desc desc; |
| 1298 | |
| 1299 | desc.its_inv_cmd.dev = dev; |
| 1300 | desc.its_inv_cmd.event_id = event_id; |
| 1301 | |
| 1302 | its_send_single_command(dev->its, its_build_inv_cmd, &desc); |
| 1303 | } |
| 1304 | |
| 1305 | static void its_send_mapd(struct its_device *dev, int valid) |
| 1306 | { |
| 1307 | struct its_cmd_desc desc; |
| 1308 | |
| 1309 | desc.its_mapd_cmd.dev = dev; |
| 1310 | desc.its_mapd_cmd.valid = !!valid; |
| 1311 | |
| 1312 | its_send_single_command(dev->its, its_build_mapd_cmd, &desc); |
| 1313 | } |
| 1314 | |
| 1315 | static void its_send_mapc(struct its_node *its, struct its_collection *col, |
| 1316 | int valid) |
| 1317 | { |
| 1318 | struct its_cmd_desc desc; |
| 1319 | |
| 1320 | desc.its_mapc_cmd.col = col; |
| 1321 | desc.its_mapc_cmd.valid = !!valid; |
| 1322 | |
| 1323 | its_send_single_command(its, its_build_mapc_cmd, &desc); |
| 1324 | } |
| 1325 | |
| 1326 | static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) |
| 1327 | { |
| 1328 | struct its_cmd_desc desc; |
| 1329 | |
| 1330 | desc.its_mapti_cmd.dev = dev; |
| 1331 | desc.its_mapti_cmd.phys_id = irq_id; |
| 1332 | desc.its_mapti_cmd.event_id = id; |
| 1333 | |
| 1334 | its_send_single_command(dev->its, its_build_mapti_cmd, &desc); |
| 1335 | } |
| 1336 | |
| 1337 | static void its_send_movi(struct its_device *dev, |
| 1338 | struct its_collection *col, u32 id) |
| 1339 | { |
| 1340 | struct its_cmd_desc desc; |
| 1341 | |
| 1342 | desc.its_movi_cmd.dev = dev; |
| 1343 | desc.its_movi_cmd.col = col; |
| 1344 | desc.its_movi_cmd.event_id = id; |
| 1345 | |
| 1346 | its_send_single_command(dev->its, its_build_movi_cmd, &desc); |
| 1347 | } |
| 1348 | |
| 1349 | static void its_send_discard(struct its_device *dev, u32 id) |
| 1350 | { |
| 1351 | struct its_cmd_desc desc; |
| 1352 | |
| 1353 | desc.its_discard_cmd.dev = dev; |
| 1354 | desc.its_discard_cmd.event_id = id; |
| 1355 | |
| 1356 | its_send_single_command(dev->its, its_build_discard_cmd, &desc); |
| 1357 | } |
| 1358 | |
| 1359 | static void its_send_invall(struct its_node *its, struct its_collection *col) |
| 1360 | { |
| 1361 | struct its_cmd_desc desc; |
| 1362 | |
| 1363 | desc.its_invall_cmd.col = col; |
| 1364 | |
| 1365 | its_send_single_command(its, its_build_invall_cmd, &desc); |
| 1366 | } |
| 1367 | |
| 1368 | static void its_send_vmapti(struct its_device *dev, u32 id) |
| 1369 | { |
| 1370 | struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); |
| 1371 | struct its_cmd_desc desc; |
| 1372 | |
| 1373 | desc.its_vmapti_cmd.vpe = map->vpe; |
| 1374 | desc.its_vmapti_cmd.dev = dev; |
| 1375 | desc.its_vmapti_cmd.virt_id = map->vintid; |
| 1376 | desc.its_vmapti_cmd.event_id = id; |
| 1377 | desc.its_vmapti_cmd.db_enabled = map->db_enabled; |
| 1378 | |
| 1379 | its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); |
| 1380 | } |
| 1381 | |
| 1382 | static void its_send_vmovi(struct its_device *dev, u32 id) |
| 1383 | { |
| 1384 | struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); |
| 1385 | struct its_cmd_desc desc; |
| 1386 | |
| 1387 | desc.its_vmovi_cmd.vpe = map->vpe; |
| 1388 | desc.its_vmovi_cmd.dev = dev; |
| 1389 | desc.its_vmovi_cmd.event_id = id; |
| 1390 | desc.its_vmovi_cmd.db_enabled = map->db_enabled; |
| 1391 | |
| 1392 | its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); |
| 1393 | } |
| 1394 | |
| 1395 | static void its_send_vmapp(struct its_node *its, |
| 1396 | struct its_vpe *vpe, bool valid) |
| 1397 | { |
| 1398 | struct its_cmd_desc desc; |
| 1399 | |
| 1400 | desc.its_vmapp_cmd.vpe = vpe; |
| 1401 | desc.its_vmapp_cmd.valid = valid; |
| 1402 | desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; |
| 1403 | |
| 1404 | its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); |
| 1405 | } |
| 1406 | |
| 1407 | static void its_send_vmovp(struct its_vpe *vpe) |
| 1408 | { |
| 1409 | struct its_cmd_desc desc = {}; |
| 1410 | struct its_node *its; |
| 1411 | int col_id = vpe->col_idx; |
| 1412 | |
| 1413 | desc.its_vmovp_cmd.vpe = vpe; |
| 1414 | |
| 1415 | if (!its_list_map) { |
| 1416 | its = list_first_entry(&its_nodes, struct its_node, entry); |
| 1417 | desc.its_vmovp_cmd.col = &its->collections[col_id]; |
| 1418 | its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); |
| 1419 | return; |
| 1420 | } |
| 1421 | |
| 1422 | /* |
| 1423 | * Yet another marvel of the architecture. If using the |
| 1424 | * its_list "feature", we need to make sure that all ITSs |
| 1425 | * receive all VMOVP commands in the same order. The only way |
| 1426 | * to guarantee this is to make vmovp a serialization point. |
| 1427 | * |
| 1428 | * Wall <-- Head. |
| 1429 | */ |
| 1430 | guard(raw_spinlock)(&vmovp_lock); |
| 1431 | desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; |
| 1432 | desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm); |
| 1433 | |
| 1434 | /* Emit VMOVPs */ |
| 1435 | list_for_each_entry(its, &its_nodes, entry) { |
| 1436 | if (!is_v4(its)) |
| 1437 | continue; |
| 1438 | |
| 1439 | if (!require_its_list_vmovp(vpe->its_vm, its)) |
| 1440 | continue; |
| 1441 | |
| 1442 | desc.its_vmovp_cmd.col = &its->collections[col_id]; |
| 1443 | its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); |
| 1444 | } |
| 1445 | } |
| 1446 | |
| 1447 | static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) |
| 1448 | { |
| 1449 | struct its_cmd_desc desc; |
| 1450 | |
| 1451 | desc.its_vinvall_cmd.vpe = vpe; |
| 1452 | its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); |
| 1453 | } |
| 1454 | |
| 1455 | static void its_send_vinv(struct its_device *dev, u32 event_id) |
| 1456 | { |
| 1457 | struct its_cmd_desc desc; |
| 1458 | |
| 1459 | /* |
| 1460 | * There is no real VINV command. This is just a normal INV, |
| 1461 | * with a VSYNC instead of a SYNC. |
| 1462 | */ |
| 1463 | desc.its_inv_cmd.dev = dev; |
| 1464 | desc.its_inv_cmd.event_id = event_id; |
| 1465 | |
| 1466 | its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc); |
| 1467 | } |
| 1468 | |
| 1469 | static void its_send_vint(struct its_device *dev, u32 event_id) |
| 1470 | { |
| 1471 | struct its_cmd_desc desc; |
| 1472 | |
| 1473 | /* |
| 1474 | * There is no real VINT command. This is just a normal INT, |
| 1475 | * with a VSYNC instead of a SYNC. |
| 1476 | */ |
| 1477 | desc.its_int_cmd.dev = dev; |
| 1478 | desc.its_int_cmd.event_id = event_id; |
| 1479 | |
| 1480 | its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc); |
| 1481 | } |
| 1482 | |
| 1483 | static void its_send_vclear(struct its_device *dev, u32 event_id) |
| 1484 | { |
| 1485 | struct its_cmd_desc desc; |
| 1486 | |
| 1487 | /* |
| 1488 | * There is no real VCLEAR command. This is just a normal CLEAR, |
| 1489 | * with a VSYNC instead of a SYNC. |
| 1490 | */ |
| 1491 | desc.its_clear_cmd.dev = dev; |
| 1492 | desc.its_clear_cmd.event_id = event_id; |
| 1493 | |
| 1494 | its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc); |
| 1495 | } |
| 1496 | |
| 1497 | static void its_send_invdb(struct its_node *its, struct its_vpe *vpe) |
| 1498 | { |
| 1499 | struct its_cmd_desc desc; |
| 1500 | |
| 1501 | desc.its_invdb_cmd.vpe = vpe; |
| 1502 | its_send_single_vcommand(its, its_build_invdb_cmd, &desc); |
| 1503 | } |
| 1504 | |
| 1505 | /* |
| 1506 | * irqchip functions - assumes MSI, mostly. |
| 1507 | */ |
| 1508 | static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) |
| 1509 | { |
| 1510 | struct its_vlpi_map *map = get_vlpi_map(d); |
| 1511 | irq_hw_number_t hwirq; |
| 1512 | void *va; |
| 1513 | u8 *cfg; |
| 1514 | |
| 1515 | if (map) { |
| 1516 | va = page_address(map->vm->vprop_page); |
| 1517 | hwirq = map->vintid; |
| 1518 | |
| 1519 | /* Remember the updated property */ |
| 1520 | map->properties &= ~clr; |
| 1521 | map->properties |= set | LPI_PROP_GROUP1; |
| 1522 | } else { |
| 1523 | va = gic_rdists->prop_table_va; |
| 1524 | hwirq = d->hwirq; |
| 1525 | } |
| 1526 | |
| 1527 | cfg = va + hwirq - 8192; |
| 1528 | *cfg &= ~clr; |
| 1529 | *cfg |= set | LPI_PROP_GROUP1; |
| 1530 | |
| 1531 | /* |
| 1532 | * Make the above write visible to the redistributors. |
| 1533 | * And yes, we're flushing exactly: One. Single. Byte. |
| 1534 | * Humpf... |
| 1535 | */ |
| 1536 | if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) |
| 1537 | gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); |
| 1538 | else |
| 1539 | dsb(ishst); |
| 1540 | } |
| 1541 | |
| 1542 | static void wait_for_syncr(void __iomem *rdbase) |
| 1543 | { |
| 1544 | while (readl_relaxed(rdbase + GICR_SYNCR) & 1) |
| 1545 | cpu_relax(); |
| 1546 | } |
| 1547 | |
| 1548 | static void __direct_lpi_inv(struct irq_data *d, u64 val) |
| 1549 | { |
| 1550 | void __iomem *rdbase; |
| 1551 | unsigned long flags; |
| 1552 | int cpu; |
| 1553 | |
| 1554 | /* Target the redistributor this LPI is currently routed to */ |
| 1555 | cpu = irq_to_cpuid_lock(d, &flags); |
| 1556 | raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); |
| 1557 | |
| 1558 | rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; |
| 1559 | gic_write_lpir(val, rdbase + GICR_INVLPIR); |
| 1560 | wait_for_syncr(rdbase); |
| 1561 | |
| 1562 | raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); |
| 1563 | irq_to_cpuid_unlock(d, flags); |
| 1564 | } |
| 1565 | |
| 1566 | static void direct_lpi_inv(struct irq_data *d) |
| 1567 | { |
| 1568 | struct its_vlpi_map *map = get_vlpi_map(d); |
| 1569 | u64 val; |
| 1570 | |
| 1571 | if (map) { |
| 1572 | struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| 1573 | |
| 1574 | WARN_ON(!is_v4_1(its_dev->its)); |
| 1575 | |
| 1576 | val = GICR_INVLPIR_V; |
| 1577 | val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id); |
| 1578 | val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid); |
| 1579 | } else { |
| 1580 | val = d->hwirq; |
| 1581 | } |
| 1582 | |
| 1583 | __direct_lpi_inv(d, val); |
| 1584 | } |
| 1585 | |
| 1586 | static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) |
| 1587 | { |
| 1588 | struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| 1589 | |
| 1590 | lpi_write_config(d, clr, set); |
| 1591 | if (gic_rdists->has_direct_lpi && |
| 1592 | (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d))) |
| 1593 | direct_lpi_inv(d); |
| 1594 | else if (!irqd_is_forwarded_to_vcpu(d)) |
| 1595 | its_send_inv(its_dev, its_get_event_id(d)); |
| 1596 | else |
| 1597 | its_send_vinv(its_dev, its_get_event_id(d)); |
| 1598 | } |
| 1599 | |
| 1600 | static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) |
| 1601 | { |
| 1602 | struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| 1603 | u32 event = its_get_event_id(d); |
| 1604 | struct its_vlpi_map *map; |
| 1605 | |
| 1606 | /* |
| 1607 | * GICv4.1 does away with the per-LPI nonsense, nothing to do |
| 1608 | * here. |
| 1609 | */ |
| 1610 | if (is_v4_1(its_dev->its)) |
| 1611 | return; |
| 1612 | |
| 1613 | map = dev_event_to_vlpi_map(its_dev, event); |
| 1614 | |
| 1615 | if (map->db_enabled == enable) |
| 1616 | return; |
| 1617 | |
| 1618 | map->db_enabled = enable; |
| 1619 | |
| 1620 | /* |
| 1621 | * More fun with the architecture: |
| 1622 | * |
| 1623 | * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI |
| 1624 | * value or to 1023, depending on the enable bit. But that |
| 1625 | * would be issuing a mapping for an /existing/ DevID+EventID |
| 1626 | * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI |
| 1627 | * to the /same/ vPE, using this opportunity to adjust the |
| 1628 | * doorbell. Mouahahahaha. We loves it, Precious. |
| 1629 | */ |
| 1630 | its_send_vmovi(its_dev, event); |
| 1631 | } |
| 1632 | |
| 1633 | static void its_mask_irq(struct irq_data *d) |
| 1634 | { |
| 1635 | if (irqd_is_forwarded_to_vcpu(d)) |
| 1636 | its_vlpi_set_doorbell(d, false); |
| 1637 | |
| 1638 | lpi_update_config(d, LPI_PROP_ENABLED, 0); |
| 1639 | } |
| 1640 | |
| 1641 | static void its_unmask_irq(struct irq_data *d) |
| 1642 | { |
| 1643 | if (irqd_is_forwarded_to_vcpu(d)) |
| 1644 | its_vlpi_set_doorbell(d, true); |
| 1645 | |
| 1646 | lpi_update_config(d, 0, LPI_PROP_ENABLED); |
| 1647 | } |
| 1648 | |
| 1649 | static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu) |
| 1650 | { |
| 1651 | if (irqd_affinity_is_managed(d)) |
| 1652 | return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); |
| 1653 | |
| 1654 | return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); |
| 1655 | } |
| 1656 | |
| 1657 | static void its_inc_lpi_count(struct irq_data *d, int cpu) |
| 1658 | { |
| 1659 | if (irqd_affinity_is_managed(d)) |
| 1660 | atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); |
| 1661 | else |
| 1662 | atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); |
| 1663 | } |
| 1664 | |
| 1665 | static void its_dec_lpi_count(struct irq_data *d, int cpu) |
| 1666 | { |
| 1667 | if (irqd_affinity_is_managed(d)) |
| 1668 | atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); |
| 1669 | else |
| 1670 | atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); |
| 1671 | } |
| 1672 | |
| 1673 | static unsigned int cpumask_pick_least_loaded(struct irq_data *d, |
| 1674 | const struct cpumask *cpu_mask) |
| 1675 | { |
| 1676 | unsigned int cpu = nr_cpu_ids, tmp; |
| 1677 | int count = S32_MAX; |
| 1678 | |
| 1679 | for_each_cpu(tmp, cpu_mask) { |
| 1680 | int this_count = its_read_lpi_count(d, tmp); |
| 1681 | if (this_count < count) { |
| 1682 | cpu = tmp; |
| 1683 | count = this_count; |
| 1684 | } |
| 1685 | } |
| 1686 | |
| 1687 | return cpu; |
| 1688 | } |
| 1689 | |
| 1690 | /* |
| 1691 | * As suggested by Thomas Gleixner in: |
| 1692 | * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de |
| 1693 | */ |
| 1694 | static int its_select_cpu(struct irq_data *d, |
| 1695 | const struct cpumask *aff_mask) |
| 1696 | { |
| 1697 | struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| 1698 | static DEFINE_RAW_SPINLOCK(tmpmask_lock); |
| 1699 | static struct cpumask __tmpmask; |
| 1700 | struct cpumask *tmpmask; |
| 1701 | unsigned long flags; |
| 1702 | int cpu, node; |
| 1703 | node = its_dev->its->numa_node; |
| 1704 | tmpmask = &__tmpmask; |
| 1705 | |
| 1706 | raw_spin_lock_irqsave(&tmpmask_lock, flags); |
| 1707 | |
| 1708 | if (!irqd_affinity_is_managed(d)) { |
| 1709 | /* First try the NUMA node */ |
| 1710 | if (node != NUMA_NO_NODE) { |
| 1711 | /* |
| 1712 | * Try the intersection of the affinity mask and the |
| 1713 | * node mask (and the online mask, just to be safe). |
| 1714 | */ |
| 1715 | cpumask_and(tmpmask, cpumask_of_node(node), aff_mask); |
| 1716 | cpumask_and(tmpmask, tmpmask, cpu_online_mask); |
| 1717 | |
| 1718 | /* |
| 1719 | * Ideally, we would check if the mask is empty, and |
| 1720 | * try again on the full node here. |
| 1721 | * |
| 1722 | * But it turns out that the way ACPI describes the |
| 1723 | * affinity for ITSs only deals about memory, and |
| 1724 | * not target CPUs, so it cannot describe a single |
| 1725 | * ITS placed next to two NUMA nodes. |
| 1726 | * |
| 1727 | * Instead, just fallback on the online mask. This |
| 1728 | * diverges from Thomas' suggestion above. |
| 1729 | */ |
| 1730 | cpu = cpumask_pick_least_loaded(d, tmpmask); |
| 1731 | if (cpu < nr_cpu_ids) |
| 1732 | goto out; |
| 1733 | |
| 1734 | /* If we can't cross sockets, give up */ |
| 1735 | if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)) |
| 1736 | goto out; |
| 1737 | |
| 1738 | /* If the above failed, expand the search */ |
| 1739 | } |
| 1740 | |
| 1741 | /* Try the intersection of the affinity and online masks */ |
| 1742 | cpumask_and(tmpmask, aff_mask, cpu_online_mask); |
| 1743 | |
| 1744 | /* If that doesn't fly, the online mask is the last resort */ |
| 1745 | if (cpumask_empty(tmpmask)) |
| 1746 | cpumask_copy(tmpmask, cpu_online_mask); |
| 1747 | |
| 1748 | cpu = cpumask_pick_least_loaded(d, tmpmask); |
| 1749 | } else { |
| 1750 | cpumask_copy(tmpmask, aff_mask); |
| 1751 | |
| 1752 | /* If we cannot cross sockets, limit the search to that node */ |
| 1753 | if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) && |
| 1754 | node != NUMA_NO_NODE) |
| 1755 | cpumask_and(tmpmask, tmpmask, cpumask_of_node(node)); |
| 1756 | |
| 1757 | cpu = cpumask_pick_least_loaded(d, tmpmask); |
| 1758 | } |
| 1759 | out: |
| 1760 | raw_spin_unlock_irqrestore(&tmpmask_lock, flags); |
| 1761 | |
| 1762 | pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu); |
| 1763 | return cpu; |
| 1764 | } |
| 1765 | |
| 1766 | static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, |
| 1767 | bool force) |
| 1768 | { |
| 1769 | struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| 1770 | struct its_collection *target_col; |
| 1771 | u32 id = its_get_event_id(d); |
| 1772 | int cpu, prev_cpu; |
| 1773 | |
| 1774 | /* A forwarded interrupt should use irq_set_vcpu_affinity */ |
| 1775 | if (irqd_is_forwarded_to_vcpu(d)) |
| 1776 | return -EINVAL; |
| 1777 | |
| 1778 | prev_cpu = its_dev->event_map.col_map[id]; |
| 1779 | its_dec_lpi_count(d, prev_cpu); |
| 1780 | |
| 1781 | if (!force) |
| 1782 | cpu = its_select_cpu(d, mask_val); |
| 1783 | else |
| 1784 | cpu = cpumask_pick_least_loaded(d, mask_val); |
| 1785 | |
| 1786 | if (cpu < 0 || cpu >= nr_cpu_ids) |
| 1787 | goto err; |
| 1788 | |
| 1789 | /* don't set the affinity when the target cpu is same as current one */ |
| 1790 | if (cpu != prev_cpu) { |
| 1791 | target_col = &its_dev->its->collections[cpu]; |
| 1792 | its_send_movi(its_dev, target_col, id); |
| 1793 | its_dev->event_map.col_map[id] = cpu; |
| 1794 | irq_data_update_effective_affinity(d, cpumask_of(cpu)); |
| 1795 | } |
| 1796 | |
| 1797 | its_inc_lpi_count(d, cpu); |
| 1798 | |
| 1799 | return IRQ_SET_MASK_OK_DONE; |
| 1800 | |
| 1801 | err: |
| 1802 | its_inc_lpi_count(d, prev_cpu); |
| 1803 | return -EINVAL; |
| 1804 | } |
| 1805 | |
| 1806 | static u64 its_irq_get_msi_base(struct its_device *its_dev) |
| 1807 | { |
| 1808 | struct its_node *its = its_dev->its; |
| 1809 | |
| 1810 | return its->phys_base + GITS_TRANSLATER; |
| 1811 | } |
| 1812 | |
| 1813 | static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) |
| 1814 | { |
| 1815 | struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| 1816 | |
| 1817 | msg->data = its_get_event_id(d); |
| 1818 | msi_msg_set_addr(irq_data_get_msi_desc(d), msg, |
| 1819 | its_dev->its->get_msi_base(its_dev)); |
| 1820 | } |
| 1821 | |
| 1822 | static int its_irq_set_irqchip_state(struct irq_data *d, |
| 1823 | enum irqchip_irq_state which, |
| 1824 | bool state) |
| 1825 | { |
| 1826 | struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| 1827 | u32 event = its_get_event_id(d); |
| 1828 | |
| 1829 | if (which != IRQCHIP_STATE_PENDING) |
| 1830 | return -EINVAL; |
| 1831 | |
| 1832 | if (irqd_is_forwarded_to_vcpu(d)) { |
| 1833 | if (state) |
| 1834 | its_send_vint(its_dev, event); |
| 1835 | else |
| 1836 | its_send_vclear(its_dev, event); |
| 1837 | } else { |
| 1838 | if (state) |
| 1839 | its_send_int(its_dev, event); |
| 1840 | else |
| 1841 | its_send_clear(its_dev, event); |
| 1842 | } |
| 1843 | |
| 1844 | return 0; |
| 1845 | } |
| 1846 | |
| 1847 | static int its_irq_retrigger(struct irq_data *d) |
| 1848 | { |
| 1849 | return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); |
| 1850 | } |
| 1851 | |
| 1852 | /* |
| 1853 | * Two favourable cases: |
| 1854 | * |
| 1855 | * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times |
| 1856 | * for vSGI delivery |
| 1857 | * |
| 1858 | * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough |
| 1859 | * and we're better off mapping all VPEs always |
| 1860 | * |
| 1861 | * If neither (a) nor (b) is true, then we map vPEs on demand. |
| 1862 | * |
| 1863 | */ |
| 1864 | static bool gic_requires_eager_mapping(void) |
| 1865 | { |
