Merge tag 'mm-hotfixes-stable-2025-07-11-16-16' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-block.git] / drivers / hid / hid-core.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * HID support for Linux
4 *
5 * Copyright (c) 1999 Andreas Gal
6 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8 * Copyright (c) 2006-2012 Jiri Kosina
9 */
10
11/*
12 */
13
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16#include <linux/module.h>
17#include <linux/slab.h>
18#include <linux/init.h>
19#include <linux/kernel.h>
20#include <linux/list.h>
21#include <linux/mm.h>
22#include <linux/spinlock.h>
23#include <linux/unaligned.h>
24#include <asm/byteorder.h>
25#include <linux/input.h>
26#include <linux/wait.h>
27#include <linux/vmalloc.h>
28#include <linux/sched.h>
29#include <linux/semaphore.h>
30
31#include <linux/hid.h>
32#include <linux/hiddev.h>
33#include <linux/hid-debug.h>
34#include <linux/hidraw.h>
35
36#include "hid-ids.h"
37
38/*
39 * Version Information
40 */
41
42#define DRIVER_DESC "HID core driver"
43
44static int hid_ignore_special_drivers = 0;
45module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
46MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
47
48/*
49 * Convert a signed n-bit integer to signed 32-bit integer.
50 */
51
52static s32 snto32(__u32 value, unsigned int n)
53{
54 if (!value || !n)
55 return 0;
56
57 if (n > 32)
58 n = 32;
59
60 return sign_extend32(value, n - 1);
61}
62
63/*
64 * Convert a signed 32-bit integer to a signed n-bit integer.
65 */
66
67static u32 s32ton(__s32 value, unsigned int n)
68{
69 s32 a = value >> (n - 1);
70
71 if (a && a != -1)
72 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
73 return value & ((1 << n) - 1);
74}
75
76/*
77 * Register a new report for a device.
78 */
79
80struct hid_report *hid_register_report(struct hid_device *device,
81 enum hid_report_type type, unsigned int id,
82 unsigned int application)
83{
84 struct hid_report_enum *report_enum = device->report_enum + type;
85 struct hid_report *report;
86
87 if (id >= HID_MAX_IDS)
88 return NULL;
89 if (report_enum->report_id_hash[id])
90 return report_enum->report_id_hash[id];
91
92 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
93 if (!report)
94 return NULL;
95
96 if (id != 0)
97 report_enum->numbered = 1;
98
99 report->id = id;
100 report->type = type;
101 report->size = 0;
102 report->device = device;
103 report->application = application;
104 report_enum->report_id_hash[id] = report;
105
106 list_add_tail(&report->list, &report_enum->report_list);
107 INIT_LIST_HEAD(&report->field_entry_list);
108
109 return report;
110}
111EXPORT_SYMBOL_GPL(hid_register_report);
112
113/*
114 * Register a new field for this report.
115 */
116
117static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
118{
119 struct hid_field *field;
120
121 if (report->maxfield == HID_MAX_FIELDS) {
122 hid_err(report->device, "too many fields in report\n");
123 return NULL;
124 }
125
126 field = kvzalloc((sizeof(struct hid_field) +
127 usages * sizeof(struct hid_usage) +
128 3 * usages * sizeof(unsigned int)), GFP_KERNEL);
129 if (!field)
130 return NULL;
131
132 field->index = report->maxfield++;
133 report->field[field->index] = field;
134 field->usage = (struct hid_usage *)(field + 1);
135 field->value = (s32 *)(field->usage + usages);
136 field->new_value = (s32 *)(field->value + usages);
137 field->usages_priorities = (s32 *)(field->new_value + usages);
138 field->report = report;
139
140 return field;
141}
142
143/*
144 * Open a collection. The type/usage is pushed on the stack.
145 */
146
147static int open_collection(struct hid_parser *parser, unsigned type)
148{
149 struct hid_collection *collection;
150 unsigned usage;
151 int collection_index;
152
153 usage = parser->local.usage[0];
154
155 if (parser->collection_stack_ptr == parser->collection_stack_size) {
156 unsigned int *collection_stack;
157 unsigned int new_size = parser->collection_stack_size +
158 HID_COLLECTION_STACK_SIZE;
159
160 collection_stack = krealloc(parser->collection_stack,
161 new_size * sizeof(unsigned int),
162 GFP_KERNEL);
163 if (!collection_stack)
164 return -ENOMEM;
165
166 parser->collection_stack = collection_stack;
167 parser->collection_stack_size = new_size;
168 }
169
170 if (parser->device->maxcollection == parser->device->collection_size) {
171 collection = kmalloc(
172 array3_size(sizeof(struct hid_collection),
173 parser->device->collection_size,
174 2),
175 GFP_KERNEL);
176 if (collection == NULL) {
177 hid_err(parser->device, "failed to reallocate collection array\n");
178 return -ENOMEM;
179 }
180 memcpy(collection, parser->device->collection,
181 sizeof(struct hid_collection) *
182 parser->device->collection_size);
183 memset(collection + parser->device->collection_size, 0,
184 sizeof(struct hid_collection) *
185 parser->device->collection_size);
186 kfree(parser->device->collection);
187 parser->device->collection = collection;
188 parser->device->collection_size *= 2;
189 }
190
191 parser->collection_stack[parser->collection_stack_ptr++] =
192 parser->device->maxcollection;
193
194 collection_index = parser->device->maxcollection++;
195 collection = parser->device->collection + collection_index;
196 collection->type = type;
197 collection->usage = usage;
198 collection->level = parser->collection_stack_ptr - 1;
199 collection->parent_idx = (collection->level == 0) ? -1 :
200 parser->collection_stack[collection->level - 1];
201
202 if (type == HID_COLLECTION_APPLICATION)
203 parser->device->maxapplication++;
204
205 return 0;
206}
207
208/*
209 * Close a collection.
210 */
211
212static int close_collection(struct hid_parser *parser)
213{
214 if (!parser->collection_stack_ptr) {
215 hid_err(parser->device, "collection stack underflow\n");
216 return -EINVAL;
217 }
218 parser->collection_stack_ptr--;
219 return 0;
220}
221
222/*
223 * Climb up the stack, search for the specified collection type
224 * and return the usage.
225 */
226
227static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
228{
229 struct hid_collection *collection = parser->device->collection;
230 int n;
231
232 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
233 unsigned index = parser->collection_stack[n];
234 if (collection[index].type == type)
235 return collection[index].usage;
236 }
237 return 0; /* we know nothing about this usage type */
238}
239
240/*
241 * Concatenate usage which defines 16 bits or less with the
242 * currently defined usage page to form a 32 bit usage
243 */
244
245static void complete_usage(struct hid_parser *parser, unsigned int index)
246{
247 parser->local.usage[index] &= 0xFFFF;
248 parser->local.usage[index] |=
249 (parser->global.usage_page & 0xFFFF) << 16;
250}
251
252/*
253 * Add a usage to the temporary parser table.
254 */
255
256static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
257{
258 if (parser->local.usage_index >= HID_MAX_USAGES) {
259 hid_err(parser->device, "usage index exceeded\n");
260 return -1;
261 }
262 parser->local.usage[parser->local.usage_index] = usage;
263
264 /*
265 * If Usage item only includes usage id, concatenate it with
266 * currently defined usage page
267 */
268 if (size <= 2)
269 complete_usage(parser, parser->local.usage_index);
270
271 parser->local.usage_size[parser->local.usage_index] = size;
272 parser->local.collection_index[parser->local.usage_index] =
273 parser->collection_stack_ptr ?
274 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
275 parser->local.usage_index++;
276 return 0;
277}
278
279/*
280 * Register a new field for this report.
281 */
282
283static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
284{
285 struct hid_report *report;
286 struct hid_field *field;
287 unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
288 unsigned int usages;
289 unsigned int offset;
290 unsigned int i;
291 unsigned int application;
292
293 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
294
295 report = hid_register_report(parser->device, report_type,
296 parser->global.report_id, application);
297 if (!report) {
298 hid_err(parser->device, "hid_register_report failed\n");
299 return -1;
300 }
301
302 /* Handle both signed and unsigned cases properly */
303 if ((parser->global.logical_minimum < 0 &&
304 parser->global.logical_maximum <
305 parser->global.logical_minimum) ||
306 (parser->global.logical_minimum >= 0 &&
307 (__u32)parser->global.logical_maximum <
308 (__u32)parser->global.logical_minimum)) {
309 dbg_hid("logical range invalid 0x%x 0x%x\n",
310 parser->global.logical_minimum,
311 parser->global.logical_maximum);
312 return -1;
313 }
314
315 offset = report->size;
316 report->size += parser->global.report_size * parser->global.report_count;
317
318 if (parser->device->ll_driver->max_buffer_size)
319 max_buffer_size = parser->device->ll_driver->max_buffer_size;
320
321 /* Total size check: Allow for possible report index byte */
322 if (report->size > (max_buffer_size - 1) << 3) {
323 hid_err(parser->device, "report is too long\n");
324 return -1;
325 }
326
327 if (!parser->local.usage_index) /* Ignore padding fields */
328 return 0;
329
330 usages = max_t(unsigned, parser->local.usage_index,
331 parser->global.report_count);
332
333 field = hid_register_field(report, usages);
334 if (!field)
335 return 0;
336
337 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
338 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
339 field->application = application;
340
341 for (i = 0; i < usages; i++) {
342 unsigned j = i;
343 /* Duplicate the last usage we parsed if we have excess values */
344 if (i >= parser->local.usage_index)
345 j = parser->local.usage_index - 1;
346 field->usage[i].hid = parser->local.usage[j];
347 field->usage[i].collection_index =
348 parser->local.collection_index[j];
349 field->usage[i].usage_index = i;
350 field->usage[i].resolution_multiplier = 1;
351 }
352
353 field->maxusage = usages;
354 field->flags = flags;
355 field->report_offset = offset;
356 field->report_type = report_type;
357 field->report_size = parser->global.report_size;
358 field->report_count = parser->global.report_count;
359 field->logical_minimum = parser->global.logical_minimum;
360 field->logical_maximum = parser->global.logical_maximum;
361 field->physical_minimum = parser->global.physical_minimum;
362 field->physical_maximum = parser->global.physical_maximum;
363 field->unit_exponent = parser->global.unit_exponent;
364 field->unit = parser->global.unit;
365
366 return 0;
367}
368
369/*
370 * Read data value from item.
371 */
372
373static u32 item_udata(struct hid_item *item)
374{
375 switch (item->size) {
376 case 1: return item->data.u8;
377 case 2: return item->data.u16;
378 case 4: return item->data.u32;
379 }
380 return 0;
381}
382
383static s32 item_sdata(struct hid_item *item)
384{
385 switch (item->size) {
386 case 1: return item->data.s8;
387 case 2: return item->data.s16;
388 case 4: return item->data.s32;
389 }
390 return 0;
391}
392
393/*
394 * Process a global item.
