| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * The input core |
| 4 | * |
| 5 | * Copyright (c) 1999-2002 Vojtech Pavlik |
| 6 | */ |
| 7 | |
| 8 | |
| 9 | #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt |
| 10 | |
| 11 | #include <linux/init.h> |
| 12 | #include <linux/types.h> |
| 13 | #include <linux/idr.h> |
| 14 | #include <linux/input/mt.h> |
| 15 | #include <linux/module.h> |
| 16 | #include <linux/slab.h> |
| 17 | #include <linux/random.h> |
| 18 | #include <linux/major.h> |
| 19 | #include <linux/proc_fs.h> |
| 20 | #include <linux/sched.h> |
| 21 | #include <linux/seq_file.h> |
| 22 | #include <linux/pm.h> |
| 23 | #include <linux/poll.h> |
| 24 | #include <linux/device.h> |
| 25 | #include <linux/kstrtox.h> |
| 26 | #include <linux/mutex.h> |
| 27 | #include <linux/rcupdate.h> |
| 28 | #include "input-compat.h" |
| 29 | #include "input-core-private.h" |
| 30 | #include "input-poller.h" |
| 31 | |
| 32 | MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>"); |
| 33 | MODULE_DESCRIPTION("Input core"); |
| 34 | MODULE_LICENSE("GPL"); |
| 35 | |
| 36 | #define INPUT_MAX_CHAR_DEVICES 1024 |
| 37 | #define INPUT_FIRST_DYNAMIC_DEV 256 |
| 38 | static DEFINE_IDA(input_ida); |
| 39 | |
| 40 | static LIST_HEAD(input_dev_list); |
| 41 | static LIST_HEAD(input_handler_list); |
| 42 | |
| 43 | /* |
| 44 | * input_mutex protects access to both input_dev_list and input_handler_list. |
| 45 | * This also causes input_[un]register_device and input_[un]register_handler |
| 46 | * be mutually exclusive which simplifies locking in drivers implementing |
| 47 | * input handlers. |
| 48 | */ |
| 49 | static DEFINE_MUTEX(input_mutex); |
| 50 | |
| 51 | static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 }; |
| 52 | |
| 53 | static const unsigned int input_max_code[EV_CNT] = { |
| 54 | [EV_KEY] = KEY_MAX, |
| 55 | [EV_REL] = REL_MAX, |
| 56 | [EV_ABS] = ABS_MAX, |
| 57 | [EV_MSC] = MSC_MAX, |
| 58 | [EV_SW] = SW_MAX, |
| 59 | [EV_LED] = LED_MAX, |
| 60 | [EV_SND] = SND_MAX, |
| 61 | [EV_FF] = FF_MAX, |
| 62 | }; |
| 63 | |
| 64 | static inline int is_event_supported(unsigned int code, |
| 65 | unsigned long *bm, unsigned int max) |
| 66 | { |
| 67 | return code <= max && test_bit(code, bm); |
| 68 | } |
| 69 | |
| 70 | static int input_defuzz_abs_event(int value, int old_val, int fuzz) |
| 71 | { |
| 72 | if (fuzz) { |
| 73 | if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) |
| 74 | return old_val; |
| 75 | |
| 76 | if (value > old_val - fuzz && value < old_val + fuzz) |
| 77 | return (old_val * 3 + value) / 4; |
| 78 | |
| 79 | if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) |
| 80 | return (old_val + value) / 2; |
| 81 | } |
| 82 | |
| 83 | return value; |
| 84 | } |
| 85 | |
| 86 | static void input_start_autorepeat(struct input_dev *dev, int code) |
| 87 | { |
| 88 | if (test_bit(EV_REP, dev->evbit) && |
| 89 | dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && |
| 90 | dev->timer.function) { |
| 91 | dev->repeat_key = code; |
| 92 | mod_timer(&dev->timer, |
| 93 | jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); |
| 94 | } |
| 95 | } |
| 96 | |
| 97 | static void input_stop_autorepeat(struct input_dev *dev) |
| 98 | { |
| 99 | timer_delete(&dev->timer); |
| 100 | } |
| 101 | |
| 102 | /* |
| 103 | * Pass values first through all filters and then, if event has not been |
| 104 | * filtered out, through all open handles. This order is achieved by placing |
| 105 | * filters at the head of the list of handles attached to the device, and |
| 106 | * placing regular handles at the tail of the list. |
| 107 | * |
| 108 | * This function is called with dev->event_lock held and interrupts disabled. |
| 109 | */ |
| 110 | static void input_pass_values(struct input_dev *dev, |
| 111 | struct input_value *vals, unsigned int count) |
| 112 | { |
| 113 | struct input_handle *handle; |
| 114 | struct input_value *v; |
| 115 | |
| 116 | lockdep_assert_held(&dev->event_lock); |
| 117 | |
| 118 | scoped_guard(rcu) { |
| 119 | handle = rcu_dereference(dev->grab); |
| 120 | if (handle) { |
| 121 | count = handle->handle_events(handle, vals, count); |
| 122 | break; |
| 123 | } |
| 124 | |
| 125 | list_for_each_entry_rcu(handle, &dev->h_list, d_node) { |
| 126 | if (handle->open) { |
| 127 | count = handle->handle_events(handle, vals, |
| 128 | count); |
| 129 | if (!count) |
| 130 | break; |
| 131 | } |
| 132 | } |
| 133 | } |
| 134 | |
| 135 | /* trigger auto repeat for key events */ |
| 136 | if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) { |
| 137 | for (v = vals; v != vals + count; v++) { |
| 138 | if (v->type == EV_KEY && v->value != 2) { |
| 139 | if (v->value) |
| 140 | input_start_autorepeat(dev, v->code); |
| 141 | else |
| 142 | input_stop_autorepeat(dev); |
| 143 | } |
| 144 | } |
| 145 | } |
| 146 | } |
| 147 | |
| 148 | #define INPUT_IGNORE_EVENT 0 |
| 149 | #define INPUT_PASS_TO_HANDLERS 1 |
| 150 | #define INPUT_PASS_TO_DEVICE 2 |
| 151 | #define INPUT_SLOT 4 |
| 152 | #define INPUT_FLUSH 8 |
| 153 | #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) |
| 154 | |
| 155 | static int input_handle_abs_event(struct input_dev *dev, |
| 156 | unsigned int code, int *pval) |
| 157 | { |
| 158 | struct input_mt *mt = dev->mt; |
| 159 | bool is_new_slot = false; |
| 160 | bool is_mt_event; |
| 161 | int *pold; |
| 162 | |
| 163 | if (code == ABS_MT_SLOT) { |
| 164 | /* |
| 165 | * "Stage" the event; we'll flush it later, when we |
| 166 | * get actual touch data. |
| 167 | */ |
| 168 | if (mt && *pval >= 0 && *pval < mt->num_slots) |
| 169 | mt->slot = *pval; |
| 170 | |
| 171 | return INPUT_IGNORE_EVENT; |
| 172 | } |
| 173 | |
| 174 | is_mt_event = input_is_mt_value(code); |
| 175 | |
| 176 | if (!is_mt_event) { |
| 177 | pold = &dev->absinfo[code].value; |
| 178 | } else if (mt) { |
| 179 | pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST]; |
| 180 | is_new_slot = mt->slot != dev->absinfo[ABS_MT_SLOT].value; |
| 181 | } else { |
| 182 | /* |
| 183 | * Bypass filtering for multi-touch events when |
| 184 | * not employing slots. |
| 185 | */ |
| 186 | pold = NULL; |
| 187 | } |
| 188 | |
| 189 | if (pold) { |
| 190 | *pval = input_defuzz_abs_event(*pval, *pold, |
| 191 | dev->absinfo[code].fuzz); |
| 192 | if (*pold == *pval) |
| 193 | return INPUT_IGNORE_EVENT; |
| 194 | |
| 195 | *pold = *pval; |
| 196 | } |
| 197 | |
| 198 | /* Flush pending "slot" event */ |
| 199 | if (is_new_slot) { |
| 200 | dev->absinfo[ABS_MT_SLOT].value = mt->slot; |
| 201 | return INPUT_PASS_TO_HANDLERS | INPUT_SLOT; |
| 202 | } |
| 203 | |
| 204 | return INPUT_PASS_TO_HANDLERS; |
| 205 | } |
| 206 | |
| 207 | static int input_get_disposition(struct input_dev *dev, |
| 208 | unsigned int type, unsigned int code, int *pval) |
| 209 | { |
| 210 | int disposition = INPUT_IGNORE_EVENT; |
| 211 | int value = *pval; |
| 212 | |
| 213 | /* filter-out events from inhibited devices */ |
| 214 | if (dev->inhibited) |
| 215 | return INPUT_IGNORE_EVENT; |
| 216 | |
| 217 | switch (type) { |
| 218 | |
| 219 | case EV_SYN: |
| 220 | switch (code) { |
| 221 | case SYN_CONFIG: |
| 222 | disposition = INPUT_PASS_TO_ALL; |
| 223 | break; |
| 224 | |
| 225 | case SYN_REPORT: |
| 226 | disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH; |
| 227 | break; |
| 228 | case SYN_MT_REPORT: |
| 229 | disposition = INPUT_PASS_TO_HANDLERS; |
| 230 | break; |
| 231 | } |
| 232 | break; |
| 233 | |
| 234 | case EV_KEY: |
| 235 | if (is_event_supported(code, dev->keybit, KEY_MAX)) { |
| 236 | |
| 237 | /* auto-repeat bypasses state updates */ |
| 238 | if (value == 2) { |
| 239 | disposition = INPUT_PASS_TO_HANDLERS; |
| 240 | break; |
| 241 | } |
| 242 | |
| 243 | if (!!test_bit(code, dev->key) != !!value) { |
| 244 | |
| 245 | __change_bit(code, dev->key); |
| 246 | disposition = INPUT_PASS_TO_HANDLERS; |
| 247 | } |
| 248 | } |
| 249 | break; |
| 250 | |
| 251 | case EV_SW: |
| 252 | if (is_event_supported(code, dev->swbit, SW_MAX) && |
| 253 | !!test_bit(code, dev->sw) != !!value) { |
| 254 | |
| 255 | __change_bit(code, dev->sw); |
| 256 | disposition = INPUT_PASS_TO_HANDLERS; |
| 257 | } |
| 258 | break; |
| 259 | |
| 260 | case EV_ABS: |
| 261 | if (is_event_supported(code, dev->absbit, ABS_MAX)) |
| 262 | disposition = input_handle_abs_event(dev, code, &value); |
| 263 | |
| 264 | break; |
| 265 | |
| 266 | case EV_REL: |
| 267 | if (is_event_supported(code, dev->relbit, REL_MAX) && value) |
| 268 | disposition = INPUT_PASS_TO_HANDLERS; |
| 269 | |
| 270 | break; |
| 271 | |
| 272 | case EV_MSC: |
| 273 | if (is_event_supported(code, dev->mscbit, MSC_MAX)) |
| 274 | disposition = INPUT_PASS_TO_ALL; |
| 275 | |
| 276 | break; |
| 277 | |
| 278 | case EV_LED: |
| 279 | if (is_event_supported(code, dev->ledbit, LED_MAX) && |
| 280 | !!test_bit(code, dev->led) != !!value) { |
| 281 | |
| 282 | __change_bit(code, dev->led); |
| 283 | disposition = INPUT_PASS_TO_ALL; |
| 284 | } |
| 285 | break; |
| 286 | |
| 287 | case EV_SND: |
| 288 | if (is_event_supported(code, dev->sndbit, SND_MAX)) { |
| 289 | |
| 290 | if (!!test_bit(code, dev->snd) != !!value) |
| 291 | __change_bit(code, dev->snd); |
| 292 | disposition = INPUT_PASS_TO_ALL; |
| 293 | } |
| 294 | break; |
| 295 | |
| 296 | case EV_REP: |
| 297 | if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { |
| 298 | dev->rep[code] = value; |
| 299 | disposition = INPUT_PASS_TO_ALL; |
| 300 | } |
| 301 | break; |
| 302 | |
| 303 | case EV_FF: |
| 304 | if (value >= 0) |
| 305 | disposition = INPUT_PASS_TO_ALL; |
| 306 | break; |
| 307 | |
| 308 | case EV_PWR: |
| 309 | disposition = INPUT_PASS_TO_ALL; |
| 310 | break; |
| 311 | } |
| 312 | |
| 313 | *pval = value; |
| 314 | return disposition; |
| 315 | } |
| 316 | |
| 317 | static void input_event_dispose(struct input_dev *dev, int disposition, |
| 318 | unsigned int type, unsigned int code, int value) |
| 319 | { |
| 320 | if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) |
| 321 | dev->event(dev, type, code, value); |
| 322 | |
| 323 | if (disposition & INPUT_PASS_TO_HANDLERS) { |
| 324 | struct input_value *v; |
| 325 | |
| 326 | if (disposition & INPUT_SLOT) { |
| 327 | v = &dev->vals[dev->num_vals++]; |
| 328 | v->type = EV_ABS; |
| 329 | v->code = ABS_MT_SLOT; |
| 330 | v->value = dev->mt->slot; |
| 331 | } |
| 332 | |
| 333 | v = &dev->vals[dev->num_vals++]; |
| 334 | v->type = type; |
| 335 | v->code = code; |
| 336 | v->value = value; |
| 337 | } |
| 338 | |
| 339 | if (disposition & INPUT_FLUSH) { |
| 340 | if (dev->num_vals >= 2) |
| 341 | input_pass_values(dev, dev->vals, dev->num_vals); |
| 342 | dev->num_vals = 0; |
| 343 | /* |
| 344 | * Reset the timestamp on flush so we won't end up |
| 345 | * with a stale one. Note we only need to reset the |
| 346 | * monolithic one as we use its presence when deciding |
| 347 | * whether to generate a synthetic timestamp. |
| 348 | */ |
| 349 | dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0); |
| 350 | } else if (dev->num_vals >= dev->max_vals - 2) { |
| 351 | dev->vals[dev->num_vals++] = input_value_sync; |
| 352 | input_pass_values(dev, dev->vals, dev->num_vals); |
| 353 | dev->num_vals = 0; |
| 354 | } |
| 355 | } |
| 356 | |
| 357 | void input_handle_event(struct input_dev *dev, |
| 358 | unsigned int type, unsigned int code, int value) |
| 359 | { |
| 360 | int disposition; |
| 361 | |
| 362 | lockdep_assert_held(&dev->event_lock); |
| 363 | |
| 364 | disposition = input_get_disposition(dev, type, code, &value); |
| 365 | if (disposition != INPUT_IGNORE_EVENT) { |
| 366 | if (type != EV_SYN) |
| 367 | add_input_randomness(type, code, value); |
| 368 | |
| 369 | input_event_dispose(dev, disposition, type, code, value); |
| 370 | } |
| 371 | } |
| 372 | |
| 373 | /** |
| 374 | * input_event() - report new input event |
| 375 | * @dev: device that generated the event |
| 376 | * @type: type of the event |
| 377 | * @code: event code |
| 378 | * @value: value of the event |
| 379 | * |
| 380 | * This function should be used by drivers implementing various input |
| 381 | * devices to report input events. See also input_inject_event(). |
| 382 | * |
