Merge drm/drm-next into drm-intel-gt-next
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_request.c
... / ...
CommitLineData
1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25#include <linux/dma-fence-array.h>
26#include <linux/dma-fence-chain.h>
27#include <linux/irq_work.h>
28#include <linux/prefetch.h>
29#include <linux/sched.h>
30#include <linux/sched/clock.h>
31#include <linux/sched/signal.h>
32
33#include "gem/i915_gem_context.h"
34#include "gt/intel_breadcrumbs.h"
35#include "gt/intel_context.h"
36#include "gt/intel_gpu_commands.h"
37#include "gt/intel_ring.h"
38#include "gt/intel_rps.h"
39
40#include "i915_active.h"
41#include "i915_drv.h"
42#include "i915_globals.h"
43#include "i915_trace.h"
44#include "intel_pm.h"
45
46struct execute_cb {
47 struct irq_work work;
48 struct i915_sw_fence *fence;
49 void (*hook)(struct i915_request *rq, struct dma_fence *signal);
50 struct i915_request *signal;
51};
52
53static struct i915_global_request {
54 struct i915_global base;
55 struct kmem_cache *slab_requests;
56 struct kmem_cache *slab_execute_cbs;
57} global;
58
59static const char *i915_fence_get_driver_name(struct dma_fence *fence)
60{
61 return dev_name(to_request(fence)->engine->i915->drm.dev);
62}
63
64static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
65{
66 const struct i915_gem_context *ctx;
67
68 /*
69 * The timeline struct (as part of the ppgtt underneath a context)
70 * may be freed when the request is no longer in use by the GPU.
71 * We could extend the life of a context to beyond that of all
72 * fences, possibly keeping the hw resource around indefinitely,
73 * or we just give them a false name. Since
74 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
75 * lie seems justifiable.
76 */
77 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
78 return "signaled";
79
80 ctx = i915_request_gem_context(to_request(fence));
81 if (!ctx)
82 return "[" DRIVER_NAME "]";
83
84 return ctx->name;
85}
86
87static bool i915_fence_signaled(struct dma_fence *fence)
88{
89 return i915_request_completed(to_request(fence));
90}
91
92static bool i915_fence_enable_signaling(struct dma_fence *fence)
93{
94 return i915_request_enable_breadcrumb(to_request(fence));
95}
96
97static signed long i915_fence_wait(struct dma_fence *fence,
98 bool interruptible,
99 signed long timeout)
100{
101 return i915_request_wait(to_request(fence),
102 interruptible | I915_WAIT_PRIORITY,
103 timeout);
104}
105
106struct kmem_cache *i915_request_slab_cache(void)
107{
108 return global.slab_requests;
109}
110
111static void i915_fence_release(struct dma_fence *fence)
112{
113 struct i915_request *rq = to_request(fence);
114
115 /*
116 * The request is put onto a RCU freelist (i.e. the address
117 * is immediately reused), mark the fences as being freed now.
118 * Otherwise the debugobjects for the fences are only marked as
119 * freed when the slab cache itself is freed, and so we would get
120 * caught trying to reuse dead objects.
121 */
122 i915_sw_fence_fini(&rq->submit);
123 i915_sw_fence_fini(&rq->semaphore);
124
125 /*
126 * Keep one request on each engine for reserved use under mempressure
127 *
128 * We do not hold a reference to the engine here and so have to be
129 * very careful in what rq->engine we poke. The virtual engine is
130 * referenced via the rq->context and we released that ref during
131 * i915_request_retire(), ergo we must not dereference a virtual
132 * engine here. Not that we would want to, as the only consumer of
133 * the reserved engine->request_pool is the power management parking,
134 * which must-not-fail, and that is only run on the physical engines.
135 *
136 * Since the request must have been executed to be have completed,
137 * we know that it will have been processed by the HW and will
138 * not be unsubmitted again, so rq->engine and rq->execution_mask
139 * at this point is stable. rq->execution_mask will be a single
140 * bit if the last and _only_ engine it could execution on was a
141 * physical engine, if it's multiple bits then it started on and
142 * could still be on a virtual engine. Thus if the mask is not a
143 * power-of-two we assume that rq->engine may still be a virtual
144 * engine and so a dangling invalid pointer that we cannot dereference
145 *
146 * For example, consider the flow of a bonded request through a virtual
147 * engine. The request is created with a wide engine mask (all engines
148 * that we might execute on). On processing the bond, the request mask
149 * is reduced to one or more engines. If the request is subsequently
150 * bound to a single engine, it will then be constrained to only
151 * execute on that engine and never returned to the virtual engine
152 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
153 * know that if the rq->execution_mask is a single bit, rq->engine
154 * can be a physical engine with the exact corresponding mask.
155 */
156 if (is_power_of_2(rq->execution_mask) &&
157 !cmpxchg(&rq->engine->request_pool, NULL, rq))
158 return;
159
160 kmem_cache_free(global.slab_requests, rq);
161}
162
163const struct dma_fence_ops i915_fence_ops = {
164 .get_driver_name = i915_fence_get_driver_name,
165 .get_timeline_name = i915_fence_get_timeline_name,
166 .enable_signaling = i915_fence_enable_signaling,
167 .signaled = i915_fence_signaled,
168 .wait = i915_fence_wait,
169 .release = i915_fence_release,
170};
171
172static void irq_execute_cb(struct irq_work *wrk)
173{
174 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
175
176 i915_sw_fence_complete(cb->fence);
177 kmem_cache_free(global.slab_execute_cbs, cb);
178}
179
180static void irq_execute_cb_hook(struct irq_work *wrk)
181{
182 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
183
184 cb->hook(container_of(cb->fence, struct i915_request, submit),
185 &cb->signal->fence);
186 i915_request_put(cb->signal);
187
188 irq_execute_cb(wrk);
189}
190
191static __always_inline void
192__notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
193{
194 struct execute_cb *cb, *cn;
195
196 if (llist_empty(&rq->execute_cb))
197 return;
198
199 llist_for_each_entry_safe(cb, cn,
200 llist_del_all(&rq->execute_cb),
201 work.node.llist)
202 fn(&cb->work);
203}
204
205static void __notify_execute_cb_irq(struct i915_request *rq)
206{
207 __notify_execute_cb(rq, irq_work_queue);
208}
209
210static bool irq_work_imm(struct irq_work *wrk)
211{
212 wrk->func(wrk);
213 return false;
214}
215
216static void __notify_execute_cb_imm(struct i915_request *rq)
217{
218 __notify_execute_cb(rq, irq_work_imm);
219}
220
221static void free_capture_list(struct i915_request *request)
222{
223 struct i915_capture_list *capture;
224
225 capture = fetch_and_zero(&request->capture_list);
226 while (capture) {
227 struct i915_capture_list *next = capture->next;
228
229 kfree(capture);
230 capture = next;
231 }
232}
233
234static void __i915_request_fill(struct i915_request *rq, u8 val)
235{
236 void *vaddr = rq->ring->vaddr;
237 u32 head;
238
239 head = rq->infix;
240 if (rq->postfix < head) {
241 memset(vaddr + head, val, rq->ring->size - head);
242 head = 0;
243 }
244 memset(vaddr + head, val, rq->postfix - head);
245}
246
247static void remove_from_engine(struct i915_request *rq)
248{
249 struct intel_engine_cs *engine, *locked;
250
251 /*
252 * Virtual engines complicate acquiring the engine timeline lock,
253 * as their rq->engine pointer is not stable until under that
254 * engine lock. The simple ploy we use is to take the lock then
255 * check that the rq still belongs to the newly locked engine.