395 */
396
397static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
398{
399 __s32 raw_value;
400 switch (item->tag) {
401 case HID_GLOBAL_ITEM_TAG_PUSH:
402
403 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
404 hid_err(parser->device, "global environment stack overflow\n");
405 return -1;
406 }
407
408 memcpy(parser->global_stack + parser->global_stack_ptr++,
409 &parser->global, sizeof(struct hid_global));
410 return 0;
411
412 case HID_GLOBAL_ITEM_TAG_POP:
413
414 if (!parser->global_stack_ptr) {
415 hid_err(parser->device, "global environment stack underflow\n");
416 return -1;
417 }
418
419 memcpy(&parser->global, parser->global_stack +
420 --parser->global_stack_ptr, sizeof(struct hid_global));
421 return 0;
422
423 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
424 parser->global.usage_page = item_udata(item);
425 return 0;
426
427 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
428 parser->global.logical_minimum = item_sdata(item);
429 return 0;
430
431 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
432 if (parser->global.logical_minimum < 0)
433 parser->global.logical_maximum = item_sdata(item);
434 else
435 parser->global.logical_maximum = item_udata(item);
436 return 0;
437
438 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
439 parser->global.physical_minimum = item_sdata(item);
440 return 0;
441
442 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
443 if (parser->global.physical_minimum < 0)
444 parser->global.physical_maximum = item_sdata(item);
445 else
446 parser->global.physical_maximum = item_udata(item);
447 return 0;
448
449 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
450 /* Many devices provide unit exponent as a two's complement
451 * nibble due to the common misunderstanding of HID
452 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
453 * both this and the standard encoding. */
454 raw_value = item_sdata(item);
455 if (!(raw_value & 0xfffffff0))
456 parser->global.unit_exponent = snto32(raw_value, 4);
457 else
458 parser->global.unit_exponent = raw_value;
459 return 0;
460
461 case HID_GLOBAL_ITEM_TAG_UNIT:
462 parser->global.unit = item_udata(item);
463 return 0;
464
465 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
466 parser->global.report_size = item_udata(item);
467 if (parser->global.report_size > 256) {
468 hid_err(parser->device, "invalid report_size %d\n",
469 parser->global.report_size);
470 return -1;
471 }
472 return 0;
473
474 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
475 parser->global.report_count = item_udata(item);
476 if (parser->global.report_count > HID_MAX_USAGES) {
477 hid_err(parser->device, "invalid report_count %d\n",
478 parser->global.report_count);
479 return -1;
480 }
481 return 0;
482
483 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
484 parser->global.report_id = item_udata(item);
485 if (parser->global.report_id == 0 ||
486 parser->global.report_id >= HID_MAX_IDS) {
487 hid_err(parser->device, "report_id %u is invalid\n",
488 parser->global.report_id);
489 return -1;
490 }
491 return 0;
492
493 default:
494 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
495 return -1;
496 }
497}
498
499/*
500 * Process a local item.
501 */
502
503static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
504{
505 __u32 data;
506 unsigned n;
507 __u32 count;
508
509 data = item_udata(item);
510
511 switch (item->tag) {
512 case HID_LOCAL_ITEM_TAG_DELIMITER:
513
514 if (data) {
515 /*
516 * We treat items before the first delimiter
517 * as global to all usage sets (branch 0).
518 * In the moment we process only these global
519 * items and the first delimiter set.
520 */
521 if (parser->local.delimiter_depth != 0) {
522 hid_err(parser->device, "nested delimiters\n");
523 return -1;
524 }
525 parser->local.delimiter_depth++;
526 parser->local.delimiter_branch++;
527 } else {
528 if (parser->local.delimiter_depth < 1) {
529 hid_err(parser->device, "bogus close delimiter\n");
530 return -1;
531 }
532 parser->local.delimiter_depth--;
533 }
534 return 0;
535
536 case HID_LOCAL_ITEM_TAG_USAGE:
537
538 if (parser->local.delimiter_branch > 1) {
539 dbg_hid("alternative usage ignored\n");
540 return 0;
541 }
542
543 return hid_add_usage(parser, data, item->size);
544
545 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
546
547 if (parser->local.delimiter_branch > 1) {
548 dbg_hid("alternative usage ignored\n");
549 return 0;
550 }
551
552 parser->local.usage_minimum = data;
553 return 0;
554
555 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
556
557 if (parser->local.delimiter_branch > 1) {
558 dbg_hid("alternative usage ignored\n");
559 return 0;
560 }
561
562 count = data - parser->local.usage_minimum;
563 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
564 /*
565 * We do not warn if the name is not set, we are
566 * actually pre-scanning the device.
567 */
568 if (dev_name(&parser->device->dev))
569 hid_warn(parser->device,
570 "ignoring exceeding usage max\n");
571 data = HID_MAX_USAGES - parser->local.usage_index +
572 parser->local.usage_minimum - 1;
573 if (data <= 0) {
574 hid_err(parser->device,
575 "no more usage index available\n");
576 return -1;
577 }
578 }
579
580 for (n = parser->local.usage_minimum; n <= data; n++)
581 if (hid_add_usage(parser, n, item->size)) {
582 dbg_hid("hid_add_usage failed\n");
583 return -1;
584 }
585 return 0;
586
587 default:
588
589 dbg_hid("unknown local item tag 0x%x\n", item->tag);
590 return 0;
591 }
592 return 0;
593}
594
595/*
596 * Concatenate Usage Pages into Usages where relevant:
597 * As per specification, 6.2.2.8: "When the parser encounters a main item it
598 * concatenates the last declared Usage Page with a Usage to form a complete
599 * usage value."
600 */
601
602static void hid_concatenate_last_usage_page(struct hid_parser *parser)
603{
604 int i;
605 unsigned int usage_page;
606 unsigned int current_page;
607
608 if (!parser->local.usage_index)
609 return;
610
611 usage_page = parser->global.usage_page;
612
613 /*
614 * Concatenate usage page again only if last declared Usage Page
615 * has not been already used in previous usages concatenation
616 */
617 for (i = parser->local.usage_index - 1; i >= 0; i--) {
618 if (parser->local.usage_size[i] > 2)
619 /* Ignore extended usages */
620 continue;
621
622 current_page = parser->local.usage[i] >> 16;
623 if (current_page == usage_page)
624 break;
625
626 complete_usage(parser, i);
627 }
628}
629
630/*
631 * Process a main item.
632 */
633
634static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
635{
636 __u32 data;
637 int ret;
638
639 hid_concatenate_last_usage_page(parser);
640
641 data = item_udata(item);
642
643 switch (item->tag) {
644 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
645 ret = open_collection(parser, data & 0xff);
646 break;
647 case HID_MAIN_ITEM_TAG_END_COLLECTION:
648 ret = close_collection(parser);
649 break;
650 case HID_MAIN_ITEM_TAG_INPUT:
651 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
652 break;
653 case HID_MAIN_ITEM_TAG_OUTPUT:
654 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
655 break;
656 case HID_MAIN_ITEM_TAG_FEATURE:
657 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
658 break;
659 default:
660 if (item->tag >= HID_MAIN_ITEM_TAG_RESERVED_MIN &&
661 item->tag <= HID_MAIN_ITEM_TAG_RESERVED_MAX)
662 hid_warn(parser->device, "reserved main item tag 0x%x\n", item->tag);
663 else
664 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
665 ret = 0;
666 }
667
668 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
669
670 return ret;
671}
672
673/*
674 * Process a reserved item.
675 */
676
677static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
678{
679 dbg_hid("reserved item type, tag 0x%x\n", item->tag);
680 return 0;
681}
682
683/*
684 * Free a report and all registered fields. The field->usage and
685 * field->value table's are allocated behind the field, so we need
686 * only to free(field) itself.
687 */
688
689static void hid_free_report(struct hid_report *report)
690{
691 unsigned n;
692
693 kfree(report->field_entries);
694
695 for (n = 0; n < report->maxfield; n++)
696 kvfree(report->field[n]);
697 kfree(report);
698}
699
700/*
701 * Close report. This function returns the device
702 * state to the point prior to hid_open_report().
703 */
704static void hid_close_report(struct hid_device *device)
705{
706 unsigned i, j;
707
708 for (i = 0; i < HID_REPORT_TYPES; i++) {
709 struct hid_report_enum *report_enum = device->report_enum + i;
710
711 for (j = 0; j < HID_MAX_IDS; j++) {
712 struct hid_report *report = report_enum->report_id_hash[j];
713 if (report)
714 hid_free_report(report);
715 }
716 memset(report_enum, 0, sizeof(*report_enum));
717 INIT_LIST_HEAD(&report_enum->report_list);
718 }
719
720 /*
721 * If the HID driver had a rdesc_fixup() callback, dev->rdesc
722 * will be allocated by hid-core and needs to be freed.
723 * Otherwise, it is either equal to dev_rdesc or bpf_rdesc, in
724 * which cases it'll be freed later on device removal or destroy.
725 */
726 if (device->rdesc != device->dev_rdesc && device->rdesc != device->bpf_rdesc)
727 kfree(device->rdesc);
728 device->rdesc = NULL;
729 device->rsize = 0;
730
731 kfree(device->collection);
732 device->collection = NULL;
733 device->collection_size = 0;
734 device->maxcollection = 0;
735 device->maxapplication = 0;
736
737 device->status &= ~HID_STAT_PARSED;
738}
739
740static inline void hid_free_bpf_rdesc(struct hid_device *hdev)
741{
742 /* bpf_rdesc is either equal to dev_rdesc or allocated by call_hid_bpf_rdesc_fixup() */
743 if (hdev->bpf_rdesc != hdev->dev_rdesc)
744 kfree(hdev->bpf_rdesc);
745 hdev->bpf_rdesc = NULL;
746}
747
748/*
749 * Free a device structure, all reports, and all fields.
750 */
751
752void hiddev_free(struct kref *ref)
753{
754 struct hid_device *hid = container_of(ref, struct hid_device, ref);
755
756 hid_close_report(hid);
757 hid_free_bpf_rdesc(hid);
758 kfree(hid->dev_rdesc);
759 kfree(hid);
760}
761
762static void hid_device_release(struct device *dev)
763{
764 struct hid_device *hid = to_hid_device(dev);
765
766 kref_put(&hid->ref, hiddev_free);
767}
768
769/*
770 * Fetch a report description item from the data stream. We support long
771 * items, though they are not used yet.
772 */
773
774static const u8 *fetch_item(const __u8 *start, const __u8 *end, struct hid_item *item)
775{
776 u8 b;
777
778 if ((end - start) <= 0)
779 return NULL;
780
781 b = *start++;
782
783 item->type = (b >> 2) & 3;
784 item->tag = (b >> 4) & 15;
785
786 if (item->tag == HID_ITEM_TAG_LONG) {
787
788 item->format = HID_ITEM_FORMAT_LONG;
789
790 if ((end - start) < 2)
791 return NULL;
792
793 item->size = *start++;
794 item->tag = *start++;
795
796 if ((end - start) < item->size)
797 return NULL;
798
799 item->data.longdata = start;
800 start += item->size;
801 return start;
802 }
803
804 item->format = HID_ITEM_FORMAT_SHORT;
805 item->size = BIT(b & 3) >> 1; /* 0, 1, 2, 3 -> 0, 1, 2, 4 */
806
807 if (end - start < item->size)
808 return NULL;
809
810 switch (item->size) {
811 case 0:
812 break;
813
814 case 1:
815 item->data.u8 = *start;
816 break;
817
818 case 2:
819 item->data.u16 = get_unaligned_le16(start);
820 break;
821
822 case 4:
823 item->data.u32 = get_unaligned_le32(start);
824 break;
825 }
826
827 return start + item->size;
828}
829
830static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
831{
832 struct hid_device *hid = parser->device;
833
834 if (usage == HID_DG_CONTACTID)
835 hid->group = HID_GROUP_MULTITOUCH;
836}
837
838static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
839{
840 if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
841 parser->global.report_size == 8)
842 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
843
844 if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
845 parser->global.report_size == 8)
846 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
847}
848
849static void hid_scan_collection(struct hid_parser *parser, unsigned type)
850{
851 struct hid_device *hid = parser->device;
852 int i;
853
854 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
855 (type == HID_COLLECTION_PHYSICAL ||
856 type == HID_COLLECTION_APPLICATION))
857 hid->group = HID_GROUP_SENSOR_HUB;
858
859 if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
860 hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
861 hid->group == HID_GROUP_MULTITOUCH)
862 hid->group = HID_GROUP_GENERIC;
863
864 if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
865 for (i = 0; i < parser->local.usage_index; i++)
866 if (parser->local.usage[i] == HID_GD_POINTER)
867 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
868
869 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
870 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
871
872 if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
873 for (i = 0; i < parser->local.usage_index; i++)
874 if (parser->local.usage[i] ==
875 (HID_UP_GOOGLEVENDOR | 0x0001))
876 parser->device->group =
877 HID_GROUP_VIVALDI;
878}
879
880static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
881{
882 __u32 data;
883 int i;
884
885 hid_concatenate_last_usage_page(parser);
886
887 data = item_udata(item);
888
889 switch (item->tag) {
890 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
891 hid_scan_collection(parser, data & 0xff);
892 break;
893 case HID_MAIN_ITEM_TAG_END_COLLECTION:
894 break;
895 case HID_MAIN_ITEM_TAG_INPUT:
896 /* ignore constant inputs, they will be ignored by hid-input */
897 if (data & HID_MAIN_ITEM_CONSTANT)
898 break;
899 for (i = 0; i < parser->local.usage_index; i++)
900 hid_scan_input_usage(parser, parser->local.usage[i]);
901 break;
902 case HID_MAIN_ITEM_TAG_OUTPUT:
903 break;
904 case HID_MAIN_ITEM_TAG_FEATURE:
905 for (i = 0; i < parser->local.usage_index; i++)
906 hid_scan_feature_usage(parser, parser->local.usage[i]);
907 break;
908 }
909
910 /* Reset the local parser environment */
911 memset(&parser->local, 0, sizeof(parser->local));
912
913 return 0;
914}
915
916/*
917 * Scan a report descriptor before the device is added to the bus.