| 383 | * NOTE: input_event() may be safely used right after input device was |
| 384 | * allocated with input_allocate_device(), even before it is registered |
| 385 | * with input_register_device(), but the event will not reach any of the |
| 386 | * input handlers. Such early invocation of input_event() may be used |
| 387 | * to 'seed' initial state of a switch or initial position of absolute |
| 388 | * axis, etc. |
| 389 | */ |
| 390 | void input_event(struct input_dev *dev, |
| 391 | unsigned int type, unsigned int code, int value) |
| 392 | { |
| 393 | if (is_event_supported(type, dev->evbit, EV_MAX)) { |
| 394 | guard(spinlock_irqsave)(&dev->event_lock); |
| 395 | input_handle_event(dev, type, code, value); |
| 396 | } |
| 397 | } |
| 398 | EXPORT_SYMBOL(input_event); |
| 399 | |
| 400 | /** |
| 401 | * input_inject_event() - send input event from input handler |
| 402 | * @handle: input handle to send event through |
| 403 | * @type: type of the event |
| 404 | * @code: event code |
| 405 | * @value: value of the event |
| 406 | * |
| 407 | * Similar to input_event() but will ignore event if device is |
| 408 | * "grabbed" and handle injecting event is not the one that owns |
| 409 | * the device. |
| 410 | */ |
| 411 | void input_inject_event(struct input_handle *handle, |
| 412 | unsigned int type, unsigned int code, int value) |
| 413 | { |
| 414 | struct input_dev *dev = handle->dev; |
| 415 | struct input_handle *grab; |
| 416 | |
| 417 | if (is_event_supported(type, dev->evbit, EV_MAX)) { |
| 418 | guard(spinlock_irqsave)(&dev->event_lock); |
| 419 | guard(rcu)(); |
| 420 | |
| 421 | grab = rcu_dereference(dev->grab); |
| 422 | if (!grab || grab == handle) |
| 423 | input_handle_event(dev, type, code, value); |
| 424 | |
| 425 | } |
| 426 | } |
| 427 | EXPORT_SYMBOL(input_inject_event); |
| 428 | |
| 429 | /** |
| 430 | * input_alloc_absinfo - allocates array of input_absinfo structs |
| 431 | * @dev: the input device emitting absolute events |
| 432 | * |
| 433 | * If the absinfo struct the caller asked for is already allocated, this |
| 434 | * functions will not do anything. |
| 435 | */ |
| 436 | void input_alloc_absinfo(struct input_dev *dev) |
| 437 | { |
| 438 | if (dev->absinfo) |
| 439 | return; |
| 440 | |
| 441 | dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL); |
| 442 | if (!dev->absinfo) { |
| 443 | dev_err(dev->dev.parent ?: &dev->dev, |
| 444 | "%s: unable to allocate memory\n", __func__); |
| 445 | /* |
| 446 | * We will handle this allocation failure in |
| 447 | * input_register_device() when we refuse to register input |
| 448 | * device with ABS bits but without absinfo. |
| 449 | */ |
| 450 | } |
| 451 | } |
| 452 | EXPORT_SYMBOL(input_alloc_absinfo); |
| 453 | |
| 454 | void input_set_abs_params(struct input_dev *dev, unsigned int axis, |
| 455 | int min, int max, int fuzz, int flat) |
| 456 | { |
| 457 | struct input_absinfo *absinfo; |
| 458 | |
| 459 | __set_bit(EV_ABS, dev->evbit); |
| 460 | __set_bit(axis, dev->absbit); |
| 461 | |
| 462 | input_alloc_absinfo(dev); |
| 463 | if (!dev->absinfo) |
| 464 | return; |
| 465 | |
| 466 | absinfo = &dev->absinfo[axis]; |
| 467 | absinfo->minimum = min; |
| 468 | absinfo->maximum = max; |
| 469 | absinfo->fuzz = fuzz; |
| 470 | absinfo->flat = flat; |
| 471 | } |
| 472 | EXPORT_SYMBOL(input_set_abs_params); |
| 473 | |
| 474 | /** |
| 475 | * input_copy_abs - Copy absinfo from one input_dev to another |
| 476 | * @dst: Destination input device to copy the abs settings to |
| 477 | * @dst_axis: ABS_* value selecting the destination axis |
| 478 | * @src: Source input device to copy the abs settings from |
| 479 | * @src_axis: ABS_* value selecting the source axis |
| 480 | * |
| 481 | * Set absinfo for the selected destination axis by copying it from |
| 482 | * the specified source input device's source axis. |
| 483 | * This is useful to e.g. setup a pen/stylus input-device for combined |
| 484 | * touchscreen/pen hardware where the pen uses the same coordinates as |
| 485 | * the touchscreen. |
| 486 | */ |
| 487 | void input_copy_abs(struct input_dev *dst, unsigned int dst_axis, |
| 488 | const struct input_dev *src, unsigned int src_axis) |
| 489 | { |
| 490 | /* src must have EV_ABS and src_axis set */ |
| 491 | if (WARN_ON(!(test_bit(EV_ABS, src->evbit) && |
| 492 | test_bit(src_axis, src->absbit)))) |
| 493 | return; |
| 494 | |
| 495 | /* |
| 496 | * input_alloc_absinfo() may have failed for the source. Our caller is |
| 497 | * expected to catch this when registering the input devices, which may |
| 498 | * happen after the input_copy_abs() call. |
| 499 | */ |
| 500 | if (!src->absinfo) |
| 501 | return; |
| 502 | |
| 503 | input_set_capability(dst, EV_ABS, dst_axis); |
| 504 | if (!dst->absinfo) |
| 505 | return; |
| 506 | |
| 507 | dst->absinfo[dst_axis] = src->absinfo[src_axis]; |
| 508 | } |
| 509 | EXPORT_SYMBOL(input_copy_abs); |
| 510 | |
| 511 | /** |
| 512 | * input_grab_device - grabs device for exclusive use |
| 513 | * @handle: input handle that wants to own the device |
| 514 | * |
| 515 | * When a device is grabbed by an input handle all events generated by |
| 516 | * the device are delivered only to this handle. Also events injected |
| 517 | * by other input handles are ignored while device is grabbed. |
| 518 | */ |
| 519 | int input_grab_device(struct input_handle *handle) |
| 520 | { |
| 521 | struct input_dev *dev = handle->dev; |
| 522 | |
| 523 | scoped_cond_guard(mutex_intr, return -EINTR, &dev->mutex) { |
| 524 | if (dev->grab) |
| 525 | return -EBUSY; |
| 526 | |
| 527 | rcu_assign_pointer(dev->grab, handle); |
| 528 | } |
| 529 | |
| 530 | return 0; |
| 531 | } |
| 532 | EXPORT_SYMBOL(input_grab_device); |
| 533 | |
| 534 | static void __input_release_device(struct input_handle *handle) |
| 535 | { |
| 536 | struct input_dev *dev = handle->dev; |
| 537 | struct input_handle *grabber; |
| 538 | |
| 539 | grabber = rcu_dereference_protected(dev->grab, |
| 540 | lockdep_is_held(&dev->mutex)); |
| 541 | if (grabber == handle) { |
| 542 | rcu_assign_pointer(dev->grab, NULL); |
| 543 | /* Make sure input_pass_values() notices that grab is gone */ |
| 544 | synchronize_rcu(); |
| 545 | |
| 546 | list_for_each_entry(handle, &dev->h_list, d_node) |
| 547 | if (handle->open && handle->handler->start) |
| 548 | handle->handler->start(handle); |
| 549 | } |
| 550 | } |
| 551 | |
| 552 | /** |
| 553 | * input_release_device - release previously grabbed device |
| 554 | * @handle: input handle that owns the device |
| 555 | * |
| 556 | * Releases previously grabbed device so that other input handles can |
| 557 | * start receiving input events. Upon release all handlers attached |
| 558 | * to the device have their start() method called so they have a change |
| 559 | * to synchronize device state with the rest of the system. |
| 560 | */ |
| 561 | void input_release_device(struct input_handle *handle) |
| 562 | { |
| 563 | struct input_dev *dev = handle->dev; |
| 564 | |
| 565 | guard(mutex)(&dev->mutex); |
| 566 | __input_release_device(handle); |
| 567 | } |
| 568 | EXPORT_SYMBOL(input_release_device); |
| 569 | |
| 570 | /** |
| 571 | * input_open_device - open input device |
| 572 | * @handle: handle through which device is being accessed |
| 573 | * |
| 574 | * This function should be called by input handlers when they |
| 575 | * want to start receive events from given input device. |
| 576 | */ |
| 577 | int input_open_device(struct input_handle *handle) |
| 578 | { |
| 579 | struct input_dev *dev = handle->dev; |
| 580 | int error; |
| 581 | |
| 582 | scoped_cond_guard(mutex_intr, return -EINTR, &dev->mutex) { |
| 583 | if (dev->going_away) |
| 584 | return -ENODEV; |
| 585 | |
| 586 | handle->open++; |
| 587 | |
| 588 | if (handle->handler->passive_observer) |
| 589 | return 0; |
| 590 | |
| 591 | if (dev->users++ || dev->inhibited) { |
| 592 | /* |
| 593 | * Device is already opened and/or inhibited, |
| 594 | * so we can exit immediately and report success. |
| 595 | */ |
| 596 | return 0; |
| 597 | } |
| 598 | |
| 599 | if (dev->open) { |
| 600 | error = dev->open(dev); |
| 601 | if (error) { |
| 602 | dev->users--; |
| 603 | handle->open--; |
| 604 | /* |
| 605 | * Make sure we are not delivering any more |
| 606 | * events through this handle. |
| 607 | */ |
| 608 | synchronize_rcu(); |
| 609 | return error; |
| 610 | } |
| 611 | } |
| 612 | |
| 613 | if (dev->poller) |
| 614 | input_dev_poller_start(dev->poller); |
| 615 | } |
| 616 | |
| 617 | return 0; |
| 618 | } |
| 619 | EXPORT_SYMBOL(input_open_device); |
| 620 | |
| 621 | int input_flush_device(struct input_handle *handle, struct file *file) |
| 622 | { |
| 623 | struct input_dev *dev = handle->dev; |
| 624 | |
| 625 | scoped_cond_guard(mutex_intr, return -EINTR, &dev->mutex) { |
| 626 | if (dev->flush) |
| 627 | return dev->flush(dev, file); |
| 628 | } |
| 629 | |
| 630 | return 0; |
| 631 | } |
| 632 | EXPORT_SYMBOL(input_flush_device); |
| 633 | |
| 634 | /** |
| 635 | * input_close_device - close input device |
| 636 | * @handle: handle through which device is being accessed |
| 637 | * |
| 638 | * This function should be called by input handlers when they |
| 639 | * want to stop receive events from given input device. |
| 640 | */ |
| 641 | void input_close_device(struct input_handle *handle) |
| 642 | { |
| 643 | struct input_dev *dev = handle->dev; |
| 644 | |
| 645 | guard(mutex)(&dev->mutex); |
| 646 | |
| 647 | __input_release_device(handle); |
| 648 | |
| 649 | if (!handle->handler->passive_observer) { |
| 650 | if (!--dev->users && !dev->inhibited) { |
| 651 | if (dev->poller) |
| 652 | input_dev_poller_stop(dev->poller); |
| 653 | if (dev->close) |
| 654 | dev->close(dev); |
| 655 | } |
| 656 | } |
| 657 | |
| 658 | if (!--handle->open) { |
| 659 | /* |
| 660 | * synchronize_rcu() makes sure that input_pass_values() |
| 661 | * completed and that no more input events are delivered |
| 662 | * through this handle |
| 663 | */ |
| 664 | synchronize_rcu(); |
| 665 | } |
| 666 | } |
| 667 | EXPORT_SYMBOL(input_close_device); |
| 668 | |
| 669 | /* |
| 670 | * Simulate keyup events for all keys that are marked as pressed. |
| 671 | * The function must be called with dev->event_lock held. |
| 672 | */ |
| 673 | static bool input_dev_release_keys(struct input_dev *dev) |
| 674 | { |
| 675 | bool need_sync = false; |
| 676 | int code; |
| 677 | |
| 678 | lockdep_assert_held(&dev->event_lock); |
| 679 | |
| 680 | if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) { |
| 681 | for_each_set_bit(code, dev->key, KEY_CNT) { |
| 682 | input_handle_event(dev, EV_KEY, code, 0); |
| 683 | need_sync = true; |
| 684 | } |
| 685 | } |
| 686 | |
| 687 | return need_sync; |
| 688 | } |
| 689 | |
| 690 | /* |
| 691 | * Prepare device for unregistering |
| 692 | */ |
| 693 | static void input_disconnect_device(struct input_dev *dev) |
| 694 | { |
| 695 | struct input_handle *handle; |
| 696 | |
| 697 | /* |
| 698 | * Mark device as going away. Note that we take dev->mutex here |
| 699 | * not to protect access to dev->going_away but rather to ensure |
| 700 | * that there are no threads in the middle of input_open_device() |
| 701 | */ |
| 702 | scoped_guard(mutex, &dev->mutex) |
| 703 | dev->going_away = true; |
| 704 | |
| 705 | guard(spinlock_irq)(&dev->event_lock); |
| 706 | |
| 707 | /* |
| 708 | * Simulate keyup events for all pressed keys so that handlers |
| 709 | * are not left with "stuck" keys. The driver may continue |
| 710 | * generate events even after we done here but they will not |
| 711 | * reach any handlers. |
| 712 | */ |
| 713 | if (input_dev_release_keys(dev)) |
| 714 | input_handle_event(dev, EV_SYN, SYN_REPORT, 1); |
| 715 | |
| 716 | list_for_each_entry(handle, &dev->h_list, d_node) |
| 717 | handle->open = 0; |
| 718 | } |
| 719 | |
| 720 | /** |
| 721 | * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry |
| 722 | * @ke: keymap entry containing scancode to be converted. |
| 723 | * @scancode: pointer to the location where converted scancode should |
| 724 | * be stored. |
| 725 | * |
| 726 | * This function is used to convert scancode stored in &struct keymap_entry |
