| 1 | /* |
| 2 | * Copyright © 2008-2015 Intel Corporation |
| 3 | * |
| 4 | * Permission is hereby granted, free of charge, to any person obtaining a |
| 5 | * copy of this software and associated documentation files (the "Software"), |
| 6 | * to deal in the Software without restriction, including without limitation |
| 7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| 8 | * and/or sell copies of the Software, and to permit persons to whom the |
| 9 | * Software is furnished to do so, subject to the following conditions: |
| 10 | * |
| 11 | * The above copyright notice and this permission notice (including the next |
| 12 | * paragraph) shall be included in all copies or substantial portions of the |
| 13 | * Software. |
| 14 | * |
| 15 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 16 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 17 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| 18 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 19 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| 20 | * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| 21 | * IN THE SOFTWARE. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include <linux/dma-fence-array.h> |
| 26 | #include <linux/dma-fence-chain.h> |
| 27 | #include <linux/irq_work.h> |
| 28 | #include <linux/prefetch.h> |
| 29 | #include <linux/sched.h> |
| 30 | #include <linux/sched/clock.h> |
| 31 | #include <linux/sched/signal.h> |
| 32 | #include <linux/sched/mm.h> |
| 33 | |
| 34 | #include "gem/i915_gem_context.h" |
| 35 | #include "gt/intel_breadcrumbs.h" |
| 36 | #include "gt/intel_context.h" |
| 37 | #include "gt/intel_engine.h" |
| 38 | #include "gt/intel_engine_heartbeat.h" |
| 39 | #include "gt/intel_engine_regs.h" |
| 40 | #include "gt/intel_gpu_commands.h" |
| 41 | #include "gt/intel_reset.h" |
| 42 | #include "gt/intel_ring.h" |
| 43 | #include "gt/intel_rps.h" |
| 44 | |
| 45 | #include "i915_active.h" |
| 46 | #include "i915_config.h" |
| 47 | #include "i915_deps.h" |
| 48 | #include "i915_driver.h" |
| 49 | #include "i915_drv.h" |
| 50 | #include "i915_trace.h" |
| 51 | |
| 52 | struct execute_cb { |
| 53 | struct irq_work work; |
| 54 | struct i915_sw_fence *fence; |
| 55 | }; |
| 56 | |
| 57 | static struct kmem_cache *slab_requests; |
| 58 | static struct kmem_cache *slab_execute_cbs; |
| 59 | |
| 60 | static const char *i915_fence_get_driver_name(struct dma_fence *fence) |
| 61 | { |
| 62 | return dev_name(to_request(fence)->i915->drm.dev); |
| 63 | } |
| 64 | |
| 65 | static const char *i915_fence_get_timeline_name(struct dma_fence *fence) |
| 66 | { |
| 67 | const struct i915_gem_context *ctx; |
| 68 | |
| 69 | /* |
| 70 | * The timeline struct (as part of the ppgtt underneath a context) |
| 71 | * may be freed when the request is no longer in use by the GPU. |
| 72 | * We could extend the life of a context to beyond that of all |
| 73 | * fences, possibly keeping the hw resource around indefinitely, |
| 74 | * or we just give them a false name. Since |
| 75 | * dma_fence_ops.get_timeline_name is a debug feature, the occasional |
| 76 | * lie seems justifiable. |
| 77 | */ |
| 78 | if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) |
| 79 | return "signaled"; |
| 80 | |
| 81 | ctx = i915_request_gem_context(to_request(fence)); |
| 82 | if (!ctx) |
| 83 | return "[" DRIVER_NAME "]"; |
| 84 | |
| 85 | return ctx->name; |
| 86 | } |
| 87 | |
| 88 | static bool i915_fence_signaled(struct dma_fence *fence) |
| 89 | { |
| 90 | return i915_request_completed(to_request(fence)); |
| 91 | } |
| 92 | |
| 93 | static bool i915_fence_enable_signaling(struct dma_fence *fence) |
| 94 | { |
| 95 | return i915_request_enable_breadcrumb(to_request(fence)); |
| 96 | } |
| 97 | |
| 98 | static signed long i915_fence_wait(struct dma_fence *fence, |
| 99 | bool interruptible, |
| 100 | signed long timeout) |
| 101 | { |
| 102 | return i915_request_wait_timeout(to_request(fence), |
| 103 | interruptible | I915_WAIT_PRIORITY, |
| 104 | timeout); |
| 105 | } |
| 106 | |
| 107 | struct kmem_cache *i915_request_slab_cache(void) |
| 108 | { |
| 109 | return slab_requests; |
| 110 | } |
| 111 | |
| 112 | static void i915_fence_release(struct dma_fence *fence) |
| 113 | { |
| 114 | struct i915_request *rq = to_request(fence); |
| 115 | |
| 116 | GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT && |
| 117 | rq->guc_prio != GUC_PRIO_FINI); |
| 118 | |
| 119 | i915_request_free_capture_list(fetch_and_zero(&rq->capture_list)); |
| 120 | if (rq->batch_res) { |
| 121 | i915_vma_resource_put(rq->batch_res); |
| 122 | rq->batch_res = NULL; |
| 123 | } |
| 124 | |
| 125 | /* |
| 126 | * The request is put onto a RCU freelist (i.e. the address |
| 127 | * is immediately reused), mark the fences as being freed now. |
| 128 | * Otherwise the debugobjects for the fences are only marked as |
| 129 | * freed when the slab cache itself is freed, and so we would get |
| 130 | * caught trying to reuse dead objects. |
| 131 | */ |
| 132 | i915_sw_fence_fini(&rq->submit); |
| 133 | i915_sw_fence_fini(&rq->semaphore); |
| 134 | |
| 135 | /* |
| 136 | * Keep one request on each engine for reserved use under mempressure. |
| 137 | * |
| 138 | * We do not hold a reference to the engine here and so have to be |
| 139 | * very careful in what rq->engine we poke. The virtual engine is |
| 140 | * referenced via the rq->context and we released that ref during |
| 141 | * i915_request_retire(), ergo we must not dereference a virtual |
| 142 | * engine here. Not that we would want to, as the only consumer of |
| 143 | * the reserved engine->request_pool is the power management parking, |
| 144 | * which must-not-fail, and that is only run on the physical engines. |
| 145 | * |
| 146 | * Since the request must have been executed to be have completed, |
| 147 | * we know that it will have been processed by the HW and will |
| 148 | * not be unsubmitted again, so rq->engine and rq->execution_mask |
| 149 | * at this point is stable. rq->execution_mask will be a single |
| 150 | * bit if the last and _only_ engine it could execution on was a |
| 151 | * physical engine, if it's multiple bits then it started on and |
| 152 | * could still be on a virtual engine. Thus if the mask is not a |
| 153 | * power-of-two we assume that rq->engine may still be a virtual |
| 154 | * engine and so a dangling invalid pointer that we cannot dereference |
| 155 | * |
| 156 | * For example, consider the flow of a bonded request through a virtual |
| 157 | * engine. The request is created with a wide engine mask (all engines |
| 158 | * that we might execute on). On processing the bond, the request mask |
| 159 | * is reduced to one or more engines. If the request is subsequently |
| 160 | * bound to a single engine, it will then be constrained to only |
| 161 | * execute on that engine and never returned to the virtual engine |
| 162 | * after timeslicing away, see __unwind_incomplete_requests(). Thus we |
| 163 | * know that if the rq->execution_mask is a single bit, rq->engine |
| 164 | * can be a physical engine with the exact corresponding mask. |
| 165 | */ |
| 166 | if (is_power_of_2(rq->execution_mask) && |
| 167 | !cmpxchg(&rq->engine->request_pool, NULL, rq)) |
| 168 | return; |
| 169 | |
| 170 | kmem_cache_free(slab_requests, rq); |
| 171 | } |
| 172 | |
| 173 | const struct dma_fence_ops i915_fence_ops = { |
| 174 | .get_driver_name = i915_fence_get_driver_name, |
| 175 | .get_timeline_name = i915_fence_get_timeline_name, |
| 176 | .enable_signaling = i915_fence_enable_signaling, |
| 177 | .signaled = i915_fence_signaled, |
| 178 | .wait = i915_fence_wait, |
| 179 | .release = i915_fence_release, |
| 180 | }; |
| 181 | |
| 182 | static void irq_execute_cb(struct irq_work *wrk) |
| 183 | { |
| 184 | struct execute_cb *cb = container_of(wrk, typeof(*cb), work); |
| 185 | |
| 186 | i915_sw_fence_complete(cb->fence); |
| 187 | kmem_cache_free(slab_execute_cbs, cb); |
| 188 | } |
| 189 | |
| 190 | static __always_inline void |
| 191 | __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk)) |
| 192 | { |
| 193 | struct execute_cb *cb, *cn; |
| 194 | |
| 195 | if (llist_empty(&rq->execute_cb)) |
| 196 | return; |
| 197 | |
| 198 | llist_for_each_entry_safe(cb, cn, |
| 199 | llist_del_all(&rq->execute_cb), |
| 200 | work.node.llist) |
| 201 | fn(&cb->work); |
| 202 | } |
| 203 | |
| 204 | static void __notify_execute_cb_irq(struct i915_request *rq) |
| 205 | { |
| 206 | __notify_execute_cb(rq, irq_work_queue); |
| 207 | } |
| 208 | |
| 209 | static bool irq_work_imm(struct irq_work *wrk) |
| 210 | { |
| 211 | wrk->func(wrk); |
| 212 | return false; |
| 213 | } |
| 214 | |
| 215 | void i915_request_notify_execute_cb_imm(struct i915_request *rq) |
| 216 | { |
| 217 | __notify_execute_cb(rq, irq_work_imm); |
| 218 | } |
| 219 | |
| 220 | static void __i915_request_fill(struct i915_request *rq, u8 val) |
| 221 | { |
| 222 | void *vaddr = rq->ring->vaddr; |
| 223 | u32 head; |
| 224 | |
| 225 | head = rq->infix; |
| 226 | if (rq->postfix < head) { |
| 227 | memset(vaddr + head, val, rq->ring->size - head); |
| 228 | head = 0; |
| 229 | } |
| 230 | memset(vaddr + head, val, rq->postfix - head); |
| 231 | } |
| 232 | |
| 233 | /** |
| 234 | * i915_request_active_engine |
| 235 | * @rq: request to inspect |
| 236 | * @active: pointer in which to return the active engine |
| 237 | * |
| 238 | * Fills the currently active engine to the @active pointer if the request |
| 239 | * is active and still not completed. |
| 240 | * |
| 241 | * Returns true if request was active or false otherwise. |
| 242 | */ |
| 243 | bool |
| 244 | i915_request_active_engine(struct i915_request *rq, |
| 245 | struct intel_engine_cs **active) |
| 246 | { |
| 247 | struct intel_engine_cs *engine, *locked; |
| 248 | bool ret = false; |
| 249 | |
| 250 | /* |
| 251 | * Serialise with __i915_request_submit() so that it sees |
| 252 | * is-banned?, or we know the request is already inflight. |
| 253 | * |
| 254 | * Note that rq->engine is unstable, and so we double |
| 255 | * check that we have acquired the lock on the final engine. |
| 256 | */ |
| 257 | locked = READ_ONCE(rq->engine); |
| 258 | spin_lock_irq(&locked->sched_engine->lock); |
| 259 | while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { |
| 260 | spin_unlock(&locked->sched_engine->lock); |
| 261 | locked = engine; |
| 262 | spin_lock(&locked->sched_engine->lock); |
| 263 | } |
| 264 | |
| 265 | if (i915_request_is_active(rq)) { |
| 266 | if (!__i915_request_is_complete(rq)) |
| 267 | *active = locked; |
| 268 | ret = true; |
| 269 | } |
| 270 | |
| 271 | spin_unlock_irq(&locked->sched_engine->lock); |
| 272 | |
| 273 | return ret; |
| 274 | } |
| 275 | |
| 276 | static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer) |
| 277 | { |
| 278 | struct i915_request *rq = |
| 279 | container_of(hrtimer, struct i915_request, watchdog.timer); |
| 280 | struct intel_gt *gt = rq->engine->gt; |
| 281 | |
| 282 | if (!i915_request_completed(rq)) { |
