| 1 | /* SPDX-License-Identifier: GPL-2.0 OR MIT */ |
| 2 | /************************************************************************** |
| 3 | * |
| 4 | * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA |
| 5 | * All Rights Reserved. |
| 6 | * |
| 7 | * Permission is hereby granted, free of charge, to any person obtaining a |
| 8 | * copy of this software and associated documentation files (the |
| 9 | * "Software"), to deal in the Software without restriction, including |
| 10 | * without limitation the rights to use, copy, modify, merge, publish, |
| 11 | * distribute, sub license, and/or sell copies of the Software, and to |
| 12 | * permit persons to whom the Software is furnished to do so, subject to |
| 13 | * the following conditions: |
| 14 | * |
| 15 | * The above copyright notice and this permission notice (including the |
| 16 | * next paragraph) shall be included in all copies or substantial portions |
| 17 | * of the Software. |
| 18 | * |
| 19 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 20 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 21 | * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL |
| 22 | * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, |
| 23 | * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR |
| 24 | * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE |
| 25 | * USE OR OTHER DEALINGS IN THE SOFTWARE. |
| 26 | * |
| 27 | **************************************************************************/ |
| 28 | /* |
| 29 | * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> |
| 30 | */ |
| 31 | #include <linux/swap.h> |
| 32 | #include <linux/vmalloc.h> |
| 33 | |
| 34 | #include <drm/ttm/ttm_bo.h> |
| 35 | #include <drm/ttm/ttm_placement.h> |
| 36 | #include <drm/ttm/ttm_tt.h> |
| 37 | |
| 38 | #include <drm/drm_cache.h> |
| 39 | |
| 40 | struct ttm_transfer_obj { |
| 41 | struct ttm_buffer_object base; |
| 42 | struct ttm_buffer_object *bo; |
| 43 | }; |
| 44 | |
| 45 | int ttm_mem_io_reserve(struct ttm_device *bdev, |
| 46 | struct ttm_resource *mem) |
| 47 | { |
| 48 | if (mem->bus.offset || mem->bus.addr) |
| 49 | return 0; |
| 50 | |
| 51 | mem->bus.is_iomem = false; |
| 52 | if (!bdev->funcs->io_mem_reserve) |
| 53 | return 0; |
| 54 | |
| 55 | return bdev->funcs->io_mem_reserve(bdev, mem); |
| 56 | } |
| 57 | |
| 58 | void ttm_mem_io_free(struct ttm_device *bdev, |
| 59 | struct ttm_resource *mem) |
| 60 | { |
| 61 | if (!mem) |
| 62 | return; |
| 63 | |
| 64 | if (!mem->bus.offset && !mem->bus.addr) |
| 65 | return; |
| 66 | |
| 67 | if (bdev->funcs->io_mem_free) |
| 68 | bdev->funcs->io_mem_free(bdev, mem); |
| 69 | |
| 70 | mem->bus.offset = 0; |
| 71 | mem->bus.addr = NULL; |
| 72 | } |
| 73 | |
| 74 | /** |
| 75 | * ttm_move_memcpy - Helper to perform a memcpy ttm move operation. |
| 76 | * @clear: Whether to clear rather than copy. |
| 77 | * @num_pages: Number of pages of the operation. |
| 78 | * @dst_iter: A struct ttm_kmap_iter representing the destination resource. |
| 79 | * @src_iter: A struct ttm_kmap_iter representing the source resource. |
| 80 | * |
| 81 | * This function is intended to be able to move out async under a |
| 82 | * dma-fence if desired. |
| 83 | */ |
| 84 | void ttm_move_memcpy(bool clear, |
| 85 | u32 num_pages, |
| 86 | struct ttm_kmap_iter *dst_iter, |
| 87 | struct ttm_kmap_iter *src_iter) |
| 88 | { |
| 89 | const struct ttm_kmap_iter_ops *dst_ops = dst_iter->ops; |
| 90 | const struct ttm_kmap_iter_ops *src_ops = src_iter->ops; |
| 91 | struct iosys_map src_map, dst_map; |
| 92 | pgoff_t i; |
| 93 | |
| 94 | /* Single TTM move. NOP */ |
| 95 | if (dst_ops->maps_tt && src_ops->maps_tt) |
| 96 | return; |
| 97 | |
| 98 | /* Don't move nonexistent data. Clear destination instead. */ |
| 99 | if (clear) { |
| 100 | for (i = 0; i < num_pages; ++i) { |
| 101 | dst_ops->map_local(dst_iter, &dst_map, i); |
| 102 | if (dst_map.is_iomem) |
| 103 | memset_io(dst_map.vaddr_iomem, 0, PAGE_SIZE); |
| 104 | else |
| 105 | memset(dst_map.vaddr, 0, PAGE_SIZE); |
| 106 | if (dst_ops->unmap_local) |
| 107 | dst_ops->unmap_local(dst_iter, &dst_map); |
| 108 | } |
| 109 | return; |
| 110 | } |
| 111 | |
| 112 | for (i = 0; i < num_pages; ++i) { |
| 113 | dst_ops->map_local(dst_iter, &dst_map, i); |
| 114 | src_ops->map_local(src_iter, &src_map, i); |
| 115 | |
| 116 | drm_memcpy_from_wc(&dst_map, &src_map, PAGE_SIZE); |
| 117 | |
| 118 | if (src_ops->unmap_local) |
| 119 | src_ops->unmap_local(src_iter, &src_map); |
| 120 | if (dst_ops->unmap_local) |
| 121 | dst_ops->unmap_local(dst_iter, &dst_map); |
| 122 | } |
| 123 | } |
| 124 | EXPORT_SYMBOL(ttm_move_memcpy); |
| 125 | |
| 126 | /** |
| 127 | * ttm_bo_move_memcpy |
| 128 | * |
| 129 | * @bo: A pointer to a struct ttm_buffer_object. |
| 130 | * @ctx: operation context |
| 131 | * @dst_mem: struct ttm_resource indicating where to move. |
| 132 | * |
| 133 | * Fallback move function for a mappable buffer object in mappable memory. |
| 134 | * The function will, if successful, |
| 135 | * free any old aperture space, and set (@new_mem)->mm_node to NULL, |
| 136 | * and update the (@bo)->mem placement flags. If unsuccessful, the old |
| 137 | * data remains untouched, and it's up to the caller to free the |