256 */
257 locked = READ_ONCE(rq->engine);
258 spin_lock_irq(&locked->active.lock);
259 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
260 spin_unlock(&locked->active.lock);
261 spin_lock(&engine->active.lock);
262 locked = engine;
263 }
264 list_del_init(&rq->sched.link);
265
266 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
267 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
268
269 /* Prevent further __await_execution() registering a cb, then flush */
270 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
271
272 spin_unlock_irq(&locked->active.lock);
273
274 __notify_execute_cb_imm(rq);
275}
276
277bool i915_request_retire(struct i915_request *rq)
278{
279 if (!i915_request_completed(rq))
280 return false;
281
282 RQ_TRACE(rq, "\n");
283
284 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
285 trace_i915_request_retire(rq);
286 i915_request_mark_complete(rq);
287
288 /*
289 * We know the GPU must have read the request to have
290 * sent us the seqno + interrupt, so use the position
291 * of tail of the request to update the last known position
292 * of the GPU head.
293 *
294 * Note this requires that we are always called in request
295 * completion order.
296 */
297 GEM_BUG_ON(!list_is_first(&rq->link,
298 &i915_request_timeline(rq)->requests));
299 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
300 /* Poison before we release our space in the ring */
301 __i915_request_fill(rq, POISON_FREE);
302 rq->ring->head = rq->postfix;
303
304 if (!i915_request_signaled(rq)) {
305 spin_lock_irq(&rq->lock);
306 dma_fence_signal_locked(&rq->fence);
307 spin_unlock_irq(&rq->lock);
308 }
309
310 if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags))
311 atomic_dec(&rq->engine->gt->rps.num_waiters);
312
313 /*
314 * We only loosely track inflight requests across preemption,
315 * and so we may find ourselves attempting to retire a _completed_
316 * request that we have removed from the HW and put back on a run
317 * queue.
318 *
319 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
320 * after removing the breadcrumb and signaling it, so that we do not
321 * inadvertently attach the breadcrumb to a completed request.
322 */
323 if (!list_empty(&rq->sched.link))
324 remove_from_engine(rq);
325 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
326
327 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
328
329 intel_context_exit(rq->context);
330 intel_context_unpin(rq->context);
331
332 free_capture_list(rq);
333 i915_sched_node_fini(&rq->sched);
334 i915_request_put(rq);
335
336 return true;
337}
338
339void i915_request_retire_upto(struct i915_request *rq)
340{
341 struct intel_timeline * const tl = i915_request_timeline(rq);
342 struct i915_request *tmp;
343
344 RQ_TRACE(rq, "\n");
345
346 GEM_BUG_ON(!i915_request_completed(rq));
347
348 do {
349 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
350 } while (i915_request_retire(tmp) && tmp != rq);
351}
352
353static struct i915_request * const *
354__engine_active(struct intel_engine_cs *engine)
355{
356 return READ_ONCE(engine->execlists.active);
357}
358
359static bool __request_in_flight(const struct i915_request *signal)
360{
361 struct i915_request * const *port, *rq;
362 bool inflight = false;
363
364 if (!i915_request_is_ready(signal))
365 return false;
366
367 /*
368 * Even if we have unwound the request, it may still be on
369 * the GPU (preempt-to-busy). If that request is inside an
370 * unpreemptible critical section, it will not be removed. Some
371 * GPU functions may even be stuck waiting for the paired request
372 * (__await_execution) to be submitted and cannot be preempted
373 * until the bond is executing.
374 *
375 * As we know that there are always preemption points between
376 * requests, we know that only the currently executing request
377 * may be still active even though we have cleared the flag.
378 * However, we can't rely on our tracking of ELSP[0] to know
379 * which request is currently active and so maybe stuck, as
380 * the tracking maybe an event behind. Instead assume that
381 * if the context is still inflight, then it is still active
382 * even if the active flag has been cleared.
383 *
384 * To further complicate matters, if there a pending promotion, the HW
385 * may either perform a context switch to the second inflight execlists,
386 * or it may switch to the pending set of execlists. In the case of the
387 * latter, it may send the ACK and we process the event copying the
388 * pending[] over top of inflight[], _overwriting_ our *active. Since
389 * this implies the HW is arbitrating and not struck in *active, we do
390 * not worry about complete accuracy, but we do require no read/write
391 * tearing of the pointer [the read of the pointer must be valid, even
392 * as the array is being overwritten, for which we require the writes
393 * to avoid tearing.]
394 *
395 * Note that the read of *execlists->active may race with the promotion
396 * of execlists->pending[] to execlists->inflight[], overwritting
397 * the value at *execlists->active. This is fine. The promotion implies
398 * that we received an ACK from the HW, and so the context is not
399 * stuck -- if we do not see ourselves in *active, the inflight status
400 * is valid. If instead we see ourselves being copied into *active,
401 * we are inflight and may signal the callback.
402 */
403 if (!intel_context_inflight(signal->context))
404 return false;
405
406 rcu_read_lock();
407 for (port = __engine_active(signal->engine);
408 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
409 port++) {
410 if (rq->context == signal->context) {
411 inflight = i915_seqno_passed(rq->fence.seqno,
412 signal->fence.seqno);
413 break;
414 }
415 }
416 rcu_read_unlock();
417
418 return inflight;
419}
420
421static int
422__await_execution(struct i915_request *rq,
423 struct i915_request *signal,
424 void (*hook)(struct i915_request *rq,
425 struct dma_fence *signal),
426 gfp_t gfp)
427{
428 struct execute_cb *cb;
429
430 if (i915_request_is_active(signal)) {
431 if (hook)
432 hook(rq, &signal->fence);
433 return 0;
434 }
435
436 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
437 if (!cb)
438 return -ENOMEM;
439
440 cb->fence = &rq->submit;
441 i915_sw_fence_await(cb->fence);
442 init_irq_work(&cb->work, irq_execute_cb);
443
444 if (hook) {
445 cb->hook = hook;
446 cb->signal = i915_request_get(signal);
447 cb->work.func = irq_execute_cb_hook;
448 }
449
450 /*
451 * Register the callback first, then see if the signaler is already
452 * active. This ensures that if we race with the
453 * __notify_execute_cb from i915_request_submit() and we are not
454 * included in that list, we get a second bite of the cherry and
455 * execute it ourselves. After this point, a future
456 * i915_request_submit() will notify us.
457 *
458 * In i915_request_retire() we set the ACTIVE bit on a completed
459 * request (then flush the execute_cb). So by registering the
460 * callback first, then checking the ACTIVE bit, we serialise with
461 * the completed/retired request.
462 */
463 if (llist_add(&cb->work.node.llist, &signal->execute_cb)) {
464 if (i915_request_is_active(signal) ||
465 __request_in_flight(signal))
466 __notify_execute_cb_imm(signal);
467 }
468
469 return 0;
470}
471
472static bool fatal_error(int error)
473{
474 switch (error) {
475 case 0: /* not an error! */
476 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
477 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
478 return false;
479 default:
480 return true;
481 }
482}
483
484void __i915_request_skip(struct i915_request *rq)
485{
486 GEM_BUG_ON(!fatal_error(rq->fence.error));
487
488 if (rq->infix == rq->postfix)
489 return;
490
491 RQ_TRACE(rq, "error: %d\n", rq->fence.error);
492
493 /*
494 * As this request likely depends on state from the lost
495 * context, clear out all the user operations leaving the
496 * breadcrumb at the end (so we get the fence notifications).
497 */
498 __i915_request_fill(rq, 0);
499 rq->infix = rq->postfix;
500}
501
502void i915_request_set_error_once(struct i915_request *rq, int error)
503{
504 int old;
505
506 GEM_BUG_ON(!IS_ERR_VALUE((long)error));
507
508 if (i915_request_signaled(rq))
509 return;
510
511 old = READ_ONCE(rq->fence.error);
512 do {
513 if (fatal_error(old))
514 return;
515 } while (!try_cmpxchg(&rq->fence.error, &old, error));
516}
517
518void i915_request_mark_eio(struct i915_request *rq)
519{
520 if (__i915_request_is_complete(rq))
521 return;
522
523 GEM_BUG_ON(i915_request_signaled(rq));
524
525 i915_request_set_error_once(rq, -EIO);
526 i915_request_mark_complete(rq);
527}
528
529bool __i915_request_submit(struct i915_request *request)
530{
531 struct intel_engine_cs *engine = request->engine;
532 bool result = false;
533
534 RQ_TRACE(request, "\n");
535
536 GEM_BUG_ON(!irqs_disabled());
537 lockdep_assert_held(&engine->active.lock);
538
539 /*
540 * With the advent of preempt-to-busy, we frequently encounter
541 * requests that we have unsubmitted from HW, but left running
542 * until the next ack and so have completed in the meantime. On
543 * resubmission of that completed request, we can skip
544 * updating the payload, and execlists can even skip submitting
545 * the request.
