drm/i915/cml: Remove unsupport PCI ID
[linux-2.6-block.git] / drivers / gpu / drm / i915 / intel_device_info.c
... / ...
CommitLineData
1/*
2 * Copyright © 2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25#include <drm/drm_print.h>
26
27#include "intel_device_info.h"
28#include "i915_drv.h"
29
30#define PLATFORM_NAME(x) [INTEL_##x] = #x
31static const char * const platform_names[] = {
32 PLATFORM_NAME(I830),
33 PLATFORM_NAME(I845G),
34 PLATFORM_NAME(I85X),
35 PLATFORM_NAME(I865G),
36 PLATFORM_NAME(I915G),
37 PLATFORM_NAME(I915GM),
38 PLATFORM_NAME(I945G),
39 PLATFORM_NAME(I945GM),
40 PLATFORM_NAME(G33),
41 PLATFORM_NAME(PINEVIEW),
42 PLATFORM_NAME(I965G),
43 PLATFORM_NAME(I965GM),
44 PLATFORM_NAME(G45),
45 PLATFORM_NAME(GM45),
46 PLATFORM_NAME(IRONLAKE),
47 PLATFORM_NAME(SANDYBRIDGE),
48 PLATFORM_NAME(IVYBRIDGE),
49 PLATFORM_NAME(VALLEYVIEW),
50 PLATFORM_NAME(HASWELL),
51 PLATFORM_NAME(BROADWELL),
52 PLATFORM_NAME(CHERRYVIEW),
53 PLATFORM_NAME(SKYLAKE),
54 PLATFORM_NAME(BROXTON),
55 PLATFORM_NAME(KABYLAKE),
56 PLATFORM_NAME(GEMINILAKE),
57 PLATFORM_NAME(COFFEELAKE),
58 PLATFORM_NAME(CANNONLAKE),
59 PLATFORM_NAME(ICELAKE),
60 PLATFORM_NAME(ELKHARTLAKE),
61 PLATFORM_NAME(TIGERLAKE),
62};
63#undef PLATFORM_NAME
64
65const char *intel_platform_name(enum intel_platform platform)
66{
67 BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);
68
69 if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
70 platform_names[platform] == NULL))
71 return "<unknown>";
72
73 return platform_names[platform];
74}
75
76static const char *iommu_name(void)
77{
78 const char *msg = "n/a";
79
80#ifdef CONFIG_INTEL_IOMMU
81 msg = enableddisabled(intel_iommu_gfx_mapped);
82#endif
83
84 return msg;
85}
86
87void intel_device_info_print_static(const struct intel_device_info *info,
88 struct drm_printer *p)
89{
90 drm_printf(p, "engines: %x\n", info->engine_mask);
91 drm_printf(p, "gen: %d\n", info->gen);
92 drm_printf(p, "gt: %d\n", info->gt);
93 drm_printf(p, "iommu: %s\n", iommu_name());
94 drm_printf(p, "memory-regions: %x\n", info->memory_regions);
95 drm_printf(p, "page-sizes: %x\n", info->page_sizes);
96 drm_printf(p, "platform: %s\n", intel_platform_name(info->platform));
97 drm_printf(p, "ppgtt-size: %d\n", info->ppgtt_size);
98 drm_printf(p, "ppgtt-type: %d\n", info->ppgtt_type);
99
100#define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
101 DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
102#undef PRINT_FLAG
103
104#define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->display.name));
105 DEV_INFO_DISPLAY_FOR_EACH_FLAG(PRINT_FLAG);
106#undef PRINT_FLAG
107}
108
109static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
110{
111 int s;
112
113 drm_printf(p, "slice total: %u, mask=%04x\n",
114 hweight8(sseu->slice_mask), sseu->slice_mask);
115 drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu));
116 for (s = 0; s < sseu->max_slices; s++) {
117 drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
118 s, intel_sseu_subslices_per_slice(sseu, s),
119 intel_sseu_get_subslices(sseu, s));
120 }
121 drm_printf(p, "EU total: %u\n", sseu->eu_total);
122 drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
123 drm_printf(p, "has slice power gating: %s\n",
124 yesno(sseu->has_slice_pg));
125 drm_printf(p, "has subslice power gating: %s\n",
126 yesno(sseu->has_subslice_pg));
127 drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
128}
129
130void intel_device_info_print_runtime(const struct intel_runtime_info *info,
131 struct drm_printer *p)
132{
133 sseu_dump(&info->sseu, p);
134
135 drm_printf(p, "CS timestamp frequency: %u kHz\n",
136 info->cs_timestamp_frequency_khz);
137}
138
139static int sseu_eu_idx(const struct sseu_dev_info *sseu, int slice,
140 int subslice)
141{
142 int slice_stride = sseu->max_subslices * sseu->eu_stride;
143
144 return slice * slice_stride + subslice * sseu->eu_stride;
145}
146
147static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
148 int subslice)
149{
150 int i, offset = sseu_eu_idx(sseu, slice, subslice);
151 u16 eu_mask = 0;
152
153 for (i = 0; i < sseu->eu_stride; i++) {
154 eu_mask |= ((u16)sseu->eu_mask[offset + i]) <<
155 (i * BITS_PER_BYTE);
156 }
157
158 return eu_mask;
159}
160
161static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
162 u16 eu_mask)
163{
164 int i, offset = sseu_eu_idx(sseu, slice, subslice);
165
166 for (i = 0; i < sseu->eu_stride; i++) {
167 sseu->eu_mask[offset + i] =
168 (eu_mask >> (BITS_PER_BYTE * i)) & 0xff;
169 }
170}
171
172void intel_device_info_print_topology(const struct sseu_dev_info *sseu,
173 struct drm_printer *p)
174{
175 int s, ss;
176
177 if (sseu->max_slices == 0) {
178 drm_printf(p, "Unavailable\n");
179 return;
180 }
181
182 for (s = 0; s < sseu->max_slices; s++) {