| 727 | * into scalar form understood by legacy keymap handling methods. These |
| 728 | * methods expect scancodes to be represented as 'unsigned int'. |
| 729 | */ |
| 730 | int input_scancode_to_scalar(const struct input_keymap_entry *ke, |
| 731 | unsigned int *scancode) |
| 732 | { |
| 733 | switch (ke->len) { |
| 734 | case 1: |
| 735 | *scancode = *((u8 *)ke->scancode); |
| 736 | break; |
| 737 | |
| 738 | case 2: |
| 739 | *scancode = *((u16 *)ke->scancode); |
| 740 | break; |
| 741 | |
| 742 | case 4: |
| 743 | *scancode = *((u32 *)ke->scancode); |
| 744 | break; |
| 745 | |
| 746 | default: |
| 747 | return -EINVAL; |
| 748 | } |
| 749 | |
| 750 | return 0; |
| 751 | } |
| 752 | EXPORT_SYMBOL(input_scancode_to_scalar); |
| 753 | |
| 754 | /* |
| 755 | * Those routines handle the default case where no [gs]etkeycode() is |
| 756 | * defined. In this case, an array indexed by the scancode is used. |
| 757 | */ |
| 758 | |
| 759 | static unsigned int input_fetch_keycode(struct input_dev *dev, |
| 760 | unsigned int index) |
| 761 | { |
| 762 | switch (dev->keycodesize) { |
| 763 | case 1: |
| 764 | return ((u8 *)dev->keycode)[index]; |
| 765 | |
| 766 | case 2: |
| 767 | return ((u16 *)dev->keycode)[index]; |
| 768 | |
| 769 | default: |
| 770 | return ((u32 *)dev->keycode)[index]; |
| 771 | } |
| 772 | } |
| 773 | |
| 774 | static int input_default_getkeycode(struct input_dev *dev, |
| 775 | struct input_keymap_entry *ke) |
| 776 | { |
| 777 | unsigned int index; |
| 778 | int error; |
| 779 | |
| 780 | if (!dev->keycodesize) |
| 781 | return -EINVAL; |
| 782 | |
| 783 | if (ke->flags & INPUT_KEYMAP_BY_INDEX) |
| 784 | index = ke->index; |
| 785 | else { |
| 786 | error = input_scancode_to_scalar(ke, &index); |
| 787 | if (error) |
| 788 | return error; |
| 789 | } |
| 790 | |
| 791 | if (index >= dev->keycodemax) |
| 792 | return -EINVAL; |
| 793 | |
| 794 | ke->keycode = input_fetch_keycode(dev, index); |
| 795 | ke->index = index; |
| 796 | ke->len = sizeof(index); |
| 797 | memcpy(ke->scancode, &index, sizeof(index)); |
| 798 | |
| 799 | return 0; |
| 800 | } |
| 801 | |
| 802 | static int input_default_setkeycode(struct input_dev *dev, |
| 803 | const struct input_keymap_entry *ke, |
| 804 | unsigned int *old_keycode) |
| 805 | { |
| 806 | unsigned int index; |
| 807 | int error; |
| 808 | int i; |
| 809 | |
| 810 | if (!dev->keycodesize) |
| 811 | return -EINVAL; |
| 812 | |
| 813 | if (ke->flags & INPUT_KEYMAP_BY_INDEX) { |
| 814 | index = ke->index; |
| 815 | } else { |
| 816 | error = input_scancode_to_scalar(ke, &index); |
| 817 | if (error) |
| 818 | return error; |
| 819 | } |
| 820 | |
| 821 | if (index >= dev->keycodemax) |
| 822 | return -EINVAL; |
| 823 | |
| 824 | if (dev->keycodesize < sizeof(ke->keycode) && |
| 825 | (ke->keycode >> (dev->keycodesize * 8))) |
| 826 | return -EINVAL; |
| 827 | |
| 828 | switch (dev->keycodesize) { |
| 829 | case 1: { |
| 830 | u8 *k = (u8 *)dev->keycode; |
| 831 | *old_keycode = k[index]; |
| 832 | k[index] = ke->keycode; |
| 833 | break; |
| 834 | } |
| 835 | case 2: { |
| 836 | u16 *k = (u16 *)dev->keycode; |
| 837 | *old_keycode = k[index]; |
| 838 | k[index] = ke->keycode; |
| 839 | break; |
| 840 | } |
| 841 | default: { |
| 842 | u32 *k = (u32 *)dev->keycode; |
| 843 | *old_keycode = k[index]; |
| 844 | k[index] = ke->keycode; |
| 845 | break; |
| 846 | } |
| 847 | } |
| 848 | |
| 849 | if (*old_keycode <= KEY_MAX) { |
| 850 | __clear_bit(*old_keycode, dev->keybit); |
| 851 | for (i = 0; i < dev->keycodemax; i++) { |
| 852 | if (input_fetch_keycode(dev, i) == *old_keycode) { |
| 853 | __set_bit(*old_keycode, dev->keybit); |
| 854 | /* Setting the bit twice is useless, so break */ |
| 855 | break; |
| 856 | } |
| 857 | } |
| 858 | } |
| 859 | |
| 860 | __set_bit(ke->keycode, dev->keybit); |
| 861 | return 0; |
| 862 | } |
| 863 | |
| 864 | /** |
| 865 | * input_get_keycode - retrieve keycode currently mapped to a given scancode |
| 866 | * @dev: input device which keymap is being queried |
| 867 | * @ke: keymap entry |
| 868 | * |
| 869 | * This function should be called by anyone interested in retrieving current |
| 870 | * keymap. Presently evdev handlers use it. |
| 871 | */ |
| 872 | int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke) |
| 873 | { |
| 874 | guard(spinlock_irqsave)(&dev->event_lock); |
| 875 | |
| 876 | return dev->getkeycode(dev, ke); |
| 877 | } |
| 878 | EXPORT_SYMBOL(input_get_keycode); |
| 879 | |
| 880 | /** |
| 881 | * input_set_keycode - attribute a keycode to a given scancode |
| 882 | * @dev: input device which keymap is being updated |
| 883 | * @ke: new keymap entry |
| 884 | * |
| 885 | * This function should be called by anyone needing to update current |
| 886 | * keymap. Presently keyboard and evdev handlers use it. |
| 887 | */ |
| 888 | int input_set_keycode(struct input_dev *dev, |
| 889 | const struct input_keymap_entry *ke) |
| 890 | { |
| 891 | unsigned int old_keycode; |
| 892 | int error; |
| 893 | |
| 894 | if (ke->keycode > KEY_MAX) |
| 895 | return -EINVAL; |
| 896 | |
| 897 | guard(spinlock_irqsave)(&dev->event_lock); |
| 898 | |
| 899 | error = dev->setkeycode(dev, ke, &old_keycode); |
| 900 | if (error) |
| 901 | return error; |
| 902 | |
| 903 | /* Make sure KEY_RESERVED did not get enabled. */ |
| 904 | __clear_bit(KEY_RESERVED, dev->keybit); |
| 905 | |
| 906 | /* |
| 907 | * Simulate keyup event if keycode is not present |
| 908 | * in the keymap anymore |
| 909 | */ |
| 910 | if (old_keycode > KEY_MAX) { |
| 911 | dev_warn(dev->dev.parent ?: &dev->dev, |
| 912 | "%s: got too big old keycode %#x\n", |
| 913 | __func__, old_keycode); |
| 914 | } else if (test_bit(EV_KEY, dev->evbit) && |
| 915 | !is_event_supported(old_keycode, dev->keybit, KEY_MAX) && |
| 916 | __test_and_clear_bit(old_keycode, dev->key)) { |
| 917 | /* |
| 918 | * We have to use input_event_dispose() here directly instead |
| 919 | * of input_handle_event() because the key we want to release |
| 920 | * here is considered no longer supported by the device and |
| 921 | * input_handle_event() will ignore it. |
| 922 | */ |
| 923 | input_event_dispose(dev, INPUT_PASS_TO_HANDLERS, |
| 924 | EV_KEY, old_keycode, 0); |
| 925 | input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH, |
| 926 | EV_SYN, SYN_REPORT, 1); |
| 927 | } |
| 928 | |
| 929 | return 0; |
| 930 | } |
| 931 | EXPORT_SYMBOL(input_set_keycode); |
| 932 | |
| 933 | bool input_match_device_id(const struct input_dev *dev, |
| 934 | const struct input_device_id *id) |
| 935 | { |
| 936 | if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) |
| 937 | if (id->bustype != dev->id.bustype) |
| 938 | return false; |
| 939 | |
| 940 | if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) |
| 941 | if (id->vendor != dev->id.vendor) |
| 942 | return false; |
| 943 | |
| 944 | if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) |
| 945 | if (id->product != dev->id.product) |
| 946 | return false; |
| 947 | |
| 948 | if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) |
| 949 | if (id->version != dev->id.version) |
| 950 | return false; |
| 951 | |
| 952 | if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) || |
| 953 | !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) || |
| 954 | !bitmap_subset(id->relbit, dev->relbit, REL_MAX) || |
| 955 | !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) || |
| 956 | !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) || |
| 957 | !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) || |
| 958 | !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) || |
| 959 | !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) || |
| 960 | !bitmap_subset(id->swbit, dev->swbit, SW_MAX) || |
| 961 | !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) { |
| 962 | return false; |
| 963 | } |
| 964 | |
| 965 | return true; |
| 966 | } |
| 967 | EXPORT_SYMBOL(input_match_device_id); |
| 968 | |
| 969 | static const struct input_device_id *input_match_device(struct input_handler *handler, |
| 970 | struct input_dev *dev) |
| 971 | { |
| 972 | const struct input_device_id *id; |
| 973 | |
| 974 | for (id = handler->id_table; id->flags || id->driver_info; id++) { |
| 975 | if (input_match_device_id(dev, id) && |
| 976 | (!handler->match || handler->match(handler, dev))) { |
| 977 | return id; |
| 978 | } |
| 979 | } |
| 980 | |
| 981 | return NULL; |
| 982 | } |
| 983 | |
| 984 | static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) |
| 985 | { |
| 986 | const struct input_device_id *id; |
| 987 | int error; |
| 988 | |
| 989 | id = input_match_device(handler, dev); |
| 990 | if (!id) |
| 991 | return -ENODEV; |
| 992 | |
| 993 | error = handler->connect(handler, dev, id); |
| 994 | if (error && error != -ENODEV) |
| 995 | pr_err("failed to attach handler %s to device %s, error: %d\n", |
| 996 | handler->name, kobject_name(&dev->dev.kobj), error); |
| 997 | |
| 998 | return error; |
| 999 | } |
| 1000 | |
| 1001 | #ifdef CONFIG_COMPAT |
| 1002 | |
| 1003 | static int input_bits_to_string(char *buf, int buf_size, |
| 1004 | unsigned long bits, bool skip_empty) |
| 1005 | { |
| 1006 | int len = 0; |
| 1007 | |
| 1008 | if (in_compat_syscall()) { |
| 1009 | u32 dword = bits >> 32; |
| 1010 | if (dword || !skip_empty) |
| 1011 | len += snprintf(buf, buf_size, "%x ", dword); |
| 1012 | |
| 1013 | dword = bits & 0xffffffffUL; |
| 1014 | if (dword || !skip_empty || len) |
| 1015 | len += snprintf(buf + len, max(buf_size - len, 0), |
| 1016 | "%x", dword); |
| 1017 | } else { |
| 1018 | if (bits || !skip_empty) |
| 1019 | len += snprintf(buf, buf_size, "%lx", bits); |
| 1020 | } |
| 1021 | |
| 1022 | return len; |
| 1023 | } |
| 1024 | |
| 1025 | #else /* !CONFIG_COMPAT */ |
| 1026 | |
| 1027 | static int input_bits_to_string(char *buf, int buf_size, |
| 1028 | unsigned long bits, bool skip_empty) |
| 1029 | { |
| 1030 | return bits || !skip_empty ? |
| 1031 | snprintf(buf, buf_size, "%lx", bits) : 0; |
| 1032 | } |
| 1033 | |
| 1034 | #endif |
| 1035 | |
| 1036 | #ifdef CONFIG_PROC_FS |
| 1037 | |
| 1038 | static struct proc_dir_entry *proc_bus_input_dir; |
| 1039 | static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); |
| 1040 | static int input_devices_state; |
| 1041 | |
| 1042 | static inline void input_wakeup_procfs_readers(void) |
| 1043 | { |
| 1044 | input_devices_state++; |
| 1045 | wake_up(&input_devices_poll_wait); |
| 1046 | } |
| 1047 | |
| 1048 | struct input_seq_state { |
| 1049 | unsigned short pos; |
| 1050 | bool mutex_acquired; |
| 1051 | int input_devices_state; |
| 1052 | }; |
| 1053 | |
| 1054 | static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait) |
| 1055 | { |
| 1056 | struct seq_file *seq = file->private_data; |
| 1057 | struct input_seq_state *state = seq->private; |
| 1058 | |
| 1059 | poll_wait(file, &input_devices_poll_wait, wait); |
| 1060 | if (state->input_devices_state != input_devices_state) { |
| 1061 | state->input_devices_state = input_devices_state; |
| 1062 | return EPOLLIN | EPOLLRDNORM; |
| 1063 | } |
| 1064 | |
| 1065 | return 0; |
| 1066 | } |
| 1067 | |
| 1068 | static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) |
| 1069 | { |
| 1070 | struct input_seq_state *state = seq->private; |
| 1071 | int error; |
| 1072 | |
| 1073 | error = mutex_lock_interruptible(&input_mutex); |
| 1074 | if (error) { |
| 1075 | state->mutex_acquired = false; |
| 1076 | return ERR_PTR(error); |
| 1077 | } |
| 1078 | |
| 1079 | state->mutex_acquired = true; |
| 1080 | |
| 1081 | return seq_list_start(&input_dev_list, *pos); |
| 1082 | } |
| 1083 | |
| 1084 | static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
| 1085 | { |
| 1086 | return seq_list_next(v, &input_dev_list, pos); |
| 1087 | } |
| 1088 | |
| 1089 | static void input_seq_stop(struct seq_file *seq, void *v) |
| 1090 | { |
| 1091 | struct input_seq_state *state = seq->private; |
| 1092 | |
| 1093 | if (state->mutex_acquired) |
| 1094 | mutex_unlock(&input_mutex); |
| 1095 | } |
| 1096 | |
| 1097 | static void input_seq_print_bitmap(struct seq_file *seq, const char *name, |
| 1098 | unsigned long *bitmap, int max) |
| 1099 | { |
| 1100 | int i; |