| 138 | * memory space indicated by @new_mem. |
| 139 | * Returns: |
| 140 | * !0: Failure. |
| 141 | */ |
| 142 | int ttm_bo_move_memcpy(struct ttm_buffer_object *bo, |
| 143 | struct ttm_operation_ctx *ctx, |
| 144 | struct ttm_resource *dst_mem) |
| 145 | { |
| 146 | struct ttm_device *bdev = bo->bdev; |
| 147 | struct ttm_resource_manager *dst_man = |
| 148 | ttm_manager_type(bo->bdev, dst_mem->mem_type); |
| 149 | struct ttm_tt *ttm = bo->ttm; |
| 150 | struct ttm_resource *src_mem = bo->resource; |
| 151 | struct ttm_resource_manager *src_man; |
| 152 | union { |
| 153 | struct ttm_kmap_iter_tt tt; |
| 154 | struct ttm_kmap_iter_linear_io io; |
| 155 | } _dst_iter, _src_iter; |
| 156 | struct ttm_kmap_iter *dst_iter, *src_iter; |
| 157 | bool clear; |
| 158 | int ret = 0; |
| 159 | |
| 160 | if (WARN_ON(!src_mem)) |
| 161 | return -EINVAL; |
| 162 | |
| 163 | src_man = ttm_manager_type(bdev, src_mem->mem_type); |
| 164 | if (ttm && ((ttm->page_flags & TTM_TT_FLAG_SWAPPED) || |
| 165 | dst_man->use_tt)) { |
| 166 | ret = ttm_bo_populate(bo, ctx); |
| 167 | if (ret) |
| 168 | return ret; |
| 169 | } |
| 170 | |
| 171 | dst_iter = ttm_kmap_iter_linear_io_init(&_dst_iter.io, bdev, dst_mem); |
| 172 | if (PTR_ERR(dst_iter) == -EINVAL && dst_man->use_tt) |
| 173 | dst_iter = ttm_kmap_iter_tt_init(&_dst_iter.tt, bo->ttm); |
| 174 | if (IS_ERR(dst_iter)) |
| 175 | return PTR_ERR(dst_iter); |
| 176 | |
| 177 | src_iter = ttm_kmap_iter_linear_io_init(&_src_iter.io, bdev, src_mem); |
| 178 | if (PTR_ERR(src_iter) == -EINVAL && src_man->use_tt) |
| 179 | src_iter = ttm_kmap_iter_tt_init(&_src_iter.tt, bo->ttm); |
| 180 | if (IS_ERR(src_iter)) { |
| 181 | ret = PTR_ERR(src_iter); |
| 182 | goto out_src_iter; |
| 183 | } |
| 184 | |
| 185 | clear = src_iter->ops->maps_tt && (!ttm || !ttm_tt_is_populated(ttm)); |
| 186 | if (!(clear && ttm && !(ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC))) |
| 187 | ttm_move_memcpy(clear, PFN_UP(dst_mem->size), dst_iter, src_iter); |
| 188 | |
| 189 | if (!src_iter->ops->maps_tt) |
| 190 | ttm_kmap_iter_linear_io_fini(&_src_iter.io, bdev, src_mem); |
| 191 | ttm_bo_move_sync_cleanup(bo, dst_mem); |
| 192 | |
| 193 | out_src_iter: |
| 194 | if (!dst_iter->ops->maps_tt) |
| 195 | ttm_kmap_iter_linear_io_fini(&_dst_iter.io, bdev, dst_mem); |
| 196 | |
| 197 | return ret; |
| 198 | } |
| 199 | EXPORT_SYMBOL(ttm_bo_move_memcpy); |
| 200 | |
| 201 | static void ttm_transfered_destroy(struct ttm_buffer_object *bo) |
| 202 | { |
| 203 | struct ttm_transfer_obj *fbo; |
| 204 | |
| 205 | fbo = container_of(bo, struct ttm_transfer_obj, base); |
| 206 | dma_resv_fini(&fbo->base.base._resv); |
| 207 | ttm_bo_put(fbo->bo); |
| 208 | kfree(fbo); |
| 209 | } |
| 210 | |
| 211 | /** |
| 212 | * ttm_buffer_object_transfer |
| 213 | * |
| 214 | * @bo: A pointer to a struct ttm_buffer_object. |
| 215 | * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object, |
| 216 | * holding the data of @bo with the old placement. |
| 217 | * |
| 218 | * This is a utility function that may be called after an accelerated move |
| 219 | * has been scheduled. A new buffer object is created as a placeholder for |
| 220 | * the old data while it's being copied. When that buffer object is idle, |
| 221 | * it can be destroyed, releasing the space of the old placement. |
| 222 | * Returns: |
| 223 | * !0: Failure. |
| 224 | */ |
| 225 | |
| 226 | static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo, |
| 227 | struct ttm_buffer_object **new_obj) |
| 228 | { |
| 229 | struct ttm_transfer_obj *fbo; |
| 230 | int ret; |
| 231 | |
| 232 | fbo = kmalloc(sizeof(*fbo), GFP_KERNEL); |
| 233 | if (!fbo) |
| 234 | return -ENOMEM; |
| 235 | |
| 236 | fbo->base = *bo; |
| 237 | |
| 238 | /** |
| 239 | * Fix up members that we shouldn't copy directly: |
| 240 | * TODO: Explicit member copy would probably be better here. |
| 241 | */ |
| 242 | |
| 243 | atomic_inc(&ttm_glob.bo_count); |
| 244 | drm_vma_node_reset(&fbo->base.base.vma_node); |
| 245 | |
| 246 | kref_init(&fbo->base.kref); |
| 247 | fbo->base.destroy = &ttm_transfered_destroy; |
| 248 | fbo->base.pin_count = 0; |
| 249 | if (bo->type != ttm_bo_type_sg) |
| 250 | fbo->base.base.resv = &fbo->base.base._resv; |
| 251 | |
| 252 | dma_resv_init(&fbo->base.base._resv); |
| 253 | fbo->base.base.dev = NULL; |
| 254 | ret = dma_resv_trylock(&fbo->base.base._resv); |
| 255 | WARN_ON(!ret); |
| 256 | |
| 257 | ret = dma_resv_reserve_fences(&fbo->base.base._resv, 1); |
| 258 | if (ret) { |
| 259 | dma_resv_unlock(&fbo->base.base._resv); |
| 260 | kfree(fbo); |
| 261 | return ret; |
| 262 | } |
| 263 | |
| 264 | if (fbo->base.resource) { |
| 265 | ttm_resource_set_bo(fbo->base.resource, &fbo->base); |
| 266 | bo->resource = NULL; |
| 267 | ttm_bo_set_bulk_move(&fbo->base, NULL); |
| 268 | } else { |
| 269 | fbo->base.bulk_move = NULL; |
| 270 | } |
| 271 | |
| 272 | ttm_bo_get(bo); |
| 273 | fbo->bo = bo; |
| 274 | |
| 275 | ttm_bo_move_to_lru_tail_unlocked(&fbo->base); |
| 276 | |
| 277 | *new_obj = &fbo->base; |
| 278 | return 0; |
| 279 | } |
| 280 | |
| 281 | /** |
| 282 | * ttm_io_prot |
| 283 | * |
| 284 | * @bo: ttm buffer object |
