| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * HID support for Linux |
| 4 | * |
| 5 | * Copyright (c) 1999 Andreas Gal |
| 6 | * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz> |
| 7 | * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc |
| 8 | * Copyright (c) 2006-2012 Jiri Kosina |
| 9 | */ |
| 10 | |
| 11 | /* |
| 12 | */ |
| 13 | |
| 14 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 15 | |
| 16 | #include <linux/module.h> |
| 17 | #include <linux/slab.h> |
| 18 | #include <linux/init.h> |
| 19 | #include <linux/kernel.h> |
| 20 | #include <linux/list.h> |
| 21 | #include <linux/mm.h> |
| 22 | #include <linux/spinlock.h> |
| 23 | #include <linux/unaligned.h> |
| 24 | #include <asm/byteorder.h> |
| 25 | #include <linux/input.h> |
| 26 | #include <linux/wait.h> |
| 27 | #include <linux/vmalloc.h> |
| 28 | #include <linux/sched.h> |
| 29 | #include <linux/semaphore.h> |
| 30 | |
| 31 | #include <linux/hid.h> |
| 32 | #include <linux/hiddev.h> |
| 33 | #include <linux/hid-debug.h> |
| 34 | #include <linux/hidraw.h> |
| 35 | |
| 36 | #include "hid-ids.h" |
| 37 | |
| 38 | /* |
| 39 | * Version Information |
| 40 | */ |
| 41 | |
| 42 | #define DRIVER_DESC "HID core driver" |
| 43 | |
| 44 | static int hid_ignore_special_drivers = 0; |
| 45 | module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600); |
| 46 | MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver"); |
| 47 | |
| 48 | /* |
| 49 | * Convert a signed n-bit integer to signed 32-bit integer. |
| 50 | */ |
| 51 | |
| 52 | static s32 snto32(__u32 value, unsigned int n) |
| 53 | { |
| 54 | if (!value || !n) |
| 55 | return 0; |
| 56 | |
| 57 | if (n > 32) |
| 58 | n = 32; |
| 59 | |
| 60 | return sign_extend32(value, n - 1); |
| 61 | } |
| 62 | |
| 63 | /* |
| 64 | * Convert a signed 32-bit integer to a signed n-bit integer. |
| 65 | */ |
| 66 | |
| 67 | static u32 s32ton(__s32 value, unsigned int n) |
| 68 | { |
| 69 | s32 a = value >> (n - 1); |
| 70 | |
| 71 | if (a && a != -1) |
| 72 | return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1; |
| 73 | return value & ((1 << n) - 1); |
| 74 | } |
| 75 | |
| 76 | /* |
| 77 | * Register a new report for a device. |
| 78 | */ |
| 79 | |
| 80 | struct hid_report *hid_register_report(struct hid_device *device, |
| 81 | enum hid_report_type type, unsigned int id, |
| 82 | unsigned int application) |
| 83 | { |
| 84 | struct hid_report_enum *report_enum = device->report_enum + type; |
| 85 | struct hid_report *report; |
| 86 | |
| 87 | if (id >= HID_MAX_IDS) |
| 88 | return NULL; |
| 89 | if (report_enum->report_id_hash[id]) |
| 90 | return report_enum->report_id_hash[id]; |
| 91 | |
| 92 | report = kzalloc(sizeof(struct hid_report), GFP_KERNEL); |
| 93 | if (!report) |
| 94 | return NULL; |
| 95 | |
| 96 | if (id != 0) |
| 97 | report_enum->numbered = 1; |
| 98 | |
| 99 | report->id = id; |
| 100 | report->type = type; |
| 101 | report->size = 0; |
| 102 | report->device = device; |
| 103 | report->application = application; |
| 104 | report_enum->report_id_hash[id] = report; |
| 105 | |
| 106 | list_add_tail(&report->list, &report_enum->report_list); |
| 107 | INIT_LIST_HEAD(&report->field_entry_list); |
| 108 | |
| 109 | return report; |
| 110 | } |
| 111 | EXPORT_SYMBOL_GPL(hid_register_report); |
| 112 | |
| 113 | /* |
| 114 | * Register a new field for this report. |
| 115 | */ |
| 116 | |
| 117 | static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages) |
| 118 | { |
| 119 | struct hid_field *field; |
| 120 | |
| 121 | if (report->maxfield == HID_MAX_FIELDS) { |
| 122 | hid_err(report->device, "too many fields in report\n"); |
| 123 | return NULL; |
| 124 | } |
| 125 | |
| 126 | field = kvzalloc((sizeof(struct hid_field) + |
| 127 | usages * sizeof(struct hid_usage) + |
| 128 | 3 * usages * sizeof(unsigned int)), GFP_KERNEL); |
| 129 | if (!field) |
| 130 | return NULL; |
| 131 | |
| 132 | field->index = report->maxfield++; |
| 133 | report->field[field->index] = field; |
| 134 | field->usage = (struct hid_usage *)(field + 1); |
| 135 | field->value = (s32 *)(field->usage + usages); |
| 136 | field->new_value = (s32 *)(field->value + usages); |
| 137 | field->usages_priorities = (s32 *)(field->new_value + usages); |
| 138 | field->report = report; |
| 139 | |
| 140 | return field; |
| 141 | } |
| 142 | |
| 143 | /* |
| 144 | * Open a collection. The type/usage is pushed on the stack. |
| 145 | */ |
| 146 | |
| 147 | static int open_collection(struct hid_parser *parser, unsigned type) |
| 148 | { |
| 149 | struct hid_collection *collection; |
| 150 | unsigned usage; |
| 151 | int collection_index; |
| 152 | |
| 153 | usage = parser->local.usage[0]; |
| 154 | |
| 155 | if (parser->collection_stack_ptr == parser->collection_stack_size) { |
| 156 | unsigned int *collection_stack; |
| 157 | unsigned int new_size = parser->collection_stack_size + |
| 158 | HID_COLLECTION_STACK_SIZE; |
| 159 | |
| 160 | collection_stack = krealloc(parser->collection_stack, |
| 161 | new_size * sizeof(unsigned int), |
| 162 | GFP_KERNEL); |
| 163 | if (!collection_stack) |
| 164 | return -ENOMEM; |
| 165 | |
| 166 | parser->collection_stack = collection_stack; |
| 167 | parser->collection_stack_size = new_size; |
| 168 | } |
| 169 | |
| 170 | if (parser->device->maxcollection == parser->device->collection_size) { |
| 171 | collection = kmalloc( |
| 172 | array3_size(sizeof(struct hid_collection), |
| 173 | parser->device->collection_size, |
| 174 | 2), |
| 175 | GFP_KERNEL); |
| 176 | if (collection == NULL) { |
| 177 | hid_err(parser->device, "failed to reallocate collection array\n"); |
| 178 | return -ENOMEM; |
| 179 | } |
| 180 | memcpy(collection, parser->device->collection, |
| 181 | sizeof(struct hid_collection) * |
| 182 | parser->device->collection_size); |
| 183 | memset(collection + parser->device->collection_size, 0, |
| 184 | sizeof(struct hid_collection) * |
| 185 | parser->device->collection_size); |
| 186 | kfree(parser->device->collection); |
| 187 | parser->device->collection = collection; |
| 188 | parser->device->collection_size *= 2; |
| 189 | } |
| 190 | |
| 191 | parser->collection_stack[parser->collection_stack_ptr++] = |
| 192 | parser->device->maxcollection; |
| 193 | |
| 194 | collection_index = parser->device->maxcollection++; |
| 195 | collection = parser->device->collection + collection_index; |
| 196 | collection->type = type; |
| 197 | collection->usage = usage; |
| 198 | collection->level = parser->collection_stack_ptr - 1; |
| 199 | collection->parent_idx = (collection->level == 0) ? -1 : |
| 200 | parser->collection_stack[collection->level - 1]; |
| 201 | |
| 202 | if (type == HID_COLLECTION_APPLICATION) |
| 203 | parser->device->maxapplication++; |
| 204 | |
| 205 | return 0; |
| 206 | } |
| 207 | |
| 208 | /* |
| 209 | * Close a collection. |
| 210 | */ |
| 211 | |
| 212 | static int close_collection(struct hid_parser *parser) |
| 213 | { |
| 214 | if (!parser->collection_stack_ptr) { |
| 215 | hid_err(parser->device, "collection stack underflow\n"); |
| 216 | return -EINVAL; |
| 217 | } |
| 218 | parser->collection_stack_ptr--; |
| 219 | return 0; |
| 220 | } |
| 221 | |
| 222 | /* |
| 223 | * Climb up the stack, search for the specified collection type |
| 224 | * and return the usage. |
| 225 | */ |
| 226 | |
| 227 | static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type) |
| 228 | { |
| 229 | struct hid_collection *collection = parser->device->collection; |
| 230 | int n; |
| 231 | |
| 232 | for (n = parser->collection_stack_ptr - 1; n >= 0; n--) { |
| 233 | unsigned index = parser->collection_stack[n]; |
| 234 | if (collection[index].type == type) |
| 235 | return collection[index].usage; |
| 236 | } |
| 237 | return 0; /* we know nothing about this usage type */ |
| 238 | } |
| 239 | |
| 240 | /* |
| 241 | * Concatenate usage which defines 16 bits or less with the |
| 242 | * currently defined usage page to form a 32 bit usage |
| 243 | */ |
| 244 | |
| 245 | static void complete_usage(struct hid_parser *parser, unsigned int index) |
| 246 | { |
| 247 | parser->local.usage[index] &= 0xFFFF; |
| 248 | parser->local.usage[index] |= |
| 249 | (parser->global.usage_page & 0xFFFF) << 16; |
| 250 | } |
| 251 | |
| 252 | /* |
| 253 | * Add a usage to the temporary parser table. |
| 254 | */ |
| 255 | |
| 256 | static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size) |
| 257 | { |
| 258 | if (parser->local.usage_index >= HID_MAX_USAGES) { |
| 259 | hid_err(parser->device, "usage index exceeded\n"); |
| 260 | return -1; |
| 261 | } |
| 262 | parser->local.usage[parser->local.usage_index] = usage; |
| 263 | |
| 264 | /* |
| 265 | * If Usage item only includes usage id, concatenate it with |
| 266 | * currently defined usage page |
| 267 | */ |
| 268 | if (size <= 2) |
| 269 | complete_usage(parser, parser->local.usage_index); |
| 270 | |
| 271 | parser->local.usage_size[parser->local.usage_index] = size; |
| 272 | parser->local.collection_index[parser->local.usage_index] = |
| 273 | parser->collection_stack_ptr ? |
| 274 | parser->collection_stack[parser->collection_stack_ptr - 1] : 0; |
| 275 | parser->local.usage_index++; |
| 276 | return 0; |
| 277 | } |
| 278 | |
| 279 | /* |
| 280 | * Register a new field for this report. |
| 281 | */ |
| 282 | |
| 283 | static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags) |
| 284 | { |
| 285 | struct hid_report *report; |
| 286 | struct hid_field *field; |
| 287 | unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE; |
| 288 | unsigned int usages; |
| 289 | unsigned int offset; |
| 290 | unsigned int i; |
| 291 | unsigned int application; |
| 292 | |
| 293 | application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION); |
| 294 | |
| 295 | report = hid_register_report(parser->device, report_type, |
| 296 | parser->global.report_id, application); |
| 297 | if (!report) { |
| 298 | hid_err(parser->device, "hid_register_report failed\n"); |
| 299 | return -1; |
| 300 | } |
| 301 | |
| 302 | /* Handle both signed and unsigned cases properly */ |
| 303 | if ((parser->global.logical_minimum < 0 && |
| 304 | parser->global.logical_maximum < |
| 305 | parser->global.logical_minimum) || |
| 306 | (parser->global.logical_minimum >= 0 && |
| 307 | (__u32)parser->global.logical_maximum < |
| 308 | (__u32)parser->global.logical_minimum)) { |
| 309 | dbg_hid("logical range invalid 0x%x 0x%x\n", |
| 310 | parser->global.logical_minimum, |
| 311 | parser->global.logical_maximum); |
| 312 | return -1; |
| 313 | } |
| 314 | |
| 315 | offset = report->size; |
| 316 | report->size += parser->global.report_size * parser->global.report_count; |
| 317 | |
| 318 | if (parser->device->ll_driver->max_buffer_size) |
| 319 | max_buffer_size = parser->device->ll_driver->max_buffer_size; |
| 320 | |
| 321 | /* Total size check: Allow for possible report index byte */ |
| 322 | if (report->size > (max_buffer_size - 1) << 3) { |
| 323 | hid_err(parser->device, "report is too long\n"); |
| 324 | return -1; |
| 325 | } |
| 326 | |
| 327 | if (!parser->local.usage_index) /* Ignore padding fields */ |
| 328 | return 0; |
| 329 | |
| 330 | usages = max_t(unsigned, parser->local.usage_index, |
| 331 | parser->global.report_count); |
| 332 | |
| 333 | field = hid_register_field(report, usages); |
| 334 | if (!field) |
| 335 | return 0; |
| 336 | |
| 337 | field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL); |
| 338 | field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL); |
| 339 | field->application = application; |
| 340 | |
| 341 | for (i = 0; i < usages; i++) { |
| 342 | unsigned j = i; |
| 343 | /* Duplicate the last usage we parsed if we have excess values */ |
| 344 | if (i >= parser->local.usage_index) |
| 345 | j = parser->local.usage_index - 1; |
| 346 | field->usage[i].hid = parser->local.usage[j]; |
| 347 | field->usage[i].collection_index = |
| 348 | parser->local.collection_index[j]; |
| 349 | field->usage[i].usage_index = i; |
| 350 | field->usage[i].resolution_multiplier = 1; |
| 351 | } |
| 352 | |
| 353 | field->maxusage = usages; |
| 354 | field->flags = flags; |
| 355 | field->report_offset = offset; |
| 356 | field->report_type = report_type; |
| 357 | field->report_size = parser->global.report_size; |
| 358 | field->report_count = parser->global.report_count; |
| 359 | field->logical_minimum = parser->global.logical_minimum; |
| 360 | field->logical_maximum = parser->global.logical_maximum; |
| 361 | field->physical_minimum = parser->global.physical_minimum; |
| 362 | field->physical_maximum = parser->global.physical_maximum; |
| 363 | field->unit_exponent = parser->global.unit_exponent; |
| 364 | field->unit = parser->global.unit; |
| 365 | |
| 366 | return 0; |
| 367 | } |
| 368 | |
| 369 | /* |
| 370 | * Read data value from item. |
| 371 | */ |
| 372 | |
| 373 | static u32 item_udata(struct hid_item *item) |
| 374 | { |
| 375 | switch (item->size) { |
| 376 | case 1: return item->data.u8; |
| 377 | case 2: return item->data.u16; |
| 378 | case 4: return item->data.u32; |
| 379 | } |
| 380 | return 0; |
| 381 | } |
| 382 | |
| 383 | static s32 item_sdata(struct hid_item *item) |
| 384 | { |
| 385 | switch (item->size) { |
| 386 | case 1: return item->data.s8; |
| 387 | case 2: return item->data.s16; |
| 388 | case 4: return item->data.s32; |
| 389 | } |
| 390 | return 0; |
| 391 | } |
| 392 | |
| 393 | /* |
| 394 | * Process a global item. |
| 395 | */ |
| 396 | |