183 drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
184 s, intel_sseu_subslices_per_slice(sseu, s),
185 intel_sseu_get_subslices(sseu, s));
186
187 for (ss = 0; ss < sseu->max_subslices; ss++) {
188 u16 enabled_eus = sseu_get_eus(sseu, s, ss);
189
190 drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
191 ss, hweight16(enabled_eus), enabled_eus);
192 }
193 }
194}
195
196static u16 compute_eu_total(const struct sseu_dev_info *sseu)
197{
198 u16 i, total = 0;
199
200 for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
201 total += hweight8(sseu->eu_mask[i]);
202
203 return total;
204}
205
206static void gen11_compute_sseu_info(struct sseu_dev_info *sseu,
207 u8 s_en, u32 ss_en, u16 eu_en)
208{
209 int s, ss;
210
211 /* ss_en represents entire subslice mask across all slices */
212 GEM_BUG_ON(sseu->max_slices * sseu->max_subslices >
213 sizeof(ss_en) * BITS_PER_BYTE);
214
215 for (s = 0; s < sseu->max_slices; s++) {
216 if ((s_en & BIT(s)) == 0)
217 continue;
218
219 sseu->slice_mask |= BIT(s);
220
221 intel_sseu_set_subslices(sseu, s, ss_en);
222
223 for (ss = 0; ss < sseu->max_subslices; ss++)
224 if (intel_sseu_has_subslice(sseu, s, ss))
225 sseu_set_eus(sseu, s, ss, eu_en);
226 }
227 sseu->eu_per_subslice = hweight16(eu_en);
228 sseu->eu_total = compute_eu_total(sseu);
229}
230
231static void gen12_sseu_info_init(struct drm_i915_private *dev_priv)
232{
233 struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
234 u8 s_en;
235 u32 dss_en;
236 u16 eu_en = 0;
237 u8 eu_en_fuse;
238 int eu;
239
240 /*
241 * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS.
242 * Instead of splitting these, provide userspace with an array
243 * of DSS to more closely represent the hardware resource.
244 */
245 intel_sseu_set_info(sseu, 1, 6, 16);
246
247 s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
248
249 dss_en = I915_READ(GEN12_GT_DSS_ENABLE);
250
251 /* one bit per pair of EUs */
252 eu_en_fuse = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);
253 for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
254 if (eu_en_fuse & BIT(eu))
255 eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
256
257 gen11_compute_sseu_info(sseu, s_en, dss_en, eu_en);
258
259 /* TGL only supports slice-level power gating */
260 sseu->has_slice_pg = 1;
261}
262
263static void gen11_sseu_info_init(struct drm_i915_private *dev_priv)
264{
265 struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
266 u8 s_en;
267 u32 ss_en;
268 u8 eu_en;
269
270 if (IS_ELKHARTLAKE(dev_priv))
271 intel_sseu_set_info(sseu, 1, 4, 8);
272 else
273 intel_sseu_set_info(sseu, 1, 8, 8);
274
275 s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
276 ss_en = ~I915_READ(GEN11_GT_SUBSLICE_DISABLE);
277 eu_en = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);
278
279 gen11_compute_sseu_info(sseu, s_en, ss_en, eu_en);
280
281 /* ICL has no power gating restrictions. */
282 sseu->has_slice_pg = 1;
283 sseu->has_subslice_pg = 1;
284 sseu->has_eu_pg = 1;
285}
286
287static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
288{
289 struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
290 const u32 fuse2 = I915_READ(GEN8_FUSE2);
291 int s, ss;
292 const int eu_mask = 0xff;
293 u32 subslice_mask, eu_en;
294
295 intel_sseu_set_info(sseu, 6, 4, 8);
296
297 sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
298 GEN10_F2_S_ENA_SHIFT;
299
300 /* Slice0 */
301 eu_en = ~I915_READ(GEN8_EU_DISABLE0);
302 for (ss = 0; ss < sseu->max_subslices; ss++)
303 sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
304 /* Slice1 */
305 sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
306 eu_en = ~I915_READ(GEN8_EU_DISABLE1);
307 sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
308 /* Slice2 */
309 sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
310 sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
311 /* Slice3 */
312 sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
313 eu_en = ~I915_READ(GEN8_EU_DISABLE2);
314 sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
315 /* Slice4 */
316 sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
317 sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
318 /* Slice5 */
319 sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
320 eu_en = ~I915_READ(GEN10_EU_DISABLE3);
321 sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);
322
323 subslice_mask = (1 << 4) - 1;
324 subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
325 GEN10_F2_SS_DIS_SHIFT);
326
327 for (s = 0; s < sseu->max_slices; s++) {
328 u32 subslice_mask_with_eus = subslice_mask;
329
330 for (ss = 0; ss < sseu->max_subslices; ss++) {
331 if (sseu_get_eus(sseu, s, ss) == 0)
332 subslice_mask_with_eus &= ~BIT(ss);
333 }
334
335 /*
336 * Slice0 can have up to 3 subslices, but there are only 2 in
337 * slice1/2.