| 285 | * @res: ttm resource object |
| 286 | * @tmp: Page protection flag for a normal, cached mapping. |
| 287 | * |
| 288 | * Utility function that returns the pgprot_t that should be used for |
| 289 | * setting up a PTE with the caching model indicated by @c_state. |
| 290 | */ |
| 291 | pgprot_t ttm_io_prot(struct ttm_buffer_object *bo, struct ttm_resource *res, |
| 292 | pgprot_t tmp) |
| 293 | { |
| 294 | struct ttm_resource_manager *man; |
| 295 | enum ttm_caching caching; |
| 296 | |
| 297 | man = ttm_manager_type(bo->bdev, res->mem_type); |
| 298 | if (man->use_tt) { |
| 299 | caching = bo->ttm->caching; |
| 300 | if (bo->ttm->page_flags & TTM_TT_FLAG_DECRYPTED) |
| 301 | tmp = pgprot_decrypted(tmp); |
| 302 | } else { |
| 303 | caching = res->bus.caching; |
| 304 | } |
| 305 | |
| 306 | return ttm_prot_from_caching(caching, tmp); |
| 307 | } |
| 308 | EXPORT_SYMBOL(ttm_io_prot); |
| 309 | |
| 310 | static int ttm_bo_ioremap(struct ttm_buffer_object *bo, |
| 311 | unsigned long offset, |
| 312 | unsigned long size, |
| 313 | struct ttm_bo_kmap_obj *map) |
| 314 | { |
| 315 | struct ttm_resource *mem = bo->resource; |
| 316 | |
| 317 | if (bo->resource->bus.addr) { |
| 318 | map->bo_kmap_type = ttm_bo_map_premapped; |
| 319 | map->virtual = ((u8 *)bo->resource->bus.addr) + offset; |
| 320 | } else { |
| 321 | resource_size_t res = bo->resource->bus.offset + offset; |
| 322 | |
| 323 | map->bo_kmap_type = ttm_bo_map_iomap; |
| 324 | if (mem->bus.caching == ttm_write_combined) |
| 325 | map->virtual = ioremap_wc(res, size); |
| 326 | #ifdef CONFIG_X86 |
| 327 | else if (mem->bus.caching == ttm_cached) |
| 328 | map->virtual = ioremap_cache(res, size); |
| 329 | #endif |
| 330 | else |
| 331 | map->virtual = ioremap(res, size); |
| 332 | } |
| 333 | return (!map->virtual) ? -ENOMEM : 0; |
| 334 | } |
| 335 | |
| 336 | static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo, |
| 337 | unsigned long start_page, |
| 338 | unsigned long num_pages, |
| 339 | struct ttm_bo_kmap_obj *map) |
| 340 | { |
| 341 | struct ttm_resource *mem = bo->resource; |
| 342 | struct ttm_operation_ctx ctx = { |
| 343 | .interruptible = false, |
| 344 | .no_wait_gpu = false |
| 345 | }; |
| 346 | struct ttm_tt *ttm = bo->ttm; |
| 347 | struct ttm_resource_manager *man = |
| 348 | ttm_manager_type(bo->bdev, bo->resource->mem_type); |
| 349 | pgprot_t prot; |
| 350 | int ret; |
| 351 | |
| 352 | BUG_ON(!ttm); |
| 353 | |
| 354 | ret = ttm_bo_populate(bo, &ctx); |
| 355 | if (ret) |
| 356 | return ret; |
| 357 | |
| 358 | if (num_pages == 1 && ttm->caching == ttm_cached && |
| 359 | !(man->use_tt && (ttm->page_flags & TTM_TT_FLAG_DECRYPTED))) { |
| 360 | /* |
| 361 | * We're mapping a single page, and the desired |
| 362 | * page protection is consistent with the bo. |
| 363 | */ |
| 364 | |
| 365 | map->bo_kmap_type = ttm_bo_map_kmap; |
| 366 | map->page = ttm->pages[start_page]; |
| 367 | map->virtual = kmap(map->page); |
| 368 | } else { |
| 369 | /* |
| 370 | * We need to use vmap to get the desired page protection |
| 371 | * or to make the buffer object look contiguous. |
| 372 | */ |
| 373 | prot = ttm_io_prot(bo, mem, PAGE_KERNEL); |
| 374 | map->bo_kmap_type = ttm_bo_map_vmap; |
| 375 | map->virtual = vmap(ttm->pages + start_page, num_pages, |
| 376 | 0, prot); |
| 377 | } |
| 378 | return (!map->virtual) ? -ENOMEM : 0; |
| 379 | } |
| 380 | |
| 381 | /** |
| 382 | * ttm_bo_kmap |
| 383 | * |
| 384 | * @bo: The buffer object. |
| 385 | * @start_page: The first page to map. |
| 386 | * @num_pages: Number of pages to map. |
| 387 | * @map: pointer to a struct ttm_bo_kmap_obj representing the map. |
| 388 | * |
| 389 | * Sets up a kernel virtual mapping, using ioremap, vmap or kmap to the |
| 390 | * data in the buffer object. The ttm_kmap_obj_virtual function can then be |
| 391 | * used to obtain a virtual address to the data. |
| 392 | * |
| 393 | * Returns |
| 394 | * -ENOMEM: Out of memory. |
| 395 | * -EINVAL: Invalid range. |
| 396 | */ |
| 397 | int ttm_bo_kmap(struct ttm_buffer_object *bo, |
| 398 | unsigned long start_page, unsigned long num_pages, |
| 399 | struct ttm_bo_kmap_obj *map) |
| 400 | { |
| 401 | unsigned long offset, size; |
| 402 | int ret; |
| 403 | |
| 404 | map->virtual = NULL; |
| 405 | map->bo = bo; |
| 406 | if (num_pages > PFN_UP(bo->resource->size)) |
| 407 | return -EINVAL; |
| 408 | if ((start_page + num_pages) > PFN_UP(bo->resource->size)) |
| 409 | return -EINVAL; |
| 410 | |
| 411 | ret = ttm_mem_io_reserve(bo->bdev, bo->resource); |
| 412 | if (ret) |
| 413 | return ret; |
| 414 | if (!bo->resource->bus.is_iomem) { |
| 415 | return ttm_bo_kmap_ttm(bo, start_page, num_pages, map); |
| 416 | } else { |
| 417 | offset = start_page << PAGE_SHIFT; |
| 418 | size = num_pages << PAGE_SHIFT; |
| 419 | return ttm_bo_ioremap(bo, offset, size, map); |
| 420 | } |
| 421 | } |
| 422 | EXPORT_SYMBOL(ttm_bo_kmap); |
| 423 | |
| 424 | /** |
| 425 | * ttm_bo_kunmap |
| 426 | * |
| 427 | * @map: Object describing the map to unmap. |
| 428 | * |
| 429 | * Unmaps a kernel map set up by ttm_bo_kmap. |
| 430 | */ |
| 431 | void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map) |
| 432 | { |
| 433 | if (!map->virtual) |
