drm/i915: Rename gen7 cmdparser tables
[linux-block.git] / drivers / gpu / drm / i915 / gem / i915_gem_execbuffer.c
... / ...
CommitLineData
1/*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2008,2010 Intel Corporation
5 */
6
7#include <linux/intel-iommu.h>
8#include <linux/dma-resv.h>
9#include <linux/sync_file.h>
10#include <linux/uaccess.h>
11
12#include <drm/drm_syncobj.h>
13#include <drm/i915_drm.h>
14
15#include "display/intel_frontbuffer.h"
16
17#include "gem/i915_gem_ioctls.h"
18#include "gt/intel_context.h"
19#include "gt/intel_engine_pool.h"
20#include "gt/intel_gt.h"
21#include "gt/intel_gt_pm.h"
22
23#include "i915_drv.h"
24#include "i915_gem_clflush.h"
25#include "i915_gem_context.h"
26#include "i915_gem_ioctls.h"
27#include "i915_trace.h"
28
29enum {
30 FORCE_CPU_RELOC = 1,
31 FORCE_GTT_RELOC,
32 FORCE_GPU_RELOC,
33#define DBG_FORCE_RELOC 0 /* choose one of the above! */
34};
35
36#define __EXEC_OBJECT_HAS_REF BIT(31)
37#define __EXEC_OBJECT_HAS_PIN BIT(30)
38#define __EXEC_OBJECT_HAS_FENCE BIT(29)
39#define __EXEC_OBJECT_NEEDS_MAP BIT(28)
40#define __EXEC_OBJECT_NEEDS_BIAS BIT(27)
41#define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 27) /* all of the above */
42#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
43
44#define __EXEC_HAS_RELOC BIT(31)
45#define __EXEC_VALIDATED BIT(30)
46#define __EXEC_INTERNAL_FLAGS (~0u << 30)
47#define UPDATE PIN_OFFSET_FIXED
48
49#define BATCH_OFFSET_BIAS (256*1024)
50
51#define __I915_EXEC_ILLEGAL_FLAGS \
52 (__I915_EXEC_UNKNOWN_FLAGS | \
53 I915_EXEC_CONSTANTS_MASK | \
54 I915_EXEC_RESOURCE_STREAMER)
55
56/* Catch emission of unexpected errors for CI! */
57#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
58#undef EINVAL
59#define EINVAL ({ \
60 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
61 22; \
62})
63#endif
64
65/**
66 * DOC: User command execution
67 *
68 * Userspace submits commands to be executed on the GPU as an instruction
69 * stream within a GEM object we call a batchbuffer. This instructions may
70 * refer to other GEM objects containing auxiliary state such as kernels,
71 * samplers, render targets and even secondary batchbuffers. Userspace does
72 * not know where in the GPU memory these objects reside and so before the
73 * batchbuffer is passed to the GPU for execution, those addresses in the
74 * batchbuffer and auxiliary objects are updated. This is known as relocation,
75 * or patching. To try and avoid having to relocate each object on the next
76 * execution, userspace is told the location of those objects in this pass,
77 * but this remains just a hint as the kernel may choose a new location for
78 * any object in the future.
79 *
80 * At the level of talking to the hardware, submitting a batchbuffer for the
81 * GPU to execute is to add content to a buffer from which the HW
82 * command streamer is reading.
83 *
84 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
85 * Execlists, this command is not placed on the same buffer as the
86 * remaining items.
87 *
88 * 2. Add a command to invalidate caches to the buffer.
89 *
90 * 3. Add a batchbuffer start command to the buffer; the start command is
91 * essentially a token together with the GPU address of the batchbuffer
92 * to be executed.
93 *
94 * 4. Add a pipeline flush to the buffer.
95 *
96 * 5. Add a memory write command to the buffer to record when the GPU
97 * is done executing the batchbuffer. The memory write writes the
98 * global sequence number of the request, ``i915_request::global_seqno``;
99 * the i915 driver uses the current value in the register to determine
100 * if the GPU has completed the batchbuffer.
101 *
102 * 6. Add a user interrupt command to the buffer. This command instructs
103 * the GPU to issue an interrupt when the command, pipeline flush and
104 * memory write are completed.
105 *
106 * 7. Inform the hardware of the additional commands added to the buffer
107 * (by updating the tail pointer).
108 *
109 * Processing an execbuf ioctl is conceptually split up into a few phases.
110 *
111 * 1. Validation - Ensure all the pointers, handles and flags are valid.
112 * 2. Reservation - Assign GPU address space for every object
113 * 3. Relocation - Update any addresses to point to the final locations
114 * 4. Serialisation - Order the request with respect to its dependencies
115 * 5. Construction - Construct a request to execute the batchbuffer
116 * 6. Submission (at some point in the future execution)
117 *
118 * Reserving resources for the execbuf is the most complicated phase. We
119 * neither want to have to migrate the object in the address space, nor do
120 * we want to have to update any relocations pointing to this object. Ideally,
121 * we want to leave the object where it is and for all the existing relocations
122 * to match. If the object is given a new address, or if userspace thinks the
123 * object is elsewhere, we have to parse all the relocation entries and update
124 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
125 * all the target addresses in all of its objects match the value in the
126 * relocation entries and that they all match the presumed offsets given by the
127 * list of execbuffer objects. Using this knowledge, we know that if we haven't
128 * moved any buffers, all the relocation entries are valid and we can skip
129 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
130 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
131 *
132 * The addresses written in the objects must match the corresponding
133 * reloc.presumed_offset which in turn must match the corresponding
134 * execobject.offset.
135 *
136 * Any render targets written to in the batch must be flagged with
137 * EXEC_OBJECT_WRITE.
138 *
139 * To avoid stalling, execobject.offset should match the current
140 * address of that object within the active context.
141 *
142 * The reservation is done is multiple phases. First we try and keep any
143 * object already bound in its current location - so as long as meets the
144 * constraints imposed by the new execbuffer. Any object left unbound after the
145 * first pass is then fitted into any available idle space. If an object does
146 * not fit, all objects are removed from the reservation and the process rerun
147 * after sorting the objects into a priority order (more difficult to fit
148 * objects are tried first). Failing that, the entire VM is cleared and we try
149 * to fit the execbuf once last time before concluding that it simply will not
150 * fit.
151 *
152 * A small complication to all of this is that we allow userspace not only to
153 * specify an alignment and a size for the object in the address space, but
154 * we also allow userspace to specify the exact offset. This objects are
155 * simpler to place (the location is known a priori) all we have to do is make
156 * sure the space is available.
157 *
158 * Once all the objects are in place, patching up the buried pointers to point
159 * to the final locations is a fairly simple job of walking over the relocation
160 * entry arrays, looking up the right address and rewriting the value into
161 * the object. Simple! ... The relocation entries are stored in user memory
162 * and so to access them we have to copy them into a local buffer. That copy
163 * has to avoid taking any pagefaults as they may lead back to a GEM object
164 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
165 * the relocation into multiple passes. First we try to do everything within an
166 * atomic context (avoid the pagefaults) which requires that we never wait. If
167 * we detect that we may wait, or if we need to fault, then we have to fallback
168 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
169 * bells yet?) Dropping the mutex means that we lose all the state we have
170 * built up so far for the execbuf and we must reset any global data. However,
171 * we do leave the objects pinned in their final locations - which is a
172 * potential issue for concurrent execbufs. Once we have left the mutex, we can
173 * allocate and copy all the relocation entries into a large array at our
174 * leisure, reacquire the mutex, reclaim all the objects and other state and
175 * then proceed to update any incorrect addresses with the objects.
176 *
177 * As we process the relocation entries, we maintain a record of whether the
178 * object is being written to. Using NORELOC, we expect userspace to provide
179 * this information instead. We also check whether we can skip the relocation
180 * by comparing the expected value inside the relocation entry with the target's
181 * final address. If they differ, we have to map the current object and rewrite
182 * the 4 or 8 byte pointer within.
183 *
184 * Serialising an execbuf is quite simple according to the rules of the GEM
185 * ABI. Execution within each context is ordered by the order of submission.
186 * Writes to any GEM object are in order of submission and are exclusive. Reads
187 * from a GEM object are unordered with respect to other reads, but ordered by
188 * writes. A write submitted after a read cannot occur before the read, and
189 * similarly any read submitted after a write cannot occur before the write.
190 * Writes are ordered between engines such that only one write occurs at any
191 * time (completing any reads beforehand) - using semaphores where available
192 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
193 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
194 * reads before starting, and any read (either using set-domain or pread) must
195 * flush all GPU writes before starting. (Note we only employ a barrier before,
196 * we currently rely on userspace not concurrently starting a new execution
197 * whilst reading or writing to an object. This may be an advantage or not
198 * depending on how much you trust userspace not to shoot themselves in the
199 * foot.) Serialisation may just result in the request being inserted into
200 * a DAG awaiting its turn, but most simple is to wait on the CPU until
201 * all dependencies are resolved.