| 1101 | bool skip_empty = true; |
| 1102 | char buf[18]; |
| 1103 | |
| 1104 | seq_printf(seq, "B: %s=", name); |
| 1105 | |
| 1106 | for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { |
| 1107 | if (input_bits_to_string(buf, sizeof(buf), |
| 1108 | bitmap[i], skip_empty)) { |
| 1109 | skip_empty = false; |
| 1110 | seq_printf(seq, "%s%s", buf, i > 0 ? " " : ""); |
| 1111 | } |
| 1112 | } |
| 1113 | |
| 1114 | /* |
| 1115 | * If no output was produced print a single 0. |
| 1116 | */ |
| 1117 | if (skip_empty) |
| 1118 | seq_putc(seq, '0'); |
| 1119 | |
| 1120 | seq_putc(seq, '\n'); |
| 1121 | } |
| 1122 | |
| 1123 | static int input_devices_seq_show(struct seq_file *seq, void *v) |
| 1124 | { |
| 1125 | struct input_dev *dev = container_of(v, struct input_dev, node); |
| 1126 | const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); |
| 1127 | struct input_handle *handle; |
| 1128 | |
| 1129 | seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", |
| 1130 | dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); |
| 1131 | |
| 1132 | seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); |
| 1133 | seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); |
| 1134 | seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); |
| 1135 | seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); |
| 1136 | seq_puts(seq, "H: Handlers="); |
| 1137 | |
| 1138 | list_for_each_entry(handle, &dev->h_list, d_node) |
| 1139 | seq_printf(seq, "%s ", handle->name); |
| 1140 | seq_putc(seq, '\n'); |
| 1141 | |
| 1142 | input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX); |
| 1143 | |
| 1144 | input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); |
| 1145 | if (test_bit(EV_KEY, dev->evbit)) |
| 1146 | input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); |
| 1147 | if (test_bit(EV_REL, dev->evbit)) |
| 1148 | input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); |
| 1149 | if (test_bit(EV_ABS, dev->evbit)) |
| 1150 | input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); |
| 1151 | if (test_bit(EV_MSC, dev->evbit)) |
| 1152 | input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); |
| 1153 | if (test_bit(EV_LED, dev->evbit)) |
| 1154 | input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); |
| 1155 | if (test_bit(EV_SND, dev->evbit)) |
| 1156 | input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); |
| 1157 | if (test_bit(EV_FF, dev->evbit)) |
| 1158 | input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); |
| 1159 | if (test_bit(EV_SW, dev->evbit)) |
| 1160 | input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); |
| 1161 | |
| 1162 | seq_putc(seq, '\n'); |
| 1163 | |
| 1164 | kfree(path); |
| 1165 | return 0; |
| 1166 | } |
| 1167 | |
| 1168 | static const struct seq_operations input_devices_seq_ops = { |
| 1169 | .start = input_devices_seq_start, |
| 1170 | .next = input_devices_seq_next, |
| 1171 | .stop = input_seq_stop, |
| 1172 | .show = input_devices_seq_show, |
| 1173 | }; |
| 1174 | |
| 1175 | static int input_proc_devices_open(struct inode *inode, struct file *file) |
| 1176 | { |
| 1177 | return seq_open_private(file, &input_devices_seq_ops, |
| 1178 | sizeof(struct input_seq_state)); |
| 1179 | } |
| 1180 | |
| 1181 | static const struct proc_ops input_devices_proc_ops = { |
| 1182 | .proc_open = input_proc_devices_open, |
| 1183 | .proc_poll = input_proc_devices_poll, |
| 1184 | .proc_read = seq_read, |
| 1185 | .proc_lseek = seq_lseek, |
| 1186 | .proc_release = seq_release_private, |
| 1187 | }; |
| 1188 | |
| 1189 | static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) |
| 1190 | { |
| 1191 | struct input_seq_state *state = seq->private; |
| 1192 | int error; |
| 1193 | |
| 1194 | error = mutex_lock_interruptible(&input_mutex); |
| 1195 | if (error) { |
| 1196 | state->mutex_acquired = false; |
| 1197 | return ERR_PTR(error); |
| 1198 | } |
| 1199 | |
| 1200 | state->mutex_acquired = true; |
| 1201 | state->pos = *pos; |
| 1202 | |
| 1203 | return seq_list_start(&input_handler_list, *pos); |
| 1204 | } |
| 1205 | |
| 1206 | static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
| 1207 | { |
| 1208 | struct input_seq_state *state = seq->private; |
| 1209 | |
| 1210 | state->pos = *pos + 1; |
| 1211 | return seq_list_next(v, &input_handler_list, pos); |
| 1212 | } |
| 1213 | |
| 1214 | static int input_handlers_seq_show(struct seq_file *seq, void *v) |
| 1215 | { |
| 1216 | struct input_handler *handler = container_of(v, struct input_handler, node); |
| 1217 | struct input_seq_state *state = seq->private; |
| 1218 | |
| 1219 | seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name); |
| 1220 | if (handler->filter) |
| 1221 | seq_puts(seq, " (filter)"); |
| 1222 | if (handler->legacy_minors) |
| 1223 | seq_printf(seq, " Minor=%d", handler->minor); |
| 1224 | seq_putc(seq, '\n'); |
| 1225 | |
| 1226 | return 0; |
| 1227 | } |
| 1228 | |
| 1229 | static const struct seq_operations input_handlers_seq_ops = { |
| 1230 | .start = input_handlers_seq_start, |
| 1231 | .next = input_handlers_seq_next, |
| 1232 | .stop = input_seq_stop, |
| 1233 | .show = input_handlers_seq_show, |
| 1234 | }; |
| 1235 | |
| 1236 | static int input_proc_handlers_open(struct inode *inode, struct file *file) |
| 1237 | { |
| 1238 | return seq_open_private(file, &input_handlers_seq_ops, |
| 1239 | sizeof(struct input_seq_state)); |
| 1240 | } |
| 1241 | |
| 1242 | static const struct proc_ops input_handlers_proc_ops = { |
| 1243 | .proc_open = input_proc_handlers_open, |
| 1244 | .proc_read = seq_read, |
| 1245 | .proc_lseek = seq_lseek, |
| 1246 | .proc_release = seq_release_private, |
| 1247 | }; |
| 1248 | |
| 1249 | static int __init input_proc_init(void) |
| 1250 | { |
| 1251 | struct proc_dir_entry *entry; |
| 1252 | |
| 1253 | proc_bus_input_dir = proc_mkdir("bus/input", NULL); |
| 1254 | if (!proc_bus_input_dir) |
| 1255 | return -ENOMEM; |
| 1256 | |
| 1257 | entry = proc_create("devices", 0, proc_bus_input_dir, |
| 1258 | &input_devices_proc_ops); |
| 1259 | if (!entry) |
| 1260 | goto fail1; |
| 1261 | |
| 1262 | entry = proc_create("handlers", 0, proc_bus_input_dir, |
| 1263 | &input_handlers_proc_ops); |
| 1264 | if (!entry) |
| 1265 | goto fail2; |
| 1266 | |
| 1267 | return 0; |
| 1268 | |
| 1269 | fail2: remove_proc_entry("devices", proc_bus_input_dir); |
| 1270 | fail1: remove_proc_entry("bus/input", NULL); |
| 1271 | return -ENOMEM; |
| 1272 | } |
| 1273 | |
| 1274 | static void input_proc_exit(void) |
| 1275 | { |
| 1276 | remove_proc_entry("devices", proc_bus_input_dir); |
| 1277 | remove_proc_entry("handlers", proc_bus_input_dir); |
| 1278 | remove_proc_entry("bus/input", NULL); |
| 1279 | } |
| 1280 | |
| 1281 | #else /* !CONFIG_PROC_FS */ |
| 1282 | static inline void input_wakeup_procfs_readers(void) { } |
| 1283 | static inline int input_proc_init(void) { return 0; } |
| 1284 | static inline void input_proc_exit(void) { } |
| 1285 | #endif |
| 1286 | |
| 1287 | #define INPUT_DEV_STRING_ATTR_SHOW(name) \ |
| 1288 | static ssize_t input_dev_show_##name(struct device *dev, \ |
| 1289 | struct device_attribute *attr, \ |
| 1290 | char *buf) \ |
| 1291 | { \ |
| 1292 | struct input_dev *input_dev = to_input_dev(dev); \ |
| 1293 | \ |
| 1294 | return sysfs_emit(buf, "%s\n", \ |
| 1295 | input_dev->name ? input_dev->name : ""); \ |
| 1296 | } \ |
| 1297 | static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) |
| 1298 | |
| 1299 | INPUT_DEV_STRING_ATTR_SHOW(name); |
| 1300 | INPUT_DEV_STRING_ATTR_SHOW(phys); |
| 1301 | INPUT_DEV_STRING_ATTR_SHOW(uniq); |
| 1302 | |
| 1303 | static int input_print_modalias_bits(char *buf, int size, |
| 1304 | char name, const unsigned long *bm, |
| 1305 | unsigned int min_bit, unsigned int max_bit) |
| 1306 | { |
| 1307 | int bit = min_bit; |
| 1308 | int len = 0; |
| 1309 | |
| 1310 | len += snprintf(buf, max(size, 0), "%c", name); |
| 1311 | for_each_set_bit_from(bit, bm, max_bit) |
| 1312 | len += snprintf(buf + len, max(size - len, 0), "%X,", bit); |
| 1313 | return len; |
| 1314 | } |
| 1315 | |
| 1316 | static int input_print_modalias_parts(char *buf, int size, int full_len, |
| 1317 | const struct input_dev *id) |
| 1318 | { |
| 1319 | int len, klen, remainder, space; |
| 1320 | |
| 1321 | len = snprintf(buf, max(size, 0), |
| 1322 | "input:b%04Xv%04Xp%04Xe%04X-", |
| 1323 | id->id.bustype, id->id.vendor, |
| 1324 | id->id.product, id->id.version); |
| 1325 | |
| 1326 | len += input_print_modalias_bits(buf + len, size - len, |
| 1327 | 'e', id->evbit, 0, EV_MAX); |
| 1328 | |
| 1329 | /* |
| 1330 | * Calculate the remaining space in the buffer making sure we |
| 1331 | * have place for the terminating 0. |
| 1332 | */ |
| 1333 | space = max(size - (len + 1), 0); |
| 1334 | |
| 1335 | klen = input_print_modalias_bits(buf + len, size - len, |
| 1336 | 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); |
| 1337 | len += klen; |
| 1338 | |
| 1339 | /* |
| 1340 | * If we have more data than we can fit in the buffer, check |
| 1341 | * if we can trim key data to fit in the rest. We will indicate |
| 1342 | * that key data is incomplete by adding "+" sign at the end, like |
| 1343 | * this: * "k1,2,3,45,+,". |
| 1344 | * |
| 1345 | * Note that we shortest key info (if present) is "k+," so we |
| 1346 | * can only try to trim if key data is longer than that. |
| 1347 | */ |
| 1348 | if (full_len && size < full_len + 1 && klen > 3) { |
| 1349 | remainder = full_len - len; |
| 1350 | /* |
| 1351 | * We can only trim if we have space for the remainder |
| 1352 | * and also for at least "k+," which is 3 more characters. |
| 1353 | */ |
| 1354 | if (remainder <= space - 3) { |
| 1355 | /* |
| 1356 | * We are guaranteed to have 'k' in the buffer, so |
| 1357 | * we need at least 3 additional bytes for storing |
| 1358 | * "+," in addition to the remainder. |
| 1359 | */ |
| 1360 | for (int i = size - 1 - remainder - 3; i >= 0; i--) { |
| 1361 | if (buf[i] == 'k' || buf[i] == ',') { |
| 1362 | strcpy(buf + i + 1, "+,"); |
| 1363 | len = i + 3; /* Not counting '\0' */ |
| 1364 | break; |
| 1365 | } |
| 1366 | } |
| 1367 | } |
| 1368 | } |
| 1369 | |
| 1370 | len += input_print_modalias_bits(buf + len, size - len, |
| 1371 | 'r', id->relbit, 0, REL_MAX); |
| 1372 | len += input_print_modalias_bits(buf + len, size - len, |
| 1373 | 'a', id->absbit, 0, ABS_MAX); |
| 1374 | len += input_print_modalias_bits(buf + len, size - len, |
| 1375 | 'm', id->mscbit, 0, MSC_MAX); |
| 1376 | len += input_print_modalias_bits(buf + len, size - len, |
| 1377 | 'l', id->ledbit, 0, LED_MAX); |
| 1378 | len += input_print_modalias_bits(buf + len, size - len, |
| 1379 | 's', id->sndbit, 0, SND_MAX); |
| 1380 | len += input_print_modalias_bits(buf + len, size - len, |
| 1381 | 'f', id->ffbit, 0, FF_MAX); |
| 1382 | len += input_print_modalias_bits(buf + len, size - len, |
| 1383 | 'w', id->swbit, 0, SW_MAX); |
| 1384 | |
| 1385 | return len; |
| 1386 | } |
| 1387 | |
| 1388 | static int input_print_modalias(char *buf, int size, const struct input_dev *id) |
| 1389 | { |
| 1390 | int full_len; |
| 1391 | |
| 1392 | /* |
| 1393 | * Printing is done in 2 passes: first one figures out total length |
| 1394 | * needed for the modalias string, second one will try to trim key |
| 1395 | * data in case when buffer is too small for the entire modalias. |
| 1396 | * If the buffer is too small regardless, it will fill as much as it |
| 1397 | * can (without trimming key data) into the buffer and leave it to |
| 1398 | * the caller to figure out what to do with the result. |
| 1399 | */ |
| 1400 | full_len = input_print_modalias_parts(NULL, 0, 0, id); |
| 1401 | return input_print_modalias_parts(buf, size, full_len, id); |
| 1402 | } |
| 1403 | |
| 1404 | static ssize_t input_dev_show_modalias(struct device *dev, |
| 1405 | struct device_attribute *attr, |
| 1406 | char *buf) |
| 1407 | { |
| 1408 | struct input_dev *id = to_input_dev(dev); |
| 1409 | ssize_t len; |
| 1410 | |
| 1411 | len = input_print_modalias(buf, PAGE_SIZE, id); |
| 1412 | if (len < PAGE_SIZE - 2) |
| 1413 | len += snprintf(buf + len, PAGE_SIZE - len, "\n"); |
| 1414 | |
| 1415 | return min_t(int, len, PAGE_SIZE); |