| 434 | return; |
| 435 | switch (map->bo_kmap_type) { |
| 436 | case ttm_bo_map_iomap: |
| 437 | iounmap(map->virtual); |
| 438 | break; |
| 439 | case ttm_bo_map_vmap: |
| 440 | vunmap(map->virtual); |
| 441 | break; |
| 442 | case ttm_bo_map_kmap: |
| 443 | kunmap(map->page); |
| 444 | break; |
| 445 | case ttm_bo_map_premapped: |
| 446 | break; |
| 447 | default: |
| 448 | BUG(); |
| 449 | } |
| 450 | ttm_mem_io_free(map->bo->bdev, map->bo->resource); |
| 451 | map->virtual = NULL; |
| 452 | map->page = NULL; |
| 453 | } |
| 454 | EXPORT_SYMBOL(ttm_bo_kunmap); |
| 455 | |
| 456 | /** |
| 457 | * ttm_bo_vmap |
| 458 | * |
| 459 | * @bo: The buffer object. |
| 460 | * @map: pointer to a struct iosys_map representing the map. |
| 461 | * |
| 462 | * Sets up a kernel virtual mapping, using ioremap or vmap to the |
| 463 | * data in the buffer object. The parameter @map returns the virtual |
| 464 | * address as struct iosys_map. Unmap the buffer with ttm_bo_vunmap(). |
| 465 | * |
| 466 | * Returns |
| 467 | * -ENOMEM: Out of memory. |
| 468 | * -EINVAL: Invalid range. |
| 469 | */ |
| 470 | int ttm_bo_vmap(struct ttm_buffer_object *bo, struct iosys_map *map) |
| 471 | { |
| 472 | struct ttm_resource *mem = bo->resource; |
| 473 | int ret; |
| 474 | |
| 475 | dma_resv_assert_held(bo->base.resv); |
| 476 | |
| 477 | ret = ttm_mem_io_reserve(bo->bdev, mem); |
| 478 | if (ret) |
| 479 | return ret; |
| 480 | |
| 481 | if (mem->bus.is_iomem) { |
| 482 | void __iomem *vaddr_iomem; |
| 483 | |
| 484 | if (mem->bus.addr) |
| 485 | vaddr_iomem = (void __iomem *)mem->bus.addr; |
| 486 | else if (mem->bus.caching == ttm_write_combined) |
| 487 | vaddr_iomem = ioremap_wc(mem->bus.offset, |
| 488 | bo->base.size); |
| 489 | #ifdef CONFIG_X86 |
| 490 | else if (mem->bus.caching == ttm_cached) |
| 491 | vaddr_iomem = ioremap_cache(mem->bus.offset, |
| 492 | bo->base.size); |
| 493 | #endif |
| 494 | else |
| 495 | vaddr_iomem = ioremap(mem->bus.offset, bo->base.size); |
| 496 | |
| 497 | if (!vaddr_iomem) |
| 498 | return -ENOMEM; |
| 499 | |
| 500 | iosys_map_set_vaddr_iomem(map, vaddr_iomem); |
| 501 | |
| 502 | } else { |
| 503 | struct ttm_operation_ctx ctx = { |
| 504 | .interruptible = false, |
| 505 | .no_wait_gpu = false |
| 506 | }; |
| 507 | struct ttm_tt *ttm = bo->ttm; |
| 508 | pgprot_t prot; |
| 509 | void *vaddr; |
| 510 | |
| 511 | ret = ttm_bo_populate(bo, &ctx); |
| 512 | if (ret) |
| 513 | return ret; |
| 514 | |
| 515 | /* |
| 516 | * We need to use vmap to get the desired page protection |
| 517 | * or to make the buffer object look contiguous. |
| 518 | */ |
| 519 | prot = ttm_io_prot(bo, mem, PAGE_KERNEL); |
| 520 | vaddr = vmap(ttm->pages, ttm->num_pages, 0, prot); |
| 521 | if (!vaddr) |
| 522 | return -ENOMEM; |
| 523 | |
| 524 | iosys_map_set_vaddr(map, vaddr); |
| 525 | } |
| 526 | |
| 527 | return 0; |
| 528 | } |
| 529 | EXPORT_SYMBOL(ttm_bo_vmap); |
| 530 | |
| 531 | /** |
| 532 | * ttm_bo_vunmap |
| 533 | * |
| 534 | * @bo: The buffer object. |
| 535 | * @map: Object describing the map to unmap. |
| 536 | * |
| 537 | * Unmaps a kernel map set up by ttm_bo_vmap(). |
| 538 | */ |
| 539 | void ttm_bo_vunmap(struct ttm_buffer_object *bo, struct iosys_map *map) |
| 540 | { |
| 541 | struct ttm_resource *mem = bo->resource; |
| 542 | |
| 543 | dma_resv_assert_held(bo->base.resv); |
| 544 | |
| 545 | if (iosys_map_is_null(map)) |
| 546 | return; |
| 547 | |
| 548 | if (!map->is_iomem) |
| 549 | vunmap(map->vaddr); |
| 550 | else if (!mem->bus.addr) |
| 551 | iounmap(map->vaddr_iomem); |
| 552 | iosys_map_clear(map); |
| 553 | |
| 554 | ttm_mem_io_free(bo->bdev, bo->resource); |
| 555 | } |
| 556 | EXPORT_SYMBOL(ttm_bo_vunmap); |
| 557 | |
| 558 | static int ttm_bo_wait_free_node(struct ttm_buffer_object *bo, |
| 559 | bool dst_use_tt) |
| 560 | { |
| 561 | long ret; |
| 562 | |
| 563 | ret = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, |
| 564 | false, 15 * HZ); |
| 565 | if (ret == 0) |
| 566 | return -EBUSY; |
| 567 | if (ret < 0) |
| 568 | return ret; |
| 569 | |
| 570 | if (!dst_use_tt) |
| 571 | ttm_bo_tt_destroy(bo); |
| 572 | ttm_resource_free(bo, &bo->resource); |
| 573 | return 0; |
| 574 | } |
| 575 | |
| 576 | static int ttm_bo_move_to_ghost(struct ttm_buffer_object *bo, |
| 577 | struct dma_fence *fence, |
| 578 | bool dst_use_tt) |
| 579 | { |
| 580 | struct ttm_buffer_object *ghost_obj; |
| 581 | int ret; |
| 582 | |
| 583 | /** |
| 584 | * This should help pipeline ordinary buffer moves. |
| 585 | * |
| 586 | * Hang old buffer memory on a new buffer object, |
| 587 | * and leave it to be released when the GPU |
| 588 | * operation has completed. |
| 589 | */ |
| 590 | |
| 591 | ret = ttm_buffer_object_transfer(bo, &ghost_obj); |
| 592 | if (ret) |
| 593 | return ret; |
| 594 | |
| 595 | dma_resv_add_fence(&ghost_obj->base._resv, fence, |
| 596 | DMA_RESV_USAGE_KERNEL); |
| 597 | |
| 598 | /** |
| 599 | * If we're not moving to fixed memory, the TTM object |
| 600 | * needs to stay alive. Otherwhise hang it on the ghost |
| 601 | * bo to be unbound and destroyed. |
| 602 | */ |
| 603 | |
| 604 | if (dst_use_tt) |
| 605 | ghost_obj->ttm = NULL; |
| 606 | else |
| 607 | bo->ttm = NULL; |