202 *
203 * After all of that, is just a matter of closing the request and handing it to
204 * the hardware (well, leaving it in a queue to be executed). However, we also
205 * offer the ability for batchbuffers to be run with elevated privileges so
206 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
207 * Before any batch is given extra privileges we first must check that it
208 * contains no nefarious instructions, we check that each instruction is from
209 * our whitelist and all registers are also from an allowed list. We first
210 * copy the user's batchbuffer to a shadow (so that the user doesn't have
211 * access to it, either by the CPU or GPU as we scan it) and then parse each
212 * instruction. If everything is ok, we set a flag telling the hardware to run
213 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
214 */
215
216struct i915_execbuffer {
217 struct drm_i915_private *i915; /** i915 backpointer */
218 struct drm_file *file; /** per-file lookup tables and limits */
219 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
220 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
221 struct i915_vma **vma;
222 unsigned int *flags;
223
224 struct intel_engine_cs *engine; /** engine to queue the request to */
225 struct intel_context *context; /* logical state for the request */
226 struct i915_gem_context *gem_context; /** caller's context */
227
228 struct i915_request *request; /** our request to build */
229 struct i915_vma *batch; /** identity of the batch obj/vma */
230
231 /** actual size of execobj[] as we may extend it for the cmdparser */
232 unsigned int buffer_count;
233
234 /** list of vma not yet bound during reservation phase */
235 struct list_head unbound;
236
237 /** list of vma that have execobj.relocation_count */
238 struct list_head relocs;
239
240 /**
241 * Track the most recently used object for relocations, as we
242 * frequently have to perform multiple relocations within the same
243 * obj/page
244 */
245 struct reloc_cache {
246 struct drm_mm_node node; /** temporary GTT binding */
247 unsigned long vaddr; /** Current kmap address */
248 unsigned long page; /** Currently mapped page index */
249 unsigned int gen; /** Cached value of INTEL_GEN */
250 bool use_64bit_reloc : 1;
251 bool has_llc : 1;
252 bool has_fence : 1;
253 bool needs_unfenced : 1;
254
255 struct i915_request *rq;
256 u32 *rq_cmd;
257 unsigned int rq_size;
258 } reloc_cache;
259
260 u64 invalid_flags; /** Set of execobj.flags that are invalid */
261 u32 context_flags; /** Set of execobj.flags to insert from the ctx */
262
263 u32 batch_start_offset; /** Location within object of batch */
264 u32 batch_len; /** Length of batch within object */
265 u32 batch_flags; /** Flags composed for emit_bb_start() */
266
267 /**
268 * Indicate either the size of the hastable used to resolve
269 * relocation handles, or if negative that we are using a direct
270 * index into the execobj[].
271 */
272 int lut_size;
273 struct hlist_head *buckets; /** ht for relocation handles */
274};
275
276#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
277
278/*
279 * Used to convert any address to canonical form.
280 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
281 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
282 * addresses to be in a canonical form:
283 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
284 * canonical form [63:48] == [47]."
285 */
286#define GEN8_HIGH_ADDRESS_BIT 47
287static inline u64 gen8_canonical_addr(u64 address)
288{
289 return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
290}
291
292static inline u64 gen8_noncanonical_addr(u64 address)
293{
294 return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
295}
296
297static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
298{
299 return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len;
300}
301
302static int eb_create(struct i915_execbuffer *eb)
303{
304 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
305 unsigned int size = 1 + ilog2(eb->buffer_count);
306
307 /*
308 * Without a 1:1 association between relocation handles and
309 * the execobject[] index, we instead create a hashtable.
310 * We size it dynamically based on available memory, starting
311 * first with 1:1 assocative hash and scaling back until
312 * the allocation succeeds.
313 *
314 * Later on we use a positive lut_size to indicate we are
315 * using this hashtable, and a negative value to indicate a
316 * direct lookup.
317 */
318 do {
319 gfp_t flags;
320
321 /* While we can still reduce the allocation size, don't
322 * raise a warning and allow the allocation to fail.
323 * On the last pass though, we want to try as hard
324 * as possible to perform the allocation and warn
325 * if it fails.
326 */
327 flags = GFP_KERNEL;
328 if (size > 1)
329 flags |= __GFP_NORETRY | __GFP_NOWARN;
330
331 eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
332 flags);
333 if (eb->buckets)
334 break;
335 } while (--size);
336
337 if (unlikely(!size))
338 return -ENOMEM;
339
340 eb->lut_size = size;
341 } else {
342 eb->lut_size = -eb->buffer_count;
343 }
344
345 return 0;
346}
347
348static bool
349eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
350 const struct i915_vma *vma,
351 unsigned int flags)
352{
353 if (vma->node.size < entry->pad_to_size)
354 return true;
355
356 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
357 return true;
358
359 if (flags & EXEC_OBJECT_PINNED &&
360 vma->node.start != entry->offset)
361 return true;
362
363 if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
364 vma->node.start < BATCH_OFFSET_BIAS)
365 return true;
366
367 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
368 (vma->node.start + vma->node.size - 1) >> 32)
369 return true;
370
371 if (flags & __EXEC_OBJECT_NEEDS_MAP &&
372 !i915_vma_is_map_and_fenceable(vma))
373 return true;
374
375 return false;
376}
377
378static inline bool
379eb_pin_vma(struct i915_execbuffer *eb,
380 const struct drm_i915_gem_exec_object2 *entry,
381 struct i915_vma *vma)
382{
383 unsigned int exec_flags = *vma->exec_flags;
384 u64 pin_flags;
385
386 if (vma->node.size)
387 pin_flags = vma->node.start;
388 else
389 pin_flags = entry->offset & PIN_OFFSET_MASK;
390
391 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
392 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
393 pin_flags |= PIN_GLOBAL;
394
395 if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
396 return false;
397
398 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
399 if (unlikely(i915_vma_pin_fence(vma))) {
400 i915_vma_unpin(vma);
401 return false;
402 }
403
404 if (vma->fence)
405 exec_flags |= __EXEC_OBJECT_HAS_FENCE;
406 }
407
408 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
409 return !eb_vma_misplaced(entry, vma, exec_flags);
410}
411
412static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
413{
414 GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
415
416 if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
417 __i915_vma_unpin_fence(vma);
418
419 __i915_vma_unpin(vma);
420}
421
422static inline void
423eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
424{
425 if (!(*flags & __EXEC_OBJECT_HAS_PIN))
426 return;
427
428 __eb_unreserve_vma(vma, *flags);
429 *flags &= ~__EXEC_OBJECT_RESERVED;
430}
431
432static int
433eb_validate_vma(struct i915_execbuffer *eb,
434 struct drm_i915_gem_exec_object2 *entry,
435 struct i915_vma *vma)
436{
437 if (unlikely(entry->flags & eb->invalid_flags))
438 return -EINVAL;
439
440 if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
441 return -EINVAL;
442
443 /*
444 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
445 * any non-page-aligned or non-canonical addresses.
446 */
447 if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
448 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
449 return -EINVAL;
450
451 /* pad_to_size was once a reserved field, so sanitize it */
452 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
453 if (unlikely(offset_in_page(entry->pad_to_size)))
454 return -EINVAL;
455 } else {
456 entry->pad_to_size = 0;
457 }
458
459 if (unlikely(vma->exec_flags)) {
460 DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
461 entry->handle, (int)(entry - eb->exec));
462 return -EINVAL;
463 }
464
465 /*
466 * From drm_mm perspective address space is continuous,
467 * so from this point we're always using non-canonical
468 * form internally.
469 */
470 entry->offset = gen8_noncanonical_addr(entry->offset);
471
472 if (!eb->reloc_cache.has_fence) {
473 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
474 } else {
475 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
476 eb->reloc_cache.needs_unfenced) &&
477 i915_gem_object_is_tiled(vma->obj))
478 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
479 }
480
481 if (!(entry->flags & EXEC_OBJECT_PINNED))
482 entry->flags |= eb->context_flags;
483
484 return 0;
485}
486
487static int
488eb_add_vma(struct i915_execbuffer *eb,
489 unsigned int i, unsigned batch_idx,
490 struct i915_vma *vma)
491{
492 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
493 int err;
494
495 GEM_BUG_ON(i915_vma_is_closed(vma));
496
497 if (!(eb->args->flags & __EXEC_VALIDATED)) {
498 err = eb_validate_vma(eb, entry, vma);
499 if (unlikely(err))
500 return err;
501 }
502
503 if (eb->lut_size > 0) {
504 vma->exec_handle = entry->handle;
505 hlist_add_head(&vma->exec_node,
506 &eb->buckets[hash_32(entry->handle,
507 eb->lut_size)]);
508 }
509
510 if (entry->relocation_count)
511 list_add_tail(&vma->reloc_link, &eb->relocs);
512
513 /*
514 * Stash a pointer from the vma to execobj, so we can query its flags,
515 * size, alignment etc as provided by the user. Also we stash a pointer
516 * to the vma inside the execobj so that we can use a direct lookup
517 * to find the right target VMA when doing relocations.
518 */
519 eb->vma[i] = vma;
520 eb->flags[i] = entry->flags;
521 vma->exec_flags = &eb->flags[i];
522
523 /*
524 * SNA is doing fancy tricks with compressing batch buffers, which leads
525 * to negative relocation deltas. Usually that works out ok since the
526 * relocate address is still positive, except when the batch is placed
527 * very low in the GTT. Ensure this doesn't happen.
528 *
529 * Note that actual hangs have only been observed on gen7, but for
530 * paranoia do it everywhere.
531 */
532 if (i == batch_idx) {
533 if (entry->relocation_count &&
534 !(eb->flags[i] & EXEC_OBJECT_PINNED))
535 eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
536 if (eb->reloc_cache.has_fence)
537 eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;
538
539 eb->batch = vma;
540 }
541
542 err = 0;
543 if (eb_pin_vma(eb, entry, vma)) {
544 if (entry->offset != vma->node.start) {
545 entry->offset = vma->node.start | UPDATE;
546 eb->args->flags |= __EXEC_HAS_RELOC;
547 }
548 } else {
549 eb_unreserve_vma(vma, vma->exec_flags);
550
551 list_add_tail(&vma->exec_link, &eb->unbound);
552 if (drm_mm_node_allocated(&vma->node))
553 err = i915_vma_unbind(vma);
554 if (unlikely(err))
555 vma->exec_flags = NULL;
556 }
557 return err;
558}
559
560static inline int use_cpu_reloc(const struct reloc_cache *cache,
561 const struct drm_i915_gem_object *obj)
562{
563 if (!i915_gem_object_has_struct_page(obj))
564 return false;
565
566 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
567 return true;
568
569 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
570 return false;
571
572 return (cache->has_llc ||
573 obj->cache_dirty ||
574 obj->cache_level != I915_CACHE_NONE);
575}
576
577static int eb_reserve_vma(const struct i915_execbuffer *eb,
578 struct i915_vma *vma)
579{
580 struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
581 unsigned int exec_flags = *vma->exec_flags;
582 u64 pin_flags;
583 int err;
584
585 pin_flags = PIN_USER | PIN_NONBLOCK;
586 if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
587 pin_flags |= PIN_GLOBAL;
588
589 /*
590 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
591 * limit address to the first 4GBs for unflagged objects.