338 */
339 intel_sseu_set_subslices(sseu, s, s == 0 ?
340 subslice_mask_with_eus :
341 subslice_mask_with_eus & 0x3);
342 }
343
344 sseu->eu_total = compute_eu_total(sseu);
345
346 /*
347 * CNL is expected to always have a uniform distribution
348 * of EU across subslices with the exception that any one
349 * EU in any one subslice may be fused off for die
350 * recovery.
351 */
352 sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
353 DIV_ROUND_UP(sseu->eu_total,
354 intel_sseu_subslice_total(sseu)) :
355 0;
356
357 /* No restrictions on Power Gating */
358 sseu->has_slice_pg = 1;
359 sseu->has_subslice_pg = 1;
360 sseu->has_eu_pg = 1;
361}
362
363static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
364{
365 struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
366 u32 fuse;
367 u8 subslice_mask = 0;
368
369 fuse = I915_READ(CHV_FUSE_GT);
370
371 sseu->slice_mask = BIT(0);
372 intel_sseu_set_info(sseu, 1, 2, 8);
373
374 if (!(fuse & CHV_FGT_DISABLE_SS0)) {
375 u8 disabled_mask =
376 ((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
377 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
378 (((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
379 CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
380
381 subslice_mask |= BIT(0);
382 sseu_set_eus(sseu, 0, 0, ~disabled_mask);
383 }
384
385 if (!(fuse & CHV_FGT_DISABLE_SS1)) {
386 u8 disabled_mask =
387 ((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
388 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
389 (((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
390 CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
391
392 subslice_mask |= BIT(1);
393 sseu_set_eus(sseu, 0, 1, ~disabled_mask);
394 }
395
396 intel_sseu_set_subslices(sseu, 0, subslice_mask);
397
398 sseu->eu_total = compute_eu_total(sseu);
399
400 /*
401 * CHV expected to always have a uniform distribution of EU
402 * across subslices.
403 */
404 sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
405 sseu->eu_total /
406 intel_sseu_subslice_total(sseu) :
407 0;
408 /*
409 * CHV supports subslice power gating on devices with more than
410 * one subslice, and supports EU power gating on devices with
411 * more than one EU pair per subslice.
412 */
413 sseu->has_slice_pg = 0;
414 sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
415 sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
416}
417
418static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
419{
420 struct intel_device_info *info = mkwrite_device_info(dev_priv);
421 struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
422 int s, ss;
423 u32 fuse2, eu_disable, subslice_mask;
424 const u8 eu_mask = 0xff;
425
426 fuse2 = I915_READ(GEN8_FUSE2);
427 sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
428
429 /* BXT has a single slice and at most 3 subslices. */
430 intel_sseu_set_info(sseu, IS_GEN9_LP(dev_priv) ? 1 : 3,
431 IS_GEN9_LP(dev_priv) ? 3 : 4, 8);
432
433 /*
434 * The subslice disable field is global, i.e. it applies
435 * to each of the enabled slices.
436 */
437 subslice_mask = (1 << sseu->max_subslices) - 1;
438 subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
439 GEN9_F2_SS_DIS_SHIFT);
440
441 /*
442 * Iterate through enabled slices and subslices to
443 * count the total enabled EU.
444 */
445 for (s = 0; s < sseu->max_slices; s++) {
446 if (!(sseu->slice_mask & BIT(s)))
447 /* skip disabled slice */
448 continue;
449
450 intel_sseu_set_subslices(sseu, s, subslice_mask);
451
452 eu_disable = I915_READ(GEN9_EU_DISABLE(s));
453 for (ss = 0; ss < sseu->max_subslices; ss++) {
454 int eu_per_ss;
455 u8 eu_disabled_mask;
456
457 if (!intel_sseu_has_subslice(sseu, s, ss))
458 /* skip disabled subslice */
459 continue;
460
461 eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
462
463 sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
464
465 eu_per_ss = sseu->max_eus_per_subslice -
466 hweight8(eu_disabled_mask);
467
468 /*
469 * Record which subslice(s) has(have) 7 EUs. we
470 * can tune the hash used to spread work among
471 * subslices if they are unbalanced.