| 1866 | if (!its_list_map || gic_rdists->has_rvpeid) |
| 1867 | return true; |
| 1868 | |
| 1869 | return false; |
| 1870 | } |
| 1871 | |
| 1872 | static void its_map_vm(struct its_node *its, struct its_vm *vm) |
| 1873 | { |
| 1874 | if (gic_requires_eager_mapping()) |
| 1875 | return; |
| 1876 | |
| 1877 | guard(raw_spinlock_irqsave)(&vm->vmapp_lock); |
| 1878 | |
| 1879 | /* |
| 1880 | * If the VM wasn't mapped yet, iterate over the vpes and get |
| 1881 | * them mapped now. |
| 1882 | */ |
| 1883 | vm->vlpi_count[its->list_nr]++; |
| 1884 | |
| 1885 | if (vm->vlpi_count[its->list_nr] == 1) { |
| 1886 | int i; |
| 1887 | |
| 1888 | for (i = 0; i < vm->nr_vpes; i++) { |
| 1889 | struct its_vpe *vpe = vm->vpes[i]; |
| 1890 | |
| 1891 | scoped_guard(raw_spinlock, &vpe->vpe_lock) |
| 1892 | its_send_vmapp(its, vpe, true); |
| 1893 | |
| 1894 | its_send_vinvall(its, vpe); |
| 1895 | } |
| 1896 | } |
| 1897 | } |
| 1898 | |
| 1899 | static void its_unmap_vm(struct its_node *its, struct its_vm *vm) |
| 1900 | { |
| 1901 | /* Not using the ITS list? Everything is always mapped. */ |
| 1902 | if (gic_requires_eager_mapping()) |
| 1903 | return; |
| 1904 | |
| 1905 | guard(raw_spinlock_irqsave)(&vm->vmapp_lock); |
| 1906 | |
| 1907 | if (!--vm->vlpi_count[its->list_nr]) { |
| 1908 | int i; |
| 1909 | |
| 1910 | for (i = 0; i < vm->nr_vpes; i++) { |
| 1911 | guard(raw_spinlock)(&vm->vpes[i]->vpe_lock); |
| 1912 | its_send_vmapp(its, vm->vpes[i], false); |
| 1913 | } |
| 1914 | } |
| 1915 | } |
| 1916 | |
| 1917 | static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) |
| 1918 | { |
| 1919 | struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| 1920 | u32 event = its_get_event_id(d); |
| 1921 | |
| 1922 | if (!info->map) |
| 1923 | return -EINVAL; |
| 1924 | |
| 1925 | if (!its_dev->event_map.vm) { |
| 1926 | struct its_vlpi_map *maps; |
| 1927 | |
| 1928 | maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), |
| 1929 | GFP_ATOMIC); |
| 1930 | if (!maps) |
| 1931 | return -ENOMEM; |
| 1932 | |
| 1933 | its_dev->event_map.vm = info->map->vm; |
| 1934 | its_dev->event_map.vlpi_maps = maps; |
| 1935 | } else if (its_dev->event_map.vm != info->map->vm) { |
| 1936 | return -EINVAL; |
| 1937 | } |
| 1938 | |
| 1939 | /* Get our private copy of the mapping information */ |
| 1940 | its_dev->event_map.vlpi_maps[event] = *info->map; |
| 1941 | |
| 1942 | if (irqd_is_forwarded_to_vcpu(d)) { |
| 1943 | /* Already mapped, move it around */ |
| 1944 | its_send_vmovi(its_dev, event); |
| 1945 | } else { |
| 1946 | /* Ensure all the VPEs are mapped on this ITS */ |
| 1947 | its_map_vm(its_dev->its, info->map->vm); |
| 1948 | |
| 1949 | /* |
| 1950 | * Flag the interrupt as forwarded so that we can |
| 1951 | * start poking the virtual property table. |
| 1952 | */ |
| 1953 | irqd_set_forwarded_to_vcpu(d); |
| 1954 | |
| 1955 | /* Write out the property to the prop table */ |
| 1956 | lpi_write_config(d, 0xff, info->map->properties); |
| 1957 | |
| 1958 | /* Drop the physical mapping */ |
| 1959 | its_send_discard(its_dev, event); |
| 1960 | |
| 1961 | /* and install the virtual one */ |
| 1962 | its_send_vmapti(its_dev, event); |
| 1963 | |
| 1964 | /* Increment the number of VLPIs */ |
| 1965 | its_dev->event_map.nr_vlpis++; |
| 1966 | } |
| 1967 | |
| 1968 | return 0; |
| 1969 | } |
| 1970 | |
| 1971 | static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) |
| 1972 | { |
| 1973 | struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| 1974 | struct its_vlpi_map *map; |
| 1975 | |
| 1976 | map = get_vlpi_map(d); |
| 1977 | |
| 1978 | if (!its_dev->event_map.vm || !map) |
| 1979 | return -EINVAL; |
| 1980 | |
| 1981 | /* Copy our mapping information to the incoming request */ |
| 1982 | *info->map = *map; |
| 1983 | |
| 1984 | return 0; |
| 1985 | } |
| 1986 | |
| 1987 | static int its_vlpi_unmap(struct irq_data *d) |
| 1988 | { |
| 1989 | struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| 1990 | u32 event = its_get_event_id(d); |
| 1991 | |
| 1992 | if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) |
| 1993 | return -EINVAL; |
| 1994 | |
| 1995 | /* Drop the virtual mapping */ |
| 1996 | its_send_discard(its_dev, event); |
| 1997 | |
| 1998 | /* and restore the physical one */ |
| 1999 | irqd_clr_forwarded_to_vcpu(d); |
| 2000 | its_send_mapti(its_dev, d->hwirq, event); |
| 2001 | lpi_update_config(d, 0xff, (lpi_prop_prio | |
| 2002 | LPI_PROP_ENABLED | |
| 2003 | LPI_PROP_GROUP1)); |
| 2004 | |
| 2005 | /* Potentially unmap the VM from this ITS */ |
| 2006 | its_unmap_vm(its_dev->its, its_dev->event_map.vm); |
| 2007 | |
| 2008 | /* |
| 2009 | * Drop the refcount and make the device available again if |
| 2010 | * this was the last VLPI. |
| 2011 | */ |
| 2012 | if (!--its_dev->event_map.nr_vlpis) { |
| 2013 | its_dev->event_map.vm = NULL; |
| 2014 | kfree(its_dev->event_map.vlpi_maps); |
| 2015 | } |
| 2016 | |
| 2017 | return 0; |
| 2018 | } |
| 2019 | |
| 2020 | static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) |
| 2021 | { |
| 2022 | struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| 2023 | |
| 2024 | if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) |
| 2025 | return -EINVAL; |
| 2026 | |
| 2027 | if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) |
| 2028 | lpi_update_config(d, 0xff, info->config); |
| 2029 | else |
| 2030 | lpi_write_config(d, 0xff, info->config); |
| 2031 | its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); |
| 2032 | |
| 2033 | return 0; |
| 2034 | } |
| 2035 | |
| 2036 | static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) |
| 2037 | { |
| 2038 | struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| 2039 | struct its_cmd_info *info = vcpu_info; |
| 2040 | |
| 2041 | /* Need a v4 ITS */ |
| 2042 | if (!is_v4(its_dev->its)) |
| 2043 | return -EINVAL; |
| 2044 | |
| 2045 | guard(raw_spinlock)(&its_dev->event_map.vlpi_lock); |
| 2046 | |
| 2047 | /* Unmap request? */ |
| 2048 | if (!info) |
| 2049 | return its_vlpi_unmap(d); |
| 2050 | |
| 2051 | switch (info->cmd_type) { |
| 2052 | case MAP_VLPI: |
| 2053 | return its_vlpi_map(d, info); |
| 2054 | |
| 2055 | case GET_VLPI: |
| 2056 | return its_vlpi_get(d, info); |
| 2057 | |
| 2058 | case PROP_UPDATE_VLPI: |
| 2059 | case PROP_UPDATE_AND_INV_VLPI: |
| 2060 | return its_vlpi_prop_update(d, info); |
| 2061 | |
| 2062 | default: |
| 2063 | return -EINVAL; |
| 2064 | } |
| 2065 | } |
| 2066 | |
| 2067 | static struct irq_chip its_irq_chip = { |
| 2068 | .name = "ITS", |
| 2069 | .irq_mask = its_mask_irq, |
| 2070 | .irq_unmask = its_unmask_irq, |
| 2071 | .irq_eoi = irq_chip_eoi_parent, |
| 2072 | .irq_set_affinity = its_set_affinity, |
| 2073 | .irq_compose_msi_msg = its_irq_compose_msi_msg, |
| 2074 | .irq_set_irqchip_state = its_irq_set_irqchip_state, |
| 2075 | .irq_retrigger = its_irq_retrigger, |
| 2076 | .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, |
| 2077 | }; |
| 2078 | |
| 2079 | |
| 2080 | /* |
| 2081 | * How we allocate LPIs: |
| 2082 | * |
| 2083 | * lpi_range_list contains ranges of LPIs that are to available to |
| 2084 | * allocate from. To allocate LPIs, just pick the first range that |
| 2085 | * fits the required allocation, and reduce it by the required |
| 2086 | * amount. Once empty, remove the range from the list. |
| 2087 | * |
| 2088 | * To free a range of LPIs, add a free range to the list, sort it and |
| 2089 | * merge the result if the new range happens to be adjacent to an |
| 2090 | * already free block. |
| 2091 | * |
| 2092 | * The consequence of the above is that allocation is cost is low, but |
| 2093 | * freeing is expensive. We assumes that freeing rarely occurs. |
| 2094 | */ |
| 2095 | #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ |
| 2096 | |
| 2097 | static DEFINE_MUTEX(lpi_range_lock); |
| 2098 | static LIST_HEAD(lpi_range_list); |
| 2099 | |
| 2100 | struct lpi_range { |
| 2101 | struct list_head entry; |
| 2102 | u32 base_id; |
| 2103 | u32 span; |
| 2104 | }; |
| 2105 | |
| 2106 | static struct lpi_range *mk_lpi_range(u32 base, u32 span) |
| 2107 | { |
| 2108 | struct lpi_range *range; |
| 2109 | |
| 2110 | range = kmalloc(sizeof(*range), GFP_KERNEL); |
| 2111 | if (range) { |
| 2112 | range->base_id = base; |
| 2113 | range->span = span; |
| 2114 | } |
| 2115 | |
| 2116 | return range; |
| 2117 | } |
| 2118 | |
| 2119 | static int alloc_lpi_range(u32 nr_lpis, u32 *base) |
| 2120 | { |
| 2121 | struct lpi_range *range, *tmp; |
| 2122 | int err = -ENOSPC; |
| 2123 | |
| 2124 | mutex_lock(&lpi_range_lock); |
| 2125 | |
| 2126 | list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { |
| 2127 | if (range->span >= nr_lpis) { |
| 2128 | *base = range->base_id; |
| 2129 | range->base_id += nr_lpis; |
| 2130 | range->span -= nr_lpis; |
| 2131 | |
| 2132 | if (range->span == 0) { |
| 2133 | list_del(&range->entry); |
| 2134 | kfree(range); |
| 2135 | } |
| 2136 | |
| 2137 | err = 0; |
| 2138 | break; |
| 2139 | } |
| 2140 | } |
| 2141 | |
| 2142 | mutex_unlock(&lpi_range_lock); |
| 2143 | |
| 2144 | pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); |
| 2145 | return err; |
| 2146 | } |
| 2147 | |
| 2148 | static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b) |
| 2149 | { |
| 2150 | if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list) |
| 2151 | return; |
| 2152 | if (a->base_id + a->span != b->base_id) |
| 2153 | return; |
| 2154 | b->base_id = a->base_id; |
| 2155 | b->span += a->span; |
| 2156 | list_del(&a->entry); |
| 2157 | kfree(a); |
| 2158 | } |
| 2159 | |
| 2160 | static int free_lpi_range(u32 base, u32 nr_lpis) |
| 2161 | { |
| 2162 | struct lpi_range *new, *old; |
| 2163 | |
| 2164 | new = mk_lpi_range(base, nr_lpis); |
| 2165 | if (!new) |
| 2166 | return -ENOMEM; |
| 2167 | |
| 2168 | mutex_lock(&lpi_range_lock); |
| 2169 | |
| 2170 | list_for_each_entry_reverse(old, &lpi_range_list, entry) { |
| 2171 | if (old->base_id < base) |
| 2172 | break; |
| 2173 | } |
| 2174 | /* |
| 2175 | * old is the last element with ->base_id smaller than base, |
| 2176 | * so new goes right after it. If there are no elements with |
| 2177 | * ->base_id smaller than base, &old->entry ends up pointing |
| 2178 | * at the head of the list, and inserting new it the start of |
| 2179 | * the list is the right thing to do in that case as well. |
| 2180 | */ |
| 2181 | list_add(&new->entry, &old->entry); |
| 2182 | /* |
| 2183 | * Now check if we can merge with the preceding and/or |
| 2184 | * following ranges. |
| 2185 | */ |
| 2186 | merge_lpi_ranges(old, new); |
| 2187 | merge_lpi_ranges(new, list_next_entry(new, entry)); |
| 2188 | |
| 2189 | mutex_unlock(&lpi_range_lock); |
| 2190 | return 0; |
| 2191 | } |
| 2192 | |
| 2193 | static int __init its_lpi_init(u32 id_bits) |
| 2194 | { |
| 2195 | u32 lpis = (1UL << id_bits) - 8192; |
| 2196 | u32 numlpis; |
| 2197 | int err; |
| 2198 | |
| 2199 | numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); |
| 2200 | |
| 2201 | if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { |
| 2202 | lpis = numlpis; |
| 2203 | pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", |
| 2204 | lpis); |
| 2205 | } |
| 2206 | |
| 2207 | /* |
| 2208 | * Initializing the allocator is just the same as freeing the |
| 2209 | * full range of LPIs. |
| 2210 | */ |
| 2211 | err = free_lpi_range(8192, lpis); |
| 2212 | pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); |
| 2213 | return err; |
| 2214 | } |
| 2215 | |
| 2216 | static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) |
| 2217 | { |
| 2218 | unsigned long *bitmap = NULL; |
| 2219 | int err = 0; |
| 2220 | |
| 2221 | do { |
| 2222 | err = alloc_lpi_range(nr_irqs, base); |
| 2223 | if (!err) |
| 2224 | break; |
| 2225 | |
| 2226 | nr_irqs /= 2; |
| 2227 | } while (nr_irqs > 0); |
| 2228 | |
| 2229 | if (!nr_irqs) |
| 2230 | err = -ENOSPC; |
| 2231 | |
| 2232 | if (err) |
| 2233 | goto out; |
| 2234 | |
| 2235 | bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC); |
| 2236 | if (!bitmap) |
| 2237 | goto out; |
| 2238 | |
| 2239 | *nr_ids = nr_irqs; |
| 2240 | |
| 2241 | out: |
| 2242 | if (!bitmap) |
| 2243 | *base = *nr_ids = 0; |
| 2244 | |
| 2245 | return bitmap; |
| 2246 | } |
| 2247 | |
| 2248 | static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) |
| 2249 | { |
| 2250 | WARN_ON(free_lpi_range(base, nr_ids)); |
| 2251 | bitmap_free(bitmap); |
| 2252 | } |
| 2253 | |
| 2254 | static void gic_reset_prop_table(void *va) |
| 2255 | { |
| 2256 | /* Regular IRQ priority, Group-1, disabled */ |
| 2257 | memset(va, lpi_prop_prio | LPI_PROP_GROUP1, LPI_PROPBASE_SZ); |
| 2258 | |
| 2259 | /* Make sure the GIC will observe the written configuration */ |
| 2260 | gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ); |
| 2261 | } |
| 2262 | |
| 2263 | static struct page *its_allocate_prop_table(gfp_t gfp_flags) |
| 2264 | { |
| 2265 | struct page *prop_page; |
| 2266 | |
| 2267 | prop_page = its_alloc_pages(gfp_flags, |
| 2268 | get_order(LPI_PROPBASE_SZ)); |
| 2269 | if (!prop_page) |
| 2270 | return NULL; |
| 2271 | |
| 2272 | gic_reset_prop_table(page_address(prop_page)); |
| 2273 | |
| 2274 | return prop_page; |
| 2275 | } |
| 2276 | |
| 2277 | static void its_free_prop_table(struct page *prop_page) |
| 2278 | { |
| 2279 | its_free_pages(page_address(prop_page), get_order(LPI_PROPBASE_SZ)); |
| 2280 | } |
| 2281 | |
| 2282 | static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size) |
| 2283 | { |
| 2284 | phys_addr_t start, end, addr_end; |
| 2285 | u64 i; |
| 2286 | |
| 2287 | /* |
| 2288 | * We don't bother checking for a kdump kernel as by |
| 2289 | * construction, the LPI tables are out of this kernel's |
| 2290 | * memory map. |
| 2291 | */ |
| 2292 | if (is_kdump_kernel()) |
| 2293 | return true; |
| 2294 | |
| 2295 | addr_end = addr + size - 1; |
| 2296 | |
| 2297 | for_each_reserved_mem_range(i, &start, &end) { |
| 2298 | if (addr >= start && addr_end <= end) |
| 2299 | return true; |
| 2300 | } |
| 2301 | |
| 2302 | /* Not found, not a good sign... */ |
| 2303 | pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n", |
| 2304 | &addr, &addr_end); |
| 2305 | add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); |
| 2306 | return false; |
| 2307 | } |
| 2308 | |
| 2309 | static int gic_reserve_range(phys_addr_t addr, unsigned long size) |
| 2310 | { |
| 2311 | if (efi_enabled(EFI_CONFIG_TABLES)) |
| 2312 | return efi_mem_reserve_persistent(addr, size); |
| 2313 | |
| 2314 | return 0; |
| 2315 | } |
| 2316 | |
| 2317 | static int __init its_setup_lpi_prop_table(void) |
| 2318 | { |
| 2319 | if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) { |
| 2320 | u64 val; |
| 2321 | |
| 2322 | val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); |
| 2323 | lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1; |
| 2324 | |
| 2325 | gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12); |
| 2326 | gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa, |
| 2327 | LPI_PROPBASE_SZ, |
| 2328 | MEMREMAP_WB); |
| 2329 | gic_reset_prop_table(gic_rdists->prop_table_va); |
| 2330 | } else { |
| 2331 | struct page *page; |
| 2332 | |
| 2333 | lpi_id_bits = min_t(u32, |
| 2334 | GICD_TYPER_ID_BITS(gic_rdists->gicd_typer), |
| 2335 | ITS_MAX_LPI_NRBITS); |
| 2336 | page = its_allocate_prop_table(GFP_NOWAIT); |
| 2337 | if (!page) { |
| 2338 | pr_err("Failed to allocate PROPBASE\n"); |
| 2339 | return -ENOMEM; |
| 2340 | } |
| 2341 | |
| 2342 | gic_rdists->prop_table_pa = page_to_phys(page); |
| 2343 | gic_rdists->prop_table_va = page_address(page); |
| 2344 | WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa, |
| 2345 | LPI_PROPBASE_SZ)); |
| 2346 | } |
| 2347 | |
| 2348 | pr_info("GICv3: using LPI property table @%pa\n", |
| 2349 | &gic_rdists->prop_table_pa); |
| 2350 | |
| 2351 | return its_lpi_init(lpi_id_bits); |
| 2352 | } |
| 2353 | |
| 2354 | static const char *its_base_type_string[] = { |
| 2355 | [GITS_BASER_TYPE_DEVICE] = "Devices", |
| 2356 | [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", |
| 2357 | [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", |
| 2358 | [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", |
| 2359 | [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", |
| 2360 | [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", |
| 2361 | [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", |
| 2362 | }; |
| 2363 | |
| 2364 | static u64 its_read_baser(struct its_node *its, struct its_baser *baser) |
| 2365 | { |
| 2366 | u32 idx = baser - its->tables; |
| 2367 | |
| 2368 | return gits_read_baser(its->base + GITS_BASER + (idx << 3)); |
| 2369 | } |
| 2370 | |
| 2371 | static void its_write_baser(struct its_node *its, struct its_baser *baser, |
| 2372 | u64 val) |
| 2373 | { |
| 2374 | u32 idx = baser - its->tables; |
| 2375 | |
| 2376 | gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); |
| 2377 | baser->val = its_read_baser(its, baser); |
| 2378 | } |
| 2379 | |
| 2380 | static int its_setup_baser(struct its_node *its, struct its_baser *baser, |
| 2381 | u64 cache, u64 shr, u32 order, bool indirect) |
| 2382 | { |
| 2383 | u64 val = its_read_baser(its, baser); |
| 2384 | u64 esz = GITS_BASER_ENTRY_SIZE(val); |
| 2385 | u64 type = GITS_BASER_TYPE(val); |
| 2386 | u64 baser_phys, tmp; |
| 2387 | u32 alloc_pages, psz; |
| 2388 | struct page *page; |
| 2389 | void *base; |
| 2390 | |
| 2391 | psz = baser->psz; |
| 2392 | alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); |
| 2393 | if (alloc_pages > GITS_BASER_PAGES_MAX) { |
| 2394 | pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", |
| 2395 | &its->phys_base, its_base_type_string[type], |
| 2396 | alloc_pages, GITS_BASER_PAGES_MAX); |
| 2397 | alloc_pages = GITS_BASER_PAGES_MAX; |
| 2398 | order = get_order(GITS_BASER_PAGES_MAX * psz); |
| 2399 | } |
| 2400 | |
| 2401 | page = its_alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order); |
| 2402 | if (!page) |
| 2403 | return -ENOMEM; |
| 2404 | |
| 2405 | base = (void *)page_address(page); |
| 2406 | baser_phys = virt_to_phys(base); |
| 2407 | |
| 2408 | /* Check if the physical address of the memory is above 48bits */ |
| 2409 | if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { |
| 2410 | |
| 2411 | /* 52bit PA is supported only when PageSize=64K */ |
| 2412 | if (psz != SZ_64K) { |
| 2413 | pr_err("ITS: no 52bit PA support when psz=%d\n", psz); |
| 2414 | its_free_pages(base, order); |
| 2415 | return -ENXIO; |
| 2416 | } |
| 2417 | |
| 2418 | /* Convert 52bit PA to 48bit field */ |
| 2419 | baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); |
| 2420 | } |
| 2421 | |
| 2422 | retry_baser: |
| 2423 | val = (baser_phys | |
| 2424 | (type << GITS_BASER_TYPE_SHIFT) | |
| 2425 | ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | |
| 2426 | ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | |
| 2427 | cache | |
| 2428 | shr | |
| 2429 | GITS_BASER_VALID); |
| 2430 | |
| 2431 | val |= indirect ? GITS_BASER_INDIRECT : 0x0; |
| 2432 | |
| 2433 | switch (psz) { |
| 2434 | case SZ_4K: |
| 2435 | val |= GITS_BASER_PAGE_SIZE_4K; |
| 2436 | break; |
| 2437 | case SZ_16K: |
| 2438 | val |= GITS_BASER_PAGE_SIZE_16K; |
| 2439 | break; |
| 2440 | case SZ_64K: |
| 2441 | val |= GITS_BASER_PAGE_SIZE_64K; |
| 2442 | break; |
| 2443 | } |
| 2444 | |
| 2445 | if (!shr) |
| 2446 | gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); |
| 2447 | |
| 2448 | its_write_baser(its, baser, val); |
| 2449 | tmp = baser->val; |
| 2450 | |
| 2451 | if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { |
| 2452 | /* |
| 2453 | * Shareability didn't stick. Just use |
| 2454 | * whatever the read reported, which is likely |
| 2455 | * to be the only thing this redistributor |
| 2456 | * supports. If that's zero, make it |