546 *
547 * We must remove the request from the caller's priority queue,
548 * and the caller must only call us when the request is in their
549 * priority queue, under the active.lock. This ensures that the
550 * request has *not* yet been retired and we can safely move
551 * the request into the engine->active.list where it will be
552 * dropped upon retiring. (Otherwise if resubmit a *retired*
553 * request, this would be a horrible use-after-free.)
554 */
555 if (i915_request_completed(request))
556 goto xfer;
557
558 if (unlikely(intel_context_is_banned(request->context)))
559 i915_request_set_error_once(request, -EIO);
560
561 if (unlikely(fatal_error(request->fence.error)))
562 __i915_request_skip(request);
563
564 /*
565 * Are we using semaphores when the gpu is already saturated?
566 *
567 * Using semaphores incurs a cost in having the GPU poll a
568 * memory location, busywaiting for it to change. The continual
569 * memory reads can have a noticeable impact on the rest of the
570 * system with the extra bus traffic, stalling the cpu as it too
571 * tries to access memory across the bus (perf stat -e bus-cycles).
572 *
573 * If we installed a semaphore on this request and we only submit
574 * the request after the signaler completed, that indicates the
575 * system is overloaded and using semaphores at this time only
576 * increases the amount of work we are doing. If so, we disable
577 * further use of semaphores until we are idle again, whence we
578 * optimistically try again.
579 */
580 if (request->sched.semaphores &&
581 i915_sw_fence_signaled(&request->semaphore))
582 engine->saturated |= request->sched.semaphores;
583
584 engine->emit_fini_breadcrumb(request,
585 request->ring->vaddr + request->postfix);
586
587 trace_i915_request_execute(request);
588 engine->serial++;
589 result = true;
590
591xfer:
592 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
593 list_move_tail(&request->sched.link, &engine->active.requests);
594 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
595 }
596
597 /*
598 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
599 *
600 * In the future, perhaps when we have an active time-slicing scheduler,
601 * it will be interesting to unsubmit parallel execution and remove
602 * busywaits from the GPU until their master is restarted. This is
603 * quite hairy, we have to carefully rollback the fence and do a
604 * preempt-to-idle cycle on the target engine, all the while the
605 * master execute_cb may refire.
606 */
607 __notify_execute_cb_irq(request);
608
609 /* We may be recursing from the signal callback of another i915 fence */
610 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
611 i915_request_enable_breadcrumb(request);
612
613 return result;
614}
615
616void i915_request_submit(struct i915_request *request)
617{
618 struct intel_engine_cs *engine = request->engine;
619 unsigned long flags;
620
621 /* Will be called from irq-context when using foreign fences. */
622 spin_lock_irqsave(&engine->active.lock, flags);
623
624 __i915_request_submit(request);
625
626 spin_unlock_irqrestore(&engine->active.lock, flags);
627}
628
629void __i915_request_unsubmit(struct i915_request *request)
630{
631 struct intel_engine_cs *engine = request->engine;
632
633 /*
634 * Only unwind in reverse order, required so that the per-context list
635 * is kept in seqno/ring order.
636 */
637 RQ_TRACE(request, "\n");
638
639 GEM_BUG_ON(!irqs_disabled());
640 lockdep_assert_held(&engine->active.lock);
641
642 /*
643 * Before we remove this breadcrumb from the signal list, we have
644 * to ensure that a concurrent dma_fence_enable_signaling() does not
645 * attach itself. We first mark the request as no longer active and
646 * make sure that is visible to other cores, and then remove the
647 * breadcrumb if attached.
648 */
649 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
650 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
651 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
652 i915_request_cancel_breadcrumb(request);
653
654 /* We've already spun, don't charge on resubmitting. */
655 if (request->sched.semaphores && i915_request_started(request))
656 request->sched.semaphores = 0;
657
658 /*
659 * We don't need to wake_up any waiters on request->execute, they
660 * will get woken by any other event or us re-adding this request
661 * to the engine timeline (__i915_request_submit()). The waiters
662 * should be quite adapt at finding that the request now has a new
663 * global_seqno to the one they went to sleep on.
664 */
665}
666
667void i915_request_unsubmit(struct i915_request *request)
668{
669 struct intel_engine_cs *engine = request->engine;
670 unsigned long flags;
671
672 /* Will be called from irq-context when using foreign fences. */
673 spin_lock_irqsave(&engine->active.lock, flags);
674
675 __i915_request_unsubmit(request);
676
677 spin_unlock_irqrestore(&engine->active.lock, flags);
678}
679
680static int __i915_sw_fence_call
681submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
682{
683 struct i915_request *request =
684 container_of(fence, typeof(*request), submit);
685
686 switch (state) {
687 case FENCE_COMPLETE:
688 trace_i915_request_submit(request);
689
690 if (unlikely(fence->error))
691 i915_request_set_error_once(request, fence->error);
692
693 /*
694 * We need to serialize use of the submit_request() callback
695 * with its hotplugging performed during an emergency
696 * i915_gem_set_wedged(). We use the RCU mechanism to mark the
697 * critical section in order to force i915_gem_set_wedged() to
698 * wait until the submit_request() is completed before
699 * proceeding.
700 */
701 rcu_read_lock();
702 request->engine->submit_request(request);
703 rcu_read_unlock();
704 break;
705
706 case FENCE_FREE:
707 i915_request_put(request);
708 break;
709 }
710
711 return NOTIFY_DONE;
712}
713
714static int __i915_sw_fence_call
715semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
716{
717 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
718
719 switch (state) {
720 case FENCE_COMPLETE:
721 break;
722
723 case FENCE_FREE:
724 i915_request_put(rq);
725 break;
726 }
727
728 return NOTIFY_DONE;
729}
730
731static void retire_requests(struct intel_timeline *tl)
732{
733 struct i915_request *rq, *rn;
734
735 list_for_each_entry_safe(rq, rn, &tl->requests, link)
736 if (!i915_request_retire(rq))
737 break;
738}
739
740static noinline struct i915_request *
741request_alloc_slow(struct intel_timeline *tl,
742 struct i915_request **rsvd,
743 gfp_t gfp)
744{
745 struct i915_request *rq;
746
747 /* If we cannot wait, dip into our reserves */
748 if (!gfpflags_allow_blocking(gfp)) {
749 rq = xchg(rsvd, NULL);
750 if (!rq) /* Use the normal failure path for one final WARN */
751 goto out;
752
753 return rq;
754 }
755
756 if (list_empty(&tl->requests))
757 goto out;
758
759 /* Move our oldest request to the slab-cache (if not in use!) */
760 rq = list_first_entry(&tl->requests, typeof(*rq), link);
761 i915_request_retire(rq);
762
763 rq = kmem_cache_alloc(global.slab_requests,
764 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
765 if (rq)
766 return rq;
767
768 /* Ratelimit ourselves to prevent oom from malicious clients */
769 rq = list_last_entry(&tl->requests, typeof(*rq), link);
770 cond_synchronize_rcu(rq->rcustate);
771
772 /* Retire our old requests in the hope that we free some */
773 retire_requests(tl);
774
775out:
776 return kmem_cache_alloc(global.slab_requests, gfp);
777}
778
779static void __i915_request_ctor(void *arg)
780{
781 struct i915_request *rq = arg;
782
783 spin_lock_init(&rq->lock);
784 i915_sched_node_init(&rq->sched);
785 i915_sw_fence_init(&rq->submit, submit_notify);
786 i915_sw_fence_init(&rq->semaphore, semaphore_notify);
787
788 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
789
790 rq->capture_list = NULL;
791
792 init_llist_head(&rq->execute_cb);
793}
794
795struct i915_request *
796__i915_request_create(struct intel_context *ce, gfp_t gfp)
797{
798 struct intel_timeline *tl = ce->timeline;
799 struct i915_request *rq;
800 u32 seqno;
801 int ret;
802
803 might_sleep_if(gfpflags_allow_blocking(gfp));
804
805 /* Check that the caller provided an already pinned context */
806 __intel_context_pin(ce);
807
808 /*
809 * Beware: Dragons be flying overhead.