| 608 | |
| 609 | dma_resv_unlock(&ghost_obj->base._resv); |
| 610 | ttm_bo_put(ghost_obj); |
| 611 | return 0; |
| 612 | } |
| 613 | |
| 614 | static void ttm_bo_move_pipeline_evict(struct ttm_buffer_object *bo, |
| 615 | struct dma_fence *fence) |
| 616 | { |
| 617 | struct ttm_device *bdev = bo->bdev; |
| 618 | struct ttm_resource_manager *from; |
| 619 | |
| 620 | from = ttm_manager_type(bdev, bo->resource->mem_type); |
| 621 | |
| 622 | /** |
| 623 | * BO doesn't have a TTM we need to bind/unbind. Just remember |
| 624 | * this eviction and free up the allocation |
| 625 | */ |
| 626 | spin_lock(&from->move_lock); |
| 627 | if (!from->move || dma_fence_is_later(fence, from->move)) { |
| 628 | dma_fence_put(from->move); |
| 629 | from->move = dma_fence_get(fence); |
| 630 | } |
| 631 | spin_unlock(&from->move_lock); |
| 632 | |
| 633 | ttm_resource_free(bo, &bo->resource); |
| 634 | } |
| 635 | |
| 636 | /** |
| 637 | * ttm_bo_move_accel_cleanup - cleanup helper for hw copies |
| 638 | * |
| 639 | * @bo: A pointer to a struct ttm_buffer_object. |
| 640 | * @fence: A fence object that signals when moving is complete. |
| 641 | * @evict: This is an evict move. Don't return until the buffer is idle. |
| 642 | * @pipeline: evictions are to be pipelined. |
| 643 | * @new_mem: struct ttm_resource indicating where to move. |
| 644 | * |
| 645 | * Accelerated move function to be called when an accelerated move |
| 646 | * has been scheduled. The function will create a new temporary buffer object |
| 647 | * representing the old placement, and put the sync object on both buffer |
| 648 | * objects. After that the newly created buffer object is unref'd to be |
| 649 | * destroyed when the move is complete. This will help pipeline |
| 650 | * buffer moves. |
| 651 | */ |
| 652 | int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo, |
| 653 | struct dma_fence *fence, |
| 654 | bool evict, |
| 655 | bool pipeline, |
| 656 | struct ttm_resource *new_mem) |
| 657 | { |
| 658 | struct ttm_device *bdev = bo->bdev; |
| 659 | struct ttm_resource_manager *from = ttm_manager_type(bdev, bo->resource->mem_type); |
| 660 | struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type); |
| 661 | int ret = 0; |
| 662 | |
| 663 | dma_resv_add_fence(bo->base.resv, fence, DMA_RESV_USAGE_KERNEL); |
| 664 | if (!evict) |
| 665 | ret = ttm_bo_move_to_ghost(bo, fence, man->use_tt); |
| 666 | else if (!from->use_tt && pipeline) |
| 667 | ttm_bo_move_pipeline_evict(bo, fence); |
| 668 | else |
| 669 | ret = ttm_bo_wait_free_node(bo, man->use_tt); |
| 670 | |
| 671 | if (ret) |
| 672 | return ret; |
| 673 | |
| 674 | ttm_bo_assign_mem(bo, new_mem); |
| 675 | |
| 676 | return 0; |
| 677 | } |
| 678 | EXPORT_SYMBOL(ttm_bo_move_accel_cleanup); |
| 679 | |
| 680 | /** |
| 681 | * ttm_bo_move_sync_cleanup - cleanup by waiting for the move to finish |
| 682 | * |
| 683 | * @bo: A pointer to a struct ttm_buffer_object. |
| 684 | * @new_mem: struct ttm_resource indicating where to move. |
| 685 | * |
| 686 | * Special case of ttm_bo_move_accel_cleanup where the bo is guaranteed |
| 687 | * by the caller to be idle. Typically used after memcpy buffer moves. |
| 688 | */ |
| 689 | void ttm_bo_move_sync_cleanup(struct ttm_buffer_object *bo, |
| 690 | struct ttm_resource *new_mem) |
| 691 | { |
| 692 | struct ttm_device *bdev = bo->bdev; |
| 693 | struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type); |
| 694 | int ret; |
| 695 | |
| 696 | ret = ttm_bo_wait_free_node(bo, man->use_tt); |
| 697 | if (WARN_ON(ret)) |
| 698 | return; |
| 699 | |
| 700 | ttm_bo_assign_mem(bo, new_mem); |
| 701 | } |
| 702 | EXPORT_SYMBOL(ttm_bo_move_sync_cleanup); |
| 703 | |
| 704 | /** |
| 705 | * ttm_bo_pipeline_gutting - purge the contents of a bo |
| 706 | * @bo: The buffer object |
| 707 | * |
| 708 | * Purge the contents of a bo, async if the bo is not idle. |
| 709 | * After a successful call, the bo is left unpopulated in |
| 710 | * system placement. The function may wait uninterruptible |
| 711 | * for idle on OOM. |
| 712 | * |
| 713 | * Return: 0 if successful, negative error code on failure. |
| 714 | */ |
| 715 | int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo) |
| 716 | { |
| 717 | struct ttm_buffer_object *ghost; |
| 718 | struct ttm_tt *ttm; |
| 719 | int ret; |
| 720 | |
| 721 | /* If already idle, no need for ghost object dance. */ |
| 722 | if (dma_resv_test_signaled(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP)) { |
| 723 | if (!bo->ttm) { |
| 724 | /* See comment below about clearing. */ |
| 725 | ret = ttm_tt_create(bo, true); |
| 726 | if (ret) |
| 727 | return ret; |
| 728 | } else { |
| 729 | ttm_tt_unpopulate(bo->bdev, bo->ttm); |
| 730 | if (bo->type == ttm_bo_type_device) |
| 731 | ttm_tt_mark_for_clear(bo->ttm); |
| 732 | } |
| 733 | ttm_resource_free(bo, &bo->resource); |
| 734 | return 0; |
| 735 | } |
| 736 | |
| 737 | /* |
| 738 | * We need an unpopulated ttm_tt after giving our current one, |
| 739 | * if any, to the ghost object. And we can't afford to fail |
| 740 | * creating one *after* the operation. If the bo subsequently gets |
| 741 | * resurrected, make sure it's cleared (if ttm_bo_type_device) |