592 */
593 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
594 pin_flags |= PIN_ZONE_4G;
595
596 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
597 pin_flags |= PIN_MAPPABLE;
598
599 if (exec_flags & EXEC_OBJECT_PINNED) {
600 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
601 pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
602 } else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
603 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
604 }
605
606 err = i915_vma_pin(vma,
607 entry->pad_to_size, entry->alignment,
608 pin_flags);
609 if (err)
610 return err;
611
612 if (entry->offset != vma->node.start) {
613 entry->offset = vma->node.start | UPDATE;
614 eb->args->flags |= __EXEC_HAS_RELOC;
615 }
616
617 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
618 err = i915_vma_pin_fence(vma);
619 if (unlikely(err)) {
620 i915_vma_unpin(vma);
621 return err;
622 }
623
624 if (vma->fence)
625 exec_flags |= __EXEC_OBJECT_HAS_FENCE;
626 }
627
628 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
629 GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
630
631 return 0;
632}
633
634static int eb_reserve(struct i915_execbuffer *eb)
635{
636 const unsigned int count = eb->buffer_count;
637 struct list_head last;
638 struct i915_vma *vma;
639 unsigned int i, pass;
640 int err;
641
642 /*
643 * Attempt to pin all of the buffers into the GTT.
644 * This is done in 3 phases:
645 *
646 * 1a. Unbind all objects that do not match the GTT constraints for
647 * the execbuffer (fenceable, mappable, alignment etc).
648 * 1b. Increment pin count for already bound objects.
649 * 2. Bind new objects.
650 * 3. Decrement pin count.
651 *
652 * This avoid unnecessary unbinding of later objects in order to make
653 * room for the earlier objects *unless* we need to defragment.
654 */
655
656 pass = 0;
657 err = 0;
658 do {
659 list_for_each_entry(vma, &eb->unbound, exec_link) {
660 err = eb_reserve_vma(eb, vma);
661 if (err)
662 break;
663 }
664 if (err != -ENOSPC)
665 return err;
666
667 /* Resort *all* the objects into priority order */
668 INIT_LIST_HEAD(&eb->unbound);
669 INIT_LIST_HEAD(&last);
670 for (i = 0; i < count; i++) {
671 unsigned int flags = eb->flags[i];
672 struct i915_vma *vma = eb->vma[i];
673
674 if (flags & EXEC_OBJECT_PINNED &&
675 flags & __EXEC_OBJECT_HAS_PIN)
676 continue;
677
678 eb_unreserve_vma(vma, &eb->flags[i]);
679
680 if (flags & EXEC_OBJECT_PINNED)
681 /* Pinned must have their slot */
682 list_add(&vma->exec_link, &eb->unbound);
683 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
684 /* Map require the lowest 256MiB (aperture) */
685 list_add_tail(&vma->exec_link, &eb->unbound);
686 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
687 /* Prioritise 4GiB region for restricted bo */
688 list_add(&vma->exec_link, &last);
689 else
690 list_add_tail(&vma->exec_link, &last);
691 }
692 list_splice_tail(&last, &eb->unbound);
693
694 switch (pass++) {
695 case 0:
696 break;
697
698 case 1:
699 /* Too fragmented, unbind everything and retry */
700 err = i915_gem_evict_vm(eb->context->vm);
701 if (err)
702 return err;
703 break;
704
705 default:
706 return -ENOSPC;
707 }
708 } while (1);
709}
710
711static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
712{
713 if (eb->args->flags & I915_EXEC_BATCH_FIRST)
714 return 0;
715 else
716 return eb->buffer_count - 1;
717}
718
719static int eb_select_context(struct i915_execbuffer *eb)
720{
721 struct i915_gem_context *ctx;
722
723 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
724 if (unlikely(!ctx))
725 return -ENOENT;
726
727 eb->gem_context = ctx;
728 if (ctx->vm)
729 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
730
731 eb->context_flags = 0;
732 if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
733 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
734
735 return 0;
736}
737
738static int eb_lookup_vmas(struct i915_execbuffer *eb)
739{
740 struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma;
741 struct drm_i915_gem_object *obj;
742 unsigned int i, batch;
743 int err;
744
745 if (unlikely(i915_gem_context_is_banned(eb->gem_context)))
746 return -EIO;
747
748 INIT_LIST_HEAD(&eb->relocs);
749 INIT_LIST_HEAD(&eb->unbound);
750
751 batch = eb_batch_index(eb);
752
753 mutex_lock(&eb->gem_context->mutex);
754 if (unlikely(i915_gem_context_is_closed(eb->gem_context))) {
755 err = -ENOENT;
756 goto err_ctx;
757 }
758
759 for (i = 0; i < eb->buffer_count; i++) {
760 u32 handle = eb->exec[i].handle;
761 struct i915_lut_handle *lut;
762 struct i915_vma *vma;
763
764 vma = radix_tree_lookup(handles_vma, handle);
765 if (likely(vma))
766 goto add_vma;
767
768 obj = i915_gem_object_lookup(eb->file, handle);
769 if (unlikely(!obj)) {
770 err = -ENOENT;
771 goto err_vma;
772 }
773
774 vma = i915_vma_instance(obj, eb->context->vm, NULL);
775 if (IS_ERR(vma)) {
776 err = PTR_ERR(vma);
777 goto err_obj;
778 }
779
780 lut = i915_lut_handle_alloc();
781 if (unlikely(!lut)) {
782 err = -ENOMEM;
783 goto err_obj;
784 }
785
786 err = radix_tree_insert(handles_vma, handle, vma);
787 if (unlikely(err)) {
788 i915_lut_handle_free(lut);
789 goto err_obj;
790 }
791
792 /* transfer ref to lut */
793 if (!atomic_fetch_inc(&vma->open_count))
794 i915_vma_reopen(vma);
795 lut->handle = handle;
796 lut->ctx = eb->gem_context;
797
798 i915_gem_object_lock(obj);
799 list_add(&lut->obj_link, &obj->lut_list);
800 i915_gem_object_unlock(obj);
801
802add_vma:
803 err = eb_add_vma(eb, i, batch, vma);
804 if (unlikely(err))
805 goto err_vma;
806
807 GEM_BUG_ON(vma != eb->vma[i]);
808 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
809 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
810 eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
811 }
812
813 mutex_unlock(&eb->gem_context->mutex);
814
815 eb->args->flags |= __EXEC_VALIDATED;
816 return eb_reserve(eb);
817
818err_obj:
819 i915_gem_object_put(obj);
820err_vma:
821 eb->vma[i] = NULL;
822err_ctx:
823 mutex_unlock(&eb->gem_context->mutex);
824 return err;
825}
826
827static struct i915_vma *
828eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
829{
830 if (eb->lut_size < 0) {
831 if (handle >= -eb->lut_size)
832 return NULL;
833 return eb->vma[handle];
834 } else {
835 struct hlist_head *head;
836 struct i915_vma *vma;
837
838 head = &eb->buckets[hash_32(handle, eb->lut_size)];
839 hlist_for_each_entry(vma, head, exec_node) {
840 if (vma->exec_handle == handle)
841 return vma;
842 }
843 return NULL;
844 }
845}
846
847static void eb_release_vmas(const struct i915_execbuffer *eb)
848{
849 const unsigned int count = eb->buffer_count;
850 unsigned int i;
851
852 for (i = 0; i < count; i++) {
853 struct i915_vma *vma = eb->vma[i];
854 unsigned int flags = eb->flags[i];
855
856 if (!vma)
857 break;
858
859 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
860 vma->exec_flags = NULL;
861 eb->vma[i] = NULL;
862
863 if (flags & __EXEC_OBJECT_HAS_PIN)
864 __eb_unreserve_vma(vma, flags);
865
866 if (flags & __EXEC_OBJECT_HAS_REF)
867 i915_vma_put(vma);
868 }
869}
870
871static void eb_reset_vmas(const struct i915_execbuffer *eb)
872{
873 eb_release_vmas(eb);
874 if (eb->lut_size > 0)
875 memset(eb->buckets, 0,
876 sizeof(struct hlist_head) << eb->lut_size);
877}
878
879static void eb_destroy(const struct i915_execbuffer *eb)
880{
881 GEM_BUG_ON(eb->reloc_cache.rq);
882
883 if (eb->lut_size > 0)
884 kfree(eb->buckets);
885}
886
887static inline u64
888relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
889 const struct i915_vma *target)
890{
891 return gen8_canonical_addr((int)reloc->delta + target->node.start);
892}
893
894static void reloc_cache_init(struct reloc_cache *cache,
895 struct drm_i915_private *i915)
896{
897 cache->page = -1;
898 cache->vaddr = 0;
899 /* Must be a variable in the struct to allow GCC to unroll. */
900 cache->gen = INTEL_GEN(i915);
901 cache->has_llc = HAS_LLC(i915);
902 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
903 cache->has_fence = cache->gen < 4;
904 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
905 cache->node.allocated = false;
906 cache->rq = NULL;
907 cache->rq_size = 0;
908}
909
910static inline void *unmask_page(unsigned long p)
911{
912 return (void *)(uintptr_t)(p & PAGE_MASK);
913}
914
915static inline unsigned int unmask_flags(unsigned long p)
916{
917 return p & ~PAGE_MASK;
918}
919
920#define KMAP 0x4 /* after CLFLUSH_FLAGS */
921
922static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
923{
924 struct drm_i915_private *i915 =
925 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
926 return &i915->ggtt;
927}
928
929static void reloc_gpu_flush(struct reloc_cache *cache)
930{
931 GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
932 cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
933
934 __i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size);
935 i915_gem_object_unpin_map(cache->rq->batch->obj);
936
937 intel_gt_chipset_flush(cache->rq->engine->gt);
938
939 i915_request_add(cache->rq);
940 cache->rq = NULL;
941}
942
943static void reloc_cache_reset(struct reloc_cache *cache)
944{
945 void *vaddr;
946
947 if (cache->rq)
948 reloc_gpu_flush(cache);
949
950 if (!cache->vaddr)
951 return;
952
953 vaddr = unmask_page(cache->vaddr);
954 if (cache->vaddr & KMAP) {
955 if (cache->vaddr & CLFLUSH_AFTER)