810 *
811 * We use RCU to look up requests in flight. The lookups may
812 * race with the request being allocated from the slab freelist.
813 * That is the request we are writing to here, may be in the process
814 * of being read by __i915_active_request_get_rcu(). As such,
815 * we have to be very careful when overwriting the contents. During
816 * the RCU lookup, we change chase the request->engine pointer,
817 * read the request->global_seqno and increment the reference count.
818 *
819 * The reference count is incremented atomically. If it is zero,
820 * the lookup knows the request is unallocated and complete. Otherwise,
821 * it is either still in use, or has been reallocated and reset
822 * with dma_fence_init(). This increment is safe for release as we
823 * check that the request we have a reference to and matches the active
824 * request.
825 *
826 * Before we increment the refcount, we chase the request->engine
827 * pointer. We must not call kmem_cache_zalloc() or else we set
828 * that pointer to NULL and cause a crash during the lookup. If
829 * we see the request is completed (based on the value of the
830 * old engine and seqno), the lookup is complete and reports NULL.
831 * If we decide the request is not completed (new engine or seqno),
832 * then we grab a reference and double check that it is still the
833 * active request - which it won't be and restart the lookup.
834 *
835 * Do not use kmem_cache_zalloc() here!
836 */
837 rq = kmem_cache_alloc(global.slab_requests,
838 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
839 if (unlikely(!rq)) {
840 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
841 if (!rq) {
842 ret = -ENOMEM;
843 goto err_unreserve;
844 }
845 }
846
847 rq->context = ce;
848 rq->engine = ce->engine;
849 rq->ring = ce->ring;
850 rq->execution_mask = ce->engine->mask;
851
852 kref_init(&rq->fence.refcount);
853 rq->fence.flags = 0;
854 rq->fence.error = 0;
855 INIT_LIST_HEAD(&rq->fence.cb_list);
856
857 ret = intel_timeline_get_seqno(tl, rq, &seqno);
858 if (ret)
859 goto err_free;
860
861 rq->fence.context = tl->fence_context;
862 rq->fence.seqno = seqno;
863
864 RCU_INIT_POINTER(rq->timeline, tl);
865 RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
866 rq->hwsp_seqno = tl->hwsp_seqno;
867 GEM_BUG_ON(i915_request_completed(rq));
868
869 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
870
871 /* We bump the ref for the fence chain */
872 i915_sw_fence_reinit(&i915_request_get(rq)->submit);
873 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
874
875 i915_sched_node_reinit(&rq->sched);
876
877 /* No zalloc, everything must be cleared after use */
878 rq->batch = NULL;
879 GEM_BUG_ON(rq->capture_list);
880 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
881
882 /*
883 * Reserve space in the ring buffer for all the commands required to
884 * eventually emit this request. This is to guarantee that the
885 * i915_request_add() call can't fail. Note that the reserve may need
886 * to be redone if the request is not actually submitted straight
887 * away, e.g. because a GPU scheduler has deferred it.
888 *
889 * Note that due to how we add reserved_space to intel_ring_begin()
890 * we need to double our request to ensure that if we need to wrap
891 * around inside i915_request_add() there is sufficient space at
892 * the beginning of the ring as well.
893 */
894 rq->reserved_space =
895 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
896
897 /*
898 * Record the position of the start of the request so that
899 * should we detect the updated seqno part-way through the
900 * GPU processing the request, we never over-estimate the
901 * position of the head.
902 */
903 rq->head = rq->ring->emit;
904
905 ret = rq->engine->request_alloc(rq);
906 if (ret)
907 goto err_unwind;
908
909 rq->infix = rq->ring->emit; /* end of header; start of user payload */
910
911 intel_context_mark_active(ce);
912 list_add_tail_rcu(&rq->link, &tl->requests);
913
914 return rq;
915
916err_unwind:
917 ce->ring->emit = rq->head;
918
919 /* Make sure we didn't add ourselves to external state before freeing */
920 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
921 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
922
923err_free:
924 kmem_cache_free(global.slab_requests, rq);
925err_unreserve:
926 intel_context_unpin(ce);
927 return ERR_PTR(ret);
928}
929
930struct i915_request *
931i915_request_create(struct intel_context *ce)
932{
933 struct i915_request *rq;
934 struct intel_timeline *tl;
935
936 tl = intel_context_timeline_lock(ce);
937 if (IS_ERR(tl))
938 return ERR_CAST(tl);
939
940 /* Move our oldest request to the slab-cache (if not in use!) */
941 rq = list_first_entry(&tl->requests, typeof(*rq), link);
942 if (!list_is_last(&rq->link, &tl->requests))
943 i915_request_retire(rq);
944
945 intel_context_enter(ce);
946 rq = __i915_request_create(ce, GFP_KERNEL);
947 intel_context_exit(ce); /* active reference transferred to request */
948 if (IS_ERR(rq))
949 goto err_unlock;
950
951 /* Check that we do not interrupt ourselves with a new request */
952 rq->cookie = lockdep_pin_lock(&tl->mutex);
953
954 return rq;
955
956err_unlock:
957 intel_context_timeline_unlock(tl);
958 return rq;
959}
960
961static int
962i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
963{
964 struct dma_fence *fence;
965 int err;
966
967 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
968 return 0;
969
970 if (i915_request_started(signal))
971 return 0;
972
973 fence = NULL;
974 rcu_read_lock();
975 spin_lock_irq(&signal->lock);
976 do {
977 struct list_head *pos = READ_ONCE(signal->link.prev);
978 struct i915_request *prev;
979
980 /* Confirm signal has not been retired, the link is valid */
981 if (unlikely(i915_request_started(signal)))
982 break;
983
984 /* Is signal the earliest request on its timeline? */
985 if (pos == &rcu_dereference(signal->timeline)->requests)
986 break;
987
988 /*
989 * Peek at the request before us in the timeline. That
990 * request will only be valid before it is retired, so
991 * after acquiring a reference to it, confirm that it is
992 * still part of the signaler's timeline.
993 */
994 prev = list_entry(pos, typeof(*prev), link);
995 if (!i915_request_get_rcu(prev))
996 break;
997
998 /* After the strong barrier, confirm prev is still attached */
999 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
1000 i915_request_put(prev);
1001 break;
1002 }
1003
1004 fence = &prev->fence;
1005 } while (0);
1006 spin_unlock_irq(&signal->lock);
1007 rcu_read_unlock();
1008 if (!fence)
1009 return 0;
1010
1011 err = 0;
1012 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1013 err = i915_sw_fence_await_dma_fence(&rq->submit,
1014 fence, 0,
1015 I915_FENCE_GFP);
1016 dma_fence_put(fence);
1017
1018 return err;
1019}
1020
1021static intel_engine_mask_t
1022already_busywaiting(struct i915_request *rq)
1023{
1024 /*
1025 * Polling a semaphore causes bus traffic, delaying other users of
1026 * both the GPU and CPU. We want to limit the impact on others,
1027 * while taking advantage of early submission to reduce GPU
1028 * latency. Therefore we restrict ourselves to not using more
1029 * than one semaphore from each source, and not using a semaphore
1030 * if we have detected the engine is saturated (i.e. would not be
1031 * submitted early and cause bus traffic reading an already passed
1032 * semaphore).
1033 *
1034 * See the are-we-too-late? check in __i915_request_submit().