| 2457 | * non-cacheable as well. |
| 2458 | */ |
| 2459 | shr = tmp & GITS_BASER_SHAREABILITY_MASK; |
| 2460 | if (!shr) |
| 2461 | cache = GITS_BASER_nC; |
| 2462 | |
| 2463 | goto retry_baser; |
| 2464 | } |
| 2465 | |
| 2466 | if (val != tmp) { |
| 2467 | pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", |
| 2468 | &its->phys_base, its_base_type_string[type], |
| 2469 | val, tmp); |
| 2470 | its_free_pages(base, order); |
| 2471 | return -ENXIO; |
| 2472 | } |
| 2473 | |
| 2474 | baser->order = order; |
| 2475 | baser->base = base; |
| 2476 | baser->psz = psz; |
| 2477 | tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; |
| 2478 | |
| 2479 | pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", |
| 2480 | &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), |
| 2481 | its_base_type_string[type], |
| 2482 | (unsigned long)virt_to_phys(base), |
| 2483 | indirect ? "indirect" : "flat", (int)esz, |
| 2484 | psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); |
| 2485 | |
| 2486 | return 0; |
| 2487 | } |
| 2488 | |
| 2489 | static bool its_parse_indirect_baser(struct its_node *its, |
| 2490 | struct its_baser *baser, |
| 2491 | u32 *order, u32 ids) |
| 2492 | { |
| 2493 | u64 tmp = its_read_baser(its, baser); |
| 2494 | u64 type = GITS_BASER_TYPE(tmp); |
| 2495 | u64 esz = GITS_BASER_ENTRY_SIZE(tmp); |
| 2496 | u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; |
| 2497 | u32 new_order = *order; |
| 2498 | u32 psz = baser->psz; |
| 2499 | bool indirect = false; |
| 2500 | |
| 2501 | /* No need to enable Indirection if memory requirement < (psz*2)bytes */ |
| 2502 | if ((esz << ids) > (psz * 2)) { |
| 2503 | /* |
| 2504 | * Find out whether hw supports a single or two-level table by |
| 2505 | * table by reading bit at offset '62' after writing '1' to it. |
| 2506 | */ |
| 2507 | its_write_baser(its, baser, val | GITS_BASER_INDIRECT); |
| 2508 | indirect = !!(baser->val & GITS_BASER_INDIRECT); |
| 2509 | |
| 2510 | if (indirect) { |
| 2511 | /* |
| 2512 | * The size of the lvl2 table is equal to ITS page size |
| 2513 | * which is 'psz'. For computing lvl1 table size, |
| 2514 | * subtract ID bits that sparse lvl2 table from 'ids' |
| 2515 | * which is reported by ITS hardware times lvl1 table |
| 2516 | * entry size. |
| 2517 | */ |
| 2518 | ids -= ilog2(psz / (int)esz); |
| 2519 | esz = GITS_LVL1_ENTRY_SIZE; |
| 2520 | } |
| 2521 | } |
| 2522 | |
| 2523 | /* |
| 2524 | * Allocate as many entries as required to fit the |
| 2525 | * range of device IDs that the ITS can grok... The ID |
| 2526 | * space being incredibly sparse, this results in a |
| 2527 | * massive waste of memory if two-level device table |
| 2528 | * feature is not supported by hardware. |
| 2529 | */ |
| 2530 | new_order = max_t(u32, get_order(esz << ids), new_order); |
| 2531 | if (new_order > MAX_PAGE_ORDER) { |
| 2532 | new_order = MAX_PAGE_ORDER; |
| 2533 | ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); |
| 2534 | pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n", |
| 2535 | &its->phys_base, its_base_type_string[type], |
| 2536 | device_ids(its), ids); |
| 2537 | } |
| 2538 | |
| 2539 | *order = new_order; |
| 2540 | |
| 2541 | return indirect; |
| 2542 | } |
| 2543 | |
| 2544 | static u32 compute_common_aff(u64 val) |
| 2545 | { |
| 2546 | u32 aff, clpiaff; |
| 2547 | |
| 2548 | aff = FIELD_GET(GICR_TYPER_AFFINITY, val); |
| 2549 | clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val); |
| 2550 | |
| 2551 | return aff & ~(GENMASK(31, 0) >> (clpiaff * 8)); |
| 2552 | } |
| 2553 | |
| 2554 | static u32 compute_its_aff(struct its_node *its) |
| 2555 | { |
| 2556 | u64 val; |
| 2557 | u32 svpet; |
| 2558 | |
| 2559 | /* |
| 2560 | * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute |
| 2561 | * the resulting affinity. We then use that to see if this match |
| 2562 | * our own affinity. |
| 2563 | */ |
| 2564 | svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); |
| 2565 | val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet); |
| 2566 | val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr); |
| 2567 | return compute_common_aff(val); |
| 2568 | } |
| 2569 | |
| 2570 | static struct its_node *find_sibling_its(struct its_node *cur_its) |
| 2571 | { |
| 2572 | struct its_node *its; |
| 2573 | u32 aff; |
| 2574 | |
| 2575 | if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer)) |
| 2576 | return NULL; |
| 2577 | |
| 2578 | aff = compute_its_aff(cur_its); |
| 2579 | |
| 2580 | list_for_each_entry(its, &its_nodes, entry) { |
| 2581 | u64 baser; |
| 2582 | |
| 2583 | if (!is_v4_1(its) || its == cur_its) |
| 2584 | continue; |
| 2585 | |
| 2586 | if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) |
| 2587 | continue; |
| 2588 | |
| 2589 | if (aff != compute_its_aff(its)) |
| 2590 | continue; |
| 2591 | |
| 2592 | /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ |
| 2593 | baser = its->tables[2].val; |
| 2594 | if (!(baser & GITS_BASER_VALID)) |
| 2595 | continue; |
| 2596 | |
| 2597 | return its; |
| 2598 | } |
| 2599 | |
| 2600 | return NULL; |
| 2601 | } |
| 2602 | |
| 2603 | static void its_free_tables(struct its_node *its) |
| 2604 | { |
| 2605 | int i; |
| 2606 | |
| 2607 | for (i = 0; i < GITS_BASER_NR_REGS; i++) { |
| 2608 | if (its->tables[i].base) { |
| 2609 | its_free_pages(its->tables[i].base, its->tables[i].order); |
| 2610 | its->tables[i].base = NULL; |
| 2611 | } |
| 2612 | } |
| 2613 | } |
| 2614 | |
| 2615 | static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser) |
| 2616 | { |
| 2617 | u64 psz = SZ_64K; |
| 2618 | |
| 2619 | while (psz) { |
| 2620 | u64 val, gpsz; |
| 2621 | |
| 2622 | val = its_read_baser(its, baser); |
| 2623 | val &= ~GITS_BASER_PAGE_SIZE_MASK; |
| 2624 | |
| 2625 | switch (psz) { |
| 2626 | case SZ_64K: |
| 2627 | gpsz = GITS_BASER_PAGE_SIZE_64K; |
| 2628 | break; |
| 2629 | case SZ_16K: |
| 2630 | gpsz = GITS_BASER_PAGE_SIZE_16K; |
| 2631 | break; |
| 2632 | case SZ_4K: |
| 2633 | default: |
| 2634 | gpsz = GITS_BASER_PAGE_SIZE_4K; |
| 2635 | break; |
| 2636 | } |
| 2637 | |
| 2638 | gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT; |
| 2639 | |
| 2640 | val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz); |
| 2641 | its_write_baser(its, baser, val); |
| 2642 | |
| 2643 | if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz) |
| 2644 | break; |
| 2645 | |
| 2646 | switch (psz) { |
| 2647 | case SZ_64K: |
| 2648 | psz = SZ_16K; |
| 2649 | break; |
| 2650 | case SZ_16K: |
| 2651 | psz = SZ_4K; |
| 2652 | break; |
| 2653 | case SZ_4K: |
| 2654 | default: |
| 2655 | return -1; |
| 2656 | } |
| 2657 | } |
| 2658 | |
| 2659 | baser->psz = psz; |
| 2660 | return 0; |
| 2661 | } |
| 2662 | |
| 2663 | static int its_alloc_tables(struct its_node *its) |
| 2664 | { |
| 2665 | u64 shr = GITS_BASER_InnerShareable; |
| 2666 | u64 cache = GITS_BASER_RaWaWb; |
| 2667 | int err, i; |
| 2668 | |
| 2669 | if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) |
| 2670 | /* erratum 24313: ignore memory access type */ |
| 2671 | cache = GITS_BASER_nCnB; |
| 2672 | |
| 2673 | if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) { |
| 2674 | cache = GITS_BASER_nC; |
| 2675 | shr = 0; |
| 2676 | } |
| 2677 | |
| 2678 | for (i = 0; i < GITS_BASER_NR_REGS; i++) { |
| 2679 | struct its_baser *baser = its->tables + i; |
| 2680 | u64 val = its_read_baser(its, baser); |
| 2681 | u64 type = GITS_BASER_TYPE(val); |
| 2682 | bool indirect = false; |
| 2683 | u32 order; |
| 2684 | |
| 2685 | if (type == GITS_BASER_TYPE_NONE) |
| 2686 | continue; |
| 2687 | |
| 2688 | if (its_probe_baser_psz(its, baser)) { |
| 2689 | its_free_tables(its); |
| 2690 | return -ENXIO; |
| 2691 | } |
| 2692 | |
| 2693 | order = get_order(baser->psz); |
| 2694 | |
| 2695 | switch (type) { |
| 2696 | case GITS_BASER_TYPE_DEVICE: |
| 2697 | indirect = its_parse_indirect_baser(its, baser, &order, |
| 2698 | device_ids(its)); |
| 2699 | break; |
| 2700 | |
| 2701 | case GITS_BASER_TYPE_VCPU: |
| 2702 | if (is_v4_1(its)) { |
| 2703 | struct its_node *sibling; |
| 2704 | |
| 2705 | WARN_ON(i != 2); |
| 2706 | if ((sibling = find_sibling_its(its))) { |
| 2707 | *baser = sibling->tables[2]; |
| 2708 | its_write_baser(its, baser, baser->val); |
| 2709 | continue; |
| 2710 | } |
| 2711 | } |
| 2712 | |
| 2713 | indirect = its_parse_indirect_baser(its, baser, &order, |
| 2714 | ITS_MAX_VPEID_BITS); |
| 2715 | break; |
| 2716 | } |
| 2717 | |
| 2718 | err = its_setup_baser(its, baser, cache, shr, order, indirect); |
| 2719 | if (err < 0) { |
| 2720 | its_free_tables(its); |
| 2721 | return err; |
| 2722 | } |
| 2723 | |
| 2724 | /* Update settings which will be used for next BASERn */ |
| 2725 | cache = baser->val & GITS_BASER_CACHEABILITY_MASK; |
| 2726 | shr = baser->val & GITS_BASER_SHAREABILITY_MASK; |
| 2727 | } |
| 2728 | |
| 2729 | return 0; |
| 2730 | } |
| 2731 | |
| 2732 | static u64 inherit_vpe_l1_table_from_its(void) |
| 2733 | { |
| 2734 | struct its_node *its; |
| 2735 | u64 val; |
| 2736 | u32 aff; |
| 2737 | |
| 2738 | val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); |
| 2739 | aff = compute_common_aff(val); |
| 2740 | |
| 2741 | list_for_each_entry(its, &its_nodes, entry) { |
| 2742 | u64 baser, addr; |
| 2743 | |
| 2744 | if (!is_v4_1(its)) |
| 2745 | continue; |
| 2746 | |
| 2747 | if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) |
| 2748 | continue; |
| 2749 | |
| 2750 | if (aff != compute_its_aff(its)) |
| 2751 | continue; |
| 2752 | |
| 2753 | /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ |
| 2754 | baser = its->tables[2].val; |
| 2755 | if (!(baser & GITS_BASER_VALID)) |
| 2756 | continue; |
| 2757 | |
| 2758 | /* We have a winner! */ |
| 2759 | gic_data_rdist()->vpe_l1_base = its->tables[2].base; |
| 2760 | |
| 2761 | val = GICR_VPROPBASER_4_1_VALID; |
| 2762 | if (baser & GITS_BASER_INDIRECT) |
| 2763 | val |= GICR_VPROPBASER_4_1_INDIRECT; |
| 2764 | val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, |
| 2765 | FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)); |
| 2766 | switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) { |
| 2767 | case GIC_PAGE_SIZE_64K: |
| 2768 | addr = GITS_BASER_ADDR_48_to_52(baser); |
| 2769 | break; |
| 2770 | default: |
| 2771 | addr = baser & GENMASK_ULL(47, 12); |
| 2772 | break; |
| 2773 | } |
| 2774 | val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12); |
| 2775 | if (rdists_support_shareable()) { |
| 2776 | val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK, |
| 2777 | FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser)); |
| 2778 | val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK, |
| 2779 | FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser)); |
| 2780 | } |
| 2781 | val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1); |
| 2782 | |
| 2783 | *this_cpu_ptr(&local_4_1_its) = its; |
| 2784 | return val; |
| 2785 | } |
| 2786 | |
| 2787 | return 0; |
| 2788 | } |
| 2789 | |
| 2790 | static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask) |
| 2791 | { |
| 2792 | u32 aff; |
| 2793 | u64 val; |
| 2794 | int cpu; |
| 2795 | |
| 2796 | val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); |
| 2797 | aff = compute_common_aff(val); |
| 2798 | |
| 2799 | for_each_possible_cpu(cpu) { |
| 2800 | void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; |
| 2801 | |
| 2802 | if (!base || cpu == smp_processor_id()) |
| 2803 | continue; |
| 2804 | |
| 2805 | val = gic_read_typer(base + GICR_TYPER); |
| 2806 | if (aff != compute_common_aff(val)) |
| 2807 | continue; |
| 2808 | |
| 2809 | /* |
| 2810 | * At this point, we have a victim. This particular CPU |
| 2811 | * has already booted, and has an affinity that matches |
| 2812 | * ours wrt CommonLPIAff. Let's use its own VPROPBASER. |
| 2813 | * Make sure we don't write the Z bit in that case. |
| 2814 | */ |
| 2815 | val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); |
| 2816 | val &= ~GICR_VPROPBASER_4_1_Z; |
| 2817 | |
| 2818 | gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base; |
| 2819 | *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask; |
| 2820 | |
| 2821 | *this_cpu_ptr(&local_4_1_its) = *per_cpu_ptr(&local_4_1_its, cpu); |
| 2822 | return val; |
| 2823 | } |
| 2824 | |
| 2825 | return 0; |
| 2826 | } |
| 2827 | |
| 2828 | static bool allocate_vpe_l2_table(int cpu, u32 id) |
| 2829 | { |
| 2830 | void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; |
| 2831 | unsigned int psz, esz, idx, npg, gpsz; |
| 2832 | u64 val; |
| 2833 | struct page *page; |
| 2834 | __le64 *table; |
| 2835 | |
| 2836 | if (!gic_rdists->has_rvpeid) |
| 2837 | return true; |
| 2838 | |
| 2839 | /* Skip non-present CPUs */ |
| 2840 | if (!base) |
| 2841 | return true; |
| 2842 | |
| 2843 | val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); |
| 2844 | |
| 2845 | esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1; |
| 2846 | gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); |
| 2847 | npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1; |
| 2848 | |
| 2849 | switch (gpsz) { |
| 2850 | default: |
| 2851 | WARN_ON(1); |
| 2852 | fallthrough; |
| 2853 | case GIC_PAGE_SIZE_4K: |
| 2854 | psz = SZ_4K; |
| 2855 | break; |
| 2856 | case GIC_PAGE_SIZE_16K: |
| 2857 | psz = SZ_16K; |
| 2858 | break; |
| 2859 | case GIC_PAGE_SIZE_64K: |
| 2860 | psz = SZ_64K; |
| 2861 | break; |
| 2862 | } |
| 2863 | |
| 2864 | /* Don't allow vpe_id that exceeds single, flat table limit */ |
| 2865 | if (!(val & GICR_VPROPBASER_4_1_INDIRECT)) |
| 2866 | return (id < (npg * psz / (esz * SZ_8))); |
| 2867 | |
| 2868 | /* Compute 1st level table index & check if that exceeds table limit */ |
| 2869 | idx = id >> ilog2(psz / (esz * SZ_8)); |
| 2870 | if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE)) |
| 2871 | return false; |
| 2872 | |
| 2873 | table = gic_data_rdist_cpu(cpu)->vpe_l1_base; |
| 2874 | |
| 2875 | /* Allocate memory for 2nd level table */ |
| 2876 | if (!table[idx]) { |
| 2877 | page = its_alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz)); |
| 2878 | if (!page) |
| 2879 | return false; |
| 2880 | |
| 2881 | /* Flush Lvl2 table to PoC if hw doesn't support coherency */ |
| 2882 | if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) |
| 2883 | gic_flush_dcache_to_poc(page_address(page), psz); |
| 2884 | |
| 2885 | table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); |
| 2886 | |
| 2887 | /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ |
| 2888 | if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) |
| 2889 | gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); |
| 2890 | |
| 2891 | /* Ensure updated table contents are visible to RD hardware */ |
| 2892 | dsb(sy); |
| 2893 | } |
| 2894 | |
| 2895 | return true; |
| 2896 | } |
| 2897 | |
| 2898 | static int allocate_vpe_l1_table(void) |
| 2899 | { |
| 2900 | void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); |
| 2901 | u64 val, gpsz, npg, pa; |
| 2902 | unsigned int psz = SZ_64K; |
| 2903 | unsigned int np, epp, esz; |
| 2904 | struct page *page; |
| 2905 | |
| 2906 | if (!gic_rdists->has_rvpeid) |
| 2907 | return 0; |
| 2908 | |
| 2909 | /* |
| 2910 | * if VPENDBASER.Valid is set, disable any previously programmed |
| 2911 | * VPE by setting PendingLast while clearing Valid. This has the |
| 2912 | * effect of making sure no doorbell will be generated and we can |
| 2913 | * then safely clear VPROPBASER.Valid. |
| 2914 | */ |
| 2915 | if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid) |
| 2916 | gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, |
| 2917 | vlpi_base + GICR_VPENDBASER); |
| 2918 | |
| 2919 | /* |
| 2920 | * If we can inherit the configuration from another RD, let's do |
| 2921 | * so. Otherwise, we have to go through the allocation process. We |
| 2922 | * assume that all RDs have the exact same requirements, as |
| 2923 | * nothing will work otherwise. |
| 2924 | */ |
| 2925 | val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask); |
| 2926 | if (val & GICR_VPROPBASER_4_1_VALID) |
| 2927 | goto out; |
| 2928 | |
| 2929 | gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC); |
| 2930 | if (!gic_data_rdist()->vpe_table_mask) |
| 2931 | return -ENOMEM; |
| 2932 | |
| 2933 | val = inherit_vpe_l1_table_from_its(); |
| 2934 | if (val & GICR_VPROPBASER_4_1_VALID) |
| 2935 | goto out; |
| 2936 | |
| 2937 | /* First probe the page size */ |
| 2938 | val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K); |
| 2939 | gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); |
| 2940 | val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER); |
| 2941 | gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); |
| 2942 | esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val); |
| 2943 | |
| 2944 | switch (gpsz) { |
| 2945 | default: |
| 2946 | gpsz = GIC_PAGE_SIZE_4K; |
| 2947 | fallthrough; |
| 2948 | case GIC_PAGE_SIZE_4K: |
| 2949 | psz = SZ_4K; |
| 2950 | break; |
| 2951 | case GIC_PAGE_SIZE_16K: |
| 2952 | psz = SZ_16K; |
| 2953 | break; |
| 2954 | case GIC_PAGE_SIZE_64K: |
| 2955 | psz = SZ_64K; |
| 2956 | break; |
| 2957 | } |
| 2958 | |
| 2959 | /* |
| 2960 | * Start populating the register from scratch, including RO fields |
| 2961 | * (which we want to print in debug cases...) |
| 2962 | */ |
| 2963 | val = 0; |
| 2964 | val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz); |
| 2965 | val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz); |
| 2966 | |
| 2967 | /* How many entries per GIC page? */ |
| 2968 | esz++; |
| 2969 | epp = psz / (esz * SZ_8); |
| 2970 | |
| 2971 | /* |
| 2972 | * If we need more than just a single L1 page, flag the table |
| 2973 | * as indirect and compute the number of required L1 pages. |
| 2974 | */ |
| 2975 | if (epp < ITS_MAX_VPEID) { |
| 2976 | int nl2; |
| 2977 | |
| 2978 | val |= GICR_VPROPBASER_4_1_INDIRECT; |
| 2979 | |
| 2980 | /* Number of L2 pages required to cover the VPEID space */ |
| 2981 | nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp); |
| 2982 | |
| 2983 | /* Number of L1 pages to point to the L2 pages */ |
| 2984 | npg = DIV_ROUND_UP(nl2 * SZ_8, psz); |
| 2985 | } else { |
| 2986 | npg = 1; |
| 2987 | } |
| 2988 | |
| 2989 | val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1); |
| 2990 | |
| 2991 | /* Right, that's the number of CPU pages we need for L1 */ |
| 2992 | np = DIV_ROUND_UP(npg * psz, PAGE_SIZE); |
| 2993 | |
| 2994 | pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n", |
| 2995 | np, npg, psz, epp, esz); |
| 2996 | page = its_alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE)); |
| 2997 | if (!page) |
| 2998 | return -ENOMEM; |
| 2999 | |
| 3000 | gic_data_rdist()->vpe_l1_base = page_address(page); |
| 3001 | pa = virt_to_phys(page_address(page)); |
| 3002 | WARN_ON(!IS_ALIGNED(pa, psz)); |
| 3003 | |
| 3004 | val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12); |
| 3005 | if (rdists_support_shareable()) { |
| 3006 | val |= GICR_VPROPBASER_RaWb; |
| 3007 | val |= GICR_VPROPBASER_InnerShareable; |
| 3008 | } |
| 3009 | val |= GICR_VPROPBASER_4_1_Z; |
| 3010 | val |= GICR_VPROPBASER_4_1_VALID; |
| 3011 | |
| 3012 | out: |
| 3013 | gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); |
| 3014 | cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask); |
| 3015 | |
| 3016 | pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n", |
| 3017 | smp_processor_id(), val, |
| 3018 | cpumask_pr_args(gic_data_rdist()->vpe_table_mask)); |
| 3019 | |
| 3020 | return 0; |
| 3021 | } |
| 3022 | |
| 3023 | static int its_alloc_collections(struct its_node *its) |
| 3024 | { |
| 3025 | int i; |
| 3026 | |
| 3027 | its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), |
| 3028 | GFP_KERNEL); |