| 283 | if (llist_add(&rq->watchdog.link, >->watchdog.list)) |
| 284 | queue_work(gt->i915->unordered_wq, >->watchdog.work); |
| 285 | } else { |
| 286 | i915_request_put(rq); |
| 287 | } |
| 288 | |
| 289 | return HRTIMER_NORESTART; |
| 290 | } |
| 291 | |
| 292 | static void __rq_init_watchdog(struct i915_request *rq) |
| 293 | { |
| 294 | struct i915_request_watchdog *wdg = &rq->watchdog; |
| 295 | |
| 296 | hrtimer_setup(&wdg->timer, __rq_watchdog_expired, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| 297 | } |
| 298 | |
| 299 | static void __rq_arm_watchdog(struct i915_request *rq) |
| 300 | { |
| 301 | struct i915_request_watchdog *wdg = &rq->watchdog; |
| 302 | struct intel_context *ce = rq->context; |
| 303 | |
| 304 | if (!ce->watchdog.timeout_us) |
| 305 | return; |
| 306 | |
| 307 | i915_request_get(rq); |
| 308 | |
| 309 | hrtimer_start_range_ns(&wdg->timer, |
| 310 | ns_to_ktime(ce->watchdog.timeout_us * |
| 311 | NSEC_PER_USEC), |
| 312 | NSEC_PER_MSEC, |
| 313 | HRTIMER_MODE_REL); |
| 314 | } |
| 315 | |
| 316 | static void __rq_cancel_watchdog(struct i915_request *rq) |
| 317 | { |
| 318 | struct i915_request_watchdog *wdg = &rq->watchdog; |
| 319 | |
| 320 | if (hrtimer_try_to_cancel(&wdg->timer) > 0) |
| 321 | i915_request_put(rq); |
| 322 | } |
| 323 | |
| 324 | #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) |
| 325 | |
| 326 | /** |
| 327 | * i915_request_free_capture_list - Free a capture list |
| 328 | * @capture: Pointer to the first list item or NULL |
| 329 | * |
| 330 | */ |
| 331 | void i915_request_free_capture_list(struct i915_capture_list *capture) |
| 332 | { |
| 333 | while (capture) { |
| 334 | struct i915_capture_list *next = capture->next; |
| 335 | |
| 336 | i915_vma_resource_put(capture->vma_res); |
| 337 | kfree(capture); |
| 338 | capture = next; |
| 339 | } |
| 340 | } |
| 341 | |
| 342 | #define assert_capture_list_is_null(_rq) GEM_BUG_ON((_rq)->capture_list) |
| 343 | |
| 344 | #define clear_capture_list(_rq) ((_rq)->capture_list = NULL) |
| 345 | |
| 346 | #else |
| 347 | |
| 348 | #define i915_request_free_capture_list(_a) do {} while (0) |
| 349 | |
| 350 | #define assert_capture_list_is_null(_a) do {} while (0) |
| 351 | |
| 352 | #define clear_capture_list(_rq) do {} while (0) |
| 353 | |
| 354 | #endif |
| 355 | |
| 356 | bool i915_request_retire(struct i915_request *rq) |
| 357 | { |
| 358 | if (!__i915_request_is_complete(rq)) |
| 359 | return false; |
| 360 | |
| 361 | RQ_TRACE(rq, "\n"); |
| 362 | |
| 363 | GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); |
| 364 | trace_i915_request_retire(rq); |
| 365 | i915_request_mark_complete(rq); |
| 366 | |
| 367 | __rq_cancel_watchdog(rq); |
| 368 | |
| 369 | /* |
| 370 | * We know the GPU must have read the request to have |
| 371 | * sent us the seqno + interrupt, so use the position |
| 372 | * of tail of the request to update the last known position |
| 373 | * of the GPU head. |
| 374 | * |
| 375 | * Note this requires that we are always called in request |
| 376 | * completion order. |
| 377 | */ |
| 378 | GEM_BUG_ON(!list_is_first(&rq->link, |
| 379 | &i915_request_timeline(rq)->requests)); |
| 380 | if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) |
| 381 | /* Poison before we release our space in the ring */ |
| 382 | __i915_request_fill(rq, POISON_FREE); |
| 383 | rq->ring->head = rq->postfix; |
| 384 | |
| 385 | if (!i915_request_signaled(rq)) { |
| 386 | spin_lock_irq(&rq->lock); |
| 387 | dma_fence_signal_locked(&rq->fence); |
| 388 | spin_unlock_irq(&rq->lock); |
| 389 | } |
| 390 | |
| 391 | if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) |
| 392 | intel_rps_dec_waiters(&rq->engine->gt->rps); |
| 393 | |
| 394 | /* |
| 395 | * We only loosely track inflight requests across preemption, |
| 396 | * and so we may find ourselves attempting to retire a _completed_ |
| 397 | * request that we have removed from the HW and put back on a run |
| 398 | * queue. |
| 399 | * |
| 400 | * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be |
| 401 | * after removing the breadcrumb and signaling it, so that we do not |
| 402 | * inadvertently attach the breadcrumb to a completed request. |
| 403 | */ |
| 404 | rq->engine->remove_active_request(rq); |
| 405 | GEM_BUG_ON(!llist_empty(&rq->execute_cb)); |
| 406 | |
| 407 | __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */ |
| 408 | |
| 409 | intel_context_exit(rq->context); |
| 410 | intel_context_unpin(rq->context); |
| 411 | |
| 412 | i915_sched_node_fini(&rq->sched); |
| 413 | i915_request_put(rq); |
| 414 | |
| 415 | return true; |
| 416 | } |
| 417 | |
| 418 | void i915_request_retire_upto(struct i915_request *rq) |
| 419 | { |
| 420 | struct intel_timeline * const tl = i915_request_timeline(rq); |
| 421 | struct i915_request *tmp; |
| 422 | |
| 423 | RQ_TRACE(rq, "\n"); |
| 424 | GEM_BUG_ON(!__i915_request_is_complete(rq)); |
| 425 | |
| 426 | do { |
| 427 | tmp = list_first_entry(&tl->requests, typeof(*tmp), link); |
| 428 | GEM_BUG_ON(!i915_request_completed(tmp)); |
| 429 | } while (i915_request_retire(tmp) && tmp != rq); |
| 430 | } |
| 431 | |
| 432 | static struct i915_request * const * |
| 433 | __engine_active(struct intel_engine_cs *engine) |
| 434 | { |
| 435 | return READ_ONCE(engine->execlists.active); |
| 436 | } |
| 437 | |
| 438 | static bool __request_in_flight(const struct i915_request *signal) |
| 439 | { |
| 440 | struct i915_request * const *port, *rq; |
| 441 | bool inflight = false; |
| 442 | |
| 443 | if (!i915_request_is_ready(signal)) |
| 444 | return false; |
| 445 | |
| 446 | /* |
| 447 | * Even if we have unwound the request, it may still be on |
| 448 | * the GPU (preempt-to-busy). If that request is inside an |
| 449 | * unpreemptible critical section, it will not be removed. Some |
| 450 | * GPU functions may even be stuck waiting for the paired request |
| 451 | * (__await_execution) to be submitted and cannot be preempted |
| 452 | * until the bond is executing. |
| 453 | * |
| 454 | * As we know that there are always preemption points between |
| 455 | * requests, we know that only the currently executing request |
| 456 | * may be still active even though we have cleared the flag. |
| 457 | * However, we can't rely on our tracking of ELSP[0] to know |
| 458 | * which request is currently active and so maybe stuck, as |
| 459 | * the tracking maybe an event behind. Instead assume that |
| 460 | * if the context is still inflight, then it is still active |
| 461 | * even if the active flag has been cleared. |
| 462 | * |
| 463 | * To further complicate matters, if there a pending promotion, the HW |
| 464 | * may either perform a context switch to the second inflight execlists, |
| 465 | * or it may switch to the pending set of execlists. In the case of the |
| 466 | * latter, it may send the ACK and we process the event copying the |
| 467 | * pending[] over top of inflight[], _overwriting_ our *active. Since |
| 468 | * this implies the HW is arbitrating and not struck in *active, we do |
| 469 | * not worry about complete accuracy, but we do require no read/write |
| 470 | * tearing of the pointer [the read of the pointer must be valid, even |
| 471 | * as the array is being overwritten, for which we require the writes |
| 472 | * to avoid tearing.] |
| 473 | * |
| 474 | * Note that the read of *execlists->active may race with the promotion |
| 475 | * of execlists->pending[] to execlists->inflight[], overwriting |
| 476 | * the value at *execlists->active. This is fine. The promotion implies |
| 477 | * that we received an ACK from the HW, and so the context is not |
| 478 | * stuck -- if we do not see ourselves in *active, the inflight status |
| 479 | * is valid. If instead we see ourselves being copied into *active, |
| 480 | * we are inflight and may signal the callback. |
| 481 | */ |
| 482 | if (!intel_context_inflight(signal->context)) |
| 483 | return false; |
| 484 | |
| 485 | rcu_read_lock(); |
| 486 | for (port = __engine_active(signal->engine); |
| 487 | (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */ |
| 488 | port++) { |
| 489 | if (rq->context == signal->context) { |
| 490 | inflight = i915_seqno_passed(rq->fence.seqno, |
| 491 | signal->fence.seqno); |
| 492 | break; |
| 493 | } |
| 494 | } |
| 495 | rcu_read_unlock(); |
| 496 | |
| 497 | return inflight; |
| 498 | } |
| 499 | |
| 500 | static int |
| 501 | __await_execution(struct i915_request *rq, |
| 502 | struct i915_request *signal, |
| 503 | gfp_t gfp) |
| 504 | { |
| 505 | struct execute_cb *cb; |
| 506 | |
| 507 | if (i915_request_is_active(signal)) |
| 508 | return 0; |
| 509 | |
| 510 | cb = kmem_cache_alloc(slab_execute_cbs, gfp); |
| 511 | if (!cb) |
| 512 | return -ENOMEM; |
| 513 | |
| 514 | cb->fence = &rq->submit; |
| 515 | i915_sw_fence_await(cb->fence); |
| 516 | init_irq_work(&cb->work, irq_execute_cb); |
| 517 | |
| 518 | /* |
| 519 | * Register the callback first, then see if the signaler is already |
| 520 | * active. This ensures that if we race with the |
| 521 | * __notify_execute_cb from i915_request_submit() and we are not |
| 522 | * included in that list, we get a second bite of the cherry and |
| 523 | * execute it ourselves. After this point, a future |
| 524 | * i915_request_submit() will notify us. |
| 525 | * |
| 526 | * In i915_request_retire() we set the ACTIVE bit on a completed |
| 527 | * request (then flush the execute_cb). So by registering the |
| 528 | * callback first, then checking the ACTIVE bit, we serialise with |
| 529 | * the completed/retired request. |
| 530 | */ |
| 531 | if (llist_add(&cb->work.node.llist, &signal->execute_cb)) { |
| 532 | if (i915_request_is_active(signal) || |
| 533 | __request_in_flight(signal)) |
| 534 | i915_request_notify_execute_cb_imm(signal); |
| 535 | } |
| 536 | |
| 537 | return 0; |
| 538 | } |
| 539 | |
| 540 | static bool fatal_error(int error) |
| 541 | { |
| 542 | switch (error) { |
| 543 | case 0: /* not an error! */ |
| 544 | case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */ |
| 545 | case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */ |
| 546 | return false; |
| 547 | default: |
| 548 | return true; |
| 549 | } |
| 550 | } |
| 551 | |
| 552 | void __i915_request_skip(struct i915_request *rq) |
| 553 | { |
| 554 | GEM_BUG_ON(!fatal_error(rq->fence.error)); |
| 555 | |
| 556 | if (rq->infix == rq->postfix) |
| 557 | return; |
| 558 | |
| 559 | RQ_TRACE(rq, "error: %d\n", rq->fence.error); |
| 560 | |
| 561 | /* |
| 562 | * As this request likely depends on state from the lost |
| 563 | * context, clear out all the user operations leaving the |
| 564 | * breadcrumb at the end (so we get the fence notifications). |
| 565 | */ |
| 566 | __i915_request_fill(rq, 0); |
| 567 | rq->infix = rq->postfix; |
| 568 | } |
| 569 | |
| 570 | bool i915_request_set_error_once(struct i915_request *rq, int error) |
| 571 | { |
| 572 | int old; |
| 573 | |
| 574 | GEM_BUG_ON(!IS_ERR_VALUE((long)error)); |