1035 */
1036 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1037}
1038
1039static int
1040__emit_semaphore_wait(struct i915_request *to,
1041 struct i915_request *from,
1042 u32 seqno)
1043{
1044 const int has_token = INTEL_GEN(to->engine->i915) >= 12;
1045 u32 hwsp_offset;
1046 int len, err;
1047 u32 *cs;
1048
1049 GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8);
1050 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1051
1052 /* We need to pin the signaler's HWSP until we are finished reading. */
1053 err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1054 if (err)
1055 return err;
1056
1057 len = 4;
1058 if (has_token)
1059 len += 2;
1060
1061 cs = intel_ring_begin(to, len);
1062 if (IS_ERR(cs))
1063 return PTR_ERR(cs);
1064
1065 /*
1066 * Using greater-than-or-equal here means we have to worry
1067 * about seqno wraparound. To side step that issue, we swap
1068 * the timeline HWSP upon wrapping, so that everyone listening
1069 * for the old (pre-wrap) values do not see the much smaller
1070 * (post-wrap) values than they were expecting (and so wait
1071 * forever).
1072 */
1073 *cs++ = (MI_SEMAPHORE_WAIT |
1074 MI_SEMAPHORE_GLOBAL_GTT |
1075 MI_SEMAPHORE_POLL |
1076 MI_SEMAPHORE_SAD_GTE_SDD) +
1077 has_token;
1078 *cs++ = seqno;
1079 *cs++ = hwsp_offset;
1080 *cs++ = 0;
1081 if (has_token) {
1082 *cs++ = 0;
1083 *cs++ = MI_NOOP;
1084 }
1085
1086 intel_ring_advance(to, cs);
1087 return 0;
1088}
1089
1090static int
1091emit_semaphore_wait(struct i915_request *to,
1092 struct i915_request *from,
1093 gfp_t gfp)
1094{
1095 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1096 struct i915_sw_fence *wait = &to->submit;
1097
1098 if (!intel_context_use_semaphores(to->context))
1099 goto await_fence;
1100
1101 if (i915_request_has_initial_breadcrumb(to))
1102 goto await_fence;
1103
1104 if (!rcu_access_pointer(from->hwsp_cacheline))
1105 goto await_fence;
1106
1107 /*
1108 * If this or its dependents are waiting on an external fence
1109 * that may fail catastrophically, then we want to avoid using
1110 * sempahores as they bypass the fence signaling metadata, and we
1111 * lose the fence->error propagation.
1112 */
1113 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1114 goto await_fence;
1115
1116 /* Just emit the first semaphore we see as request space is limited. */
1117 if (already_busywaiting(to) & mask)
1118 goto await_fence;
1119
1120 if (i915_request_await_start(to, from) < 0)
1121 goto await_fence;
1122
1123 /* Only submit our spinner after the signaler is running! */
1124 if (__await_execution(to, from, NULL, gfp))
1125 goto await_fence;
1126
1127 if (__emit_semaphore_wait(to, from, from->fence.seqno))
1128 goto await_fence;
1129
1130 to->sched.semaphores |= mask;
1131 wait = &to->semaphore;
1132
1133await_fence:
1134 return i915_sw_fence_await_dma_fence(wait,
1135 &from->fence, 0,
1136 I915_FENCE_GFP);
1137}
1138
1139static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1140 struct dma_fence *fence)
1141{
1142 return __intel_timeline_sync_is_later(tl,
1143 fence->context,
1144 fence->seqno - 1);
1145}
1146
1147static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1148 const struct dma_fence *fence)
1149{
1150 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1151}
1152
1153static int
1154__i915_request_await_execution(struct i915_request *to,
1155 struct i915_request *from,
1156 void (*hook)(struct i915_request *rq,
1157 struct dma_fence *signal))
1158{
1159 int err;
1160
1161 GEM_BUG_ON(intel_context_is_barrier(from->context));
1162
1163 /* Submit both requests at the same time */
1164 err = __await_execution(to, from, hook, I915_FENCE_GFP);
1165 if (err)
1166 return err;
1167
1168 /* Squash repeated depenendices to the same timelines */
1169 if (intel_timeline_sync_has_start(i915_request_timeline(to),
1170 &from->fence))
1171 return 0;
1172
1173 /*
1174 * Wait until the start of this request.
1175 *
1176 * The execution cb fires when we submit the request to HW. But in
1177 * many cases this may be long before the request itself is ready to
1178 * run (consider that we submit 2 requests for the same context, where
1179 * the request of interest is behind an indefinite spinner). So we hook
1180 * up to both to reduce our queues and keep the execution lag minimised
1181 * in the worst case, though we hope that the await_start is elided.
1182 */
1183 err = i915_request_await_start(to, from);
1184 if (err < 0)
1185 return err;
1186
1187 /*
1188 * Ensure both start together [after all semaphores in signal]
1189 *
1190 * Now that we are queued to the HW at roughly the same time (thanks
1191 * to the execute cb) and are ready to run at roughly the same time
1192 * (thanks to the await start), our signaler may still be indefinitely
1193 * delayed by waiting on a semaphore from a remote engine. If our
1194 * signaler depends on a semaphore, so indirectly do we, and we do not
1195 * want to start our payload until our signaler also starts theirs.
1196 * So we wait.
1197 *
1198 * However, there is also a second condition for which we need to wait
1199 * for the precise start of the signaler. Consider that the signaler
1200 * was submitted in a chain of requests following another context
1201 * (with just an ordinary intra-engine fence dependency between the
1202 * two). In this case the signaler is queued to HW, but not for
1203 * immediate execution, and so we must wait until it reaches the
1204 * active slot.
1205 */
1206 if (intel_engine_has_semaphores(to->engine) &&
1207 !i915_request_has_initial_breadcrumb(to)) {
1208 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1209 if (err < 0)
1210 return err;
1211 }
1212
1213 /* Couple the dependency tree for PI on this exposed to->fence */
1214 if (to->engine->schedule) {
1215 err = i915_sched_node_add_dependency(&to->sched,
1216 &from->sched,
1217 I915_DEPENDENCY_WEAK);
1218 if (err < 0)
1219 return err;
1220 }
1221
1222 return intel_timeline_sync_set_start(i915_request_timeline(to),
1223 &from->fence);
1224}
1225
1226static void mark_external(struct i915_request *rq)
1227{
1228 /*
1229 * The downside of using semaphores is that we lose metadata passing
1230 * along the signaling chain. This is particularly nasty when we
1231 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1232 * fatal errors we want to scrub the request before it is executed,
1233 * which means that we cannot preload the request onto HW and have
1234 * it wait upon a semaphore.
1235 */
1236 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1237}
1238
1239static int
1240__i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1241{
1242 mark_external(rq);
1243 return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1244 i915_fence_context_timeout(rq->engine->i915,
1245 fence->context),
1246 I915_FENCE_GFP);
1247}
1248
1249static int
1250i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1251{
1252 struct dma_fence *iter;
1253 int err = 0;
1254
1255 if (!to_dma_fence_chain(fence))
1256 return __i915_request_await_external(rq, fence);
1257
1258 dma_fence_chain_for_each(iter, fence) {
1259 struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1260
1261 if (!dma_fence_is_i915(chain->fence)) {
1262 err = __i915_request_await_external(rq, iter);
1263 break;
1264 }
1265
1266 err = i915_request_await_dma_fence(rq, chain->fence);
1267 if (err < 0)
1268 break;
1269 }
1270
1271 dma_fence_put(iter);
1272 return err;
1273}
1274
1275int
1276i915_request_await_execution(struct i915_request *rq,
1277 struct dma_fence *fence,
1278 void (*hook)(struct i915_request *rq,
1279 struct dma_fence *signal))
1280{
1281 struct dma_fence **child = &fence;
1282 unsigned int nchild = 1;
1283 int ret;
1284
1285 if (dma_fence_is_array(fence)) {
1286 struct dma_fence_array *array = to_dma_fence_array(fence);
1287
1288 /* XXX Error for signal-on-any fence arrays */
1289
1290 child = array->fences;
1291 nchild = array->num_fences;
1292 GEM_BUG_ON(!nchild);
1293 }
1294
1295 do {
1296 fence = *child++;
1297 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1298 i915_sw_fence_set_error_once(&rq->submit, fence->error);
1299 continue;
1300 }
1301
1302 if (fence->context == rq->fence.context)
1303 continue;
1304
1305 /*
1306 * We don't squash repeated fence dependencies here as we
1307 * want to run our callback in all cases.