472 */
473 if (eu_per_ss == 7)
474 sseu->subslice_7eu[s] |= BIT(ss);
475 }
476 }
477
478 sseu->eu_total = compute_eu_total(sseu);
479
480 /*
481 * SKL is expected to always have a uniform distribution
482 * of EU across subslices with the exception that any one
483 * EU in any one subslice may be fused off for die
484 * recovery. BXT is expected to be perfectly uniform in EU
485 * distribution.
486 */
487 sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
488 DIV_ROUND_UP(sseu->eu_total,
489 intel_sseu_subslice_total(sseu)) :
490 0;
491 /*
492 * SKL+ supports slice power gating on devices with more than
493 * one slice, and supports EU power gating on devices with
494 * more than one EU pair per subslice. BXT+ supports subslice
495 * power gating on devices with more than one subslice, and
496 * supports EU power gating on devices with more than one EU
497 * pair per subslice.
498 */
499 sseu->has_slice_pg =
500 !IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
501 sseu->has_subslice_pg =
502 IS_GEN9_LP(dev_priv) && intel_sseu_subslice_total(sseu) > 1;
503 sseu->has_eu_pg = sseu->eu_per_subslice > 2;
504
505 if (IS_GEN9_LP(dev_priv)) {
506#define IS_SS_DISABLED(ss) (!(sseu->subslice_mask[0] & BIT(ss)))
507 info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
508
509 sseu->min_eu_in_pool = 0;
510 if (info->has_pooled_eu) {
511 if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
512 sseu->min_eu_in_pool = 3;
513 else if (IS_SS_DISABLED(1))
514 sseu->min_eu_in_pool = 6;
515 else
516 sseu->min_eu_in_pool = 9;
517 }
518#undef IS_SS_DISABLED
519 }
520}
521
522static void broadwell_sseu_info_init(struct drm_i915_private *dev_priv)
523{
524 struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
525 int s, ss;
526 u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
527
528 fuse2 = I915_READ(GEN8_FUSE2);
529 sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
530 intel_sseu_set_info(sseu, 3, 3, 8);
531
532 /*
533 * The subslice disable field is global, i.e. it applies
534 * to each of the enabled slices.
535 */
536 subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
537 subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
538 GEN8_F2_SS_DIS_SHIFT);
539
540 eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
541 eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
542 ((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
543 (32 - GEN8_EU_DIS0_S1_SHIFT));
544 eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
545 ((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
546 (32 - GEN8_EU_DIS1_S2_SHIFT));
547
548 /*
549 * Iterate through enabled slices and subslices to
550 * count the total enabled EU.
551 */
552 for (s = 0; s < sseu->max_slices; s++) {
553 if (!(sseu->slice_mask & BIT(s)))
554 /* skip disabled slice */
555 continue;
556
557 intel_sseu_set_subslices(sseu, s, subslice_mask);
558
559 for (ss = 0; ss < sseu->max_subslices; ss++) {
560 u8 eu_disabled_mask;
561 u32 n_disabled;
562
563 if (!intel_sseu_has_subslice(sseu, s, ss))
564 /* skip disabled subslice */
565 continue;
566
567 eu_disabled_mask =
568 eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
569
570 sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
571
572 n_disabled = hweight8(eu_disabled_mask);
573
574 /*
575 * Record which subslices have 7 EUs.
576 */
577 if (sseu->max_eus_per_subslice - n_disabled == 7)
578 sseu->subslice_7eu[s] |= 1 << ss;
579 }
580 }
581
582 sseu->eu_total = compute_eu_total(sseu);
583
584 /*
585 * BDW is expected to always have a uniform distribution of EU across
586 * subslices with the exception that any one EU in any one subslice may
587 * be fused off for die recovery.
588 */
589 sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
590 DIV_ROUND_UP(sseu->eu_total,
591 intel_sseu_subslice_total(sseu)) :
592 0;
593
594 /*
595 * BDW supports slice power gating on devices with more than
596 * one slice.
597 */
598 sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
599 sseu->has_subslice_pg = 0;
600 sseu->has_eu_pg = 0;
601}
602
603static void haswell_sseu_info_init(struct drm_i915_private *dev_priv)
604{
605 struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
606 u32 fuse1;
607 u8 subslice_mask = 0;
608 int s, ss;
609
610 /*
611 * There isn't a register to tell us how many slices/subslices. We
612 * work off the PCI-ids here.