| 397 | static int hid_parser_global(struct hid_parser *parser, struct hid_item *item) |
| 398 | { |
| 399 | __s32 raw_value; |
| 400 | switch (item->tag) { |
| 401 | case HID_GLOBAL_ITEM_TAG_PUSH: |
| 402 | |
| 403 | if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) { |
| 404 | hid_err(parser->device, "global environment stack overflow\n"); |
| 405 | return -1; |
| 406 | } |
| 407 | |
| 408 | memcpy(parser->global_stack + parser->global_stack_ptr++, |
| 409 | &parser->global, sizeof(struct hid_global)); |
| 410 | return 0; |
| 411 | |
| 412 | case HID_GLOBAL_ITEM_TAG_POP: |
| 413 | |
| 414 | if (!parser->global_stack_ptr) { |
| 415 | hid_err(parser->device, "global environment stack underflow\n"); |
| 416 | return -1; |
| 417 | } |
| 418 | |
| 419 | memcpy(&parser->global, parser->global_stack + |
| 420 | --parser->global_stack_ptr, sizeof(struct hid_global)); |
| 421 | return 0; |
| 422 | |
| 423 | case HID_GLOBAL_ITEM_TAG_USAGE_PAGE: |
| 424 | parser->global.usage_page = item_udata(item); |
| 425 | return 0; |
| 426 | |
| 427 | case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM: |
| 428 | parser->global.logical_minimum = item_sdata(item); |
| 429 | return 0; |
| 430 | |
| 431 | case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM: |
| 432 | if (parser->global.logical_minimum < 0) |
| 433 | parser->global.logical_maximum = item_sdata(item); |
| 434 | else |
| 435 | parser->global.logical_maximum = item_udata(item); |
| 436 | return 0; |
| 437 | |
| 438 | case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM: |
| 439 | parser->global.physical_minimum = item_sdata(item); |
| 440 | return 0; |
| 441 | |
| 442 | case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM: |
| 443 | if (parser->global.physical_minimum < 0) |
| 444 | parser->global.physical_maximum = item_sdata(item); |
| 445 | else |
| 446 | parser->global.physical_maximum = item_udata(item); |
| 447 | return 0; |
| 448 | |
| 449 | case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT: |
| 450 | /* Many devices provide unit exponent as a two's complement |
| 451 | * nibble due to the common misunderstanding of HID |
| 452 | * specification 1.11, 6.2.2.7 Global Items. Attempt to handle |
| 453 | * both this and the standard encoding. */ |
| 454 | raw_value = item_sdata(item); |
| 455 | if (!(raw_value & 0xfffffff0)) |
| 456 | parser->global.unit_exponent = snto32(raw_value, 4); |
| 457 | else |
| 458 | parser->global.unit_exponent = raw_value; |
| 459 | return 0; |
| 460 | |
| 461 | case HID_GLOBAL_ITEM_TAG_UNIT: |
| 462 | parser->global.unit = item_udata(item); |
| 463 | return 0; |
| 464 | |
| 465 | case HID_GLOBAL_ITEM_TAG_REPORT_SIZE: |
| 466 | parser->global.report_size = item_udata(item); |
| 467 | if (parser->global.report_size > 256) { |
| 468 | hid_err(parser->device, "invalid report_size %d\n", |
| 469 | parser->global.report_size); |
| 470 | return -1; |
| 471 | } |
| 472 | return 0; |
| 473 | |
| 474 | case HID_GLOBAL_ITEM_TAG_REPORT_COUNT: |
| 475 | parser->global.report_count = item_udata(item); |
| 476 | if (parser->global.report_count > HID_MAX_USAGES) { |
| 477 | hid_err(parser->device, "invalid report_count %d\n", |
| 478 | parser->global.report_count); |
| 479 | return -1; |
| 480 | } |
| 481 | return 0; |
| 482 | |
| 483 | case HID_GLOBAL_ITEM_TAG_REPORT_ID: |
| 484 | parser->global.report_id = item_udata(item); |
| 485 | if (parser->global.report_id == 0 || |
| 486 | parser->global.report_id >= HID_MAX_IDS) { |
| 487 | hid_err(parser->device, "report_id %u is invalid\n", |
| 488 | parser->global.report_id); |
| 489 | return -1; |
| 490 | } |
| 491 | return 0; |
| 492 | |
| 493 | default: |
| 494 | hid_err(parser->device, "unknown global tag 0x%x\n", item->tag); |
| 495 | return -1; |
| 496 | } |
| 497 | } |
| 498 | |
| 499 | /* |
| 500 | * Process a local item. |
| 501 | */ |
| 502 | |
| 503 | static int hid_parser_local(struct hid_parser *parser, struct hid_item *item) |
| 504 | { |
| 505 | __u32 data; |
| 506 | unsigned n; |
| 507 | __u32 count; |
| 508 | |
| 509 | data = item_udata(item); |
| 510 | |
| 511 | switch (item->tag) { |
| 512 | case HID_LOCAL_ITEM_TAG_DELIMITER: |
| 513 | |
| 514 | if (data) { |
| 515 | /* |
| 516 | * We treat items before the first delimiter |
| 517 | * as global to all usage sets (branch 0). |
| 518 | * In the moment we process only these global |
| 519 | * items and the first delimiter set. |
| 520 | */ |
| 521 | if (parser->local.delimiter_depth != 0) { |
| 522 | hid_err(parser->device, "nested delimiters\n"); |
| 523 | return -1; |
| 524 | } |
| 525 | parser->local.delimiter_depth++; |
| 526 | parser->local.delimiter_branch++; |
| 527 | } else { |
| 528 | if (parser->local.delimiter_depth < 1) { |
| 529 | hid_err(parser->device, "bogus close delimiter\n"); |
| 530 | return -1; |
| 531 | } |
| 532 | parser->local.delimiter_depth--; |
| 533 | } |
| 534 | return 0; |
| 535 | |
| 536 | case HID_LOCAL_ITEM_TAG_USAGE: |
| 537 | |
| 538 | if (parser->local.delimiter_branch > 1) { |
| 539 | dbg_hid("alternative usage ignored\n"); |
| 540 | return 0; |
| 541 | } |
| 542 | |
| 543 | return hid_add_usage(parser, data, item->size); |
| 544 | |
| 545 | case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM: |
| 546 | |
| 547 | if (parser->local.delimiter_branch > 1) { |
| 548 | dbg_hid("alternative usage ignored\n"); |
| 549 | return 0; |
| 550 | } |
| 551 | |
| 552 | parser->local.usage_minimum = data; |
| 553 | return 0; |
| 554 | |
| 555 | case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM: |
| 556 | |
| 557 | if (parser->local.delimiter_branch > 1) { |
| 558 | dbg_hid("alternative usage ignored\n"); |
| 559 | return 0; |
| 560 | } |
| 561 | |
| 562 | count = data - parser->local.usage_minimum; |
| 563 | if (count + parser->local.usage_index >= HID_MAX_USAGES) { |
| 564 | /* |
| 565 | * We do not warn if the name is not set, we are |
| 566 | * actually pre-scanning the device. |
| 567 | */ |
| 568 | if (dev_name(&parser->device->dev)) |
| 569 | hid_warn(parser->device, |
| 570 | "ignoring exceeding usage max\n"); |
| 571 | data = HID_MAX_USAGES - parser->local.usage_index + |
| 572 | parser->local.usage_minimum - 1; |
| 573 | if (data <= 0) { |
| 574 | hid_err(parser->device, |
| 575 | "no more usage index available\n"); |
| 576 | return -1; |
| 577 | } |
| 578 | } |
| 579 | |
| 580 | for (n = parser->local.usage_minimum; n <= data; n++) |
| 581 | if (hid_add_usage(parser, n, item->size)) { |
| 582 | dbg_hid("hid_add_usage failed\n"); |
| 583 | return -1; |
| 584 | } |
| 585 | return 0; |
| 586 | |
| 587 | default: |
| 588 | |
| 589 | dbg_hid("unknown local item tag 0x%x\n", item->tag); |
| 590 | return 0; |
| 591 | } |
| 592 | return 0; |
| 593 | } |
| 594 | |
| 595 | /* |
| 596 | * Concatenate Usage Pages into Usages where relevant: |
| 597 | * As per specification, 6.2.2.8: "When the parser encounters a main item it |
| 598 | * concatenates the last declared Usage Page with a Usage to form a complete |
| 599 | * usage value." |
| 600 | */ |
| 601 | |
| 602 | static void hid_concatenate_last_usage_page(struct hid_parser *parser) |
| 603 | { |
| 604 | int i; |
| 605 | unsigned int usage_page; |
| 606 | unsigned int current_page; |
| 607 | |
| 608 | if (!parser->local.usage_index) |
| 609 | return; |
| 610 | |
| 611 | usage_page = parser->global.usage_page; |
| 612 | |
| 613 | /* |
| 614 | * Concatenate usage page again only if last declared Usage Page |
| 615 | * has not been already used in previous usages concatenation |
| 616 | */ |
| 617 | for (i = parser->local.usage_index - 1; i >= 0; i--) { |
| 618 | if (parser->local.usage_size[i] > 2) |
| 619 | /* Ignore extended usages */ |
| 620 | continue; |
| 621 | |
| 622 | current_page = parser->local.usage[i] >> 16; |
| 623 | if (current_page == usage_page) |
| 624 | break; |
| 625 | |
| 626 | complete_usage(parser, i); |
| 627 | } |
| 628 | } |
| 629 | |
| 630 | /* |
| 631 | * Process a main item. |
| 632 | */ |
| 633 | |
| 634 | static int hid_parser_main(struct hid_parser *parser, struct hid_item *item) |
| 635 | { |
| 636 | __u32 data; |
| 637 | int ret; |
| 638 | |
| 639 | hid_concatenate_last_usage_page(parser); |
| 640 | |
| 641 | data = item_udata(item); |
| 642 | |
| 643 | switch (item->tag) { |
| 644 | case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION: |
| 645 | ret = open_collection(parser, data & 0xff); |
| 646 | break; |
| 647 | case HID_MAIN_ITEM_TAG_END_COLLECTION: |
| 648 | ret = close_collection(parser); |
| 649 | break; |
| 650 | case HID_MAIN_ITEM_TAG_INPUT: |
| 651 | ret = hid_add_field(parser, HID_INPUT_REPORT, data); |
| 652 | break; |
| 653 | case HID_MAIN_ITEM_TAG_OUTPUT: |
| 654 | ret = hid_add_field(parser, HID_OUTPUT_REPORT, data); |
| 655 | break; |
| 656 | case HID_MAIN_ITEM_TAG_FEATURE: |
| 657 | ret = hid_add_field(parser, HID_FEATURE_REPORT, data); |
| 658 | break; |
| 659 | default: |
| 660 | if (item->tag >= HID_MAIN_ITEM_TAG_RESERVED_MIN && |
| 661 | item->tag <= HID_MAIN_ITEM_TAG_RESERVED_MAX) |
| 662 | hid_warn(parser->device, "reserved main item tag 0x%x\n", item->tag); |
| 663 | else |
| 664 | hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag); |
| 665 | ret = 0; |
| 666 | } |
| 667 | |
| 668 | memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */ |
| 669 | |
| 670 | return ret; |
| 671 | } |
| 672 | |
| 673 | /* |
| 674 | * Process a reserved item. |
| 675 | */ |
| 676 | |
| 677 | static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item) |
| 678 | { |
| 679 | dbg_hid("reserved item type, tag 0x%x\n", item->tag); |
| 680 | return 0; |
| 681 | } |
| 682 | |
| 683 | /* |
| 684 | * Free a report and all registered fields. The field->usage and |
| 685 | * field->value table's are allocated behind the field, so we need |
| 686 | * only to free(field) itself. |
| 687 | */ |
| 688 | |
| 689 | static void hid_free_report(struct hid_report *report) |
| 690 | { |
| 691 | unsigned n; |
| 692 | |
| 693 | kfree(report->field_entries); |
| 694 | |
| 695 | for (n = 0; n < report->maxfield; n++) |
| 696 | kvfree(report->field[n]); |
| 697 | kfree(report); |
| 698 | } |
| 699 | |
| 700 | /* |
| 701 | * Close report. This function returns the device |
| 702 | * state to the point prior to hid_open_report(). |
| 703 | */ |
| 704 | static void hid_close_report(struct hid_device *device) |
| 705 | { |
| 706 | unsigned i, j; |
| 707 | |
| 708 | for (i = 0; i < HID_REPORT_TYPES; i++) { |
| 709 | struct hid_report_enum *report_enum = device->report_enum + i; |
| 710 | |
| 711 | for (j = 0; j < HID_MAX_IDS; j++) { |
| 712 | struct hid_report *report = report_enum->report_id_hash[j]; |
| 713 | if (report) |
| 714 | hid_free_report(report); |
| 715 | } |
| 716 | memset(report_enum, 0, sizeof(*report_enum)); |
| 717 | INIT_LIST_HEAD(&report_enum->report_list); |
| 718 | } |
| 719 | |
| 720 | /* |
| 721 | * If the HID driver had a rdesc_fixup() callback, dev->rdesc |
| 722 | * will be allocated by hid-core and needs to be freed. |
| 723 | * Otherwise, it is either equal to dev_rdesc or bpf_rdesc, in |
| 724 | * which cases it'll be freed later on device removal or destroy. |
| 725 | */ |
| 726 | if (device->rdesc != device->dev_rdesc && device->rdesc != device->bpf_rdesc) |
| 727 | kfree(device->rdesc); |
| 728 | device->rdesc = NULL; |
| 729 | device->rsize = 0; |
| 730 | |
| 731 | kfree(device->collection); |
| 732 | device->collection = NULL; |
| 733 | device->collection_size = 0; |
| 734 | device->maxcollection = 0; |
| 735 | device->maxapplication = 0; |
| 736 | |
| 737 | device->status &= ~HID_STAT_PARSED; |
| 738 | } |
| 739 | |
| 740 | static inline void hid_free_bpf_rdesc(struct hid_device *hdev) |
| 741 | { |
| 742 | /* bpf_rdesc is either equal to dev_rdesc or allocated by call_hid_bpf_rdesc_fixup() */ |
| 743 | if (hdev->bpf_rdesc != hdev->dev_rdesc) |
| 744 | kfree(hdev->bpf_rdesc); |
| 745 | hdev->bpf_rdesc = NULL; |
| 746 | } |
| 747 | |
| 748 | /* |
| 749 | * Free a device structure, all reports, and all fields. |
| 750 | */ |
| 751 | |
| 752 | void hiddev_free(struct kref *ref) |
| 753 | { |
| 754 | struct hid_device *hid = container_of(ref, struct hid_device, ref); |
| 755 | |
| 756 | hid_close_report(hid); |
| 757 | hid_free_bpf_rdesc(hid); |
| 758 | kfree(hid->dev_rdesc); |
| 759 | kfree(hid); |
| 760 | } |
| 761 | |
| 762 | static void hid_device_release(struct device *dev) |
| 763 | { |
| 764 | struct hid_device *hid = to_hid_device(dev); |
| 765 | |
| 766 | kref_put(&hid->ref, hiddev_free); |
| 767 | } |
| 768 | |
| 769 | /* |
| 770 | * Fetch a report description item from the data stream. We support long |
| 771 | * items, though they are not used yet. |
| 772 | */ |
| 773 | |
| 774 | static const u8 *fetch_item(const __u8 *start, const __u8 *end, struct hid_item *item) |
| 775 | { |
| 776 | u8 b; |
| 777 | |
| 778 | if ((end - start) <= 0) |
| 779 | return NULL; |
| 780 | |
| 781 | b = *start++; |
| 782 | |
| 783 | item->type = (b >> 2) & 3; |
| 784 | item->tag = (b >> 4) & 15; |
| 785 | |
| 786 | if (item->tag == HID_ITEM_TAG_LONG) { |
| 787 | |
| 788 | item->format = HID_ITEM_FORMAT_LONG; |
| 789 | |
| 790 | if ((end - start) < 2) |
| 791 | return NULL; |
| 792 | |
| 793 | item->size = *start++; |
| 794 | item->tag = *start++; |
| 795 | |
| 796 | if ((end - start) < item->size) |
| 797 | return NULL; |
| 798 | |
| 799 | item->data.longdata = start; |
| 800 | start += item->size; |
| 801 | return start; |
| 802 | } |
| 803 | |
| 804 | item->format = HID_ITEM_FORMAT_SHORT; |