| 575 | |
| 576 | if (i915_request_signaled(rq)) |
| 577 | return false; |
| 578 | |
| 579 | old = READ_ONCE(rq->fence.error); |
| 580 | do { |
| 581 | if (fatal_error(old)) |
| 582 | return false; |
| 583 | } while (!try_cmpxchg(&rq->fence.error, &old, error)); |
| 584 | |
| 585 | return true; |
| 586 | } |
| 587 | |
| 588 | struct i915_request *i915_request_mark_eio(struct i915_request *rq) |
| 589 | { |
| 590 | if (__i915_request_is_complete(rq)) |
| 591 | return NULL; |
| 592 | |
| 593 | GEM_BUG_ON(i915_request_signaled(rq)); |
| 594 | |
| 595 | /* As soon as the request is completed, it may be retired */ |
| 596 | rq = i915_request_get(rq); |
| 597 | |
| 598 | i915_request_set_error_once(rq, -EIO); |
| 599 | i915_request_mark_complete(rq); |
| 600 | |
| 601 | return rq; |
| 602 | } |
| 603 | |
| 604 | bool __i915_request_submit(struct i915_request *request) |
| 605 | { |
| 606 | struct intel_engine_cs *engine = request->engine; |
| 607 | bool result = false; |
| 608 | |
| 609 | RQ_TRACE(request, "\n"); |
| 610 | |
| 611 | GEM_BUG_ON(!irqs_disabled()); |
| 612 | lockdep_assert_held(&engine->sched_engine->lock); |
| 613 | |
| 614 | /* |
| 615 | * With the advent of preempt-to-busy, we frequently encounter |
| 616 | * requests that we have unsubmitted from HW, but left running |
| 617 | * until the next ack and so have completed in the meantime. On |
| 618 | * resubmission of that completed request, we can skip |
| 619 | * updating the payload, and execlists can even skip submitting |
| 620 | * the request. |
| 621 | * |
| 622 | * We must remove the request from the caller's priority queue, |
| 623 | * and the caller must only call us when the request is in their |
| 624 | * priority queue, under the sched_engine->lock. This ensures that the |
| 625 | * request has *not* yet been retired and we can safely move |
| 626 | * the request into the engine->active.list where it will be |
| 627 | * dropped upon retiring. (Otherwise if resubmit a *retired* |
| 628 | * request, this would be a horrible use-after-free.) |
| 629 | */ |
| 630 | if (__i915_request_is_complete(request)) { |
| 631 | list_del_init(&request->sched.link); |
| 632 | goto active; |
| 633 | } |
| 634 | |
| 635 | if (unlikely(!intel_context_is_schedulable(request->context))) |
| 636 | i915_request_set_error_once(request, -EIO); |
| 637 | |
| 638 | if (unlikely(fatal_error(request->fence.error))) |
| 639 | __i915_request_skip(request); |
| 640 | |
| 641 | /* |
| 642 | * Are we using semaphores when the gpu is already saturated? |
| 643 | * |
| 644 | * Using semaphores incurs a cost in having the GPU poll a |
| 645 | * memory location, busywaiting for it to change. The continual |
| 646 | * memory reads can have a noticeable impact on the rest of the |
| 647 | * system with the extra bus traffic, stalling the cpu as it too |
| 648 | * tries to access memory across the bus (perf stat -e bus-cycles). |
| 649 | * |
| 650 | * If we installed a semaphore on this request and we only submit |
| 651 | * the request after the signaler completed, that indicates the |
| 652 | * system is overloaded and using semaphores at this time only |
| 653 | * increases the amount of work we are doing. If so, we disable |
| 654 | * further use of semaphores until we are idle again, whence we |
| 655 | * optimistically try again. |
| 656 | */ |
| 657 | if (request->sched.semaphores && |
| 658 | i915_sw_fence_signaled(&request->semaphore)) |
| 659 | engine->saturated |= request->sched.semaphores; |
| 660 | |
| 661 | engine->emit_fini_breadcrumb(request, |
| 662 | request->ring->vaddr + request->postfix); |
| 663 | |
| 664 | trace_i915_request_execute(request); |
| 665 | if (engine->bump_serial) |
| 666 | engine->bump_serial(engine); |
| 667 | else |
| 668 | engine->serial++; |
| 669 | |
| 670 | result = true; |
| 671 | |
| 672 | GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); |
| 673 | engine->add_active_request(request); |
| 674 | active: |
| 675 | clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags); |
| 676 | set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); |
| 677 | |
| 678 | /* |
| 679 | * XXX Rollback bonded-execution on __i915_request_unsubmit()? |
| 680 | * |
| 681 | * In the future, perhaps when we have an active time-slicing scheduler, |
| 682 | * it will be interesting to unsubmit parallel execution and remove |
| 683 | * busywaits from the GPU until their master is restarted. This is |
| 684 | * quite hairy, we have to carefully rollback the fence and do a |
| 685 | * preempt-to-idle cycle on the target engine, all the while the |
| 686 | * master execute_cb may refire. |
| 687 | */ |
| 688 | __notify_execute_cb_irq(request); |
| 689 | |
| 690 | /* We may be recursing from the signal callback of another i915 fence */ |
| 691 | if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) |
| 692 | i915_request_enable_breadcrumb(request); |
| 693 | |
| 694 | return result; |
| 695 | } |
| 696 | |
| 697 | void i915_request_submit(struct i915_request *request) |
| 698 | { |
| 699 | struct intel_engine_cs *engine = request->engine; |
| 700 | unsigned long flags; |
| 701 | |
| 702 | /* Will be called from irq-context when using foreign fences. */ |
| 703 | spin_lock_irqsave(&engine->sched_engine->lock, flags); |
| 704 | |
| 705 | __i915_request_submit(request); |
| 706 | |
| 707 | spin_unlock_irqrestore(&engine->sched_engine->lock, flags); |
| 708 | } |
| 709 | |
| 710 | void __i915_request_unsubmit(struct i915_request *request) |
| 711 | { |
| 712 | struct intel_engine_cs *engine = request->engine; |
| 713 | |
| 714 | /* |
| 715 | * Only unwind in reverse order, required so that the per-context list |
| 716 | * is kept in seqno/ring order. |
| 717 | */ |
| 718 | RQ_TRACE(request, "\n"); |
| 719 | |
| 720 | GEM_BUG_ON(!irqs_disabled()); |
| 721 | lockdep_assert_held(&engine->sched_engine->lock); |
| 722 | |
| 723 | /* |
| 724 | * Before we remove this breadcrumb from the signal list, we have |
| 725 | * to ensure that a concurrent dma_fence_enable_signaling() does not |
| 726 | * attach itself. We first mark the request as no longer active and |
| 727 | * make sure that is visible to other cores, and then remove the |
| 728 | * breadcrumb if attached. |
| 729 | */ |
| 730 | GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); |
| 731 | clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); |
| 732 | if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) |
| 733 | i915_request_cancel_breadcrumb(request); |
| 734 | |
| 735 | /* We've already spun, don't charge on resubmitting. */ |
| 736 | if (request->sched.semaphores && __i915_request_has_started(request)) |
| 737 | request->sched.semaphores = 0; |
| 738 | |
| 739 | /* |
| 740 | * We don't need to wake_up any waiters on request->execute, they |
| 741 | * will get woken by any other event or us re-adding this request |
| 742 | * to the engine timeline (__i915_request_submit()). The waiters |
| 743 | * should be quite adapt at finding that the request now has a new |
| 744 | * global_seqno to the one they went to sleep on. |
| 745 | */ |
| 746 | } |
| 747 | |
| 748 | void i915_request_unsubmit(struct i915_request *request) |
| 749 | { |
| 750 | struct intel_engine_cs *engine = request->engine; |
| 751 | unsigned long flags; |
| 752 | |
| 753 | /* Will be called from irq-context when using foreign fences. */ |
| 754 | spin_lock_irqsave(&engine->sched_engine->lock, flags); |
| 755 | |
| 756 | __i915_request_unsubmit(request); |
| 757 | |
| 758 | spin_unlock_irqrestore(&engine->sched_engine->lock, flags); |
| 759 | } |
| 760 | |
| 761 | void i915_request_cancel(struct i915_request *rq, int error) |
| 762 | { |
| 763 | if (!i915_request_set_error_once(rq, error)) |
| 764 | return; |
| 765 | |
| 766 | set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags); |
| 767 | |
| 768 | intel_context_cancel_request(rq->context, rq); |
| 769 | } |
| 770 | |
| 771 | static int |
| 772 | submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) |
| 773 | { |
| 774 | struct i915_request *request = |
| 775 | container_of(fence, typeof(*request), submit); |
| 776 | |
| 777 | switch (state) { |
| 778 | case FENCE_COMPLETE: |
| 779 | trace_i915_request_submit(request); |
| 780 | |
| 781 | if (unlikely(fence->error)) |
| 782 | i915_request_set_error_once(request, fence->error); |
| 783 | else |
| 784 | __rq_arm_watchdog(request); |
| 785 | |
| 786 | /* |
| 787 | * We need to serialize use of the submit_request() callback |
| 788 | * with its hotplugging performed during an emergency |
| 789 | * i915_gem_set_wedged(). We use the RCU mechanism to mark the |
| 790 | * critical section in order to force i915_gem_set_wedged() to |
| 791 | * wait until the submit_request() is completed before |
| 792 | * proceeding. |
| 793 | */ |
| 794 | rcu_read_lock(); |
| 795 | request->engine->submit_request(request); |
| 796 | rcu_read_unlock(); |
| 797 | break; |
| 798 | |
| 799 | case FENCE_FREE: |
| 800 | i915_request_put(request); |
| 801 | break; |
| 802 | } |
| 803 | |
| 804 | return NOTIFY_DONE; |
| 805 | } |
| 806 | |
| 807 | static int |
| 808 | semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) |
| 809 | { |
| 810 | struct i915_request *rq = container_of(fence, typeof(*rq), semaphore); |
| 811 | |
| 812 | switch (state) { |
| 813 | case FENCE_COMPLETE: |
| 814 | break; |
| 815 | |
| 816 | case FENCE_FREE: |
| 817 | i915_request_put(rq); |
| 818 | break; |
| 819 | } |
| 820 | |
| 821 | return NOTIFY_DONE; |
| 822 | } |
| 823 | |
| 824 | static void retire_requests(struct intel_timeline *tl) |
| 825 | { |
| 826 | struct i915_request *rq, *rn; |
| 827 | |
| 828 | list_for_each_entry_safe(rq, rn, &tl->requests, link) |
| 829 | if (!i915_request_retire(rq)) |
| 830 | break; |
| 831 | } |
| 832 | |
| 833 | static noinline struct i915_request * |
| 834 | request_alloc_slow(struct intel_timeline *tl, |
| 835 | struct i915_request **rsvd, |
| 836 | gfp_t gfp) |
| 837 | { |
| 838 | struct i915_request *rq; |
| 839 | |
| 840 | /* If we cannot wait, dip into our reserves */ |
| 841 | if (!gfpflags_allow_blocking(gfp)) { |
| 842 | rq = xchg(rsvd, NULL); |
| 843 | if (!rq) /* Use the normal failure path for one final WARN */ |
| 844 | goto out; |
| 845 | |
| 846 | return rq; |
| 847 | } |
| 848 | |
| 849 | if (list_empty(&tl->requests)) |
| 850 | goto out; |
| 851 | |
| 852 | /* Move our oldest request to the slab-cache (if not in use!) */ |
| 853 | rq = list_first_entry(&tl->requests, typeof(*rq), link); |
| 854 | i915_request_retire(rq); |
| 855 | |
| 856 | rq = kmem_cache_alloc(slab_requests, |
| 857 | gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); |
| 858 | if (rq) |
| 859 | return rq; |
| 860 | |
| 861 | /* Ratelimit ourselves to prevent oom from malicious clients */ |
| 862 | rq = list_last_entry(&tl->requests, typeof(*rq), link); |
| 863 | cond_synchronize_rcu(rq->rcustate); |
| 864 | |
| 865 | /* Retire our old requests in the hope that we free some */ |
| 866 | retire_requests(tl); |
| 867 | |
| 868 | out: |