613 */
614 switch (INTEL_INFO(dev_priv)->gt) {
615 default:
616 MISSING_CASE(INTEL_INFO(dev_priv)->gt);
617 /* fall through */
618 case 1:
619 sseu->slice_mask = BIT(0);
620 subslice_mask = BIT(0);
621 break;
622 case 2:
623 sseu->slice_mask = BIT(0);
624 subslice_mask = BIT(0) | BIT(1);
625 break;
626 case 3:
627 sseu->slice_mask = BIT(0) | BIT(1);
628 subslice_mask = BIT(0) | BIT(1);
629 break;
630 }
631
632 fuse1 = I915_READ(HSW_PAVP_FUSE1);
633 switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
634 default:
635 MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
636 HSW_F1_EU_DIS_SHIFT);
637 /* fall through */
638 case HSW_F1_EU_DIS_10EUS:
639 sseu->eu_per_subslice = 10;
640 break;
641 case HSW_F1_EU_DIS_8EUS:
642 sseu->eu_per_subslice = 8;
643 break;
644 case HSW_F1_EU_DIS_6EUS:
645 sseu->eu_per_subslice = 6;
646 break;
647 }
648
649 intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
650 hweight8(subslice_mask),
651 sseu->eu_per_subslice);
652
653 for (s = 0; s < sseu->max_slices; s++) {
654 intel_sseu_set_subslices(sseu, s, subslice_mask);
655
656 for (ss = 0; ss < sseu->max_subslices; ss++) {
657 sseu_set_eus(sseu, s, ss,
658 (1UL << sseu->eu_per_subslice) - 1);
659 }
660 }
661
662 sseu->eu_total = compute_eu_total(sseu);
663
664 /* No powergating for you. */
665 sseu->has_slice_pg = 0;
666 sseu->has_subslice_pg = 0;
667 sseu->has_eu_pg = 0;
668}
669
670static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
671{
672 u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
673 u32 base_freq, frac_freq;
674
675 base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
676 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
677 base_freq *= 1000;
678
679 frac_freq = ((ts_override &
680 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
681 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
682 frac_freq = 1000 / (frac_freq + 1);
683
684 return base_freq + frac_freq;
685}
686
687static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
688 u32 rpm_config_reg)
689{
690 u32 f19_2_mhz = 19200;
691 u32 f24_mhz = 24000;
692 u32 crystal_clock = (rpm_config_reg &
693 GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
694 GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
695
696 switch (crystal_clock) {
697 case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
698 return f19_2_mhz;
699 case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
700 return f24_mhz;
701 default:
702 MISSING_CASE(crystal_clock);
703 return 0;
704 }
705}
706
707static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
708 u32 rpm_config_reg)
709{
710 u32 f19_2_mhz = 19200;
711 u32 f24_mhz = 24000;
712 u32 f25_mhz = 25000;
713 u32 f38_4_mhz = 38400;
714 u32 crystal_clock = (rpm_config_reg &
715 GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
716 GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
717
718 switch (crystal_clock) {
719 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
720 return f24_mhz;
721 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
722 return f19_2_mhz;
723 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
724 return f38_4_mhz;
725 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
726 return f25_mhz;
727 default:
728 MISSING_CASE(crystal_clock);
729 return 0;
730 }
731}
732
733static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
734{
735 u32 f12_5_mhz = 12500;
736 u32 f19_2_mhz = 19200;
737 u32 f24_mhz = 24000;
738
739 if (INTEL_GEN(dev_priv) <= 4) {
740 /* PRMs say:
741 *
742 * "The value in this register increments once every 16
743 * hclks." (through the “Clocking Configuration”
744 * (“CLKCFG”) MCHBAR register)
745 */
746 return dev_priv->rawclk_freq / 16;
747 } else if (INTEL_GEN(dev_priv) <= 8) {
748 /* PRMs say:
749 *
750 * "The PCU TSC counts 10ns increments; this timestamp
751 * reflects bits 38:3 of the TSC (i.e. 80ns granularity,
752 * rolling over every 1.5 hours).
753 */
754 return f12_5_mhz;
755 } else if (INTEL_GEN(dev_priv) <= 9) {
756 u32 ctc_reg = I915_READ(CTC_MODE);
757 u32 freq = 0;
758
759 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
760 freq = read_reference_ts_freq(dev_priv);
761 } else {
762 freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;
763
764 /* Now figure out how the command stream's timestamp
765 * register increments from this frequency (it might
766 * increment only every few clock cycle).
767 */
768 freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
769 CTC_SHIFT_PARAMETER_SHIFT);
770 }
771
772 return freq;
773 } else if (INTEL_GEN(dev_priv) <= 12) {
774 u32 ctc_reg = I915_READ(CTC_MODE);
775 u32 freq = 0;
776
777 /* First figure out the reference frequency. There are 2 ways
778 * we can compute the frequency, either through the
779 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
780 * tells us which one we should use.