| 805 | item->size = BIT(b & 3) >> 1; /* 0, 1, 2, 3 -> 0, 1, 2, 4 */ |
| 806 | |
| 807 | if (end - start < item->size) |
| 808 | return NULL; |
| 809 | |
| 810 | switch (item->size) { |
| 811 | case 0: |
| 812 | break; |
| 813 | |
| 814 | case 1: |
| 815 | item->data.u8 = *start; |
| 816 | break; |
| 817 | |
| 818 | case 2: |
| 819 | item->data.u16 = get_unaligned_le16(start); |
| 820 | break; |
| 821 | |
| 822 | case 4: |
| 823 | item->data.u32 = get_unaligned_le32(start); |
| 824 | break; |
| 825 | } |
| 826 | |
| 827 | return start + item->size; |
| 828 | } |
| 829 | |
| 830 | static void hid_scan_input_usage(struct hid_parser *parser, u32 usage) |
| 831 | { |
| 832 | struct hid_device *hid = parser->device; |
| 833 | |
| 834 | if (usage == HID_DG_CONTACTID) |
| 835 | hid->group = HID_GROUP_MULTITOUCH; |
| 836 | } |
| 837 | |
| 838 | static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage) |
| 839 | { |
| 840 | if (usage == 0xff0000c5 && parser->global.report_count == 256 && |
| 841 | parser->global.report_size == 8) |
| 842 | parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8; |
| 843 | |
| 844 | if (usage == 0xff0000c6 && parser->global.report_count == 1 && |
| 845 | parser->global.report_size == 8) |
| 846 | parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8; |
| 847 | } |
| 848 | |
| 849 | static void hid_scan_collection(struct hid_parser *parser, unsigned type) |
| 850 | { |
| 851 | struct hid_device *hid = parser->device; |
| 852 | int i; |
| 853 | |
| 854 | if (((parser->global.usage_page << 16) == HID_UP_SENSOR) && |
| 855 | (type == HID_COLLECTION_PHYSICAL || |
| 856 | type == HID_COLLECTION_APPLICATION)) |
| 857 | hid->group = HID_GROUP_SENSOR_HUB; |
| 858 | |
| 859 | if (hid->vendor == USB_VENDOR_ID_MICROSOFT && |
| 860 | hid->product == USB_DEVICE_ID_MS_POWER_COVER && |
| 861 | hid->group == HID_GROUP_MULTITOUCH) |
| 862 | hid->group = HID_GROUP_GENERIC; |
| 863 | |
| 864 | if ((parser->global.usage_page << 16) == HID_UP_GENDESK) |
| 865 | for (i = 0; i < parser->local.usage_index; i++) |
| 866 | if (parser->local.usage[i] == HID_GD_POINTER) |
| 867 | parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER; |
| 868 | |
| 869 | if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR) |
| 870 | parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC; |
| 871 | |
| 872 | if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR) |
| 873 | for (i = 0; i < parser->local.usage_index; i++) |
| 874 | if (parser->local.usage[i] == |
| 875 | (HID_UP_GOOGLEVENDOR | 0x0001)) |
| 876 | parser->device->group = |
| 877 | HID_GROUP_VIVALDI; |
| 878 | } |
| 879 | |
| 880 | static int hid_scan_main(struct hid_parser *parser, struct hid_item *item) |
| 881 | { |
| 882 | __u32 data; |
| 883 | int i; |
| 884 | |
| 885 | hid_concatenate_last_usage_page(parser); |
| 886 | |
| 887 | data = item_udata(item); |
| 888 | |
| 889 | switch (item->tag) { |
| 890 | case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION: |
| 891 | hid_scan_collection(parser, data & 0xff); |
| 892 | break; |
| 893 | case HID_MAIN_ITEM_TAG_END_COLLECTION: |
| 894 | break; |
| 895 | case HID_MAIN_ITEM_TAG_INPUT: |
| 896 | /* ignore constant inputs, they will be ignored by hid-input */ |
| 897 | if (data & HID_MAIN_ITEM_CONSTANT) |
| 898 | break; |
| 899 | for (i = 0; i < parser->local.usage_index; i++) |
| 900 | hid_scan_input_usage(parser, parser->local.usage[i]); |
| 901 | break; |
| 902 | case HID_MAIN_ITEM_TAG_OUTPUT: |
| 903 | break; |
| 904 | case HID_MAIN_ITEM_TAG_FEATURE: |
| 905 | for (i = 0; i < parser->local.usage_index; i++) |
| 906 | hid_scan_feature_usage(parser, parser->local.usage[i]); |
| 907 | break; |
| 908 | } |
| 909 | |
| 910 | /* Reset the local parser environment */ |
| 911 | memset(&parser->local, 0, sizeof(parser->local)); |
| 912 | |
| 913 | return 0; |
| 914 | } |
| 915 | |
| 916 | /* |
| 917 | * Scan a report descriptor before the device is added to the bus. |
| 918 | * Sets device groups and other properties that determine what driver |
| 919 | * to load. |
| 920 | */ |
| 921 | static int hid_scan_report(struct hid_device *hid) |
| 922 | { |
| 923 | struct hid_parser *parser; |
| 924 | struct hid_item item; |
| 925 | const __u8 *start = hid->dev_rdesc; |
| 926 | const __u8 *end = start + hid->dev_rsize; |
| 927 | static int (*dispatch_type[])(struct hid_parser *parser, |
| 928 | struct hid_item *item) = { |
| 929 | hid_scan_main, |
| 930 | hid_parser_global, |
| 931 | hid_parser_local, |
| 932 | hid_parser_reserved |
| 933 | }; |
| 934 | |
| 935 | parser = vzalloc(sizeof(struct hid_parser)); |
| 936 | if (!parser) |
| 937 | return -ENOMEM; |
| 938 | |
| 939 | parser->device = hid; |
| 940 | hid->group = HID_GROUP_GENERIC; |
| 941 | |
| 942 | /* |
| 943 | * The parsing is simpler than the one in hid_open_report() as we should |
| 944 | * be robust against hid errors. Those errors will be raised by |
| 945 | * hid_open_report() anyway. |
| 946 | */ |
| 947 | while ((start = fetch_item(start, end, &item)) != NULL) |
| 948 | dispatch_type[item.type](parser, &item); |
| 949 | |
| 950 | /* |
| 951 | * Handle special flags set during scanning. |
| 952 | */ |
| 953 | if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) && |
| 954 | (hid->group == HID_GROUP_MULTITOUCH)) |
| 955 | hid->group = HID_GROUP_MULTITOUCH_WIN_8; |
| 956 | |
| 957 | /* |
| 958 | * Vendor specific handlings |
| 959 | */ |
| 960 | switch (hid->vendor) { |
| 961 | case USB_VENDOR_ID_WACOM: |
| 962 | hid->group = HID_GROUP_WACOM; |
| 963 | break; |
| 964 | case USB_VENDOR_ID_SYNAPTICS: |
| 965 | if (hid->group == HID_GROUP_GENERIC) |
| 966 | if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC) |
| 967 | && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER)) |
| 968 | /* |
| 969 | * hid-rmi should take care of them, |
| 970 | * not hid-generic |
| 971 | */ |
| 972 | hid->group = HID_GROUP_RMI; |
| 973 | break; |
| 974 | } |
| 975 | |
| 976 | kfree(parser->collection_stack); |
| 977 | vfree(parser); |
| 978 | return 0; |
| 979 | } |
| 980 | |
| 981 | /** |
| 982 | * hid_parse_report - parse device report |
| 983 | * |
| 984 | * @hid: hid device |
| 985 | * @start: report start |
| 986 | * @size: report size |
| 987 | * |
| 988 | * Allocate the device report as read by the bus driver. This function should |
| 989 | * only be called from parse() in ll drivers. |
| 990 | */ |
| 991 | int hid_parse_report(struct hid_device *hid, const __u8 *start, unsigned size) |
| 992 | { |
| 993 | hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL); |
| 994 | if (!hid->dev_rdesc) |
| 995 | return -ENOMEM; |
| 996 | hid->dev_rsize = size; |
| 997 | return 0; |
| 998 | } |
| 999 | EXPORT_SYMBOL_GPL(hid_parse_report); |
| 1000 | |
| 1001 | static const char * const hid_report_names[] = { |
| 1002 | "HID_INPUT_REPORT", |
| 1003 | "HID_OUTPUT_REPORT", |
| 1004 | "HID_FEATURE_REPORT", |
| 1005 | }; |
| 1006 | /** |
| 1007 | * hid_validate_values - validate existing device report's value indexes |
| 1008 | * |
| 1009 | * @hid: hid device |
| 1010 | * @type: which report type to examine |
| 1011 | * @id: which report ID to examine (0 for first) |
| 1012 | * @field_index: which report field to examine |
| 1013 | * @report_counts: expected number of values |
| 1014 | * |
| 1015 | * Validate the number of values in a given field of a given report, after |
| 1016 | * parsing. |
| 1017 | */ |
| 1018 | struct hid_report *hid_validate_values(struct hid_device *hid, |
| 1019 | enum hid_report_type type, unsigned int id, |
| 1020 | unsigned int field_index, |
| 1021 | unsigned int report_counts) |
| 1022 | { |
| 1023 | struct hid_report *report; |
| 1024 | |
| 1025 | if (type > HID_FEATURE_REPORT) { |
| 1026 | hid_err(hid, "invalid HID report type %u\n", type); |
| 1027 | return NULL; |
| 1028 | } |
| 1029 | |
| 1030 | if (id >= HID_MAX_IDS) { |
| 1031 | hid_err(hid, "invalid HID report id %u\n", id); |
| 1032 | return NULL; |
| 1033 | } |
| 1034 | |
| 1035 | /* |
| 1036 | * Explicitly not using hid_get_report() here since it depends on |
| 1037 | * ->numbered being checked, which may not always be the case when |
| 1038 | * drivers go to access report values. |
| 1039 | */ |
| 1040 | if (id == 0) { |
| 1041 | /* |
| 1042 | * Validating on id 0 means we should examine the first |
| 1043 | * report in the list. |
| 1044 | */ |
| 1045 | report = list_first_entry_or_null( |
| 1046 | &hid->report_enum[type].report_list, |
| 1047 | struct hid_report, list); |
| 1048 | } else { |
| 1049 | report = hid->report_enum[type].report_id_hash[id]; |
| 1050 | } |
| 1051 | if (!report) { |
| 1052 | hid_err(hid, "missing %s %u\n", hid_report_names[type], id); |
| 1053 | return NULL; |
| 1054 | } |
| 1055 | if (report->maxfield <= field_index) { |
| 1056 | hid_err(hid, "not enough fields in %s %u\n", |
| 1057 | hid_report_names[type], id); |
| 1058 | return NULL; |
| 1059 | } |
| 1060 | if (report->field[field_index]->report_count < report_counts) { |
| 1061 | hid_err(hid, "not enough values in %s %u field %u\n", |
| 1062 | hid_report_names[type], id, field_index); |
| 1063 | return NULL; |
| 1064 | } |
| 1065 | return report; |
| 1066 | } |
| 1067 | EXPORT_SYMBOL_GPL(hid_validate_values); |
| 1068 | |
| 1069 | static int hid_calculate_multiplier(struct hid_device *hid, |
| 1070 | struct hid_field *multiplier) |
| 1071 | { |
| 1072 | int m; |
| 1073 | __s32 v = *multiplier->value; |
| 1074 | __s32 lmin = multiplier->logical_minimum; |
| 1075 | __s32 lmax = multiplier->logical_maximum; |
| 1076 | __s32 pmin = multiplier->physical_minimum; |
| 1077 | __s32 pmax = multiplier->physical_maximum; |
| 1078 | |
| 1079 | /* |
| 1080 | * "Because OS implementations will generally divide the control's |
| 1081 | * reported count by the Effective Resolution Multiplier, designers |
| 1082 | * should take care not to establish a potential Effective |
| 1083 | * Resolution Multiplier of zero." |
| 1084 | * HID Usage Table, v1.12, Section 4.3.1, p31 |
| 1085 | */ |
| 1086 | if (lmax - lmin == 0) |
| 1087 | return 1; |
| 1088 | /* |
| 1089 | * Handling the unit exponent is left as an exercise to whoever |
| 1090 | * finds a device where that exponent is not 0. |
| 1091 | */ |
| 1092 | m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin); |
| 1093 | if (unlikely(multiplier->unit_exponent != 0)) { |
| 1094 | hid_warn(hid, |
| 1095 | "unsupported Resolution Multiplier unit exponent %d\n", |
| 1096 | multiplier->unit_exponent); |
| 1097 | } |
| 1098 | |
| 1099 | /* There are no devices with an effective multiplier > 255 */ |
| 1100 | if (unlikely(m == 0 || m > 255 || m < -255)) { |
| 1101 | hid_warn(hid, "unsupported Resolution Multiplier %d\n", m); |
| 1102 | m = 1; |
| 1103 | } |
| 1104 | |
| 1105 | return m; |
| 1106 | } |
| 1107 | |
| 1108 | static void hid_apply_multiplier_to_field(struct hid_device *hid, |
| 1109 | struct hid_field *field, |
| 1110 | struct hid_collection *multiplier_collection, |
| 1111 | int effective_multiplier) |
| 1112 | { |
| 1113 | struct hid_collection *collection; |
| 1114 | struct hid_usage *usage; |
| 1115 | int i; |
| 1116 | |
| 1117 | /* |
| 1118 | * If multiplier_collection is NULL, the multiplier applies |
| 1119 | * to all fields in the report. |
| 1120 | * Otherwise, it is the Logical Collection the multiplier applies to |
| 1121 | * but our field may be in a subcollection of that collection. |
| 1122 | */ |
| 1123 | for (i = 0; i < field->maxusage; i++) { |
| 1124 | usage = &field->usage[i]; |
| 1125 | |
| 1126 | collection = &hid->collection[usage->collection_index]; |
| 1127 | while (collection->parent_idx != -1 && |
| 1128 | collection != multiplier_collection) |
| 1129 | collection = &hid->collection[collection->parent_idx]; |
| 1130 | |
| 1131 | if (collection->parent_idx != -1 || |
| 1132 | multiplier_collection == NULL) |
| 1133 | usage->resolution_multiplier = effective_multiplier; |
| 1134 | |
| 1135 | } |
| 1136 | } |
| 1137 | |
| 1138 | static void hid_apply_multiplier(struct hid_device *hid, |
| 1139 | struct hid_field *multiplier) |
| 1140 | { |
| 1141 | struct hid_report_enum *rep_enum; |
| 1142 | struct hid_report *rep; |
| 1143 | struct hid_field *field; |
| 1144 | struct hid_collection *multiplier_collection; |
| 1145 | int effective_multiplier; |
| 1146 | int i; |
| 1147 | |
| 1148 | /* |
| 1149 | * "The Resolution Multiplier control must be contained in the same |
| 1150 | * Logical Collection as the control(s) to which it is to be applied. |
| 1151 | * If no Resolution Multiplier is defined, then the Resolution |
| 1152 | * Multiplier defaults to 1. If more than one control exists in a |
| 1153 | * Logical Collection, the Resolution Multiplier is associated with |
| 1154 | * all controls in the collection. If no Logical Collection is |
| 1155 | * defined, the Resolution Multiplier is associated with all |
| 1156 | * controls in the report." |
| 1157 | * HID Usage Table, v1.12, Section 4.3.1, p30 |
| 1158 | * |
| 1159 | * Thus, search from the current collection upwards until we find a |
| 1160 | * logical collection. Then search all fields for that same parent |
| 1161 | * collection. Those are the fields the multiplier applies to. |
| 1162 | * |
| 1163 | * If we have more than one multiplier, it will overwrite the |
| 1164 | * applicable fields later. |
| 1165 | */ |
| 1166 | multiplier_collection = &hid->collection[multiplier->usage->collection_index]; |
| 1167 | while (multiplier_collection->parent_idx != -1 && |