| 3029 | if (!its->collections) |
| 3030 | return -ENOMEM; |
| 3031 | |
| 3032 | for (i = 0; i < nr_cpu_ids; i++) |
| 3033 | its->collections[i].target_address = ~0ULL; |
| 3034 | |
| 3035 | return 0; |
| 3036 | } |
| 3037 | |
| 3038 | static struct page *its_allocate_pending_table(gfp_t gfp_flags) |
| 3039 | { |
| 3040 | struct page *pend_page; |
| 3041 | |
| 3042 | pend_page = its_alloc_pages(gfp_flags | __GFP_ZERO, get_order(LPI_PENDBASE_SZ)); |
| 3043 | if (!pend_page) |
| 3044 | return NULL; |
| 3045 | |
| 3046 | /* Make sure the GIC will observe the zero-ed page */ |
| 3047 | gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); |
| 3048 | |
| 3049 | return pend_page; |
| 3050 | } |
| 3051 | |
| 3052 | static void its_free_pending_table(struct page *pt) |
| 3053 | { |
| 3054 | its_free_pages(page_address(pt), get_order(LPI_PENDBASE_SZ)); |
| 3055 | } |
| 3056 | |
| 3057 | /* |
| 3058 | * Booting with kdump and LPIs enabled is generally fine. Any other |
| 3059 | * case is wrong in the absence of firmware/EFI support. |
| 3060 | */ |
| 3061 | static bool enabled_lpis_allowed(void) |
| 3062 | { |
| 3063 | phys_addr_t addr; |
| 3064 | u64 val; |
| 3065 | |
| 3066 | /* Check whether the property table is in a reserved region */ |
| 3067 | val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); |
| 3068 | addr = val & GENMASK_ULL(51, 12); |
| 3069 | |
| 3070 | return gic_check_reserved_range(addr, LPI_PROPBASE_SZ); |
| 3071 | } |
| 3072 | |
| 3073 | static int __init allocate_lpi_tables(void) |
| 3074 | { |
| 3075 | u64 val; |
| 3076 | int err, cpu; |
| 3077 | |
| 3078 | /* |
| 3079 | * If LPIs are enabled while we run this from the boot CPU, |
| 3080 | * flag the RD tables as pre-allocated if the stars do align. |
| 3081 | */ |
| 3082 | val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR); |
| 3083 | if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) { |
| 3084 | gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED | |
| 3085 | RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING); |
| 3086 | pr_info("GICv3: Using preallocated redistributor tables\n"); |
| 3087 | } |
| 3088 | |
| 3089 | err = its_setup_lpi_prop_table(); |
| 3090 | if (err) |
| 3091 | return err; |
| 3092 | |
| 3093 | /* |
| 3094 | * We allocate all the pending tables anyway, as we may have a |
| 3095 | * mix of RDs that have had LPIs enabled, and some that |
| 3096 | * don't. We'll free the unused ones as each CPU comes online. |
| 3097 | */ |
| 3098 | for_each_possible_cpu(cpu) { |
| 3099 | struct page *pend_page; |
| 3100 | |
| 3101 | pend_page = its_allocate_pending_table(GFP_NOWAIT); |
| 3102 | if (!pend_page) { |
| 3103 | pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu); |
| 3104 | return -ENOMEM; |
| 3105 | } |
| 3106 | |
| 3107 | gic_data_rdist_cpu(cpu)->pend_page = pend_page; |
| 3108 | } |
| 3109 | |
| 3110 | return 0; |
| 3111 | } |
| 3112 | |
| 3113 | static u64 read_vpend_dirty_clear(void __iomem *vlpi_base) |
| 3114 | { |
| 3115 | u32 count = 1000000; /* 1s! */ |
| 3116 | bool clean; |
| 3117 | u64 val; |
| 3118 | |
| 3119 | do { |
| 3120 | val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); |
| 3121 | clean = !(val & GICR_VPENDBASER_Dirty); |
| 3122 | if (!clean) { |
| 3123 | count--; |
| 3124 | cpu_relax(); |
| 3125 | udelay(1); |
| 3126 | } |
| 3127 | } while (!clean && count); |
| 3128 | |
| 3129 | if (unlikely(!clean)) |
| 3130 | pr_err_ratelimited("ITS virtual pending table not cleaning\n"); |
| 3131 | |
| 3132 | return val; |
| 3133 | } |
| 3134 | |
| 3135 | static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set) |
| 3136 | { |
| 3137 | u64 val; |
| 3138 | |
| 3139 | /* Make sure we wait until the RD is done with the initial scan */ |
| 3140 | val = read_vpend_dirty_clear(vlpi_base); |
| 3141 | val &= ~GICR_VPENDBASER_Valid; |
| 3142 | val &= ~clr; |
| 3143 | val |= set; |
| 3144 | gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); |
| 3145 | |
| 3146 | val = read_vpend_dirty_clear(vlpi_base); |
| 3147 | if (unlikely(val & GICR_VPENDBASER_Dirty)) |
| 3148 | val |= GICR_VPENDBASER_PendingLast; |
| 3149 | |
| 3150 | return val; |
| 3151 | } |
| 3152 | |
| 3153 | static void its_cpu_init_lpis(void) |
| 3154 | { |
| 3155 | void __iomem *rbase = gic_data_rdist_rd_base(); |
| 3156 | struct page *pend_page; |
| 3157 | phys_addr_t paddr; |
| 3158 | u64 val, tmp; |
| 3159 | |
| 3160 | if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) |
| 3161 | return; |
| 3162 | |
| 3163 | val = readl_relaxed(rbase + GICR_CTLR); |
| 3164 | if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) && |
| 3165 | (val & GICR_CTLR_ENABLE_LPIS)) { |
| 3166 | /* |
| 3167 | * Check that we get the same property table on all |
| 3168 | * RDs. If we don't, this is hopeless. |
| 3169 | */ |
| 3170 | paddr = gicr_read_propbaser(rbase + GICR_PROPBASER); |
| 3171 | paddr &= GENMASK_ULL(51, 12); |
| 3172 | if (WARN_ON(gic_rdists->prop_table_pa != paddr)) |
| 3173 | add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); |
| 3174 | |
| 3175 | paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER); |
| 3176 | paddr &= GENMASK_ULL(51, 16); |
| 3177 | |
| 3178 | WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ)); |
| 3179 | gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED; |
| 3180 | |
| 3181 | goto out; |
| 3182 | } |
| 3183 | |
| 3184 | pend_page = gic_data_rdist()->pend_page; |
| 3185 | paddr = page_to_phys(pend_page); |
| 3186 | |
| 3187 | /* set PROPBASE */ |
| 3188 | val = (gic_rdists->prop_table_pa | |
| 3189 | GICR_PROPBASER_InnerShareable | |
| 3190 | GICR_PROPBASER_RaWaWb | |
| 3191 | ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); |
| 3192 | |
| 3193 | gicr_write_propbaser(val, rbase + GICR_PROPBASER); |
| 3194 | tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); |
| 3195 | |
| 3196 | if (!rdists_support_shareable()) |
| 3197 | tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK; |
| 3198 | |
| 3199 | if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { |
| 3200 | if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { |
| 3201 | /* |
| 3202 | * The HW reports non-shareable, we must |
| 3203 | * remove the cacheability attributes as |
| 3204 | * well. |
| 3205 | */ |
| 3206 | val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | |
| 3207 | GICR_PROPBASER_CACHEABILITY_MASK); |
| 3208 | val |= GICR_PROPBASER_nC; |
| 3209 | gicr_write_propbaser(val, rbase + GICR_PROPBASER); |
| 3210 | } |
| 3211 | pr_info_once("GIC: using cache flushing for LPI property table\n"); |
| 3212 | gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; |
| 3213 | } |
| 3214 | |
| 3215 | /* set PENDBASE */ |
| 3216 | val = (page_to_phys(pend_page) | |
| 3217 | GICR_PENDBASER_InnerShareable | |
| 3218 | GICR_PENDBASER_RaWaWb); |
| 3219 | |
| 3220 | gicr_write_pendbaser(val, rbase + GICR_PENDBASER); |
| 3221 | tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); |
| 3222 | |
| 3223 | if (!rdists_support_shareable()) |
| 3224 | tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK; |
| 3225 | |
| 3226 | if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { |
| 3227 | /* |
| 3228 | * The HW reports non-shareable, we must remove the |
| 3229 | * cacheability attributes as well. |
| 3230 | */ |
| 3231 | val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | |
| 3232 | GICR_PENDBASER_CACHEABILITY_MASK); |
| 3233 | val |= GICR_PENDBASER_nC; |
| 3234 | gicr_write_pendbaser(val, rbase + GICR_PENDBASER); |
| 3235 | } |
| 3236 | |
| 3237 | /* Enable LPIs */ |
| 3238 | val = readl_relaxed(rbase + GICR_CTLR); |
| 3239 | val |= GICR_CTLR_ENABLE_LPIS; |
| 3240 | writel_relaxed(val, rbase + GICR_CTLR); |
| 3241 | |
| 3242 | out: |
| 3243 | if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) { |
| 3244 | void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); |
| 3245 | |
| 3246 | /* |
| 3247 | * It's possible for CPU to receive VLPIs before it is |
| 3248 | * scheduled as a vPE, especially for the first CPU, and the |
| 3249 | * VLPI with INTID larger than 2^(IDbits+1) will be considered |
| 3250 | * as out of range and dropped by GIC. |
| 3251 | * So we initialize IDbits to known value to avoid VLPI drop. |
| 3252 | */ |
| 3253 | val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; |
| 3254 | pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n", |
| 3255 | smp_processor_id(), val); |
| 3256 | gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); |
| 3257 | |
| 3258 | /* |
| 3259 | * Also clear Valid bit of GICR_VPENDBASER, in case some |
| 3260 | * ancient programming gets left in and has possibility of |
| 3261 | * corrupting memory. |
| 3262 | */ |
| 3263 | val = its_clear_vpend_valid(vlpi_base, 0, 0); |
| 3264 | } |
| 3265 | |
| 3266 | if (allocate_vpe_l1_table()) { |
| 3267 | /* |
| 3268 | * If the allocation has failed, we're in massive trouble. |
| 3269 | * Disable direct injection, and pray that no VM was |
| 3270 | * already running... |
| 3271 | */ |
| 3272 | gic_rdists->has_rvpeid = false; |
| 3273 | gic_rdists->has_vlpis = false; |
| 3274 | } |
| 3275 | |
| 3276 | /* Make sure the GIC has seen the above */ |
| 3277 | dsb(sy); |
| 3278 | gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED; |
| 3279 | pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n", |
| 3280 | smp_processor_id(), |
| 3281 | gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ? |
| 3282 | "reserved" : "allocated", |
| 3283 | &paddr); |
| 3284 | } |
| 3285 | |
| 3286 | static void its_cpu_init_collection(struct its_node *its) |
| 3287 | { |
| 3288 | int cpu = smp_processor_id(); |
| 3289 | u64 target; |
| 3290 | |
| 3291 | /* avoid cross node collections and its mapping */ |
| 3292 | if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { |
| 3293 | struct device_node *cpu_node; |
| 3294 | |
| 3295 | cpu_node = of_get_cpu_node(cpu, NULL); |
| 3296 | if (its->numa_node != NUMA_NO_NODE && |
| 3297 | its->numa_node != of_node_to_nid(cpu_node)) |
| 3298 | return; |
| 3299 | } |
| 3300 | |
| 3301 | /* |
| 3302 | * We now have to bind each collection to its target |
| 3303 | * redistributor. |
| 3304 | */ |
| 3305 | if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { |
| 3306 | /* |
| 3307 | * This ITS wants the physical address of the |
| 3308 | * redistributor. |
| 3309 | */ |
| 3310 | target = gic_data_rdist()->phys_base; |
| 3311 | } else { |
| 3312 | /* This ITS wants a linear CPU number. */ |
| 3313 | target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); |
| 3314 | target = GICR_TYPER_CPU_NUMBER(target) << 16; |
| 3315 | } |
| 3316 | |
| 3317 | /* Perform collection mapping */ |
| 3318 | its->collections[cpu].target_address = target; |
| 3319 | its->collections[cpu].col_id = cpu; |
| 3320 | |
| 3321 | its_send_mapc(its, &its->collections[cpu], 1); |
| 3322 | its_send_invall(its, &its->collections[cpu]); |
| 3323 | } |
| 3324 | |
| 3325 | static void its_cpu_init_collections(void) |
| 3326 | { |
| 3327 | struct its_node *its; |
| 3328 | |
| 3329 | raw_spin_lock(&its_lock); |
| 3330 | |
| 3331 | list_for_each_entry(its, &its_nodes, entry) |
| 3332 | its_cpu_init_collection(its); |
| 3333 | |
| 3334 | raw_spin_unlock(&its_lock); |
| 3335 | } |
| 3336 | |
| 3337 | static struct its_device *its_find_device(struct its_node *its, u32 dev_id) |
| 3338 | { |
| 3339 | struct its_device *its_dev = NULL, *tmp; |
| 3340 | unsigned long flags; |
| 3341 | |
| 3342 | raw_spin_lock_irqsave(&its->lock, flags); |
| 3343 | |
| 3344 | list_for_each_entry(tmp, &its->its_device_list, entry) { |
| 3345 | if (tmp->device_id == dev_id) { |
| 3346 | its_dev = tmp; |
| 3347 | break; |
| 3348 | } |
| 3349 | } |
| 3350 | |
| 3351 | raw_spin_unlock_irqrestore(&its->lock, flags); |
| 3352 | |
| 3353 | return its_dev; |
| 3354 | } |
| 3355 | |
| 3356 | static struct its_baser *its_get_baser(struct its_node *its, u32 type) |
| 3357 | { |
| 3358 | int i; |
| 3359 | |
| 3360 | for (i = 0; i < GITS_BASER_NR_REGS; i++) { |
| 3361 | if (GITS_BASER_TYPE(its->tables[i].val) == type) |
| 3362 | return &its->tables[i]; |
| 3363 | } |
| 3364 | |
| 3365 | return NULL; |
| 3366 | } |
| 3367 | |
| 3368 | static bool its_alloc_table_entry(struct its_node *its, |
| 3369 | struct its_baser *baser, u32 id) |
| 3370 | { |
| 3371 | struct page *page; |
| 3372 | u32 esz, idx; |
| 3373 | __le64 *table; |
| 3374 | |
| 3375 | /* Don't allow device id that exceeds single, flat table limit */ |
| 3376 | esz = GITS_BASER_ENTRY_SIZE(baser->val); |
| 3377 | if (!(baser->val & GITS_BASER_INDIRECT)) |
| 3378 | return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); |
| 3379 | |
| 3380 | /* Compute 1st level table index & check if that exceeds table limit */ |
| 3381 | idx = id >> ilog2(baser->psz / esz); |
| 3382 | if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) |
| 3383 | return false; |
| 3384 | |
| 3385 | table = baser->base; |
| 3386 | |
| 3387 | /* Allocate memory for 2nd level table */ |
| 3388 | if (!table[idx]) { |
| 3389 | page = its_alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, |
| 3390 | get_order(baser->psz)); |
| 3391 | if (!page) |
| 3392 | return false; |
| 3393 | |
| 3394 | /* Flush Lvl2 table to PoC if hw doesn't support coherency */ |
| 3395 | if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) |
| 3396 | gic_flush_dcache_to_poc(page_address(page), baser->psz); |
| 3397 | |
| 3398 | table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); |
| 3399 | |
| 3400 | /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ |
| 3401 | if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) |
| 3402 | gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); |
| 3403 | |
| 3404 | /* Ensure updated table contents are visible to ITS hardware */ |
| 3405 | dsb(sy); |
| 3406 | } |
| 3407 | |
| 3408 | return true; |
| 3409 | } |
| 3410 | |
| 3411 | static bool its_alloc_device_table(struct its_node *its, u32 dev_id) |
| 3412 | { |
| 3413 | struct its_baser *baser; |
| 3414 | |
| 3415 | baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); |
| 3416 | |
| 3417 | /* Don't allow device id that exceeds ITS hardware limit */ |
| 3418 | if (!baser) |
| 3419 | return (ilog2(dev_id) < device_ids(its)); |
| 3420 | |
| 3421 | return its_alloc_table_entry(its, baser, dev_id); |
| 3422 | } |
| 3423 | |
| 3424 | static bool its_alloc_vpe_table(u32 vpe_id) |
| 3425 | { |
| 3426 | struct its_node *its; |
| 3427 | int cpu; |
| 3428 | |
| 3429 | /* |
| 3430 | * Make sure the L2 tables are allocated on *all* v4 ITSs. We |
| 3431 | * could try and only do it on ITSs corresponding to devices |
| 3432 | * that have interrupts targeted at this VPE, but the |
| 3433 | * complexity becomes crazy (and you have tons of memory |
| 3434 | * anyway, right?). |
| 3435 | */ |
| 3436 | list_for_each_entry(its, &its_nodes, entry) { |
| 3437 | struct its_baser *baser; |
| 3438 | |
| 3439 | if (!is_v4(its)) |
| 3440 | continue; |
| 3441 | |
| 3442 | baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); |
| 3443 | if (!baser) |
| 3444 | return false; |
| 3445 | |
| 3446 | if (!its_alloc_table_entry(its, baser, vpe_id)) |
| 3447 | return false; |
| 3448 | } |
| 3449 | |
| 3450 | /* Non v4.1? No need to iterate RDs and go back early. */ |
| 3451 | if (!gic_rdists->has_rvpeid) |
| 3452 | return true; |
| 3453 | |
| 3454 | /* |
| 3455 | * Make sure the L2 tables are allocated for all copies of |
| 3456 | * the L1 table on *all* v4.1 RDs. |
| 3457 | */ |
| 3458 | for_each_possible_cpu(cpu) { |
| 3459 | if (!allocate_vpe_l2_table(cpu, vpe_id)) |
| 3460 | return false; |
| 3461 | } |
| 3462 | |
| 3463 | return true; |
| 3464 | } |
| 3465 | |
| 3466 | static struct its_device *its_create_device(struct its_node *its, u32 dev_id, |
| 3467 | int nvecs, bool alloc_lpis) |
| 3468 | { |
| 3469 | struct its_device *dev; |
| 3470 | unsigned long *lpi_map = NULL; |
| 3471 | unsigned long flags; |
| 3472 | u16 *col_map = NULL; |
| 3473 | void *itt; |
| 3474 | int lpi_base; |
| 3475 | int nr_lpis; |
| 3476 | int nr_ites; |
| 3477 | int sz; |
| 3478 | |
| 3479 | if (!its_alloc_device_table(its, dev_id)) |
| 3480 | return NULL; |
| 3481 | |
| 3482 | if (WARN_ON(!is_power_of_2(nvecs))) |
| 3483 | nvecs = roundup_pow_of_two(nvecs); |
| 3484 | |
| 3485 | /* |
| 3486 | * Even if the device wants a single LPI, the ITT must be |
| 3487 | * sized as a power of two (and you need at least one bit...). |
| 3488 | */ |
| 3489 | nr_ites = max(2, nvecs); |
| 3490 | sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1); |
| 3491 | sz = max(sz, ITS_ITT_ALIGN); |
| 3492 | |
| 3493 | itt = itt_alloc_pool(its->numa_node, sz); |
| 3494 | |
| 3495 | dev = kzalloc(sizeof(*dev), GFP_KERNEL); |
| 3496 | |
| 3497 | if (alloc_lpis) { |
| 3498 | lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); |
| 3499 | if (lpi_map) |
| 3500 | col_map = kcalloc(nr_lpis, sizeof(*col_map), |
| 3501 | GFP_KERNEL); |
| 3502 | } else { |
| 3503 | col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); |
| 3504 | nr_lpis = 0; |
| 3505 | lpi_base = 0; |
| 3506 | } |
| 3507 | |
| 3508 | if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { |
| 3509 | kfree(dev); |
| 3510 | itt_free_pool(itt, sz); |
| 3511 | bitmap_free(lpi_map); |
| 3512 | kfree(col_map); |
| 3513 | return NULL; |
| 3514 | } |
| 3515 | |
| 3516 | gic_flush_dcache_to_poc(itt, sz); |
| 3517 | |
| 3518 | dev->its = its; |
| 3519 | dev->itt = itt; |
| 3520 | dev->itt_sz = sz; |
| 3521 | dev->nr_ites = nr_ites; |
| 3522 | dev->event_map.lpi_map = lpi_map; |
| 3523 | dev->event_map.col_map = col_map; |
| 3524 | dev->event_map.lpi_base = lpi_base; |
| 3525 | dev->event_map.nr_lpis = nr_lpis; |
| 3526 | raw_spin_lock_init(&dev->event_map.vlpi_lock); |
| 3527 | dev->device_id = dev_id; |
| 3528 | INIT_LIST_HEAD(&dev->entry); |
| 3529 | |
| 3530 | raw_spin_lock_irqsave(&its->lock, flags); |
| 3531 | list_add(&dev->entry, &its->its_device_list); |
| 3532 | raw_spin_unlock_irqrestore(&its->lock, flags); |
| 3533 | |
| 3534 | /* Map device to its ITT */ |
| 3535 | its_send_mapd(dev, 1); |
| 3536 | |
| 3537 | return dev; |
| 3538 | } |
| 3539 | |
| 3540 | static void its_free_device(struct its_device *its_dev) |
| 3541 | { |
| 3542 | unsigned long flags; |
| 3543 | |
| 3544 | raw_spin_lock_irqsave(&its_dev->its->lock, flags); |
| 3545 | list_del(&its_dev->entry); |
| 3546 | raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); |
| 3547 | kfree(its_dev->event_map.col_map); |
| 3548 | itt_free_pool(its_dev->itt, its_dev->itt_sz); |
| 3549 | kfree(its_dev); |
| 3550 | } |
| 3551 | |
| 3552 | static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq) |
| 3553 | { |
| 3554 | int idx; |
| 3555 | |
| 3556 | /* Find a free LPI region in lpi_map and allocate them. */ |
| 3557 | idx = bitmap_find_free_region(dev->event_map.lpi_map, |
| 3558 | dev->event_map.nr_lpis, |
| 3559 | get_count_order(nvecs)); |
| 3560 | if (idx < 0) |
| 3561 | return -ENOSPC; |
| 3562 | |
| 3563 | *hwirq = dev->event_map.lpi_base + idx; |
| 3564 | |
| 3565 | return 0; |
| 3566 | } |
| 3567 | |
| 3568 | static int its_msi_prepare(struct irq_domain *domain, struct device *dev, |
| 3569 | int nvec, msi_alloc_info_t *info) |
| 3570 | { |
| 3571 | struct its_node *its; |
| 3572 | struct its_device *its_dev; |
| 3573 | struct msi_domain_info *msi_info; |
| 3574 | u32 dev_id; |
| 3575 | int err = 0; |
| 3576 | |
| 3577 | /* |
| 3578 | * We ignore "dev" entirely, and rely on the dev_id that has |
| 3579 | * been passed via the scratchpad. This limits this domain's |
| 3580 | * usefulness to upper layers that definitely know that they |
| 3581 | * are built on top of the ITS. |
| 3582 | */ |
| 3583 | dev_id = info->scratchpad[0].ul; |
| 3584 | |
| 3585 | msi_info = msi_get_domain_info(domain); |
| 3586 | its = msi_info->data; |
| 3587 | |
| 3588 | if (!gic_rdists->has_direct_lpi && |