| 1416 | } |
| 1417 | static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); |
| 1418 | |
| 1419 | static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap, |
| 1420 | int max, int add_cr); |
| 1421 | |
| 1422 | static ssize_t input_dev_show_properties(struct device *dev, |
| 1423 | struct device_attribute *attr, |
| 1424 | char *buf) |
| 1425 | { |
| 1426 | struct input_dev *input_dev = to_input_dev(dev); |
| 1427 | int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit, |
| 1428 | INPUT_PROP_MAX, true); |
| 1429 | return min_t(int, len, PAGE_SIZE); |
| 1430 | } |
| 1431 | static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL); |
| 1432 | |
| 1433 | static int input_inhibit_device(struct input_dev *dev); |
| 1434 | static int input_uninhibit_device(struct input_dev *dev); |
| 1435 | |
| 1436 | static ssize_t inhibited_show(struct device *dev, |
| 1437 | struct device_attribute *attr, |
| 1438 | char *buf) |
| 1439 | { |
| 1440 | struct input_dev *input_dev = to_input_dev(dev); |
| 1441 | |
| 1442 | return sysfs_emit(buf, "%d\n", input_dev->inhibited); |
| 1443 | } |
| 1444 | |
| 1445 | static ssize_t inhibited_store(struct device *dev, |
| 1446 | struct device_attribute *attr, const char *buf, |
| 1447 | size_t len) |
| 1448 | { |
| 1449 | struct input_dev *input_dev = to_input_dev(dev); |
| 1450 | ssize_t rv; |
| 1451 | bool inhibited; |
| 1452 | |
| 1453 | if (kstrtobool(buf, &inhibited)) |
| 1454 | return -EINVAL; |
| 1455 | |
| 1456 | if (inhibited) |
| 1457 | rv = input_inhibit_device(input_dev); |
| 1458 | else |
| 1459 | rv = input_uninhibit_device(input_dev); |
| 1460 | |
| 1461 | if (rv != 0) |
| 1462 | return rv; |
| 1463 | |
| 1464 | return len; |
| 1465 | } |
| 1466 | |
| 1467 | static DEVICE_ATTR_RW(inhibited); |
| 1468 | |
| 1469 | static struct attribute *input_dev_attrs[] = { |
| 1470 | &dev_attr_name.attr, |
| 1471 | &dev_attr_phys.attr, |
| 1472 | &dev_attr_uniq.attr, |
| 1473 | &dev_attr_modalias.attr, |
| 1474 | &dev_attr_properties.attr, |
| 1475 | &dev_attr_inhibited.attr, |
| 1476 | NULL |
| 1477 | }; |
| 1478 | |
| 1479 | static const struct attribute_group input_dev_attr_group = { |
| 1480 | .attrs = input_dev_attrs, |
| 1481 | }; |
| 1482 | |
| 1483 | #define INPUT_DEV_ID_ATTR(name) \ |
| 1484 | static ssize_t input_dev_show_id_##name(struct device *dev, \ |
| 1485 | struct device_attribute *attr, \ |
| 1486 | char *buf) \ |
| 1487 | { \ |
| 1488 | struct input_dev *input_dev = to_input_dev(dev); \ |
| 1489 | return sysfs_emit(buf, "%04x\n", input_dev->id.name); \ |
| 1490 | } \ |
| 1491 | static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) |
| 1492 | |
| 1493 | INPUT_DEV_ID_ATTR(bustype); |
| 1494 | INPUT_DEV_ID_ATTR(vendor); |
| 1495 | INPUT_DEV_ID_ATTR(product); |
| 1496 | INPUT_DEV_ID_ATTR(version); |
| 1497 | |
| 1498 | static struct attribute *input_dev_id_attrs[] = { |
| 1499 | &dev_attr_bustype.attr, |
| 1500 | &dev_attr_vendor.attr, |
| 1501 | &dev_attr_product.attr, |
| 1502 | &dev_attr_version.attr, |
| 1503 | NULL |
| 1504 | }; |
| 1505 | |
| 1506 | static const struct attribute_group input_dev_id_attr_group = { |
| 1507 | .name = "id", |
| 1508 | .attrs = input_dev_id_attrs, |
| 1509 | }; |
| 1510 | |
| 1511 | static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap, |
| 1512 | int max, int add_cr) |
| 1513 | { |
| 1514 | int i; |
| 1515 | int len = 0; |
| 1516 | bool skip_empty = true; |
| 1517 | |
| 1518 | for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { |
| 1519 | len += input_bits_to_string(buf + len, max(buf_size - len, 0), |
| 1520 | bitmap[i], skip_empty); |
| 1521 | if (len) { |
| 1522 | skip_empty = false; |
| 1523 | if (i > 0) |
| 1524 | len += snprintf(buf + len, max(buf_size - len, 0), " "); |
| 1525 | } |
| 1526 | } |
| 1527 | |
| 1528 | /* |
| 1529 | * If no output was produced print a single 0. |
| 1530 | */ |
| 1531 | if (len == 0) |
| 1532 | len = snprintf(buf, buf_size, "%d", 0); |
| 1533 | |
| 1534 | if (add_cr) |
| 1535 | len += snprintf(buf + len, max(buf_size - len, 0), "\n"); |
| 1536 | |
| 1537 | return len; |
| 1538 | } |
| 1539 | |
| 1540 | #define INPUT_DEV_CAP_ATTR(ev, bm) \ |
| 1541 | static ssize_t input_dev_show_cap_##bm(struct device *dev, \ |
| 1542 | struct device_attribute *attr, \ |
| 1543 | char *buf) \ |
| 1544 | { \ |
| 1545 | struct input_dev *input_dev = to_input_dev(dev); \ |
| 1546 | int len = input_print_bitmap(buf, PAGE_SIZE, \ |
| 1547 | input_dev->bm##bit, ev##_MAX, \ |
| 1548 | true); \ |
| 1549 | return min_t(int, len, PAGE_SIZE); \ |
| 1550 | } \ |
| 1551 | static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) |
| 1552 | |
| 1553 | INPUT_DEV_CAP_ATTR(EV, ev); |
| 1554 | INPUT_DEV_CAP_ATTR(KEY, key); |
| 1555 | INPUT_DEV_CAP_ATTR(REL, rel); |
| 1556 | INPUT_DEV_CAP_ATTR(ABS, abs); |
| 1557 | INPUT_DEV_CAP_ATTR(MSC, msc); |
| 1558 | INPUT_DEV_CAP_ATTR(LED, led); |
| 1559 | INPUT_DEV_CAP_ATTR(SND, snd); |
| 1560 | INPUT_DEV_CAP_ATTR(FF, ff); |
| 1561 | INPUT_DEV_CAP_ATTR(SW, sw); |
| 1562 | |
| 1563 | static struct attribute *input_dev_caps_attrs[] = { |
| 1564 | &dev_attr_ev.attr, |
| 1565 | &dev_attr_key.attr, |
| 1566 | &dev_attr_rel.attr, |
| 1567 | &dev_attr_abs.attr, |
| 1568 | &dev_attr_msc.attr, |
| 1569 | &dev_attr_led.attr, |
| 1570 | &dev_attr_snd.attr, |
| 1571 | &dev_attr_ff.attr, |
| 1572 | &dev_attr_sw.attr, |
| 1573 | NULL |
| 1574 | }; |
| 1575 | |
| 1576 | static const struct attribute_group input_dev_caps_attr_group = { |
| 1577 | .name = "capabilities", |
| 1578 | .attrs = input_dev_caps_attrs, |
| 1579 | }; |
| 1580 | |
| 1581 | static const struct attribute_group *input_dev_attr_groups[] = { |
| 1582 | &input_dev_attr_group, |
| 1583 | &input_dev_id_attr_group, |
| 1584 | &input_dev_caps_attr_group, |
| 1585 | &input_poller_attribute_group, |
| 1586 | NULL |
| 1587 | }; |
| 1588 | |
| 1589 | static void input_dev_release(struct device *device) |
| 1590 | { |
| 1591 | struct input_dev *dev = to_input_dev(device); |
| 1592 | |
| 1593 | input_ff_destroy(dev); |
| 1594 | input_mt_destroy_slots(dev); |
| 1595 | kfree(dev->poller); |
| 1596 | kfree(dev->absinfo); |
| 1597 | kfree(dev->vals); |
| 1598 | kfree(dev); |
| 1599 | |
| 1600 | module_put(THIS_MODULE); |
| 1601 | } |
| 1602 | |
| 1603 | /* |
| 1604 | * Input uevent interface - loading event handlers based on |
| 1605 | * device bitfields. |
| 1606 | */ |
| 1607 | static int input_add_uevent_bm_var(struct kobj_uevent_env *env, |
| 1608 | const char *name, const unsigned long *bitmap, int max) |
| 1609 | { |
| 1610 | int len; |
| 1611 | |
| 1612 | if (add_uevent_var(env, "%s", name)) |
| 1613 | return -ENOMEM; |
| 1614 | |
| 1615 | len = input_print_bitmap(&env->buf[env->buflen - 1], |
| 1616 | sizeof(env->buf) - env->buflen, |
| 1617 | bitmap, max, false); |
| 1618 | if (len >= (sizeof(env->buf) - env->buflen)) |
| 1619 | return -ENOMEM; |
| 1620 | |
| 1621 | env->buflen += len; |
| 1622 | return 0; |
| 1623 | } |
| 1624 | |
| 1625 | /* |
| 1626 | * This is a pretty gross hack. When building uevent data the driver core |
| 1627 | * may try adding more environment variables to kobj_uevent_env without |
| 1628 | * telling us, so we have no idea how much of the buffer we can use to |
| 1629 | * avoid overflows/-ENOMEM elsewhere. To work around this let's artificially |
| 1630 | * reduce amount of memory we will use for the modalias environment variable. |
| 1631 | * |
| 1632 | * The potential additions are: |
| 1633 | * |
| 1634 | * SEQNUM=18446744073709551615 - (%llu - 28 bytes) |
| 1635 | * HOME=/ (6 bytes) |
| 1636 | * PATH=/sbin:/bin:/usr/sbin:/usr/bin (34 bytes) |
| 1637 | * |
| 1638 | * 68 bytes total. Allow extra buffer - 96 bytes |
| 1639 | */ |
| 1640 | #define UEVENT_ENV_EXTRA_LEN 96 |
| 1641 | |
| 1642 | static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, |
| 1643 | const struct input_dev *dev) |
| 1644 | { |
| 1645 | int len; |
| 1646 | |
| 1647 | if (add_uevent_var(env, "MODALIAS=")) |
| 1648 | return -ENOMEM; |
| 1649 | |
| 1650 | len = input_print_modalias(&env->buf[env->buflen - 1], |
| 1651 | (int)sizeof(env->buf) - env->buflen - |
| 1652 | UEVENT_ENV_EXTRA_LEN, |
| 1653 | dev); |
| 1654 | if (len >= ((int)sizeof(env->buf) - env->buflen - |
| 1655 | UEVENT_ENV_EXTRA_LEN)) |
| 1656 | return -ENOMEM; |
| 1657 | |
| 1658 | env->buflen += len; |
| 1659 | return 0; |
| 1660 | } |
| 1661 | |
| 1662 | #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ |
| 1663 | do { \ |
| 1664 | int err = add_uevent_var(env, fmt, val); \ |
| 1665 | if (err) \ |
| 1666 | return err; \ |
| 1667 | } while (0) |
| 1668 | |
| 1669 | #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ |
| 1670 | do { \ |
| 1671 | int err = input_add_uevent_bm_var(env, name, bm, max); \ |
| 1672 | if (err) \ |
| 1673 | return err; \ |
| 1674 | } while (0) |
| 1675 | |
| 1676 | #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ |
| 1677 | do { \ |
| 1678 | int err = input_add_uevent_modalias_var(env, dev); \ |
| 1679 | if (err) \ |
| 1680 | return err; \ |
| 1681 | } while (0) |
| 1682 | |
| 1683 | static int input_dev_uevent(const struct device *device, struct kobj_uevent_env *env) |
| 1684 | { |
| 1685 | const struct input_dev *dev = to_input_dev(device); |
| 1686 | |
| 1687 | INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", |
| 1688 | dev->id.bustype, dev->id.vendor, |
| 1689 | dev->id.product, dev->id.version); |
| 1690 | if (dev->name) |
| 1691 | INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); |
| 1692 | if (dev->phys) |
| 1693 | INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); |
| 1694 | if (dev->uniq) |
| 1695 | INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); |
| 1696 | |
| 1697 | INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX); |
| 1698 | |
| 1699 | INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); |
| 1700 | if (test_bit(EV_KEY, dev->evbit)) |
| 1701 | INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); |
| 1702 | if (test_bit(EV_REL, dev->evbit)) |
| 1703 | INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); |
| 1704 | if (test_bit(EV_ABS, dev->evbit)) |
| 1705 | INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); |
| 1706 | if (test_bit(EV_MSC, dev->evbit)) |
| 1707 | INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); |
| 1708 | if (test_bit(EV_LED, dev->evbit)) |
| 1709 | INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); |
| 1710 | if (test_bit(EV_SND, dev->evbit)) |
| 1711 | INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); |
| 1712 | if (test_bit(EV_FF, dev->evbit)) |
| 1713 | INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); |
| 1714 | if (test_bit(EV_SW, dev->evbit)) |
| 1715 | INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); |
| 1716 | |
| 1717 | INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); |
| 1718 | |
| 1719 | return 0; |
| 1720 | } |
| 1721 | |
| 1722 | #define INPUT_DO_TOGGLE(dev, type, bits, on) \ |
| 1723 | do { \ |
| 1724 | int i; \ |
| 1725 | bool active; \ |
| 1726 | \ |
| 1727 | if (!test_bit(EV_##type, dev->evbit)) \ |
| 1728 | break; \ |
| 1729 | \ |
| 1730 | for_each_set_bit(i, dev->bits##bit, type##_CNT) { \ |
| 1731 | active = test_bit(i, dev->bits); \ |
| 1732 | if (!active && !on) \ |
| 1733 | continue; \ |
| 1734 | \ |
| 1735 | dev->event(dev, EV_##type, i, on ? active : 0); \ |
| 1736 | } \ |
| 1737 | } while (0) |
| 1738 | |
| 1739 | static void input_dev_toggle(struct input_dev *dev, bool activate) |
| 1740 | { |
| 1741 | if (!dev->event) |
| 1742 | return; |
| 1743 | |
| 1744 | INPUT_DO_TOGGLE(dev, LED, led, activate); |
| 1745 | INPUT_DO_TOGGLE(dev, SND, snd, activate); |
| 1746 | |
| 1747 | if (activate && test_bit(EV_REP, dev->evbit)) { |
| 1748 | dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); |
| 1749 | dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); |
| 1750 | } |
| 1751 | } |
| 1752 | |
| 1753 | /** |
| 1754 | * input_reset_device() - reset/restore the state of input device |
| 1755 | * @dev: input device whose state needs to be reset |
| 1756 | * |
| 1757 | * This function tries to reset the state of an opened input device and |
| 1758 | * bring internal state and state if the hardware in sync with each other. |