918 * Sets device groups and other properties that determine what driver
919 * to load.
920 */
921static int hid_scan_report(struct hid_device *hid)
922{
923 struct hid_parser *parser;
924 struct hid_item item;
925 const __u8 *start = hid->dev_rdesc;
926 const __u8 *end = start + hid->dev_rsize;
927 static int (*dispatch_type[])(struct hid_parser *parser,
928 struct hid_item *item) = {
929 hid_scan_main,
930 hid_parser_global,
931 hid_parser_local,
932 hid_parser_reserved
933 };
934
935 parser = vzalloc(sizeof(struct hid_parser));
936 if (!parser)
937 return -ENOMEM;
938
939 parser->device = hid;
940 hid->group = HID_GROUP_GENERIC;
941
942 /*
943 * The parsing is simpler than the one in hid_open_report() as we should
944 * be robust against hid errors. Those errors will be raised by
945 * hid_open_report() anyway.
946 */
947 while ((start = fetch_item(start, end, &item)) != NULL)
948 dispatch_type[item.type](parser, &item);
949
950 /*
951 * Handle special flags set during scanning.
952 */
953 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
954 (hid->group == HID_GROUP_MULTITOUCH))
955 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
956
957 /*
958 * Vendor specific handlings
959 */
960 switch (hid->vendor) {
961 case USB_VENDOR_ID_WACOM:
962 hid->group = HID_GROUP_WACOM;
963 break;
964 case USB_VENDOR_ID_SYNAPTICS:
965 if (hid->group == HID_GROUP_GENERIC)
966 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
967 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
968 /*
969 * hid-rmi should take care of them,
970 * not hid-generic
971 */
972 hid->group = HID_GROUP_RMI;
973 break;
974 }
975
976 kfree(parser->collection_stack);
977 vfree(parser);
978 return 0;
979}
980
981/**
982 * hid_parse_report - parse device report
983 *
984 * @hid: hid device
985 * @start: report start
986 * @size: report size
987 *
988 * Allocate the device report as read by the bus driver. This function should
989 * only be called from parse() in ll drivers.
990 */
991int hid_parse_report(struct hid_device *hid, const __u8 *start, unsigned size)
992{
993 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
994 if (!hid->dev_rdesc)
995 return -ENOMEM;
996 hid->dev_rsize = size;
997 return 0;
998}
999EXPORT_SYMBOL_GPL(hid_parse_report);
1000
1001static const char * const hid_report_names[] = {
1002 "HID_INPUT_REPORT",
1003 "HID_OUTPUT_REPORT",
1004 "HID_FEATURE_REPORT",
1005};
1006/**
1007 * hid_validate_values - validate existing device report's value indexes
1008 *
1009 * @hid: hid device
1010 * @type: which report type to examine
1011 * @id: which report ID to examine (0 for first)
1012 * @field_index: which report field to examine
1013 * @report_counts: expected number of values
1014 *
1015 * Validate the number of values in a given field of a given report, after
1016 * parsing.
1017 */
1018struct hid_report *hid_validate_values(struct hid_device *hid,
1019 enum hid_report_type type, unsigned int id,
1020 unsigned int field_index,
1021 unsigned int report_counts)
1022{
1023 struct hid_report *report;
1024
1025 if (type > HID_FEATURE_REPORT) {
1026 hid_err(hid, "invalid HID report type %u\n", type);
1027 return NULL;
1028 }
1029
1030 if (id >= HID_MAX_IDS) {
1031 hid_err(hid, "invalid HID report id %u\n", id);
1032 return NULL;
1033 }
1034
1035 /*
1036 * Explicitly not using hid_get_report() here since it depends on
1037 * ->numbered being checked, which may not always be the case when
1038 * drivers go to access report values.
1039 */
1040 if (id == 0) {
1041 /*
1042 * Validating on id 0 means we should examine the first
1043 * report in the list.
1044 */
1045 report = list_first_entry_or_null(
1046 &hid->report_enum[type].report_list,
1047 struct hid_report, list);
1048 } else {
1049 report = hid->report_enum[type].report_id_hash[id];
1050 }
1051 if (!report) {
1052 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
1053 return NULL;
1054 }
1055 if (report->maxfield <= field_index) {
1056 hid_err(hid, "not enough fields in %s %u\n",
1057 hid_report_names[type], id);
1058 return NULL;
1059 }
1060 if (report->field[field_index]->report_count < report_counts) {
1061 hid_err(hid, "not enough values in %s %u field %u\n",
1062 hid_report_names[type], id, field_index);
1063 return NULL;
1064 }
1065 return report;
1066}
1067EXPORT_SYMBOL_GPL(hid_validate_values);
1068
1069static int hid_calculate_multiplier(struct hid_device *hid,
1070 struct hid_field *multiplier)
1071{
1072 int m;
1073 __s32 v = *multiplier->value;
1074 __s32 lmin = multiplier->logical_minimum;
1075 __s32 lmax = multiplier->logical_maximum;
1076 __s32 pmin = multiplier->physical_minimum;
1077 __s32 pmax = multiplier->physical_maximum;
1078
1079 /*
1080 * "Because OS implementations will generally divide the control's
1081 * reported count by the Effective Resolution Multiplier, designers
1082 * should take care not to establish a potential Effective
1083 * Resolution Multiplier of zero."
1084 * HID Usage Table, v1.12, Section 4.3.1, p31
1085 */
1086 if (lmax - lmin == 0)
1087 return 1;
1088 /*
1089 * Handling the unit exponent is left as an exercise to whoever
1090 * finds a device where that exponent is not 0.
1091 */
1092 m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1093 if (unlikely(multiplier->unit_exponent != 0)) {
1094 hid_warn(hid,
1095 "unsupported Resolution Multiplier unit exponent %d\n",
1096 multiplier->unit_exponent);
1097 }
1098
1099 /* There are no devices with an effective multiplier > 255 */
1100 if (unlikely(m == 0 || m > 255 || m < -255)) {
1101 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1102 m = 1;
1103 }
1104
1105 return m;
1106}
1107
1108static void hid_apply_multiplier_to_field(struct hid_device *hid,
1109 struct hid_field *field,
1110 struct hid_collection *multiplier_collection,
1111 int effective_multiplier)
1112{
1113 struct hid_collection *collection;
1114 struct hid_usage *usage;
1115 int i;
1116
1117 /*
1118 * If multiplier_collection is NULL, the multiplier applies
1119 * to all fields in the report.
1120 * Otherwise, it is the Logical Collection the multiplier applies to
1121 * but our field may be in a subcollection of that collection.
1122 */
1123 for (i = 0; i < field->maxusage; i++) {
1124 usage = &field->usage[i];
1125
1126 collection = &hid->collection[usage->collection_index];
1127 while (collection->parent_idx != -1 &&
1128 collection != multiplier_collection)
1129 collection = &hid->collection[collection->parent_idx];
1130
1131 if (collection->parent_idx != -1 ||
1132 multiplier_collection == NULL)
1133 usage->resolution_multiplier = effective_multiplier;
1134
1135 }
1136}
1137
1138static void hid_apply_multiplier(struct hid_device *hid,
1139 struct hid_field *multiplier)
1140{
1141 struct hid_report_enum *rep_enum;
1142 struct hid_report *rep;
1143 struct hid_field *field;
1144 struct hid_collection *multiplier_collection;
1145 int effective_multiplier;
1146 int i;
1147
1148 /*
1149 * "The Resolution Multiplier control must be contained in the same
1150 * Logical Collection as the control(s) to which it is to be applied.
1151 * If no Resolution Multiplier is defined, then the Resolution
1152 * Multiplier defaults to 1. If more than one control exists in a
1153 * Logical Collection, the Resolution Multiplier is associated with
1154 * all controls in the collection. If no Logical Collection is
1155 * defined, the Resolution Multiplier is associated with all
1156 * controls in the report."
1157 * HID Usage Table, v1.12, Section 4.3.1, p30
1158 *
1159 * Thus, search from the current collection upwards until we find a
1160 * logical collection. Then search all fields for that same parent
1161 * collection. Those are the fields the multiplier applies to.
1162 *
1163 * If we have more than one multiplier, it will overwrite the
1164 * applicable fields later.
1165 */
1166 multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1167 while (multiplier_collection->parent_idx != -1 &&
1168 multiplier_collection->type != HID_COLLECTION_LOGICAL)
1169 multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1170 if (multiplier_collection->type != HID_COLLECTION_LOGICAL)
1171 multiplier_collection = NULL;
1172
1173 effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1174
1175 rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1176 list_for_each_entry(rep, &rep_enum->report_list, list) {
1177 for (i = 0; i < rep->maxfield; i++) {
1178 field = rep->field[i];
1179 hid_apply_multiplier_to_field(hid, field,
1180 multiplier_collection,
1181 effective_multiplier);
1182 }
1183 }
1184}
1185
1186/*
1187 * hid_setup_resolution_multiplier - set up all resolution multipliers
1188 *
1189 * @device: hid device
1190 *
1191 * Search for all Resolution Multiplier Feature Reports and apply their
1192 * value to all matching Input items. This only updates the internal struct
1193 * fields.
1194 *
1195 * The Resolution Multiplier is applied by the hardware. If the multiplier
1196 * is anything other than 1, the hardware will send pre-multiplied events
1197 * so that the same physical interaction generates an accumulated
1198 * accumulated_value = value * * multiplier
1199 * This may be achieved by sending
1200 * - "value * multiplier" for each event, or
1201 * - "value" but "multiplier" times as frequently, or
1202 * - a combination of the above
1203 * The only guarantee is that the same physical interaction always generates
1204 * an accumulated 'value * multiplier'.
1205 *
1206 * This function must be called before any event processing and after
1207 * any SetRequest to the Resolution Multiplier.
1208 */
1209void hid_setup_resolution_multiplier(struct hid_device *hid)
1210{
1211 struct hid_report_enum *rep_enum;
1212 struct hid_report *rep;
1213 struct hid_usage *usage;
1214 int i, j;
1215
1216 rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1217 list_for_each_entry(rep, &rep_enum->report_list, list) {
1218 for (i = 0; i < rep->maxfield; i++) {
1219 /* Ignore if report count is out of bounds. */
1220 if (rep->field[i]->report_count < 1)
1221 continue;
1222
1223 for (j = 0; j < rep->field[i]->maxusage; j++) {
1224 usage = &rep->field[i]->usage[j];
1225 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1226 hid_apply_multiplier(hid,
1227 rep->field[i]);
1228 }
1229 }
1230 }
1231}
1232EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1233
1234/**
1235 * hid_open_report - open a driver-specific device report
1236 *
1237 * @device: hid device
1238 *
1239 * Parse a report description into a hid_device structure. Reports are
1240 * enumerated, fields are attached to these reports.