956 mb();
957
958 kunmap_atomic(vaddr);
959 i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
960 } else {
961 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
962
963 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
964 io_mapping_unmap_atomic((void __iomem *)vaddr);
965
966 if (cache->node.allocated) {
967 ggtt->vm.clear_range(&ggtt->vm,
968 cache->node.start,
969 cache->node.size);
970 drm_mm_remove_node(&cache->node);
971 } else {
972 i915_vma_unpin((struct i915_vma *)cache->node.mm);
973 }
974 }
975
976 cache->vaddr = 0;
977 cache->page = -1;
978}
979
980static void *reloc_kmap(struct drm_i915_gem_object *obj,
981 struct reloc_cache *cache,
982 unsigned long page)
983{
984 void *vaddr;
985
986 if (cache->vaddr) {
987 kunmap_atomic(unmask_page(cache->vaddr));
988 } else {
989 unsigned int flushes;
990 int err;
991
992 err = i915_gem_object_prepare_write(obj, &flushes);
993 if (err)
994 return ERR_PTR(err);
995
996 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
997 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
998
999 cache->vaddr = flushes | KMAP;
1000 cache->node.mm = (void *)obj;
1001 if (flushes)
1002 mb();
1003 }
1004
1005 vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
1006 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1007 cache->page = page;
1008
1009 return vaddr;
1010}
1011
1012static void *reloc_iomap(struct drm_i915_gem_object *obj,
1013 struct reloc_cache *cache,
1014 unsigned long page)
1015{
1016 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1017 unsigned long offset;
1018 void *vaddr;
1019
1020 if (cache->vaddr) {
1021 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1022 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1023 } else {
1024 struct i915_vma *vma;
1025 int err;
1026
1027 if (i915_gem_object_is_tiled(obj))
1028 return ERR_PTR(-EINVAL);
1029
1030 if (use_cpu_reloc(cache, obj))
1031 return NULL;
1032
1033 i915_gem_object_lock(obj);
1034 err = i915_gem_object_set_to_gtt_domain(obj, true);
1035 i915_gem_object_unlock(obj);
1036 if (err)
1037 return ERR_PTR(err);
1038
1039 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1040 PIN_MAPPABLE |
1041 PIN_NONBLOCK /* NOWARN */ |
1042 PIN_NOEVICT);
1043 if (IS_ERR(vma)) {
1044 memset(&cache->node, 0, sizeof(cache->node));
1045 err = drm_mm_insert_node_in_range
1046 (&ggtt->vm.mm, &cache->node,
1047 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1048 0, ggtt->mappable_end,
1049 DRM_MM_INSERT_LOW);
1050 if (err) /* no inactive aperture space, use cpu reloc */
1051 return NULL;
1052 } else {
1053 cache->node.start = vma->node.start;
1054 cache->node.mm = (void *)vma;
1055 }
1056 }
1057
1058 offset = cache->node.start;
1059 if (cache->node.allocated) {
1060 ggtt->vm.insert_page(&ggtt->vm,
1061 i915_gem_object_get_dma_address(obj, page),
1062 offset, I915_CACHE_NONE, 0);
1063 } else {
1064 offset += page << PAGE_SHIFT;
1065 }
1066
1067 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1068 offset);
1069 cache->page = page;
1070 cache->vaddr = (unsigned long)vaddr;
1071
1072 return vaddr;
1073}
1074
1075static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1076 struct reloc_cache *cache,
1077 unsigned long page)
1078{
1079 void *vaddr;
1080
1081 if (cache->page == page) {
1082 vaddr = unmask_page(cache->vaddr);
1083 } else {
1084 vaddr = NULL;
1085 if ((cache->vaddr & KMAP) == 0)
1086 vaddr = reloc_iomap(obj, cache, page);
1087 if (!vaddr)
1088 vaddr = reloc_kmap(obj, cache, page);
1089 }
1090
1091 return vaddr;
1092}
1093
1094static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1095{
1096 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1097 if (flushes & CLFLUSH_BEFORE) {
1098 clflushopt(addr);
1099 mb();
1100 }
1101
1102 *addr = value;
1103
1104 /*
1105 * Writes to the same cacheline are serialised by the CPU
1106 * (including clflush). On the write path, we only require
1107 * that it hits memory in an orderly fashion and place
1108 * mb barriers at the start and end of the relocation phase
1109 * to ensure ordering of clflush wrt to the system.
1110 */
1111 if (flushes & CLFLUSH_AFTER)
1112 clflushopt(addr);
1113 } else
1114 *addr = value;
1115}
1116
1117static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1118{
1119 struct drm_i915_gem_object *obj = vma->obj;
1120 int err;
1121
1122 i915_vma_lock(vma);
1123
1124 if (obj->cache_dirty & ~obj->cache_coherent)
1125 i915_gem_clflush_object(obj, 0);
1126 obj->write_domain = 0;
1127
1128 err = i915_request_await_object(rq, vma->obj, true);
1129 if (err == 0)
1130 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1131
1132 i915_vma_unlock(vma);
1133
1134 return err;
1135}
1136
1137static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1138 struct i915_vma *vma,
1139 unsigned int len)
1140{
1141 struct reloc_cache *cache = &eb->reloc_cache;
1142 struct intel_engine_pool_node *pool;
1143 struct i915_request *rq;
1144 struct i915_vma *batch;
1145 u32 *cmd;
1146 int err;
1147
1148 pool = intel_engine_pool_get(&eb->engine->pool, PAGE_SIZE);
1149 if (IS_ERR(pool))
1150 return PTR_ERR(pool);
1151
1152 cmd = i915_gem_object_pin_map(pool->obj,
1153 cache->has_llc ?
1154 I915_MAP_FORCE_WB :
1155 I915_MAP_FORCE_WC);
1156 if (IS_ERR(cmd)) {
1157 err = PTR_ERR(cmd);
1158 goto out_pool;
1159 }
1160
1161 batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1162 if (IS_ERR(batch)) {
1163 err = PTR_ERR(batch);
1164 goto err_unmap;
1165 }
1166
1167 err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1168 if (err)
1169 goto err_unmap;
1170
1171 rq = i915_request_create(eb->context);
1172 if (IS_ERR(rq)) {
1173 err = PTR_ERR(rq);
1174 goto err_unpin;
1175 }
1176
1177 err = intel_engine_pool_mark_active(pool, rq);
1178 if (err)
1179 goto err_request;
1180
1181 err = reloc_move_to_gpu(rq, vma);
1182 if (err)
1183 goto err_request;
1184
1185 err = eb->engine->emit_bb_start(rq,
1186 batch->node.start, PAGE_SIZE,
1187 cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1188 if (err)
1189 goto skip_request;
1190
1191 i915_vma_lock(batch);
1192 err = i915_request_await_object(rq, batch->obj, false);
1193 if (err == 0)
1194 err = i915_vma_move_to_active(batch, rq, 0);
1195 i915_vma_unlock(batch);
1196 if (err)
1197 goto skip_request;
1198
1199 rq->batch = batch;
1200 i915_vma_unpin(batch);
1201
1202 cache->rq = rq;
1203 cache->rq_cmd = cmd;
1204 cache->rq_size = 0;
1205
1206 /* Return with batch mapping (cmd) still pinned */
1207 goto out_pool;
1208
1209skip_request:
1210 i915_request_skip(rq, err);
1211err_request:
1212 i915_request_add(rq);
1213err_unpin:
1214 i915_vma_unpin(batch);
1215err_unmap:
1216 i915_gem_object_unpin_map(pool->obj);
1217out_pool:
1218 intel_engine_pool_put(pool);
1219 return err;
1220}
1221
1222static u32 *reloc_gpu(struct i915_execbuffer *eb,
1223 struct i915_vma *vma,
1224 unsigned int len)
1225{
1226 struct reloc_cache *cache = &eb->reloc_cache;
1227 u32 *cmd;
1228
1229 if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1230 reloc_gpu_flush(cache);
1231
1232 if (unlikely(!cache->rq)) {
1233 int err;
1234
1235 /* If we need to copy for the cmdparser, we will stall anyway */
1236 if (eb_use_cmdparser(eb))
1237 return ERR_PTR(-EWOULDBLOCK);
1238
1239 if (!intel_engine_can_store_dword(eb->engine))
1240 return ERR_PTR(-ENODEV);
1241
1242 err = __reloc_gpu_alloc(eb, vma, len);
1243 if (unlikely(err))
1244 return ERR_PTR(err);
1245 }
1246
1247 cmd = cache->rq_cmd + cache->rq_size;
1248 cache->rq_size += len;
1249
1250 return cmd;
1251}
1252
1253static u64
1254relocate_entry(struct i915_vma *vma,
1255 const struct drm_i915_gem_relocation_entry *reloc,
1256 struct i915_execbuffer *eb,
1257 const struct i915_vma *target)
1258{
1259 u64 offset = reloc->offset;
1260 u64 target_offset = relocation_target(reloc, target);
1261 bool wide = eb->reloc_cache.use_64bit_reloc;
1262 void *vaddr;
1263
1264 if (!eb->reloc_cache.vaddr &&
1265 (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1266 !dma_resv_test_signaled_rcu(vma->resv, true))) {
1267 const unsigned int gen = eb->reloc_cache.gen;
1268 unsigned int len;
1269 u32 *batch;
1270 u64 addr;
1271
1272 if (wide)
1273 len = offset & 7 ? 8 : 5;
1274 else if (gen >= 4)
1275 len = 4;
1276 else
1277 len = 3;
1278
1279 batch = reloc_gpu(eb, vma, len);
1280 if (IS_ERR(batch))
1281 goto repeat;
1282
1283 addr = gen8_canonical_addr(vma->node.start + offset);
1284 if (wide) {
1285 if (offset & 7) {
1286 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1287 *batch++ = lower_32_bits(addr);
1288 *batch++ = upper_32_bits(addr);
1289 *batch++ = lower_32_bits(target_offset);
1290
1291 addr = gen8_canonical_addr(addr + 4);
1292
1293 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1294 *batch++ = lower_32_bits(addr);
1295 *batch++ = upper_32_bits(addr);
1296 *batch++ = upper_32_bits(target_offset);
1297 } else {
1298 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1299 *batch++ = lower_32_bits(addr);
1300 *batch++ = upper_32_bits(addr);
1301 *batch++ = lower_32_bits(target_offset);
1302 *batch++ = upper_32_bits(target_offset);
1303 }
1304 } else if (gen >= 6) {
1305 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1306 *batch++ = 0;
1307 *batch++ = addr;
1308 *batch++ = target_offset;
1309 } else if (gen >= 4) {
1310 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1311 *batch++ = 0;