781 */
782 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
783 freq = read_reference_ts_freq(dev_priv);
784 } else {
785 u32 rpm_config_reg = I915_READ(RPM_CONFIG0);
786
787 if (INTEL_GEN(dev_priv) <= 10)
788 freq = gen10_get_crystal_clock_freq(dev_priv,
789 rpm_config_reg);
790 else
791 freq = gen11_get_crystal_clock_freq(dev_priv,
792 rpm_config_reg);
793
794 /* Now figure out how the command stream's timestamp
795 * register increments from this frequency (it might
796 * increment only every few clock cycle).
797 */
798 freq >>= 3 - ((rpm_config_reg &
799 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
800 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
801 }
802
803 return freq;
804 }
805
806 MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
807 return 0;
808}
809
810#undef INTEL_VGA_DEVICE
811#define INTEL_VGA_DEVICE(id, info) (id)
812
813static const u16 subplatform_ult_ids[] = {
814 INTEL_HSW_ULT_GT1_IDS(0),
815 INTEL_HSW_ULT_GT2_IDS(0),
816 INTEL_HSW_ULT_GT3_IDS(0),
817 INTEL_BDW_ULT_GT1_IDS(0),
818 INTEL_BDW_ULT_GT2_IDS(0),
819 INTEL_BDW_ULT_GT3_IDS(0),
820 INTEL_BDW_ULT_RSVD_IDS(0),
821 INTEL_SKL_ULT_GT1_IDS(0),
822 INTEL_SKL_ULT_GT2_IDS(0),
823 INTEL_SKL_ULT_GT3_IDS(0),
824 INTEL_KBL_ULT_GT1_IDS(0),
825 INTEL_KBL_ULT_GT2_IDS(0),
826 INTEL_KBL_ULT_GT3_IDS(0),
827 INTEL_CFL_U_GT2_IDS(0),
828 INTEL_CFL_U_GT3_IDS(0),
829 INTEL_WHL_U_GT1_IDS(0),
830 INTEL_WHL_U_GT2_IDS(0),
831 INTEL_WHL_U_GT3_IDS(0),
832};
833
834static const u16 subplatform_ulx_ids[] = {
835 INTEL_HSW_ULX_GT1_IDS(0),
836 INTEL_HSW_ULX_GT2_IDS(0),
837 INTEL_BDW_ULX_GT1_IDS(0),
838 INTEL_BDW_ULX_GT2_IDS(0),
839 INTEL_BDW_ULX_GT3_IDS(0),
840 INTEL_BDW_ULX_RSVD_IDS(0),
841 INTEL_SKL_ULX_GT1_IDS(0),
842 INTEL_SKL_ULX_GT2_IDS(0),
843 INTEL_KBL_ULX_GT1_IDS(0),
844 INTEL_KBL_ULX_GT2_IDS(0),
845 INTEL_AML_KBL_GT2_IDS(0),
846 INTEL_AML_CFL_GT2_IDS(0),
847};
848
849static const u16 subplatform_portf_ids[] = {
850 INTEL_CNL_PORT_F_IDS(0),
851 INTEL_ICL_PORT_F_IDS(0),
852};
853
854static bool find_devid(u16 id, const u16 *p, unsigned int num)
855{
856 for (; num; num--, p++) {
857 if (*p == id)
858 return true;
859 }
860
861 return false;
862}
863
864void intel_device_info_subplatform_init(struct drm_i915_private *i915)
865{
866 const struct intel_device_info *info = INTEL_INFO(i915);
867 const struct intel_runtime_info *rinfo = RUNTIME_INFO(i915);
868 const unsigned int pi = __platform_mask_index(rinfo, info->platform);
869 const unsigned int pb = __platform_mask_bit(rinfo, info->platform);
870 u16 devid = INTEL_DEVID(i915);
871 u32 mask = 0;
872
873 /* Make sure IS_<platform> checks are working. */
874 RUNTIME_INFO(i915)->platform_mask[pi] = BIT(pb);
875
876 /* Find and mark subplatform bits based on the PCI device id. */
877 if (find_devid(devid, subplatform_ult_ids,
878 ARRAY_SIZE(subplatform_ult_ids))) {
879 mask = BIT(INTEL_SUBPLATFORM_ULT);
880 } else if (find_devid(devid, subplatform_ulx_ids,
881 ARRAY_SIZE(subplatform_ulx_ids))) {
882 mask = BIT(INTEL_SUBPLATFORM_ULX);
883 if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
884 /* ULX machines are also considered ULT. */
885 mask |= BIT(INTEL_SUBPLATFORM_ULT);
886 }
887 } else if (find_devid(devid, subplatform_portf_ids,
888 ARRAY_SIZE(subplatform_portf_ids))) {
889 mask = BIT(INTEL_SUBPLATFORM_PORTF);
890 }
891
892 GEM_BUG_ON(mask & ~INTEL_SUBPLATFORM_BITS);
893
894 RUNTIME_INFO(i915)->platform_mask[pi] |= mask;
895}
896
897/**
898 * intel_device_info_runtime_init - initialize runtime info
899 * @dev_priv: the i915 device
900 *
901 * Determine various intel_device_info fields at runtime.