| 869 | return kmem_cache_alloc(slab_requests, gfp); |
| 870 | } |
| 871 | |
| 872 | static void __i915_request_ctor(void *arg) |
| 873 | { |
| 874 | struct i915_request *rq = arg; |
| 875 | |
| 876 | spin_lock_init(&rq->lock); |
| 877 | i915_sched_node_init(&rq->sched); |
| 878 | i915_sw_fence_init(&rq->submit, submit_notify); |
| 879 | i915_sw_fence_init(&rq->semaphore, semaphore_notify); |
| 880 | |
| 881 | clear_capture_list(rq); |
| 882 | rq->batch_res = NULL; |
| 883 | |
| 884 | init_llist_head(&rq->execute_cb); |
| 885 | } |
| 886 | |
| 887 | #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) |
| 888 | #define clear_batch_ptr(_rq) ((_rq)->batch = NULL) |
| 889 | #else |
| 890 | #define clear_batch_ptr(_a) do {} while (0) |
| 891 | #endif |
| 892 | |
| 893 | struct i915_request * |
| 894 | __i915_request_create(struct intel_context *ce, gfp_t gfp) |
| 895 | { |
| 896 | struct intel_timeline *tl = ce->timeline; |
| 897 | struct i915_request *rq; |
| 898 | u32 seqno; |
| 899 | int ret; |
| 900 | |
| 901 | might_alloc(gfp); |
| 902 | |
| 903 | /* Check that the caller provided an already pinned context */ |
| 904 | __intel_context_pin(ce); |
| 905 | |
| 906 | /* |
| 907 | * Beware: Dragons be flying overhead. |
| 908 | * |
| 909 | * We use RCU to look up requests in flight. The lookups may |
| 910 | * race with the request being allocated from the slab freelist. |
| 911 | * That is the request we are writing to here, may be in the process |
| 912 | * of being read by __i915_active_request_get_rcu(). As such, |
| 913 | * we have to be very careful when overwriting the contents. During |
| 914 | * the RCU lookup, we change chase the request->engine pointer, |
| 915 | * read the request->global_seqno and increment the reference count. |
| 916 | * |
| 917 | * The reference count is incremented atomically. If it is zero, |
| 918 | * the lookup knows the request is unallocated and complete. Otherwise, |
| 919 | * it is either still in use, or has been reallocated and reset |
| 920 | * with dma_fence_init(). This increment is safe for release as we |
| 921 | * check that the request we have a reference to and matches the active |
| 922 | * request. |
| 923 | * |
| 924 | * Before we increment the refcount, we chase the request->engine |
| 925 | * pointer. We must not call kmem_cache_zalloc() or else we set |
| 926 | * that pointer to NULL and cause a crash during the lookup. If |
| 927 | * we see the request is completed (based on the value of the |
| 928 | * old engine and seqno), the lookup is complete and reports NULL. |
| 929 | * If we decide the request is not completed (new engine or seqno), |
| 930 | * then we grab a reference and double check that it is still the |
| 931 | * active request - which it won't be and restart the lookup. |
| 932 | * |
| 933 | * Do not use kmem_cache_zalloc() here! |
| 934 | */ |
| 935 | rq = kmem_cache_alloc(slab_requests, |
| 936 | gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); |
| 937 | if (unlikely(!rq)) { |
| 938 | rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp); |
| 939 | if (!rq) { |
| 940 | ret = -ENOMEM; |
| 941 | goto err_unreserve; |
| 942 | } |
| 943 | } |
| 944 | |
| 945 | rq->context = ce; |
| 946 | rq->engine = ce->engine; |
| 947 | rq->ring = ce->ring; |
| 948 | rq->execution_mask = ce->engine->mask; |
| 949 | rq->i915 = ce->engine->i915; |
| 950 | |
| 951 | ret = intel_timeline_get_seqno(tl, rq, &seqno); |
| 952 | if (ret) |
| 953 | goto err_free; |
| 954 | |
| 955 | dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, |
| 956 | tl->fence_context, seqno); |
| 957 | |
| 958 | RCU_INIT_POINTER(rq->timeline, tl); |
| 959 | rq->hwsp_seqno = tl->hwsp_seqno; |
| 960 | GEM_BUG_ON(__i915_request_is_complete(rq)); |
| 961 | |
| 962 | rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ |
| 963 | |
| 964 | rq->guc_prio = GUC_PRIO_INIT; |
| 965 | |
| 966 | /* We bump the ref for the fence chain */ |
| 967 | i915_sw_fence_reinit(&i915_request_get(rq)->submit); |
| 968 | i915_sw_fence_reinit(&i915_request_get(rq)->semaphore); |
| 969 | |
| 970 | i915_sched_node_reinit(&rq->sched); |
| 971 | |
| 972 | /* No zalloc, everything must be cleared after use */ |
| 973 | clear_batch_ptr(rq); |
| 974 | __rq_init_watchdog(rq); |
| 975 | assert_capture_list_is_null(rq); |
| 976 | GEM_BUG_ON(!llist_empty(&rq->execute_cb)); |
| 977 | GEM_BUG_ON(rq->batch_res); |
| 978 | |
| 979 | /* |
| 980 | * Reserve space in the ring buffer for all the commands required to |
| 981 | * eventually emit this request. This is to guarantee that the |
| 982 | * i915_request_add() call can't fail. Note that the reserve may need |
| 983 | * to be redone if the request is not actually submitted straight |
| 984 | * away, e.g. because a GPU scheduler has deferred it. |
| 985 | * |
| 986 | * Note that due to how we add reserved_space to intel_ring_begin() |
| 987 | * we need to double our request to ensure that if we need to wrap |
| 988 | * around inside i915_request_add() there is sufficient space at |
| 989 | * the beginning of the ring as well. |
| 990 | */ |
| 991 | rq->reserved_space = |
| 992 | 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); |
| 993 | |
| 994 | /* |
| 995 | * Record the position of the start of the request so that |
| 996 | * should we detect the updated seqno part-way through the |
| 997 | * GPU processing the request, we never over-estimate the |
| 998 | * position of the head. |
| 999 | */ |
| 1000 | rq->head = rq->ring->emit; |
| 1001 | |
| 1002 | ret = rq->engine->request_alloc(rq); |
| 1003 | if (ret) |
| 1004 | goto err_unwind; |
| 1005 | |
| 1006 | rq->infix = rq->ring->emit; /* end of header; start of user payload */ |
| 1007 | |
| 1008 | intel_context_mark_active(ce); |
| 1009 | list_add_tail_rcu(&rq->link, &tl->requests); |
| 1010 | |
| 1011 | return rq; |
| 1012 | |
| 1013 | err_unwind: |
| 1014 | ce->ring->emit = rq->head; |
| 1015 | |
| 1016 | /* Make sure we didn't add ourselves to external state before freeing */ |
| 1017 | GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); |
| 1018 | GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); |
| 1019 | |
| 1020 | err_free: |
| 1021 | kmem_cache_free(slab_requests, rq); |
| 1022 | err_unreserve: |
| 1023 | intel_context_unpin(ce); |
| 1024 | return ERR_PTR(ret); |
| 1025 | } |
| 1026 | |
| 1027 | struct i915_request * |
| 1028 | i915_request_create(struct intel_context *ce) |
| 1029 | { |
| 1030 | struct i915_request *rq; |
| 1031 | struct intel_timeline *tl; |
| 1032 | |
| 1033 | tl = intel_context_timeline_lock(ce); |
| 1034 | if (IS_ERR(tl)) |
| 1035 | return ERR_CAST(tl); |
| 1036 | |
| 1037 | /* Move our oldest request to the slab-cache (if not in use!) */ |
| 1038 | rq = list_first_entry(&tl->requests, typeof(*rq), link); |
| 1039 | if (!list_is_last(&rq->link, &tl->requests)) |
| 1040 | i915_request_retire(rq); |
| 1041 | |
| 1042 | intel_context_enter(ce); |
| 1043 | rq = __i915_request_create(ce, GFP_KERNEL); |
| 1044 | intel_context_exit(ce); /* active reference transferred to request */ |
| 1045 | if (IS_ERR(rq)) |
| 1046 | goto err_unlock; |
| 1047 | |
| 1048 | /* Check that we do not interrupt ourselves with a new request */ |
| 1049 | rq->cookie = lockdep_pin_lock(&tl->mutex); |
| 1050 | |
| 1051 | return rq; |
| 1052 | |
| 1053 | err_unlock: |
| 1054 | intel_context_timeline_unlock(tl); |
| 1055 | return rq; |
| 1056 | } |
| 1057 | |
| 1058 | static int |
| 1059 | i915_request_await_start(struct i915_request *rq, struct i915_request *signal) |
| 1060 | { |
| 1061 | struct dma_fence *fence; |
| 1062 | int err; |
| 1063 | |
| 1064 | if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline)) |
| 1065 | return 0; |
| 1066 | |
| 1067 | if (i915_request_started(signal)) |
| 1068 | return 0; |
| 1069 | |
| 1070 | /* |
| 1071 | * The caller holds a reference on @signal, but we do not serialise |
| 1072 | * against it being retired and removed from the lists. |
| 1073 | * |
| 1074 | * We do not hold a reference to the request before @signal, and |
| 1075 | * so must be very careful to ensure that it is not _recycled_ as |
| 1076 | * we follow the link backwards. |
| 1077 | */ |
| 1078 | fence = NULL; |
| 1079 | rcu_read_lock(); |
| 1080 | do { |
| 1081 | struct list_head *pos = READ_ONCE(signal->link.prev); |
| 1082 | struct i915_request *prev; |
| 1083 | |
| 1084 | /* Confirm signal has not been retired, the link is valid */ |
| 1085 | if (unlikely(__i915_request_has_started(signal))) |
| 1086 | break; |
| 1087 | |
| 1088 | /* Is signal the earliest request on its timeline? */ |
| 1089 | if (pos == &rcu_dereference(signal->timeline)->requests) |
| 1090 | break; |
| 1091 | |
| 1092 | /* |
| 1093 | * Peek at the request before us in the timeline. That |
| 1094 | * request will only be valid before it is retired, so |
| 1095 | * after acquiring a reference to it, confirm that it is |
| 1096 | * still part of the signaler's timeline. |
| 1097 | */ |
| 1098 | prev = list_entry(pos, typeof(*prev), link); |
| 1099 | if (!i915_request_get_rcu(prev)) |
| 1100 | break; |
| 1101 | |
| 1102 | /* After the strong barrier, confirm prev is still attached */ |
| 1103 | if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) { |
| 1104 | i915_request_put(prev); |
| 1105 | break; |
| 1106 | } |
| 1107 | |
| 1108 | fence = &prev->fence; |
| 1109 | } while (0); |
| 1110 | rcu_read_unlock(); |
| 1111 | if (!fence) |
| 1112 | return 0; |
| 1113 | |
| 1114 | err = 0; |
| 1115 | if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence)) |
| 1116 | err = i915_sw_fence_await_dma_fence(&rq->submit, |
| 1117 | fence, 0, |
| 1118 | I915_FENCE_GFP); |
| 1119 | dma_fence_put(fence); |
| 1120 | |
| 1121 | return err; |
| 1122 | } |
| 1123 | |
| 1124 | static intel_engine_mask_t |
| 1125 | already_busywaiting(struct i915_request *rq) |
| 1126 | { |
| 1127 | /* |
| 1128 | * Polling a semaphore causes bus traffic, delaying other users of |
| 1129 | * both the GPU and CPU. We want to limit the impact on others, |
| 1130 | * while taking advantage of early submission to reduce GPU |
| 1131 | * latency. Therefore we restrict ourselves to not using more |
| 1132 | * than one semaphore from each source, and not using a semaphore |
| 1133 | * if we have detected the engine is saturated (i.e. would not be |
| 1134 | * submitted early and cause bus traffic reading an already passed |
| 1135 | * semaphore). |
| 1136 | * |
| 1137 | * See the are-we-too-late? check in __i915_request_submit(). |
| 1138 | */ |
| 1139 | return rq->sched.semaphores | READ_ONCE(rq->engine->saturated); |
| 1140 | } |
| 1141 | |
| 1142 | static int |
| 1143 | __emit_semaphore_wait(struct i915_request *to, |
| 1144 | struct i915_request *from, |
| 1145 | u32 seqno) |
| 1146 | { |
| 1147 | const int has_token = GRAPHICS_VER(to->engine->i915) >= 12; |
| 1148 | u32 hwsp_offset; |
| 1149 | int len, err; |
| 1150 | u32 *cs; |
| 1151 | |
| 1152 | GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8); |
| 1153 | GEM_BUG_ON(i915_request_has_initial_breadcrumb(to)); |