| 1168 | multiplier_collection->type != HID_COLLECTION_LOGICAL) |
| 1169 | multiplier_collection = &hid->collection[multiplier_collection->parent_idx]; |
| 1170 | if (multiplier_collection->type != HID_COLLECTION_LOGICAL) |
| 1171 | multiplier_collection = NULL; |
| 1172 | |
| 1173 | effective_multiplier = hid_calculate_multiplier(hid, multiplier); |
| 1174 | |
| 1175 | rep_enum = &hid->report_enum[HID_INPUT_REPORT]; |
| 1176 | list_for_each_entry(rep, &rep_enum->report_list, list) { |
| 1177 | for (i = 0; i < rep->maxfield; i++) { |
| 1178 | field = rep->field[i]; |
| 1179 | hid_apply_multiplier_to_field(hid, field, |
| 1180 | multiplier_collection, |
| 1181 | effective_multiplier); |
| 1182 | } |
| 1183 | } |
| 1184 | } |
| 1185 | |
| 1186 | /* |
| 1187 | * hid_setup_resolution_multiplier - set up all resolution multipliers |
| 1188 | * |
| 1189 | * @device: hid device |
| 1190 | * |
| 1191 | * Search for all Resolution Multiplier Feature Reports and apply their |
| 1192 | * value to all matching Input items. This only updates the internal struct |
| 1193 | * fields. |
| 1194 | * |
| 1195 | * The Resolution Multiplier is applied by the hardware. If the multiplier |
| 1196 | * is anything other than 1, the hardware will send pre-multiplied events |
| 1197 | * so that the same physical interaction generates an accumulated |
| 1198 | * accumulated_value = value * * multiplier |
| 1199 | * This may be achieved by sending |
| 1200 | * - "value * multiplier" for each event, or |
| 1201 | * - "value" but "multiplier" times as frequently, or |
| 1202 | * - a combination of the above |
| 1203 | * The only guarantee is that the same physical interaction always generates |
| 1204 | * an accumulated 'value * multiplier'. |
| 1205 | * |
| 1206 | * This function must be called before any event processing and after |
| 1207 | * any SetRequest to the Resolution Multiplier. |
| 1208 | */ |
| 1209 | void hid_setup_resolution_multiplier(struct hid_device *hid) |
| 1210 | { |
| 1211 | struct hid_report_enum *rep_enum; |
| 1212 | struct hid_report *rep; |
| 1213 | struct hid_usage *usage; |
| 1214 | int i, j; |
| 1215 | |
| 1216 | rep_enum = &hid->report_enum[HID_FEATURE_REPORT]; |
| 1217 | list_for_each_entry(rep, &rep_enum->report_list, list) { |
| 1218 | for (i = 0; i < rep->maxfield; i++) { |
| 1219 | /* Ignore if report count is out of bounds. */ |
| 1220 | if (rep->field[i]->report_count < 1) |
| 1221 | continue; |
| 1222 | |
| 1223 | for (j = 0; j < rep->field[i]->maxusage; j++) { |
| 1224 | usage = &rep->field[i]->usage[j]; |
| 1225 | if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER) |
| 1226 | hid_apply_multiplier(hid, |
| 1227 | rep->field[i]); |
| 1228 | } |
| 1229 | } |
| 1230 | } |
| 1231 | } |
| 1232 | EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier); |
| 1233 | |
| 1234 | /** |
| 1235 | * hid_open_report - open a driver-specific device report |
| 1236 | * |
| 1237 | * @device: hid device |
| 1238 | * |
| 1239 | * Parse a report description into a hid_device structure. Reports are |
| 1240 | * enumerated, fields are attached to these reports. |
| 1241 | * 0 returned on success, otherwise nonzero error value. |
| 1242 | * |
| 1243 | * This function (or the equivalent hid_parse() macro) should only be |
| 1244 | * called from probe() in drivers, before starting the device. |
| 1245 | */ |
| 1246 | int hid_open_report(struct hid_device *device) |
| 1247 | { |
| 1248 | struct hid_parser *parser; |
| 1249 | struct hid_item item; |
| 1250 | unsigned int size; |
| 1251 | const __u8 *start; |
| 1252 | const __u8 *end; |
| 1253 | const __u8 *next; |
| 1254 | int ret; |
| 1255 | int i; |
| 1256 | static int (*dispatch_type[])(struct hid_parser *parser, |
| 1257 | struct hid_item *item) = { |
| 1258 | hid_parser_main, |
| 1259 | hid_parser_global, |
| 1260 | hid_parser_local, |
| 1261 | hid_parser_reserved |
| 1262 | }; |
| 1263 | |
| 1264 | if (WARN_ON(device->status & HID_STAT_PARSED)) |
| 1265 | return -EBUSY; |
| 1266 | |
| 1267 | start = device->bpf_rdesc; |
| 1268 | if (WARN_ON(!start)) |
| 1269 | return -ENODEV; |
| 1270 | size = device->bpf_rsize; |
| 1271 | |
| 1272 | if (device->driver->report_fixup) { |
| 1273 | /* |
| 1274 | * device->driver->report_fixup() needs to work |
| 1275 | * on a copy of our report descriptor so it can |
| 1276 | * change it. |
| 1277 | */ |
| 1278 | __u8 *buf = kmemdup(start, size, GFP_KERNEL); |
| 1279 | |
| 1280 | if (buf == NULL) |
| 1281 | return -ENOMEM; |
| 1282 | |
| 1283 | start = device->driver->report_fixup(device, buf, &size); |
| 1284 | |
| 1285 | /* |
| 1286 | * The second kmemdup is required in case report_fixup() returns |
| 1287 | * a static read-only memory, but we have no idea if that memory |
| 1288 | * needs to be cleaned up or not at the end. |
| 1289 | */ |
| 1290 | start = kmemdup(start, size, GFP_KERNEL); |
| 1291 | kfree(buf); |
| 1292 | if (start == NULL) |
| 1293 | return -ENOMEM; |
| 1294 | } |
| 1295 | |
| 1296 | device->rdesc = start; |
| 1297 | device->rsize = size; |
| 1298 | |
| 1299 | parser = vzalloc(sizeof(struct hid_parser)); |
| 1300 | if (!parser) { |
| 1301 | ret = -ENOMEM; |
| 1302 | goto alloc_err; |
| 1303 | } |
| 1304 | |
| 1305 | parser->device = device; |
| 1306 | |
| 1307 | end = start + size; |
| 1308 | |
| 1309 | device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS, |
| 1310 | sizeof(struct hid_collection), GFP_KERNEL); |
| 1311 | if (!device->collection) { |
| 1312 | ret = -ENOMEM; |
| 1313 | goto err; |
| 1314 | } |
| 1315 | device->collection_size = HID_DEFAULT_NUM_COLLECTIONS; |
| 1316 | for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++) |
| 1317 | device->collection[i].parent_idx = -1; |
| 1318 | |
| 1319 | ret = -EINVAL; |
| 1320 | while ((next = fetch_item(start, end, &item)) != NULL) { |
| 1321 | start = next; |
| 1322 | |
| 1323 | if (item.format != HID_ITEM_FORMAT_SHORT) { |
| 1324 | hid_err(device, "unexpected long global item\n"); |
| 1325 | goto err; |
| 1326 | } |
| 1327 | |
| 1328 | if (dispatch_type[item.type](parser, &item)) { |
| 1329 | hid_err(device, "item %u %u %u %u parsing failed\n", |
| 1330 | item.format, (unsigned)item.size, |
| 1331 | (unsigned)item.type, (unsigned)item.tag); |
| 1332 | goto err; |
| 1333 | } |
| 1334 | |
| 1335 | if (start == end) { |
| 1336 | if (parser->collection_stack_ptr) { |
| 1337 | hid_err(device, "unbalanced collection at end of report description\n"); |
| 1338 | goto err; |
| 1339 | } |
| 1340 | if (parser->local.delimiter_depth) { |
| 1341 | hid_err(device, "unbalanced delimiter at end of report description\n"); |
| 1342 | goto err; |
| 1343 | } |
| 1344 | |
| 1345 | /* |
| 1346 | * fetch initial values in case the device's |
| 1347 | * default multiplier isn't the recommended 1 |
| 1348 | */ |
| 1349 | hid_setup_resolution_multiplier(device); |
| 1350 | |
| 1351 | kfree(parser->collection_stack); |
| 1352 | vfree(parser); |
| 1353 | device->status |= HID_STAT_PARSED; |
| 1354 | |
| 1355 | return 0; |
| 1356 | } |
| 1357 | } |
| 1358 | |
| 1359 | hid_err(device, "item fetching failed at offset %u/%u\n", |
| 1360 | size - (unsigned int)(end - start), size); |
| 1361 | err: |
| 1362 | kfree(parser->collection_stack); |
| 1363 | alloc_err: |
| 1364 | vfree(parser); |
| 1365 | hid_close_report(device); |
| 1366 | return ret; |
| 1367 | } |
| 1368 | EXPORT_SYMBOL_GPL(hid_open_report); |
| 1369 | |
| 1370 | /* |
| 1371 | * Extract/implement a data field from/to a little endian report (bit array). |
| 1372 | * |
| 1373 | * Code sort-of follows HID spec: |
| 1374 | * http://www.usb.org/developers/hidpage/HID1_11.pdf |
| 1375 | * |
| 1376 | * While the USB HID spec allows unlimited length bit fields in "report |
| 1377 | * descriptors", most devices never use more than 16 bits. |
| 1378 | * One model of UPS is claimed to report "LINEV" as a 32-bit field. |
| 1379 | * Search linux-kernel and linux-usb-devel archives for "hid-core extract". |
| 1380 | */ |
| 1381 | |
| 1382 | static u32 __extract(u8 *report, unsigned offset, int n) |
| 1383 | { |
| 1384 | unsigned int idx = offset / 8; |
| 1385 | unsigned int bit_nr = 0; |
| 1386 | unsigned int bit_shift = offset % 8; |
| 1387 | int bits_to_copy = 8 - bit_shift; |
| 1388 | u32 value = 0; |
| 1389 | u32 mask = n < 32 ? (1U << n) - 1 : ~0U; |
| 1390 | |
| 1391 | while (n > 0) { |
| 1392 | value |= ((u32)report[idx] >> bit_shift) << bit_nr; |
| 1393 | n -= bits_to_copy; |
| 1394 | bit_nr += bits_to_copy; |
| 1395 | bits_to_copy = 8; |
| 1396 | bit_shift = 0; |
| 1397 | idx++; |
| 1398 | } |
| 1399 | |
| 1400 | return value & mask; |
| 1401 | } |
| 1402 | |
| 1403 | u32 hid_field_extract(const struct hid_device *hid, u8 *report, |
| 1404 | unsigned offset, unsigned n) |
| 1405 | { |
| 1406 | if (n > 32) { |
| 1407 | hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n", |
| 1408 | __func__, n, current->comm); |
| 1409 | n = 32; |
| 1410 | } |
| 1411 | |
| 1412 | return __extract(report, offset, n); |
| 1413 | } |
| 1414 | EXPORT_SYMBOL_GPL(hid_field_extract); |
| 1415 | |
| 1416 | /* |
| 1417 | * "implement" : set bits in a little endian bit stream. |
| 1418 | * Same concepts as "extract" (see comments above). |
| 1419 | * The data mangled in the bit stream remains in little endian |
| 1420 | * order the whole time. It make more sense to talk about |
| 1421 | * endianness of register values by considering a register |
| 1422 | * a "cached" copy of the little endian bit stream. |
| 1423 | */ |
| 1424 | |
| 1425 | static void __implement(u8 *report, unsigned offset, int n, u32 value) |
| 1426 | { |
| 1427 | unsigned int idx = offset / 8; |
| 1428 | unsigned int bit_shift = offset % 8; |
| 1429 | int bits_to_set = 8 - bit_shift; |
| 1430 | |
| 1431 | while (n - bits_to_set >= 0) { |
| 1432 | report[idx] &= ~(0xff << bit_shift); |
| 1433 | report[idx] |= value << bit_shift; |
| 1434 | value >>= bits_to_set; |
| 1435 | n -= bits_to_set; |
| 1436 | bits_to_set = 8; |
| 1437 | bit_shift = 0; |
| 1438 | idx++; |
| 1439 | } |
| 1440 | |
| 1441 | /* last nibble */ |
| 1442 | if (n) { |
| 1443 | u8 bit_mask = ((1U << n) - 1); |
| 1444 | report[idx] &= ~(bit_mask << bit_shift); |
| 1445 | report[idx] |= value << bit_shift; |
| 1446 | } |
| 1447 | } |
| 1448 | |
| 1449 | static void implement(const struct hid_device *hid, u8 *report, |
| 1450 | unsigned offset, unsigned n, u32 value) |
| 1451 | { |
| 1452 | if (unlikely(n > 32)) { |
| 1453 | hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n", |
| 1454 | __func__, n, current->comm); |
| 1455 | n = 32; |
| 1456 | } else if (n < 32) { |
| 1457 | u32 m = (1U << n) - 1; |
| 1458 | |
| 1459 | if (unlikely(value > m)) { |
| 1460 | hid_warn(hid, |
| 1461 | "%s() called with too large value %d (n: %d)! (%s)\n", |
| 1462 | __func__, value, n, current->comm); |
| 1463 | value &= m; |
| 1464 | } |
| 1465 | } |
| 1466 | |
| 1467 | __implement(report, offset, n, value); |
| 1468 | } |
| 1469 | |
| 1470 | /* |
| 1471 | * Search an array for a value. |
| 1472 | */ |
| 1473 | |
| 1474 | static int search(__s32 *array, __s32 value, unsigned n) |
| 1475 | { |
| 1476 | while (n--) { |
| 1477 | if (*array++ == value) |
| 1478 | return 0; |
| 1479 | } |
| 1480 | return -1; |
| 1481 | } |
| 1482 | |
| 1483 | /** |
| 1484 | * hid_match_report - check if driver's raw_event should be called |
| 1485 | * |
| 1486 | * @hid: hid device |
| 1487 | * @report: hid report to match against |
| 1488 | * |
| 1489 | * compare hid->driver->report_table->report_type to report->type |
| 1490 | */ |
| 1491 | static int hid_match_report(struct hid_device *hid, struct hid_report *report) |
| 1492 | { |
| 1493 | const struct hid_report_id *id = hid->driver->report_table; |
| 1494 | |
| 1495 | if (!id) /* NULL means all */ |
| 1496 | return 1; |
| 1497 | |
| 1498 | for (; id->report_type != HID_TERMINATOR; id++) |
| 1499 | if (id->report_type == HID_ANY_ID || |
| 1500 | id->report_type == report->type) |
| 1501 | return 1; |
| 1502 | return 0; |
| 1503 | } |
| 1504 | |
| 1505 | /** |
| 1506 | * hid_match_usage - check if driver's event should be called |
| 1507 | * |
| 1508 | * @hid: hid device |
| 1509 | * @usage: usage to match against |
| 1510 | * |
| 1511 | * compare hid->driver->usage_table->usage_{type,code} to |
| 1512 | * usage->usage_{type,code} |
| 1513 | */ |
| 1514 | static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage) |
| 1515 | { |
| 1516 | const struct hid_usage_id *id = hid->driver->usage_table; |
| 1517 | |
| 1518 | if (!id) /* NULL means all */ |
| 1519 | return 1; |
| 1520 | |
| 1521 | for (; id->usage_type != HID_ANY_ID - 1; id++) |
| 1522 | if ((id->usage_hid == HID_ANY_ID || |
| 1523 | id->usage_hid == usage->hid) && |
| 1524 | (id->usage_type == HID_ANY_ID || |
| 1525 | id->usage_type == usage->type) && |
| 1526 | (id->usage_code == HID_ANY_ID || |
| 1527 | id->usage_code == usage->code)) |
| 1528 | return 1; |
| 1529 | return 0; |
| 1530 | } |
| 1531 | |
| 1532 | static void hid_process_event(struct hid_device *hid, struct hid_field *field, |
| 1533 | struct hid_usage *usage, __s32 value, int interrupt) |
| 1534 | { |
| 1535 | struct hid_driver *hdrv = hid->driver; |
| 1536 | int ret; |
| 1537 | |
| 1538 | if (!list_empty(&hid->debug_list)) |
| 1539 | hid_dump_input(hid, usage, value); |
| 1540 | |
| 1541 | if (hdrv && hdrv->event && hid_match_usage(hid, usage)) { |
| 1542 | ret = hdrv->event(hid, field, usage, value); |
| 1543 | if (ret != 0) { |
| 1544 | if (ret < 0) |
| 1545 | hid_err(hid, "%s's event failed with %d\n", |