1308 */
1309
1310 if (dma_fence_is_i915(fence))
1311 ret = __i915_request_await_execution(rq,
1312 to_request(fence),
1313 hook);
1314 else
1315 ret = i915_request_await_external(rq, fence);
1316 if (ret < 0)
1317 return ret;
1318 } while (--nchild);
1319
1320 return 0;
1321}
1322
1323static int
1324await_request_submit(struct i915_request *to, struct i915_request *from)
1325{
1326 /*
1327 * If we are waiting on a virtual engine, then it may be
1328 * constrained to execute on a single engine *prior* to submission.
1329 * When it is submitted, it will be first submitted to the virtual
1330 * engine and then passed to the physical engine. We cannot allow
1331 * the waiter to be submitted immediately to the physical engine
1332 * as it may then bypass the virtual request.
1333 */
1334 if (to->engine == READ_ONCE(from->engine))
1335 return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1336 &from->submit,
1337 I915_FENCE_GFP);
1338 else
1339 return __i915_request_await_execution(to, from, NULL);
1340}
1341
1342static int
1343i915_request_await_request(struct i915_request *to, struct i915_request *from)
1344{
1345 int ret;
1346
1347 GEM_BUG_ON(to == from);
1348 GEM_BUG_ON(to->timeline == from->timeline);
1349
1350 if (i915_request_completed(from)) {
1351 i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1352 return 0;
1353 }
1354
1355 if (to->engine->schedule) {
1356 ret = i915_sched_node_add_dependency(&to->sched,
1357 &from->sched,
1358 I915_DEPENDENCY_EXTERNAL);
1359 if (ret < 0)
1360 return ret;
1361 }
1362
1363 if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1364 ret = await_request_submit(to, from);
1365 else
1366 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1367 if (ret < 0)
1368 return ret;
1369
1370 return 0;
1371}
1372
1373int
1374i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1375{
1376 struct dma_fence **child = &fence;
1377 unsigned int nchild = 1;
1378 int ret;
1379
1380 /*
1381 * Note that if the fence-array was created in signal-on-any mode,
1382 * we should *not* decompose it into its individual fences. However,
1383 * we don't currently store which mode the fence-array is operating
1384 * in. Fortunately, the only user of signal-on-any is private to
1385 * amdgpu and we should not see any incoming fence-array from
1386 * sync-file being in signal-on-any mode.
1387 */
1388 if (dma_fence_is_array(fence)) {
1389 struct dma_fence_array *array = to_dma_fence_array(fence);
1390
1391 child = array->fences;
1392 nchild = array->num_fences;
1393 GEM_BUG_ON(!nchild);
1394 }
1395
1396 do {
1397 fence = *child++;
1398 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1399 i915_sw_fence_set_error_once(&rq->submit, fence->error);
1400 continue;
1401 }
1402
1403 /*
1404 * Requests on the same timeline are explicitly ordered, along
1405 * with their dependencies, by i915_request_add() which ensures
1406 * that requests are submitted in-order through each ring.
1407 */
1408 if (fence->context == rq->fence.context)
1409 continue;
1410
1411 /* Squash repeated waits to the same timelines */
1412 if (fence->context &&
1413 intel_timeline_sync_is_later(i915_request_timeline(rq),
1414 fence))
1415 continue;
1416
1417 if (dma_fence_is_i915(fence))
1418 ret = i915_request_await_request(rq, to_request(fence));
1419 else
1420 ret = i915_request_await_external(rq, fence);
1421 if (ret < 0)
1422 return ret;
1423
1424 /* Record the latest fence used against each timeline */
1425 if (fence->context)
1426 intel_timeline_sync_set(i915_request_timeline(rq),
1427 fence);
1428 } while (--nchild);
1429
1430 return 0;
1431}
1432
1433/**
1434 * i915_request_await_object - set this request to (async) wait upon a bo
1435 * @to: request we are wishing to use
1436 * @obj: object which may be in use on another ring.
1437 * @write: whether the wait is on behalf of a writer
1438 *
1439 * This code is meant to abstract object synchronization with the GPU.
1440 * Conceptually we serialise writes between engines inside the GPU.
1441 * We only allow one engine to write into a buffer at any time, but
1442 * multiple readers. To ensure each has a coherent view of memory, we must:
1443 *
1444 * - If there is an outstanding write request to the object, the new
1445 * request must wait for it to complete (either CPU or in hw, requests
1446 * on the same ring will be naturally ordered).
1447 *
1448 * - If we are a write request (pending_write_domain is set), the new
1449 * request must wait for outstanding read requests to complete.
1450 *
1451 * Returns 0 if successful, else propagates up the lower layer error.
1452 */
1453int
1454i915_request_await_object(struct i915_request *to,
1455 struct drm_i915_gem_object *obj,
1456 bool write)
1457{
1458 struct dma_fence *excl;
1459 int ret = 0;
1460
1461 if (write) {
1462 struct dma_fence **shared;
1463 unsigned int count, i;
1464
1465 ret = dma_resv_get_fences_rcu(obj->base.resv,
1466 &excl, &count, &shared);
1467 if (ret)
1468 return ret;
1469
1470 for (i = 0; i < count; i++) {
1471 ret = i915_request_await_dma_fence(to, shared[i]);
1472 if (ret)
1473 break;
1474
1475 dma_fence_put(shared[i]);
1476 }
1477
1478 for (; i < count; i++)
1479 dma_fence_put(shared[i]);
1480 kfree(shared);
1481 } else {
1482 excl = dma_resv_get_excl_rcu(obj->base.resv);
1483 }
1484
1485 if (excl) {
1486 if (ret == 0)
1487 ret = i915_request_await_dma_fence(to, excl);
1488
1489 dma_fence_put(excl);
1490 }
1491
1492 return ret;
1493}
1494
1495static struct i915_request *
1496__i915_request_add_to_timeline(struct i915_request *rq)
1497{
1498 struct intel_timeline *timeline = i915_request_timeline(rq);
1499 struct i915_request *prev;
1500
1501 /*
1502 * Dependency tracking and request ordering along the timeline
1503 * is special cased so that we can eliminate redundant ordering
1504 * operations while building the request (we know that the timeline
1505 * itself is ordered, and here we guarantee it).
1506 *
1507 * As we know we will need to emit tracking along the timeline,
1508 * we embed the hooks into our request struct -- at the cost of
1509 * having to have specialised no-allocation interfaces (which will
1510 * be beneficial elsewhere).
1511 *
1512 * A second benefit to open-coding i915_request_await_request is
1513 * that we can apply a slight variant of the rules specialised
1514 * for timelines that jump between engines (such as virtual engines).
1515 * If we consider the case of virtual engine, we must emit a dma-fence
1516 * to prevent scheduling of the second request until the first is
1517 * complete (to maximise our greedy late load balancing) and this
1518 * precludes optimising to use semaphores serialisation of a single
1519 * timeline across engines.
1520 */
1521 prev = to_request(__i915_active_fence_set(&timeline->last_request,
1522 &rq->fence));
1523 if (prev && !i915_request_completed(prev)) {
1524 /*
1525 * The requests are supposed to be kept in order. However,
1526 * we need to be wary in case the timeline->last_request
1527 * is used as a barrier for external modification to this
1528 * context.