| 1154 | |
| 1155 | /* We need to pin the signaler's HWSP until we are finished reading. */ |
| 1156 | err = intel_timeline_read_hwsp(from, to, &hwsp_offset); |
| 1157 | if (err) |
| 1158 | return err; |
| 1159 | |
| 1160 | len = 4; |
| 1161 | if (has_token) |
| 1162 | len += 2; |
| 1163 | |
| 1164 | cs = intel_ring_begin(to, len); |
| 1165 | if (IS_ERR(cs)) |
| 1166 | return PTR_ERR(cs); |
| 1167 | |
| 1168 | /* |
| 1169 | * Using greater-than-or-equal here means we have to worry |
| 1170 | * about seqno wraparound. To side step that issue, we swap |
| 1171 | * the timeline HWSP upon wrapping, so that everyone listening |
| 1172 | * for the old (pre-wrap) values do not see the much smaller |
| 1173 | * (post-wrap) values than they were expecting (and so wait |
| 1174 | * forever). |
| 1175 | */ |
| 1176 | *cs++ = (MI_SEMAPHORE_WAIT | |
| 1177 | MI_SEMAPHORE_GLOBAL_GTT | |
| 1178 | MI_SEMAPHORE_POLL | |
| 1179 | MI_SEMAPHORE_SAD_GTE_SDD) + |
| 1180 | has_token; |
| 1181 | *cs++ = seqno; |
| 1182 | *cs++ = hwsp_offset; |
| 1183 | *cs++ = 0; |
| 1184 | if (has_token) { |
| 1185 | *cs++ = 0; |
| 1186 | *cs++ = MI_NOOP; |
| 1187 | } |
| 1188 | |
| 1189 | intel_ring_advance(to, cs); |
| 1190 | return 0; |
| 1191 | } |
| 1192 | |
| 1193 | static bool |
| 1194 | can_use_semaphore_wait(struct i915_request *to, struct i915_request *from) |
| 1195 | { |
| 1196 | return to->engine->gt->ggtt == from->engine->gt->ggtt; |
| 1197 | } |
| 1198 | |
| 1199 | static int |
| 1200 | emit_semaphore_wait(struct i915_request *to, |
| 1201 | struct i915_request *from, |
| 1202 | gfp_t gfp) |
| 1203 | { |
| 1204 | const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask; |
| 1205 | struct i915_sw_fence *wait = &to->submit; |
| 1206 | |
| 1207 | if (!can_use_semaphore_wait(to, from)) |
| 1208 | goto await_fence; |
| 1209 | |
| 1210 | if (!intel_context_use_semaphores(to->context)) |
| 1211 | goto await_fence; |
| 1212 | |
| 1213 | if (i915_request_has_initial_breadcrumb(to)) |
| 1214 | goto await_fence; |
| 1215 | |
| 1216 | /* |
| 1217 | * If this or its dependents are waiting on an external fence |
| 1218 | * that may fail catastrophically, then we want to avoid using |
| 1219 | * semaphores as they bypass the fence signaling metadata, and we |
| 1220 | * lose the fence->error propagation. |
| 1221 | */ |
| 1222 | if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN) |
| 1223 | goto await_fence; |
| 1224 | |
| 1225 | /* Just emit the first semaphore we see as request space is limited. */ |
| 1226 | if (already_busywaiting(to) & mask) |
| 1227 | goto await_fence; |
| 1228 | |
| 1229 | if (i915_request_await_start(to, from) < 0) |
| 1230 | goto await_fence; |
| 1231 | |
| 1232 | /* Only submit our spinner after the signaler is running! */ |
| 1233 | if (__await_execution(to, from, gfp)) |
| 1234 | goto await_fence; |
| 1235 | |
| 1236 | if (__emit_semaphore_wait(to, from, from->fence.seqno)) |
| 1237 | goto await_fence; |
| 1238 | |
| 1239 | to->sched.semaphores |= mask; |
| 1240 | wait = &to->semaphore; |
| 1241 | |
| 1242 | await_fence: |
| 1243 | return i915_sw_fence_await_dma_fence(wait, |
| 1244 | &from->fence, 0, |
| 1245 | I915_FENCE_GFP); |
| 1246 | } |
| 1247 | |
| 1248 | static bool intel_timeline_sync_has_start(struct intel_timeline *tl, |
| 1249 | struct dma_fence *fence) |
| 1250 | { |
| 1251 | return __intel_timeline_sync_is_later(tl, |
| 1252 | fence->context, |
| 1253 | fence->seqno - 1); |
| 1254 | } |
| 1255 | |
| 1256 | static int intel_timeline_sync_set_start(struct intel_timeline *tl, |
| 1257 | const struct dma_fence *fence) |
| 1258 | { |
| 1259 | return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1); |
| 1260 | } |
| 1261 | |
| 1262 | static int |
| 1263 | __i915_request_await_execution(struct i915_request *to, |
| 1264 | struct i915_request *from) |
| 1265 | { |
| 1266 | int err; |
| 1267 | |
| 1268 | GEM_BUG_ON(intel_context_is_barrier(from->context)); |
| 1269 | |
| 1270 | /* Submit both requests at the same time */ |
| 1271 | err = __await_execution(to, from, I915_FENCE_GFP); |
| 1272 | if (err) |
| 1273 | return err; |
| 1274 | |
| 1275 | /* Squash repeated depenendices to the same timelines */ |
| 1276 | if (intel_timeline_sync_has_start(i915_request_timeline(to), |
| 1277 | &from->fence)) |
| 1278 | return 0; |
| 1279 | |
| 1280 | /* |
| 1281 | * Wait until the start of this request. |
| 1282 | * |
| 1283 | * The execution cb fires when we submit the request to HW. But in |
| 1284 | * many cases this may be long before the request itself is ready to |
| 1285 | * run (consider that we submit 2 requests for the same context, where |
| 1286 | * the request of interest is behind an indefinite spinner). So we hook |
| 1287 | * up to both to reduce our queues and keep the execution lag minimised |
| 1288 | * in the worst case, though we hope that the await_start is elided. |
| 1289 | */ |
| 1290 | err = i915_request_await_start(to, from); |
| 1291 | if (err < 0) |
| 1292 | return err; |
| 1293 | |
| 1294 | /* |
| 1295 | * Ensure both start together [after all semaphores in signal] |
| 1296 | * |
| 1297 | * Now that we are queued to the HW at roughly the same time (thanks |
| 1298 | * to the execute cb) and are ready to run at roughly the same time |
| 1299 | * (thanks to the await start), our signaler may still be indefinitely |
| 1300 | * delayed by waiting on a semaphore from a remote engine. If our |
| 1301 | * signaler depends on a semaphore, so indirectly do we, and we do not |
| 1302 | * want to start our payload until our signaler also starts theirs. |
| 1303 | * So we wait. |
| 1304 | * |
| 1305 | * However, there is also a second condition for which we need to wait |
| 1306 | * for the precise start of the signaler. Consider that the signaler |
| 1307 | * was submitted in a chain of requests following another context |
| 1308 | * (with just an ordinary intra-engine fence dependency between the |
| 1309 | * two). In this case the signaler is queued to HW, but not for |
| 1310 | * immediate execution, and so we must wait until it reaches the |
| 1311 | * active slot. |
| 1312 | */ |
| 1313 | if (can_use_semaphore_wait(to, from) && |
| 1314 | intel_engine_has_semaphores(to->engine) && |
| 1315 | !i915_request_has_initial_breadcrumb(to)) { |
| 1316 | err = __emit_semaphore_wait(to, from, from->fence.seqno - 1); |
| 1317 | if (err < 0) |
| 1318 | return err; |
| 1319 | } |
| 1320 | |
| 1321 | /* Couple the dependency tree for PI on this exposed to->fence */ |
| 1322 | if (to->engine->sched_engine->schedule) { |
| 1323 | err = i915_sched_node_add_dependency(&to->sched, |
| 1324 | &from->sched, |
| 1325 | I915_DEPENDENCY_WEAK); |
| 1326 | if (err < 0) |
| 1327 | return err; |
| 1328 | } |
| 1329 | |
| 1330 | return intel_timeline_sync_set_start(i915_request_timeline(to), |
| 1331 | &from->fence); |
| 1332 | } |
| 1333 | |
| 1334 | static void mark_external(struct i915_request *rq) |
| 1335 | { |
| 1336 | /* |
| 1337 | * The downside of using semaphores is that we lose metadata passing |
| 1338 | * along the signaling chain. This is particularly nasty when we |
| 1339 | * need to pass along a fatal error such as EFAULT or EDEADLK. For |
| 1340 | * fatal errors we want to scrub the request before it is executed, |
| 1341 | * which means that we cannot preload the request onto HW and have |
| 1342 | * it wait upon a semaphore. |
| 1343 | */ |
| 1344 | rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN; |
| 1345 | } |
| 1346 | |
| 1347 | static int |
| 1348 | __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) |
| 1349 | { |
| 1350 | mark_external(rq); |
| 1351 | return i915_sw_fence_await_dma_fence(&rq->submit, fence, |
| 1352 | i915_fence_context_timeout(rq->i915, |
| 1353 | fence->context), |
| 1354 | I915_FENCE_GFP); |
| 1355 | } |
| 1356 | |
| 1357 | static int |
| 1358 | i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) |
| 1359 | { |
| 1360 | struct dma_fence *iter; |
| 1361 | int err = 0; |
| 1362 | |
| 1363 | if (!to_dma_fence_chain(fence)) |
| 1364 | return __i915_request_await_external(rq, fence); |
| 1365 | |
| 1366 | dma_fence_chain_for_each(iter, fence) { |
| 1367 | struct dma_fence_chain *chain = to_dma_fence_chain(iter); |
| 1368 | |
| 1369 | if (!dma_fence_is_i915(chain->fence)) { |
| 1370 | err = __i915_request_await_external(rq, iter); |
| 1371 | break; |
| 1372 | } |
| 1373 | |
| 1374 | err = i915_request_await_dma_fence(rq, chain->fence); |
| 1375 | if (err < 0) |
| 1376 | break; |
| 1377 | } |
| 1378 | |
| 1379 | dma_fence_put(iter); |
| 1380 | return err; |
| 1381 | } |
| 1382 | |
| 1383 | static inline bool is_parallel_rq(struct i915_request *rq) |
| 1384 | { |
| 1385 | return intel_context_is_parallel(rq->context); |
| 1386 | } |
| 1387 | |
| 1388 | static inline struct intel_context *request_to_parent(struct i915_request *rq) |
| 1389 | { |
| 1390 | return intel_context_to_parent(rq->context); |
| 1391 | } |
| 1392 | |
| 1393 | static bool is_same_parallel_context(struct i915_request *to, |
| 1394 | struct i915_request *from) |
| 1395 | { |
| 1396 | if (is_parallel_rq(to)) |
| 1397 | return request_to_parent(to) == request_to_parent(from); |
| 1398 | |
| 1399 | return false; |
| 1400 | } |
| 1401 | |
| 1402 | int |
| 1403 | i915_request_await_execution(struct i915_request *rq, |
| 1404 | struct dma_fence *fence) |
| 1405 | { |
| 1406 | struct dma_fence **child = &fence; |
| 1407 | unsigned int nchild = 1; |
| 1408 | int ret; |
| 1409 | |
| 1410 | if (dma_fence_is_array(fence)) { |
| 1411 | struct dma_fence_array *array = to_dma_fence_array(fence); |
| 1412 | |
| 1413 | /* XXX Error for signal-on-any fence arrays */ |
| 1414 | |
| 1415 | child = array->fences; |
| 1416 | nchild = array->num_fences; |
| 1417 | GEM_BUG_ON(!nchild); |
| 1418 | } |
| 1419 | |
| 1420 | do { |
| 1421 | fence = *child++; |
| 1422 | if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) |
| 1423 | continue; |
| 1424 | |
| 1425 | if (fence->context == rq->fence.context) |
| 1426 | continue; |
| 1427 | |
| 1428 | /* |
| 1429 | * We don't squash repeated fence dependencies here as we |
| 1430 | * want to run our callback in all cases. |
| 1431 | */ |
| 1432 | |
| 1433 | if (dma_fence_is_i915(fence)) { |
| 1434 | if (is_same_parallel_context(rq, to_request(fence))) |
| 1435 | continue; |
| 1436 | ret = __i915_request_await_execution(rq, |
| 1437 | to_request(fence)); |
| 1438 | } else { |
| 1439 | ret = i915_request_await_external(rq, fence); |
| 1440 | } |
| 1441 | if (ret < 0) |
| 1442 | return ret; |
| 1443 | } while (--nchild); |
| 1444 | |
| 1445 | return 0; |
| 1446 | } |
| 1447 | |
| 1448 | static int |
| 1449 | await_request_submit(struct i915_request *to, struct i915_request *from) |
| 1450 | { |
| 1451 | /* |
| 1452 | * If we are waiting on a virtual engine, then it may be |
| 1453 | * constrained to execute on a single engine *prior* to submission. |
| 1454 | * When it is submitted, it will be first submitted to the virtual |