| 1546 | hdrv->name, ret); |
| 1547 | return; |
| 1548 | } |
| 1549 | } |
| 1550 | |
| 1551 | if (hid->claimed & HID_CLAIMED_INPUT) |
| 1552 | hidinput_hid_event(hid, field, usage, value); |
| 1553 | if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event) |
| 1554 | hid->hiddev_hid_event(hid, field, usage, value); |
| 1555 | } |
| 1556 | |
| 1557 | /* |
| 1558 | * Checks if the given value is valid within this field |
| 1559 | */ |
| 1560 | static inline int hid_array_value_is_valid(struct hid_field *field, |
| 1561 | __s32 value) |
| 1562 | { |
| 1563 | __s32 min = field->logical_minimum; |
| 1564 | |
| 1565 | /* |
| 1566 | * Value needs to be between logical min and max, and |
| 1567 | * (value - min) is used as an index in the usage array. |
| 1568 | * This array is of size field->maxusage |
| 1569 | */ |
| 1570 | return value >= min && |
| 1571 | value <= field->logical_maximum && |
| 1572 | value - min < field->maxusage; |
| 1573 | } |
| 1574 | |
| 1575 | /* |
| 1576 | * Fetch the field from the data. The field content is stored for next |
| 1577 | * report processing (we do differential reporting to the layer). |
| 1578 | */ |
| 1579 | static void hid_input_fetch_field(struct hid_device *hid, |
| 1580 | struct hid_field *field, |
| 1581 | __u8 *data) |
| 1582 | { |
| 1583 | unsigned n; |
| 1584 | unsigned count = field->report_count; |
| 1585 | unsigned offset = field->report_offset; |
| 1586 | unsigned size = field->report_size; |
| 1587 | __s32 min = field->logical_minimum; |
| 1588 | __s32 *value; |
| 1589 | |
| 1590 | value = field->new_value; |
| 1591 | memset(value, 0, count * sizeof(__s32)); |
| 1592 | field->ignored = false; |
| 1593 | |
| 1594 | for (n = 0; n < count; n++) { |
| 1595 | |
| 1596 | value[n] = min < 0 ? |
| 1597 | snto32(hid_field_extract(hid, data, offset + n * size, |
| 1598 | size), size) : |
| 1599 | hid_field_extract(hid, data, offset + n * size, size); |
| 1600 | |
| 1601 | /* Ignore report if ErrorRollOver */ |
| 1602 | if (!(field->flags & HID_MAIN_ITEM_VARIABLE) && |
| 1603 | hid_array_value_is_valid(field, value[n]) && |
| 1604 | field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) { |
| 1605 | field->ignored = true; |
| 1606 | return; |
| 1607 | } |
| 1608 | } |
| 1609 | } |
| 1610 | |
| 1611 | /* |
| 1612 | * Process a received variable field. |
| 1613 | */ |
| 1614 | |
| 1615 | static void hid_input_var_field(struct hid_device *hid, |
| 1616 | struct hid_field *field, |
| 1617 | int interrupt) |
| 1618 | { |
| 1619 | unsigned int count = field->report_count; |
| 1620 | __s32 *value = field->new_value; |
| 1621 | unsigned int n; |
| 1622 | |
| 1623 | for (n = 0; n < count; n++) |
| 1624 | hid_process_event(hid, |
| 1625 | field, |
| 1626 | &field->usage[n], |
| 1627 | value[n], |
| 1628 | interrupt); |
| 1629 | |
| 1630 | memcpy(field->value, value, count * sizeof(__s32)); |
| 1631 | } |
| 1632 | |
| 1633 | /* |
| 1634 | * Process a received array field. The field content is stored for |
| 1635 | * next report processing (we do differential reporting to the layer). |
| 1636 | */ |
| 1637 | |
| 1638 | static void hid_input_array_field(struct hid_device *hid, |
| 1639 | struct hid_field *field, |
| 1640 | int interrupt) |
| 1641 | { |
| 1642 | unsigned int n; |
| 1643 | unsigned int count = field->report_count; |
| 1644 | __s32 min = field->logical_minimum; |
| 1645 | __s32 *value; |
| 1646 | |
| 1647 | value = field->new_value; |
| 1648 | |
| 1649 | /* ErrorRollOver */ |
| 1650 | if (field->ignored) |
| 1651 | return; |
| 1652 | |
| 1653 | for (n = 0; n < count; n++) { |
| 1654 | if (hid_array_value_is_valid(field, field->value[n]) && |
| 1655 | search(value, field->value[n], count)) |
| 1656 | hid_process_event(hid, |
| 1657 | field, |
| 1658 | &field->usage[field->value[n] - min], |
| 1659 | 0, |
| 1660 | interrupt); |
| 1661 | |
| 1662 | if (hid_array_value_is_valid(field, value[n]) && |
| 1663 | search(field->value, value[n], count)) |
| 1664 | hid_process_event(hid, |
| 1665 | field, |
| 1666 | &field->usage[value[n] - min], |
| 1667 | 1, |
| 1668 | interrupt); |
| 1669 | } |
| 1670 | |
| 1671 | memcpy(field->value, value, count * sizeof(__s32)); |
| 1672 | } |
| 1673 | |
| 1674 | /* |
| 1675 | * Analyse a received report, and fetch the data from it. The field |
| 1676 | * content is stored for next report processing (we do differential |
| 1677 | * reporting to the layer). |
| 1678 | */ |
| 1679 | static void hid_process_report(struct hid_device *hid, |
| 1680 | struct hid_report *report, |
| 1681 | __u8 *data, |
| 1682 | int interrupt) |
| 1683 | { |
| 1684 | unsigned int a; |
| 1685 | struct hid_field_entry *entry; |
| 1686 | struct hid_field *field; |
| 1687 | |
| 1688 | /* first retrieve all incoming values in data */ |
| 1689 | for (a = 0; a < report->maxfield; a++) |
| 1690 | hid_input_fetch_field(hid, report->field[a], data); |
| 1691 | |
| 1692 | if (!list_empty(&report->field_entry_list)) { |
| 1693 | /* INPUT_REPORT, we have a priority list of fields */ |
| 1694 | list_for_each_entry(entry, |
| 1695 | &report->field_entry_list, |
| 1696 | list) { |
| 1697 | field = entry->field; |
| 1698 | |
| 1699 | if (field->flags & HID_MAIN_ITEM_VARIABLE) |
| 1700 | hid_process_event(hid, |
| 1701 | field, |
| 1702 | &field->usage[entry->index], |
| 1703 | field->new_value[entry->index], |
| 1704 | interrupt); |
| 1705 | else |
| 1706 | hid_input_array_field(hid, field, interrupt); |
| 1707 | } |
| 1708 | |
| 1709 | /* we need to do the memcpy at the end for var items */ |
| 1710 | for (a = 0; a < report->maxfield; a++) { |
| 1711 | field = report->field[a]; |
| 1712 | |
| 1713 | if (field->flags & HID_MAIN_ITEM_VARIABLE) |
| 1714 | memcpy(field->value, field->new_value, |
| 1715 | field->report_count * sizeof(__s32)); |
| 1716 | } |
| 1717 | } else { |
| 1718 | /* FEATURE_REPORT, regular processing */ |
| 1719 | for (a = 0; a < report->maxfield; a++) { |
| 1720 | field = report->field[a]; |
| 1721 | |
| 1722 | if (field->flags & HID_MAIN_ITEM_VARIABLE) |
| 1723 | hid_input_var_field(hid, field, interrupt); |
| 1724 | else |
| 1725 | hid_input_array_field(hid, field, interrupt); |
| 1726 | } |
| 1727 | } |
| 1728 | } |
| 1729 | |
| 1730 | /* |
| 1731 | * Insert a given usage_index in a field in the list |
| 1732 | * of processed usages in the report. |
| 1733 | * |
| 1734 | * The elements of lower priority score are processed |
| 1735 | * first. |
| 1736 | */ |
| 1737 | static void __hid_insert_field_entry(struct hid_device *hid, |
| 1738 | struct hid_report *report, |
| 1739 | struct hid_field_entry *entry, |
| 1740 | struct hid_field *field, |
| 1741 | unsigned int usage_index) |
| 1742 | { |
| 1743 | struct hid_field_entry *next; |
| 1744 | |
| 1745 | entry->field = field; |
| 1746 | entry->index = usage_index; |
| 1747 | entry->priority = field->usages_priorities[usage_index]; |
| 1748 | |
| 1749 | /* insert the element at the correct position */ |
| 1750 | list_for_each_entry(next, |
| 1751 | &report->field_entry_list, |
| 1752 | list) { |
| 1753 | /* |
| 1754 | * the priority of our element is strictly higher |
| 1755 | * than the next one, insert it before |
| 1756 | */ |
| 1757 | if (entry->priority > next->priority) { |
| 1758 | list_add_tail(&entry->list, &next->list); |
| 1759 | return; |
| 1760 | } |
| 1761 | } |
| 1762 | |
| 1763 | /* lowest priority score: insert at the end */ |
| 1764 | list_add_tail(&entry->list, &report->field_entry_list); |
| 1765 | } |
| 1766 | |
| 1767 | static void hid_report_process_ordering(struct hid_device *hid, |
| 1768 | struct hid_report *report) |
| 1769 | { |
| 1770 | struct hid_field *field; |
| 1771 | struct hid_field_entry *entries; |
| 1772 | unsigned int a, u, usages; |
| 1773 | unsigned int count = 0; |
| 1774 | |
| 1775 | /* count the number of individual fields in the report */ |
| 1776 | for (a = 0; a < report->maxfield; a++) { |
| 1777 | field = report->field[a]; |
| 1778 | |
| 1779 | if (field->flags & HID_MAIN_ITEM_VARIABLE) |
| 1780 | count += field->report_count; |
| 1781 | else |
| 1782 | count++; |
| 1783 | } |
| 1784 | |
| 1785 | /* allocate the memory to process the fields */ |
| 1786 | entries = kcalloc(count, sizeof(*entries), GFP_KERNEL); |
| 1787 | if (!entries) |
| 1788 | return; |
| 1789 | |
| 1790 | report->field_entries = entries; |
| 1791 | |
| 1792 | /* |
| 1793 | * walk through all fields in the report and |
| 1794 | * store them by priority order in report->field_entry_list |
| 1795 | * |
| 1796 | * - Var elements are individualized (field + usage_index) |
| 1797 | * - Arrays are taken as one, we can not chose an order for them |
| 1798 | */ |
| 1799 | usages = 0; |
| 1800 | for (a = 0; a < report->maxfield; a++) { |
| 1801 | field = report->field[a]; |
| 1802 | |
| 1803 | if (field->flags & HID_MAIN_ITEM_VARIABLE) { |
| 1804 | for (u = 0; u < field->report_count; u++) { |
| 1805 | __hid_insert_field_entry(hid, report, |
| 1806 | &entries[usages], |
| 1807 | field, u); |
| 1808 | usages++; |
| 1809 | } |
| 1810 | } else { |
| 1811 | __hid_insert_field_entry(hid, report, &entries[usages], |
| 1812 | field, 0); |
| 1813 | usages++; |
| 1814 | } |
| 1815 | } |
| 1816 | } |
| 1817 | |
| 1818 | static void hid_process_ordering(struct hid_device *hid) |
| 1819 | { |
| 1820 | struct hid_report *report; |
| 1821 | struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT]; |
| 1822 | |
| 1823 | list_for_each_entry(report, &report_enum->report_list, list) |
| 1824 | hid_report_process_ordering(hid, report); |
| 1825 | } |
| 1826 | |
| 1827 | /* |
| 1828 | * Output the field into the report. |
| 1829 | */ |
| 1830 | |
| 1831 | static void hid_output_field(const struct hid_device *hid, |
| 1832 | struct hid_field *field, __u8 *data) |
| 1833 | { |
| 1834 | unsigned count = field->report_count; |
| 1835 | unsigned offset = field->report_offset; |
| 1836 | unsigned size = field->report_size; |
| 1837 | unsigned n; |
| 1838 | |
| 1839 | for (n = 0; n < count; n++) { |
| 1840 | if (field->logical_minimum < 0) /* signed values */ |
| 1841 | implement(hid, data, offset + n * size, size, |
| 1842 | s32ton(field->value[n], size)); |
| 1843 | else /* unsigned values */ |
| 1844 | implement(hid, data, offset + n * size, size, |
| 1845 | field->value[n]); |
| 1846 | } |
| 1847 | } |
| 1848 | |
| 1849 | /* |
| 1850 | * Compute the size of a report. |
| 1851 | */ |
| 1852 | static size_t hid_compute_report_size(struct hid_report *report) |
| 1853 | { |
| 1854 | if (report->size) |
| 1855 | return ((report->size - 1) >> 3) + 1; |
| 1856 | |
| 1857 | return 0; |
| 1858 | } |
| 1859 | |
| 1860 | /* |
| 1861 | * Create a report. 'data' has to be allocated using |
| 1862 | * hid_alloc_report_buf() so that it has proper size. |
| 1863 | */ |
| 1864 | |
| 1865 | void hid_output_report(struct hid_report *report, __u8 *data) |
| 1866 | { |
| 1867 | unsigned n; |
| 1868 | |
| 1869 | if (report->id > 0) |
| 1870 | *data++ = report->id; |
| 1871 | |
| 1872 | memset(data, 0, hid_compute_report_size(report)); |
| 1873 | for (n = 0; n < report->maxfield; n++) |
| 1874 | hid_output_field(report->device, report->field[n], data); |
| 1875 | } |
| 1876 | EXPORT_SYMBOL_GPL(hid_output_report); |
| 1877 | |
| 1878 | /* |
| 1879 | * Allocator for buffer that is going to be passed to hid_output_report() |
| 1880 | */ |
| 1881 | u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags) |
| 1882 | { |
| 1883 | /* |
| 1884 | * 7 extra bytes are necessary to achieve proper functionality |
| 1885 | * of implement() working on 8 byte chunks |
| 1886 | */ |
| 1887 | |
| 1888 | u32 len = hid_report_len(report) + 7; |
| 1889 | |
| 1890 | return kzalloc(len, flags); |
| 1891 | } |
| 1892 | EXPORT_SYMBOL_GPL(hid_alloc_report_buf); |
| 1893 | |
| 1894 | /* |
| 1895 | * Set a field value. The report this field belongs to has to be |
| 1896 | * created and transferred to the device, to set this value in the |
| 1897 | * device. |
| 1898 | */ |
| 1899 | |
| 1900 | int hid_set_field(struct hid_field *field, unsigned offset, __s32 value) |
| 1901 | { |
| 1902 | unsigned size; |
| 1903 | |
| 1904 | if (!field) |
| 1905 | return -1; |
| 1906 | |
| 1907 | size = field->report_size; |
| 1908 | |
| 1909 | hid_dump_input(field->report->device, field->usage + offset, value); |
| 1910 | |
| 1911 | if (offset >= field->report_count) { |
| 1912 | hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n", |
| 1913 | offset, field->report_count); |
| 1914 | return -1; |
| 1915 | } |
| 1916 | if (field->logical_minimum < 0) { |
| 1917 | if (value != snto32(s32ton(value, size), size)) { |
| 1918 | hid_err(field->report->device, "value %d is out of range\n", value); |
| 1919 | return -1; |
| 1920 | } |
| 1921 | } |
| 1922 | field->value[offset] = value; |
| 1923 | return 0; |
| 1924 | } |
| 1925 | EXPORT_SYMBOL_GPL(hid_set_field); |
| 1926 | |
| 1927 | struct hid_field *hid_find_field(struct hid_device *hdev, unsigned int report_type, |
| 1928 | unsigned int application, unsigned int usage) |
| 1929 | { |
| 1930 | struct list_head *report_list = &hdev->report_enum[report_type].report_list; |
| 1931 | struct hid_report *report; |
| 1932 | int i, j; |
| 1933 | |
| 1934 | list_for_each_entry(report, report_list, list) { |
| 1935 | if (report->application != application) |
| 1936 | continue; |
| 1937 | |
| 1938 | for (i = 0; i < report->maxfield; i++) { |
| 1939 | struct hid_field *field = report->field[i]; |
| 1940 | |
| 1941 | for (j = 0; j < field->maxusage; j++) { |