1241 * 0 returned on success, otherwise nonzero error value.
1242 *
1243 * This function (or the equivalent hid_parse() macro) should only be
1244 * called from probe() in drivers, before starting the device.
1245 */
1246int hid_open_report(struct hid_device *device)
1247{
1248 struct hid_parser *parser;
1249 struct hid_item item;
1250 unsigned int size;
1251 const __u8 *start;
1252 const __u8 *end;
1253 const __u8 *next;
1254 int ret;
1255 int i;
1256 static int (*dispatch_type[])(struct hid_parser *parser,
1257 struct hid_item *item) = {
1258 hid_parser_main,
1259 hid_parser_global,
1260 hid_parser_local,
1261 hid_parser_reserved
1262 };
1263
1264 if (WARN_ON(device->status & HID_STAT_PARSED))
1265 return -EBUSY;
1266
1267 start = device->bpf_rdesc;
1268 if (WARN_ON(!start))
1269 return -ENODEV;
1270 size = device->bpf_rsize;
1271
1272 if (device->driver->report_fixup) {
1273 /*
1274 * device->driver->report_fixup() needs to work
1275 * on a copy of our report descriptor so it can
1276 * change it.
1277 */
1278 __u8 *buf = kmemdup(start, size, GFP_KERNEL);
1279
1280 if (buf == NULL)
1281 return -ENOMEM;
1282
1283 start = device->driver->report_fixup(device, buf, &size);
1284
1285 /*
1286 * The second kmemdup is required in case report_fixup() returns
1287 * a static read-only memory, but we have no idea if that memory
1288 * needs to be cleaned up or not at the end.
1289 */
1290 start = kmemdup(start, size, GFP_KERNEL);
1291 kfree(buf);
1292 if (start == NULL)
1293 return -ENOMEM;
1294 }
1295
1296 device->rdesc = start;
1297 device->rsize = size;
1298
1299 parser = vzalloc(sizeof(struct hid_parser));
1300 if (!parser) {
1301 ret = -ENOMEM;
1302 goto alloc_err;
1303 }
1304
1305 parser->device = device;
1306
1307 end = start + size;
1308
1309 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1310 sizeof(struct hid_collection), GFP_KERNEL);
1311 if (!device->collection) {
1312 ret = -ENOMEM;
1313 goto err;
1314 }
1315 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1316 for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++)
1317 device->collection[i].parent_idx = -1;
1318
1319 ret = -EINVAL;
1320 while ((next = fetch_item(start, end, &item)) != NULL) {
1321 start = next;
1322
1323 if (item.format != HID_ITEM_FORMAT_SHORT) {
1324 hid_err(device, "unexpected long global item\n");
1325 goto err;
1326 }
1327
1328 if (dispatch_type[item.type](parser, &item)) {
1329 hid_err(device, "item %u %u %u %u parsing failed\n",
1330 item.format, (unsigned)item.size,
1331 (unsigned)item.type, (unsigned)item.tag);
1332 goto err;
1333 }
1334
1335 if (start == end) {
1336 if (parser->collection_stack_ptr) {
1337 hid_err(device, "unbalanced collection at end of report description\n");
1338 goto err;
1339 }
1340 if (parser->local.delimiter_depth) {
1341 hid_err(device, "unbalanced delimiter at end of report description\n");
1342 goto err;
1343 }
1344
1345 /*
1346 * fetch initial values in case the device's
1347 * default multiplier isn't the recommended 1
1348 */
1349 hid_setup_resolution_multiplier(device);
1350
1351 kfree(parser->collection_stack);
1352 vfree(parser);
1353 device->status |= HID_STAT_PARSED;
1354
1355 return 0;
1356 }
1357 }
1358
1359 hid_err(device, "item fetching failed at offset %u/%u\n",
1360 size - (unsigned int)(end - start), size);
1361err:
1362 kfree(parser->collection_stack);
1363alloc_err:
1364 vfree(parser);
1365 hid_close_report(device);
1366 return ret;
1367}
1368EXPORT_SYMBOL_GPL(hid_open_report);
1369
1370/*
1371 * Extract/implement a data field from/to a little endian report (bit array).
1372 *
1373 * Code sort-of follows HID spec:
1374 * http://www.usb.org/developers/hidpage/HID1_11.pdf
1375 *
1376 * While the USB HID spec allows unlimited length bit fields in "report
1377 * descriptors", most devices never use more than 16 bits.
1378 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1379 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1380 */
1381
1382static u32 __extract(u8 *report, unsigned offset, int n)
1383{
1384 unsigned int idx = offset / 8;
1385 unsigned int bit_nr = 0;
1386 unsigned int bit_shift = offset % 8;
1387 int bits_to_copy = 8 - bit_shift;
1388 u32 value = 0;
1389 u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1390
1391 while (n > 0) {
1392 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1393 n -= bits_to_copy;
1394 bit_nr += bits_to_copy;
1395 bits_to_copy = 8;
1396 bit_shift = 0;
1397 idx++;
1398 }
1399
1400 return value & mask;
1401}
1402
1403u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1404 unsigned offset, unsigned n)
1405{
1406 if (n > 32) {
1407 hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1408 __func__, n, current->comm);
1409 n = 32;
1410 }
1411
1412 return __extract(report, offset, n);
1413}
1414EXPORT_SYMBOL_GPL(hid_field_extract);
1415
1416/*
1417 * "implement" : set bits in a little endian bit stream.
1418 * Same concepts as "extract" (see comments above).
1419 * The data mangled in the bit stream remains in little endian
1420 * order the whole time. It make more sense to talk about
1421 * endianness of register values by considering a register
1422 * a "cached" copy of the little endian bit stream.
1423 */
1424
1425static void __implement(u8 *report, unsigned offset, int n, u32 value)
1426{
1427 unsigned int idx = offset / 8;
1428 unsigned int bit_shift = offset % 8;
1429 int bits_to_set = 8 - bit_shift;
1430
1431 while (n - bits_to_set >= 0) {
1432 report[idx] &= ~(0xff << bit_shift);
1433 report[idx] |= value << bit_shift;
1434 value >>= bits_to_set;
1435 n -= bits_to_set;
1436 bits_to_set = 8;
1437 bit_shift = 0;
1438 idx++;
1439 }
1440
1441 /* last nibble */
1442 if (n) {
1443 u8 bit_mask = ((1U << n) - 1);
1444 report[idx] &= ~(bit_mask << bit_shift);
1445 report[idx] |= value << bit_shift;
1446 }
1447}
1448
1449static void implement(const struct hid_device *hid, u8 *report,
1450 unsigned offset, unsigned n, u32 value)
1451{
1452 if (unlikely(n > 32)) {
1453 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1454 __func__, n, current->comm);
1455 n = 32;
1456 } else if (n < 32) {
1457 u32 m = (1U << n) - 1;
1458
1459 if (unlikely(value > m)) {
1460 hid_warn(hid,
1461 "%s() called with too large value %d (n: %d)! (%s)\n",
1462 __func__, value, n, current->comm);
1463 value &= m;
1464 }
1465 }
1466
1467 __implement(report, offset, n, value);
1468}
1469
1470/*
1471 * Search an array for a value.
1472 */
1473
1474static int search(__s32 *array, __s32 value, unsigned n)
1475{
1476 while (n--) {
1477 if (*array++ == value)
1478 return 0;
1479 }
1480 return -1;
1481}
1482
1483/**
1484 * hid_match_report - check if driver's raw_event should be called
1485 *
1486 * @hid: hid device
1487 * @report: hid report to match against
1488 *
1489 * compare hid->driver->report_table->report_type to report->type
1490 */
1491static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1492{
1493 const struct hid_report_id *id = hid->driver->report_table;
1494
1495 if (!id) /* NULL means all */
1496 return 1;
1497
1498 for (; id->report_type != HID_TERMINATOR; id++)
1499 if (id->report_type == HID_ANY_ID ||
1500 id->report_type == report->type)
1501 return 1;
1502 return 0;
1503}
1504
1505/**
1506 * hid_match_usage - check if driver's event should be called
1507 *
1508 * @hid: hid device
1509 * @usage: usage to match against
1510 *
1511 * compare hid->driver->usage_table->usage_{type,code} to
1512 * usage->usage_{type,code}
1513 */
1514static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1515{
1516 const struct hid_usage_id *id = hid->driver->usage_table;
1517
1518 if (!id) /* NULL means all */
1519 return 1;
1520
1521 for (; id->usage_type != HID_ANY_ID - 1; id++)
1522 if ((id->usage_hid == HID_ANY_ID ||
1523 id->usage_hid == usage->hid) &&
1524 (id->usage_type == HID_ANY_ID ||
1525 id->usage_type == usage->type) &&
1526 (id->usage_code == HID_ANY_ID ||
1527 id->usage_code == usage->code))
1528 return 1;
1529 return 0;
1530}
1531
1532static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1533 struct hid_usage *usage, __s32 value, int interrupt)
1534{
1535 struct hid_driver *hdrv = hid->driver;
1536 int ret;
1537
1538 if (!list_empty(&hid->debug_list))
1539 hid_dump_input(hid, usage, value);
1540
1541 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1542 ret = hdrv->event(hid, field, usage, value);
1543 if (ret != 0) {
1544 if (ret < 0)
1545 hid_err(hid, "%s's event failed with %d\n",
1546 hdrv->name, ret);
1547 return;
1548 }
1549 }
1550
1551 if (hid->claimed & HID_CLAIMED_INPUT)
1552 hidinput_hid_event(hid, field, usage, value);
1553 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1554 hid->hiddev_hid_event(hid, field, usage, value);
1555}
1556
1557/*
1558 * Checks if the given value is valid within this field
1559 */
1560static inline int hid_array_value_is_valid(struct hid_field *field,
1561 __s32 value)
1562{
1563 __s32 min = field->logical_minimum;
1564
1565 /*
1566 * Value needs to be between logical min and max, and
1567 * (value - min) is used as an index in the usage array.
1568 * This array is of size field->maxusage
1569 */
1570 return value >= min &&
1571 value <= field->logical_maximum &&
1572 value - min < field->maxusage;
1573}
1574
1575/*
1576 * Fetch the field from the data. The field content is stored for next
1577 * report processing (we do differential reporting to the layer).
1578 */
1579static void hid_input_fetch_field(struct hid_device *hid,
1580 struct hid_field *field,
1581 __u8 *data)
1582{
1583 unsigned n;
1584 unsigned count = field->report_count;
1585 unsigned offset = field->report_offset;
1586 unsigned size = field->report_size;
1587 __s32 min = field->logical_minimum;
1588 __s32 *value;
1589
1590 value = field->new_value;
1591 memset(value, 0, count * sizeof(__s32));
1592 field->ignored = false;
1593
1594 for (n = 0; n < count; n++) {
1595
1596 value[n] = min < 0 ?
1597 snto32(hid_field_extract(hid, data, offset + n * size,
1598 size), size) :
1599 hid_field_extract(hid, data, offset + n * size, size);
1600
1601 /* Ignore report if ErrorRollOver */
1602 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1603 hid_array_value_is_valid(field, value[n]) &&
1604 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) {
1605 field->ignored = true;
1606 return;
1607 }
1608 }
1609}
1610
1611/*
1612 * Process a received variable field.