| 1759 | * We mark all keys as released, restore LED state, repeat rate, etc. |
| 1760 | */ |
| 1761 | void input_reset_device(struct input_dev *dev) |
| 1762 | { |
| 1763 | guard(mutex)(&dev->mutex); |
| 1764 | guard(spinlock_irqsave)(&dev->event_lock); |
| 1765 | |
| 1766 | input_dev_toggle(dev, true); |
| 1767 | if (input_dev_release_keys(dev)) |
| 1768 | input_handle_event(dev, EV_SYN, SYN_REPORT, 1); |
| 1769 | } |
| 1770 | EXPORT_SYMBOL(input_reset_device); |
| 1771 | |
| 1772 | static int input_inhibit_device(struct input_dev *dev) |
| 1773 | { |
| 1774 | guard(mutex)(&dev->mutex); |
| 1775 | |
| 1776 | if (dev->inhibited) |
| 1777 | return 0; |
| 1778 | |
| 1779 | if (dev->users) { |
| 1780 | if (dev->close) |
| 1781 | dev->close(dev); |
| 1782 | if (dev->poller) |
| 1783 | input_dev_poller_stop(dev->poller); |
| 1784 | } |
| 1785 | |
| 1786 | scoped_guard(spinlock_irq, &dev->event_lock) { |
| 1787 | input_mt_release_slots(dev); |
| 1788 | input_dev_release_keys(dev); |
| 1789 | input_handle_event(dev, EV_SYN, SYN_REPORT, 1); |
| 1790 | input_dev_toggle(dev, false); |
| 1791 | } |
| 1792 | |
| 1793 | dev->inhibited = true; |
| 1794 | |
| 1795 | return 0; |
| 1796 | } |
| 1797 | |
| 1798 | static int input_uninhibit_device(struct input_dev *dev) |
| 1799 | { |
| 1800 | int error; |
| 1801 | |
| 1802 | guard(mutex)(&dev->mutex); |
| 1803 | |
| 1804 | if (!dev->inhibited) |
| 1805 | return 0; |
| 1806 | |
| 1807 | if (dev->users) { |
| 1808 | if (dev->open) { |
| 1809 | error = dev->open(dev); |
| 1810 | if (error) |
| 1811 | return error; |
| 1812 | } |
| 1813 | if (dev->poller) |
| 1814 | input_dev_poller_start(dev->poller); |
| 1815 | } |
| 1816 | |
| 1817 | dev->inhibited = false; |
| 1818 | |
| 1819 | scoped_guard(spinlock_irq, &dev->event_lock) |
| 1820 | input_dev_toggle(dev, true); |
| 1821 | |
| 1822 | return 0; |
| 1823 | } |
| 1824 | |
| 1825 | static int input_dev_suspend(struct device *dev) |
| 1826 | { |
| 1827 | struct input_dev *input_dev = to_input_dev(dev); |
| 1828 | |
| 1829 | guard(spinlock_irq)(&input_dev->event_lock); |
| 1830 | |
| 1831 | /* |
| 1832 | * Keys that are pressed now are unlikely to be |
| 1833 | * still pressed when we resume. |
| 1834 | */ |
| 1835 | if (input_dev_release_keys(input_dev)) |
| 1836 | input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1); |
| 1837 | |
| 1838 | /* Turn off LEDs and sounds, if any are active. */ |
| 1839 | input_dev_toggle(input_dev, false); |
| 1840 | |
| 1841 | return 0; |
| 1842 | } |
| 1843 | |
| 1844 | static int input_dev_resume(struct device *dev) |
| 1845 | { |
| 1846 | struct input_dev *input_dev = to_input_dev(dev); |
| 1847 | |
| 1848 | guard(spinlock_irq)(&input_dev->event_lock); |
| 1849 | |
| 1850 | /* Restore state of LEDs and sounds, if any were active. */ |
| 1851 | input_dev_toggle(input_dev, true); |
| 1852 | |
| 1853 | return 0; |
| 1854 | } |
| 1855 | |
| 1856 | static int input_dev_freeze(struct device *dev) |
| 1857 | { |
| 1858 | struct input_dev *input_dev = to_input_dev(dev); |
| 1859 | |
| 1860 | guard(spinlock_irq)(&input_dev->event_lock); |
| 1861 | |
| 1862 | /* |
| 1863 | * Keys that are pressed now are unlikely to be |
| 1864 | * still pressed when we resume. |
| 1865 | */ |
| 1866 | if (input_dev_release_keys(input_dev)) |
| 1867 | input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1); |
| 1868 | |
| 1869 | return 0; |
| 1870 | } |
| 1871 | |
| 1872 | static int input_dev_poweroff(struct device *dev) |
| 1873 | { |
| 1874 | struct input_dev *input_dev = to_input_dev(dev); |
| 1875 | |
| 1876 | guard(spinlock_irq)(&input_dev->event_lock); |
| 1877 | |
| 1878 | /* Turn off LEDs and sounds, if any are active. */ |
| 1879 | input_dev_toggle(input_dev, false); |
| 1880 | |
| 1881 | return 0; |
| 1882 | } |
| 1883 | |
| 1884 | static const struct dev_pm_ops input_dev_pm_ops = { |
| 1885 | .suspend = input_dev_suspend, |
| 1886 | .resume = input_dev_resume, |
| 1887 | .freeze = input_dev_freeze, |
| 1888 | .poweroff = input_dev_poweroff, |
| 1889 | .restore = input_dev_resume, |
| 1890 | }; |
| 1891 | |
| 1892 | static const struct device_type input_dev_type = { |
| 1893 | .groups = input_dev_attr_groups, |
| 1894 | .release = input_dev_release, |
| 1895 | .uevent = input_dev_uevent, |
| 1896 | .pm = pm_sleep_ptr(&input_dev_pm_ops), |
| 1897 | }; |
| 1898 | |
| 1899 | static char *input_devnode(const struct device *dev, umode_t *mode) |
| 1900 | { |
| 1901 | return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev)); |
| 1902 | } |
| 1903 | |
| 1904 | const struct class input_class = { |
| 1905 | .name = "input", |
| 1906 | .devnode = input_devnode, |
| 1907 | }; |
| 1908 | EXPORT_SYMBOL_GPL(input_class); |
| 1909 | |
| 1910 | /** |
| 1911 | * input_allocate_device - allocate memory for new input device |
| 1912 | * |
| 1913 | * Returns prepared struct input_dev or %NULL. |
| 1914 | * |
| 1915 | * NOTE: Use input_free_device() to free devices that have not been |
| 1916 | * registered; input_unregister_device() should be used for already |
| 1917 | * registered devices. |
| 1918 | */ |
| 1919 | struct input_dev *input_allocate_device(void) |
| 1920 | { |
| 1921 | static atomic_t input_no = ATOMIC_INIT(-1); |
| 1922 | struct input_dev *dev; |
| 1923 | |
| 1924 | dev = kzalloc(sizeof(*dev), GFP_KERNEL); |
| 1925 | if (!dev) |
| 1926 | return NULL; |
| 1927 | |
| 1928 | /* |
| 1929 | * Start with space for SYN_REPORT + 7 EV_KEY/EV_MSC events + 2 spare, |
| 1930 | * see input_estimate_events_per_packet(). We will tune the number |
| 1931 | * when we register the device. |
| 1932 | */ |
| 1933 | dev->max_vals = 10; |
| 1934 | dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL); |
| 1935 | if (!dev->vals) { |
| 1936 | kfree(dev); |
| 1937 | return NULL; |
| 1938 | } |
| 1939 | |
| 1940 | mutex_init(&dev->mutex); |
| 1941 | spin_lock_init(&dev->event_lock); |
| 1942 | timer_setup(&dev->timer, NULL, 0); |
| 1943 | INIT_LIST_HEAD(&dev->h_list); |
| 1944 | INIT_LIST_HEAD(&dev->node); |
| 1945 | |
| 1946 | dev->dev.type = &input_dev_type; |
| 1947 | dev->dev.class = &input_class; |
| 1948 | device_initialize(&dev->dev); |
| 1949 | /* |
| 1950 | * From this point on we can no longer simply "kfree(dev)", we need |
| 1951 | * to use input_free_device() so that device core properly frees its |
| 1952 | * resources associated with the input device. |
| 1953 | */ |
| 1954 | |
| 1955 | dev_set_name(&dev->dev, "input%lu", |
| 1956 | (unsigned long)atomic_inc_return(&input_no)); |
| 1957 | |
| 1958 | __module_get(THIS_MODULE); |
| 1959 | |
| 1960 | return dev; |
| 1961 | } |
| 1962 | EXPORT_SYMBOL(input_allocate_device); |
| 1963 | |
| 1964 | struct input_devres { |
| 1965 | struct input_dev *input; |
| 1966 | }; |
| 1967 | |
| 1968 | static int devm_input_device_match(struct device *dev, void *res, void *data) |
| 1969 | { |
| 1970 | struct input_devres *devres = res; |
| 1971 | |
| 1972 | return devres->input == data; |
| 1973 | } |
| 1974 | |
| 1975 | static void devm_input_device_release(struct device *dev, void *res) |
| 1976 | { |
| 1977 | struct input_devres *devres = res; |
| 1978 | struct input_dev *input = devres->input; |
| 1979 | |
| 1980 | dev_dbg(dev, "%s: dropping reference to %s\n", |
| 1981 | __func__, dev_name(&input->dev)); |
| 1982 | input_put_device(input); |
| 1983 | } |
| 1984 | |
| 1985 | /** |
| 1986 | * devm_input_allocate_device - allocate managed input device |
| 1987 | * @dev: device owning the input device being created |
| 1988 | * |
| 1989 | * Returns prepared struct input_dev or %NULL. |
| 1990 | * |
| 1991 | * Managed input devices do not need to be explicitly unregistered or |
| 1992 | * freed as it will be done automatically when owner device unbinds from |
| 1993 | * its driver (or binding fails). Once managed input device is allocated, |
| 1994 | * it is ready to be set up and registered in the same fashion as regular |
| 1995 | * input device. There are no special devm_input_device_[un]register() |
| 1996 | * variants, regular ones work with both managed and unmanaged devices, |
| 1997 | * should you need them. In most cases however, managed input device need |
| 1998 | * not be explicitly unregistered or freed. |
| 1999 | * |
| 2000 | * NOTE: the owner device is set up as parent of input device and users |
| 2001 | * should not override it. |
| 2002 | */ |
| 2003 | struct input_dev *devm_input_allocate_device(struct device *dev) |
| 2004 | { |
| 2005 | struct input_dev *input; |
| 2006 | struct input_devres *devres; |
| 2007 | |
| 2008 | devres = devres_alloc(devm_input_device_release, |
| 2009 | sizeof(*devres), GFP_KERNEL); |
| 2010 | if (!devres) |
| 2011 | return NULL; |
| 2012 | |
| 2013 | input = input_allocate_device(); |
| 2014 | if (!input) { |
| 2015 | devres_free(devres); |
| 2016 | return NULL; |
| 2017 | } |
| 2018 | |
| 2019 | input->dev.parent = dev; |
| 2020 | input->devres_managed = true; |
| 2021 | |
| 2022 | devres->input = input; |
| 2023 | devres_add(dev, devres); |
| 2024 | |
| 2025 | return input; |
| 2026 | } |
| 2027 | EXPORT_SYMBOL(devm_input_allocate_device); |
| 2028 | |
| 2029 | /** |
| 2030 | * input_free_device - free memory occupied by input_dev structure |
| 2031 | * @dev: input device to free |
| 2032 | * |
| 2033 | * This function should only be used if input_register_device() |
| 2034 | * was not called yet or if it failed. Once device was registered |
| 2035 | * use input_unregister_device() and memory will be freed once last |
| 2036 | * reference to the device is dropped. |
| 2037 | * |
| 2038 | * Device should be allocated by input_allocate_device(). |
| 2039 | * |
| 2040 | * NOTE: If there are references to the input device then memory |
| 2041 | * will not be freed until last reference is dropped. |
| 2042 | */ |
| 2043 | void input_free_device(struct input_dev *dev) |
| 2044 | { |
| 2045 | if (dev) { |
| 2046 | if (dev->devres_managed) |
| 2047 | WARN_ON(devres_destroy(dev->dev.parent, |
| 2048 | devm_input_device_release, |
| 2049 | devm_input_device_match, |
| 2050 | dev)); |
| 2051 | input_put_device(dev); |
| 2052 | } |
| 2053 | } |
| 2054 | EXPORT_SYMBOL(input_free_device); |
| 2055 | |
| 2056 | /** |
| 2057 | * input_set_timestamp - set timestamp for input events |
| 2058 | * @dev: input device to set timestamp for |
| 2059 | * @timestamp: the time at which the event has occurred |
| 2060 | * in CLOCK_MONOTONIC |
| 2061 | * |
| 2062 | * This function is intended to provide to the input system a more |
| 2063 | * accurate time of when an event actually occurred. The driver should |
| 2064 | * call this function as soon as a timestamp is acquired ensuring |
| 2065 | * clock conversions in input_set_timestamp are done correctly. |
| 2066 | * |
| 2067 | * The system entering suspend state between timestamp acquisition and |
| 2068 | * calling input_set_timestamp can result in inaccurate conversions. |
| 2069 | */ |
| 2070 | void input_set_timestamp(struct input_dev *dev, ktime_t timestamp) |
| 2071 | { |
| 2072 | dev->timestamp[INPUT_CLK_MONO] = timestamp; |
| 2073 | dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp); |
| 2074 | dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp, |
| 2075 | TK_OFFS_BOOT); |
| 2076 | } |
| 2077 | EXPORT_SYMBOL(input_set_timestamp); |
| 2078 | |
| 2079 | /** |
| 2080 | * input_get_timestamp - get timestamp for input events |
| 2081 | * @dev: input device to get timestamp from |
| 2082 | * |
| 2083 | * A valid timestamp is a timestamp of non-zero value. |
| 2084 | */ |
| 2085 | ktime_t *input_get_timestamp(struct input_dev *dev) |
| 2086 | { |
| 2087 | const ktime_t invalid_timestamp = ktime_set(0, 0); |
| 2088 | |
| 2089 | if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp)) |
| 2090 | input_set_timestamp(dev, ktime_get()); |
| 2091 | |
| 2092 | return dev->timestamp; |
| 2093 | } |
| 2094 | EXPORT_SYMBOL(input_get_timestamp); |
| 2095 | |
| 2096 | /** |
| 2097 | * input_set_capability - mark device as capable of a certain event |
| 2098 | * @dev: device that is capable of emitting or accepting event |
| 2099 | * @type: type of the event (EV_KEY, EV_REL, etc...) |
| 2100 | * @code: event code |