| 1942 | if (field->usage[j].hid == usage) |
| 1943 | return field; |
| 1944 | } |
| 1945 | } |
| 1946 | } |
| 1947 | |
| 1948 | return NULL; |
| 1949 | } |
| 1950 | EXPORT_SYMBOL_GPL(hid_find_field); |
| 1951 | |
| 1952 | static struct hid_report *hid_get_report(struct hid_report_enum *report_enum, |
| 1953 | const u8 *data) |
| 1954 | { |
| 1955 | struct hid_report *report; |
| 1956 | unsigned int n = 0; /* Normally report number is 0 */ |
| 1957 | |
| 1958 | /* Device uses numbered reports, data[0] is report number */ |
| 1959 | if (report_enum->numbered) |
| 1960 | n = *data; |
| 1961 | |
| 1962 | report = report_enum->report_id_hash[n]; |
| 1963 | if (report == NULL) |
| 1964 | dbg_hid("undefined report_id %u received\n", n); |
| 1965 | |
| 1966 | return report; |
| 1967 | } |
| 1968 | |
| 1969 | /* |
| 1970 | * Implement a generic .request() callback, using .raw_request() |
| 1971 | * DO NOT USE in hid drivers directly, but through hid_hw_request instead. |
| 1972 | */ |
| 1973 | int __hid_request(struct hid_device *hid, struct hid_report *report, |
| 1974 | enum hid_class_request reqtype) |
| 1975 | { |
| 1976 | char *buf; |
| 1977 | int ret; |
| 1978 | u32 len; |
| 1979 | |
| 1980 | buf = hid_alloc_report_buf(report, GFP_KERNEL); |
| 1981 | if (!buf) |
| 1982 | return -ENOMEM; |
| 1983 | |
| 1984 | len = hid_report_len(report); |
| 1985 | |
| 1986 | if (reqtype == HID_REQ_SET_REPORT) |
| 1987 | hid_output_report(report, buf); |
| 1988 | |
| 1989 | ret = hid->ll_driver->raw_request(hid, report->id, buf, len, |
| 1990 | report->type, reqtype); |
| 1991 | if (ret < 0) { |
| 1992 | dbg_hid("unable to complete request: %d\n", ret); |
| 1993 | goto out; |
| 1994 | } |
| 1995 | |
| 1996 | if (reqtype == HID_REQ_GET_REPORT) |
| 1997 | hid_input_report(hid, report->type, buf, ret, 0); |
| 1998 | |
| 1999 | ret = 0; |
| 2000 | |
| 2001 | out: |
| 2002 | kfree(buf); |
| 2003 | return ret; |
| 2004 | } |
| 2005 | EXPORT_SYMBOL_GPL(__hid_request); |
| 2006 | |
| 2007 | int hid_report_raw_event(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size, |
| 2008 | int interrupt) |
| 2009 | { |
| 2010 | struct hid_report_enum *report_enum = hid->report_enum + type; |
| 2011 | struct hid_report *report; |
| 2012 | struct hid_driver *hdrv; |
| 2013 | int max_buffer_size = HID_MAX_BUFFER_SIZE; |
| 2014 | u32 rsize, csize = size; |
| 2015 | u8 *cdata = data; |
| 2016 | int ret = 0; |
| 2017 | |
| 2018 | report = hid_get_report(report_enum, data); |
| 2019 | if (!report) |
| 2020 | goto out; |
| 2021 | |
| 2022 | if (report_enum->numbered) { |
| 2023 | cdata++; |
| 2024 | csize--; |
| 2025 | } |
| 2026 | |
| 2027 | rsize = hid_compute_report_size(report); |
| 2028 | |
| 2029 | if (hid->ll_driver->max_buffer_size) |
| 2030 | max_buffer_size = hid->ll_driver->max_buffer_size; |
| 2031 | |
| 2032 | if (report_enum->numbered && rsize >= max_buffer_size) |
| 2033 | rsize = max_buffer_size - 1; |
| 2034 | else if (rsize > max_buffer_size) |
| 2035 | rsize = max_buffer_size; |
| 2036 | |
| 2037 | if (csize < rsize) { |
| 2038 | dbg_hid("report %d is too short, (%d < %d)\n", report->id, |
| 2039 | csize, rsize); |
| 2040 | memset(cdata + csize, 0, rsize - csize); |
| 2041 | } |
| 2042 | |
| 2043 | if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event) |
| 2044 | hid->hiddev_report_event(hid, report); |
| 2045 | if (hid->claimed & HID_CLAIMED_HIDRAW) { |
| 2046 | ret = hidraw_report_event(hid, data, size); |
| 2047 | if (ret) |
| 2048 | goto out; |
| 2049 | } |
| 2050 | |
| 2051 | if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) { |
| 2052 | hid_process_report(hid, report, cdata, interrupt); |
| 2053 | hdrv = hid->driver; |
| 2054 | if (hdrv && hdrv->report) |
| 2055 | hdrv->report(hid, report); |
| 2056 | } |
| 2057 | |
| 2058 | if (hid->claimed & HID_CLAIMED_INPUT) |
| 2059 | hidinput_report_event(hid, report); |
| 2060 | out: |
| 2061 | return ret; |
| 2062 | } |
| 2063 | EXPORT_SYMBOL_GPL(hid_report_raw_event); |
| 2064 | |
| 2065 | |
| 2066 | static int __hid_input_report(struct hid_device *hid, enum hid_report_type type, |
| 2067 | u8 *data, u32 size, int interrupt, u64 source, bool from_bpf, |
| 2068 | bool lock_already_taken) |
| 2069 | { |
| 2070 | struct hid_report_enum *report_enum; |
| 2071 | struct hid_driver *hdrv; |
| 2072 | struct hid_report *report; |
| 2073 | int ret = 0; |
| 2074 | |
| 2075 | if (!hid) |
| 2076 | return -ENODEV; |
| 2077 | |
| 2078 | ret = down_trylock(&hid->driver_input_lock); |
| 2079 | if (lock_already_taken && !ret) { |
| 2080 | up(&hid->driver_input_lock); |
| 2081 | return -EINVAL; |
| 2082 | } else if (!lock_already_taken && ret) { |
| 2083 | return -EBUSY; |
| 2084 | } |
| 2085 | |
| 2086 | if (!hid->driver) { |
| 2087 | ret = -ENODEV; |
| 2088 | goto unlock; |
| 2089 | } |
| 2090 | report_enum = hid->report_enum + type; |
| 2091 | hdrv = hid->driver; |
| 2092 | |
| 2093 | data = dispatch_hid_bpf_device_event(hid, type, data, &size, interrupt, source, from_bpf); |
| 2094 | if (IS_ERR(data)) { |
| 2095 | ret = PTR_ERR(data); |
| 2096 | goto unlock; |
| 2097 | } |
| 2098 | |
| 2099 | if (!size) { |
| 2100 | dbg_hid("empty report\n"); |
| 2101 | ret = -1; |
| 2102 | goto unlock; |
| 2103 | } |
| 2104 | |
| 2105 | /* Avoid unnecessary overhead if debugfs is disabled */ |
| 2106 | if (!list_empty(&hid->debug_list)) |
| 2107 | hid_dump_report(hid, type, data, size); |
| 2108 | |
| 2109 | report = hid_get_report(report_enum, data); |
| 2110 | |
| 2111 | if (!report) { |
| 2112 | ret = -1; |
| 2113 | goto unlock; |
| 2114 | } |
| 2115 | |
| 2116 | if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) { |
| 2117 | ret = hdrv->raw_event(hid, report, data, size); |
| 2118 | if (ret < 0) |
| 2119 | goto unlock; |
| 2120 | } |
| 2121 | |
| 2122 | ret = hid_report_raw_event(hid, type, data, size, interrupt); |
| 2123 | |
| 2124 | unlock: |
| 2125 | if (!lock_already_taken) |
| 2126 | up(&hid->driver_input_lock); |
| 2127 | return ret; |
| 2128 | } |
| 2129 | |
| 2130 | /** |
| 2131 | * hid_input_report - report data from lower layer (usb, bt...) |
| 2132 | * |
| 2133 | * @hid: hid device |
| 2134 | * @type: HID report type (HID_*_REPORT) |
| 2135 | * @data: report contents |
| 2136 | * @size: size of data parameter |
| 2137 | * @interrupt: distinguish between interrupt and control transfers |
| 2138 | * |
| 2139 | * This is data entry for lower layers. |
| 2140 | */ |
| 2141 | int hid_input_report(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size, |
| 2142 | int interrupt) |
| 2143 | { |
| 2144 | return __hid_input_report(hid, type, data, size, interrupt, 0, |
| 2145 | false, /* from_bpf */ |
| 2146 | false /* lock_already_taken */); |
| 2147 | } |
| 2148 | EXPORT_SYMBOL_GPL(hid_input_report); |
| 2149 | |
| 2150 | bool hid_match_one_id(const struct hid_device *hdev, |
| 2151 | const struct hid_device_id *id) |
| 2152 | { |
| 2153 | return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) && |
| 2154 | (id->group == HID_GROUP_ANY || id->group == hdev->group) && |
| 2155 | (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) && |
| 2156 | (id->product == HID_ANY_ID || id->product == hdev->product); |
| 2157 | } |
| 2158 | |
| 2159 | const struct hid_device_id *hid_match_id(const struct hid_device *hdev, |
| 2160 | const struct hid_device_id *id) |
| 2161 | { |
| 2162 | for (; id->bus; id++) |
| 2163 | if (hid_match_one_id(hdev, id)) |
| 2164 | return id; |
| 2165 | |
| 2166 | return NULL; |
| 2167 | } |
| 2168 | EXPORT_SYMBOL_GPL(hid_match_id); |
| 2169 | |
| 2170 | static const struct hid_device_id hid_hiddev_list[] = { |
| 2171 | { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) }, |
| 2172 | { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) }, |
| 2173 | { } |
| 2174 | }; |
| 2175 | |
| 2176 | static bool hid_hiddev(struct hid_device *hdev) |
| 2177 | { |
| 2178 | return !!hid_match_id(hdev, hid_hiddev_list); |
| 2179 | } |
| 2180 | |
| 2181 | |
| 2182 | static ssize_t |
| 2183 | report_descriptor_read(struct file *filp, struct kobject *kobj, |
| 2184 | const struct bin_attribute *attr, |
| 2185 | char *buf, loff_t off, size_t count) |
| 2186 | { |
| 2187 | struct device *dev = kobj_to_dev(kobj); |
| 2188 | struct hid_device *hdev = to_hid_device(dev); |
| 2189 | |
| 2190 | if (off >= hdev->rsize) |
| 2191 | return 0; |
| 2192 | |
| 2193 | if (off + count > hdev->rsize) |
| 2194 | count = hdev->rsize - off; |
| 2195 | |
| 2196 | memcpy(buf, hdev->rdesc + off, count); |
| 2197 | |
| 2198 | return count; |
| 2199 | } |
| 2200 | |
| 2201 | static ssize_t |
| 2202 | country_show(struct device *dev, struct device_attribute *attr, |
| 2203 | char *buf) |
| 2204 | { |
| 2205 | struct hid_device *hdev = to_hid_device(dev); |
| 2206 | |
| 2207 | return sprintf(buf, "%02x\n", hdev->country & 0xff); |
| 2208 | } |
| 2209 | |
| 2210 | static const BIN_ATTR_RO(report_descriptor, HID_MAX_DESCRIPTOR_SIZE); |
| 2211 | |
| 2212 | static const DEVICE_ATTR_RO(country); |
| 2213 | |
| 2214 | int hid_connect(struct hid_device *hdev, unsigned int connect_mask) |
| 2215 | { |
| 2216 | static const char *types[] = { "Device", "Pointer", "Mouse", "Device", |
| 2217 | "Joystick", "Gamepad", "Keyboard", "Keypad", |
| 2218 | "Multi-Axis Controller" |
| 2219 | }; |
| 2220 | const char *type, *bus; |
| 2221 | char buf[64] = ""; |
| 2222 | unsigned int i; |
| 2223 | int len; |
| 2224 | int ret; |
| 2225 | |
| 2226 | ret = hid_bpf_connect_device(hdev); |
| 2227 | if (ret) |
| 2228 | return ret; |
| 2229 | |
| 2230 | if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE) |
| 2231 | connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV); |
| 2232 | if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE) |
| 2233 | connect_mask |= HID_CONNECT_HIDINPUT_FORCE; |
| 2234 | if (hdev->bus != BUS_USB) |
| 2235 | connect_mask &= ~HID_CONNECT_HIDDEV; |
| 2236 | if (hid_hiddev(hdev)) |
| 2237 | connect_mask |= HID_CONNECT_HIDDEV_FORCE; |
| 2238 | |
| 2239 | if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev, |
| 2240 | connect_mask & HID_CONNECT_HIDINPUT_FORCE)) |
| 2241 | hdev->claimed |= HID_CLAIMED_INPUT; |
| 2242 | |
| 2243 | if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect && |
| 2244 | !hdev->hiddev_connect(hdev, |
| 2245 | connect_mask & HID_CONNECT_HIDDEV_FORCE)) |
| 2246 | hdev->claimed |= HID_CLAIMED_HIDDEV; |
| 2247 | if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev)) |
| 2248 | hdev->claimed |= HID_CLAIMED_HIDRAW; |
| 2249 | |
| 2250 | if (connect_mask & HID_CONNECT_DRIVER) |
| 2251 | hdev->claimed |= HID_CLAIMED_DRIVER; |
| 2252 | |
| 2253 | /* Drivers with the ->raw_event callback set are not required to connect |
| 2254 | * to any other listener. */ |
| 2255 | if (!hdev->claimed && !hdev->driver->raw_event) { |
| 2256 | hid_err(hdev, "device has no listeners, quitting\n"); |
| 2257 | return -ENODEV; |
| 2258 | } |
| 2259 | |
| 2260 | hid_process_ordering(hdev); |
| 2261 | |
| 2262 | if ((hdev->claimed & HID_CLAIMED_INPUT) && |
| 2263 | (connect_mask & HID_CONNECT_FF) && hdev->ff_init) |
| 2264 | hdev->ff_init(hdev); |
| 2265 | |
| 2266 | len = 0; |
| 2267 | if (hdev->claimed & HID_CLAIMED_INPUT) |
| 2268 | len += sprintf(buf + len, "input"); |
| 2269 | if (hdev->claimed & HID_CLAIMED_HIDDEV) |
| 2270 | len += sprintf(buf + len, "%shiddev%d", len ? "," : "", |
| 2271 | ((struct hiddev *)hdev->hiddev)->minor); |
| 2272 | if (hdev->claimed & HID_CLAIMED_HIDRAW) |
| 2273 | len += sprintf(buf + len, "%shidraw%d", len ? "," : "", |
| 2274 | ((struct hidraw *)hdev->hidraw)->minor); |
| 2275 | |
| 2276 | type = "Device"; |
| 2277 | for (i = 0; i < hdev->maxcollection; i++) { |
| 2278 | struct hid_collection *col = &hdev->collection[i]; |
| 2279 | if (col->type == HID_COLLECTION_APPLICATION && |
| 2280 | (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK && |
| 2281 | (col->usage & 0xffff) < ARRAY_SIZE(types)) { |
| 2282 | type = types[col->usage & 0xffff]; |
| 2283 | break; |
| 2284 | } |
| 2285 | } |
| 2286 | |
| 2287 | switch (hdev->bus) { |
| 2288 | case BUS_USB: |
| 2289 | bus = "USB"; |
| 2290 | break; |
| 2291 | case BUS_BLUETOOTH: |
| 2292 | bus = "BLUETOOTH"; |
| 2293 | break; |
| 2294 | case BUS_I2C: |
| 2295 | bus = "I2C"; |
| 2296 | break; |
| 2297 | case BUS_VIRTUAL: |
| 2298 | bus = "VIRTUAL"; |
| 2299 | break; |
| 2300 | case BUS_INTEL_ISHTP: |
| 2301 | case BUS_AMD_SFH: |
| 2302 | bus = "SENSOR HUB"; |
| 2303 | break; |
| 2304 | default: |
| 2305 | bus = "<UNKNOWN>"; |
| 2306 | } |
| 2307 | |
| 2308 | ret = device_create_file(&hdev->dev, &dev_attr_country); |
| 2309 | if (ret) |
| 2310 | hid_warn(hdev, |
| 2311 | "can't create sysfs country code attribute err: %d\n", ret); |
| 2312 | |
| 2313 | hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n", |
| 2314 | buf, bus, hdev->version >> 8, hdev->version & 0xff, |
| 2315 | type, hdev->name, hdev->phys); |
| 2316 | |
| 2317 | return 0; |
| 2318 | } |
| 2319 | EXPORT_SYMBOL_GPL(hid_connect); |
| 2320 | |
| 2321 | void hid_disconnect(struct hid_device *hdev) |
| 2322 | { |
| 2323 | device_remove_file(&hdev->dev, &dev_attr_country); |
| 2324 | if (hdev->claimed & HID_CLAIMED_INPUT) |
| 2325 | hidinput_disconnect(hdev); |
| 2326 | if (hdev->claimed & HID_CLAIMED_HIDDEV) |
| 2327 | hdev->hiddev_disconnect(hdev); |
| 2328 | if (hdev->claimed & HID_CLAIMED_HIDRAW) |
| 2329 | hidraw_disconnect(hdev); |
| 2330 | hdev->claimed = 0; |
| 2331 | |
| 2332 | hid_bpf_disconnect_device(hdev); |