1613 */
1614
1615static void hid_input_var_field(struct hid_device *hid,
1616 struct hid_field *field,
1617 int interrupt)
1618{
1619 unsigned int count = field->report_count;
1620 __s32 *value = field->new_value;
1621 unsigned int n;
1622
1623 for (n = 0; n < count; n++)
1624 hid_process_event(hid,
1625 field,
1626 &field->usage[n],
1627 value[n],
1628 interrupt);
1629
1630 memcpy(field->value, value, count * sizeof(__s32));
1631}
1632
1633/*
1634 * Process a received array field. The field content is stored for
1635 * next report processing (we do differential reporting to the layer).
1636 */
1637
1638static void hid_input_array_field(struct hid_device *hid,
1639 struct hid_field *field,
1640 int interrupt)
1641{
1642 unsigned int n;
1643 unsigned int count = field->report_count;
1644 __s32 min = field->logical_minimum;
1645 __s32 *value;
1646
1647 value = field->new_value;
1648
1649 /* ErrorRollOver */
1650 if (field->ignored)
1651 return;
1652
1653 for (n = 0; n < count; n++) {
1654 if (hid_array_value_is_valid(field, field->value[n]) &&
1655 search(value, field->value[n], count))
1656 hid_process_event(hid,
1657 field,
1658 &field->usage[field->value[n] - min],
1659 0,
1660 interrupt);
1661
1662 if (hid_array_value_is_valid(field, value[n]) &&
1663 search(field->value, value[n], count))
1664 hid_process_event(hid,
1665 field,
1666 &field->usage[value[n] - min],
1667 1,
1668 interrupt);
1669 }
1670
1671 memcpy(field->value, value, count * sizeof(__s32));
1672}
1673
1674/*
1675 * Analyse a received report, and fetch the data from it. The field
1676 * content is stored for next report processing (we do differential
1677 * reporting to the layer).
1678 */
1679static void hid_process_report(struct hid_device *hid,
1680 struct hid_report *report,
1681 __u8 *data,
1682 int interrupt)
1683{
1684 unsigned int a;
1685 struct hid_field_entry *entry;
1686 struct hid_field *field;
1687
1688 /* first retrieve all incoming values in data */
1689 for (a = 0; a < report->maxfield; a++)
1690 hid_input_fetch_field(hid, report->field[a], data);
1691
1692 if (!list_empty(&report->field_entry_list)) {
1693 /* INPUT_REPORT, we have a priority list of fields */
1694 list_for_each_entry(entry,
1695 &report->field_entry_list,
1696 list) {
1697 field = entry->field;
1698
1699 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1700 hid_process_event(hid,
1701 field,
1702 &field->usage[entry->index],
1703 field->new_value[entry->index],
1704 interrupt);
1705 else
1706 hid_input_array_field(hid, field, interrupt);
1707 }
1708
1709 /* we need to do the memcpy at the end for var items */
1710 for (a = 0; a < report->maxfield; a++) {
1711 field = report->field[a];
1712
1713 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1714 memcpy(field->value, field->new_value,
1715 field->report_count * sizeof(__s32));
1716 }
1717 } else {
1718 /* FEATURE_REPORT, regular processing */
1719 for (a = 0; a < report->maxfield; a++) {
1720 field = report->field[a];
1721
1722 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1723 hid_input_var_field(hid, field, interrupt);
1724 else
1725 hid_input_array_field(hid, field, interrupt);
1726 }
1727 }
1728}
1729
1730/*
1731 * Insert a given usage_index in a field in the list
1732 * of processed usages in the report.
1733 *
1734 * The elements of lower priority score are processed
1735 * first.
1736 */
1737static void __hid_insert_field_entry(struct hid_device *hid,
1738 struct hid_report *report,
1739 struct hid_field_entry *entry,
1740 struct hid_field *field,
1741 unsigned int usage_index)
1742{
1743 struct hid_field_entry *next;
1744
1745 entry->field = field;
1746 entry->index = usage_index;
1747 entry->priority = field->usages_priorities[usage_index];
1748
1749 /* insert the element at the correct position */
1750 list_for_each_entry(next,
1751 &report->field_entry_list,
1752 list) {
1753 /*
1754 * the priority of our element is strictly higher
1755 * than the next one, insert it before
1756 */
1757 if (entry->priority > next->priority) {
1758 list_add_tail(&entry->list, &next->list);
1759 return;
1760 }
1761 }
1762
1763 /* lowest priority score: insert at the end */
1764 list_add_tail(&entry->list, &report->field_entry_list);
1765}
1766
1767static void hid_report_process_ordering(struct hid_device *hid,
1768 struct hid_report *report)
1769{
1770 struct hid_field *field;
1771 struct hid_field_entry *entries;
1772 unsigned int a, u, usages;
1773 unsigned int count = 0;
1774
1775 /* count the number of individual fields in the report */
1776 for (a = 0; a < report->maxfield; a++) {
1777 field = report->field[a];
1778
1779 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1780 count += field->report_count;
1781 else
1782 count++;
1783 }
1784
1785 /* allocate the memory to process the fields */
1786 entries = kcalloc(count, sizeof(*entries), GFP_KERNEL);
1787 if (!entries)
1788 return;
1789
1790 report->field_entries = entries;
1791
1792 /*
1793 * walk through all fields in the report and
1794 * store them by priority order in report->field_entry_list
1795 *
1796 * - Var elements are individualized (field + usage_index)
1797 * - Arrays are taken as one, we can not chose an order for them
1798 */
1799 usages = 0;
1800 for (a = 0; a < report->maxfield; a++) {
1801 field = report->field[a];
1802
1803 if (field->flags & HID_MAIN_ITEM_VARIABLE) {
1804 for (u = 0; u < field->report_count; u++) {
1805 __hid_insert_field_entry(hid, report,
1806 &entries[usages],
1807 field, u);
1808 usages++;
1809 }
1810 } else {
1811 __hid_insert_field_entry(hid, report, &entries[usages],
1812 field, 0);
1813 usages++;
1814 }
1815 }
1816}
1817
1818static void hid_process_ordering(struct hid_device *hid)
1819{
1820 struct hid_report *report;
1821 struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT];
1822
1823 list_for_each_entry(report, &report_enum->report_list, list)
1824 hid_report_process_ordering(hid, report);
1825}
1826
1827/*
1828 * Output the field into the report.
1829 */
1830
1831static void hid_output_field(const struct hid_device *hid,
1832 struct hid_field *field, __u8 *data)
1833{
1834 unsigned count = field->report_count;
1835 unsigned offset = field->report_offset;
1836 unsigned size = field->report_size;
1837 unsigned n;
1838
1839 for (n = 0; n < count; n++) {
1840 if (field->logical_minimum < 0) /* signed values */
1841 implement(hid, data, offset + n * size, size,
1842 s32ton(field->value[n], size));
1843 else /* unsigned values */
1844 implement(hid, data, offset + n * size, size,
1845 field->value[n]);
1846 }
1847}
1848
1849/*
1850 * Compute the size of a report.
1851 */
1852static size_t hid_compute_report_size(struct hid_report *report)
1853{
1854 if (report->size)
1855 return ((report->size - 1) >> 3) + 1;
1856
1857 return 0;
1858}
1859
1860/*
1861 * Create a report. 'data' has to be allocated using
1862 * hid_alloc_report_buf() so that it has proper size.
1863 */
1864
1865void hid_output_report(struct hid_report *report, __u8 *data)
1866{
1867 unsigned n;
1868
1869 if (report->id > 0)
1870 *data++ = report->id;
1871
1872 memset(data, 0, hid_compute_report_size(report));
1873 for (n = 0; n < report->maxfield; n++)
1874 hid_output_field(report->device, report->field[n], data);
1875}
1876EXPORT_SYMBOL_GPL(hid_output_report);
1877
1878/*
1879 * Allocator for buffer that is going to be passed to hid_output_report()
1880 */
1881u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1882{
1883 /*
1884 * 7 extra bytes are necessary to achieve proper functionality
1885 * of implement() working on 8 byte chunks
1886 */
1887
1888 u32 len = hid_report_len(report) + 7;
1889
1890 return kzalloc(len, flags);
1891}
1892EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1893
1894/*
1895 * Set a field value. The report this field belongs to has to be
1896 * created and transferred to the device, to set this value in the
1897 * device.
1898 */
1899
1900int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1901{
1902 unsigned size;
1903
1904 if (!field)
1905 return -1;
1906
1907 size = field->report_size;
1908
1909 hid_dump_input(field->report->device, field->usage + offset, value);
1910
1911 if (offset >= field->report_count) {
1912 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1913 offset, field->report_count);
1914 return -1;
1915 }
1916 if (field->logical_minimum < 0) {
1917 if (value != snto32(s32ton(value, size), size)) {
1918 hid_err(field->report->device, "value %d is out of range\n", value);
1919 return -1;
1920 }
1921 }
1922 field->value[offset] = value;
1923 return 0;
1924}
1925EXPORT_SYMBOL_GPL(hid_set_field);
1926
1927struct hid_field *hid_find_field(struct hid_device *hdev, unsigned int report_type,
1928 unsigned int application, unsigned int usage)
1929{
1930 struct list_head *report_list = &hdev->report_enum[report_type].report_list;
1931 struct hid_report *report;
1932 int i, j;
1933
1934 list_for_each_entry(report, report_list, list) {
1935 if (report->application != application)
1936 continue;
1937
1938 for (i = 0; i < report->maxfield; i++) {
1939 struct hid_field *field = report->field[i];
1940
1941 for (j = 0; j < field->maxusage; j++) {
1942 if (field->usage[j].hid == usage)
1943 return field;
1944 }
1945 }
1946 }
1947
1948 return NULL;
1949}
1950EXPORT_SYMBOL_GPL(hid_find_field);
1951
1952static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1953 const u8 *data)
1954{
1955 struct hid_report *report;
1956 unsigned int n = 0; /* Normally report number is 0 */
1957
1958 /* Device uses numbered reports, data[0] is report number */
1959 if (report_enum->numbered)
1960 n = *data;
1961
1962 report = report_enum->report_id_hash[n];
1963 if (report == NULL)
1964 dbg_hid("undefined report_id %u received\n", n);
1965
1966 return report;
1967}
1968
1969/*
1970 * Implement a generic .request() callback, using .raw_request()
1971 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1972 */
1973int __hid_request(struct hid_device *hid, struct hid_report *report,
1974 enum hid_class_request reqtype)
1975{
1976 char *buf;
1977 int ret;
1978 u32 len;
1979
1980 buf = hid_alloc_report_buf(report, GFP_KERNEL);
1981 if (!buf)
1982 return -ENOMEM;
1983
1984 len = hid_report_len(report);
1985
1986 if (reqtype == HID_REQ_SET_REPORT)
1987 hid_output_report(report, buf);
1988
1989 ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1990 report->type, reqtype);
1991 if (ret < 0) {
1992 dbg_hid("unable to complete request: %d\n", ret);
1993 goto out;
1994 }
1995
1996 if (reqtype == HID_REQ_GET_REPORT)
1997 hid_input_report(hid, report->type, buf, ret, 0);
1998
1999 ret = 0;
2000
2001out:
2002 kfree(buf);
2003 return ret;
2004}
2005EXPORT_SYMBOL_GPL(__hid_request);
2006
2007int hid_report_raw_event(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
2008 int interrupt)
2009{
2010 struct hid_report_enum *report_enum = hid->report_enum + type;
2011 struct hid_report *report;
2012 struct hid_driver *hdrv;
2013 int max_buffer_size = HID_MAX_BUFFER_SIZE;
2014 u32 rsize, csize = size;
2015 u8 *cdata = data;
2016 int ret = 0;
2017
2018 report = hid_get_report(report_enum, data);
2019 if (!report)
2020 goto out;
2021
2022 if (report_enum->numbered) {
2023 cdata++;
2024 csize--;
2025 }
2026
2027 rsize = hid_compute_report_size(report);
2028
2029 if (hid->ll_driver->max_buffer_size)
2030 max_buffer_size = hid->ll_driver->max_buffer_size;
2031
2032 if (report_enum->numbered && rsize >= max_buffer_size)
2033 rsize = max_buffer_size - 1;
2034 else if (rsize > max_buffer_size)
2035 rsize = max_buffer_size;
2036
2037 if (csize < rsize) {
2038 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
2039 csize, rsize);
2040 memset(cdata + csize, 0, rsize - csize);
2041 }
2042
2043 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
2044 hid->hiddev_report_event(hid, report);
2045 if (hid->claimed & HID_CLAIMED_HIDRAW) {
2046 ret = hidraw_report_event(hid, data, size);
2047 if (ret)
2048 goto out;
2049 }
2050
2051 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
2052 hid_process_report(hid, report, cdata, interrupt);
2053 hdrv = hid->driver;
2054 if (hdrv && hdrv->report)
2055 hdrv->report(hid, report);
2056 }
2057
2058 if (hid->claimed & HID_CLAIMED_INPUT)
2059 hidinput_report_event(hid, report);
2060out:
2061 return ret;
2062}
2063EXPORT_SYMBOL_GPL(hid_report_raw_event);
2064
2065
2066static int __hid_input_report(struct hid_device *hid, enum hid_report_type type,
2067 u8 *data, u32 size, int interrupt, u64 source, bool from_bpf,
2068 bool lock_already_taken)
2069{
2070 struct hid_report_enum *report_enum;
2071 struct hid_driver *hdrv;
2072 struct hid_report *report;
2073 int ret = 0;
2074
2075 if (!hid)
2076 return -ENODEV;
2077
2078 ret = down_trylock(&hid->driver_input_lock);
2079 if (lock_already_taken && !ret) {
2080 up(&hid->driver_input_lock);
2081 return -EINVAL;
2082 } else if (!lock_already_taken && ret) {
2083 return -EBUSY;
2084 }
2085
2086 if (!hid->driver) {
2087 ret = -ENODEV;
2088 goto unlock;
2089 }
2090 report_enum = hid->report_enum + type;
2091 hdrv = hid->driver;
2092
2093 data = dispatch_hid_bpf_device_event(hid, type, data, &size, interrupt, source, from_bpf);
2094 if (IS_ERR(data)) {
2095 ret = PTR_ERR(data);
2096 goto unlock;
2097 }
2098
2099 if (!size) {
2100 dbg_hid("empty report\n");
2101 ret = -1;
2102 goto unlock;
2103 }
2104
2105 /* Avoid unnecessary overhead if debugfs is disabled */
2106 if (!list_empty(&hid->debug_list))
2107 hid_dump_report(hid, type, data, size);
2108
2109 report = hid_get_report(report_enum, data);
2110
2111 if (!report) {
2112 ret = -1;
2113 goto unlock;
2114 }
2115
2116 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
2117 ret = hdrv->raw_event(hid, report, data, size);
2118 if (ret < 0)
2119 goto unlock;
2120 }
2121
2122 ret = hid_report_raw_event(hid, type, data, size, interrupt);
2123
2124unlock:
2125 if (!lock_already_taken)
2126 up(&hid->driver_input_lock);
2127 return ret;
2128}
2129
2130/**
2131 * hid_input_report - report data from lower layer (usb, bt...)