1312 *batch++ = addr;
1313 *batch++ = target_offset;
1314 } else {
1315 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1316 *batch++ = addr;
1317 *batch++ = target_offset;
1318 }
1319
1320 goto out;
1321 }
1322
1323repeat:
1324 vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1325 if (IS_ERR(vaddr))
1326 return PTR_ERR(vaddr);
1327
1328 clflush_write32(vaddr + offset_in_page(offset),
1329 lower_32_bits(target_offset),
1330 eb->reloc_cache.vaddr);
1331
1332 if (wide) {
1333 offset += sizeof(u32);
1334 target_offset >>= 32;
1335 wide = false;
1336 goto repeat;
1337 }
1338
1339out:
1340 return target->node.start | UPDATE;
1341}
1342
1343static u64
1344eb_relocate_entry(struct i915_execbuffer *eb,
1345 struct i915_vma *vma,
1346 const struct drm_i915_gem_relocation_entry *reloc)
1347{
1348 struct i915_vma *target;
1349 int err;
1350
1351 /* we've already hold a reference to all valid objects */
1352 target = eb_get_vma(eb, reloc->target_handle);
1353 if (unlikely(!target))
1354 return -ENOENT;
1355
1356 /* Validate that the target is in a valid r/w GPU domain */
1357 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1358 DRM_DEBUG("reloc with multiple write domains: "
1359 "target %d offset %d "
1360 "read %08x write %08x",
1361 reloc->target_handle,
1362 (int) reloc->offset,
1363 reloc->read_domains,
1364 reloc->write_domain);
1365 return -EINVAL;
1366 }
1367 if (unlikely((reloc->write_domain | reloc->read_domains)
1368 & ~I915_GEM_GPU_DOMAINS)) {
1369 DRM_DEBUG("reloc with read/write non-GPU domains: "
1370 "target %d offset %d "
1371 "read %08x write %08x",
1372 reloc->target_handle,
1373 (int) reloc->offset,
1374 reloc->read_domains,
1375 reloc->write_domain);
1376 return -EINVAL;
1377 }
1378
1379 if (reloc->write_domain) {
1380 *target->exec_flags |= EXEC_OBJECT_WRITE;
1381
1382 /*
1383 * Sandybridge PPGTT errata: We need a global gtt mapping
1384 * for MI and pipe_control writes because the gpu doesn't
1385 * properly redirect them through the ppgtt for non_secure
1386 * batchbuffers.
1387 */
1388 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1389 IS_GEN(eb->i915, 6)) {
1390 err = i915_vma_bind(target, target->obj->cache_level,
1391 PIN_GLOBAL);
1392 if (WARN_ONCE(err,
1393 "Unexpected failure to bind target VMA!"))
1394 return err;
1395 }
1396 }
1397
1398 /*
1399 * If the relocation already has the right value in it, no
1400 * more work needs to be done.
1401 */
1402 if (!DBG_FORCE_RELOC &&
1403 gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1404 return 0;
1405
1406 /* Check that the relocation address is valid... */
1407 if (unlikely(reloc->offset >
1408 vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1409 DRM_DEBUG("Relocation beyond object bounds: "
1410 "target %d offset %d size %d.\n",
1411 reloc->target_handle,
1412 (int)reloc->offset,
1413 (int)vma->size);
1414 return -EINVAL;
1415 }
1416 if (unlikely(reloc->offset & 3)) {
1417 DRM_DEBUG("Relocation not 4-byte aligned: "
1418 "target %d offset %d.\n",
1419 reloc->target_handle,
1420 (int)reloc->offset);
1421 return -EINVAL;
1422 }
1423
1424 /*
1425 * If we write into the object, we need to force the synchronisation
1426 * barrier, either with an asynchronous clflush or if we executed the
1427 * patching using the GPU (though that should be serialised by the
1428 * timeline). To be completely sure, and since we are required to
1429 * do relocations we are already stalling, disable the user's opt
1430 * out of our synchronisation.
1431 */
1432 *vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1433
1434 /* and update the user's relocation entry */
1435 return relocate_entry(vma, reloc, eb, target);
1436}
1437
1438static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1439{
1440#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1441 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1442 struct drm_i915_gem_relocation_entry __user *urelocs;
1443 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1444 unsigned int remain;
1445
1446 urelocs = u64_to_user_ptr(entry->relocs_ptr);
1447 remain = entry->relocation_count;
1448 if (unlikely(remain > N_RELOC(ULONG_MAX)))
1449 return -EINVAL;
1450
1451 /*
1452 * We must check that the entire relocation array is safe
1453 * to read. However, if the array is not writable the user loses
1454 * the updated relocation values.
1455 */
1456 if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
1457 return -EFAULT;
1458
1459 do {
1460 struct drm_i915_gem_relocation_entry *r = stack;
1461 unsigned int count =
1462 min_t(unsigned int, remain, ARRAY_SIZE(stack));
1463 unsigned int copied;
1464
1465 /*
1466 * This is the fast path and we cannot handle a pagefault
1467 * whilst holding the struct mutex lest the user pass in the
1468 * relocations contained within a mmaped bo. For in such a case
1469 * we, the page fault handler would call i915_gem_fault() and
1470 * we would try to acquire the struct mutex again. Obviously
1471 * this is bad and so lockdep complains vehemently.
1472 */
1473 pagefault_disable();
1474 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1475 pagefault_enable();
1476 if (unlikely(copied)) {
1477 remain = -EFAULT;
1478 goto out;
1479 }
1480
1481 remain -= count;
1482 do {
1483 u64 offset = eb_relocate_entry(eb, vma, r);
1484
1485 if (likely(offset == 0)) {
1486 } else if ((s64)offset < 0) {
1487 remain = (int)offset;
1488 goto out;
1489 } else {
1490 /*
1491 * Note that reporting an error now
1492 * leaves everything in an inconsistent
1493 * state as we have *already* changed
1494 * the relocation value inside the
1495 * object. As we have not changed the
1496 * reloc.presumed_offset or will not
1497 * change the execobject.offset, on the
1498 * call we may not rewrite the value
1499 * inside the object, leaving it
1500 * dangling and causing a GPU hang. Unless
1501 * userspace dynamically rebuilds the
1502 * relocations on each execbuf rather than
1503 * presume a static tree.
1504 *
1505 * We did previously check if the relocations
1506 * were writable (access_ok), an error now
1507 * would be a strange race with mprotect,
1508 * having already demonstrated that we
1509 * can read from this userspace address.
1510 */
1511 offset = gen8_canonical_addr(offset & ~UPDATE);
1512 if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
1513 remain = -EFAULT;
1514 goto out;
1515 }
1516 }
1517 } while (r++, --count);
1518 urelocs += ARRAY_SIZE(stack);
1519 } while (remain);
1520out:
1521 reloc_cache_reset(&eb->reloc_cache);
1522 return remain;
1523}
1524
1525static int
1526eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1527{
1528 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1529 struct drm_i915_gem_relocation_entry *relocs =
1530 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1531 unsigned int i;
1532 int err;
1533
1534 for (i = 0; i < entry->relocation_count; i++) {
1535 u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1536
1537 if ((s64)offset < 0) {
1538 err = (int)offset;
1539 goto err;
1540 }
1541 }
1542 err = 0;
1543err:
1544 reloc_cache_reset(&eb->reloc_cache);
1545 return err;
1546}
1547
1548static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1549{
1550 const char __user *addr, *end;
1551 unsigned long size;
1552 char __maybe_unused c;
1553
1554 size = entry->relocation_count;
1555 if (size == 0)
1556 return 0;
1557
1558 if (size > N_RELOC(ULONG_MAX))
1559 return -EINVAL;
1560
1561 addr = u64_to_user_ptr(entry->relocs_ptr);
1562 size *= sizeof(struct drm_i915_gem_relocation_entry);
1563 if (!access_ok(addr, size))
1564 return -EFAULT;
1565
1566 end = addr + size;
1567 for (; addr < end; addr += PAGE_SIZE) {
1568 int err = __get_user(c, addr);
1569 if (err)
1570 return err;
1571 }
1572 return __get_user(c, end - 1);
1573}
1574
1575static int eb_copy_relocations(const struct i915_execbuffer *eb)
1576{
1577 struct drm_i915_gem_relocation_entry *relocs;
1578 const unsigned int count = eb->buffer_count;
1579 unsigned int i;
1580 int err;
1581
1582 for (i = 0; i < count; i++) {
1583 const unsigned int nreloc = eb->exec[i].relocation_count;
1584 struct drm_i915_gem_relocation_entry __user *urelocs;
1585 unsigned long size;
1586 unsigned long copied;
1587
1588 if (nreloc == 0)
1589 continue;
1590
1591 err = check_relocations(&eb->exec[i]);
1592 if (err)
1593 goto err;
1594
1595 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1596 size = nreloc * sizeof(*relocs);
1597
1598 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1599 if (!relocs) {
1600 err = -ENOMEM;
1601 goto err;
1602 }
1603
1604 /* copy_from_user is limited to < 4GiB */
1605 copied = 0;
1606 do {
1607 unsigned int len =
1608 min_t(u64, BIT_ULL(31), size - copied);
1609
1610 if (__copy_from_user((char *)relocs + copied,
1611 (char __user *)urelocs + copied,
1612 len))
1613 goto end;
1614
1615 copied += len;
1616 } while (copied < size);
1617
1618 /*
1619 * As we do not update the known relocation offsets after
1620 * relocating (due to the complexities in lock handling),
1621 * we need to mark them as invalid now so that we force the
1622 * relocation processing next time. Just in case the target
1623 * object is evicted and then rebound into its old
1624 * presumed_offset before the next execbuffer - if that
1625 * happened we would make the mistake of assuming that the
1626 * relocations were valid.