| 3589 | vpe_proxy.dev && |
| 3590 | vpe_proxy.dev->its == its && |
| 3591 | dev_id == vpe_proxy.dev->device_id) { |
| 3592 | /* Bad luck. Get yourself a better implementation */ |
| 3593 | WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", |
| 3594 | dev_id); |
| 3595 | return -EINVAL; |
| 3596 | } |
| 3597 | |
| 3598 | mutex_lock(&its->dev_alloc_lock); |
| 3599 | its_dev = its_find_device(its, dev_id); |
| 3600 | if (its_dev) { |
| 3601 | /* |
| 3602 | * We already have seen this ID, probably through |
| 3603 | * another alias (PCI bridge of some sort). No need to |
| 3604 | * create the device. |
| 3605 | */ |
| 3606 | its_dev->shared = true; |
| 3607 | pr_debug("Reusing ITT for devID %x\n", dev_id); |
| 3608 | goto out; |
| 3609 | } |
| 3610 | |
| 3611 | its_dev = its_create_device(its, dev_id, nvec, true); |
| 3612 | if (!its_dev) { |
| 3613 | err = -ENOMEM; |
| 3614 | goto out; |
| 3615 | } |
| 3616 | |
| 3617 | if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE) |
| 3618 | its_dev->shared = true; |
| 3619 | |
| 3620 | pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); |
| 3621 | out: |
| 3622 | mutex_unlock(&its->dev_alloc_lock); |
| 3623 | info->scratchpad[0].ptr = its_dev; |
| 3624 | return err; |
| 3625 | } |
| 3626 | |
| 3627 | static void its_msi_teardown(struct irq_domain *domain, msi_alloc_info_t *info) |
| 3628 | { |
| 3629 | struct its_device *its_dev = info->scratchpad[0].ptr; |
| 3630 | |
| 3631 | guard(mutex)(&its_dev->its->dev_alloc_lock); |
| 3632 | |
| 3633 | /* If the device is shared, keep everything around */ |
| 3634 | if (its_dev->shared) |
| 3635 | return; |
| 3636 | |
| 3637 | /* LPIs should have been already unmapped at this stage */ |
| 3638 | if (WARN_ON_ONCE(!bitmap_empty(its_dev->event_map.lpi_map, |
| 3639 | its_dev->event_map.nr_lpis))) |
| 3640 | return; |
| 3641 | |
| 3642 | its_lpi_free(its_dev->event_map.lpi_map, |
| 3643 | its_dev->event_map.lpi_base, |
| 3644 | its_dev->event_map.nr_lpis); |
| 3645 | |
| 3646 | /* Unmap device/itt, and get rid of the tracking */ |
| 3647 | its_send_mapd(its_dev, 0); |
| 3648 | its_free_device(its_dev); |
| 3649 | } |
| 3650 | |
| 3651 | static struct msi_domain_ops its_msi_domain_ops = { |
| 3652 | .msi_prepare = its_msi_prepare, |
| 3653 | .msi_teardown = its_msi_teardown, |
| 3654 | }; |
| 3655 | |
| 3656 | static int its_irq_gic_domain_alloc(struct irq_domain *domain, |
| 3657 | unsigned int virq, |
| 3658 | irq_hw_number_t hwirq) |
| 3659 | { |
| 3660 | struct irq_fwspec fwspec; |
| 3661 | |
| 3662 | if (irq_domain_get_of_node(domain->parent)) { |
| 3663 | fwspec.fwnode = domain->parent->fwnode; |
| 3664 | fwspec.param_count = 3; |
| 3665 | fwspec.param[0] = GIC_IRQ_TYPE_LPI; |
| 3666 | fwspec.param[1] = hwirq; |
| 3667 | fwspec.param[2] = IRQ_TYPE_EDGE_RISING; |
| 3668 | } else if (is_fwnode_irqchip(domain->parent->fwnode)) { |
| 3669 | fwspec.fwnode = domain->parent->fwnode; |
| 3670 | fwspec.param_count = 2; |
| 3671 | fwspec.param[0] = hwirq; |
| 3672 | fwspec.param[1] = IRQ_TYPE_EDGE_RISING; |
| 3673 | } else { |
| 3674 | return -EINVAL; |
| 3675 | } |
| 3676 | |
| 3677 | return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); |
| 3678 | } |
| 3679 | |
| 3680 | static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, |
| 3681 | unsigned int nr_irqs, void *args) |
| 3682 | { |
| 3683 | msi_alloc_info_t *info = args; |
| 3684 | struct its_device *its_dev = info->scratchpad[0].ptr; |
| 3685 | struct its_node *its = its_dev->its; |
| 3686 | struct irq_data *irqd; |
| 3687 | irq_hw_number_t hwirq; |
| 3688 | int err; |
| 3689 | int i; |
| 3690 | |
| 3691 | err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq); |
| 3692 | if (err) |
| 3693 | return err; |
| 3694 | |
| 3695 | err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev)); |
| 3696 | if (err) |
| 3697 | return err; |
| 3698 | |
| 3699 | for (i = 0; i < nr_irqs; i++) { |
| 3700 | err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i); |
| 3701 | if (err) |
| 3702 | return err; |
| 3703 | |
| 3704 | irq_domain_set_hwirq_and_chip(domain, virq + i, |
| 3705 | hwirq + i, &its_irq_chip, its_dev); |
| 3706 | irqd = irq_get_irq_data(virq + i); |
| 3707 | irqd_set_single_target(irqd); |
| 3708 | irqd_set_affinity_on_activate(irqd); |
| 3709 | irqd_set_resend_when_in_progress(irqd); |
| 3710 | pr_debug("ID:%d pID:%d vID:%d\n", |
| 3711 | (int)(hwirq + i - its_dev->event_map.lpi_base), |
| 3712 | (int)(hwirq + i), virq + i); |
| 3713 | } |
| 3714 | |
| 3715 | return 0; |
| 3716 | } |
| 3717 | |
| 3718 | static int its_irq_domain_activate(struct irq_domain *domain, |
| 3719 | struct irq_data *d, bool reserve) |
| 3720 | { |
| 3721 | struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| 3722 | u32 event = its_get_event_id(d); |
| 3723 | int cpu; |
| 3724 | |
| 3725 | cpu = its_select_cpu(d, cpu_online_mask); |
| 3726 | if (cpu < 0 || cpu >= nr_cpu_ids) |
| 3727 | return -EINVAL; |
| 3728 | |
| 3729 | its_inc_lpi_count(d, cpu); |
| 3730 | its_dev->event_map.col_map[event] = cpu; |
| 3731 | irq_data_update_effective_affinity(d, cpumask_of(cpu)); |
| 3732 | |
| 3733 | /* Map the GIC IRQ and event to the device */ |
| 3734 | its_send_mapti(its_dev, d->hwirq, event); |
| 3735 | return 0; |
| 3736 | } |
| 3737 | |
| 3738 | static void its_irq_domain_deactivate(struct irq_domain *domain, |
| 3739 | struct irq_data *d) |
| 3740 | { |
| 3741 | struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| 3742 | u32 event = its_get_event_id(d); |
| 3743 | |
| 3744 | its_dec_lpi_count(d, its_dev->event_map.col_map[event]); |
| 3745 | /* Stop the delivery of interrupts */ |
| 3746 | its_send_discard(its_dev, event); |
| 3747 | } |
| 3748 | |
| 3749 | static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, |
| 3750 | unsigned int nr_irqs) |
| 3751 | { |
| 3752 | struct irq_data *d = irq_domain_get_irq_data(domain, virq); |
| 3753 | struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| 3754 | int i; |
| 3755 | |
| 3756 | bitmap_release_region(its_dev->event_map.lpi_map, |
| 3757 | its_get_event_id(irq_domain_get_irq_data(domain, virq)), |
| 3758 | get_count_order(nr_irqs)); |
| 3759 | |
| 3760 | for (i = 0; i < nr_irqs; i++) { |
| 3761 | struct irq_data *data = irq_domain_get_irq_data(domain, |
| 3762 | virq + i); |
| 3763 | /* Nuke the entry in the domain */ |
| 3764 | irq_domain_reset_irq_data(data); |
| 3765 | } |
| 3766 | |
| 3767 | irq_domain_free_irqs_parent(domain, virq, nr_irqs); |
| 3768 | } |
| 3769 | |
| 3770 | static const struct irq_domain_ops its_domain_ops = { |
| 3771 | .select = msi_lib_irq_domain_select, |
| 3772 | .alloc = its_irq_domain_alloc, |
| 3773 | .free = its_irq_domain_free, |
| 3774 | .activate = its_irq_domain_activate, |
| 3775 | .deactivate = its_irq_domain_deactivate, |
| 3776 | }; |
| 3777 | |
| 3778 | /* |
| 3779 | * This is insane. |
| 3780 | * |
| 3781 | * If a GICv4.0 doesn't implement Direct LPIs (which is extremely |
| 3782 | * likely), the only way to perform an invalidate is to use a fake |
| 3783 | * device to issue an INV command, implying that the LPI has first |
| 3784 | * been mapped to some event on that device. Since this is not exactly |
| 3785 | * cheap, we try to keep that mapping around as long as possible, and |
| 3786 | * only issue an UNMAP if we're short on available slots. |
| 3787 | * |
| 3788 | * Broken by design(tm). |
| 3789 | * |
| 3790 | * GICv4.1, on the other hand, mandates that we're able to invalidate |
| 3791 | * by writing to a MMIO register. It doesn't implement the whole of |
| 3792 | * DirectLPI, but that's good enough. And most of the time, we don't |
| 3793 | * even have to invalidate anything, as the redistributor can be told |
| 3794 | * whether to generate a doorbell or not (we thus leave it enabled, |
| 3795 | * always). |
| 3796 | */ |
| 3797 | static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) |
| 3798 | { |
| 3799 | /* GICv4.1 doesn't use a proxy, so nothing to do here */ |
| 3800 | if (gic_rdists->has_rvpeid) |
| 3801 | return; |
| 3802 | |
| 3803 | /* Already unmapped? */ |
| 3804 | if (vpe->vpe_proxy_event == -1) |
| 3805 | return; |
| 3806 | |
| 3807 | its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); |
| 3808 | vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; |
| 3809 | |
| 3810 | /* |
| 3811 | * We don't track empty slots at all, so let's move the |
| 3812 | * next_victim pointer if we can quickly reuse that slot |
| 3813 | * instead of nuking an existing entry. Not clear that this is |
| 3814 | * always a win though, and this might just generate a ripple |
| 3815 | * effect... Let's just hope VPEs don't migrate too often. |
| 3816 | */ |
| 3817 | if (vpe_proxy.vpes[vpe_proxy.next_victim]) |
| 3818 | vpe_proxy.next_victim = vpe->vpe_proxy_event; |
| 3819 | |
| 3820 | vpe->vpe_proxy_event = -1; |
| 3821 | } |
| 3822 | |
| 3823 | static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) |
| 3824 | { |
| 3825 | /* GICv4.1 doesn't use a proxy, so nothing to do here */ |
| 3826 | if (gic_rdists->has_rvpeid) |
| 3827 | return; |
| 3828 | |
| 3829 | if (!gic_rdists->has_direct_lpi) { |
| 3830 | unsigned long flags; |
| 3831 | |
| 3832 | raw_spin_lock_irqsave(&vpe_proxy.lock, flags); |
| 3833 | its_vpe_db_proxy_unmap_locked(vpe); |
| 3834 | raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); |
| 3835 | } |
| 3836 | } |
| 3837 | |
| 3838 | static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) |
| 3839 | { |
| 3840 | /* GICv4.1 doesn't use a proxy, so nothing to do here */ |
| 3841 | if (gic_rdists->has_rvpeid) |
| 3842 | return; |
| 3843 | |
| 3844 | /* Already mapped? */ |
| 3845 | if (vpe->vpe_proxy_event != -1) |
| 3846 | return; |
| 3847 | |
| 3848 | /* This slot was already allocated. Kick the other VPE out. */ |
| 3849 | if (vpe_proxy.vpes[vpe_proxy.next_victim]) |
| 3850 | its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); |
| 3851 | |
| 3852 | /* Map the new VPE instead */ |
| 3853 | vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; |
| 3854 | vpe->vpe_proxy_event = vpe_proxy.next_victim; |
| 3855 | vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; |
| 3856 | |
| 3857 | vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; |
| 3858 | its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); |
| 3859 | } |
| 3860 | |
| 3861 | static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) |
| 3862 | { |
| 3863 | unsigned long flags; |
| 3864 | struct its_collection *target_col; |
| 3865 | |
| 3866 | /* GICv4.1 doesn't use a proxy, so nothing to do here */ |
| 3867 | if (gic_rdists->has_rvpeid) |
| 3868 | return; |
| 3869 | |
| 3870 | if (gic_rdists->has_direct_lpi) { |
| 3871 | void __iomem *rdbase; |
| 3872 | |
| 3873 | rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; |
| 3874 | gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); |
| 3875 | wait_for_syncr(rdbase); |
| 3876 | |
| 3877 | return; |
| 3878 | } |
| 3879 | |
| 3880 | raw_spin_lock_irqsave(&vpe_proxy.lock, flags); |
| 3881 | |
| 3882 | its_vpe_db_proxy_map_locked(vpe); |
| 3883 | |
| 3884 | target_col = &vpe_proxy.dev->its->collections[to]; |
| 3885 | its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); |
| 3886 | vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; |
| 3887 | |
| 3888 | raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); |
| 3889 | } |
| 3890 | |
| 3891 | static void its_vpe_4_1_invall_locked(int cpu, struct its_vpe *vpe) |
| 3892 | { |
| 3893 | void __iomem *rdbase; |
| 3894 | u64 val; |
| 3895 | |
| 3896 | val = GICR_INVALLR_V; |
| 3897 | val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id); |
| 3898 | |
| 3899 | guard(raw_spinlock)(&gic_data_rdist_cpu(cpu)->rd_lock); |
| 3900 | rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; |
| 3901 | gic_write_lpir(val, rdbase + GICR_INVALLR); |
| 3902 | wait_for_syncr(rdbase); |
| 3903 | } |
| 3904 | |
| 3905 | static int its_vpe_set_affinity(struct irq_data *d, |
| 3906 | const struct cpumask *mask_val, |
| 3907 | bool force) |
| 3908 | { |
| 3909 | struct its_vpe *vpe = irq_data_get_irq_chip_data(d); |
| 3910 | unsigned int from, cpu = nr_cpu_ids; |
| 3911 | struct cpumask *table_mask; |
| 3912 | struct its_node *its; |
| 3913 | unsigned long flags; |
| 3914 | |
| 3915 | /* |
| 3916 | * Check if we're racing against a VPE being destroyed, for |
| 3917 | * which we don't want to allow a VMOVP. |
| 3918 | */ |
| 3919 | if (!atomic_read(&vpe->vmapp_count)) { |
| 3920 | if (gic_requires_eager_mapping()) |
| 3921 | return -EINVAL; |
| 3922 | |
| 3923 | /* |
| 3924 | * If we lazily map the VPEs, this isn't an error and |
| 3925 | * we can exit cleanly. |
| 3926 | */ |
| 3927 | cpu = cpumask_first(mask_val); |
| 3928 | irq_data_update_effective_affinity(d, cpumask_of(cpu)); |
| 3929 | return IRQ_SET_MASK_OK_DONE; |
| 3930 | } |
| 3931 | |
| 3932 | /* |
| 3933 | * Changing affinity is mega expensive, so let's be as lazy as |
| 3934 | * we can and only do it if we really have to. Also, if mapped |
| 3935 | * into the proxy device, we need to move the doorbell |
| 3936 | * interrupt to its new location. |
| 3937 | * |
| 3938 | * Another thing is that changing the affinity of a vPE affects |
| 3939 | * *other interrupts* such as all the vLPIs that are routed to |
| 3940 | * this vPE. This means that the irq_desc lock is not enough to |
| 3941 | * protect us, and that we must ensure nobody samples vpe->col_idx |
| 3942 | * during the update, hence the lock below which must also be |
| 3943 | * taken on any vLPI handling path that evaluates vpe->col_idx. |
| 3944 | * |
| 3945 | * Finally, we must protect ourselves against concurrent updates of |
| 3946 | * the mapping state on this VM should the ITS list be in use (see |
| 3947 | * the shortcut in its_send_vmovp() otherewise). |
| 3948 | */ |
| 3949 | if (its_list_map) |
| 3950 | raw_spin_lock(&vpe->its_vm->vmapp_lock); |
| 3951 | |
| 3952 | from = vpe_to_cpuid_lock(vpe, &flags); |
| 3953 | table_mask = gic_data_rdist_cpu(from)->vpe_table_mask; |
| 3954 | |
| 3955 | /* |
| 3956 | * If we are offered another CPU in the same GICv4.1 ITS |
| 3957 | * affinity, pick this one. Otherwise, any CPU will do. |
| 3958 | */ |
| 3959 | if (table_mask) |
| 3960 | cpu = cpumask_any_and(mask_val, table_mask); |
| 3961 | if (cpu < nr_cpu_ids) { |
| 3962 | if (cpumask_test_cpu(from, mask_val) && |
| 3963 | cpumask_test_cpu(from, table_mask)) |
| 3964 | cpu = from; |
| 3965 | } else { |
| 3966 | cpu = cpumask_first(mask_val); |
| 3967 | } |
| 3968 | |
| 3969 | if (from == cpu) |
| 3970 | goto out; |
| 3971 | |
| 3972 | vpe->col_idx = cpu; |
| 3973 | |
| 3974 | its_send_vmovp(vpe); |
| 3975 | |
| 3976 | its = find_4_1_its(); |
| 3977 | if (its && its->flags & ITS_FLAGS_WORKAROUND_HISILICON_162100801) |
| 3978 | its_vpe_4_1_invall_locked(cpu, vpe); |
| 3979 | |
| 3980 | its_vpe_db_proxy_move(vpe, from, cpu); |
| 3981 | |
| 3982 | out: |
| 3983 | irq_data_update_effective_affinity(d, cpumask_of(cpu)); |
| 3984 | vpe_to_cpuid_unlock(vpe, flags); |
| 3985 | |
| 3986 | if (its_list_map) |
| 3987 | raw_spin_unlock(&vpe->its_vm->vmapp_lock); |
| 3988 | |
| 3989 | return IRQ_SET_MASK_OK_DONE; |
| 3990 | } |
| 3991 | |
| 3992 | static void its_wait_vpt_parse_complete(void) |
| 3993 | { |
| 3994 | void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); |
| 3995 | u64 val; |
| 3996 | |
| 3997 | if (!gic_rdists->has_vpend_valid_dirty) |
| 3998 | return; |
| 3999 | |
| 4000 | WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER, |
| 4001 | val, |
| 4002 | !(val & GICR_VPENDBASER_Dirty), |
| 4003 | 1, 500)); |
| 4004 | } |
| 4005 | |
| 4006 | static void its_vpe_schedule(struct its_vpe *vpe) |
| 4007 | { |
| 4008 | void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); |
| 4009 | u64 val; |
| 4010 | |
| 4011 | /* Schedule the VPE */ |
| 4012 | val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & |
| 4013 | GENMASK_ULL(51, 12); |
| 4014 | val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; |
| 4015 | if (rdists_support_shareable()) { |
| 4016 | val |= GICR_VPROPBASER_RaWb; |
| 4017 | val |= GICR_VPROPBASER_InnerShareable; |
| 4018 | } |
| 4019 | gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); |
| 4020 | |
| 4021 | val = virt_to_phys(page_address(vpe->vpt_page)) & |
| 4022 | GENMASK_ULL(51, 16); |
| 4023 | if (rdists_support_shareable()) { |
| 4024 | val |= GICR_VPENDBASER_RaWaWb; |
| 4025 | val |= GICR_VPENDBASER_InnerShareable; |
| 4026 | } |
| 4027 | /* |
| 4028 | * There is no good way of finding out if the pending table is |
| 4029 | * empty as we can race against the doorbell interrupt very |
| 4030 | * easily. So in the end, vpe->pending_last is only an |
| 4031 | * indication that the vcpu has something pending, not one |
| 4032 | * that the pending table is empty. A good implementation |
| 4033 | * would be able to read its coarse map pretty quickly anyway, |
| 4034 | * making this a tolerable issue. |
| 4035 | */ |
| 4036 | val |= GICR_VPENDBASER_PendingLast; |
| 4037 | val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; |
| 4038 | val |= GICR_VPENDBASER_Valid; |
| 4039 | gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); |
| 4040 | } |
| 4041 | |
| 4042 | static void its_vpe_deschedule(struct its_vpe *vpe) |
| 4043 | { |
| 4044 | void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); |
| 4045 | u64 val; |
| 4046 | |
| 4047 | val = its_clear_vpend_valid(vlpi_base, 0, 0); |
| 4048 | |
| 4049 | vpe->idai = !!(val & GICR_VPENDBASER_IDAI); |
| 4050 | vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); |
| 4051 | } |
| 4052 | |
| 4053 | static void its_vpe_invall(struct its_vpe *vpe) |
| 4054 | { |
| 4055 | struct its_node *its; |
| 4056 | |
| 4057 | guard(raw_spinlock_irqsave)(&vpe->its_vm->vmapp_lock); |
| 4058 | |
| 4059 | list_for_each_entry(its, &its_nodes, entry) { |
| 4060 | if (!is_v4(its)) |
| 4061 | continue; |
| 4062 | |
| 4063 | if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) |
| 4064 | continue; |
| 4065 | |
| 4066 | /* |
| 4067 | * Sending a VINVALL to a single ITS is enough, as all |
| 4068 | * we need is to reach the redistributors. |
| 4069 | */ |
| 4070 | its_send_vinvall(its, vpe); |
| 4071 | return; |
| 4072 | } |
| 4073 | } |
| 4074 | |
| 4075 | static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) |
| 4076 | { |
| 4077 | struct its_vpe *vpe = irq_data_get_irq_chip_data(d); |
| 4078 | struct its_cmd_info *info = vcpu_info; |
| 4079 | |
| 4080 | switch (info->cmd_type) { |
| 4081 | case SCHEDULE_VPE: |
| 4082 | its_vpe_schedule(vpe); |
| 4083 | return 0; |
| 4084 | |
| 4085 | case DESCHEDULE_VPE: |
| 4086 | its_vpe_deschedule(vpe); |
| 4087 | return 0; |
| 4088 | |
| 4089 | case COMMIT_VPE: |
| 4090 | its_wait_vpt_parse_complete(); |
| 4091 | return 0; |
| 4092 | |
| 4093 | case INVALL_VPE: |
| 4094 | its_vpe_invall(vpe); |
| 4095 | return 0; |
| 4096 | |
| 4097 | default: |
| 4098 | return -EINVAL; |
| 4099 | } |
| 4100 | } |
| 4101 | |
| 4102 | static void its_vpe_send_cmd(struct its_vpe *vpe, |
| 4103 | void (*cmd)(struct its_device *, u32)) |
| 4104 | { |
| 4105 | unsigned long flags; |
| 4106 | |
| 4107 | raw_spin_lock_irqsave(&vpe_proxy.lock, flags); |
| 4108 | |
| 4109 | its_vpe_db_proxy_map_locked(vpe); |
| 4110 | cmd(vpe_proxy.dev, vpe->vpe_proxy_event); |
| 4111 | |
| 4112 | raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); |
| 4113 | } |
| 4114 | |
| 4115 | static void its_vpe_send_inv(struct irq_data *d) |
| 4116 | { |
| 4117 | struct its_vpe *vpe = irq_data_get_irq_chip_data(d); |
| 4118 | |
| 4119 | if (gic_rdists->has_direct_lpi) |
| 4120 | __direct_lpi_inv(d, d->parent_data->hwirq); |
| 4121 | else |
| 4122 | its_vpe_send_cmd(vpe, its_send_inv); |
| 4123 | } |
| 4124 | |
| 4125 | static void its_vpe_mask_irq(struct irq_data *d) |