902 *
903 * Use it when either:
904 * - it's judged too laborious to fill n static structures with the limit
905 * when a simple if statement does the job,
906 * - run-time checks (eg read fuse/strap registers) are needed.
907 *
908 * This function needs to be called:
909 * - after the MMIO has been setup as we are reading registers,
910 * - after the PCH has been detected,
911 * - before the first usage of the fields it can tweak.
912 */
913void intel_device_info_runtime_init(struct drm_i915_private *dev_priv)
914{
915 struct intel_device_info *info = mkwrite_device_info(dev_priv);
916 struct intel_runtime_info *runtime = RUNTIME_INFO(dev_priv);
917 enum pipe pipe;
918
919 if (INTEL_GEN(dev_priv) >= 10) {
920 for_each_pipe(dev_priv, pipe)
921 runtime->num_scalers[pipe] = 2;
922 } else if (IS_GEN(dev_priv, 9)) {
923 runtime->num_scalers[PIPE_A] = 2;
924 runtime->num_scalers[PIPE_B] = 2;
925 runtime->num_scalers[PIPE_C] = 1;
926 }
927
928 BUILD_BUG_ON(BITS_PER_TYPE(intel_engine_mask_t) < I915_NUM_ENGINES);
929
930 if (INTEL_GEN(dev_priv) >= 11)
931 for_each_pipe(dev_priv, pipe)
932 runtime->num_sprites[pipe] = 6;
933 else if (IS_GEN(dev_priv, 10) || IS_GEMINILAKE(dev_priv))
934 for_each_pipe(dev_priv, pipe)
935 runtime->num_sprites[pipe] = 3;
936 else if (IS_BROXTON(dev_priv)) {
937 /*
938 * Skylake and Broxton currently don't expose the topmost plane as its
939 * use is exclusive with the legacy cursor and we only want to expose
940 * one of those, not both. Until we can safely expose the topmost plane
941 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
942 * we don't expose the topmost plane at all to prevent ABI breakage
943 * down the line.
944 */
945
946 runtime->num_sprites[PIPE_A] = 2;
947 runtime->num_sprites[PIPE_B] = 2;
948 runtime->num_sprites[PIPE_C] = 1;
949 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
950 for_each_pipe(dev_priv, pipe)
951 runtime->num_sprites[pipe] = 2;
952 } else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
953 for_each_pipe(dev_priv, pipe)
954 runtime->num_sprites[pipe] = 1;
955 }
956
957 if (HAS_DISPLAY(dev_priv) && IS_GEN_RANGE(dev_priv, 7, 8) &&
958 HAS_PCH_SPLIT(dev_priv)) {
959 u32 fuse_strap = I915_READ(FUSE_STRAP);
960 u32 sfuse_strap = I915_READ(SFUSE_STRAP);
961
962 /*
963 * SFUSE_STRAP is supposed to have a bit signalling the display
964 * is fused off. Unfortunately it seems that, at least in
965 * certain cases, fused off display means that PCH display
966 * reads don't land anywhere. In that case, we read 0s.
967 *
968 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
969 * should be set when taking over after the firmware.
970 */
971 if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
972 sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
973 (HAS_PCH_CPT(dev_priv) &&
974 !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
975 DRM_INFO("Display fused off, disabling\n");
976 info->pipe_mask = 0;
977 } else if (fuse_strap & IVB_PIPE_C_DISABLE) {
978 DRM_INFO("PipeC fused off\n");
979 info->pipe_mask &= ~BIT(PIPE_C);
980 }
981 } else if (HAS_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 9) {
982 u32 dfsm = I915_READ(SKL_DFSM);
983 u8 enabled_mask = info->pipe_mask;
984
985 if (dfsm & SKL_DFSM_PIPE_A_DISABLE)
986 enabled_mask &= ~BIT(PIPE_A);
987 if (dfsm & SKL_DFSM_PIPE_B_DISABLE)
988 enabled_mask &= ~BIT(PIPE_B);
989 if (dfsm & SKL_DFSM_PIPE_C_DISABLE)
990 enabled_mask &= ~BIT(PIPE_C);
991 if (INTEL_GEN(dev_priv) >= 12 &&
992 (dfsm & TGL_DFSM_PIPE_D_DISABLE))
993 enabled_mask &= ~BIT(PIPE_D);
994
995 /*
996 * At least one pipe should be enabled and if there are
997 * disabled pipes, they should be the last ones, with no holes
998 * in the mask.