2132 *
2133 * @hid: hid device
2134 * @type: HID report type (HID_*_REPORT)
2135 * @data: report contents
2136 * @size: size of data parameter
2137 * @interrupt: distinguish between interrupt and control transfers
2138 *
2139 * This is data entry for lower layers.
2140 */
2141int hid_input_report(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
2142 int interrupt)
2143{
2144 return __hid_input_report(hid, type, data, size, interrupt, 0,
2145 false, /* from_bpf */
2146 false /* lock_already_taken */);
2147}
2148EXPORT_SYMBOL_GPL(hid_input_report);
2149
2150bool hid_match_one_id(const struct hid_device *hdev,
2151 const struct hid_device_id *id)
2152{
2153 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
2154 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
2155 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
2156 (id->product == HID_ANY_ID || id->product == hdev->product);
2157}
2158
2159const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
2160 const struct hid_device_id *id)
2161{
2162 for (; id->bus; id++)
2163 if (hid_match_one_id(hdev, id))
2164 return id;
2165
2166 return NULL;
2167}
2168EXPORT_SYMBOL_GPL(hid_match_id);
2169
2170static const struct hid_device_id hid_hiddev_list[] = {
2171 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
2172 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
2173 { }
2174};
2175
2176static bool hid_hiddev(struct hid_device *hdev)
2177{
2178 return !!hid_match_id(hdev, hid_hiddev_list);
2179}
2180
2181
2182static ssize_t
2183report_descriptor_read(struct file *filp, struct kobject *kobj,
2184 const struct bin_attribute *attr,
2185 char *buf, loff_t off, size_t count)
2186{
2187 struct device *dev = kobj_to_dev(kobj);
2188 struct hid_device *hdev = to_hid_device(dev);
2189
2190 if (off >= hdev->rsize)
2191 return 0;
2192
2193 if (off + count > hdev->rsize)
2194 count = hdev->rsize - off;
2195
2196 memcpy(buf, hdev->rdesc + off, count);
2197
2198 return count;
2199}
2200
2201static ssize_t
2202country_show(struct device *dev, struct device_attribute *attr,
2203 char *buf)
2204{
2205 struct hid_device *hdev = to_hid_device(dev);
2206
2207 return sprintf(buf, "%02x\n", hdev->country & 0xff);
2208}
2209
2210static const BIN_ATTR_RO(report_descriptor, HID_MAX_DESCRIPTOR_SIZE);
2211
2212static const DEVICE_ATTR_RO(country);
2213
2214int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
2215{
2216 static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
2217 "Joystick", "Gamepad", "Keyboard", "Keypad",
2218 "Multi-Axis Controller"
2219 };
2220 const char *type, *bus;
2221 char buf[64] = "";
2222 unsigned int i;
2223 int len;
2224 int ret;
2225
2226 ret = hid_bpf_connect_device(hdev);
2227 if (ret)
2228 return ret;
2229
2230 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
2231 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
2232 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
2233 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
2234 if (hdev->bus != BUS_USB)
2235 connect_mask &= ~HID_CONNECT_HIDDEV;
2236 if (hid_hiddev(hdev))
2237 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
2238
2239 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
2240 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
2241 hdev->claimed |= HID_CLAIMED_INPUT;
2242
2243 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
2244 !hdev->hiddev_connect(hdev,
2245 connect_mask & HID_CONNECT_HIDDEV_FORCE))
2246 hdev->claimed |= HID_CLAIMED_HIDDEV;
2247 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
2248 hdev->claimed |= HID_CLAIMED_HIDRAW;
2249
2250 if (connect_mask & HID_CONNECT_DRIVER)
2251 hdev->claimed |= HID_CLAIMED_DRIVER;
2252
2253 /* Drivers with the ->raw_event callback set are not required to connect
2254 * to any other listener. */
2255 if (!hdev->claimed && !hdev->driver->raw_event) {
2256 hid_err(hdev, "device has no listeners, quitting\n");
2257 return -ENODEV;
2258 }
2259
2260 hid_process_ordering(hdev);
2261
2262 if ((hdev->claimed & HID_CLAIMED_INPUT) &&
2263 (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
2264 hdev->ff_init(hdev);
2265
2266 len = 0;
2267 if (hdev->claimed & HID_CLAIMED_INPUT)
2268 len += sprintf(buf + len, "input");
2269 if (hdev->claimed & HID_CLAIMED_HIDDEV)
2270 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
2271 ((struct hiddev *)hdev->hiddev)->minor);
2272 if (hdev->claimed & HID_CLAIMED_HIDRAW)
2273 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
2274 ((struct hidraw *)hdev->hidraw)->minor);
2275
2276 type = "Device";
2277 for (i = 0; i < hdev->maxcollection; i++) {
2278 struct hid_collection *col = &hdev->collection[i];
2279 if (col->type == HID_COLLECTION_APPLICATION &&
2280 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
2281 (col->usage & 0xffff) < ARRAY_SIZE(types)) {
2282 type = types[col->usage & 0xffff];
2283 break;
2284 }
2285 }
2286
2287 switch (hdev->bus) {
2288 case BUS_USB:
2289 bus = "USB";
2290 break;
2291 case BUS_BLUETOOTH:
2292 bus = "BLUETOOTH";
2293 break;
2294 case BUS_I2C:
2295 bus = "I2C";
2296 break;
2297 case BUS_VIRTUAL:
2298 bus = "VIRTUAL";
2299 break;
2300 case BUS_INTEL_ISHTP:
2301 case BUS_AMD_SFH:
2302 bus = "SENSOR HUB";
2303 break;
2304 default:
2305 bus = "<UNKNOWN>";
2306 }
2307
2308 ret = device_create_file(&hdev->dev, &dev_attr_country);
2309 if (ret)
2310 hid_warn(hdev,
2311 "can't create sysfs country code attribute err: %d\n", ret);
2312
2313 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2314 buf, bus, hdev->version >> 8, hdev->version & 0xff,
2315 type, hdev->name, hdev->phys);
2316
2317 return 0;
2318}
2319EXPORT_SYMBOL_GPL(hid_connect);
2320
2321void hid_disconnect(struct hid_device *hdev)
2322{
2323 device_remove_file(&hdev->dev, &dev_attr_country);
2324 if (hdev->claimed & HID_CLAIMED_INPUT)
2325 hidinput_disconnect(hdev);
2326 if (hdev->claimed & HID_CLAIMED_HIDDEV)
2327 hdev->hiddev_disconnect(hdev);
2328 if (hdev->claimed & HID_CLAIMED_HIDRAW)
2329 hidraw_disconnect(hdev);
2330 hdev->claimed = 0;
2331
2332 hid_bpf_disconnect_device(hdev);
2333}
2334EXPORT_SYMBOL_GPL(hid_disconnect);
2335
2336/**
2337 * hid_hw_start - start underlying HW
2338 * @hdev: hid device
2339 * @connect_mask: which outputs to connect, see HID_CONNECT_*
2340 *
2341 * Call this in probe function *after* hid_parse. This will setup HW
2342 * buffers and start the device (if not defeirred to device open).
2343 * hid_hw_stop must be called if this was successful.
2344 */
2345int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2346{
2347 int error;
2348
2349 error = hdev->ll_driver->start(hdev);
2350 if (error)
2351 return error;
2352
2353 if (connect_mask) {
2354 error = hid_connect(hdev, connect_mask);
2355 if (error) {
2356 hdev->ll_driver->stop(hdev);
2357 return error;
2358 }
2359 }
2360
2361 return 0;
2362}
2363EXPORT_SYMBOL_GPL(hid_hw_start);
2364
2365/**
2366 * hid_hw_stop - stop underlying HW
2367 * @hdev: hid device
2368 *
2369 * This is usually called from remove function or from probe when something
2370 * failed and hid_hw_start was called already.
2371 */
2372void hid_hw_stop(struct hid_device *hdev)
2373{
2374 hid_disconnect(hdev);
2375 hdev->ll_driver->stop(hdev);
2376}
2377EXPORT_SYMBOL_GPL(hid_hw_stop);
2378
2379/**
2380 * hid_hw_open - signal underlying HW to start delivering events
2381 * @hdev: hid device
2382 *
2383 * Tell underlying HW to start delivering events from the device.
2384 * This function should be called sometime after successful call
2385 * to hid_hw_start().