| 4126 | { |
| 4127 | /* |
| 4128 | * We need to unmask the LPI, which is described by the parent |
| 4129 | * irq_data. Instead of calling into the parent (which won't |
| 4130 | * exactly do the right thing, let's simply use the |
| 4131 | * parent_data pointer. Yes, I'm naughty. |
| 4132 | */ |
| 4133 | lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); |
| 4134 | its_vpe_send_inv(d); |
| 4135 | } |
| 4136 | |
| 4137 | static void its_vpe_unmask_irq(struct irq_data *d) |
| 4138 | { |
| 4139 | /* Same hack as above... */ |
| 4140 | lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); |
| 4141 | its_vpe_send_inv(d); |
| 4142 | } |
| 4143 | |
| 4144 | static int its_vpe_set_irqchip_state(struct irq_data *d, |
| 4145 | enum irqchip_irq_state which, |
| 4146 | bool state) |
| 4147 | { |
| 4148 | struct its_vpe *vpe = irq_data_get_irq_chip_data(d); |
| 4149 | |
| 4150 | if (which != IRQCHIP_STATE_PENDING) |
| 4151 | return -EINVAL; |
| 4152 | |
| 4153 | if (gic_rdists->has_direct_lpi) { |
| 4154 | void __iomem *rdbase; |
| 4155 | |
| 4156 | rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; |
| 4157 | if (state) { |
| 4158 | gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); |
| 4159 | } else { |
| 4160 | gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); |
| 4161 | wait_for_syncr(rdbase); |
| 4162 | } |
| 4163 | } else { |
| 4164 | if (state) |
| 4165 | its_vpe_send_cmd(vpe, its_send_int); |
| 4166 | else |
| 4167 | its_vpe_send_cmd(vpe, its_send_clear); |
| 4168 | } |
| 4169 | |
| 4170 | return 0; |
| 4171 | } |
| 4172 | |
| 4173 | static int its_vpe_retrigger(struct irq_data *d) |
| 4174 | { |
| 4175 | return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); |
| 4176 | } |
| 4177 | |
| 4178 | static struct irq_chip its_vpe_irq_chip = { |
| 4179 | .name = "GICv4-vpe", |
| 4180 | .irq_mask = its_vpe_mask_irq, |
| 4181 | .irq_unmask = its_vpe_unmask_irq, |
| 4182 | .irq_eoi = irq_chip_eoi_parent, |
| 4183 | .irq_set_affinity = its_vpe_set_affinity, |
| 4184 | .irq_retrigger = its_vpe_retrigger, |
| 4185 | .irq_set_irqchip_state = its_vpe_set_irqchip_state, |
| 4186 | .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, |
| 4187 | }; |
| 4188 | |
| 4189 | static struct its_node *find_4_1_its(void) |
| 4190 | { |
| 4191 | struct its_node *its = *this_cpu_ptr(&local_4_1_its); |
| 4192 | |
| 4193 | if (!its) { |
| 4194 | list_for_each_entry(its, &its_nodes, entry) { |
| 4195 | if (is_v4_1(its)) |
| 4196 | return its; |
| 4197 | } |
| 4198 | |
| 4199 | /* Oops? */ |
| 4200 | its = NULL; |
| 4201 | } |
| 4202 | |
| 4203 | return its; |
| 4204 | } |
| 4205 | |
| 4206 | static void its_vpe_4_1_send_inv(struct irq_data *d) |
| 4207 | { |
| 4208 | struct its_vpe *vpe = irq_data_get_irq_chip_data(d); |
| 4209 | struct its_node *its; |
| 4210 | |
| 4211 | /* |
| 4212 | * GICv4.1 wants doorbells to be invalidated using the |
| 4213 | * INVDB command in order to be broadcast to all RDs. Send |
| 4214 | * it to the first valid ITS, and let the HW do its magic. |
| 4215 | */ |
| 4216 | its = find_4_1_its(); |
| 4217 | if (its) |
| 4218 | its_send_invdb(its, vpe); |
| 4219 | } |
| 4220 | |
| 4221 | static void its_vpe_4_1_mask_irq(struct irq_data *d) |
| 4222 | { |
| 4223 | lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); |
| 4224 | its_vpe_4_1_send_inv(d); |
| 4225 | } |
| 4226 | |
| 4227 | static void its_vpe_4_1_unmask_irq(struct irq_data *d) |
| 4228 | { |
| 4229 | lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); |
| 4230 | its_vpe_4_1_send_inv(d); |
| 4231 | } |
| 4232 | |
| 4233 | static void its_vpe_4_1_schedule(struct its_vpe *vpe, |
| 4234 | struct its_cmd_info *info) |
| 4235 | { |
| 4236 | void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); |
| 4237 | u64 val = 0; |
| 4238 | |
| 4239 | /* Schedule the VPE */ |
| 4240 | val |= GICR_VPENDBASER_Valid; |
| 4241 | val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0; |
| 4242 | val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0; |
| 4243 | val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id); |
| 4244 | |
| 4245 | gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); |
| 4246 | } |
| 4247 | |
| 4248 | static void its_vpe_4_1_deschedule(struct its_vpe *vpe, |
| 4249 | struct its_cmd_info *info) |
| 4250 | { |
| 4251 | void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); |
| 4252 | u64 val; |
| 4253 | |
| 4254 | if (info->req_db) { |
| 4255 | unsigned long flags; |
| 4256 | |
| 4257 | /* |
| 4258 | * vPE is going to block: make the vPE non-resident with |
| 4259 | * PendingLast clear and DB set. The GIC guarantees that if |
| 4260 | * we read-back PendingLast clear, then a doorbell will be |
| 4261 | * delivered when an interrupt comes. |
| 4262 | * |
| 4263 | * Note the locking to deal with the concurrent update of |
| 4264 | * pending_last from the doorbell interrupt handler that can |
| 4265 | * run concurrently. |
| 4266 | */ |
| 4267 | raw_spin_lock_irqsave(&vpe->vpe_lock, flags); |
| 4268 | val = its_clear_vpend_valid(vlpi_base, |
| 4269 | GICR_VPENDBASER_PendingLast, |
| 4270 | GICR_VPENDBASER_4_1_DB); |
| 4271 | vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); |
| 4272 | raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); |
| 4273 | } else { |
| 4274 | /* |
| 4275 | * We're not blocking, so just make the vPE non-resident |
| 4276 | * with PendingLast set, indicating that we'll be back. |
| 4277 | */ |
| 4278 | val = its_clear_vpend_valid(vlpi_base, |
| 4279 | 0, |
| 4280 | GICR_VPENDBASER_PendingLast); |
| 4281 | vpe->pending_last = true; |
| 4282 | } |
| 4283 | } |
| 4284 | |
| 4285 | static void its_vpe_4_1_invall(struct its_vpe *vpe) |
| 4286 | { |
| 4287 | unsigned long flags; |
| 4288 | int cpu; |
| 4289 | |
| 4290 | /* Target the redistributor this vPE is currently known on */ |
| 4291 | cpu = vpe_to_cpuid_lock(vpe, &flags); |
| 4292 | its_vpe_4_1_invall_locked(cpu, vpe); |
| 4293 | vpe_to_cpuid_unlock(vpe, flags); |
| 4294 | } |
| 4295 | |
| 4296 | static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) |
| 4297 | { |
| 4298 | struct its_vpe *vpe = irq_data_get_irq_chip_data(d); |
| 4299 | struct its_cmd_info *info = vcpu_info; |
| 4300 | |
| 4301 | switch (info->cmd_type) { |
| 4302 | case SCHEDULE_VPE: |
| 4303 | its_vpe_4_1_schedule(vpe, info); |
| 4304 | return 0; |
| 4305 | |
| 4306 | case DESCHEDULE_VPE: |
| 4307 | its_vpe_4_1_deschedule(vpe, info); |
| 4308 | return 0; |
| 4309 | |
| 4310 | case COMMIT_VPE: |
| 4311 | its_wait_vpt_parse_complete(); |
| 4312 | return 0; |
| 4313 | |
| 4314 | case INVALL_VPE: |
| 4315 | its_vpe_4_1_invall(vpe); |
| 4316 | return 0; |
| 4317 | |
| 4318 | default: |
| 4319 | return -EINVAL; |
| 4320 | } |
| 4321 | } |
| 4322 | |
| 4323 | static struct irq_chip its_vpe_4_1_irq_chip = { |
| 4324 | .name = "GICv4.1-vpe", |
| 4325 | .irq_mask = its_vpe_4_1_mask_irq, |
| 4326 | .irq_unmask = its_vpe_4_1_unmask_irq, |
| 4327 | .irq_eoi = irq_chip_eoi_parent, |
| 4328 | .irq_set_affinity = its_vpe_set_affinity, |
| 4329 | .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity, |
| 4330 | }; |
| 4331 | |
| 4332 | static void its_configure_sgi(struct irq_data *d, bool clear) |
| 4333 | { |
| 4334 | struct its_vpe *vpe = irq_data_get_irq_chip_data(d); |
| 4335 | struct its_cmd_desc desc; |
| 4336 | |
| 4337 | desc.its_vsgi_cmd.vpe = vpe; |
| 4338 | desc.its_vsgi_cmd.sgi = d->hwirq; |
| 4339 | desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority; |
| 4340 | desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled; |
| 4341 | desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group; |
| 4342 | desc.its_vsgi_cmd.clear = clear; |
| 4343 | |
| 4344 | /* |
| 4345 | * GICv4.1 allows us to send VSGI commands to any ITS as long as the |
| 4346 | * destination VPE is mapped there. Since we map them eagerly at |
| 4347 | * activation time, we're pretty sure the first GICv4.1 ITS will do. |
| 4348 | */ |
| 4349 | its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc); |
| 4350 | } |
| 4351 | |
| 4352 | static void its_sgi_mask_irq(struct irq_data *d) |
| 4353 | { |
| 4354 | struct its_vpe *vpe = irq_data_get_irq_chip_data(d); |
| 4355 | |
| 4356 | vpe->sgi_config[d->hwirq].enabled = false; |
| 4357 | its_configure_sgi(d, false); |
| 4358 | } |
| 4359 | |
| 4360 | static void its_sgi_unmask_irq(struct irq_data *d) |
| 4361 | { |
| 4362 | struct its_vpe *vpe = irq_data_get_irq_chip_data(d); |
| 4363 | |
| 4364 | vpe->sgi_config[d->hwirq].enabled = true; |
| 4365 | its_configure_sgi(d, false); |
| 4366 | } |
| 4367 | |
| 4368 | static int its_sgi_set_affinity(struct irq_data *d, |
| 4369 | const struct cpumask *mask_val, |
| 4370 | bool force) |
| 4371 | { |
| 4372 | /* |
| 4373 | * There is no notion of affinity for virtual SGIs, at least |
| 4374 | * not on the host (since they can only be targeting a vPE). |
| 4375 | * Tell the kernel we've done whatever it asked for. |
| 4376 | */ |
| 4377 | irq_data_update_effective_affinity(d, mask_val); |
| 4378 | return IRQ_SET_MASK_OK; |
| 4379 | } |
| 4380 | |
| 4381 | static int its_sgi_set_irqchip_state(struct irq_data *d, |
| 4382 | enum irqchip_irq_state which, |
| 4383 | bool state) |
| 4384 | { |
| 4385 | if (which != IRQCHIP_STATE_PENDING) |
| 4386 | return -EINVAL; |
| 4387 | |
| 4388 | if (state) { |
| 4389 | struct its_vpe *vpe = irq_data_get_irq_chip_data(d); |
| 4390 | struct its_node *its = find_4_1_its(); |
| 4391 | u64 val; |
| 4392 | |
| 4393 | val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id); |
| 4394 | val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq); |
| 4395 | writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K); |
| 4396 | } else { |
| 4397 | its_configure_sgi(d, true); |
| 4398 | } |
| 4399 | |
| 4400 | return 0; |
| 4401 | } |
| 4402 | |
| 4403 | static int its_sgi_get_irqchip_state(struct irq_data *d, |
| 4404 | enum irqchip_irq_state which, bool *val) |
| 4405 | { |
| 4406 | struct its_vpe *vpe = irq_data_get_irq_chip_data(d); |
| 4407 | void __iomem *base; |
| 4408 | unsigned long flags; |
| 4409 | u32 count = 1000000; /* 1s! */ |
| 4410 | u32 status; |
| 4411 | int cpu; |
| 4412 | |
| 4413 | if (which != IRQCHIP_STATE_PENDING) |
| 4414 | return -EINVAL; |
| 4415 | |
| 4416 | /* |
| 4417 | * Locking galore! We can race against two different events: |
| 4418 | * |
| 4419 | * - Concurrent vPE affinity change: we must make sure it cannot |
| 4420 | * happen, or we'll talk to the wrong redistributor. This is |
| 4421 | * identical to what happens with vLPIs. |
| 4422 | * |
| 4423 | * - Concurrent VSGIPENDR access: As it involves accessing two |
| 4424 | * MMIO registers, this must be made atomic one way or another. |
| 4425 | */ |
| 4426 | cpu = vpe_to_cpuid_lock(vpe, &flags); |
| 4427 | raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); |
| 4428 | base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K; |
| 4429 | writel_relaxed(vpe->vpe_id, base + GICR_VSGIR); |
| 4430 | do { |
| 4431 | status = readl_relaxed(base + GICR_VSGIPENDR); |
| 4432 | if (!(status & GICR_VSGIPENDR_BUSY)) |
| 4433 | goto out; |
| 4434 | |
| 4435 | count--; |
| 4436 | if (!count) { |
| 4437 | pr_err_ratelimited("Unable to get SGI status\n"); |
| 4438 | goto out; |
| 4439 | } |
| 4440 | cpu_relax(); |
| 4441 | udelay(1); |
| 4442 | } while (count); |
| 4443 | |
| 4444 | out: |
| 4445 | raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); |
| 4446 | vpe_to_cpuid_unlock(vpe, flags); |
| 4447 | |
| 4448 | if (!count) |
| 4449 | return -ENXIO; |
| 4450 | |
| 4451 | *val = !!(status & (1 << d->hwirq)); |
| 4452 | |
| 4453 | return 0; |
| 4454 | } |
| 4455 | |
| 4456 | static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) |
| 4457 | { |
| 4458 | struct its_vpe *vpe = irq_data_get_irq_chip_data(d); |
| 4459 | struct its_cmd_info *info = vcpu_info; |
| 4460 | |
| 4461 | switch (info->cmd_type) { |
| 4462 | case PROP_UPDATE_VSGI: |
| 4463 | vpe->sgi_config[d->hwirq].priority = info->priority; |
| 4464 | vpe->sgi_config[d->hwirq].group = info->group; |
| 4465 | its_configure_sgi(d, false); |
| 4466 | return 0; |
| 4467 | |
| 4468 | default: |
| 4469 | return -EINVAL; |
| 4470 | } |
| 4471 | } |
| 4472 | |
| 4473 | static struct irq_chip its_sgi_irq_chip = { |
| 4474 | .name = "GICv4.1-sgi", |
| 4475 | .irq_mask = its_sgi_mask_irq, |
| 4476 | .irq_unmask = its_sgi_unmask_irq, |
| 4477 | .irq_set_affinity = its_sgi_set_affinity, |
| 4478 | .irq_set_irqchip_state = its_sgi_set_irqchip_state, |
| 4479 | .irq_get_irqchip_state = its_sgi_get_irqchip_state, |
| 4480 | .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity, |
| 4481 | }; |
| 4482 | |
| 4483 | static int its_sgi_irq_domain_alloc(struct irq_domain *domain, |
| 4484 | unsigned int virq, unsigned int nr_irqs, |
| 4485 | void *args) |
| 4486 | { |
| 4487 | struct its_vpe *vpe = args; |
| 4488 | int i; |
| 4489 | |
| 4490 | /* Yes, we do want 16 SGIs */ |
| 4491 | WARN_ON(nr_irqs != 16); |
| 4492 | |
| 4493 | for (i = 0; i < 16; i++) { |
| 4494 | vpe->sgi_config[i].priority = 0; |
| 4495 | vpe->sgi_config[i].enabled = false; |
| 4496 | vpe->sgi_config[i].group = false; |
| 4497 | |
| 4498 | irq_domain_set_hwirq_and_chip(domain, virq + i, i, |
| 4499 | &its_sgi_irq_chip, vpe); |
| 4500 | irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY); |
| 4501 | } |
| 4502 | |
| 4503 | return 0; |
| 4504 | } |
| 4505 | |
| 4506 | static void its_sgi_irq_domain_free(struct irq_domain *domain, |
| 4507 | unsigned int virq, |
| 4508 | unsigned int nr_irqs) |
| 4509 | { |
| 4510 | /* Nothing to do */ |
| 4511 | } |
| 4512 | |
| 4513 | static int its_sgi_irq_domain_activate(struct irq_domain *domain, |
| 4514 | struct irq_data *d, bool reserve) |
| 4515 | { |
| 4516 | /* Write out the initial SGI configuration */ |
| 4517 | its_configure_sgi(d, false); |
| 4518 | return 0; |
| 4519 | } |
| 4520 | |
| 4521 | static void its_sgi_irq_domain_deactivate(struct irq_domain *domain, |
| 4522 | struct irq_data *d) |
| 4523 | { |
| 4524 | struct its_vpe *vpe = irq_data_get_irq_chip_data(d); |
| 4525 | |
| 4526 | /* |
| 4527 | * The VSGI command is awkward: |
| 4528 | * |
| 4529 | * - To change the configuration, CLEAR must be set to false, |
| 4530 | * leaving the pending bit unchanged. |
| 4531 | * - To clear the pending bit, CLEAR must be set to true, leaving |
| 4532 | * the configuration unchanged. |
| 4533 | * |
| 4534 | * You just can't do both at once, hence the two commands below. |
| 4535 | */ |
| 4536 | vpe->sgi_config[d->hwirq].enabled = false; |
| 4537 | its_configure_sgi(d, false); |
| 4538 | its_configure_sgi(d, true); |
| 4539 | } |
| 4540 | |
| 4541 | static const struct irq_domain_ops its_sgi_domain_ops = { |
| 4542 | .alloc = its_sgi_irq_domain_alloc, |
| 4543 | .free = its_sgi_irq_domain_free, |
| 4544 | .activate = its_sgi_irq_domain_activate, |
| 4545 | .deactivate = its_sgi_irq_domain_deactivate, |
| 4546 | }; |
| 4547 | |
| 4548 | static int its_vpe_id_alloc(void) |
| 4549 | { |
| 4550 | return ida_alloc_max(&its_vpeid_ida, ITS_MAX_VPEID - 1, GFP_KERNEL); |
| 4551 | } |
| 4552 | |
| 4553 | static void its_vpe_id_free(u16 id) |
| 4554 | { |
| 4555 | ida_free(&its_vpeid_ida, id); |
| 4556 | } |
| 4557 | |
| 4558 | static int its_vpe_init(struct its_vpe *vpe) |
| 4559 | { |
| 4560 | struct page *vpt_page; |
| 4561 | int vpe_id; |
| 4562 | |
| 4563 | /* Allocate vpe_id */ |
| 4564 | vpe_id = its_vpe_id_alloc(); |
| 4565 | if (vpe_id < 0) |
| 4566 | return vpe_id; |
| 4567 | |
| 4568 | /* Allocate VPT */ |
| 4569 | vpt_page = its_allocate_pending_table(GFP_KERNEL); |
| 4570 | if (!vpt_page) { |
| 4571 | its_vpe_id_free(vpe_id); |
| 4572 | return -ENOMEM; |
| 4573 | } |
| 4574 | |
| 4575 | if (!its_alloc_vpe_table(vpe_id)) { |
| 4576 | its_vpe_id_free(vpe_id); |
| 4577 | its_free_pending_table(vpt_page); |
| 4578 | return -ENOMEM; |
| 4579 | } |
| 4580 | |
| 4581 | raw_spin_lock_init(&vpe->vpe_lock); |
| 4582 | vpe->vpe_id = vpe_id; |
| 4583 | vpe->vpt_page = vpt_page; |
| 4584 | atomic_set(&vpe->vmapp_count, 0); |
| 4585 | if (!gic_rdists->has_rvpeid) |
| 4586 | vpe->vpe_proxy_event = -1; |
| 4587 | |
| 4588 | return 0; |
| 4589 | } |
| 4590 | |
| 4591 | static void its_vpe_teardown(struct its_vpe *vpe) |
| 4592 | { |
| 4593 | its_vpe_db_proxy_unmap(vpe); |
| 4594 | its_vpe_id_free(vpe->vpe_id); |
| 4595 | its_free_pending_table(vpe->vpt_page); |
| 4596 | } |
| 4597 | |
| 4598 | static void its_vpe_irq_domain_free(struct irq_domain *domain, |
| 4599 | unsigned int virq, |
| 4600 | unsigned int nr_irqs) |
| 4601 | { |
| 4602 | struct its_vm *vm = domain->host_data; |
| 4603 | int i; |
| 4604 | |
| 4605 | irq_domain_free_irqs_parent(domain, virq, nr_irqs); |
| 4606 | |
| 4607 | for (i = 0; i < nr_irqs; i++) { |
| 4608 | struct irq_data *data = irq_domain_get_irq_data(domain, |
| 4609 | virq + i); |
| 4610 | struct its_vpe *vpe = irq_data_get_irq_chip_data(data); |
| 4611 | |
| 4612 | BUG_ON(vm != vpe->its_vm); |
| 4613 | |
| 4614 | clear_bit(data->hwirq, vm->db_bitmap); |
| 4615 | its_vpe_teardown(vpe); |
| 4616 | irq_domain_reset_irq_data(data); |
| 4617 | } |
| 4618 | |
| 4619 | if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { |
| 4620 | its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); |
| 4621 | its_free_prop_table(vm->vprop_page); |
| 4622 | } |
| 4623 | } |
| 4624 | |
| 4625 | static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, |
| 4626 | unsigned int nr_irqs, void *args) |
| 4627 | { |
| 4628 | struct irq_chip *irqchip = &its_vpe_irq_chip; |
| 4629 | struct its_vm *vm = args; |
| 4630 | unsigned long *bitmap; |
| 4631 | struct page *vprop_page; |
| 4632 | int base, nr_ids, i, err = 0; |
| 4633 | |
| 4634 | bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); |
| 4635 | if (!bitmap) |
| 4636 | return -ENOMEM; |
| 4637 | |
| 4638 | if (nr_ids < nr_irqs) { |
| 4639 | its_lpi_free(bitmap, base, nr_ids); |
| 4640 | return -ENOMEM; |
| 4641 | } |
| 4642 | |
| 4643 | vprop_page = its_allocate_prop_table(GFP_KERNEL); |
| 4644 | if (!vprop_page) { |
| 4645 | its_lpi_free(bitmap, base, nr_ids); |
| 4646 | return -ENOMEM; |
| 4647 | } |
| 4648 | |
| 4649 | vm->db_bitmap = bitmap; |
| 4650 | vm->db_lpi_base = base; |
| 4651 | vm->nr_db_lpis = nr_ids; |
| 4652 | vm->vprop_page = vprop_page; |
| 4653 | raw_spin_lock_init(&vm->vmapp_lock); |
| 4654 | |
| 4655 | if (gic_rdists->has_rvpeid) |
| 4656 | irqchip = &its_vpe_4_1_irq_chip; |
| 4657 | |
| 4658 | for (i = 0; i < nr_irqs; i++) { |
| 4659 | vm->vpes[i]->vpe_db_lpi = base + i; |
| 4660 | err = its_vpe_init(vm->vpes[i]); |
| 4661 | if (err) |
| 4662 | break; |
| 4663 | err = its_irq_gic_domain_alloc(domain, virq + i, |
| 4664 | vm->vpes[i]->vpe_db_lpi); |
| 4665 | if (err) |
| 4666 | break; |
| 4667 | irq_domain_set_hwirq_and_chip(domain, virq + i, i, |
| 4668 | irqchip, vm->vpes[i]); |
| 4669 | set_bit(i, bitmap); |
| 4670 | irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i)); |
| 4671 | } |
| 4672 | |
| 4673 | if (err) |
| 4674 | its_vpe_irq_domain_free(domain, virq, i); |
| 4675 | |
| 4676 | return err; |
| 4677 | } |
| 4678 | |
| 4679 | static int its_vpe_irq_domain_activate(struct irq_domain *domain, |
| 4680 | struct irq_data *d, bool reserve) |
| 4681 | { |
| 4682 | struct its_vpe *vpe = irq_data_get_irq_chip_data(d); |
| 4683 | struct its_node *its; |
| 4684 | |
| 4685 | /* Map the VPE to the first possible CPU */ |
| 4686 | vpe->col_idx = cpumask_first(cpu_online_mask); |
| 4687 | irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); |
| 4688 | |
| 4689 | /* |
| 4690 | * If we use the list map, we issue VMAPP on demand... Unless |
| 4691 | * we're on a GICv4.1 and we eagerly map the VPE on all ITSs |
| 4692 | * so that VSGIs can work. |
| 4693 | */ |
| 4694 | if (!gic_requires_eager_mapping()) |