| 2101 | * |
| 2102 | * In addition to setting up corresponding bit in appropriate capability |
| 2103 | * bitmap the function also adjusts dev->evbit. |
| 2104 | */ |
| 2105 | void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) |
| 2106 | { |
| 2107 | if (type < EV_CNT && input_max_code[type] && |
| 2108 | code > input_max_code[type]) { |
| 2109 | pr_err("%s: invalid code %u for type %u\n", __func__, code, |
| 2110 | type); |
| 2111 | dump_stack(); |
| 2112 | return; |
| 2113 | } |
| 2114 | |
| 2115 | switch (type) { |
| 2116 | case EV_KEY: |
| 2117 | __set_bit(code, dev->keybit); |
| 2118 | break; |
| 2119 | |
| 2120 | case EV_REL: |
| 2121 | __set_bit(code, dev->relbit); |
| 2122 | break; |
| 2123 | |
| 2124 | case EV_ABS: |
| 2125 | input_alloc_absinfo(dev); |
| 2126 | __set_bit(code, dev->absbit); |
| 2127 | break; |
| 2128 | |
| 2129 | case EV_MSC: |
| 2130 | __set_bit(code, dev->mscbit); |
| 2131 | break; |
| 2132 | |
| 2133 | case EV_SW: |
| 2134 | __set_bit(code, dev->swbit); |
| 2135 | break; |
| 2136 | |
| 2137 | case EV_LED: |
| 2138 | __set_bit(code, dev->ledbit); |
| 2139 | break; |
| 2140 | |
| 2141 | case EV_SND: |
| 2142 | __set_bit(code, dev->sndbit); |
| 2143 | break; |
| 2144 | |
| 2145 | case EV_FF: |
| 2146 | __set_bit(code, dev->ffbit); |
| 2147 | break; |
| 2148 | |
| 2149 | case EV_PWR: |
| 2150 | /* do nothing */ |
| 2151 | break; |
| 2152 | |
| 2153 | default: |
| 2154 | pr_err("%s: unknown type %u (code %u)\n", __func__, type, code); |
| 2155 | dump_stack(); |
| 2156 | return; |
| 2157 | } |
| 2158 | |
| 2159 | __set_bit(type, dev->evbit); |
| 2160 | } |
| 2161 | EXPORT_SYMBOL(input_set_capability); |
| 2162 | |
| 2163 | static unsigned int input_estimate_events_per_packet(struct input_dev *dev) |
| 2164 | { |
| 2165 | int mt_slots; |
| 2166 | int i; |
| 2167 | unsigned int events; |
| 2168 | |
| 2169 | if (dev->mt) { |
| 2170 | mt_slots = dev->mt->num_slots; |
| 2171 | } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) { |
| 2172 | mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum - |
| 2173 | dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1; |
| 2174 | mt_slots = clamp(mt_slots, 2, 32); |
| 2175 | } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) { |
| 2176 | mt_slots = 2; |
| 2177 | } else { |
| 2178 | mt_slots = 0; |
| 2179 | } |
| 2180 | |
| 2181 | events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */ |
| 2182 | |
| 2183 | if (test_bit(EV_ABS, dev->evbit)) |
| 2184 | for_each_set_bit(i, dev->absbit, ABS_CNT) |
| 2185 | events += input_is_mt_axis(i) ? mt_slots : 1; |
| 2186 | |
| 2187 | if (test_bit(EV_REL, dev->evbit)) |
| 2188 | events += bitmap_weight(dev->relbit, REL_CNT); |
| 2189 | |
| 2190 | /* Make room for KEY and MSC events */ |
| 2191 | events += 7; |
| 2192 | |
| 2193 | return events; |
| 2194 | } |
| 2195 | |
| 2196 | #define INPUT_CLEANSE_BITMASK(dev, type, bits) \ |
| 2197 | do { \ |
| 2198 | if (!test_bit(EV_##type, dev->evbit)) \ |
| 2199 | memset(dev->bits##bit, 0, \ |
| 2200 | sizeof(dev->bits##bit)); \ |
| 2201 | } while (0) |
| 2202 | |
| 2203 | static void input_cleanse_bitmasks(struct input_dev *dev) |
| 2204 | { |
| 2205 | INPUT_CLEANSE_BITMASK(dev, KEY, key); |
| 2206 | INPUT_CLEANSE_BITMASK(dev, REL, rel); |
| 2207 | INPUT_CLEANSE_BITMASK(dev, ABS, abs); |
| 2208 | INPUT_CLEANSE_BITMASK(dev, MSC, msc); |
| 2209 | INPUT_CLEANSE_BITMASK(dev, LED, led); |
| 2210 | INPUT_CLEANSE_BITMASK(dev, SND, snd); |
| 2211 | INPUT_CLEANSE_BITMASK(dev, FF, ff); |
| 2212 | INPUT_CLEANSE_BITMASK(dev, SW, sw); |
| 2213 | } |
| 2214 | |
| 2215 | static void __input_unregister_device(struct input_dev *dev) |
| 2216 | { |
| 2217 | struct input_handle *handle, *next; |
| 2218 | |
| 2219 | input_disconnect_device(dev); |
| 2220 | |
| 2221 | scoped_guard(mutex, &input_mutex) { |
| 2222 | list_for_each_entry_safe(handle, next, &dev->h_list, d_node) |
| 2223 | handle->handler->disconnect(handle); |
| 2224 | WARN_ON(!list_empty(&dev->h_list)); |
| 2225 | |
| 2226 | timer_delete_sync(&dev->timer); |
| 2227 | list_del_init(&dev->node); |
| 2228 | |
| 2229 | input_wakeup_procfs_readers(); |
| 2230 | } |
| 2231 | |
| 2232 | device_del(&dev->dev); |
| 2233 | } |
| 2234 | |
| 2235 | static void devm_input_device_unregister(struct device *dev, void *res) |
| 2236 | { |
| 2237 | struct input_devres *devres = res; |
| 2238 | struct input_dev *input = devres->input; |
| 2239 | |
| 2240 | dev_dbg(dev, "%s: unregistering device %s\n", |
| 2241 | __func__, dev_name(&input->dev)); |
| 2242 | __input_unregister_device(input); |
| 2243 | } |
| 2244 | |
| 2245 | /* |
| 2246 | * Generate software autorepeat event. Note that we take |
| 2247 | * dev->event_lock here to avoid racing with input_event |
| 2248 | * which may cause keys get "stuck". |
| 2249 | */ |
| 2250 | static void input_repeat_key(struct timer_list *t) |
| 2251 | { |
| 2252 | struct input_dev *dev = timer_container_of(dev, t, timer); |
| 2253 | |
| 2254 | guard(spinlock_irqsave)(&dev->event_lock); |
| 2255 | |
| 2256 | if (!dev->inhibited && |
| 2257 | test_bit(dev->repeat_key, dev->key) && |
| 2258 | is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) { |
| 2259 | |
| 2260 | input_set_timestamp(dev, ktime_get()); |
| 2261 | input_handle_event(dev, EV_KEY, dev->repeat_key, 2); |
| 2262 | input_handle_event(dev, EV_SYN, SYN_REPORT, 1); |
| 2263 | |
| 2264 | if (dev->rep[REP_PERIOD]) |
| 2265 | mod_timer(&dev->timer, jiffies + |
| 2266 | msecs_to_jiffies(dev->rep[REP_PERIOD])); |
| 2267 | } |
| 2268 | } |
| 2269 | |
| 2270 | /** |
| 2271 | * input_enable_softrepeat - enable software autorepeat |
| 2272 | * @dev: input device |
| 2273 | * @delay: repeat delay |
| 2274 | * @period: repeat period |
| 2275 | * |
| 2276 | * Enable software autorepeat on the input device. |
| 2277 | */ |
| 2278 | void input_enable_softrepeat(struct input_dev *dev, int delay, int period) |
| 2279 | { |
| 2280 | dev->timer.function = input_repeat_key; |
| 2281 | dev->rep[REP_DELAY] = delay; |
| 2282 | dev->rep[REP_PERIOD] = period; |
| 2283 | } |
| 2284 | EXPORT_SYMBOL(input_enable_softrepeat); |
| 2285 | |
| 2286 | bool input_device_enabled(struct input_dev *dev) |
| 2287 | { |
| 2288 | lockdep_assert_held(&dev->mutex); |
| 2289 | |
| 2290 | return !dev->inhibited && dev->users > 0; |
| 2291 | } |
| 2292 | EXPORT_SYMBOL_GPL(input_device_enabled); |
| 2293 | |
| 2294 | static int input_device_tune_vals(struct input_dev *dev) |
| 2295 | { |
| 2296 | struct input_value *vals; |
| 2297 | unsigned int packet_size; |
| 2298 | unsigned int max_vals; |
| 2299 | |
| 2300 | packet_size = input_estimate_events_per_packet(dev); |
| 2301 | if (dev->hint_events_per_packet < packet_size) |
| 2302 | dev->hint_events_per_packet = packet_size; |
| 2303 | |
| 2304 | max_vals = dev->hint_events_per_packet + 2; |
| 2305 | if (dev->max_vals >= max_vals) |
| 2306 | return 0; |
| 2307 | |
| 2308 | vals = kcalloc(max_vals, sizeof(*vals), GFP_KERNEL); |
| 2309 | if (!vals) |
| 2310 | return -ENOMEM; |
| 2311 | |
| 2312 | scoped_guard(spinlock_irq, &dev->event_lock) { |
| 2313 | dev->max_vals = max_vals; |
| 2314 | swap(dev->vals, vals); |
| 2315 | } |
| 2316 | |
| 2317 | /* Because of swap() above, this frees the old vals memory */ |
| 2318 | kfree(vals); |
| 2319 | |
| 2320 | return 0; |
| 2321 | } |
| 2322 | |
| 2323 | /** |
| 2324 | * input_register_device - register device with input core |
| 2325 | * @dev: device to be registered |
| 2326 | * |
| 2327 | * This function registers device with input core. The device must be |
| 2328 | * allocated with input_allocate_device() and all it's capabilities |
| 2329 | * set up before registering. |
| 2330 | * If function fails the device must be freed with input_free_device(). |
| 2331 | * Once device has been successfully registered it can be unregistered |
| 2332 | * with input_unregister_device(); input_free_device() should not be |
| 2333 | * called in this case. |
| 2334 | * |
| 2335 | * Note that this function is also used to register managed input devices |
| 2336 | * (ones allocated with devm_input_allocate_device()). Such managed input |
| 2337 | * devices need not be explicitly unregistered or freed, their tear down |
| 2338 | * is controlled by the devres infrastructure. It is also worth noting |
| 2339 | * that tear down of managed input devices is internally a 2-step process: |
| 2340 | * registered managed input device is first unregistered, but stays in |
| 2341 | * memory and can still handle input_event() calls (although events will |
| 2342 | * not be delivered anywhere). The freeing of managed input device will |
| 2343 | * happen later, when devres stack is unwound to the point where device |
| 2344 | * allocation was made. |
| 2345 | */ |
| 2346 | int input_register_device(struct input_dev *dev) |
| 2347 | { |
| 2348 | struct input_devres *devres = NULL; |
| 2349 | struct input_handler *handler; |
| 2350 | const char *path; |
| 2351 | int error; |
| 2352 | |
| 2353 | if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) { |
| 2354 | dev_err(&dev->dev, |
| 2355 | "Absolute device without dev->absinfo, refusing to register\n"); |
| 2356 | return -EINVAL; |
| 2357 | } |
| 2358 | |
| 2359 | if (dev->devres_managed) { |
| 2360 | devres = devres_alloc(devm_input_device_unregister, |
| 2361 | sizeof(*devres), GFP_KERNEL); |
| 2362 | if (!devres) |
| 2363 | return -ENOMEM; |
| 2364 | |
| 2365 | devres->input = dev; |
| 2366 | } |
| 2367 | |
| 2368 | /* Every input device generates EV_SYN/SYN_REPORT events. */ |
| 2369 | __set_bit(EV_SYN, dev->evbit); |
| 2370 | |
| 2371 | /* KEY_RESERVED is not supposed to be transmitted to userspace. */ |
| 2372 | __clear_bit(KEY_RESERVED, dev->keybit); |
| 2373 | |
| 2374 | /* Make sure that bitmasks not mentioned in dev->evbit are clean. */ |
| 2375 | input_cleanse_bitmasks(dev); |
| 2376 | |
| 2377 | error = input_device_tune_vals(dev); |
| 2378 | if (error) |
| 2379 | goto err_devres_free; |
| 2380 | |
| 2381 | /* |
| 2382 | * If delay and period are pre-set by the driver, then autorepeating |
| 2383 | * is handled by the driver itself and we don't do it in input.c. |
| 2384 | */ |
| 2385 | if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) |
| 2386 | input_enable_softrepeat(dev, 250, 33); |
| 2387 | |
| 2388 | if (!dev->getkeycode) |
| 2389 | dev->getkeycode = input_default_getkeycode; |
| 2390 | |
| 2391 | if (!dev->setkeycode) |
| 2392 | dev->setkeycode = input_default_setkeycode; |
| 2393 | |
| 2394 | if (dev->poller) |
| 2395 | input_dev_poller_finalize(dev->poller); |
| 2396 | |
| 2397 | error = device_add(&dev->dev); |
| 2398 | if (error) |
| 2399 | goto err_devres_free; |
| 2400 | |
| 2401 | path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); |
| 2402 | pr_info("%s as %s\n", |
| 2403 | dev->name ? dev->name : "Unspecified device", |
| 2404 | path ? path : "N/A"); |
| 2405 | kfree(path); |
| 2406 | |
| 2407 | error = -EINTR; |
| 2408 | scoped_cond_guard(mutex_intr, goto err_device_del, &input_mutex) { |
| 2409 | list_add_tail(&dev->node, &input_dev_list); |
| 2410 | |
| 2411 | list_for_each_entry(handler, &input_handler_list, node) |
| 2412 | input_attach_handler(dev, handler); |
| 2413 | |
| 2414 | input_wakeup_procfs_readers(); |
| 2415 | } |
| 2416 | |
| 2417 | if (dev->devres_managed) { |
| 2418 | dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n", |
| 2419 | __func__, dev_name(&dev->dev)); |
| 2420 | devres_add(dev->dev.parent, devres); |
| 2421 | } |
| 2422 | return 0; |
| 2423 | |
| 2424 | err_device_del: |
| 2425 | device_del(&dev->dev); |
| 2426 | err_devres_free: |
| 2427 | devres_free(devres); |
| 2428 | return error; |
| 2429 | } |
| 2430 | EXPORT_SYMBOL(input_register_device); |
| 2431 | |
| 2432 | /** |
| 2433 | * input_unregister_device - unregister previously registered device |
| 2434 | * @dev: device to be unregistered |
| 2435 | * |
| 2436 | * This function unregisters an input device. Once device is unregistered |
| 2437 | * the caller should not try to access it as it may get freed at any moment. |
| 2438 | */ |
| 2439 | void input_unregister_device(struct input_dev *dev) |
| 2440 | { |
| 2441 | if (dev->devres_managed) { |