| 742 | * to avoid leaking sensitive information to user-space. |
| 743 | */ |
| 744 | |
| 745 | ttm = bo->ttm; |
| 746 | bo->ttm = NULL; |
| 747 | ret = ttm_tt_create(bo, true); |
| 748 | swap(bo->ttm, ttm); |
| 749 | if (ret) |
| 750 | return ret; |
| 751 | |
| 752 | ret = ttm_buffer_object_transfer(bo, &ghost); |
| 753 | if (ret) |
| 754 | goto error_destroy_tt; |
| 755 | |
| 756 | ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv); |
| 757 | /* Last resort, wait for the BO to be idle when we are OOM */ |
| 758 | if (ret) { |
| 759 | dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, |
| 760 | false, MAX_SCHEDULE_TIMEOUT); |
| 761 | } |
| 762 | |
| 763 | dma_resv_unlock(&ghost->base._resv); |
| 764 | ttm_bo_put(ghost); |
| 765 | bo->ttm = ttm; |
| 766 | return 0; |
| 767 | |
| 768 | error_destroy_tt: |
| 769 | ttm_tt_destroy(bo->bdev, ttm); |
| 770 | return ret; |
| 771 | } |
| 772 | |
| 773 | static bool ttm_lru_walk_trylock(struct ttm_operation_ctx *ctx, |
| 774 | struct ttm_buffer_object *bo, |
| 775 | bool *needs_unlock) |
| 776 | { |
| 777 | *needs_unlock = false; |
| 778 | |
| 779 | if (dma_resv_trylock(bo->base.resv)) { |
| 780 | *needs_unlock = true; |
| 781 | return true; |
| 782 | } |
| 783 | |
| 784 | if (bo->base.resv == ctx->resv && ctx->allow_res_evict) { |
| 785 | dma_resv_assert_held(bo->base.resv); |
| 786 | return true; |
| 787 | } |
| 788 | |
| 789 | return false; |
| 790 | } |
| 791 | |
| 792 | static int ttm_lru_walk_ticketlock(struct ttm_lru_walk *walk, |
| 793 | struct ttm_buffer_object *bo, |
| 794 | bool *needs_unlock) |
| 795 | { |
| 796 | struct dma_resv *resv = bo->base.resv; |
| 797 | int ret; |
| 798 | |
| 799 | if (walk->ctx->interruptible) |
| 800 | ret = dma_resv_lock_interruptible(resv, walk->ticket); |
| 801 | else |
| 802 | ret = dma_resv_lock(resv, walk->ticket); |
| 803 | |
| 804 | if (!ret) { |
| 805 | *needs_unlock = true; |
| 806 | /* |
| 807 | * Only a single ticketlock per loop. Ticketlocks are prone |
| 808 | * to return -EDEADLK causing the eviction to fail, so |
| 809 | * after waiting for the ticketlock, revert back to |
| 810 | * trylocking for this walk. |
| 811 | */ |
| 812 | walk->ticket = NULL; |
| 813 | } else if (ret == -EDEADLK) { |
| 814 | /* Caller needs to exit the ww transaction. */ |
| 815 | ret = -ENOSPC; |
| 816 | } |
| 817 | |
| 818 | return ret; |
| 819 | } |
| 820 | |
| 821 | static void ttm_lru_walk_unlock(struct ttm_buffer_object *bo, bool locked) |
| 822 | { |
| 823 | if (locked) |
| 824 | dma_resv_unlock(bo->base.resv); |
| 825 | } |
| 826 | |
| 827 | /** |
| 828 | * ttm_lru_walk_for_evict() - Perform a LRU list walk, with actions taken on |
| 829 | * valid items. |
| 830 | * @walk: describe the walks and actions taken |
| 831 | * @bdev: The TTM device. |
| 832 | * @man: The struct ttm_resource manager whose LRU lists we're walking. |
| 833 | * @target: The end condition for the walk. |
| 834 | * |
| 835 | * The LRU lists of @man are walk, and for each struct ttm_resource encountered, |
| 836 | * the corresponding ttm_buffer_object is locked and taken a reference on, and |
| 837 | * the LRU lock is dropped. the LRU lock may be dropped before locking and, in |
| 838 | * that case, it's verified that the item actually remains on the LRU list after |
| 839 | * the lock, and that the buffer object didn't switch resource in between. |
| 840 | * |
| 841 | * With a locked object, the actions indicated by @walk->process_bo are |
| 842 | * performed, and after that, the bo is unlocked, the refcount dropped and the |
| 843 | * next struct ttm_resource is processed. Here, the walker relies on |
| 844 | * TTM's restartable LRU list implementation. |
| 845 | * |
| 846 | * Typically @walk->process_bo() would return the number of pages evicted, |
| 847 | * swapped or shrunken, so that when the total exceeds @target, or when the |
| 848 | * LRU list has been walked in full, iteration is terminated. It's also terminated |
| 849 | * on error. Note that the definition of @target is done by the caller, it |
| 850 | * could have a different meaning than the number of pages. |
| 851 | * |
| 852 | * Note that the way dma_resv individualization is done, locking needs to be done |
| 853 | * either with the LRU lock held (trylocking only) or with a reference on the |
| 854 | * object. |
| 855 | * |
| 856 | * Return: The progress made towards target or negative error code on error. |
| 857 | */ |
| 858 | s64 ttm_lru_walk_for_evict(struct ttm_lru_walk *walk, struct ttm_device *bdev, |
| 859 | struct ttm_resource_manager *man, s64 target) |
| 860 | { |
| 861 | struct ttm_resource_cursor cursor; |
| 862 | struct ttm_resource *res; |
| 863 | s64 progress = 0; |
| 864 | s64 lret; |
| 865 | |
| 866 | spin_lock(&bdev->lru_lock); |
| 867 | ttm_resource_cursor_init(&cursor, man); |
| 868 | ttm_resource_manager_for_each_res(&cursor, res) { |
| 869 | struct ttm_buffer_object *bo = res->bo; |
| 870 | bool bo_needs_unlock = false; |
| 871 | bool bo_locked = false; |
| 872 | int mem_type; |
| 873 | |
| 874 | /* |
| 875 | * Attempt a trylock before taking a reference on the bo, |
| 876 | * since if we do it the other way around, and the trylock fails, |