1529 */
1530 GEM_BUG_ON(prev->context == rq->context &&
1531 i915_seqno_passed(prev->fence.seqno,
1532 rq->fence.seqno));
1533
1534 if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
1535 i915_sw_fence_await_sw_fence(&rq->submit,
1536 &prev->submit,
1537 &rq->submitq);
1538 else
1539 __i915_sw_fence_await_dma_fence(&rq->submit,
1540 &prev->fence,
1541 &rq->dmaq);
1542 if (rq->engine->schedule)
1543 __i915_sched_node_add_dependency(&rq->sched,
1544 &prev->sched,
1545 &rq->dep,
1546 0);
1547 }
1548
1549 /*
1550 * Make sure that no request gazumped us - if it was allocated after
1551 * our i915_request_alloc() and called __i915_request_add() before
1552 * us, the timeline will hold its seqno which is later than ours.
1553 */
1554 GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1555
1556 return prev;
1557}
1558
1559/*
1560 * NB: This function is not allowed to fail. Doing so would mean the the
1561 * request is not being tracked for completion but the work itself is
1562 * going to happen on the hardware. This would be a Bad Thing(tm).
1563 */
1564struct i915_request *__i915_request_commit(struct i915_request *rq)
1565{
1566 struct intel_engine_cs *engine = rq->engine;
1567 struct intel_ring *ring = rq->ring;
1568 u32 *cs;
1569
1570 RQ_TRACE(rq, "\n");
1571
1572 /*
1573 * To ensure that this call will not fail, space for its emissions
1574 * should already have been reserved in the ring buffer. Let the ring
1575 * know that it is time to use that space up.
1576 */
1577 GEM_BUG_ON(rq->reserved_space > ring->space);
1578 rq->reserved_space = 0;
1579 rq->emitted_jiffies = jiffies;
1580
1581 /*
1582 * Record the position of the start of the breadcrumb so that
1583 * should we detect the updated seqno part-way through the
1584 * GPU processing the request, we never over-estimate the
1585 * position of the ring's HEAD.
1586 */
1587 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1588 GEM_BUG_ON(IS_ERR(cs));
1589 rq->postfix = intel_ring_offset(rq, cs);
1590
1591 return __i915_request_add_to_timeline(rq);
1592}
1593
1594void __i915_request_queue_bh(struct i915_request *rq)
1595{
1596 i915_sw_fence_commit(&rq->semaphore);
1597 i915_sw_fence_commit(&rq->submit);
1598}
1599
1600void __i915_request_queue(struct i915_request *rq,
1601 const struct i915_sched_attr *attr)
1602{
1603 /*
1604 * Let the backend know a new request has arrived that may need
1605 * to adjust the existing execution schedule due to a high priority
1606 * request - i.e. we may want to preempt the current request in order
1607 * to run a high priority dependency chain *before* we can execute this
1608 * request.
1609 *
1610 * This is called before the request is ready to run so that we can
1611 * decide whether to preempt the entire chain so that it is ready to
1612 * run at the earliest possible convenience.
1613 */
1614 if (attr && rq->engine->schedule)
1615 rq->engine->schedule(rq, attr);
1616
1617 local_bh_disable();
1618 __i915_request_queue_bh(rq);
1619 local_bh_enable(); /* kick tasklets */
1620}
1621
1622void i915_request_add(struct i915_request *rq)
1623{
1624 struct intel_timeline * const tl = i915_request_timeline(rq);
1625 struct i915_sched_attr attr = {};
1626 struct i915_gem_context *ctx;
1627
1628 lockdep_assert_held(&tl->mutex);
1629 lockdep_unpin_lock(&tl->mutex, rq->cookie);
1630
1631 trace_i915_request_add(rq);
1632 __i915_request_commit(rq);
1633
1634 /* XXX placeholder for selftests */
1635 rcu_read_lock();
1636 ctx = rcu_dereference(rq->context->gem_context);
1637 if (ctx)
1638 attr = ctx->sched;
1639 rcu_read_unlock();
1640
1641 __i915_request_queue(rq, &attr);
1642
1643 mutex_unlock(&tl->mutex);
1644}
1645
1646static unsigned long local_clock_ns(unsigned int *cpu)
1647{
1648 unsigned long t;
1649
1650 /*
1651 * Cheaply and approximately convert from nanoseconds to microseconds.
1652 * The result and subsequent calculations are also defined in the same
1653 * approximate microseconds units. The principal source of timing
1654 * error here is from the simple truncation.
1655 *
1656 * Note that local_clock() is only defined wrt to the current CPU;
1657 * the comparisons are no longer valid if we switch CPUs. Instead of
1658 * blocking preemption for the entire busywait, we can detect the CPU
1659 * switch and use that as indicator of system load and a reason to
1660 * stop busywaiting, see busywait_stop().
1661 */
1662 *cpu = get_cpu();
1663 t = local_clock();
1664 put_cpu();
1665
1666 return t;
1667}
1668
1669static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1670{
1671 unsigned int this_cpu;
1672
1673 if (time_after(local_clock_ns(&this_cpu), timeout))
1674 return true;
1675
1676 return this_cpu != cpu;
1677}
1678
1679static bool __i915_spin_request(struct i915_request * const rq, int state)
1680{
1681 unsigned long timeout_ns;
1682 unsigned int cpu;
1683
1684 /*
1685 * Only wait for the request if we know it is likely to complete.
1686 *
1687 * We don't track the timestamps around requests, nor the average
1688 * request length, so we do not have a good indicator that this
1689 * request will complete within the timeout. What we do know is the
1690 * order in which requests are executed by the context and so we can
1691 * tell if the request has been started. If the request is not even
1692 * running yet, it is a fair assumption that it will not complete
1693 * within our relatively short timeout.
1694 */
1695 if (!i915_request_is_running(rq))
1696 return false;
1697
1698 /*
1699 * When waiting for high frequency requests, e.g. during synchronous
1700 * rendering split between the CPU and GPU, the finite amount of time
1701 * required to set up the irq and wait upon it limits the response
1702 * rate. By busywaiting on the request completion for a short while we
1703 * can service the high frequency waits as quick as possible. However,
1704 * if it is a slow request, we want to sleep as quickly as possible.
1705 * The tradeoff between waiting and sleeping is roughly the time it
1706 * takes to sleep on a request, on the order of a microsecond.
1707 */
1708
1709 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1710 timeout_ns += local_clock_ns(&cpu);
1711 do {
1712 if (dma_fence_is_signaled(&rq->fence))
1713 return true;
1714
1715 if (signal_pending_state(state, current))
1716 break;
1717
1718 if (busywait_stop(timeout_ns, cpu))
1719 break;
1720
1721 cpu_relax();
1722 } while (!need_resched());
1723
1724 return false;
1725}
1726
1727struct request_wait {
1728 struct dma_fence_cb cb;
1729 struct task_struct *tsk;
1730};
1731
1732static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1733{
1734 struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1735
1736 wake_up_process(fetch_and_zero(&wait->tsk));
1737}
1738
1739/**
1740 * i915_request_wait - wait until execution of request has finished
1741 * @rq: the request to wait upon
1742 * @flags: how to wait
1743 * @timeout: how long to wait in jiffies
1744 *
1745 * i915_request_wait() waits for the request to be completed, for a
1746 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1747 * unbounded wait).
1748 *
1749 * Returns the remaining time (in jiffies) if the request completed, which may
1750 * be zero or -ETIME if the request is unfinished after the timeout expires.
1751 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1752 * pending before the request completes.
1753 */
1754long i915_request_wait(struct i915_request *rq,
1755 unsigned int flags,
1756 long timeout)
1757{
1758 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1759 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1760 struct request_wait wait;
1761
1762 might_sleep();
1763 GEM_BUG_ON(timeout < 0);
1764
1765 if (dma_fence_is_signaled(&rq->fence))
1766 return timeout;
1767
1768 if (!timeout)
1769 return -ETIME;
1770
1771 trace_i915_request_wait_begin(rq, flags);
1772
1773 /*
1774 * We must never wait on the GPU while holding a lock as we
1775 * may need to perform a GPU reset. So while we don't need to
1776 * serialise wait/reset with an explicit lock, we do want
1777 * lockdep to detect potential dependency cycles.