999 */
1000 if (enabled_mask == 0 || !is_power_of_2(enabled_mask + 1))
1001 DRM_ERROR("invalid pipe fuse configuration: enabled_mask=0x%x\n",
1002 enabled_mask);
1003 else
1004 info->pipe_mask = enabled_mask;
1005
1006 if (dfsm & SKL_DFSM_DISPLAY_HDCP_DISABLE)
1007 info->display.has_hdcp = 0;
1008
1009 if (dfsm & SKL_DFSM_DISPLAY_PM_DISABLE)
1010 info->display.has_fbc = 0;
1011
1012 if (INTEL_GEN(dev_priv) >= 11 && (dfsm & ICL_DFSM_DMC_DISABLE))
1013 info->display.has_csr = 0;
1014
1015 if (INTEL_GEN(dev_priv) >= 10 &&
1016 (dfsm & CNL_DFSM_DISPLAY_DSC_DISABLE))
1017 info->display.has_dsc = 0;
1018 }
1019
1020 /* Initialize slice/subslice/EU info */
1021 if (IS_HASWELL(dev_priv))
1022 haswell_sseu_info_init(dev_priv);
1023 else if (IS_CHERRYVIEW(dev_priv))
1024 cherryview_sseu_info_init(dev_priv);
1025 else if (IS_BROADWELL(dev_priv))
1026 broadwell_sseu_info_init(dev_priv);
1027 else if (IS_GEN(dev_priv, 9))
1028 gen9_sseu_info_init(dev_priv);
1029 else if (IS_GEN(dev_priv, 10))
1030 gen10_sseu_info_init(dev_priv);
1031 else if (IS_GEN(dev_priv, 11))
1032 gen11_sseu_info_init(dev_priv);
1033 else if (INTEL_GEN(dev_priv) >= 12)
1034 gen12_sseu_info_init(dev_priv);
1035
1036 if (IS_GEN(dev_priv, 6) && intel_vtd_active()) {
1037 DRM_INFO("Disabling ppGTT for VT-d support\n");
1038 info->ppgtt_type = INTEL_PPGTT_NONE;
1039 }
1040
1041 /* Initialize command stream timestamp frequency */
1042 runtime->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv);
1043}
1044
1045void intel_driver_caps_print(const struct intel_driver_caps *caps,
1046 struct drm_printer *p)
1047{
1048 drm_printf(p, "Has logical contexts? %s\n",
1049 yesno(caps->has_logical_contexts));
1050 drm_printf(p, "scheduler: %x\n", caps->scheduler);
1051}
1052
1053/*
1054 * Determine which engines are fused off in our particular hardware. Since the
1055 * fuse register is in the blitter powerwell, we need forcewake to be ready at
1056 * this point (but later we need to prune the forcewake domains for engines that
1057 * are indeed fused off).
1058 */
1059void intel_device_info_init_mmio(struct drm_i915_private *dev_priv)
1060{
1061 struct intel_device_info *info = mkwrite_device_info(dev_priv);
1062 unsigned int logical_vdbox = 0;
1063 unsigned int i;
1064 u32 media_fuse;
1065 u16 vdbox_mask;
1066 u16 vebox_mask;
1067
1068 if (INTEL_GEN(dev_priv) < 11)
1069 return;
1070
1071 media_fuse = ~I915_READ(GEN11_GT_VEBOX_VDBOX_DISABLE);
1072
1073 vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
1074 vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
1075 GEN11_GT_VEBOX_DISABLE_SHIFT;
1076
1077 for (i = 0; i < I915_MAX_VCS; i++) {
1078 if (!HAS_ENGINE(dev_priv, _VCS(i))) {
1079 vdbox_mask &= ~BIT(i);
1080 continue;
1081 }
1082
1083 if (!(BIT(i) & vdbox_mask)) {
1084 info->engine_mask &= ~BIT(_VCS(i));
1085 DRM_DEBUG_DRIVER("vcs%u fused off\n", i);
1086 continue;
1087 }
1088
1089 /*
1090 * In Gen11, only even numbered logical VDBOXes are
1091 * hooked up to an SFC (Scaler & Format Converter) unit.
1092 * In TGL each VDBOX has access to an SFC.
1093 */
1094 if (IS_TIGERLAKE(dev_priv) || logical_vdbox++ % 2 == 0)
1095 RUNTIME_INFO(dev_priv)->vdbox_sfc_access |= BIT(i);
1096 }
1097 DRM_DEBUG_DRIVER("vdbox enable: %04x, instances: %04lx\n",
1098 vdbox_mask, VDBOX_MASK(dev_priv));
1099 GEM_BUG_ON(vdbox_mask != VDBOX_MASK(dev_priv));
1100
1101 for (i = 0; i < I915_MAX_VECS; i++) {
1102 if (!HAS_ENGINE(dev_priv, _VECS(i))) {
1103 vebox_mask &= ~BIT(i);
1104 continue;
1105 }
1106
1107 if (!(BIT(i) & vebox_mask)) {
1108 info->engine_mask &= ~BIT(_VECS(i));
1109 DRM_DEBUG_DRIVER("vecs%u fused off\n", i);
1110 }
1111 }
1112 DRM_DEBUG_DRIVER("vebox enable: %04x, instances: %04lx\n",
1113 vebox_mask, VEBOX_MASK(dev_priv));
1114 GEM_BUG_ON(vebox_mask != VEBOX_MASK(dev_priv));
1115}