1627 */
1628 if (!user_access_begin(urelocs, size))
1629 goto end;
1630
1631 for (copied = 0; copied < nreloc; copied++)
1632 unsafe_put_user(-1,
1633 &urelocs[copied].presumed_offset,
1634 end_user);
1635 user_access_end();
1636
1637 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1638 }
1639
1640 return 0;
1641
1642end_user:
1643 user_access_end();
1644end:
1645 kvfree(relocs);
1646 err = -EFAULT;
1647err:
1648 while (i--) {
1649 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1650 if (eb->exec[i].relocation_count)
1651 kvfree(relocs);
1652 }
1653 return err;
1654}
1655
1656static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1657{
1658 const unsigned int count = eb->buffer_count;
1659 unsigned int i;
1660
1661 if (unlikely(i915_modparams.prefault_disable))
1662 return 0;
1663
1664 for (i = 0; i < count; i++) {
1665 int err;
1666
1667 err = check_relocations(&eb->exec[i]);
1668 if (err)
1669 return err;
1670 }
1671
1672 return 0;
1673}
1674
1675static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1676{
1677 struct drm_device *dev = &eb->i915->drm;
1678 bool have_copy = false;
1679 struct i915_vma *vma;
1680 int err = 0;
1681
1682repeat:
1683 if (signal_pending(current)) {
1684 err = -ERESTARTSYS;
1685 goto out;
1686 }
1687
1688 /* We may process another execbuffer during the unlock... */
1689 eb_reset_vmas(eb);
1690 mutex_unlock(&dev->struct_mutex);
1691
1692 /*
1693 * We take 3 passes through the slowpatch.
1694 *
1695 * 1 - we try to just prefault all the user relocation entries and
1696 * then attempt to reuse the atomic pagefault disabled fast path again.
1697 *
1698 * 2 - we copy the user entries to a local buffer here outside of the
1699 * local and allow ourselves to wait upon any rendering before
1700 * relocations
1701 *
1702 * 3 - we already have a local copy of the relocation entries, but
1703 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1704 */
1705 if (!err) {
1706 err = eb_prefault_relocations(eb);
1707 } else if (!have_copy) {
1708 err = eb_copy_relocations(eb);
1709 have_copy = err == 0;
1710 } else {
1711 cond_resched();
1712 err = 0;
1713 }
1714 if (err) {
1715 mutex_lock(&dev->struct_mutex);
1716 goto out;
1717 }
1718
1719 /* A frequent cause for EAGAIN are currently unavailable client pages */
1720 flush_workqueue(eb->i915->mm.userptr_wq);
1721
1722 err = i915_mutex_lock_interruptible(dev);
1723 if (err) {
1724 mutex_lock(&dev->struct_mutex);
1725 goto out;
1726 }
1727
1728 /* reacquire the objects */
1729 err = eb_lookup_vmas(eb);
1730 if (err)
1731 goto err;
1732
1733 GEM_BUG_ON(!eb->batch);
1734
1735 list_for_each_entry(vma, &eb->relocs, reloc_link) {
1736 if (!have_copy) {
1737 pagefault_disable();
1738 err = eb_relocate_vma(eb, vma);
1739 pagefault_enable();
1740 if (err)
1741 goto repeat;
1742 } else {
1743 err = eb_relocate_vma_slow(eb, vma);
1744 if (err)
1745 goto err;
1746 }
1747 }
1748
1749 /*
1750 * Leave the user relocations as are, this is the painfully slow path,
1751 * and we want to avoid the complication of dropping the lock whilst
1752 * having buffers reserved in the aperture and so causing spurious
1753 * ENOSPC for random operations.
1754 */
1755
1756err:
1757 if (err == -EAGAIN)
1758 goto repeat;
1759
1760out:
1761 if (have_copy) {
1762 const unsigned int count = eb->buffer_count;
1763 unsigned int i;
1764
1765 for (i = 0; i < count; i++) {
1766 const struct drm_i915_gem_exec_object2 *entry =
1767 &eb->exec[i];
1768 struct drm_i915_gem_relocation_entry *relocs;
1769
1770 if (!entry->relocation_count)
1771 continue;
1772
1773 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1774 kvfree(relocs);
1775 }
1776 }
1777
1778 return err;
1779}
1780
1781static int eb_relocate(struct i915_execbuffer *eb)
1782{
1783 if (eb_lookup_vmas(eb))
1784 goto slow;
1785
1786 /* The objects are in their final locations, apply the relocations. */
1787 if (eb->args->flags & __EXEC_HAS_RELOC) {
1788 struct i915_vma *vma;
1789
1790 list_for_each_entry(vma, &eb->relocs, reloc_link) {
1791 if (eb_relocate_vma(eb, vma))
1792 goto slow;
1793 }
1794 }
1795
1796 return 0;
1797
1798slow:
1799 return eb_relocate_slow(eb);
1800}
1801
1802static int eb_move_to_gpu(struct i915_execbuffer *eb)
1803{
1804 const unsigned int count = eb->buffer_count;
1805 struct ww_acquire_ctx acquire;
1806 unsigned int i;
1807 int err = 0;
1808
1809 ww_acquire_init(&acquire, &reservation_ww_class);
1810
1811 for (i = 0; i < count; i++) {
1812 struct i915_vma *vma = eb->vma[i];
1813
1814 err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
1815 if (!err)
1816 continue;
1817
1818 GEM_BUG_ON(err == -EALREADY); /* No duplicate vma */
1819
1820 if (err == -EDEADLK) {
1821 GEM_BUG_ON(i == 0);
1822 do {
1823 int j = i - 1;
1824
1825 ww_mutex_unlock(&eb->vma[j]->resv->lock);
1826
1827 swap(eb->flags[i], eb->flags[j]);
1828 swap(eb->vma[i], eb->vma[j]);
1829 eb->vma[i]->exec_flags = &eb->flags[i];
1830 } while (--i);
1831 GEM_BUG_ON(vma != eb->vma[0]);
1832 vma->exec_flags = &eb->flags[0];
1833
1834 err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
1835 &acquire);
1836 }
1837 if (err)
1838 break;
1839 }
1840 ww_acquire_done(&acquire);
1841
1842 while (i--) {
1843 unsigned int flags = eb->flags[i];
1844 struct i915_vma *vma = eb->vma[i];
1845 struct drm_i915_gem_object *obj = vma->obj;
1846
1847 assert_vma_held(vma);
1848
1849 if (flags & EXEC_OBJECT_CAPTURE) {
1850 struct i915_capture_list *capture;
1851
1852 capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1853 if (capture) {
1854 capture->next = eb->request->capture_list;
1855 capture->vma = vma;
1856 eb->request->capture_list = capture;
1857 }
1858 }
1859
1860 /*
1861 * If the GPU is not _reading_ through the CPU cache, we need
1862 * to make sure that any writes (both previous GPU writes from
1863 * before a change in snooping levels and normal CPU writes)
1864 * caught in that cache are flushed to main memory.
1865 *
1866 * We want to say
1867 * obj->cache_dirty &&
1868 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1869 * but gcc's optimiser doesn't handle that as well and emits
1870 * two jumps instead of one. Maybe one day...
1871 */
1872 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1873 if (i915_gem_clflush_object(obj, 0))
1874 flags &= ~EXEC_OBJECT_ASYNC;
1875 }
1876
1877 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
1878 err = i915_request_await_object
1879 (eb->request, obj, flags & EXEC_OBJECT_WRITE);
1880 }
1881
1882 if (err == 0)
1883 err = i915_vma_move_to_active(vma, eb->request, flags);
1884
1885 i915_vma_unlock(vma);
1886
1887 __eb_unreserve_vma(vma, flags);
1888 vma->exec_flags = NULL;
1889
1890 if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1891 i915_vma_put(vma);
1892 }
1893 ww_acquire_fini(&acquire);
1894
1895 if (unlikely(err))
1896 goto err_skip;
1897
1898 eb->exec = NULL;
1899
1900 /* Unconditionally flush any chipset caches (for streaming writes). */
1901 intel_gt_chipset_flush(eb->engine->gt);
1902 return 0;
1903
1904err_skip:
1905 i915_request_skip(eb->request, err);
1906 return err;
1907}
1908
1909static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1910{
1911 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1912 return false;
1913
1914 /* Kernel clipping was a DRI1 misfeature */
1915 if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
1916 if (exec->num_cliprects || exec->cliprects_ptr)
1917 return false;
1918 }
1919
1920 if (exec->DR4 == 0xffffffff) {
1921 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1922 exec->DR4 = 0;
1923 }
1924 if (exec->DR1 || exec->DR4)
1925 return false;
1926
1927 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1928 return false;
1929
1930 return true;
1931}
1932
1933static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1934{
1935 u32 *cs;
1936 int i;
1937
1938 if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
1939 DRM_DEBUG("sol reset is gen7/rcs only\n");
1940 return -EINVAL;
1941 }
1942
1943 cs = intel_ring_begin(rq, 4 * 2 + 2);
1944 if (IS_ERR(cs))
1945 return PTR_ERR(cs);
1946
1947 *cs++ = MI_LOAD_REGISTER_IMM(4);
1948 for (i = 0; i < 4; i++) {
1949 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
1950 *cs++ = 0;
1951 }
1952 *cs++ = MI_NOOP;
1953 intel_ring_advance(rq, cs);
1954
1955 return 0;
1956}
1957
1958static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1959{
1960 struct intel_engine_pool_node *pool;
1961 struct i915_vma *vma;
1962 int err;
1963
1964 pool = intel_engine_pool_get(&eb->engine->pool, eb->batch_len);
1965 if (IS_ERR(pool))
1966 return ERR_CAST(pool);
1967
1968 err = intel_engine_cmd_parser(eb->engine,
1969 eb->batch->obj,
1970 pool->obj,
1971 eb->batch_start_offset,
1972 eb->batch_len,
1973 is_master);
1974 if (err) {
1975 if (err == -EACCES) /* unhandled chained batch */
1976 vma = NULL;
1977 else
1978 vma = ERR_PTR(err);
1979 goto err;
1980 }
1981
1982 vma = i915_gem_object_ggtt_pin(pool->obj, NULL, 0, 0, 0);
1983 if (IS_ERR(vma))
1984 goto err;
1985
1986 eb->vma[eb->buffer_count] = i915_vma_get(vma);
1987 eb->flags[eb->buffer_count] =
1988 __EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
1989 vma->exec_flags = &eb->flags[eb->buffer_count];
1990 eb->buffer_count++;
1991
1992 vma->private = pool;
1993 return vma;
1994
1995err:
1996 intel_engine_pool_put(pool);
1997 return vma;
1998}
1999
2000static void
2001add_to_client(struct i915_request *rq, struct drm_file *file)
2002{
2003 struct drm_i915_file_private *file_priv = file->driver_priv;
2004
2005 rq->file_priv = file_priv;
2006
2007 spin_lock(&file_priv->mm.lock);
2008 list_add_tail(&rq->client_link, &file_priv->mm.request_list);
2009 spin_unlock(&file_priv->mm.lock);
2010}
2011
2012static int eb_submit(struct i915_execbuffer *eb)
2013{
2014 int err;
2015
2016 err = eb_move_to_gpu(eb);
2017 if (err)
2018 return err;
2019
2020 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2021 err = i915_reset_gen7_sol_offsets(eb->request);
2022 if (err)
2023 return err;
2024 }
2025
2026 /*
2027 * After we completed waiting for other engines (using HW semaphores)
2028 * then we can signal that this request/batch is ready to run. This
2029 * allows us to determine if the batch is still waiting on the GPU
2030 * or actually running by checking the breadcrumb.