| 1455 | * engine and then passed to the physical engine. We cannot allow |
| 1456 | * the waiter to be submitted immediately to the physical engine |
| 1457 | * as it may then bypass the virtual request. |
| 1458 | */ |
| 1459 | if (to->engine == READ_ONCE(from->engine)) |
| 1460 | return i915_sw_fence_await_sw_fence_gfp(&to->submit, |
| 1461 | &from->submit, |
| 1462 | I915_FENCE_GFP); |
| 1463 | else |
| 1464 | return __i915_request_await_execution(to, from); |
| 1465 | } |
| 1466 | |
| 1467 | static int |
| 1468 | i915_request_await_request(struct i915_request *to, struct i915_request *from) |
| 1469 | { |
| 1470 | int ret; |
| 1471 | |
| 1472 | GEM_BUG_ON(to == from); |
| 1473 | GEM_BUG_ON(to->timeline == from->timeline); |
| 1474 | |
| 1475 | if (i915_request_completed(from)) { |
| 1476 | i915_sw_fence_set_error_once(&to->submit, from->fence.error); |
| 1477 | return 0; |
| 1478 | } |
| 1479 | |
| 1480 | if (to->engine->sched_engine->schedule) { |
| 1481 | ret = i915_sched_node_add_dependency(&to->sched, |
| 1482 | &from->sched, |
| 1483 | I915_DEPENDENCY_EXTERNAL); |
| 1484 | if (ret < 0) |
| 1485 | return ret; |
| 1486 | } |
| 1487 | |
| 1488 | if (!intel_engine_uses_guc(to->engine) && |
| 1489 | is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask))) |
| 1490 | ret = await_request_submit(to, from); |
| 1491 | else |
| 1492 | ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); |
| 1493 | if (ret < 0) |
| 1494 | return ret; |
| 1495 | |
| 1496 | return 0; |
| 1497 | } |
| 1498 | |
| 1499 | int |
| 1500 | i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) |
| 1501 | { |
| 1502 | struct dma_fence **child = &fence; |
| 1503 | unsigned int nchild = 1; |
| 1504 | int ret; |
| 1505 | |
| 1506 | /* |
| 1507 | * Note that if the fence-array was created in signal-on-any mode, |
| 1508 | * we should *not* decompose it into its individual fences. However, |
| 1509 | * we don't currently store which mode the fence-array is operating |
| 1510 | * in. Fortunately, the only user of signal-on-any is private to |
| 1511 | * amdgpu and we should not see any incoming fence-array from |
| 1512 | * sync-file being in signal-on-any mode. |
| 1513 | */ |
| 1514 | if (dma_fence_is_array(fence)) { |
| 1515 | struct dma_fence_array *array = to_dma_fence_array(fence); |
| 1516 | |
| 1517 | child = array->fences; |
| 1518 | nchild = array->num_fences; |
| 1519 | GEM_BUG_ON(!nchild); |
| 1520 | } |
| 1521 | |
| 1522 | do { |
| 1523 | fence = *child++; |
| 1524 | if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) |
| 1525 | continue; |
| 1526 | |
| 1527 | /* |
| 1528 | * Requests on the same timeline are explicitly ordered, along |
| 1529 | * with their dependencies, by i915_request_add() which ensures |
| 1530 | * that requests are submitted in-order through each ring. |
| 1531 | */ |
| 1532 | if (fence->context == rq->fence.context) |
| 1533 | continue; |
| 1534 | |
| 1535 | /* Squash repeated waits to the same timelines */ |
| 1536 | if (fence->context && |
| 1537 | intel_timeline_sync_is_later(i915_request_timeline(rq), |
| 1538 | fence)) |
| 1539 | continue; |
| 1540 | |
| 1541 | if (dma_fence_is_i915(fence)) { |
| 1542 | if (is_same_parallel_context(rq, to_request(fence))) |
| 1543 | continue; |
| 1544 | ret = i915_request_await_request(rq, to_request(fence)); |
| 1545 | } else { |
| 1546 | ret = i915_request_await_external(rq, fence); |
| 1547 | } |
| 1548 | if (ret < 0) |
| 1549 | return ret; |
| 1550 | |
| 1551 | /* Record the latest fence used against each timeline */ |
| 1552 | if (fence->context) |
| 1553 | intel_timeline_sync_set(i915_request_timeline(rq), |
| 1554 | fence); |
| 1555 | } while (--nchild); |
| 1556 | |
| 1557 | return 0; |
| 1558 | } |
| 1559 | |
| 1560 | /** |
| 1561 | * i915_request_await_deps - set this request to (async) wait upon a struct |
| 1562 | * i915_deps dma_fence collection |
| 1563 | * @rq: request we are wishing to use |
| 1564 | * @deps: The struct i915_deps containing the dependencies. |
| 1565 | * |
| 1566 | * Returns 0 if successful, negative error code on error. |
| 1567 | */ |
| 1568 | int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps) |
| 1569 | { |
| 1570 | int i, err; |
| 1571 | |
| 1572 | for (i = 0; i < deps->num_deps; ++i) { |
| 1573 | err = i915_request_await_dma_fence(rq, deps->fences[i]); |
| 1574 | if (err) |
| 1575 | return err; |
| 1576 | } |
| 1577 | |
| 1578 | return 0; |
| 1579 | } |
| 1580 | |
| 1581 | /** |
| 1582 | * i915_request_await_object - set this request to (async) wait upon a bo |
| 1583 | * @to: request we are wishing to use |
| 1584 | * @obj: object which may be in use on another ring. |
| 1585 | * @write: whether the wait is on behalf of a writer |
| 1586 | * |
| 1587 | * This code is meant to abstract object synchronization with the GPU. |
| 1588 | * Conceptually we serialise writes between engines inside the GPU. |
| 1589 | * We only allow one engine to write into a buffer at any time, but |
| 1590 | * multiple readers. To ensure each has a coherent view of memory, we must: |
| 1591 | * |
| 1592 | * - If there is an outstanding write request to the object, the new |
| 1593 | * request must wait for it to complete (either CPU or in hw, requests |
| 1594 | * on the same ring will be naturally ordered). |
| 1595 | * |
| 1596 | * - If we are a write request (pending_write_domain is set), the new |
| 1597 | * request must wait for outstanding read requests to complete. |
| 1598 | * |
| 1599 | * Returns 0 if successful, else propagates up the lower layer error. |
| 1600 | */ |
| 1601 | int |
| 1602 | i915_request_await_object(struct i915_request *to, |
| 1603 | struct drm_i915_gem_object *obj, |
| 1604 | bool write) |
| 1605 | { |
| 1606 | struct dma_resv_iter cursor; |
| 1607 | struct dma_fence *fence; |
| 1608 | int ret = 0; |
| 1609 | |
| 1610 | dma_resv_for_each_fence(&cursor, obj->base.resv, |
| 1611 | dma_resv_usage_rw(write), fence) { |
| 1612 | ret = i915_request_await_dma_fence(to, fence); |
| 1613 | if (ret) |
| 1614 | break; |
| 1615 | } |
| 1616 | |
| 1617 | return ret; |
| 1618 | } |
| 1619 | |
| 1620 | static void i915_request_await_huc(struct i915_request *rq) |
| 1621 | { |
| 1622 | struct intel_huc *huc = &rq->context->engine->gt->uc.huc; |
| 1623 | |
| 1624 | /* don't stall kernel submissions! */ |
| 1625 | if (!rcu_access_pointer(rq->context->gem_context)) |
| 1626 | return; |
| 1627 | |
| 1628 | if (intel_huc_wait_required(huc)) |
| 1629 | i915_sw_fence_await_sw_fence(&rq->submit, |
| 1630 | &huc->delayed_load.fence, |
| 1631 | &rq->hucq); |
| 1632 | } |
| 1633 | |
| 1634 | static struct i915_request * |
| 1635 | __i915_request_ensure_parallel_ordering(struct i915_request *rq, |
| 1636 | struct intel_timeline *timeline) |
| 1637 | { |
| 1638 | struct i915_request *prev; |
| 1639 | |
| 1640 | GEM_BUG_ON(!is_parallel_rq(rq)); |
| 1641 | |
| 1642 | prev = request_to_parent(rq)->parallel.last_rq; |
| 1643 | if (prev) { |
| 1644 | if (!__i915_request_is_complete(prev)) { |
| 1645 | i915_sw_fence_await_sw_fence(&rq->submit, |
| 1646 | &prev->submit, |
| 1647 | &rq->submitq); |
| 1648 | |
| 1649 | if (rq->engine->sched_engine->schedule) |
| 1650 | __i915_sched_node_add_dependency(&rq->sched, |
| 1651 | &prev->sched, |
| 1652 | &rq->dep, |
| 1653 | 0); |
| 1654 | } |
| 1655 | i915_request_put(prev); |
| 1656 | } |
| 1657 | |
| 1658 | request_to_parent(rq)->parallel.last_rq = i915_request_get(rq); |
| 1659 | |
| 1660 | /* |
| 1661 | * Users have to put a reference potentially got by |
| 1662 | * __i915_active_fence_set() to the returned request |
| 1663 | * when no longer needed |
| 1664 | */ |
| 1665 | return to_request(__i915_active_fence_set(&timeline->last_request, |
| 1666 | &rq->fence)); |
| 1667 | } |
| 1668 | |
| 1669 | static struct i915_request * |
| 1670 | __i915_request_ensure_ordering(struct i915_request *rq, |
| 1671 | struct intel_timeline *timeline) |
| 1672 | { |
| 1673 | struct i915_request *prev; |
| 1674 | |
| 1675 | GEM_BUG_ON(is_parallel_rq(rq)); |
| 1676 | |
| 1677 | prev = to_request(__i915_active_fence_set(&timeline->last_request, |
| 1678 | &rq->fence)); |
| 1679 | |
| 1680 | if (prev && !__i915_request_is_complete(prev)) { |
| 1681 | bool uses_guc = intel_engine_uses_guc(rq->engine); |
| 1682 | bool pow2 = is_power_of_2(READ_ONCE(prev->engine)->mask | |
| 1683 | rq->engine->mask); |
| 1684 | bool same_context = prev->context == rq->context; |
| 1685 | |
| 1686 | /* |
| 1687 | * The requests are supposed to be kept in order. However, |
| 1688 | * we need to be wary in case the timeline->last_request |
| 1689 | * is used as a barrier for external modification to this |
| 1690 | * context. |
| 1691 | */ |
| 1692 | GEM_BUG_ON(same_context && |
| 1693 | i915_seqno_passed(prev->fence.seqno, |
| 1694 | rq->fence.seqno)); |
| 1695 | |
| 1696 | if ((same_context && uses_guc) || (!uses_guc && pow2)) |
| 1697 | i915_sw_fence_await_sw_fence(&rq->submit, |
| 1698 | &prev->submit, |
| 1699 | &rq->submitq); |
| 1700 | else |
| 1701 | __i915_sw_fence_await_dma_fence(&rq->submit, |
| 1702 | &prev->fence, |
| 1703 | &rq->dmaq); |
| 1704 | if (rq->engine->sched_engine->schedule) |
| 1705 | __i915_sched_node_add_dependency(&rq->sched, |
| 1706 | &prev->sched, |
| 1707 | &rq->dep, |
| 1708 | 0); |
| 1709 | } |
| 1710 | |
| 1711 | /* |
| 1712 | * Users have to put the reference to prev potentially got |
| 1713 | * by __i915_active_fence_set() when no longer needed |
| 1714 | */ |
| 1715 | return prev; |
| 1716 | } |
| 1717 | |
| 1718 | static struct i915_request * |
| 1719 | __i915_request_add_to_timeline(struct i915_request *rq) |
| 1720 | { |
| 1721 | struct intel_timeline *timeline = i915_request_timeline(rq); |
| 1722 | struct i915_request *prev; |
| 1723 | |
| 1724 | /* |
| 1725 | * Media workloads may require HuC, so stall them until HuC loading is |
| 1726 | * complete. Note that HuC not being loaded when a user submission |
| 1727 | * arrives can only happen when HuC is loaded via GSC and in that case |
| 1728 | * we still expect the window between us starting to accept submissions |
| 1729 | * and HuC loading completion to be small (a few hundred ms). |
| 1730 | */ |
| 1731 | if (rq->engine->class == VIDEO_DECODE_CLASS) |
| 1732 | i915_request_await_huc(rq); |
| 1733 | |
| 1734 | /* |
| 1735 | * Dependency tracking and request ordering along the timeline |
| 1736 | * is special cased so that we can eliminate redundant ordering |
| 1737 | * operations while building the request (we know that the timeline |
| 1738 | * itself is ordered, and here we guarantee it). |
| 1739 | * |
| 1740 | * As we know we will need to emit tracking along the timeline, |
| 1741 | * we embed the hooks into our request struct -- at the cost of |
| 1742 | * having to have specialised no-allocation interfaces (which will |
| 1743 | * be beneficial elsewhere). |
| 1744 | * |
| 1745 | * A second benefit to open-coding i915_request_await_request is |
| 1746 | * that we can apply a slight variant of the rules specialised |
| 1747 | * for timelines that jump between engines (such as virtual engines). |