| 4695 | return 0; |
| 4696 | |
| 4697 | list_for_each_entry(its, &its_nodes, entry) { |
| 4698 | if (!is_v4(its)) |
| 4699 | continue; |
| 4700 | |
| 4701 | its_send_vmapp(its, vpe, true); |
| 4702 | its_send_vinvall(its, vpe); |
| 4703 | } |
| 4704 | |
| 4705 | return 0; |
| 4706 | } |
| 4707 | |
| 4708 | static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, |
| 4709 | struct irq_data *d) |
| 4710 | { |
| 4711 | struct its_vpe *vpe = irq_data_get_irq_chip_data(d); |
| 4712 | struct its_node *its; |
| 4713 | |
| 4714 | /* |
| 4715 | * If we use the list map on GICv4.0, we unmap the VPE once no |
| 4716 | * VLPIs are associated with the VM. |
| 4717 | */ |
| 4718 | if (!gic_requires_eager_mapping()) |
| 4719 | return; |
| 4720 | |
| 4721 | list_for_each_entry(its, &its_nodes, entry) { |
| 4722 | if (!is_v4(its)) |
| 4723 | continue; |
| 4724 | |
| 4725 | its_send_vmapp(its, vpe, false); |
| 4726 | } |
| 4727 | |
| 4728 | /* |
| 4729 | * There may be a direct read to the VPT after unmapping the |
| 4730 | * vPE, to guarantee the validity of this, we make the VPT |
| 4731 | * memory coherent with the CPU caches here. |
| 4732 | */ |
| 4733 | if (find_4_1_its() && !atomic_read(&vpe->vmapp_count)) |
| 4734 | gic_flush_dcache_to_poc(page_address(vpe->vpt_page), |
| 4735 | LPI_PENDBASE_SZ); |
| 4736 | } |
| 4737 | |
| 4738 | static const struct irq_domain_ops its_vpe_domain_ops = { |
| 4739 | .alloc = its_vpe_irq_domain_alloc, |
| 4740 | .free = its_vpe_irq_domain_free, |
| 4741 | .activate = its_vpe_irq_domain_activate, |
| 4742 | .deactivate = its_vpe_irq_domain_deactivate, |
| 4743 | }; |
| 4744 | |
| 4745 | static int its_force_quiescent(void __iomem *base) |
| 4746 | { |
| 4747 | u32 count = 1000000; /* 1s */ |
| 4748 | u32 val; |
| 4749 | |
| 4750 | val = readl_relaxed(base + GITS_CTLR); |
| 4751 | /* |
| 4752 | * GIC architecture specification requires the ITS to be both |
| 4753 | * disabled and quiescent for writes to GITS_BASER<n> or |
| 4754 | * GITS_CBASER to not have UNPREDICTABLE results. |
| 4755 | */ |
| 4756 | if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) |
| 4757 | return 0; |
| 4758 | |
| 4759 | /* Disable the generation of all interrupts to this ITS */ |
| 4760 | val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); |
| 4761 | writel_relaxed(val, base + GITS_CTLR); |
| 4762 | |
| 4763 | /* Poll GITS_CTLR and wait until ITS becomes quiescent */ |
| 4764 | while (1) { |
| 4765 | val = readl_relaxed(base + GITS_CTLR); |
| 4766 | if (val & GITS_CTLR_QUIESCENT) |
| 4767 | return 0; |
| 4768 | |
| 4769 | count--; |
| 4770 | if (!count) |
| 4771 | return -EBUSY; |
| 4772 | |
| 4773 | cpu_relax(); |
| 4774 | udelay(1); |
| 4775 | } |
| 4776 | } |
| 4777 | |
| 4778 | static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) |
| 4779 | { |
| 4780 | struct its_node *its = data; |
| 4781 | |
| 4782 | /* erratum 22375: only alloc 8MB table size (20 bits) */ |
| 4783 | its->typer &= ~GITS_TYPER_DEVBITS; |
| 4784 | its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1); |
| 4785 | its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; |
| 4786 | |
| 4787 | return true; |
| 4788 | } |
| 4789 | |
| 4790 | static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) |
| 4791 | { |
| 4792 | struct its_node *its = data; |
| 4793 | |
| 4794 | its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; |
| 4795 | |
| 4796 | return true; |
| 4797 | } |
| 4798 | |
| 4799 | static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) |
| 4800 | { |
| 4801 | struct its_node *its = data; |
| 4802 | |
| 4803 | /* On QDF2400, the size of the ITE is 16Bytes */ |
| 4804 | its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE; |
| 4805 | its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1); |
| 4806 | |
| 4807 | return true; |
| 4808 | } |
| 4809 | |
| 4810 | static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) |
| 4811 | { |
| 4812 | struct its_node *its = its_dev->its; |
| 4813 | |
| 4814 | /* |
| 4815 | * The Socionext Synquacer SoC has a so-called 'pre-ITS', |
| 4816 | * which maps 32-bit writes targeted at a separate window of |
| 4817 | * size '4 << device_id_bits' onto writes to GITS_TRANSLATER |
| 4818 | * with device ID taken from bits [device_id_bits + 1:2] of |
| 4819 | * the window offset. |
| 4820 | */ |
| 4821 | return its->pre_its_base + (its_dev->device_id << 2); |
| 4822 | } |
| 4823 | |
| 4824 | static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) |
| 4825 | { |
| 4826 | struct its_node *its = data; |
| 4827 | u32 pre_its_window[2]; |
| 4828 | u32 ids; |
| 4829 | |
| 4830 | if (!fwnode_property_read_u32_array(its->fwnode_handle, |
| 4831 | "socionext,synquacer-pre-its", |
| 4832 | pre_its_window, |
| 4833 | ARRAY_SIZE(pre_its_window))) { |
| 4834 | |
| 4835 | its->pre_its_base = pre_its_window[0]; |
| 4836 | its->get_msi_base = its_irq_get_msi_base_pre_its; |
| 4837 | |
| 4838 | ids = ilog2(pre_its_window[1]) - 2; |
| 4839 | if (device_ids(its) > ids) { |
| 4840 | its->typer &= ~GITS_TYPER_DEVBITS; |
| 4841 | its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1); |
| 4842 | } |
| 4843 | |
| 4844 | /* the pre-ITS breaks isolation, so disable MSI remapping */ |
| 4845 | its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI; |
| 4846 | return true; |
| 4847 | } |
| 4848 | return false; |
| 4849 | } |
| 4850 | |
| 4851 | static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) |
| 4852 | { |
| 4853 | struct its_node *its = data; |
| 4854 | |
| 4855 | /* |
| 4856 | * Hip07 insists on using the wrong address for the VLPI |
| 4857 | * page. Trick it into doing the right thing... |
| 4858 | */ |
| 4859 | its->vlpi_redist_offset = SZ_128K; |
| 4860 | return true; |
| 4861 | } |
| 4862 | |
| 4863 | static bool __maybe_unused its_enable_rk3588001(void *data) |
| 4864 | { |
| 4865 | struct its_node *its = data; |
| 4866 | |
| 4867 | if (!of_machine_is_compatible("rockchip,rk3588") && |
| 4868 | !of_machine_is_compatible("rockchip,rk3588s")) |
| 4869 | return false; |
| 4870 | |
| 4871 | its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; |
| 4872 | gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE; |
| 4873 | |
| 4874 | return true; |
| 4875 | } |
| 4876 | |
| 4877 | static bool its_set_non_coherent(void *data) |
| 4878 | { |
| 4879 | struct its_node *its = data; |
| 4880 | |
| 4881 | its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; |
| 4882 | return true; |
| 4883 | } |
| 4884 | |
| 4885 | static bool __maybe_unused its_enable_quirk_hip09_162100801(void *data) |
| 4886 | { |
| 4887 | struct its_node *its = data; |
| 4888 | |
| 4889 | its->flags |= ITS_FLAGS_WORKAROUND_HISILICON_162100801; |
| 4890 | return true; |
| 4891 | } |
| 4892 | |
| 4893 | static bool __maybe_unused its_enable_rk3568002(void *data) |
| 4894 | { |
| 4895 | if (!of_machine_is_compatible("rockchip,rk3566") && |
| 4896 | !of_machine_is_compatible("rockchip,rk3568")) |
| 4897 | return false; |
| 4898 | |
| 4899 | gfp_flags_quirk |= GFP_DMA32; |
| 4900 | |
| 4901 | return true; |
| 4902 | } |
| 4903 | |
| 4904 | static const struct gic_quirk its_quirks[] = { |
| 4905 | #ifdef CONFIG_CAVIUM_ERRATUM_22375 |
| 4906 | { |
| 4907 | .desc = "ITS: Cavium errata 22375, 24313", |
| 4908 | .iidr = 0xa100034c, /* ThunderX pass 1.x */ |
| 4909 | .mask = 0xffff0fff, |
| 4910 | .init = its_enable_quirk_cavium_22375, |
| 4911 | }, |
| 4912 | #endif |
| 4913 | #ifdef CONFIG_CAVIUM_ERRATUM_23144 |
| 4914 | { |
| 4915 | .desc = "ITS: Cavium erratum 23144", |
| 4916 | .iidr = 0xa100034c, /* ThunderX pass 1.x */ |
| 4917 | .mask = 0xffff0fff, |
| 4918 | .init = its_enable_quirk_cavium_23144, |
| 4919 | }, |
| 4920 | #endif |
| 4921 | #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 |
| 4922 | { |
| 4923 | .desc = "ITS: QDF2400 erratum 0065", |
| 4924 | .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ |
| 4925 | .mask = 0xffffffff, |
| 4926 | .init = its_enable_quirk_qdf2400_e0065, |
| 4927 | }, |
| 4928 | #endif |
| 4929 | #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS |
| 4930 | { |
| 4931 | /* |
| 4932 | * The Socionext Synquacer SoC incorporates ARM's own GIC-500 |
| 4933 | * implementation, but with a 'pre-ITS' added that requires |
| 4934 | * special handling in software. |
| 4935 | */ |
| 4936 | .desc = "ITS: Socionext Synquacer pre-ITS", |
| 4937 | .iidr = 0x0001143b, |
| 4938 | .mask = 0xffffffff, |
| 4939 | .init = its_enable_quirk_socionext_synquacer, |
| 4940 | }, |
| 4941 | #endif |
| 4942 | #ifdef CONFIG_HISILICON_ERRATUM_161600802 |
| 4943 | { |
| 4944 | .desc = "ITS: Hip07 erratum 161600802", |
| 4945 | .iidr = 0x00000004, |
| 4946 | .mask = 0xffffffff, |
| 4947 | .init = its_enable_quirk_hip07_161600802, |
| 4948 | }, |
| 4949 | #endif |
| 4950 | #ifdef CONFIG_HISILICON_ERRATUM_162100801 |
| 4951 | { |
| 4952 | .desc = "ITS: Hip09 erratum 162100801", |
| 4953 | .iidr = 0x00051736, |
| 4954 | .mask = 0xffffffff, |
| 4955 | .init = its_enable_quirk_hip09_162100801, |
| 4956 | }, |
| 4957 | #endif |
| 4958 | #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001 |
| 4959 | { |
| 4960 | .desc = "ITS: Rockchip erratum RK3588001", |
| 4961 | .iidr = 0x0201743b, |
| 4962 | .mask = 0xffffffff, |
| 4963 | .init = its_enable_rk3588001, |
| 4964 | }, |
| 4965 | #endif |
| 4966 | { |
| 4967 | .desc = "ITS: non-coherent attribute", |
| 4968 | .property = "dma-noncoherent", |
| 4969 | .init = its_set_non_coherent, |
| 4970 | }, |
| 4971 | #ifdef CONFIG_ROCKCHIP_ERRATUM_3568002 |
| 4972 | { |
| 4973 | .desc = "ITS: Rockchip erratum RK3568002", |
| 4974 | .iidr = 0x0201743b, |
| 4975 | .mask = 0xffffffff, |
| 4976 | .init = its_enable_rk3568002, |
| 4977 | }, |
| 4978 | #endif |
| 4979 | { |
| 4980 | } |
| 4981 | }; |
| 4982 | |
| 4983 | static void its_enable_quirks(struct its_node *its) |
| 4984 | { |
| 4985 | u32 iidr = readl_relaxed(its->base + GITS_IIDR); |
| 4986 | |
| 4987 | gic_enable_quirks(iidr, its_quirks, its); |
| 4988 | |
| 4989 | if (is_of_node(its->fwnode_handle)) |
| 4990 | gic_enable_of_quirks(to_of_node(its->fwnode_handle), |
| 4991 | its_quirks, its); |
| 4992 | } |
| 4993 | |
| 4994 | static int its_save_disable(void) |
| 4995 | { |
| 4996 | struct its_node *its; |
| 4997 | int err = 0; |
| 4998 | |
| 4999 | raw_spin_lock(&its_lock); |
| 5000 | list_for_each_entry(its, &its_nodes, entry) { |
| 5001 | void __iomem *base; |
| 5002 | |
| 5003 | base = its->base; |
| 5004 | its->ctlr_save = readl_relaxed(base + GITS_CTLR); |
| 5005 | err = its_force_quiescent(base); |
| 5006 | if (err) { |
| 5007 | pr_err("ITS@%pa: failed to quiesce: %d\n", |
| 5008 | &its->phys_base, err); |
| 5009 | writel_relaxed(its->ctlr_save, base + GITS_CTLR); |
| 5010 | goto err; |
| 5011 | } |
| 5012 | |
| 5013 | its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); |
| 5014 | } |
| 5015 | |
| 5016 | err: |
| 5017 | if (err) { |
| 5018 | list_for_each_entry_continue_reverse(its, &its_nodes, entry) { |
| 5019 | void __iomem *base; |
| 5020 | |
| 5021 | base = its->base; |
| 5022 | writel_relaxed(its->ctlr_save, base + GITS_CTLR); |
| 5023 | } |
| 5024 | } |
| 5025 | raw_spin_unlock(&its_lock); |
| 5026 | |
| 5027 | return err; |
| 5028 | } |
| 5029 | |
| 5030 | static void its_restore_enable(void) |
| 5031 | { |
| 5032 | struct its_node *its; |
| 5033 | int ret; |
| 5034 | |
| 5035 | raw_spin_lock(&its_lock); |
| 5036 | list_for_each_entry(its, &its_nodes, entry) { |
| 5037 | void __iomem *base; |
| 5038 | int i; |
| 5039 | |
| 5040 | base = its->base; |
| 5041 | |
| 5042 | /* |
| 5043 | * Make sure that the ITS is disabled. If it fails to quiesce, |
| 5044 | * don't restore it since writing to CBASER or BASER<n> |
| 5045 | * registers is undefined according to the GIC v3 ITS |
| 5046 | * Specification. |
| 5047 | * |
| 5048 | * Firmware resuming with the ITS enabled is terminally broken. |
| 5049 | */ |
| 5050 | WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE); |
| 5051 | ret = its_force_quiescent(base); |
| 5052 | if (ret) { |
| 5053 | pr_err("ITS@%pa: failed to quiesce on resume: %d\n", |
| 5054 | &its->phys_base, ret); |
| 5055 | continue; |
| 5056 | } |
| 5057 | |
| 5058 | gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); |
| 5059 | |
| 5060 | /* |
| 5061 | * Writing CBASER resets CREADR to 0, so make CWRITER and |
| 5062 | * cmd_write line up with it. |
| 5063 | */ |
| 5064 | its->cmd_write = its->cmd_base; |
| 5065 | gits_write_cwriter(0, base + GITS_CWRITER); |
| 5066 | |
| 5067 | /* Restore GITS_BASER from the value cache. */ |
| 5068 | for (i = 0; i < GITS_BASER_NR_REGS; i++) { |
| 5069 | struct its_baser *baser = &its->tables[i]; |
| 5070 | |
| 5071 | if (!(baser->val & GITS_BASER_VALID)) |
| 5072 | continue; |
| 5073 | |
| 5074 | its_write_baser(its, baser, baser->val); |
| 5075 | } |
| 5076 | writel_relaxed(its->ctlr_save, base + GITS_CTLR); |
| 5077 | |
| 5078 | /* |
| 5079 | * Reinit the collection if it's stored in the ITS. This is |
| 5080 | * indicated by the col_id being less than the HCC field. |
| 5081 | * CID < HCC as specified in the GIC v3 Documentation. |
| 5082 | */ |
| 5083 | if (its->collections[smp_processor_id()].col_id < |
| 5084 | GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) |
| 5085 | its_cpu_init_collection(its); |
| 5086 | } |
| 5087 | raw_spin_unlock(&its_lock); |
| 5088 | } |
| 5089 | |
| 5090 | static struct syscore_ops its_syscore_ops = { |
| 5091 | .suspend = its_save_disable, |
| 5092 | .resume = its_restore_enable, |
| 5093 | }; |
| 5094 | |
| 5095 | static void __init __iomem *its_map_one(struct resource *res, int *err) |
| 5096 | { |
| 5097 | void __iomem *its_base; |
| 5098 | u32 val; |
| 5099 | |
| 5100 | its_base = ioremap(res->start, SZ_64K); |
| 5101 | if (!its_base) { |
| 5102 | pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); |
| 5103 | *err = -ENOMEM; |
| 5104 | return NULL; |
| 5105 | } |
| 5106 | |
| 5107 | val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; |
| 5108 | if (val != 0x30 && val != 0x40) { |
| 5109 | pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); |
| 5110 | *err = -ENODEV; |
| 5111 | goto out_unmap; |
| 5112 | } |
| 5113 | |
| 5114 | *err = its_force_quiescent(its_base); |
| 5115 | if (*err) { |
| 5116 | pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); |
| 5117 | goto out_unmap; |
| 5118 | } |
| 5119 | |
| 5120 | return its_base; |
| 5121 | |
| 5122 | out_unmap: |
| 5123 | iounmap(its_base); |
| 5124 | return NULL; |
| 5125 | } |
| 5126 | |
| 5127 | static int its_init_domain(struct its_node *its) |
| 5128 | { |
| 5129 | struct irq_domain_info dom_info = { |
| 5130 | .fwnode = its->fwnode_handle, |
| 5131 | .ops = &its_domain_ops, |
| 5132 | .domain_flags = its->msi_domain_flags, |
| 5133 | .parent = its_parent, |
| 5134 | }; |
| 5135 | struct msi_domain_info *info; |
| 5136 | |
| 5137 | info = kzalloc(sizeof(*info), GFP_KERNEL); |
| 5138 | if (!info) |
| 5139 | return -ENOMEM; |
| 5140 | |
| 5141 | info->ops = &its_msi_domain_ops; |
| 5142 | info->data = its; |
| 5143 | dom_info.host_data = info; |
| 5144 | |
| 5145 | if (!msi_create_parent_irq_domain(&dom_info, &gic_v3_its_msi_parent_ops)) { |
| 5146 | kfree(info); |
| 5147 | return -ENOMEM; |
| 5148 | } |
| 5149 | return 0; |
| 5150 | } |
| 5151 | |
| 5152 | static int its_init_vpe_domain(void) |
| 5153 | { |
| 5154 | struct its_node *its; |
| 5155 | u32 devid; |
| 5156 | int entries; |
| 5157 | |
| 5158 | if (gic_rdists->has_direct_lpi) { |
| 5159 | pr_info("ITS: Using DirectLPI for VPE invalidation\n"); |
| 5160 | return 0; |
| 5161 | } |
| 5162 | |
| 5163 | /* Any ITS will do, even if not v4 */ |
| 5164 | its = list_first_entry(&its_nodes, struct its_node, entry); |
| 5165 | |
| 5166 | entries = roundup_pow_of_two(nr_cpu_ids); |
| 5167 | vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), |
| 5168 | GFP_KERNEL); |
| 5169 | if (!vpe_proxy.vpes) |
| 5170 | return -ENOMEM; |
| 5171 | |
| 5172 | /* Use the last possible DevID */ |
| 5173 | devid = GENMASK(device_ids(its) - 1, 0); |
| 5174 | vpe_proxy.dev = its_create_device(its, devid, entries, false); |
| 5175 | if (!vpe_proxy.dev) { |
| 5176 | kfree(vpe_proxy.vpes); |
| 5177 | pr_err("ITS: Can't allocate GICv4 proxy device\n"); |
| 5178 | return -ENOMEM; |
| 5179 | } |
| 5180 | |
| 5181 | BUG_ON(entries > vpe_proxy.dev->nr_ites); |
| 5182 | |
| 5183 | raw_spin_lock_init(&vpe_proxy.lock); |
| 5184 | vpe_proxy.next_victim = 0; |
| 5185 | pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", |
| 5186 | devid, vpe_proxy.dev->nr_ites); |
| 5187 | |
| 5188 | return 0; |
| 5189 | } |
| 5190 | |
| 5191 | static int __init its_compute_its_list_map(struct its_node *its) |
| 5192 | { |
| 5193 | int its_number; |
| 5194 | u32 ctlr; |
| 5195 | |
| 5196 | /* |
| 5197 | * This is assumed to be done early enough that we're |
| 5198 | * guaranteed to be single-threaded, hence no |
| 5199 | * locking. Should this change, we should address |
| 5200 | * this. |
| 5201 | */ |
| 5202 | its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); |
| 5203 | if (its_number >= GICv4_ITS_LIST_MAX) { |
| 5204 | pr_err("ITS@%pa: No ITSList entry available!\n", |
| 5205 | &its->phys_base); |
| 5206 | return -EINVAL; |
| 5207 | } |
| 5208 | |
| 5209 | ctlr = readl_relaxed(its->base + GITS_CTLR); |
| 5210 | ctlr &= ~GITS_CTLR_ITS_NUMBER; |
| 5211 | ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; |
| 5212 | writel_relaxed(ctlr, its->base + GITS_CTLR); |
| 5213 | ctlr = readl_relaxed(its->base + GITS_CTLR); |
| 5214 | if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { |
| 5215 | its_number = ctlr & GITS_CTLR_ITS_NUMBER; |
| 5216 | its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; |
| 5217 | } |
| 5218 | |
| 5219 | if (test_and_set_bit(its_number, &its_list_map)) { |
| 5220 | pr_err("ITS@%pa: Duplicate ITSList entry %d\n", |
| 5221 | &its->phys_base, its_number); |
| 5222 | return -EINVAL; |
| 5223 | } |
| 5224 | |
| 5225 | return its_number; |
| 5226 | } |
| 5227 | |
| 5228 | static int __init its_probe_one(struct its_node *its) |
| 5229 | { |
| 5230 | u64 baser, tmp; |
| 5231 | struct page *page; |
| 5232 | u32 ctlr; |
| 5233 | int err; |
| 5234 | |
| 5235 | its_enable_quirks(its); |
| 5236 | |
| 5237 | if (is_v4(its)) { |
| 5238 | if (!(its->typer & GITS_TYPER_VMOVP)) { |
| 5239 | err = its_compute_its_list_map(its); |
| 5240 | if (err < 0) |
| 5241 | goto out; |
| 5242 | |
| 5243 | its->list_nr = err; |
| 5244 | |
| 5245 | pr_info("ITS@%pa: Using ITS number %d\n", |
| 5246 | &its->phys_base, err); |
| 5247 | } else { |
| 5248 | pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base); |
| 5249 | } |
| 5250 | |
| 5251 | if (is_v4_1(its)) { |
| 5252 | u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); |
| 5253 | |
| 5254 | its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K); |
| 5255 | if (!its->sgir_base) { |
| 5256 | err = -ENOMEM; |
| 5257 | goto out; |
| 5258 | } |
| 5259 | |
| 5260 | its->mpidr = readl_relaxed(its->base + GITS_MPIDR); |
| 5261 | |
| 5262 | pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n", |
| 5263 | &its->phys_base, its->mpidr, svpet); |
| 5264 | } |
| 5265 | } |
| 5266 | |
| 5267 | page = its_alloc_pages_node(its->numa_node, |
| 5268 | GFP_KERNEL | __GFP_ZERO, |
| 5269 | get_order(ITS_CMD_QUEUE_SZ)); |
| 5270 | if (!page) { |
| 5271 | err = -ENOMEM; |
| 5272 | goto out_unmap_sgir; |
| 5273 | } |
| 5274 | its->cmd_base = (void *)page_address(page); |
| 5275 | its->cmd_write = its->cmd_base; |
| 5276 | |
| 5277 | err = its_alloc_tables(its); |
| 5278 | if (err) |
| 5279 | goto out_free_cmd; |
| 5280 | |
| 5281 | err = its_alloc_collections(its); |
| 5282 | if (err) |
| 5283 | goto out_free_tables; |
| 5284 | |
| 5285 | baser = (virt_to_phys(its->cmd_base) | |
| 5286 | GITS_CBASER_RaWaWb | |