| 877 | * we need to drop the lru lock to put the bo. |
| 878 | */ |
| 879 | if (ttm_lru_walk_trylock(walk->ctx, bo, &bo_needs_unlock)) |
| 880 | bo_locked = true; |
| 881 | else if (!walk->ticket || walk->ctx->no_wait_gpu || |
| 882 | walk->trylock_only) |
| 883 | continue; |
| 884 | |
| 885 | if (!ttm_bo_get_unless_zero(bo)) { |
| 886 | ttm_lru_walk_unlock(bo, bo_needs_unlock); |
| 887 | continue; |
| 888 | } |
| 889 | |
| 890 | mem_type = res->mem_type; |
| 891 | spin_unlock(&bdev->lru_lock); |
| 892 | |
| 893 | lret = 0; |
| 894 | if (!bo_locked) |
| 895 | lret = ttm_lru_walk_ticketlock(walk, bo, &bo_needs_unlock); |
| 896 | |
| 897 | /* |
| 898 | * Note that in between the release of the lru lock and the |
| 899 | * ticketlock, the bo may have switched resource, |
| 900 | * and also memory type, since the resource may have been |
| 901 | * freed and allocated again with a different memory type. |
| 902 | * In that case, just skip it. |
| 903 | */ |
| 904 | if (!lret && bo->resource && bo->resource->mem_type == mem_type) |
| 905 | lret = walk->ops->process_bo(walk, bo); |
| 906 | |
| 907 | ttm_lru_walk_unlock(bo, bo_needs_unlock); |
| 908 | ttm_bo_put(bo); |
| 909 | if (lret == -EBUSY || lret == -EALREADY) |
| 910 | lret = 0; |
| 911 | progress = (lret < 0) ? lret : progress + lret; |
| 912 | |
| 913 | spin_lock(&bdev->lru_lock); |
| 914 | if (progress < 0 || progress >= target) |
| 915 | break; |
| 916 | } |
| 917 | ttm_resource_cursor_fini(&cursor); |
| 918 | spin_unlock(&bdev->lru_lock); |
| 919 | |
| 920 | return progress; |
| 921 | } |
| 922 | EXPORT_SYMBOL(ttm_lru_walk_for_evict); |
| 923 | |
| 924 | static void ttm_bo_lru_cursor_cleanup_bo(struct ttm_bo_lru_cursor *curs) |
| 925 | { |
| 926 | struct ttm_buffer_object *bo = curs->bo; |
| 927 | |
| 928 | if (bo) { |
| 929 | if (curs->needs_unlock) |
| 930 | dma_resv_unlock(bo->base.resv); |
| 931 | ttm_bo_put(bo); |
| 932 | curs->bo = NULL; |
| 933 | } |
| 934 | } |
| 935 | |
| 936 | /** |
| 937 | * ttm_bo_lru_cursor_fini() - Stop using a struct ttm_bo_lru_cursor |
| 938 | * and clean up any iteration it was used for. |
| 939 | * @curs: The cursor. |
| 940 | */ |
| 941 | void ttm_bo_lru_cursor_fini(struct ttm_bo_lru_cursor *curs) |
| 942 | { |
| 943 | spinlock_t *lru_lock = &curs->res_curs.man->bdev->lru_lock; |
| 944 | |
| 945 | ttm_bo_lru_cursor_cleanup_bo(curs); |
| 946 | spin_lock(lru_lock); |
| 947 | ttm_resource_cursor_fini(&curs->res_curs); |
| 948 | spin_unlock(lru_lock); |
| 949 | } |
| 950 | EXPORT_SYMBOL(ttm_bo_lru_cursor_fini); |
| 951 | |
| 952 | /** |
| 953 | * ttm_bo_lru_cursor_init() - Initialize a struct ttm_bo_lru_cursor |
| 954 | * @curs: The ttm_bo_lru_cursor to initialize. |
| 955 | * @man: The ttm resource_manager whose LRU lists to iterate over. |
| 956 | * @ctx: The ttm_operation_ctx to govern the locking. |
| 957 | * |
| 958 | * Initialize a struct ttm_bo_lru_cursor. Currently only trylocking |
| 959 | * or prelocked buffer objects are available as detailed by |
| 960 | * @ctx::resv and @ctx::allow_res_evict. Ticketlocking is not |
| 961 | * supported. |
| 962 | * |
| 963 | * Return: Pointer to @curs. The function does not fail. |
| 964 | */ |
| 965 | struct ttm_bo_lru_cursor * |
| 966 | ttm_bo_lru_cursor_init(struct ttm_bo_lru_cursor *curs, |
| 967 | struct ttm_resource_manager *man, |
| 968 | struct ttm_operation_ctx *ctx) |
| 969 | { |
| 970 | memset(curs, 0, sizeof(*curs)); |
| 971 | ttm_resource_cursor_init(&curs->res_curs, man); |
| 972 | curs->ctx = ctx; |
| 973 | |
| 974 | return curs; |
| 975 | } |
| 976 | EXPORT_SYMBOL(ttm_bo_lru_cursor_init); |
| 977 | |
| 978 | static struct ttm_buffer_object * |
| 979 | ttm_bo_from_res_reserved(struct ttm_resource *res, struct ttm_bo_lru_cursor *curs) |
| 980 | { |
| 981 | struct ttm_buffer_object *bo = res->bo; |
| 982 | |
| 983 | if (!ttm_lru_walk_trylock(curs->ctx, bo, &curs->needs_unlock)) |
| 984 | return NULL; |
| 985 | |
| 986 | if (!ttm_bo_get_unless_zero(bo)) { |
| 987 | if (curs->needs_unlock) |
| 988 | dma_resv_unlock(bo->base.resv); |
| 989 | return NULL; |
| 990 | } |
| 991 | |
| 992 | curs->bo = bo; |
| 993 | return bo; |
| 994 | } |
| 995 | |
| 996 | /** |
| 997 | * ttm_bo_lru_cursor_next() - Continue iterating a manager's LRU lists |
| 998 | * to find and lock buffer object. |
| 999 | * @curs: The cursor initialized using ttm_bo_lru_cursor_init() and |
| 1000 | * ttm_bo_lru_cursor_first(). |
| 1001 | * |
| 1002 | * Return: A pointer to a locked and reference-counted buffer object, |
| 1003 | * or NULL if none could be found and looping should be terminated. |
| 1004 | */ |
| 1005 | struct ttm_buffer_object *ttm_bo_lru_cursor_next(struct ttm_bo_lru_cursor *curs) |
| 1006 | { |
| 1007 | spinlock_t *lru_lock = &curs->res_curs.man->bdev->lru_lock; |
| 1008 | struct ttm_resource *res = NULL; |
| 1009 | struct ttm_buffer_object *bo; |
| 1010 | |
| 1011 | ttm_bo_lru_cursor_cleanup_bo(curs); |
| 1012 | |
| 1013 | spin_lock(lru_lock); |
| 1014 | for (;;) { |
| 1015 | res = ttm_resource_manager_next(&curs->res_curs); |
| 1016 | if (!res) |
| 1017 | break; |
| 1018 | |
| 1019 | bo = ttm_bo_from_res_reserved(res, curs); |
| 1020 | if (bo) |
| 1021 | break; |
| 1022 | } |
| 1023 | |
| 1024 | spin_unlock(lru_lock); |