| 1748 | * If we consider the case of virtual engine, we must emit a dma-fence |
| 1749 | * to prevent scheduling of the second request until the first is |
| 1750 | * complete (to maximise our greedy late load balancing) and this |
| 1751 | * precludes optimising to use semaphores serialisation of a single |
| 1752 | * timeline across engines. |
| 1753 | * |
| 1754 | * We do not order parallel submission requests on the timeline as each |
| 1755 | * parallel submission context has its own timeline and the ordering |
| 1756 | * rules for parallel requests are that they must be submitted in the |
| 1757 | * order received from the execbuf IOCTL. So rather than using the |
| 1758 | * timeline we store a pointer to last request submitted in the |
| 1759 | * relationship in the gem context and insert a submission fence |
| 1760 | * between that request and request passed into this function or |
| 1761 | * alternatively we use completion fence if gem context has a single |
| 1762 | * timeline and this is the first submission of an execbuf IOCTL. |
| 1763 | */ |
| 1764 | if (likely(!is_parallel_rq(rq))) |
| 1765 | prev = __i915_request_ensure_ordering(rq, timeline); |
| 1766 | else |
| 1767 | prev = __i915_request_ensure_parallel_ordering(rq, timeline); |
| 1768 | if (prev) |
| 1769 | i915_request_put(prev); |
| 1770 | |
| 1771 | /* |
| 1772 | * Make sure that no request gazumped us - if it was allocated after |
| 1773 | * our i915_request_alloc() and called __i915_request_add() before |
| 1774 | * us, the timeline will hold its seqno which is later than ours. |
| 1775 | */ |
| 1776 | GEM_BUG_ON(timeline->seqno != rq->fence.seqno); |
| 1777 | |
| 1778 | return prev; |
| 1779 | } |
| 1780 | |
| 1781 | /* |
| 1782 | * NB: This function is not allowed to fail. Doing so would mean the the |
| 1783 | * request is not being tracked for completion but the work itself is |
| 1784 | * going to happen on the hardware. This would be a Bad Thing(tm). |
| 1785 | */ |
| 1786 | struct i915_request *__i915_request_commit(struct i915_request *rq) |
| 1787 | { |
| 1788 | struct intel_engine_cs *engine = rq->engine; |
| 1789 | struct intel_ring *ring = rq->ring; |
| 1790 | u32 *cs; |
| 1791 | |
| 1792 | RQ_TRACE(rq, "\n"); |
| 1793 | |
| 1794 | /* |
| 1795 | * To ensure that this call will not fail, space for its emissions |
| 1796 | * should already have been reserved in the ring buffer. Let the ring |
| 1797 | * know that it is time to use that space up. |
| 1798 | */ |
| 1799 | GEM_BUG_ON(rq->reserved_space > ring->space); |
| 1800 | rq->reserved_space = 0; |
| 1801 | rq->emitted_jiffies = jiffies; |
| 1802 | |
| 1803 | /* |
| 1804 | * Record the position of the start of the breadcrumb so that |
| 1805 | * should we detect the updated seqno part-way through the |
| 1806 | * GPU processing the request, we never over-estimate the |
| 1807 | * position of the ring's HEAD. |
| 1808 | */ |
| 1809 | cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); |
| 1810 | GEM_BUG_ON(IS_ERR(cs)); |
| 1811 | rq->postfix = intel_ring_offset(rq, cs); |
| 1812 | |
| 1813 | return __i915_request_add_to_timeline(rq); |
| 1814 | } |
| 1815 | |
| 1816 | void __i915_request_queue_bh(struct i915_request *rq) |
| 1817 | { |
| 1818 | i915_sw_fence_commit(&rq->semaphore); |
| 1819 | i915_sw_fence_commit(&rq->submit); |
| 1820 | } |
| 1821 | |
| 1822 | void __i915_request_queue(struct i915_request *rq, |
| 1823 | const struct i915_sched_attr *attr) |
| 1824 | { |
| 1825 | /* |
| 1826 | * Let the backend know a new request has arrived that may need |
| 1827 | * to adjust the existing execution schedule due to a high priority |
| 1828 | * request - i.e. we may want to preempt the current request in order |
| 1829 | * to run a high priority dependency chain *before* we can execute this |
| 1830 | * request. |
| 1831 | * |
| 1832 | * This is called before the request is ready to run so that we can |
| 1833 | * decide whether to preempt the entire chain so that it is ready to |
| 1834 | * run at the earliest possible convenience. |
| 1835 | */ |
| 1836 | if (attr && rq->engine->sched_engine->schedule) |
| 1837 | rq->engine->sched_engine->schedule(rq, attr); |
| 1838 | |
| 1839 | local_bh_disable(); |
| 1840 | __i915_request_queue_bh(rq); |
| 1841 | local_bh_enable(); /* kick tasklets */ |
| 1842 | } |
| 1843 | |
| 1844 | void i915_request_add(struct i915_request *rq) |
| 1845 | { |
| 1846 | struct intel_timeline * const tl = i915_request_timeline(rq); |
| 1847 | struct i915_sched_attr attr = {}; |
| 1848 | struct i915_gem_context *ctx; |
| 1849 | |
| 1850 | lockdep_assert_held(&tl->mutex); |
| 1851 | lockdep_unpin_lock(&tl->mutex, rq->cookie); |
| 1852 | |
| 1853 | trace_i915_request_add(rq); |
| 1854 | __i915_request_commit(rq); |
| 1855 | |
| 1856 | /* XXX placeholder for selftests */ |
| 1857 | rcu_read_lock(); |
| 1858 | ctx = rcu_dereference(rq->context->gem_context); |
| 1859 | if (ctx) |
| 1860 | attr = ctx->sched; |
| 1861 | rcu_read_unlock(); |
| 1862 | |
| 1863 | __i915_request_queue(rq, &attr); |
| 1864 | |
| 1865 | mutex_unlock(&tl->mutex); |
| 1866 | } |
| 1867 | |
| 1868 | static unsigned long local_clock_ns(unsigned int *cpu) |
| 1869 | { |
| 1870 | unsigned long t; |
| 1871 | |
| 1872 | /* |
| 1873 | * Cheaply and approximately convert from nanoseconds to microseconds. |
| 1874 | * The result and subsequent calculations are also defined in the same |
| 1875 | * approximate microseconds units. The principal source of timing |
| 1876 | * error here is from the simple truncation. |
| 1877 | * |
| 1878 | * Note that local_clock() is only defined wrt to the current CPU; |
| 1879 | * the comparisons are no longer valid if we switch CPUs. Instead of |
| 1880 | * blocking preemption for the entire busywait, we can detect the CPU |
| 1881 | * switch and use that as indicator of system load and a reason to |
| 1882 | * stop busywaiting, see busywait_stop(). |
| 1883 | */ |
| 1884 | *cpu = get_cpu(); |
| 1885 | t = local_clock(); |
| 1886 | put_cpu(); |
| 1887 | |
| 1888 | return t; |
| 1889 | } |
| 1890 | |
| 1891 | static bool busywait_stop(unsigned long timeout, unsigned int cpu) |
| 1892 | { |
| 1893 | unsigned int this_cpu; |
| 1894 | |
| 1895 | if (time_after(local_clock_ns(&this_cpu), timeout)) |
| 1896 | return true; |
| 1897 | |
| 1898 | return this_cpu != cpu; |
| 1899 | } |
| 1900 | |
| 1901 | static bool __i915_spin_request(struct i915_request * const rq, int state) |
| 1902 | { |
| 1903 | unsigned long timeout_ns; |
| 1904 | unsigned int cpu; |
| 1905 | |
| 1906 | /* |
| 1907 | * Only wait for the request if we know it is likely to complete. |
| 1908 | * |
| 1909 | * We don't track the timestamps around requests, nor the average |
| 1910 | * request length, so we do not have a good indicator that this |
| 1911 | * request will complete within the timeout. What we do know is the |
| 1912 | * order in which requests are executed by the context and so we can |
| 1913 | * tell if the request has been started. If the request is not even |
| 1914 | * running yet, it is a fair assumption that it will not complete |
| 1915 | * within our relatively short timeout. |
| 1916 | */ |
| 1917 | if (!i915_request_is_running(rq)) |
| 1918 | return false; |
| 1919 | |
| 1920 | /* |
| 1921 | * When waiting for high frequency requests, e.g. during synchronous |
| 1922 | * rendering split between the CPU and GPU, the finite amount of time |
| 1923 | * required to set up the irq and wait upon it limits the response |
| 1924 | * rate. By busywaiting on the request completion for a short while we |
| 1925 | * can service the high frequency waits as quick as possible. However, |
| 1926 | * if it is a slow request, we want to sleep as quickly as possible. |
| 1927 | * The tradeoff between waiting and sleeping is roughly the time it |
| 1928 | * takes to sleep on a request, on the order of a microsecond. |
| 1929 | */ |
| 1930 | |
| 1931 | timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns); |
| 1932 | timeout_ns += local_clock_ns(&cpu); |
| 1933 | do { |
| 1934 | if (dma_fence_is_signaled(&rq->fence)) |
| 1935 | return true; |
| 1936 | |
| 1937 | if (signal_pending_state(state, current)) |
| 1938 | break; |
| 1939 | |
| 1940 | if (busywait_stop(timeout_ns, cpu)) |
| 1941 | break; |
| 1942 | |
| 1943 | cpu_relax(); |
| 1944 | } while (!need_resched()); |
| 1945 | |
| 1946 | return false; |
| 1947 | } |
| 1948 | |
| 1949 | struct request_wait { |
| 1950 | struct dma_fence_cb cb; |
| 1951 | struct task_struct *tsk; |
| 1952 | }; |
| 1953 | |
| 1954 | static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) |
| 1955 | { |
| 1956 | struct request_wait *wait = container_of(cb, typeof(*wait), cb); |
| 1957 | |
| 1958 | wake_up_process(fetch_and_zero(&wait->tsk)); |
| 1959 | } |
| 1960 | |
| 1961 | /** |
| 1962 | * i915_request_wait_timeout - wait until execution of request has finished |
| 1963 | * @rq: the request to wait upon |
| 1964 | * @flags: how to wait |
| 1965 | * @timeout: how long to wait in jiffies |
| 1966 | * |
| 1967 | * i915_request_wait_timeout() waits for the request to be completed, for a |
| 1968 | * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an |
| 1969 | * unbounded wait). |
| 1970 | * |
| 1971 | * Returns the remaining time (in jiffies) if the request completed, which may |
| 1972 | * be zero if the request is unfinished after the timeout expires. |
| 1973 | * If the timeout is 0, it will return 1 if the fence is signaled. |
| 1974 | * |
| 1975 | * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is |
| 1976 | * pending before the request completes. |
| 1977 | * |
| 1978 | * NOTE: This function has the same wait semantics as dma-fence. |
| 1979 | */ |
| 1980 | long i915_request_wait_timeout(struct i915_request *rq, |
| 1981 | unsigned int flags, |
| 1982 | long timeout) |
| 1983 | { |
| 1984 | const int state = flags & I915_WAIT_INTERRUPTIBLE ? |
| 1985 | TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; |
| 1986 | struct request_wait wait; |
| 1987 | |
| 1988 | might_sleep(); |
| 1989 | GEM_BUG_ON(timeout < 0); |
| 1990 | |
| 1991 | if (dma_fence_is_signaled(&rq->fence)) |
| 1992 | return timeout ?: 1; |
| 1993 | |
| 1994 | if (!timeout) |
| 1995 | return -ETIME; |
| 1996 | |
| 1997 | trace_i915_request_wait_begin(rq, flags); |
| 1998 | |
| 1999 | /* |
| 2000 | * We must never wait on the GPU while holding a lock as we |
| 2001 | * may need to perform a GPU reset. So while we don't need to |
| 2002 | * serialise wait/reset with an explicit lock, we do want |
| 2003 | * lockdep to detect potential dependency cycles. |
| 2004 | */ |
| 2005 | mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); |
| 2006 | |
| 2007 | /* |
| 2008 | * Optimistic spin before touching IRQs. |
| 2009 | * |
| 2010 | * We may use a rather large value here to offset the penalty of |
| 2011 | * switching away from the active task. Frequently, the client will |
| 2012 | * wait upon an old swapbuffer to throttle itself to remain within a |