| 2333 | } |
| 2334 | EXPORT_SYMBOL_GPL(hid_disconnect); |
| 2335 | |
| 2336 | /** |
| 2337 | * hid_hw_start - start underlying HW |
| 2338 | * @hdev: hid device |
| 2339 | * @connect_mask: which outputs to connect, see HID_CONNECT_* |
| 2340 | * |
| 2341 | * Call this in probe function *after* hid_parse. This will setup HW |
| 2342 | * buffers and start the device (if not defeirred to device open). |
| 2343 | * hid_hw_stop must be called if this was successful. |
| 2344 | */ |
| 2345 | int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask) |
| 2346 | { |
| 2347 | int error; |
| 2348 | |
| 2349 | error = hdev->ll_driver->start(hdev); |
| 2350 | if (error) |
| 2351 | return error; |
| 2352 | |
| 2353 | if (connect_mask) { |
| 2354 | error = hid_connect(hdev, connect_mask); |
| 2355 | if (error) { |
| 2356 | hdev->ll_driver->stop(hdev); |
| 2357 | return error; |
| 2358 | } |
| 2359 | } |
| 2360 | |
| 2361 | return 0; |
| 2362 | } |
| 2363 | EXPORT_SYMBOL_GPL(hid_hw_start); |
| 2364 | |
| 2365 | /** |
| 2366 | * hid_hw_stop - stop underlying HW |
| 2367 | * @hdev: hid device |
| 2368 | * |
| 2369 | * This is usually called from remove function or from probe when something |
| 2370 | * failed and hid_hw_start was called already. |
| 2371 | */ |
| 2372 | void hid_hw_stop(struct hid_device *hdev) |
| 2373 | { |
| 2374 | hid_disconnect(hdev); |
| 2375 | hdev->ll_driver->stop(hdev); |
| 2376 | } |
| 2377 | EXPORT_SYMBOL_GPL(hid_hw_stop); |
| 2378 | |
| 2379 | /** |
| 2380 | * hid_hw_open - signal underlying HW to start delivering events |
| 2381 | * @hdev: hid device |
| 2382 | * |
| 2383 | * Tell underlying HW to start delivering events from the device. |
| 2384 | * This function should be called sometime after successful call |
| 2385 | * to hid_hw_start(). |
| 2386 | */ |
| 2387 | int hid_hw_open(struct hid_device *hdev) |
| 2388 | { |
| 2389 | int ret; |
| 2390 | |
| 2391 | ret = mutex_lock_killable(&hdev->ll_open_lock); |
| 2392 | if (ret) |
| 2393 | return ret; |
| 2394 | |
| 2395 | if (!hdev->ll_open_count++) { |
| 2396 | ret = hdev->ll_driver->open(hdev); |
| 2397 | if (ret) |
| 2398 | hdev->ll_open_count--; |
| 2399 | |
| 2400 | if (hdev->driver->on_hid_hw_open) |
| 2401 | hdev->driver->on_hid_hw_open(hdev); |
| 2402 | } |
| 2403 | |
| 2404 | mutex_unlock(&hdev->ll_open_lock); |
| 2405 | return ret; |
| 2406 | } |
| 2407 | EXPORT_SYMBOL_GPL(hid_hw_open); |
| 2408 | |
| 2409 | /** |
| 2410 | * hid_hw_close - signal underlaying HW to stop delivering events |
| 2411 | * |
| 2412 | * @hdev: hid device |
| 2413 | * |
| 2414 | * This function indicates that we are not interested in the events |
| 2415 | * from this device anymore. Delivery of events may or may not stop, |
| 2416 | * depending on the number of users still outstanding. |
| 2417 | */ |
| 2418 | void hid_hw_close(struct hid_device *hdev) |
| 2419 | { |
| 2420 | mutex_lock(&hdev->ll_open_lock); |
| 2421 | if (!--hdev->ll_open_count) { |
| 2422 | hdev->ll_driver->close(hdev); |
| 2423 | |
| 2424 | if (hdev->driver->on_hid_hw_close) |
| 2425 | hdev->driver->on_hid_hw_close(hdev); |
| 2426 | } |
| 2427 | mutex_unlock(&hdev->ll_open_lock); |
| 2428 | } |
| 2429 | EXPORT_SYMBOL_GPL(hid_hw_close); |
| 2430 | |
| 2431 | /** |
| 2432 | * hid_hw_request - send report request to device |
| 2433 | * |
| 2434 | * @hdev: hid device |
| 2435 | * @report: report to send |
| 2436 | * @reqtype: hid request type |
| 2437 | */ |
| 2438 | void hid_hw_request(struct hid_device *hdev, |
| 2439 | struct hid_report *report, enum hid_class_request reqtype) |
| 2440 | { |
| 2441 | if (hdev->ll_driver->request) |
| 2442 | return hdev->ll_driver->request(hdev, report, reqtype); |
| 2443 | |
| 2444 | __hid_request(hdev, report, reqtype); |
| 2445 | } |
| 2446 | EXPORT_SYMBOL_GPL(hid_hw_request); |
| 2447 | |
| 2448 | int __hid_hw_raw_request(struct hid_device *hdev, |
| 2449 | unsigned char reportnum, __u8 *buf, |
| 2450 | size_t len, enum hid_report_type rtype, |
| 2451 | enum hid_class_request reqtype, |
| 2452 | u64 source, bool from_bpf) |
| 2453 | { |
| 2454 | unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE; |
| 2455 | int ret; |
| 2456 | |
| 2457 | if (hdev->ll_driver->max_buffer_size) |
| 2458 | max_buffer_size = hdev->ll_driver->max_buffer_size; |
| 2459 | |
| 2460 | if (len < 1 || len > max_buffer_size || !buf) |
| 2461 | return -EINVAL; |
| 2462 | |
| 2463 | ret = dispatch_hid_bpf_raw_requests(hdev, reportnum, buf, len, rtype, |
| 2464 | reqtype, source, from_bpf); |
| 2465 | if (ret) |
| 2466 | return ret; |
| 2467 | |
| 2468 | return hdev->ll_driver->raw_request(hdev, reportnum, buf, len, |
| 2469 | rtype, reqtype); |
| 2470 | } |
| 2471 | |
| 2472 | /** |
| 2473 | * hid_hw_raw_request - send report request to device |
| 2474 | * |
| 2475 | * @hdev: hid device |
| 2476 | * @reportnum: report ID |
| 2477 | * @buf: in/out data to transfer |
| 2478 | * @len: length of buf |
| 2479 | * @rtype: HID report type |
| 2480 | * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT |
| 2481 | * |
| 2482 | * Return: count of data transferred, negative if error |
| 2483 | * |
| 2484 | * Same behavior as hid_hw_request, but with raw buffers instead. |
| 2485 | */ |
| 2486 | int hid_hw_raw_request(struct hid_device *hdev, |
| 2487 | unsigned char reportnum, __u8 *buf, |
| 2488 | size_t len, enum hid_report_type rtype, enum hid_class_request reqtype) |
| 2489 | { |
| 2490 | return __hid_hw_raw_request(hdev, reportnum, buf, len, rtype, reqtype, 0, false); |
| 2491 | } |
| 2492 | EXPORT_SYMBOL_GPL(hid_hw_raw_request); |
| 2493 | |
| 2494 | int __hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len, u64 source, |
| 2495 | bool from_bpf) |
| 2496 | { |
| 2497 | unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE; |
| 2498 | int ret; |
| 2499 | |
| 2500 | if (hdev->ll_driver->max_buffer_size) |
| 2501 | max_buffer_size = hdev->ll_driver->max_buffer_size; |
| 2502 | |
| 2503 | if (len < 1 || len > max_buffer_size || !buf) |
| 2504 | return -EINVAL; |
| 2505 | |
| 2506 | ret = dispatch_hid_bpf_output_report(hdev, buf, len, source, from_bpf); |
| 2507 | if (ret) |
| 2508 | return ret; |
| 2509 | |
| 2510 | if (hdev->ll_driver->output_report) |
| 2511 | return hdev->ll_driver->output_report(hdev, buf, len); |
| 2512 | |
| 2513 | return -ENOSYS; |
| 2514 | } |
| 2515 | |
| 2516 | /** |
| 2517 | * hid_hw_output_report - send output report to device |
| 2518 | * |
| 2519 | * @hdev: hid device |
| 2520 | * @buf: raw data to transfer |
| 2521 | * @len: length of buf |
| 2522 | * |
| 2523 | * Return: count of data transferred, negative if error |
| 2524 | */ |
| 2525 | int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len) |
| 2526 | { |
| 2527 | return __hid_hw_output_report(hdev, buf, len, 0, false); |
| 2528 | } |
| 2529 | EXPORT_SYMBOL_GPL(hid_hw_output_report); |
| 2530 | |
| 2531 | #ifdef CONFIG_PM |
| 2532 | int hid_driver_suspend(struct hid_device *hdev, pm_message_t state) |
| 2533 | { |
| 2534 | if (hdev->driver && hdev->driver->suspend) |
| 2535 | return hdev->driver->suspend(hdev, state); |
| 2536 | |
| 2537 | return 0; |
| 2538 | } |
| 2539 | EXPORT_SYMBOL_GPL(hid_driver_suspend); |
| 2540 | |
| 2541 | int hid_driver_reset_resume(struct hid_device *hdev) |
| 2542 | { |
| 2543 | if (hdev->driver && hdev->driver->reset_resume) |
| 2544 | return hdev->driver->reset_resume(hdev); |
| 2545 | |
| 2546 | return 0; |
| 2547 | } |
| 2548 | EXPORT_SYMBOL_GPL(hid_driver_reset_resume); |
| 2549 | |
| 2550 | int hid_driver_resume(struct hid_device *hdev) |
| 2551 | { |
| 2552 | if (hdev->driver && hdev->driver->resume) |
| 2553 | return hdev->driver->resume(hdev); |
| 2554 | |
| 2555 | return 0; |
| 2556 | } |
| 2557 | EXPORT_SYMBOL_GPL(hid_driver_resume); |
| 2558 | #endif /* CONFIG_PM */ |
| 2559 | |
| 2560 | struct hid_dynid { |
| 2561 | struct list_head list; |
| 2562 | struct hid_device_id id; |
| 2563 | }; |
| 2564 | |
| 2565 | /** |
| 2566 | * new_id_store - add a new HID device ID to this driver and re-probe devices |
| 2567 | * @drv: target device driver |
| 2568 | * @buf: buffer for scanning device ID data |
| 2569 | * @count: input size |
| 2570 | * |
| 2571 | * Adds a new dynamic hid device ID to this driver, |
| 2572 | * and causes the driver to probe for all devices again. |
| 2573 | */ |
| 2574 | static ssize_t new_id_store(struct device_driver *drv, const char *buf, |
| 2575 | size_t count) |
| 2576 | { |
| 2577 | struct hid_driver *hdrv = to_hid_driver(drv); |
| 2578 | struct hid_dynid *dynid; |
| 2579 | __u32 bus, vendor, product; |
| 2580 | unsigned long driver_data = 0; |
| 2581 | int ret; |
| 2582 | |
| 2583 | ret = sscanf(buf, "%x %x %x %lx", |
| 2584 | &bus, &vendor, &product, &driver_data); |
| 2585 | if (ret < 3) |
| 2586 | return -EINVAL; |
| 2587 | |
| 2588 | dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); |
| 2589 | if (!dynid) |
| 2590 | return -ENOMEM; |
| 2591 | |
| 2592 | dynid->id.bus = bus; |
| 2593 | dynid->id.group = HID_GROUP_ANY; |
| 2594 | dynid->id.vendor = vendor; |
| 2595 | dynid->id.product = product; |
| 2596 | dynid->id.driver_data = driver_data; |
| 2597 | |
| 2598 | spin_lock(&hdrv->dyn_lock); |
| 2599 | list_add_tail(&dynid->list, &hdrv->dyn_list); |
| 2600 | spin_unlock(&hdrv->dyn_lock); |
| 2601 | |
| 2602 | ret = driver_attach(&hdrv->driver); |
| 2603 | |
| 2604 | return ret ? : count; |
| 2605 | } |
| 2606 | static DRIVER_ATTR_WO(new_id); |
| 2607 | |
| 2608 | static struct attribute *hid_drv_attrs[] = { |
| 2609 | &driver_attr_new_id.attr, |
| 2610 | NULL, |
| 2611 | }; |
| 2612 | ATTRIBUTE_GROUPS(hid_drv); |
| 2613 | |
| 2614 | static void hid_free_dynids(struct hid_driver *hdrv) |
| 2615 | { |
| 2616 | struct hid_dynid *dynid, *n; |
| 2617 | |
| 2618 | spin_lock(&hdrv->dyn_lock); |
| 2619 | list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) { |
| 2620 | list_del(&dynid->list); |
| 2621 | kfree(dynid); |
| 2622 | } |
| 2623 | spin_unlock(&hdrv->dyn_lock); |
| 2624 | } |
| 2625 | |
| 2626 | const struct hid_device_id *hid_match_device(struct hid_device *hdev, |
| 2627 | struct hid_driver *hdrv) |
| 2628 | { |
| 2629 | struct hid_dynid *dynid; |
| 2630 | |
| 2631 | spin_lock(&hdrv->dyn_lock); |
| 2632 | list_for_each_entry(dynid, &hdrv->dyn_list, list) { |
| 2633 | if (hid_match_one_id(hdev, &dynid->id)) { |
| 2634 | spin_unlock(&hdrv->dyn_lock); |
| 2635 | return &dynid->id; |
| 2636 | } |
| 2637 | } |
| 2638 | spin_unlock(&hdrv->dyn_lock); |
| 2639 | |
| 2640 | return hid_match_id(hdev, hdrv->id_table); |
| 2641 | } |
| 2642 | EXPORT_SYMBOL_GPL(hid_match_device); |
| 2643 | |
| 2644 | static int hid_bus_match(struct device *dev, const struct device_driver *drv) |
| 2645 | { |
| 2646 | struct hid_driver *hdrv = to_hid_driver(drv); |
| 2647 | struct hid_device *hdev = to_hid_device(dev); |
| 2648 | |
| 2649 | return hid_match_device(hdev, hdrv) != NULL; |
| 2650 | } |
| 2651 | |
| 2652 | /** |
| 2653 | * hid_compare_device_paths - check if both devices share the same path |
| 2654 | * @hdev_a: hid device |
| 2655 | * @hdev_b: hid device |
| 2656 | * @separator: char to use as separator |
| 2657 | * |
| 2658 | * Check if two devices share the same path up to the last occurrence of |
| 2659 | * the separator char. Both paths must exist (i.e., zero-length paths |
| 2660 | * don't match). |
| 2661 | */ |
| 2662 | bool hid_compare_device_paths(struct hid_device *hdev_a, |
| 2663 | struct hid_device *hdev_b, char separator) |
| 2664 | { |
| 2665 | int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys; |
| 2666 | int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys; |
| 2667 | |
| 2668 | if (n1 != n2 || n1 <= 0 || n2 <= 0) |
| 2669 | return false; |
| 2670 | |
| 2671 | return !strncmp(hdev_a->phys, hdev_b->phys, n1); |
| 2672 | } |
| 2673 | EXPORT_SYMBOL_GPL(hid_compare_device_paths); |
| 2674 | |
| 2675 | static bool hid_check_device_match(struct hid_device *hdev, |
| 2676 | struct hid_driver *hdrv, |
| 2677 | const struct hid_device_id **id) |
| 2678 | { |
| 2679 | *id = hid_match_device(hdev, hdrv); |
| 2680 | if (!*id) |
| 2681 | return false; |
| 2682 | |
| 2683 | if (hdrv->match) |
| 2684 | return hdrv->match(hdev, hid_ignore_special_drivers); |
| 2685 | |
| 2686 | /* |
| 2687 | * hid-generic implements .match(), so we must be dealing with a |
| 2688 | * different HID driver here, and can simply check if |
| 2689 | * hid_ignore_special_drivers or HID_QUIRK_IGNORE_SPECIAL_DRIVER |
| 2690 | * are set or not. |
| 2691 | */ |
| 2692 | return !hid_ignore_special_drivers && !(hdev->quirks & HID_QUIRK_IGNORE_SPECIAL_DRIVER); |
| 2693 | } |
| 2694 | |
| 2695 | static int __hid_device_probe(struct hid_device *hdev, struct hid_driver *hdrv) |
| 2696 | { |
| 2697 | const struct hid_device_id *id; |
| 2698 | int ret; |
| 2699 | |
| 2700 | if (!hdev->bpf_rsize) { |
| 2701 | /* in case a bpf program gets detached, we need to free the old one */ |
| 2702 | hid_free_bpf_rdesc(hdev); |
| 2703 | |
| 2704 | /* keep this around so we know we called it once */ |
| 2705 | hdev->bpf_rsize = hdev->dev_rsize; |
| 2706 | |
| 2707 | /* call_hid_bpf_rdesc_fixup will always return a valid pointer */ |
| 2708 | hdev->bpf_rdesc = call_hid_bpf_rdesc_fixup(hdev, hdev->dev_rdesc, |
| 2709 | &hdev->bpf_rsize); |
| 2710 | } |
| 2711 | |
| 2712 | if (!hid_check_device_match(hdev, hdrv, &id)) |
| 2713 | return -ENODEV; |
| 2714 | |
| 2715 | hdev->devres_group_id = devres_open_group(&hdev->dev, NULL, GFP_KERNEL); |
| 2716 | if (!hdev->devres_group_id) |