| 2442 | WARN_ON(devres_destroy(dev->dev.parent, |
| 2443 | devm_input_device_unregister, |
| 2444 | devm_input_device_match, |
| 2445 | dev)); |
| 2446 | __input_unregister_device(dev); |
| 2447 | /* |
| 2448 | * We do not do input_put_device() here because it will be done |
| 2449 | * when 2nd devres fires up. |
| 2450 | */ |
| 2451 | } else { |
| 2452 | __input_unregister_device(dev); |
| 2453 | input_put_device(dev); |
| 2454 | } |
| 2455 | } |
| 2456 | EXPORT_SYMBOL(input_unregister_device); |
| 2457 | |
| 2458 | static int input_handler_check_methods(const struct input_handler *handler) |
| 2459 | { |
| 2460 | int count = 0; |
| 2461 | |
| 2462 | if (handler->filter) |
| 2463 | count++; |
| 2464 | if (handler->events) |
| 2465 | count++; |
| 2466 | if (handler->event) |
| 2467 | count++; |
| 2468 | |
| 2469 | if (count > 1) { |
| 2470 | pr_err("%s: only one event processing method can be defined (%s)\n", |
| 2471 | __func__, handler->name); |
| 2472 | return -EINVAL; |
| 2473 | } |
| 2474 | |
| 2475 | return 0; |
| 2476 | } |
| 2477 | |
| 2478 | /** |
| 2479 | * input_register_handler - register a new input handler |
| 2480 | * @handler: handler to be registered |
| 2481 | * |
| 2482 | * This function registers a new input handler (interface) for input |
| 2483 | * devices in the system and attaches it to all input devices that |
| 2484 | * are compatible with the handler. |
| 2485 | */ |
| 2486 | int input_register_handler(struct input_handler *handler) |
| 2487 | { |
| 2488 | struct input_dev *dev; |
| 2489 | int error; |
| 2490 | |
| 2491 | error = input_handler_check_methods(handler); |
| 2492 | if (error) |
| 2493 | return error; |
| 2494 | |
| 2495 | scoped_cond_guard(mutex_intr, return -EINTR, &input_mutex) { |
| 2496 | INIT_LIST_HEAD(&handler->h_list); |
| 2497 | |
| 2498 | list_add_tail(&handler->node, &input_handler_list); |
| 2499 | |
| 2500 | list_for_each_entry(dev, &input_dev_list, node) |
| 2501 | input_attach_handler(dev, handler); |
| 2502 | |
| 2503 | input_wakeup_procfs_readers(); |
| 2504 | } |
| 2505 | |
| 2506 | return 0; |
| 2507 | } |
| 2508 | EXPORT_SYMBOL(input_register_handler); |
| 2509 | |
| 2510 | /** |
| 2511 | * input_unregister_handler - unregisters an input handler |
| 2512 | * @handler: handler to be unregistered |
| 2513 | * |
| 2514 | * This function disconnects a handler from its input devices and |
| 2515 | * removes it from lists of known handlers. |
| 2516 | */ |
| 2517 | void input_unregister_handler(struct input_handler *handler) |
| 2518 | { |
| 2519 | struct input_handle *handle, *next; |
| 2520 | |
| 2521 | guard(mutex)(&input_mutex); |
| 2522 | |
| 2523 | list_for_each_entry_safe(handle, next, &handler->h_list, h_node) |
| 2524 | handler->disconnect(handle); |
| 2525 | WARN_ON(!list_empty(&handler->h_list)); |
| 2526 | |
| 2527 | list_del_init(&handler->node); |
| 2528 | |
| 2529 | input_wakeup_procfs_readers(); |
| 2530 | } |
| 2531 | EXPORT_SYMBOL(input_unregister_handler); |
| 2532 | |
| 2533 | /** |
| 2534 | * input_handler_for_each_handle - handle iterator |
| 2535 | * @handler: input handler to iterate |
| 2536 | * @data: data for the callback |
| 2537 | * @fn: function to be called for each handle |
| 2538 | * |
| 2539 | * Iterate over @bus's list of devices, and call @fn for each, passing |
| 2540 | * it @data and stop when @fn returns a non-zero value. The function is |
| 2541 | * using RCU to traverse the list and therefore may be using in atomic |
| 2542 | * contexts. The @fn callback is invoked from RCU critical section and |
| 2543 | * thus must not sleep. |
| 2544 | */ |
| 2545 | int input_handler_for_each_handle(struct input_handler *handler, void *data, |
| 2546 | int (*fn)(struct input_handle *, void *)) |
| 2547 | { |
| 2548 | struct input_handle *handle; |
| 2549 | int retval; |
| 2550 | |
| 2551 | guard(rcu)(); |
| 2552 | |
| 2553 | list_for_each_entry_rcu(handle, &handler->h_list, h_node) { |
| 2554 | retval = fn(handle, data); |
| 2555 | if (retval) |
| 2556 | return retval; |
| 2557 | } |
| 2558 | |
| 2559 | return 0; |
| 2560 | } |
| 2561 | EXPORT_SYMBOL(input_handler_for_each_handle); |
| 2562 | |
| 2563 | /* |
| 2564 | * An implementation of input_handle's handle_events() method that simply |
| 2565 | * invokes handler->event() method for each event one by one. |
| 2566 | */ |
| 2567 | static unsigned int input_handle_events_default(struct input_handle *handle, |
| 2568 | struct input_value *vals, |
| 2569 | unsigned int count) |
| 2570 | { |
| 2571 | struct input_handler *handler = handle->handler; |
| 2572 | struct input_value *v; |
| 2573 | |
| 2574 | for (v = vals; v != vals + count; v++) |
| 2575 | handler->event(handle, v->type, v->code, v->value); |
| 2576 | |
| 2577 | return count; |
| 2578 | } |
| 2579 | |
| 2580 | /* |
| 2581 | * An implementation of input_handle's handle_events() method that invokes |
| 2582 | * handler->filter() method for each event one by one and removes events |
| 2583 | * that were filtered out from the "vals" array. |
| 2584 | */ |
| 2585 | static unsigned int input_handle_events_filter(struct input_handle *handle, |
| 2586 | struct input_value *vals, |
| 2587 | unsigned int count) |
| 2588 | { |
| 2589 | struct input_handler *handler = handle->handler; |
| 2590 | struct input_value *end = vals; |
| 2591 | struct input_value *v; |
| 2592 | |
| 2593 | for (v = vals; v != vals + count; v++) { |
| 2594 | if (handler->filter(handle, v->type, v->code, v->value)) |
| 2595 | continue; |
| 2596 | if (end != v) |
| 2597 | *end = *v; |
| 2598 | end++; |
| 2599 | } |
| 2600 | |
| 2601 | return end - vals; |
| 2602 | } |
| 2603 | |
| 2604 | /* |
| 2605 | * An implementation of input_handle's handle_events() method that does nothing. |
| 2606 | */ |
| 2607 | static unsigned int input_handle_events_null(struct input_handle *handle, |
| 2608 | struct input_value *vals, |
| 2609 | unsigned int count) |
| 2610 | { |
| 2611 | return count; |
| 2612 | } |
| 2613 | |
| 2614 | /* |
| 2615 | * Sets up appropriate handle->event_handler based on the input_handler |
| 2616 | * associated with the handle. |
| 2617 | */ |
| 2618 | static void input_handle_setup_event_handler(struct input_handle *handle) |
| 2619 | { |
| 2620 | struct input_handler *handler = handle->handler; |
| 2621 | |
| 2622 | if (handler->filter) |
| 2623 | handle->handle_events = input_handle_events_filter; |
| 2624 | else if (handler->event) |
| 2625 | handle->handle_events = input_handle_events_default; |
| 2626 | else if (handler->events) |
| 2627 | handle->handle_events = handler->events; |
| 2628 | else |
| 2629 | handle->handle_events = input_handle_events_null; |
| 2630 | } |
| 2631 | |
| 2632 | /** |
| 2633 | * input_register_handle - register a new input handle |
| 2634 | * @handle: handle to register |
| 2635 | * |
| 2636 | * This function puts a new input handle onto device's |
| 2637 | * and handler's lists so that events can flow through |
| 2638 | * it once it is opened using input_open_device(). |
| 2639 | * |
| 2640 | * This function is supposed to be called from handler's |
| 2641 | * connect() method. |
| 2642 | */ |
| 2643 | int input_register_handle(struct input_handle *handle) |
| 2644 | { |
| 2645 | struct input_handler *handler = handle->handler; |
| 2646 | struct input_dev *dev = handle->dev; |
| 2647 | |
| 2648 | input_handle_setup_event_handler(handle); |
| 2649 | /* |
| 2650 | * We take dev->mutex here to prevent race with |
| 2651 | * input_release_device(). |
| 2652 | */ |
| 2653 | scoped_cond_guard(mutex_intr, return -EINTR, &dev->mutex) { |
| 2654 | /* |
| 2655 | * Filters go to the head of the list, normal handlers |
| 2656 | * to the tail. |
| 2657 | */ |
| 2658 | if (handler->filter) |
| 2659 | list_add_rcu(&handle->d_node, &dev->h_list); |
| 2660 | else |
| 2661 | list_add_tail_rcu(&handle->d_node, &dev->h_list); |
| 2662 | } |
| 2663 | |
| 2664 | /* |
| 2665 | * Since we are supposed to be called from ->connect() |
| 2666 | * which is mutually exclusive with ->disconnect() |
| 2667 | * we can't be racing with input_unregister_handle() |
| 2668 | * and so separate lock is not needed here. |
| 2669 | */ |
| 2670 | list_add_tail_rcu(&handle->h_node, &handler->h_list); |
| 2671 | |
| 2672 | if (handler->start) |
| 2673 | handler->start(handle); |
| 2674 | |
| 2675 | return 0; |
| 2676 | } |
| 2677 | EXPORT_SYMBOL(input_register_handle); |
| 2678 | |
| 2679 | /** |
| 2680 | * input_unregister_handle - unregister an input handle |
| 2681 | * @handle: handle to unregister |
| 2682 | * |
| 2683 | * This function removes input handle from device's |
| 2684 | * and handler's lists. |
| 2685 | * |
| 2686 | * This function is supposed to be called from handler's |
| 2687 | * disconnect() method. |
| 2688 | */ |
| 2689 | void input_unregister_handle(struct input_handle *handle) |
| 2690 | { |
| 2691 | struct input_dev *dev = handle->dev; |
| 2692 | |
| 2693 | list_del_rcu(&handle->h_node); |
| 2694 | |
| 2695 | /* |
| 2696 | * Take dev->mutex to prevent race with input_release_device(). |
| 2697 | */ |
| 2698 | scoped_guard(mutex, &dev->mutex) |
| 2699 | list_del_rcu(&handle->d_node); |
| 2700 | |
| 2701 | synchronize_rcu(); |
| 2702 | } |
| 2703 | EXPORT_SYMBOL(input_unregister_handle); |
| 2704 | |
| 2705 | /** |
| 2706 | * input_get_new_minor - allocates a new input minor number |
| 2707 | * @legacy_base: beginning or the legacy range to be searched |
| 2708 | * @legacy_num: size of legacy range |
| 2709 | * @allow_dynamic: whether we can also take ID from the dynamic range |
| 2710 | * |
| 2711 | * This function allocates a new device minor for from input major namespace. |
| 2712 | * Caller can request legacy minor by specifying @legacy_base and @legacy_num |
| 2713 | * parameters and whether ID can be allocated from dynamic range if there are |
| 2714 | * no free IDs in legacy range. |
| 2715 | */ |
| 2716 | int input_get_new_minor(int legacy_base, unsigned int legacy_num, |
| 2717 | bool allow_dynamic) |
| 2718 | { |
| 2719 | /* |
| 2720 | * This function should be called from input handler's ->connect() |
| 2721 | * methods, which are serialized with input_mutex, so no additional |
| 2722 | * locking is needed here. |
| 2723 | */ |
| 2724 | if (legacy_base >= 0) { |
| 2725 | int minor = ida_alloc_range(&input_ida, legacy_base, |
| 2726 | legacy_base + legacy_num - 1, |
| 2727 | GFP_KERNEL); |
| 2728 | if (minor >= 0 || !allow_dynamic) |
| 2729 | return minor; |
| 2730 | } |
| 2731 | |
| 2732 | return ida_alloc_range(&input_ida, INPUT_FIRST_DYNAMIC_DEV, |
| 2733 | INPUT_MAX_CHAR_DEVICES - 1, GFP_KERNEL); |
| 2734 | } |
| 2735 | EXPORT_SYMBOL(input_get_new_minor); |
| 2736 | |
| 2737 | /** |
| 2738 | * input_free_minor - release previously allocated minor |
| 2739 | * @minor: minor to be released |
| 2740 | * |
| 2741 | * This function releases previously allocated input minor so that it can be |
| 2742 | * reused later. |
| 2743 | */ |
| 2744 | void input_free_minor(unsigned int minor) |
| 2745 | { |
| 2746 | ida_free(&input_ida, minor); |
| 2747 | } |
| 2748 | EXPORT_SYMBOL(input_free_minor); |
| 2749 | |
| 2750 | static int __init input_init(void) |
| 2751 | { |
| 2752 | int err; |
| 2753 | |
| 2754 | err = class_register(&input_class); |
| 2755 | if (err) { |
| 2756 | pr_err("unable to register input_dev class\n"); |
| 2757 | return err; |
| 2758 | } |
| 2759 | |
| 2760 | err = input_proc_init(); |
| 2761 | if (err) |
| 2762 | goto fail1; |
| 2763 | |
| 2764 | err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0), |
| 2765 | INPUT_MAX_CHAR_DEVICES, "input"); |
| 2766 | if (err) { |
| 2767 | pr_err("unable to register char major %d", INPUT_MAJOR); |
| 2768 | goto fail2; |
| 2769 | } |
| 2770 | |
| 2771 | return 0; |
| 2772 | |
| 2773 | fail2: input_proc_exit(); |
| 2774 | fail1: class_unregister(&input_class); |
| 2775 | return err; |
| 2776 | } |
| 2777 | |
| 2778 | static void __exit input_exit(void) |
| 2779 | { |
| 2780 | input_proc_exit(); |
| 2781 | unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0), |
| 2782 | INPUT_MAX_CHAR_DEVICES); |
| 2783 | class_unregister(&input_class); |
| 2784 | } |
| 2785 | |
| 2786 | subsys_initcall(input_init); |
| 2787 | module_exit(input_exit); |