1778 */
1779 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1780
1781 /*
1782 * Optimistic spin before touching IRQs.
1783 *
1784 * We may use a rather large value here to offset the penalty of
1785 * switching away from the active task. Frequently, the client will
1786 * wait upon an old swapbuffer to throttle itself to remain within a
1787 * frame of the gpu. If the client is running in lockstep with the gpu,
1788 * then it should not be waiting long at all, and a sleep now will incur
1789 * extra scheduler latency in producing the next frame. To try to
1790 * avoid adding the cost of enabling/disabling the interrupt to the
1791 * short wait, we first spin to see if the request would have completed
1792 * in the time taken to setup the interrupt.
1793 *
1794 * We need upto 5us to enable the irq, and upto 20us to hide the
1795 * scheduler latency of a context switch, ignoring the secondary
1796 * impacts from a context switch such as cache eviction.
1797 *
1798 * The scheme used for low-latency IO is called "hybrid interrupt
1799 * polling". The suggestion there is to sleep until just before you
1800 * expect to be woken by the device interrupt and then poll for its
1801 * completion. That requires having a good predictor for the request
1802 * duration, which we currently lack.
1803 */
1804 if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
1805 __i915_spin_request(rq, state))
1806 goto out;
1807
1808 /*
1809 * This client is about to stall waiting for the GPU. In many cases
1810 * this is undesirable and limits the throughput of the system, as
1811 * many clients cannot continue processing user input/output whilst
1812 * blocked. RPS autotuning may take tens of milliseconds to respond
1813 * to the GPU load and thus incurs additional latency for the client.
1814 * We can circumvent that by promoting the GPU frequency to maximum
1815 * before we sleep. This makes the GPU throttle up much more quickly
1816 * (good for benchmarks and user experience, e.g. window animations),
1817 * but at a cost of spending more power processing the workload
1818 * (bad for battery).
1819 */
1820 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
1821 intel_rps_boost(rq);
1822
1823 wait.tsk = current;
1824 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1825 goto out;
1826
1827 /*
1828 * Flush the submission tasklet, but only if it may help this request.
1829 *
1830 * We sometimes experience some latency between the HW interrupts and
1831 * tasklet execution (mostly due to ksoftirqd latency, but it can also
1832 * be due to lazy CS events), so lets run the tasklet manually if there
1833 * is a chance it may submit this request. If the request is not ready
1834 * to run, as it is waiting for other fences to be signaled, flushing
1835 * the tasklet is busy work without any advantage for this client.
1836 *
1837 * If the HW is being lazy, this is the last chance before we go to
1838 * sleep to catch any pending events. We will check periodically in
1839 * the heartbeat to flush the submission tasklets as a last resort
1840 * for unhappy HW.
1841 */
1842 if (i915_request_is_ready(rq))
1843 __intel_engine_flush_submission(rq->engine, false);
1844
1845 for (;;) {
1846 set_current_state(state);
1847
1848 if (dma_fence_is_signaled(&rq->fence))
1849 break;
1850
1851 if (signal_pending_state(state, current)) {
1852 timeout = -ERESTARTSYS;
1853 break;
1854 }
1855
1856 if (!timeout) {
1857 timeout = -ETIME;
1858 break;
1859 }
1860
1861 timeout = io_schedule_timeout(timeout);
1862 }
1863 __set_current_state(TASK_RUNNING);
1864
1865 if (READ_ONCE(wait.tsk))
1866 dma_fence_remove_callback(&rq->fence, &wait.cb);
1867 GEM_BUG_ON(!list_empty(&wait.cb.node));
1868
1869out:
1870 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1871 trace_i915_request_wait_end(rq);
1872 return timeout;
1873}
1874
1875static int print_sched_attr(const struct i915_sched_attr *attr,
1876 char *buf, int x, int len)
1877{
1878 if (attr->priority == I915_PRIORITY_INVALID)
1879 return x;
1880
1881 x += snprintf(buf + x, len - x,
1882 " prio=%d", attr->priority);
1883
1884 return x;
1885}
1886
1887static char queue_status(const struct i915_request *rq)
1888{
1889 if (i915_request_is_active(rq))
1890 return 'E';
1891
1892 if (i915_request_is_ready(rq))
1893 return intel_engine_is_virtual(rq->engine) ? 'V' : 'R';
1894
1895 return 'U';
1896}
1897
1898static const char *run_status(const struct i915_request *rq)
1899{
1900 if (i915_request_completed(rq))
1901 return "!";
1902
1903 if (i915_request_started(rq))
1904 return "*";
1905
1906 if (!i915_sw_fence_signaled(&rq->semaphore))
1907 return "&";
1908
1909 return "";
1910}
1911
1912static const char *fence_status(const struct i915_request *rq)
1913{
1914 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
1915 return "+";
1916
1917 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
1918 return "-";
1919
1920 return "";
1921}
1922
1923void i915_request_show(struct drm_printer *m,
1924 const struct i915_request *rq,
1925 const char *prefix,
1926 int indent)
1927{
1928 const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence);
1929 char buf[80] = "";
1930 int x = 0;
1931
1932 /*
1933 * The prefix is used to show the queue status, for which we use
1934 * the following flags:
1935 *
1936 * U [Unready]
1937 * - initial status upon being submitted by the user
1938 *
1939 * - the request is not ready for execution as it is waiting
1940 * for external fences
1941 *
1942 * R [Ready]
1943 * - all fences the request was waiting on have been signaled,
1944 * and the request is now ready for execution and will be
1945 * in a backend queue
1946 *
1947 * - a ready request may still need to wait on semaphores
1948 * [internal fences]
1949 *
1950 * V [Ready/virtual]
1951 * - same as ready, but queued over multiple backends
1952 *
1953 * E [Executing]
1954 * - the request has been transferred from the backend queue and
1955 * submitted for execution on HW
1956 *
1957 * - a completed request may still be regarded as executing, its
1958 * status may not be updated until it is retired and removed
1959 * from the lists
1960 */
1961
1962 x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
1963
1964 drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n",
1965 prefix, indent, " ",
1966 queue_status(rq),
1967 rq->fence.context, rq->fence.seqno,
1968 run_status(rq),
1969 fence_status(rq),
1970 buf,
1971 jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1972 name);
1973}
1974
1975#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1976#include "selftests/mock_request.c"
1977#include "selftests/i915_request.c"
1978#endif
1979
1980static void i915_global_request_shrink(void)
1981{
1982 kmem_cache_shrink(global.slab_execute_cbs);
1983 kmem_cache_shrink(global.slab_requests);
1984}
1985
1986static void i915_global_request_exit(void)
1987{
1988 kmem_cache_destroy(global.slab_execute_cbs);
1989 kmem_cache_destroy(global.slab_requests);
1990}
1991
1992static struct i915_global_request global = { {
1993 .shrink = i915_global_request_shrink,
1994 .exit = i915_global_request_exit,
1995} };
1996
1997int __init i915_global_request_init(void)
1998{
1999 global.slab_requests =
2000 kmem_cache_create("i915_request",
2001 sizeof(struct i915_request),
2002 __alignof__(struct i915_request),
2003 SLAB_HWCACHE_ALIGN |
2004 SLAB_RECLAIM_ACCOUNT |
2005 SLAB_TYPESAFE_BY_RCU,
2006 __i915_request_ctor);
2007 if (!global.slab_requests)
2008 return -ENOMEM;
2009
2010 global.slab_execute_cbs = KMEM_CACHE(execute_cb,
2011 SLAB_HWCACHE_ALIGN |
2012 SLAB_RECLAIM_ACCOUNT |
2013 SLAB_TYPESAFE_BY_RCU);
2014 if (!global.slab_execute_cbs)
2015 goto err_requests;
2016
2017 i915_global_register(&global.base);
2018 return 0;
2019
2020err_requests:
2021 kmem_cache_destroy(global.slab_requests);
2022 return -ENOMEM;
2023}