2386 */
2387int hid_hw_open(struct hid_device *hdev)
2388{
2389 int ret;
2390
2391 ret = mutex_lock_killable(&hdev->ll_open_lock);
2392 if (ret)
2393 return ret;
2394
2395 if (!hdev->ll_open_count++) {
2396 ret = hdev->ll_driver->open(hdev);
2397 if (ret)
2398 hdev->ll_open_count--;
2399
2400 if (hdev->driver->on_hid_hw_open)
2401 hdev->driver->on_hid_hw_open(hdev);
2402 }
2403
2404 mutex_unlock(&hdev->ll_open_lock);
2405 return ret;
2406}
2407EXPORT_SYMBOL_GPL(hid_hw_open);
2408
2409/**
2410 * hid_hw_close - signal underlaying HW to stop delivering events
2411 *
2412 * @hdev: hid device
2413 *
2414 * This function indicates that we are not interested in the events
2415 * from this device anymore. Delivery of events may or may not stop,
2416 * depending on the number of users still outstanding.
2417 */
2418void hid_hw_close(struct hid_device *hdev)
2419{
2420 mutex_lock(&hdev->ll_open_lock);
2421 if (!--hdev->ll_open_count) {
2422 hdev->ll_driver->close(hdev);
2423
2424 if (hdev->driver->on_hid_hw_close)
2425 hdev->driver->on_hid_hw_close(hdev);
2426 }
2427 mutex_unlock(&hdev->ll_open_lock);
2428}
2429EXPORT_SYMBOL_GPL(hid_hw_close);
2430
2431/**
2432 * hid_hw_request - send report request to device
2433 *
2434 * @hdev: hid device
2435 * @report: report to send
2436 * @reqtype: hid request type
2437 */
2438void hid_hw_request(struct hid_device *hdev,
2439 struct hid_report *report, enum hid_class_request reqtype)
2440{
2441 if (hdev->ll_driver->request)
2442 return hdev->ll_driver->request(hdev, report, reqtype);
2443
2444 __hid_request(hdev, report, reqtype);
2445}
2446EXPORT_SYMBOL_GPL(hid_hw_request);
2447
2448int __hid_hw_raw_request(struct hid_device *hdev,
2449 unsigned char reportnum, __u8 *buf,
2450 size_t len, enum hid_report_type rtype,
2451 enum hid_class_request reqtype,
2452 u64 source, bool from_bpf)
2453{
2454 unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2455 int ret;
2456
2457 if (hdev->ll_driver->max_buffer_size)
2458 max_buffer_size = hdev->ll_driver->max_buffer_size;
2459
2460 if (len < 1 || len > max_buffer_size || !buf)
2461 return -EINVAL;
2462
2463 ret = dispatch_hid_bpf_raw_requests(hdev, reportnum, buf, len, rtype,
2464 reqtype, source, from_bpf);
2465 if (ret)
2466 return ret;
2467
2468 return hdev->ll_driver->raw_request(hdev, reportnum, buf, len,
2469 rtype, reqtype);
2470}
2471
2472/**
2473 * hid_hw_raw_request - send report request to device
2474 *
2475 * @hdev: hid device
2476 * @reportnum: report ID
2477 * @buf: in/out data to transfer
2478 * @len: length of buf
2479 * @rtype: HID report type
2480 * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT
2481 *
2482 * Return: count of data transferred, negative if error
2483 *
2484 * Same behavior as hid_hw_request, but with raw buffers instead.
2485 */
2486int hid_hw_raw_request(struct hid_device *hdev,
2487 unsigned char reportnum, __u8 *buf,
2488 size_t len, enum hid_report_type rtype, enum hid_class_request reqtype)
2489{
2490 return __hid_hw_raw_request(hdev, reportnum, buf, len, rtype, reqtype, 0, false);
2491}
2492EXPORT_SYMBOL_GPL(hid_hw_raw_request);
2493
2494int __hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len, u64 source,
2495 bool from_bpf)
2496{
2497 unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2498 int ret;
2499
2500 if (hdev->ll_driver->max_buffer_size)
2501 max_buffer_size = hdev->ll_driver->max_buffer_size;
2502
2503 if (len < 1 || len > max_buffer_size || !buf)
2504 return -EINVAL;
2505
2506 ret = dispatch_hid_bpf_output_report(hdev, buf, len, source, from_bpf);
2507 if (ret)
2508 return ret;
2509
2510 if (hdev->ll_driver->output_report)
2511 return hdev->ll_driver->output_report(hdev, buf, len);
2512
2513 return -ENOSYS;
2514}
2515
2516/**
2517 * hid_hw_output_report - send output report to device
2518 *
2519 * @hdev: hid device
2520 * @buf: raw data to transfer
2521 * @len: length of buf
2522 *
2523 * Return: count of data transferred, negative if error
2524 */
2525int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len)
2526{
2527 return __hid_hw_output_report(hdev, buf, len, 0, false);
2528}
2529EXPORT_SYMBOL_GPL(hid_hw_output_report);
2530
2531#ifdef CONFIG_PM
2532int hid_driver_suspend(struct hid_device *hdev, pm_message_t state)
2533{
2534 if (hdev->driver && hdev->driver->suspend)
2535 return hdev->driver->suspend(hdev, state);
2536
2537 return 0;
2538}
2539EXPORT_SYMBOL_GPL(hid_driver_suspend);
2540
2541int hid_driver_reset_resume(struct hid_device *hdev)
2542{
2543 if (hdev->driver && hdev->driver->reset_resume)
2544 return hdev->driver->reset_resume(hdev);
2545
2546 return 0;
2547}
2548EXPORT_SYMBOL_GPL(hid_driver_reset_resume);
2549
2550int hid_driver_resume(struct hid_device *hdev)
2551{
2552 if (hdev->driver && hdev->driver->resume)
2553 return hdev->driver->resume(hdev);
2554
2555 return 0;
2556}
2557EXPORT_SYMBOL_GPL(hid_driver_resume);
2558#endif /* CONFIG_PM */
2559
2560struct hid_dynid {
2561 struct list_head list;
2562 struct hid_device_id id;
2563};
2564
2565/**
2566 * new_id_store - add a new HID device ID to this driver and re-probe devices
2567 * @drv: target device driver
2568 * @buf: buffer for scanning device ID data
2569 * @count: input size
2570 *
2571 * Adds a new dynamic hid device ID to this driver,
2572 * and causes the driver to probe for all devices again.
2573 */
2574static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2575 size_t count)
2576{
2577 struct hid_driver *hdrv = to_hid_driver(drv);
2578 struct hid_dynid *dynid;
2579 __u32 bus, vendor, product;
2580 unsigned long driver_data = 0;
2581 int ret;
2582
2583 ret = sscanf(buf, "%x %x %x %lx",
2584 &bus, &vendor, &product, &driver_data);
2585 if (ret < 3)
2586 return -EINVAL;
2587
2588 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2589 if (!dynid)
2590 return -ENOMEM;
2591
2592 dynid->id.bus = bus;
2593 dynid->id.group = HID_GROUP_ANY;
2594 dynid->id.vendor = vendor;
2595 dynid->id.product = product;
2596 dynid->id.driver_data = driver_data;
2597
2598 spin_lock(&hdrv->dyn_lock);
2599 list_add_tail(&dynid->list, &hdrv->dyn_list);
2600 spin_unlock(&hdrv->dyn_lock);
2601
2602 ret = driver_attach(&hdrv->driver);
2603
2604 return ret ? : count;
2605}
2606static DRIVER_ATTR_WO(new_id);
2607
2608static struct attribute *hid_drv_attrs[] = {
2609 &driver_attr_new_id.attr,
2610 NULL,
2611};
2612ATTRIBUTE_GROUPS(hid_drv);
2613
2614static void hid_free_dynids(struct hid_driver *hdrv)
2615{
2616 struct hid_dynid *dynid, *n;
2617
2618 spin_lock(&hdrv->dyn_lock);
2619 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2620 list_del(&dynid->list);
2621 kfree(dynid);
2622 }
2623 spin_unlock(&hdrv->dyn_lock);
2624}
2625
2626const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2627 struct hid_driver *hdrv)
2628{
2629 struct hid_dynid *dynid;
2630
2631 spin_lock(&hdrv->dyn_lock);
2632 list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2633 if (hid_match_one_id(hdev, &dynid->id)) {
2634 spin_unlock(&hdrv->dyn_lock);
2635 return &dynid->id;
2636 }
2637 }
2638 spin_unlock(&hdrv->dyn_lock);
2639
2640 return hid_match_id(hdev, hdrv->id_table);
2641}
2642EXPORT_SYMBOL_GPL(hid_match_device);
2643
2644static int hid_bus_match(struct device *dev, const struct device_driver *drv)
2645{
2646 struct hid_driver *hdrv = to_hid_driver(drv);
2647 struct hid_device *hdev = to_hid_device(dev);
2648
2649 return hid_match_device(hdev, hdrv) != NULL;
2650}
2651
2652/**
2653 * hid_compare_device_paths - check if both devices share the same path
2654 * @hdev_a: hid device
2655 * @hdev_b: hid device
2656 * @separator: char to use as separator
2657 *
2658 * Check if two devices share the same path up to the last occurrence of
2659 * the separator char. Both paths must exist (i.e., zero-length paths
2660 * don't match).
2661 */
2662bool hid_compare_device_paths(struct hid_device *hdev_a,
2663 struct hid_device *hdev_b, char separator)
2664{
2665 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2666 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2667
2668 if (n1 != n2 || n1 <= 0 || n2 <= 0)
2669 return false;
2670
2671 return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2672}
2673EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2674
2675static bool hid_check_device_match(struct hid_device *hdev,
2676 struct hid_driver *hdrv,
2677 const struct hid_device_id **id)
2678{
2679 *id = hid_match_device(hdev, hdrv);
2680 if (!*id)
2681 return false;
2682
2683 if (hdrv->match)
2684 return hdrv->match(hdev, hid_ignore_special_drivers);
2685
2686 /*
2687 * hid-generic implements .match(), so we must be dealing with a
2688 * different HID driver here, and can simply check if
2689 * hid_ignore_special_drivers or HID_QUIRK_IGNORE_SPECIAL_DRIVER
2690 * are set or not.
2691 */
2692 return !hid_ignore_special_drivers && !(hdev->quirks & HID_QUIRK_IGNORE_SPECIAL_DRIVER);
2693}
2694
2695static int __hid_device_probe(struct hid_device *hdev, struct hid_driver *hdrv)
2696{
2697 const struct hid_device_id *id;
2698 int ret;
2699
2700 if (!hdev->bpf_rsize) {
2701 /* in case a bpf program gets detached, we need to free the old one */
2702 hid_free_bpf_rdesc(hdev);
2703
2704 /* keep this around so we know we called it once */
2705 hdev->bpf_rsize = hdev->dev_rsize;
2706
2707 /* call_hid_bpf_rdesc_fixup will always return a valid pointer */
2708 hdev->bpf_rdesc = call_hid_bpf_rdesc_fixup(hdev, hdev->dev_rdesc,
2709 &hdev->bpf_rsize);
2710 }
2711
2712 if (!hid_check_device_match(hdev, hdrv, &id))
2713 return -ENODEV;
2714
2715 hdev->devres_group_id = devres_open_group(&hdev->dev, NULL, GFP_KERNEL);
2716 if (!hdev->devres_group_id)
2717 return -ENOMEM;
2718
2719 /* reset the quirks that has been previously set */
2720 hdev->quirks = hid_lookup_quirk(hdev);
2721 hdev->driver = hdrv;
2722
2723 if (hdrv->probe) {
2724 ret = hdrv->probe(hdev, id);
2725 } else { /* default probe */
2726 ret = hid_open_report(hdev);
2727 if (!ret)
2728 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2729 }
2730
2731 /*
2732 * Note that we are not closing the devres group opened above so
2733 * even resources that were attached to the device after probe is
2734 * run are released when hid_device_remove() is executed. This is
2735 * needed as some drivers would allocate additional resources,
2736 * for example when updating firmware.