| 2013 | * frame of the gpu. If the client is running in lockstep with the gpu, |
| 2014 | * then it should not be waiting long at all, and a sleep now will incur |
| 2015 | * extra scheduler latency in producing the next frame. To try to |
| 2016 | * avoid adding the cost of enabling/disabling the interrupt to the |
| 2017 | * short wait, we first spin to see if the request would have completed |
| 2018 | * in the time taken to setup the interrupt. |
| 2019 | * |
| 2020 | * We need upto 5us to enable the irq, and upto 20us to hide the |
| 2021 | * scheduler latency of a context switch, ignoring the secondary |
| 2022 | * impacts from a context switch such as cache eviction. |
| 2023 | * |
| 2024 | * The scheme used for low-latency IO is called "hybrid interrupt |
| 2025 | * polling". The suggestion there is to sleep until just before you |
| 2026 | * expect to be woken by the device interrupt and then poll for its |
| 2027 | * completion. That requires having a good predictor for the request |
| 2028 | * duration, which we currently lack. |
| 2029 | */ |
| 2030 | if (CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT && |
| 2031 | __i915_spin_request(rq, state)) |
| 2032 | goto out; |
| 2033 | |
| 2034 | /* |
| 2035 | * This client is about to stall waiting for the GPU. In many cases |
| 2036 | * this is undesirable and limits the throughput of the system, as |
| 2037 | * many clients cannot continue processing user input/output whilst |
| 2038 | * blocked. RPS autotuning may take tens of milliseconds to respond |
| 2039 | * to the GPU load and thus incurs additional latency for the client. |
| 2040 | * We can circumvent that by promoting the GPU frequency to maximum |
| 2041 | * before we sleep. This makes the GPU throttle up much more quickly |
| 2042 | * (good for benchmarks and user experience, e.g. window animations), |
| 2043 | * but at a cost of spending more power processing the workload |
| 2044 | * (bad for battery). |
| 2045 | */ |
| 2046 | if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq)) |
| 2047 | intel_rps_boost(rq); |
| 2048 | |
| 2049 | wait.tsk = current; |
| 2050 | if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) |
| 2051 | goto out; |
| 2052 | |
| 2053 | /* |
| 2054 | * Flush the submission tasklet, but only if it may help this request. |
| 2055 | * |
| 2056 | * We sometimes experience some latency between the HW interrupts and |
| 2057 | * tasklet execution (mostly due to ksoftirqd latency, but it can also |
| 2058 | * be due to lazy CS events), so lets run the tasklet manually if there |
| 2059 | * is a chance it may submit this request. If the request is not ready |
| 2060 | * to run, as it is waiting for other fences to be signaled, flushing |
| 2061 | * the tasklet is busy work without any advantage for this client. |
| 2062 | * |
| 2063 | * If the HW is being lazy, this is the last chance before we go to |
| 2064 | * sleep to catch any pending events. We will check periodically in |
| 2065 | * the heartbeat to flush the submission tasklets as a last resort |
| 2066 | * for unhappy HW. |
| 2067 | */ |
| 2068 | if (i915_request_is_ready(rq)) |
| 2069 | __intel_engine_flush_submission(rq->engine, false); |
| 2070 | |
| 2071 | for (;;) { |
| 2072 | set_current_state(state); |
| 2073 | |
| 2074 | if (dma_fence_is_signaled(&rq->fence)) |
| 2075 | break; |
| 2076 | |
| 2077 | if (signal_pending_state(state, current)) { |
| 2078 | timeout = -ERESTARTSYS; |
| 2079 | break; |
| 2080 | } |
| 2081 | |
| 2082 | if (!timeout) { |
| 2083 | timeout = -ETIME; |
| 2084 | break; |
| 2085 | } |
| 2086 | |
| 2087 | timeout = io_schedule_timeout(timeout); |
| 2088 | } |
| 2089 | __set_current_state(TASK_RUNNING); |
| 2090 | |
| 2091 | if (READ_ONCE(wait.tsk)) |
| 2092 | dma_fence_remove_callback(&rq->fence, &wait.cb); |
| 2093 | GEM_BUG_ON(!list_empty(&wait.cb.node)); |
| 2094 | |
| 2095 | out: |
| 2096 | mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); |
| 2097 | trace_i915_request_wait_end(rq); |
| 2098 | return timeout; |
| 2099 | } |
| 2100 | |
| 2101 | /** |
| 2102 | * i915_request_wait - wait until execution of request has finished |
| 2103 | * @rq: the request to wait upon |
| 2104 | * @flags: how to wait |
| 2105 | * @timeout: how long to wait in jiffies |
| 2106 | * |
| 2107 | * i915_request_wait() waits for the request to be completed, for a |
| 2108 | * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an |
| 2109 | * unbounded wait). |
| 2110 | * |
| 2111 | * Returns the remaining time (in jiffies) if the request completed, which may |
| 2112 | * be zero or -ETIME if the request is unfinished after the timeout expires. |
| 2113 | * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is |
| 2114 | * pending before the request completes. |
| 2115 | * |
| 2116 | * NOTE: This function behaves differently from dma-fence wait semantics for |
| 2117 | * timeout = 0. It returns 0 on success, and -ETIME if not signaled. |
| 2118 | */ |
| 2119 | long i915_request_wait(struct i915_request *rq, |
| 2120 | unsigned int flags, |
| 2121 | long timeout) |
| 2122 | { |
| 2123 | long ret = i915_request_wait_timeout(rq, flags, timeout); |
| 2124 | |
| 2125 | if (!ret) |
| 2126 | return -ETIME; |
| 2127 | |
| 2128 | if (ret > 0 && !timeout) |
| 2129 | return 0; |
| 2130 | |
| 2131 | return ret; |
| 2132 | } |
| 2133 | |
| 2134 | static int print_sched_attr(const struct i915_sched_attr *attr, |
| 2135 | char *buf, int x, int len) |
| 2136 | { |
| 2137 | if (attr->priority == I915_PRIORITY_INVALID) |
| 2138 | return x; |
| 2139 | |
| 2140 | x += snprintf(buf + x, len - x, |
| 2141 | " prio=%d", attr->priority); |
| 2142 | |
| 2143 | return x; |
| 2144 | } |
| 2145 | |
| 2146 | static char queue_status(const struct i915_request *rq) |
| 2147 | { |
| 2148 | if (i915_request_is_active(rq)) |
| 2149 | return 'E'; |
| 2150 | |
| 2151 | if (i915_request_is_ready(rq)) |
| 2152 | return intel_engine_is_virtual(rq->engine) ? 'V' : 'R'; |
| 2153 | |
| 2154 | return 'U'; |
| 2155 | } |
| 2156 | |
| 2157 | static const char *run_status(const struct i915_request *rq) |
| 2158 | { |
| 2159 | if (__i915_request_is_complete(rq)) |
| 2160 | return "!"; |
| 2161 | |
| 2162 | if (__i915_request_has_started(rq)) |
| 2163 | return "*"; |
| 2164 | |
| 2165 | if (!i915_sw_fence_signaled(&rq->semaphore)) |
| 2166 | return "&"; |
| 2167 | |
| 2168 | return ""; |
| 2169 | } |
| 2170 | |
| 2171 | static const char *fence_status(const struct i915_request *rq) |
| 2172 | { |
| 2173 | if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)) |
| 2174 | return "+"; |
| 2175 | |
| 2176 | if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) |
| 2177 | return "-"; |
| 2178 | |
| 2179 | return ""; |
| 2180 | } |
| 2181 | |
| 2182 | void i915_request_show(struct drm_printer *m, |
| 2183 | const struct i915_request *rq, |
| 2184 | const char *prefix, |
| 2185 | int indent) |
| 2186 | { |
| 2187 | const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence); |
| 2188 | char buf[80] = ""; |
| 2189 | int x = 0; |
| 2190 | |
| 2191 | /* |
| 2192 | * The prefix is used to show the queue status, for which we use |
| 2193 | * the following flags: |
| 2194 | * |
| 2195 | * U [Unready] |
| 2196 | * - initial status upon being submitted by the user |
| 2197 | * |
| 2198 | * - the request is not ready for execution as it is waiting |
| 2199 | * for external fences |
| 2200 | * |
| 2201 | * R [Ready] |
| 2202 | * - all fences the request was waiting on have been signaled, |
| 2203 | * and the request is now ready for execution and will be |
| 2204 | * in a backend queue |
| 2205 | * |
| 2206 | * - a ready request may still need to wait on semaphores |
| 2207 | * [internal fences] |
| 2208 | * |
| 2209 | * V [Ready/virtual] |
| 2210 | * - same as ready, but queued over multiple backends |
| 2211 | * |
| 2212 | * E [Executing] |
| 2213 | * - the request has been transferred from the backend queue and |
| 2214 | * submitted for execution on HW |
| 2215 | * |
| 2216 | * - a completed request may still be regarded as executing, its |
| 2217 | * status may not be updated until it is retired and removed |
| 2218 | * from the lists |
| 2219 | */ |
| 2220 | |
| 2221 | x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf)); |
| 2222 | |
| 2223 | drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n", |
| 2224 | prefix, indent, " ", |
| 2225 | queue_status(rq), |
| 2226 | rq->fence.context, rq->fence.seqno, |
| 2227 | run_status(rq), |
| 2228 | fence_status(rq), |
| 2229 | buf, |
| 2230 | jiffies_to_msecs(jiffies - rq->emitted_jiffies), |
| 2231 | name); |
| 2232 | } |
| 2233 | |
| 2234 | static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq) |
| 2235 | { |
| 2236 | u32 ring = ENGINE_READ(engine, RING_START); |
| 2237 | |
| 2238 | return ring == i915_ggtt_offset(rq->ring->vma); |
| 2239 | } |
| 2240 | |
| 2241 | static bool match_ring(struct i915_request *rq) |
| 2242 | { |
| 2243 | struct intel_engine_cs *engine; |
| 2244 | bool found; |
| 2245 | int i; |
| 2246 | |
| 2247 | if (!intel_engine_is_virtual(rq->engine)) |
| 2248 | return engine_match_ring(rq->engine, rq); |
| 2249 | |
| 2250 | found = false; |
| 2251 | i = 0; |
| 2252 | while ((engine = intel_engine_get_sibling(rq->engine, i++))) { |
| 2253 | found = engine_match_ring(engine, rq); |
| 2254 | if (found) |
| 2255 | break; |
| 2256 | } |
| 2257 | |
| 2258 | return found; |
| 2259 | } |
| 2260 | |
| 2261 | enum i915_request_state i915_test_request_state(struct i915_request *rq) |
| 2262 | { |
| 2263 | if (i915_request_completed(rq)) |
| 2264 | return I915_REQUEST_COMPLETE; |
| 2265 | |
| 2266 | if (!i915_request_started(rq)) |
| 2267 | return I915_REQUEST_PENDING; |
| 2268 | |
| 2269 | if (match_ring(rq)) |
| 2270 | return I915_REQUEST_ACTIVE; |
| 2271 | |
| 2272 | return I915_REQUEST_QUEUED; |
| 2273 | } |
| 2274 | |
| 2275 | #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) |
| 2276 | #include "selftests/mock_request.c" |
| 2277 | #include "selftests/i915_request.c" |
| 2278 | #endif |
| 2279 | |
| 2280 | void i915_request_module_exit(void) |
| 2281 | { |
| 2282 | kmem_cache_destroy(slab_execute_cbs); |
| 2283 | kmem_cache_destroy(slab_requests); |
| 2284 | } |
| 2285 | |
| 2286 | int __init i915_request_module_init(void) |
| 2287 | { |
| 2288 | slab_requests = |
| 2289 | kmem_cache_create("i915_request", |
| 2290 | sizeof(struct i915_request), |
| 2291 | __alignof__(struct i915_request), |
| 2292 | SLAB_HWCACHE_ALIGN | |
| 2293 | SLAB_RECLAIM_ACCOUNT | |
| 2294 | SLAB_TYPESAFE_BY_RCU, |
| 2295 | __i915_request_ctor); |
| 2296 | if (!slab_requests) |
| 2297 | return -ENOMEM; |
| 2298 | |
| 2299 | slab_execute_cbs = KMEM_CACHE(execute_cb, |
| 2300 | SLAB_HWCACHE_ALIGN | |
| 2301 | SLAB_RECLAIM_ACCOUNT | |
| 2302 | SLAB_TYPESAFE_BY_RCU); |
| 2303 | if (!slab_execute_cbs) |
| 2304 | goto err_requests; |
| 2305 | |
| 2306 | return 0; |
| 2307 | |
| 2308 | err_requests: |
| 2309 | kmem_cache_destroy(slab_requests); |
| 2310 | return -ENOMEM; |
| 2311 | } |