| 2717 | return -ENOMEM; |
| 2718 | |
| 2719 | /* reset the quirks that has been previously set */ |
| 2720 | hdev->quirks = hid_lookup_quirk(hdev); |
| 2721 | hdev->driver = hdrv; |
| 2722 | |
| 2723 | if (hdrv->probe) { |
| 2724 | ret = hdrv->probe(hdev, id); |
| 2725 | } else { /* default probe */ |
| 2726 | ret = hid_open_report(hdev); |
| 2727 | if (!ret) |
| 2728 | ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT); |
| 2729 | } |
| 2730 | |
| 2731 | /* |
| 2732 | * Note that we are not closing the devres group opened above so |
| 2733 | * even resources that were attached to the device after probe is |
| 2734 | * run are released when hid_device_remove() is executed. This is |
| 2735 | * needed as some drivers would allocate additional resources, |
| 2736 | * for example when updating firmware. |
| 2737 | */ |
| 2738 | |
| 2739 | if (ret) { |
| 2740 | devres_release_group(&hdev->dev, hdev->devres_group_id); |
| 2741 | hid_close_report(hdev); |
| 2742 | hdev->driver = NULL; |
| 2743 | } |
| 2744 | |
| 2745 | return ret; |
| 2746 | } |
| 2747 | |
| 2748 | static int hid_device_probe(struct device *dev) |
| 2749 | { |
| 2750 | struct hid_device *hdev = to_hid_device(dev); |
| 2751 | struct hid_driver *hdrv = to_hid_driver(dev->driver); |
| 2752 | int ret = 0; |
| 2753 | |
| 2754 | if (down_interruptible(&hdev->driver_input_lock)) |
| 2755 | return -EINTR; |
| 2756 | |
| 2757 | hdev->io_started = false; |
| 2758 | clear_bit(ffs(HID_STAT_REPROBED), &hdev->status); |
| 2759 | |
| 2760 | if (!hdev->driver) |
| 2761 | ret = __hid_device_probe(hdev, hdrv); |
| 2762 | |
| 2763 | if (!hdev->io_started) |
| 2764 | up(&hdev->driver_input_lock); |
| 2765 | |
| 2766 | return ret; |
| 2767 | } |
| 2768 | |
| 2769 | static void hid_device_remove(struct device *dev) |
| 2770 | { |
| 2771 | struct hid_device *hdev = to_hid_device(dev); |
| 2772 | struct hid_driver *hdrv; |
| 2773 | |
| 2774 | down(&hdev->driver_input_lock); |
| 2775 | hdev->io_started = false; |
| 2776 | |
| 2777 | hdrv = hdev->driver; |
| 2778 | if (hdrv) { |
| 2779 | if (hdrv->remove) |
| 2780 | hdrv->remove(hdev); |
| 2781 | else /* default remove */ |
| 2782 | hid_hw_stop(hdev); |
| 2783 | |
| 2784 | /* Release all devres resources allocated by the driver */ |
| 2785 | devres_release_group(&hdev->dev, hdev->devres_group_id); |
| 2786 | |
| 2787 | hid_close_report(hdev); |
| 2788 | hdev->driver = NULL; |
| 2789 | } |
| 2790 | |
| 2791 | if (!hdev->io_started) |
| 2792 | up(&hdev->driver_input_lock); |
| 2793 | } |
| 2794 | |
| 2795 | static ssize_t modalias_show(struct device *dev, struct device_attribute *a, |
| 2796 | char *buf) |
| 2797 | { |
| 2798 | struct hid_device *hdev = container_of(dev, struct hid_device, dev); |
| 2799 | |
| 2800 | return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n", |
| 2801 | hdev->bus, hdev->group, hdev->vendor, hdev->product); |
| 2802 | } |
| 2803 | static DEVICE_ATTR_RO(modalias); |
| 2804 | |
| 2805 | static struct attribute *hid_dev_attrs[] = { |
| 2806 | &dev_attr_modalias.attr, |
| 2807 | NULL, |
| 2808 | }; |
| 2809 | static const struct bin_attribute *hid_dev_bin_attrs[] = { |
| 2810 | &bin_attr_report_descriptor, |
| 2811 | NULL |
| 2812 | }; |
| 2813 | static const struct attribute_group hid_dev_group = { |
| 2814 | .attrs = hid_dev_attrs, |
| 2815 | .bin_attrs_new = hid_dev_bin_attrs, |
| 2816 | }; |
| 2817 | __ATTRIBUTE_GROUPS(hid_dev); |
| 2818 | |
| 2819 | static int hid_uevent(const struct device *dev, struct kobj_uevent_env *env) |
| 2820 | { |
| 2821 | const struct hid_device *hdev = to_hid_device(dev); |
| 2822 | |
| 2823 | if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X", |
| 2824 | hdev->bus, hdev->vendor, hdev->product)) |
| 2825 | return -ENOMEM; |
| 2826 | |
| 2827 | if (add_uevent_var(env, "HID_NAME=%s", hdev->name)) |
| 2828 | return -ENOMEM; |
| 2829 | |
| 2830 | if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys)) |
| 2831 | return -ENOMEM; |
| 2832 | |
| 2833 | if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq)) |
| 2834 | return -ENOMEM; |
| 2835 | |
| 2836 | if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X", |
| 2837 | hdev->bus, hdev->group, hdev->vendor, hdev->product)) |
| 2838 | return -ENOMEM; |
| 2839 | |
| 2840 | return 0; |
| 2841 | } |
| 2842 | |
| 2843 | const struct bus_type hid_bus_type = { |
| 2844 | .name = "hid", |
| 2845 | .dev_groups = hid_dev_groups, |
| 2846 | .drv_groups = hid_drv_groups, |
| 2847 | .match = hid_bus_match, |
| 2848 | .probe = hid_device_probe, |
| 2849 | .remove = hid_device_remove, |
| 2850 | .uevent = hid_uevent, |
| 2851 | }; |
| 2852 | EXPORT_SYMBOL(hid_bus_type); |
| 2853 | |
| 2854 | int hid_add_device(struct hid_device *hdev) |
| 2855 | { |
| 2856 | static atomic_t id = ATOMIC_INIT(0); |
| 2857 | int ret; |
| 2858 | |
| 2859 | if (WARN_ON(hdev->status & HID_STAT_ADDED)) |
| 2860 | return -EBUSY; |
| 2861 | |
| 2862 | hdev->quirks = hid_lookup_quirk(hdev); |
| 2863 | |
| 2864 | /* we need to kill them here, otherwise they will stay allocated to |
| 2865 | * wait for coming driver */ |
| 2866 | if (hid_ignore(hdev)) |
| 2867 | return -ENODEV; |
| 2868 | |
| 2869 | /* |
| 2870 | * Check for the mandatory transport channel. |
| 2871 | */ |
| 2872 | if (!hdev->ll_driver->raw_request) { |
| 2873 | hid_err(hdev, "transport driver missing .raw_request()\n"); |
| 2874 | return -EINVAL; |
| 2875 | } |
| 2876 | |
| 2877 | /* |
| 2878 | * Read the device report descriptor once and use as template |
| 2879 | * for the driver-specific modifications. |
| 2880 | */ |
| 2881 | ret = hdev->ll_driver->parse(hdev); |
| 2882 | if (ret) |
| 2883 | return ret; |
| 2884 | if (!hdev->dev_rdesc) |
| 2885 | return -ENODEV; |
| 2886 | |
| 2887 | /* |
| 2888 | * Scan generic devices for group information |
| 2889 | */ |
| 2890 | if (hid_ignore_special_drivers) { |
| 2891 | hdev->group = HID_GROUP_GENERIC; |
| 2892 | } else if (!hdev->group && |
| 2893 | !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) { |
| 2894 | ret = hid_scan_report(hdev); |
| 2895 | if (ret) |
| 2896 | hid_warn(hdev, "bad device descriptor (%d)\n", ret); |
| 2897 | } |
| 2898 | |
| 2899 | hdev->id = atomic_inc_return(&id); |
| 2900 | |
| 2901 | /* XXX hack, any other cleaner solution after the driver core |
| 2902 | * is converted to allow more than 20 bytes as the device name? */ |
| 2903 | dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus, |
| 2904 | hdev->vendor, hdev->product, hdev->id); |
| 2905 | |
| 2906 | hid_debug_register(hdev, dev_name(&hdev->dev)); |
| 2907 | ret = device_add(&hdev->dev); |
| 2908 | if (!ret) |
| 2909 | hdev->status |= HID_STAT_ADDED; |
| 2910 | else |
| 2911 | hid_debug_unregister(hdev); |
| 2912 | |
| 2913 | return ret; |
| 2914 | } |
| 2915 | EXPORT_SYMBOL_GPL(hid_add_device); |
| 2916 | |
| 2917 | /** |
| 2918 | * hid_allocate_device - allocate new hid device descriptor |
| 2919 | * |
| 2920 | * Allocate and initialize hid device, so that hid_destroy_device might be |
| 2921 | * used to free it. |
| 2922 | * |
| 2923 | * New hid_device pointer is returned on success, otherwise ERR_PTR encoded |
| 2924 | * error value. |
| 2925 | */ |
| 2926 | struct hid_device *hid_allocate_device(void) |
| 2927 | { |
| 2928 | struct hid_device *hdev; |
| 2929 | int ret = -ENOMEM; |
| 2930 | |
| 2931 | hdev = kzalloc(sizeof(*hdev), GFP_KERNEL); |
| 2932 | if (hdev == NULL) |
| 2933 | return ERR_PTR(ret); |
| 2934 | |
| 2935 | device_initialize(&hdev->dev); |
| 2936 | hdev->dev.release = hid_device_release; |
| 2937 | hdev->dev.bus = &hid_bus_type; |
| 2938 | device_enable_async_suspend(&hdev->dev); |
| 2939 | |
| 2940 | hid_close_report(hdev); |
| 2941 | |
| 2942 | init_waitqueue_head(&hdev->debug_wait); |
| 2943 | INIT_LIST_HEAD(&hdev->debug_list); |
| 2944 | spin_lock_init(&hdev->debug_list_lock); |
| 2945 | sema_init(&hdev->driver_input_lock, 1); |
| 2946 | mutex_init(&hdev->ll_open_lock); |
| 2947 | kref_init(&hdev->ref); |
| 2948 | |
| 2949 | ret = hid_bpf_device_init(hdev); |
| 2950 | if (ret) |
| 2951 | goto out_err; |
| 2952 | |
| 2953 | return hdev; |
| 2954 | |
| 2955 | out_err: |
| 2956 | hid_destroy_device(hdev); |
| 2957 | return ERR_PTR(ret); |
| 2958 | } |
| 2959 | EXPORT_SYMBOL_GPL(hid_allocate_device); |
| 2960 | |
| 2961 | static void hid_remove_device(struct hid_device *hdev) |
| 2962 | { |
| 2963 | if (hdev->status & HID_STAT_ADDED) { |
| 2964 | device_del(&hdev->dev); |
| 2965 | hid_debug_unregister(hdev); |
| 2966 | hdev->status &= ~HID_STAT_ADDED; |
| 2967 | } |
| 2968 | hid_free_bpf_rdesc(hdev); |
| 2969 | kfree(hdev->dev_rdesc); |
| 2970 | hdev->dev_rdesc = NULL; |
| 2971 | hdev->dev_rsize = 0; |
| 2972 | hdev->bpf_rsize = 0; |
| 2973 | } |
| 2974 | |
| 2975 | /** |
| 2976 | * hid_destroy_device - free previously allocated device |
| 2977 | * |
| 2978 | * @hdev: hid device |
| 2979 | * |
| 2980 | * If you allocate hid_device through hid_allocate_device, you should ever |
| 2981 | * free by this function. |
| 2982 | */ |
| 2983 | void hid_destroy_device(struct hid_device *hdev) |
| 2984 | { |
| 2985 | hid_bpf_destroy_device(hdev); |
| 2986 | hid_remove_device(hdev); |
| 2987 | put_device(&hdev->dev); |
| 2988 | } |
| 2989 | EXPORT_SYMBOL_GPL(hid_destroy_device); |
| 2990 | |
| 2991 | |
| 2992 | static int __hid_bus_reprobe_drivers(struct device *dev, void *data) |
| 2993 | { |
| 2994 | struct hid_driver *hdrv = data; |
| 2995 | struct hid_device *hdev = to_hid_device(dev); |
| 2996 | |
| 2997 | if (hdev->driver == hdrv && |
| 2998 | !hdrv->match(hdev, hid_ignore_special_drivers) && |
| 2999 | !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status)) |
| 3000 | return device_reprobe(dev); |
| 3001 | |
| 3002 | return 0; |
| 3003 | } |
| 3004 | |
| 3005 | static int __hid_bus_driver_added(struct device_driver *drv, void *data) |
| 3006 | { |
| 3007 | struct hid_driver *hdrv = to_hid_driver(drv); |
| 3008 | |
| 3009 | if (hdrv->match) { |
| 3010 | bus_for_each_dev(&hid_bus_type, NULL, hdrv, |
| 3011 | __hid_bus_reprobe_drivers); |
| 3012 | } |
| 3013 | |
| 3014 | return 0; |
| 3015 | } |
| 3016 | |
| 3017 | static int __bus_removed_driver(struct device_driver *drv, void *data) |
| 3018 | { |
| 3019 | return bus_rescan_devices(&hid_bus_type); |
| 3020 | } |
| 3021 | |
| 3022 | int __hid_register_driver(struct hid_driver *hdrv, struct module *owner, |
| 3023 | const char *mod_name) |
| 3024 | { |
| 3025 | int ret; |
| 3026 | |
| 3027 | hdrv->driver.name = hdrv->name; |
| 3028 | hdrv->driver.bus = &hid_bus_type; |
| 3029 | hdrv->driver.owner = owner; |
| 3030 | hdrv->driver.mod_name = mod_name; |
| 3031 | |
| 3032 | INIT_LIST_HEAD(&hdrv->dyn_list); |
| 3033 | spin_lock_init(&hdrv->dyn_lock); |
| 3034 | |
| 3035 | ret = driver_register(&hdrv->driver); |
| 3036 | |
| 3037 | if (ret == 0) |
| 3038 | bus_for_each_drv(&hid_bus_type, NULL, NULL, |
| 3039 | __hid_bus_driver_added); |
| 3040 | |
| 3041 | return ret; |
| 3042 | } |
| 3043 | EXPORT_SYMBOL_GPL(__hid_register_driver); |
| 3044 | |
| 3045 | void hid_unregister_driver(struct hid_driver *hdrv) |
| 3046 | { |
| 3047 | driver_unregister(&hdrv->driver); |
| 3048 | hid_free_dynids(hdrv); |
| 3049 | |
| 3050 | bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver); |
| 3051 | } |
| 3052 | EXPORT_SYMBOL_GPL(hid_unregister_driver); |
| 3053 | |
| 3054 | int hid_check_keys_pressed(struct hid_device *hid) |
| 3055 | { |
| 3056 | struct hid_input *hidinput; |
| 3057 | int i; |
| 3058 | |
| 3059 | if (!(hid->claimed & HID_CLAIMED_INPUT)) |
| 3060 | return 0; |
| 3061 | |
| 3062 | list_for_each_entry(hidinput, &hid->inputs, list) { |
| 3063 | for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++) |
| 3064 | if (hidinput->input->key[i]) |
| 3065 | return 1; |
| 3066 | } |
| 3067 | |
| 3068 | return 0; |
| 3069 | } |
| 3070 | EXPORT_SYMBOL_GPL(hid_check_keys_pressed); |
| 3071 | |
| 3072 | #ifdef CONFIG_HID_BPF |
| 3073 | static const struct hid_ops __hid_ops = { |
| 3074 | .hid_get_report = hid_get_report, |
| 3075 | .hid_hw_raw_request = __hid_hw_raw_request, |
| 3076 | .hid_hw_output_report = __hid_hw_output_report, |
| 3077 | .hid_input_report = __hid_input_report, |
| 3078 | .owner = THIS_MODULE, |
| 3079 | .bus_type = &hid_bus_type, |
| 3080 | }; |
| 3081 | #endif |
| 3082 | |
| 3083 | static int __init hid_init(void) |
| 3084 | { |
| 3085 | int ret; |
| 3086 | |
| 3087 | ret = bus_register(&hid_bus_type); |
| 3088 | if (ret) { |
| 3089 | pr_err("can't register hid bus\n"); |
| 3090 | goto err; |
| 3091 | } |
| 3092 | |
| 3093 | #ifdef CONFIG_HID_BPF |
| 3094 | hid_ops = &__hid_ops; |
| 3095 | #endif |
| 3096 | |
| 3097 | ret = hidraw_init(); |
| 3098 | if (ret) |
| 3099 | goto err_bus; |
| 3100 | |
| 3101 | hid_debug_init(); |
| 3102 | |
| 3103 | return 0; |
| 3104 | err_bus: |
| 3105 | bus_unregister(&hid_bus_type); |
| 3106 | err: |
| 3107 | return ret; |
| 3108 | } |
| 3109 | |
| 3110 | static void __exit hid_exit(void) |
| 3111 | { |
| 3112 | #ifdef CONFIG_HID_BPF |
| 3113 | hid_ops = NULL; |
| 3114 | #endif |
| 3115 | hid_debug_exit(); |
| 3116 | hidraw_exit(); |
| 3117 | bus_unregister(&hid_bus_type); |
| 3118 | hid_quirks_exit(HID_BUS_ANY); |
| 3119 | } |
| 3120 | |
| 3121 | module_init(hid_init); |
| 3122 | module_exit(hid_exit); |
| 3123 | |
| 3124 | MODULE_AUTHOR("Andreas Gal"); |
| 3125 | MODULE_AUTHOR("Vojtech Pavlik"); |
| 3126 | MODULE_AUTHOR("Jiri Kosina"); |
| 3127 | MODULE_DESCRIPTION("HID support for Linux"); |
| 3128 | MODULE_LICENSE("GPL"); |