2031 */
2032 if (eb->engine->emit_init_breadcrumb) {
2033 err = eb->engine->emit_init_breadcrumb(eb->request);
2034 if (err)
2035 return err;
2036 }
2037
2038 err = eb->engine->emit_bb_start(eb->request,
2039 eb->batch->node.start +
2040 eb->batch_start_offset,
2041 eb->batch_len,
2042 eb->batch_flags);
2043 if (err)
2044 return err;
2045
2046 return 0;
2047}
2048
2049static int num_vcs_engines(const struct drm_i915_private *i915)
2050{
2051 return hweight64(INTEL_INFO(i915)->engine_mask &
2052 GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0));
2053}
2054
2055/*
2056 * Find one BSD ring to dispatch the corresponding BSD command.
2057 * The engine index is returned.
2058 */
2059static unsigned int
2060gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2061 struct drm_file *file)
2062{
2063 struct drm_i915_file_private *file_priv = file->driver_priv;
2064
2065 /* Check whether the file_priv has already selected one ring. */
2066 if ((int)file_priv->bsd_engine < 0)
2067 file_priv->bsd_engine =
2068 get_random_int() % num_vcs_engines(dev_priv);
2069
2070 return file_priv->bsd_engine;
2071}
2072
2073static const enum intel_engine_id user_ring_map[] = {
2074 [I915_EXEC_DEFAULT] = RCS0,
2075 [I915_EXEC_RENDER] = RCS0,
2076 [I915_EXEC_BLT] = BCS0,
2077 [I915_EXEC_BSD] = VCS0,
2078 [I915_EXEC_VEBOX] = VECS0
2079};
2080
2081static struct i915_request *eb_throttle(struct intel_context *ce)
2082{
2083 struct intel_ring *ring = ce->ring;
2084 struct intel_timeline *tl = ce->timeline;
2085 struct i915_request *rq;
2086
2087 /*
2088 * Completely unscientific finger-in-the-air estimates for suitable
2089 * maximum user request size (to avoid blocking) and then backoff.
2090 */
2091 if (intel_ring_update_space(ring) >= PAGE_SIZE)
2092 return NULL;
2093
2094 /*
2095 * Find a request that after waiting upon, there will be at least half
2096 * the ring available. The hysteresis allows us to compete for the
2097 * shared ring and should mean that we sleep less often prior to
2098 * claiming our resources, but not so long that the ring completely
2099 * drains before we can submit our next request.
2100 */
2101 list_for_each_entry(rq, &tl->requests, link) {
2102 if (rq->ring != ring)
2103 continue;
2104
2105 if (__intel_ring_space(rq->postfix,
2106 ring->emit, ring->size) > ring->size / 2)
2107 break;
2108 }
2109 if (&rq->link == &tl->requests)
2110 return NULL; /* weird, we will check again later for real */
2111
2112 return i915_request_get(rq);
2113}
2114
2115static int
2116__eb_pin_context(struct i915_execbuffer *eb, struct intel_context *ce)
2117{
2118 int err;
2119
2120 if (likely(atomic_inc_not_zero(&ce->pin_count)))
2121 return 0;
2122
2123 err = mutex_lock_interruptible(&eb->i915->drm.struct_mutex);
2124 if (err)
2125 return err;
2126
2127 err = __intel_context_do_pin(ce);
2128 mutex_unlock(&eb->i915->drm.struct_mutex);
2129
2130 return err;
2131}
2132
2133static void
2134__eb_unpin_context(struct i915_execbuffer *eb, struct intel_context *ce)
2135{
2136 if (likely(atomic_add_unless(&ce->pin_count, -1, 1)))
2137 return;
2138
2139 mutex_lock(&eb->i915->drm.struct_mutex);
2140 intel_context_unpin(ce);
2141 mutex_unlock(&eb->i915->drm.struct_mutex);
2142}
2143
2144static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
2145{
2146 struct intel_timeline *tl;
2147 struct i915_request *rq;
2148 int err;
2149
2150 /*
2151 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2152 * EIO if the GPU is already wedged.
2153 */
2154 err = intel_gt_terminally_wedged(ce->engine->gt);
2155 if (err)
2156 return err;
2157
2158 /*
2159 * Pinning the contexts may generate requests in order to acquire
2160 * GGTT space, so do this first before we reserve a seqno for
2161 * ourselves.
2162 */
2163 err = __eb_pin_context(eb, ce);
2164 if (err)
2165 return err;
2166
2167 /*
2168 * Take a local wakeref for preparing to dispatch the execbuf as
2169 * we expect to access the hardware fairly frequently in the
2170 * process, and require the engine to be kept awake between accesses.
2171 * Upon dispatch, we acquire another prolonged wakeref that we hold
2172 * until the timeline is idle, which in turn releases the wakeref
2173 * taken on the engine, and the parent device.
2174 */
2175 tl = intel_context_timeline_lock(ce);
2176 if (IS_ERR(tl)) {
2177 err = PTR_ERR(tl);
2178 goto err_unpin;
2179 }
2180
2181 intel_context_enter(ce);
2182 rq = eb_throttle(ce);
2183
2184 intel_context_timeline_unlock(tl);
2185
2186 if (rq) {
2187 if (i915_request_wait(rq,
2188 I915_WAIT_INTERRUPTIBLE,
2189 MAX_SCHEDULE_TIMEOUT) < 0) {
2190 i915_request_put(rq);
2191 err = -EINTR;
2192 goto err_exit;
2193 }
2194
2195 i915_request_put(rq);
2196 }
2197
2198 eb->engine = ce->engine;
2199 eb->context = ce;
2200 return 0;
2201
2202err_exit:
2203 mutex_lock(&tl->mutex);
2204 intel_context_exit(ce);
2205 intel_context_timeline_unlock(tl);
2206err_unpin:
2207 __eb_unpin_context(eb, ce);
2208 return err;
2209}
2210
2211static void eb_unpin_engine(struct i915_execbuffer *eb)
2212{
2213 struct intel_context *ce = eb->context;
2214 struct intel_timeline *tl = ce->timeline;
2215
2216 mutex_lock(&tl->mutex);
2217 intel_context_exit(ce);
2218 mutex_unlock(&tl->mutex);
2219
2220 __eb_unpin_context(eb, ce);
2221}
2222
2223static unsigned int
2224eb_select_legacy_ring(struct i915_execbuffer *eb,
2225 struct drm_file *file,
2226 struct drm_i915_gem_execbuffer2 *args)
2227{
2228 struct drm_i915_private *i915 = eb->i915;
2229 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2230
2231 if (user_ring_id != I915_EXEC_BSD &&
2232 (args->flags & I915_EXEC_BSD_MASK)) {
2233 DRM_DEBUG("execbuf with non bsd ring but with invalid "
2234 "bsd dispatch flags: %d\n", (int)(args->flags));
2235 return -1;
2236 }
2237
2238 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2239 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2240
2241 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2242 bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2243 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2244 bsd_idx <= I915_EXEC_BSD_RING2) {
2245 bsd_idx >>= I915_EXEC_BSD_SHIFT;
2246 bsd_idx--;
2247 } else {
2248 DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
2249 bsd_idx);
2250 return -1;
2251 }
2252
2253 return _VCS(bsd_idx);
2254 }
2255
2256 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2257 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2258 return -1;
2259 }
2260
2261 return user_ring_map[user_ring_id];
2262}
2263
2264static int
2265eb_pin_engine(struct i915_execbuffer *eb,
2266 struct drm_file *file,
2267 struct drm_i915_gem_execbuffer2 *args)
2268{
2269 struct intel_context *ce;
2270 unsigned int idx;
2271 int err;
2272
2273 if (i915_gem_context_user_engines(eb->gem_context))
2274 idx = args->flags & I915_EXEC_RING_MASK;
2275 else
2276 idx = eb_select_legacy_ring(eb, file, args);
2277
2278 ce = i915_gem_context_get_engine(eb->gem_context, idx);
2279 if (IS_ERR(ce))
2280 return PTR_ERR(ce);
2281
2282 err = __eb_pin_engine(eb, ce);
2283 intel_context_put(ce);
2284
2285 return err;
2286}
2287
2288static void
2289__free_fence_array(struct drm_syncobj **fences, unsigned int n)
2290{
2291 while (n--)
2292 drm_syncobj_put(ptr_mask_bits(fences[n], 2));
2293 kvfree(fences);
2294}
2295
2296static struct drm_syncobj **
2297get_fence_array(struct drm_i915_gem_execbuffer2 *args,
2298 struct drm_file *file)
2299{
2300 const unsigned long nfences = args->num_cliprects;
2301 struct drm_i915_gem_exec_fence __user *user;
2302 struct drm_syncobj **fences;
2303 unsigned long n;
2304 int err;
2305
2306 if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2307 return NULL;
2308
2309 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2310 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2311 if (nfences > min_t(unsigned long,
2312 ULONG_MAX / sizeof(*user),
2313 SIZE_MAX / sizeof(*fences)))
2314 return ERR_PTR(-EINVAL);