| 1025 | return res ? bo : NULL; |
| 1026 | } |
| 1027 | EXPORT_SYMBOL(ttm_bo_lru_cursor_next); |
| 1028 | |
| 1029 | /** |
| 1030 | * ttm_bo_lru_cursor_first() - Start iterating a manager's LRU lists |
| 1031 | * to find and lock buffer object. |
| 1032 | * @curs: The cursor initialized using ttm_bo_lru_cursor_init(). |
| 1033 | * |
| 1034 | * Return: A pointer to a locked and reference-counted buffer object, |
| 1035 | * or NULL if none could be found and looping should be terminated. |
| 1036 | */ |
| 1037 | struct ttm_buffer_object *ttm_bo_lru_cursor_first(struct ttm_bo_lru_cursor *curs) |
| 1038 | { |
| 1039 | spinlock_t *lru_lock = &curs->res_curs.man->bdev->lru_lock; |
| 1040 | struct ttm_buffer_object *bo; |
| 1041 | struct ttm_resource *res; |
| 1042 | |
| 1043 | spin_lock(lru_lock); |
| 1044 | res = ttm_resource_manager_first(&curs->res_curs); |
| 1045 | if (!res) { |
| 1046 | spin_unlock(lru_lock); |
| 1047 | return NULL; |
| 1048 | } |
| 1049 | |
| 1050 | bo = ttm_bo_from_res_reserved(res, curs); |
| 1051 | spin_unlock(lru_lock); |
| 1052 | |
| 1053 | return bo ? bo : ttm_bo_lru_cursor_next(curs); |
| 1054 | } |
| 1055 | EXPORT_SYMBOL(ttm_bo_lru_cursor_first); |
| 1056 | |
| 1057 | /** |
| 1058 | * ttm_bo_shrink() - Helper to shrink a ttm buffer object. |
| 1059 | * @ctx: The struct ttm_operation_ctx used for the shrinking operation. |
| 1060 | * @bo: The buffer object. |
| 1061 | * @flags: Flags governing the shrinking behaviour. |
| 1062 | * |
| 1063 | * The function uses the ttm_tt_back_up functionality to back up or |
| 1064 | * purge a struct ttm_tt. If the bo is not in system, it's first |
| 1065 | * moved there. |
| 1066 | * |
| 1067 | * Return: The number of pages shrunken or purged, or |
| 1068 | * negative error code on failure. |
| 1069 | */ |
| 1070 | long ttm_bo_shrink(struct ttm_operation_ctx *ctx, struct ttm_buffer_object *bo, |
| 1071 | const struct ttm_bo_shrink_flags flags) |
| 1072 | { |
| 1073 | static const struct ttm_place sys_placement_flags = { |
| 1074 | .fpfn = 0, |
| 1075 | .lpfn = 0, |
| 1076 | .mem_type = TTM_PL_SYSTEM, |
| 1077 | .flags = 0, |
| 1078 | }; |
| 1079 | static struct ttm_placement sys_placement = { |
| 1080 | .num_placement = 1, |
| 1081 | .placement = &sys_placement_flags, |
| 1082 | }; |
| 1083 | struct ttm_tt *tt = bo->ttm; |
| 1084 | long lret; |
| 1085 | |
| 1086 | dma_resv_assert_held(bo->base.resv); |
| 1087 | |
| 1088 | if (flags.allow_move && bo->resource->mem_type != TTM_PL_SYSTEM) { |
| 1089 | int ret = ttm_bo_validate(bo, &sys_placement, ctx); |
| 1090 | |
| 1091 | /* Consider -ENOMEM and -ENOSPC non-fatal. */ |
| 1092 | if (ret) { |
| 1093 | if (ret == -ENOMEM || ret == -ENOSPC) |
| 1094 | ret = -EBUSY; |
| 1095 | return ret; |
| 1096 | } |
| 1097 | } |
| 1098 | |
| 1099 | ttm_bo_unmap_virtual(bo); |
| 1100 | lret = ttm_bo_wait_ctx(bo, ctx); |
| 1101 | if (lret < 0) |
| 1102 | return lret; |
| 1103 | |
| 1104 | if (bo->bulk_move) { |
| 1105 | spin_lock(&bo->bdev->lru_lock); |
| 1106 | ttm_resource_del_bulk_move(bo->resource, bo); |
| 1107 | spin_unlock(&bo->bdev->lru_lock); |
| 1108 | } |
| 1109 | |
| 1110 | lret = ttm_tt_backup(bo->bdev, tt, (struct ttm_backup_flags) |
| 1111 | {.purge = flags.purge, |
| 1112 | .writeback = flags.writeback}); |
| 1113 | |
| 1114 | if (lret <= 0 && bo->bulk_move) { |
| 1115 | spin_lock(&bo->bdev->lru_lock); |
| 1116 | ttm_resource_add_bulk_move(bo->resource, bo); |
| 1117 | spin_unlock(&bo->bdev->lru_lock); |
| 1118 | } |
| 1119 | |
| 1120 | if (lret < 0 && lret != -EINTR) |
| 1121 | return -EBUSY; |
| 1122 | |
| 1123 | return lret; |
| 1124 | } |
| 1125 | EXPORT_SYMBOL(ttm_bo_shrink); |
| 1126 | |
| 1127 | /** |
| 1128 | * ttm_bo_shrink_suitable() - Whether a bo is suitable for shinking |
| 1129 | * @ctx: The struct ttm_operation_ctx governing the shrinking. |
| 1130 | * @bo: The candidate for shrinking. |
| 1131 | * |
| 1132 | * Check whether the object, given the information available to TTM, |
| 1133 | * is suitable for shinking, This function can and should be used |
| 1134 | * before attempting to shrink an object. |
| 1135 | * |
| 1136 | * Return: true if suitable. false if not. |
| 1137 | */ |
| 1138 | bool ttm_bo_shrink_suitable(struct ttm_buffer_object *bo, struct ttm_operation_ctx *ctx) |
| 1139 | { |
| 1140 | return bo->ttm && ttm_tt_is_populated(bo->ttm) && !bo->pin_count && |
| 1141 | (!ctx->no_wait_gpu || |
| 1142 | dma_resv_test_signaled(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP)); |
| 1143 | } |
| 1144 | EXPORT_SYMBOL(ttm_bo_shrink_suitable); |
| 1145 | |
| 1146 | /** |
| 1147 | * ttm_bo_shrink_avoid_wait() - Whether to avoid waiting for GPU |
| 1148 | * during shrinking |
| 1149 | * |
| 1150 | * In some situations, like direct reclaim, waiting (in particular gpu waiting) |
| 1151 | * should be avoided since it may stall a system that could otherwise make progress |
| 1152 | * shrinking something else less time consuming. |
| 1153 | * |
| 1154 | * Return: true if gpu waiting should be avoided, false if not. |
| 1155 | */ |
| 1156 | bool ttm_bo_shrink_avoid_wait(void) |
| 1157 | { |
| 1158 | return !current_is_kswapd(); |
| 1159 | } |
| 1160 | EXPORT_SYMBOL(ttm_bo_shrink_avoid_wait); |