| 5287 | GITS_CBASER_InnerShareable | |
| 5288 | (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | |
| 5289 | GITS_CBASER_VALID); |
| 5290 | |
| 5291 | gits_write_cbaser(baser, its->base + GITS_CBASER); |
| 5292 | tmp = gits_read_cbaser(its->base + GITS_CBASER); |
| 5293 | |
| 5294 | if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) |
| 5295 | tmp &= ~GITS_CBASER_SHAREABILITY_MASK; |
| 5296 | |
| 5297 | if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { |
| 5298 | if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { |
| 5299 | /* |
| 5300 | * The HW reports non-shareable, we must |
| 5301 | * remove the cacheability attributes as |
| 5302 | * well. |
| 5303 | */ |
| 5304 | baser &= ~(GITS_CBASER_SHAREABILITY_MASK | |
| 5305 | GITS_CBASER_CACHEABILITY_MASK); |
| 5306 | baser |= GITS_CBASER_nC; |
| 5307 | gits_write_cbaser(baser, its->base + GITS_CBASER); |
| 5308 | } |
| 5309 | pr_info("ITS: using cache flushing for cmd queue\n"); |
| 5310 | its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; |
| 5311 | } |
| 5312 | |
| 5313 | gits_write_cwriter(0, its->base + GITS_CWRITER); |
| 5314 | ctlr = readl_relaxed(its->base + GITS_CTLR); |
| 5315 | ctlr |= GITS_CTLR_ENABLE; |
| 5316 | if (is_v4(its)) |
| 5317 | ctlr |= GITS_CTLR_ImDe; |
| 5318 | writel_relaxed(ctlr, its->base + GITS_CTLR); |
| 5319 | |
| 5320 | err = its_init_domain(its); |
| 5321 | if (err) |
| 5322 | goto out_free_tables; |
| 5323 | |
| 5324 | raw_spin_lock(&its_lock); |
| 5325 | list_add(&its->entry, &its_nodes); |
| 5326 | raw_spin_unlock(&its_lock); |
| 5327 | |
| 5328 | return 0; |
| 5329 | |
| 5330 | out_free_tables: |
| 5331 | its_free_tables(its); |
| 5332 | out_free_cmd: |
| 5333 | its_free_pages(its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); |
| 5334 | out_unmap_sgir: |
| 5335 | if (its->sgir_base) |
| 5336 | iounmap(its->sgir_base); |
| 5337 | out: |
| 5338 | pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err); |
| 5339 | return err; |
| 5340 | } |
| 5341 | |
| 5342 | static bool gic_rdists_supports_plpis(void) |
| 5343 | { |
| 5344 | return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); |
| 5345 | } |
| 5346 | |
| 5347 | static int redist_disable_lpis(void) |
| 5348 | { |
| 5349 | void __iomem *rbase = gic_data_rdist_rd_base(); |
| 5350 | u64 timeout = USEC_PER_SEC; |
| 5351 | u64 val; |
| 5352 | |
| 5353 | if (!gic_rdists_supports_plpis()) { |
| 5354 | pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); |
| 5355 | return -ENXIO; |
| 5356 | } |
| 5357 | |
| 5358 | val = readl_relaxed(rbase + GICR_CTLR); |
| 5359 | if (!(val & GICR_CTLR_ENABLE_LPIS)) |
| 5360 | return 0; |
| 5361 | |
| 5362 | /* |
| 5363 | * If coming via a CPU hotplug event, we don't need to disable |
| 5364 | * LPIs before trying to re-enable them. They are already |
| 5365 | * configured and all is well in the world. |
| 5366 | * |
| 5367 | * If running with preallocated tables, there is nothing to do. |
| 5368 | */ |
| 5369 | if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) || |
| 5370 | (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED)) |
| 5371 | return 0; |
| 5372 | |
| 5373 | /* |
| 5374 | * From that point on, we only try to do some damage control. |
| 5375 | */ |
| 5376 | pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n", |
| 5377 | smp_processor_id()); |
| 5378 | add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); |
| 5379 | |
| 5380 | /* Disable LPIs */ |
| 5381 | val &= ~GICR_CTLR_ENABLE_LPIS; |
| 5382 | writel_relaxed(val, rbase + GICR_CTLR); |
| 5383 | |
| 5384 | /* Make sure any change to GICR_CTLR is observable by the GIC */ |
| 5385 | dsb(sy); |
| 5386 | |
| 5387 | /* |
| 5388 | * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs |
| 5389 | * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. |
| 5390 | * Error out if we time out waiting for RWP to clear. |
| 5391 | */ |
| 5392 | while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { |
| 5393 | if (!timeout) { |
| 5394 | pr_err("CPU%d: Timeout while disabling LPIs\n", |
| 5395 | smp_processor_id()); |
| 5396 | return -ETIMEDOUT; |
| 5397 | } |
| 5398 | udelay(1); |
| 5399 | timeout--; |
| 5400 | } |
| 5401 | |
| 5402 | /* |
| 5403 | * After it has been written to 1, it is IMPLEMENTATION |
| 5404 | * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be |
| 5405 | * cleared to 0. Error out if clearing the bit failed. |
| 5406 | */ |
| 5407 | if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { |
| 5408 | pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); |
| 5409 | return -EBUSY; |
| 5410 | } |
| 5411 | |
| 5412 | return 0; |
| 5413 | } |
| 5414 | |
| 5415 | int its_cpu_init(void) |
| 5416 | { |
| 5417 | if (!list_empty(&its_nodes)) { |
| 5418 | int ret; |
| 5419 | |
| 5420 | ret = redist_disable_lpis(); |
| 5421 | if (ret) |
| 5422 | return ret; |
| 5423 | |
| 5424 | its_cpu_init_lpis(); |
| 5425 | its_cpu_init_collections(); |
| 5426 | } |
| 5427 | |
| 5428 | return 0; |
| 5429 | } |
| 5430 | |
| 5431 | static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work) |
| 5432 | { |
| 5433 | cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state); |
| 5434 | gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; |
| 5435 | } |
| 5436 | |
| 5437 | static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work, |
| 5438 | rdist_memreserve_cpuhp_cleanup_workfn); |
| 5439 | |
| 5440 | static int its_cpu_memreserve_lpi(unsigned int cpu) |
| 5441 | { |
| 5442 | struct page *pend_page; |
| 5443 | int ret = 0; |
| 5444 | |
| 5445 | /* This gets to run exactly once per CPU */ |
| 5446 | if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE) |
| 5447 | return 0; |
| 5448 | |
| 5449 | pend_page = gic_data_rdist()->pend_page; |
| 5450 | if (WARN_ON(!pend_page)) { |
| 5451 | ret = -ENOMEM; |
| 5452 | goto out; |
| 5453 | } |
| 5454 | /* |
| 5455 | * If the pending table was pre-programmed, free the memory we |
| 5456 | * preemptively allocated. Otherwise, reserve that memory for |
| 5457 | * later kexecs. |
| 5458 | */ |
| 5459 | if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) { |
| 5460 | its_free_pending_table(pend_page); |
| 5461 | gic_data_rdist()->pend_page = NULL; |
| 5462 | } else { |
| 5463 | phys_addr_t paddr = page_to_phys(pend_page); |
| 5464 | WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ)); |
| 5465 | } |
| 5466 | |
| 5467 | out: |
| 5468 | /* Last CPU being brought up gets to issue the cleanup */ |
| 5469 | if (!IS_ENABLED(CONFIG_SMP) || |
| 5470 | cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask)) |
| 5471 | schedule_work(&rdist_memreserve_cpuhp_cleanup_work); |
| 5472 | |
| 5473 | gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE; |
| 5474 | return ret; |
| 5475 | } |
| 5476 | |
| 5477 | /* Mark all the BASER registers as invalid before they get reprogrammed */ |
| 5478 | static int __init its_reset_one(struct resource *res) |
| 5479 | { |
| 5480 | void __iomem *its_base; |
| 5481 | int err, i; |
| 5482 | |
| 5483 | its_base = its_map_one(res, &err); |
| 5484 | if (!its_base) |
| 5485 | return err; |
| 5486 | |
| 5487 | for (i = 0; i < GITS_BASER_NR_REGS; i++) |
| 5488 | gits_write_baser(0, its_base + GITS_BASER + (i << 3)); |
| 5489 | |
| 5490 | iounmap(its_base); |
| 5491 | return 0; |
| 5492 | } |
| 5493 | |
| 5494 | static const struct of_device_id its_device_id[] = { |
| 5495 | { .compatible = "arm,gic-v3-its", }, |
| 5496 | {}, |
| 5497 | }; |
| 5498 | |
| 5499 | static struct its_node __init *its_node_init(struct resource *res, |
| 5500 | struct fwnode_handle *handle, int numa_node) |
| 5501 | { |
| 5502 | void __iomem *its_base; |
| 5503 | struct its_node *its; |
| 5504 | int err; |
| 5505 | |
| 5506 | its_base = its_map_one(res, &err); |
| 5507 | if (!its_base) |
| 5508 | return NULL; |
| 5509 | |
| 5510 | pr_info("ITS %pR\n", res); |
| 5511 | |
| 5512 | its = kzalloc(sizeof(*its), GFP_KERNEL); |
| 5513 | if (!its) |
| 5514 | goto out_unmap; |
| 5515 | |
| 5516 | raw_spin_lock_init(&its->lock); |
| 5517 | mutex_init(&its->dev_alloc_lock); |
| 5518 | INIT_LIST_HEAD(&its->entry); |
| 5519 | INIT_LIST_HEAD(&its->its_device_list); |
| 5520 | |
| 5521 | its->typer = gic_read_typer(its_base + GITS_TYPER); |
| 5522 | its->base = its_base; |
| 5523 | its->phys_base = res->start; |
| 5524 | its->get_msi_base = its_irq_get_msi_base; |
| 5525 | its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI | IRQ_DOMAIN_FLAG_MSI_IMMUTABLE; |
| 5526 | |
| 5527 | its->numa_node = numa_node; |
| 5528 | its->fwnode_handle = handle; |
| 5529 | |
| 5530 | return its; |
| 5531 | |
| 5532 | out_unmap: |
| 5533 | iounmap(its_base); |
| 5534 | return NULL; |
| 5535 | } |
| 5536 | |
| 5537 | static void its_node_destroy(struct its_node *its) |
| 5538 | { |
| 5539 | iounmap(its->base); |
| 5540 | kfree(its); |
| 5541 | } |
| 5542 | |
| 5543 | static int __init its_of_probe(struct device_node *node) |
| 5544 | { |
| 5545 | struct device_node *np; |
| 5546 | struct resource res; |
| 5547 | int err; |
| 5548 | |
| 5549 | /* |
| 5550 | * Make sure *all* the ITS are reset before we probe any, as |
| 5551 | * they may be sharing memory. If any of the ITS fails to |
| 5552 | * reset, don't even try to go any further, as this could |
| 5553 | * result in something even worse. |
| 5554 | */ |
| 5555 | for (np = of_find_matching_node(node, its_device_id); np; |
| 5556 | np = of_find_matching_node(np, its_device_id)) { |
| 5557 | if (!of_device_is_available(np) || |
| 5558 | !of_property_read_bool(np, "msi-controller") || |
| 5559 | of_address_to_resource(np, 0, &res)) |
| 5560 | continue; |
| 5561 | |
| 5562 | err = its_reset_one(&res); |
| 5563 | if (err) |
| 5564 | return err; |
| 5565 | } |
| 5566 | |
| 5567 | for (np = of_find_matching_node(node, its_device_id); np; |
| 5568 | np = of_find_matching_node(np, its_device_id)) { |
| 5569 | struct its_node *its; |
| 5570 | |
| 5571 | if (!of_device_is_available(np)) |
| 5572 | continue; |
| 5573 | if (!of_property_read_bool(np, "msi-controller")) { |
| 5574 | pr_warn("%pOF: no msi-controller property, ITS ignored\n", |
| 5575 | np); |
| 5576 | continue; |
| 5577 | } |
| 5578 | |
| 5579 | if (of_address_to_resource(np, 0, &res)) { |
| 5580 | pr_warn("%pOF: no regs?\n", np); |
| 5581 | continue; |
| 5582 | } |
| 5583 | |
| 5584 | |
| 5585 | its = its_node_init(&res, &np->fwnode, of_node_to_nid(np)); |
| 5586 | if (!its) |
| 5587 | return -ENOMEM; |
| 5588 | |
| 5589 | err = its_probe_one(its); |
| 5590 | if (err) { |
| 5591 | its_node_destroy(its); |
| 5592 | return err; |
| 5593 | } |
| 5594 | } |
| 5595 | return 0; |
| 5596 | } |
| 5597 | |
| 5598 | #ifdef CONFIG_ACPI |
| 5599 | |
| 5600 | #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) |
| 5601 | |
| 5602 | #ifdef CONFIG_ACPI_NUMA |
| 5603 | struct its_srat_map { |
| 5604 | /* numa node id */ |
| 5605 | u32 numa_node; |
| 5606 | /* GIC ITS ID */ |
| 5607 | u32 its_id; |
| 5608 | }; |
| 5609 | |
| 5610 | static struct its_srat_map *its_srat_maps __initdata; |
| 5611 | static int its_in_srat __initdata; |
| 5612 | |
| 5613 | static int __init acpi_get_its_numa_node(u32 its_id) |
| 5614 | { |
| 5615 | int i; |
| 5616 | |
| 5617 | for (i = 0; i < its_in_srat; i++) { |
| 5618 | if (its_id == its_srat_maps[i].its_id) |
| 5619 | return its_srat_maps[i].numa_node; |
| 5620 | } |
| 5621 | return NUMA_NO_NODE; |
| 5622 | } |
| 5623 | |
| 5624 | static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header, |
| 5625 | const unsigned long end) |
| 5626 | { |
| 5627 | return 0; |
| 5628 | } |
| 5629 | |
| 5630 | static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header, |
| 5631 | const unsigned long end) |
| 5632 | { |
| 5633 | int node; |
| 5634 | struct acpi_srat_gic_its_affinity *its_affinity; |
| 5635 | |
| 5636 | its_affinity = (struct acpi_srat_gic_its_affinity *)header; |
| 5637 | if (!its_affinity) |
| 5638 | return -EINVAL; |
| 5639 | |
| 5640 | if (its_affinity->header.length < sizeof(*its_affinity)) { |
| 5641 | pr_err("SRAT: Invalid header length %d in ITS affinity\n", |
| 5642 | its_affinity->header.length); |
| 5643 | return -EINVAL; |
| 5644 | } |
| 5645 | |
| 5646 | /* |
| 5647 | * Note that in theory a new proximity node could be created by this |
| 5648 | * entry as it is an SRAT resource allocation structure. |
| 5649 | * We do not currently support doing so. |
| 5650 | */ |
| 5651 | node = pxm_to_node(its_affinity->proximity_domain); |
| 5652 | |
| 5653 | if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { |
| 5654 | pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); |
| 5655 | return 0; |
| 5656 | } |
| 5657 | |
| 5658 | its_srat_maps[its_in_srat].numa_node = node; |
| 5659 | its_srat_maps[its_in_srat].its_id = its_affinity->its_id; |
| 5660 | its_in_srat++; |
| 5661 | pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", |
| 5662 | its_affinity->proximity_domain, its_affinity->its_id, node); |
| 5663 | |
| 5664 | return 0; |
| 5665 | } |
| 5666 | |
| 5667 | static void __init acpi_table_parse_srat_its(void) |
| 5668 | { |
| 5669 | int count; |
| 5670 | |
| 5671 | count = acpi_table_parse_entries(ACPI_SIG_SRAT, |
| 5672 | sizeof(struct acpi_table_srat), |
| 5673 | ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, |
| 5674 | gic_acpi_match_srat_its, 0); |
| 5675 | if (count <= 0) |
| 5676 | return; |
| 5677 | |
| 5678 | its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), |
| 5679 | GFP_KERNEL); |
| 5680 | if (!its_srat_maps) |
| 5681 | return; |
| 5682 | |
| 5683 | acpi_table_parse_entries(ACPI_SIG_SRAT, |
| 5684 | sizeof(struct acpi_table_srat), |
| 5685 | ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, |
| 5686 | gic_acpi_parse_srat_its, 0); |
| 5687 | } |
| 5688 | |
| 5689 | /* free the its_srat_maps after ITS probing */ |
| 5690 | static void __init acpi_its_srat_maps_free(void) |
| 5691 | { |
| 5692 | kfree(its_srat_maps); |
| 5693 | } |
| 5694 | #else |
| 5695 | static void __init acpi_table_parse_srat_its(void) { } |
| 5696 | static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } |
| 5697 | static void __init acpi_its_srat_maps_free(void) { } |
| 5698 | #endif |
| 5699 | |
| 5700 | static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header, |
| 5701 | const unsigned long end) |
| 5702 | { |
| 5703 | struct acpi_madt_generic_translator *its_entry; |
| 5704 | struct fwnode_handle *dom_handle; |
| 5705 | struct its_node *its; |
| 5706 | struct resource res; |
| 5707 | int err; |
| 5708 | |
| 5709 | its_entry = (struct acpi_madt_generic_translator *)header; |
| 5710 | memset(&res, 0, sizeof(res)); |
| 5711 | res.start = its_entry->base_address; |
| 5712 | res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; |
| 5713 | res.flags = IORESOURCE_MEM; |
| 5714 | |
| 5715 | dom_handle = irq_domain_alloc_fwnode(&res.start); |
| 5716 | if (!dom_handle) { |
| 5717 | pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", |
| 5718 | &res.start); |
| 5719 | return -ENOMEM; |
| 5720 | } |
| 5721 | |
| 5722 | err = iort_register_domain_token(its_entry->translation_id, res.start, |
| 5723 | dom_handle); |
| 5724 | if (err) { |
| 5725 | pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", |
| 5726 | &res.start, its_entry->translation_id); |
| 5727 | goto dom_err; |
| 5728 | } |
| 5729 | |
| 5730 | its = its_node_init(&res, dom_handle, |
| 5731 | acpi_get_its_numa_node(its_entry->translation_id)); |
| 5732 | if (!its) { |
| 5733 | err = -ENOMEM; |
| 5734 | goto node_err; |
| 5735 | } |
| 5736 | |
| 5737 | if (acpi_get_madt_revision() >= 7 && |
| 5738 | (its_entry->flags & ACPI_MADT_ITS_NON_COHERENT)) |
| 5739 | its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; |
| 5740 | |
| 5741 | err = its_probe_one(its); |
| 5742 | if (!err) |
| 5743 | return 0; |
| 5744 | |
| 5745 | node_err: |
| 5746 | iort_deregister_domain_token(its_entry->translation_id); |
| 5747 | dom_err: |
| 5748 | irq_domain_free_fwnode(dom_handle); |
| 5749 | return err; |
| 5750 | } |
| 5751 | |
| 5752 | static int __init its_acpi_reset(union acpi_subtable_headers *header, |
| 5753 | const unsigned long end) |
| 5754 | { |
| 5755 | struct acpi_madt_generic_translator *its_entry; |
| 5756 | struct resource res; |
| 5757 | |
| 5758 | its_entry = (struct acpi_madt_generic_translator *)header; |
| 5759 | res = (struct resource) { |
| 5760 | .start = its_entry->base_address, |
| 5761 | .end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1, |
| 5762 | .flags = IORESOURCE_MEM, |
| 5763 | }; |
| 5764 | |
| 5765 | return its_reset_one(&res); |
| 5766 | } |
| 5767 | |
| 5768 | static void __init its_acpi_probe(void) |
| 5769 | { |
| 5770 | acpi_table_parse_srat_its(); |
| 5771 | /* |
| 5772 | * Make sure *all* the ITS are reset before we probe any, as |
| 5773 | * they may be sharing memory. If any of the ITS fails to |
| 5774 | * reset, don't even try to go any further, as this could |
| 5775 | * result in something even worse. |
| 5776 | */ |
| 5777 | if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, |
| 5778 | its_acpi_reset, 0) > 0) |
| 5779 | acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, |
| 5780 | gic_acpi_parse_madt_its, 0); |
| 5781 | acpi_its_srat_maps_free(); |
| 5782 | } |
| 5783 | #else |
| 5784 | static void __init its_acpi_probe(void) { } |
| 5785 | #endif |
| 5786 | |
| 5787 | int __init its_lpi_memreserve_init(void) |
| 5788 | { |
| 5789 | int state; |
| 5790 | |
| 5791 | if (!efi_enabled(EFI_CONFIG_TABLES)) |
| 5792 | return 0; |
| 5793 | |
| 5794 | if (list_empty(&its_nodes)) |
| 5795 | return 0; |
| 5796 | |
| 5797 | gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; |
| 5798 | state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, |
| 5799 | "irqchip/arm/gicv3/memreserve:online", |
| 5800 | its_cpu_memreserve_lpi, |
| 5801 | NULL); |
| 5802 | if (state < 0) |
| 5803 | return state; |
| 5804 | |
| 5805 | gic_rdists->cpuhp_memreserve_state = state; |
| 5806 | |
| 5807 | return 0; |
| 5808 | } |
| 5809 | |
| 5810 | int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, |
| 5811 | struct irq_domain *parent_domain, u8 irq_prio) |
| 5812 | { |
| 5813 | struct device_node *of_node; |
| 5814 | struct its_node *its; |
| 5815 | bool has_v4 = false; |
| 5816 | bool has_v4_1 = false; |
| 5817 | int err; |
| 5818 | |
| 5819 | itt_pool = gen_pool_create(get_order(ITS_ITT_ALIGN), -1); |
| 5820 | if (!itt_pool) |
| 5821 | return -ENOMEM; |
| 5822 | |
| 5823 | gic_rdists = rdists; |
| 5824 | |
| 5825 | lpi_prop_prio = irq_prio; |
| 5826 | its_parent = parent_domain; |
| 5827 | of_node = to_of_node(handle); |
| 5828 | if (of_node) |
| 5829 | its_of_probe(of_node); |
| 5830 | else |
| 5831 | its_acpi_probe(); |
| 5832 | |
| 5833 | if (list_empty(&its_nodes)) { |
| 5834 | pr_warn("ITS: No ITS available, not enabling LPIs\n"); |
| 5835 | return -ENXIO; |
| 5836 | } |
| 5837 | |
| 5838 | err = allocate_lpi_tables(); |
| 5839 | if (err) |
| 5840 | return err; |
| 5841 | |
| 5842 | list_for_each_entry(its, &its_nodes, entry) { |
| 5843 | has_v4 |= is_v4(its); |
| 5844 | has_v4_1 |= is_v4_1(its); |
| 5845 | } |
| 5846 | |
| 5847 | /* Don't bother with inconsistent systems */ |
| 5848 | if (WARN_ON(!has_v4_1 && rdists->has_rvpeid)) |
| 5849 | rdists->has_rvpeid = false; |
| 5850 | |
| 5851 | if (has_v4 & rdists->has_vlpis) { |
| 5852 | const struct irq_domain_ops *sgi_ops; |
| 5853 | |
| 5854 | if (has_v4_1) |
| 5855 | sgi_ops = &its_sgi_domain_ops; |
| 5856 | else |
| 5857 | sgi_ops = NULL; |
| 5858 | |
| 5859 | if (its_init_vpe_domain() || |
| 5860 | its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) { |
| 5861 | rdists->has_vlpis = false; |
| 5862 | pr_err("ITS: Disabling GICv4 support\n"); |
| 5863 | } |
| 5864 | } |
| 5865 | |
| 5866 | register_syscore_ops(&its_syscore_ops); |
| 5867 | |
| 5868 | return 0; |
| 5869 | } |