2737 */
2738
2739 if (ret) {
2740 devres_release_group(&hdev->dev, hdev->devres_group_id);
2741 hid_close_report(hdev);
2742 hdev->driver = NULL;
2743 }
2744
2745 return ret;
2746}
2747
2748static int hid_device_probe(struct device *dev)
2749{
2750 struct hid_device *hdev = to_hid_device(dev);
2751 struct hid_driver *hdrv = to_hid_driver(dev->driver);
2752 int ret = 0;
2753
2754 if (down_interruptible(&hdev->driver_input_lock))
2755 return -EINTR;
2756
2757 hdev->io_started = false;
2758 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2759
2760 if (!hdev->driver)
2761 ret = __hid_device_probe(hdev, hdrv);
2762
2763 if (!hdev->io_started)
2764 up(&hdev->driver_input_lock);
2765
2766 return ret;
2767}
2768
2769static void hid_device_remove(struct device *dev)
2770{
2771 struct hid_device *hdev = to_hid_device(dev);
2772 struct hid_driver *hdrv;
2773
2774 down(&hdev->driver_input_lock);
2775 hdev->io_started = false;
2776
2777 hdrv = hdev->driver;
2778 if (hdrv) {
2779 if (hdrv->remove)
2780 hdrv->remove(hdev);
2781 else /* default remove */
2782 hid_hw_stop(hdev);
2783
2784 /* Release all devres resources allocated by the driver */
2785 devres_release_group(&hdev->dev, hdev->devres_group_id);
2786
2787 hid_close_report(hdev);
2788 hdev->driver = NULL;
2789 }
2790
2791 if (!hdev->io_started)
2792 up(&hdev->driver_input_lock);
2793}
2794
2795static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2796 char *buf)
2797{
2798 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2799
2800 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2801 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2802}
2803static DEVICE_ATTR_RO(modalias);
2804
2805static struct attribute *hid_dev_attrs[] = {
2806 &dev_attr_modalias.attr,
2807 NULL,
2808};
2809static const struct bin_attribute *hid_dev_bin_attrs[] = {
2810 &bin_attr_report_descriptor,
2811 NULL
2812};
2813static const struct attribute_group hid_dev_group = {
2814 .attrs = hid_dev_attrs,
2815 .bin_attrs_new = hid_dev_bin_attrs,
2816};
2817__ATTRIBUTE_GROUPS(hid_dev);
2818
2819static int hid_uevent(const struct device *dev, struct kobj_uevent_env *env)
2820{
2821 const struct hid_device *hdev = to_hid_device(dev);
2822
2823 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2824 hdev->bus, hdev->vendor, hdev->product))
2825 return -ENOMEM;
2826
2827 if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2828 return -ENOMEM;
2829
2830 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2831 return -ENOMEM;
2832
2833 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2834 return -ENOMEM;
2835
2836 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2837 hdev->bus, hdev->group, hdev->vendor, hdev->product))
2838 return -ENOMEM;
2839
2840 return 0;
2841}
2842
2843const struct bus_type hid_bus_type = {
2844 .name = "hid",
2845 .dev_groups = hid_dev_groups,
2846 .drv_groups = hid_drv_groups,
2847 .match = hid_bus_match,
2848 .probe = hid_device_probe,
2849 .remove = hid_device_remove,
2850 .uevent = hid_uevent,
2851};
2852EXPORT_SYMBOL(hid_bus_type);
2853
2854int hid_add_device(struct hid_device *hdev)
2855{
2856 static atomic_t id = ATOMIC_INIT(0);
2857 int ret;
2858
2859 if (WARN_ON(hdev->status & HID_STAT_ADDED))
2860 return -EBUSY;
2861
2862 hdev->quirks = hid_lookup_quirk(hdev);
2863
2864 /* we need to kill them here, otherwise they will stay allocated to
2865 * wait for coming driver */
2866 if (hid_ignore(hdev))
2867 return -ENODEV;
2868
2869 /*
2870 * Check for the mandatory transport channel.
2871 */
2872 if (!hdev->ll_driver->raw_request) {
2873 hid_err(hdev, "transport driver missing .raw_request()\n");
2874 return -EINVAL;
2875 }
2876
2877 /*
2878 * Read the device report descriptor once and use as template
2879 * for the driver-specific modifications.
2880 */
2881 ret = hdev->ll_driver->parse(hdev);
2882 if (ret)
2883 return ret;
2884 if (!hdev->dev_rdesc)
2885 return -ENODEV;
2886
2887 /*
2888 * Scan generic devices for group information
2889 */
2890 if (hid_ignore_special_drivers) {
2891 hdev->group = HID_GROUP_GENERIC;
2892 } else if (!hdev->group &&
2893 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2894 ret = hid_scan_report(hdev);
2895 if (ret)
2896 hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2897 }
2898
2899 hdev->id = atomic_inc_return(&id);
2900
2901 /* XXX hack, any other cleaner solution after the driver core
2902 * is converted to allow more than 20 bytes as the device name? */
2903 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2904 hdev->vendor, hdev->product, hdev->id);
2905
2906 hid_debug_register(hdev, dev_name(&hdev->dev));
2907 ret = device_add(&hdev->dev);
2908 if (!ret)
2909 hdev->status |= HID_STAT_ADDED;
2910 else
2911 hid_debug_unregister(hdev);
2912
2913 return ret;
2914}
2915EXPORT_SYMBOL_GPL(hid_add_device);
2916
2917/**
2918 * hid_allocate_device - allocate new hid device descriptor
2919 *
2920 * Allocate and initialize hid device, so that hid_destroy_device might be
2921 * used to free it.
2922 *
2923 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2924 * error value.
2925 */
2926struct hid_device *hid_allocate_device(void)
2927{
2928 struct hid_device *hdev;
2929 int ret = -ENOMEM;
2930
2931 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2932 if (hdev == NULL)
2933 return ERR_PTR(ret);
2934
2935 device_initialize(&hdev->dev);
2936 hdev->dev.release = hid_device_release;
2937 hdev->dev.bus = &hid_bus_type;
2938 device_enable_async_suspend(&hdev->dev);
2939
2940 hid_close_report(hdev);
2941
2942 init_waitqueue_head(&hdev->debug_wait);
2943 INIT_LIST_HEAD(&hdev->debug_list);
2944 spin_lock_init(&hdev->debug_list_lock);
2945 sema_init(&hdev->driver_input_lock, 1);
2946 mutex_init(&hdev->ll_open_lock);
2947 kref_init(&hdev->ref);
2948
2949 ret = hid_bpf_device_init(hdev);
2950 if (ret)
2951 goto out_err;
2952
2953 return hdev;
2954
2955out_err:
2956 hid_destroy_device(hdev);
2957 return ERR_PTR(ret);
2958}
2959EXPORT_SYMBOL_GPL(hid_allocate_device);
2960
2961static void hid_remove_device(struct hid_device *hdev)
2962{
2963 if (hdev->status & HID_STAT_ADDED) {
2964 device_del(&hdev->dev);
2965 hid_debug_unregister(hdev);
2966 hdev->status &= ~HID_STAT_ADDED;
2967 }
2968 hid_free_bpf_rdesc(hdev);
2969 kfree(hdev->dev_rdesc);
2970 hdev->dev_rdesc = NULL;
2971 hdev->dev_rsize = 0;
2972 hdev->bpf_rsize = 0;
2973}
2974
2975/**
2976 * hid_destroy_device - free previously allocated device
2977 *
2978 * @hdev: hid device
2979 *
2980 * If you allocate hid_device through hid_allocate_device, you should ever
2981 * free by this function.
2982 */
2983void hid_destroy_device(struct hid_device *hdev)
2984{
2985 hid_bpf_destroy_device(hdev);
2986 hid_remove_device(hdev);
2987 put_device(&hdev->dev);
2988}
2989EXPORT_SYMBOL_GPL(hid_destroy_device);
2990
2991
2992static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2993{
2994 struct hid_driver *hdrv = data;
2995 struct hid_device *hdev = to_hid_device(dev);
2996
2997 if (hdev->driver == hdrv &&
2998 !hdrv->match(hdev, hid_ignore_special_drivers) &&
2999 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
3000 return device_reprobe(dev);
3001
3002 return 0;
3003}
3004
3005static int __hid_bus_driver_added(struct device_driver *drv, void *data)
3006{
3007 struct hid_driver *hdrv = to_hid_driver(drv);
3008
3009 if (hdrv->match) {
3010 bus_for_each_dev(&hid_bus_type, NULL, hdrv,
3011 __hid_bus_reprobe_drivers);
3012 }
3013
3014 return 0;
3015}
3016
3017static int __bus_removed_driver(struct device_driver *drv, void *data)
3018{
3019 return bus_rescan_devices(&hid_bus_type);
3020}
3021
3022int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
3023 const char *mod_name)
3024{
3025 int ret;
3026
3027 hdrv->driver.name = hdrv->name;
3028 hdrv->driver.bus = &hid_bus_type;
3029 hdrv->driver.owner = owner;
3030 hdrv->driver.mod_name = mod_name;
3031
3032 INIT_LIST_HEAD(&hdrv->dyn_list);
3033 spin_lock_init(&hdrv->dyn_lock);
3034
3035 ret = driver_register(&hdrv->driver);
3036
3037 if (ret == 0)
3038 bus_for_each_drv(&hid_bus_type, NULL, NULL,
3039 __hid_bus_driver_added);
3040
3041 return ret;
3042}
3043EXPORT_SYMBOL_GPL(__hid_register_driver);
3044
3045void hid_unregister_driver(struct hid_driver *hdrv)
3046{
3047 driver_unregister(&hdrv->driver);
3048 hid_free_dynids(hdrv);
3049
3050 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
3051}
3052EXPORT_SYMBOL_GPL(hid_unregister_driver);
3053
3054int hid_check_keys_pressed(struct hid_device *hid)
3055{
3056 struct hid_input *hidinput;
3057 int i;
3058
3059 if (!(hid->claimed & HID_CLAIMED_INPUT))
3060 return 0;
3061
3062 list_for_each_entry(hidinput, &hid->inputs, list) {
3063 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
3064 if (hidinput->input->key[i])
3065 return 1;
3066 }
3067
3068 return 0;
3069}
3070EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
3071
3072#ifdef CONFIG_HID_BPF
3073static const struct hid_ops __hid_ops = {
3074 .hid_get_report = hid_get_report,
3075 .hid_hw_raw_request = __hid_hw_raw_request,
3076 .hid_hw_output_report = __hid_hw_output_report,
3077 .hid_input_report = __hid_input_report,
3078 .owner = THIS_MODULE,
3079 .bus_type = &hid_bus_type,
3080};
3081#endif
3082
3083static int __init hid_init(void)
3084{
3085 int ret;
3086
3087 ret = bus_register(&hid_bus_type);
3088 if (ret) {
3089 pr_err("can't register hid bus\n");
3090 goto err;
3091 }
3092
3093#ifdef CONFIG_HID_BPF
3094 hid_ops = &__hid_ops;
3095#endif
3096
3097 ret = hidraw_init();
3098 if (ret)
3099 goto err_bus;
3100
3101 hid_debug_init();
3102
3103 return 0;
3104err_bus:
3105 bus_unregister(&hid_bus_type);
3106err:
3107 return ret;
3108}
3109
3110static void __exit hid_exit(void)
3111{
3112#ifdef CONFIG_HID_BPF
3113 hid_ops = NULL;
3114#endif
3115 hid_debug_exit();
3116 hidraw_exit();
3117 bus_unregister(&hid_bus_type);
3118 hid_quirks_exit(HID_BUS_ANY);
3119}
3120
3121module_init(hid_init);
3122module_exit(hid_exit);
3123
3124MODULE_AUTHOR("Andreas Gal");
3125MODULE_AUTHOR("Vojtech Pavlik");
3126MODULE_AUTHOR("Jiri Kosina");
3127MODULE_DESCRIPTION("HID support for Linux");
3128MODULE_LICENSE("GPL");