2315
2316 user = u64_to_user_ptr(args->cliprects_ptr);
2317 if (!access_ok(user, nfences * sizeof(*user)))
2318 return ERR_PTR(-EFAULT);
2319
2320 fences = kvmalloc_array(nfences, sizeof(*fences),
2321 __GFP_NOWARN | GFP_KERNEL);
2322 if (!fences)
2323 return ERR_PTR(-ENOMEM);
2324
2325 for (n = 0; n < nfences; n++) {
2326 struct drm_i915_gem_exec_fence fence;
2327 struct drm_syncobj *syncobj;
2328
2329 if (__copy_from_user(&fence, user++, sizeof(fence))) {
2330 err = -EFAULT;
2331 goto err;
2332 }
2333
2334 if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
2335 err = -EINVAL;
2336 goto err;
2337 }
2338
2339 syncobj = drm_syncobj_find(file, fence.handle);
2340 if (!syncobj) {
2341 DRM_DEBUG("Invalid syncobj handle provided\n");
2342 err = -ENOENT;
2343 goto err;
2344 }
2345
2346 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2347 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2348
2349 fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
2350 }
2351
2352 return fences;
2353
2354err:
2355 __free_fence_array(fences, n);
2356 return ERR_PTR(err);
2357}
2358
2359static void
2360put_fence_array(struct drm_i915_gem_execbuffer2 *args,
2361 struct drm_syncobj **fences)
2362{
2363 if (fences)
2364 __free_fence_array(fences, args->num_cliprects);
2365}
2366
2367static int
2368await_fence_array(struct i915_execbuffer *eb,
2369 struct drm_syncobj **fences)
2370{
2371 const unsigned int nfences = eb->args->num_cliprects;
2372 unsigned int n;
2373 int err;
2374
2375 for (n = 0; n < nfences; n++) {
2376 struct drm_syncobj *syncobj;
2377 struct dma_fence *fence;
2378 unsigned int flags;
2379
2380 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2381 if (!(flags & I915_EXEC_FENCE_WAIT))
2382 continue;
2383
2384 fence = drm_syncobj_fence_get(syncobj);
2385 if (!fence)
2386 return -EINVAL;
2387
2388 err = i915_request_await_dma_fence(eb->request, fence);
2389 dma_fence_put(fence);
2390 if (err < 0)
2391 return err;
2392 }
2393
2394 return 0;
2395}
2396
2397static void
2398signal_fence_array(struct i915_execbuffer *eb,
2399 struct drm_syncobj **fences)
2400{
2401 const unsigned int nfences = eb->args->num_cliprects;
2402 struct dma_fence * const fence = &eb->request->fence;
2403 unsigned int n;
2404
2405 for (n = 0; n < nfences; n++) {
2406 struct drm_syncobj *syncobj;
2407 unsigned int flags;
2408
2409 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2410 if (!(flags & I915_EXEC_FENCE_SIGNAL))
2411 continue;
2412
2413 drm_syncobj_replace_fence(syncobj, fence);
2414 }
2415}
2416
2417static int
2418i915_gem_do_execbuffer(struct drm_device *dev,
2419 struct drm_file *file,
2420 struct drm_i915_gem_execbuffer2 *args,
2421 struct drm_i915_gem_exec_object2 *exec,
2422 struct drm_syncobj **fences)
2423{
2424 struct i915_execbuffer eb;
2425 struct dma_fence *in_fence = NULL;
2426 struct dma_fence *exec_fence = NULL;
2427 struct sync_file *out_fence = NULL;
2428 int out_fence_fd = -1;
2429 int err;
2430
2431 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2432 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
2433 ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2434
2435 eb.i915 = to_i915(dev);
2436 eb.file = file;
2437 eb.args = args;
2438 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2439 args->flags |= __EXEC_HAS_RELOC;
2440
2441 eb.exec = exec;
2442 eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
2443 eb.vma[0] = NULL;
2444 eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);
2445
2446 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2447 reloc_cache_init(&eb.reloc_cache, eb.i915);
2448
2449 eb.buffer_count = args->buffer_count;
2450 eb.batch_start_offset = args->batch_start_offset;
2451 eb.batch_len = args->batch_len;
2452
2453 eb.batch_flags = 0;
2454 if (args->flags & I915_EXEC_SECURE) {
2455 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2456 return -EPERM;
2457
2458 eb.batch_flags |= I915_DISPATCH_SECURE;
2459 }
2460 if (args->flags & I915_EXEC_IS_PINNED)
2461 eb.batch_flags |= I915_DISPATCH_PINNED;
2462
2463 if (args->flags & I915_EXEC_FENCE_IN) {
2464 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2465 if (!in_fence)
2466 return -EINVAL;
2467 }
2468
2469 if (args->flags & I915_EXEC_FENCE_SUBMIT) {
2470 if (in_fence) {
2471 err = -EINVAL;
2472 goto err_in_fence;
2473 }
2474
2475 exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2476 if (!exec_fence) {
2477 err = -EINVAL;
2478 goto err_in_fence;
2479 }
2480 }
2481
2482 if (args->flags & I915_EXEC_FENCE_OUT) {
2483 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
2484 if (out_fence_fd < 0) {
2485 err = out_fence_fd;
2486 goto err_exec_fence;
2487 }
2488 }
2489
2490 err = eb_create(&eb);
2491 if (err)
2492 goto err_out_fence;
2493
2494 GEM_BUG_ON(!eb.lut_size);
2495
2496 err = eb_select_context(&eb);
2497 if (unlikely(err))
2498 goto err_destroy;
2499
2500 err = eb_pin_engine(&eb, file, args);
2501 if (unlikely(err))
2502 goto err_context;
2503
2504 err = i915_mutex_lock_interruptible(dev);
2505 if (err)
2506 goto err_engine;
2507
2508 err = eb_relocate(&eb);
2509 if (err) {
2510 /*
2511 * If the user expects the execobject.offset and
2512 * reloc.presumed_offset to be an exact match,
2513 * as for using NO_RELOC, then we cannot update
2514 * the execobject.offset until we have completed
2515 * relocation.
2516 */
2517 args->flags &= ~__EXEC_HAS_RELOC;
2518 goto err_vma;
2519 }
2520
2521 if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2522 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2523 err = -EINVAL;
2524 goto err_vma;
2525 }
2526 if (eb.batch_start_offset > eb.batch->size ||
2527 eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2528 DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2529 err = -EINVAL;
2530 goto err_vma;
2531 }
2532
2533 if (eb_use_cmdparser(&eb)) {
2534 struct i915_vma *vma;
2535
2536 vma = eb_parse(&eb, drm_is_current_master(file));
2537 if (IS_ERR(vma)) {
2538 err = PTR_ERR(vma);
2539 goto err_vma;
2540 }
2541
2542 if (vma) {
2543 /*
2544 * Batch parsed and accepted:
2545 *
2546 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
2547 * bit from MI_BATCH_BUFFER_START commands issued in
2548 * the dispatch_execbuffer implementations. We
2549 * specifically don't want that set on batches the
2550 * command parser has accepted.
2551 */
2552 eb.batch_flags |= I915_DISPATCH_SECURE;
2553 eb.batch_start_offset = 0;
2554 eb.batch = vma;
2555 }
2556 }
2557
2558 if (eb.batch_len == 0)
2559 eb.batch_len = eb.batch->size - eb.batch_start_offset;
2560
2561 /*
2562 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2563 * batch" bit. Hence we need to pin secure batches into the global gtt.
2564 * hsw should have this fixed, but bdw mucks it up again. */
2565 if (eb.batch_flags & I915_DISPATCH_SECURE) {
2566 struct i915_vma *vma;
2567
2568 /*
2569 * So on first glance it looks freaky that we pin the batch here
2570 * outside of the reservation loop. But:
2571 * - The batch is already pinned into the relevant ppgtt, so we
2572 * already have the backing storage fully allocated.
2573 * - No other BO uses the global gtt (well contexts, but meh),
2574 * so we don't really have issues with multiple objects not
2575 * fitting due to fragmentation.
2576 * So this is actually safe.
2577 */
2578 vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
2579 if (IS_ERR(vma)) {
2580 err = PTR_ERR(vma);
2581 goto err_vma;
2582 }
2583
2584 eb.batch = vma;
2585 }
2586
2587 /* All GPU relocation batches must be submitted prior to the user rq */
2588 GEM_BUG_ON(eb.reloc_cache.rq);
2589
2590 /* Allocate a request for this batch buffer nice and early. */
2591 eb.request = i915_request_create(eb.context);
2592 if (IS_ERR(eb.request)) {
2593 err = PTR_ERR(eb.request);
2594 goto err_batch_unpin;
2595 }
2596
2597 if (in_fence) {
2598 err = i915_request_await_dma_fence(eb.request, in_fence);
2599 if (err < 0)
2600 goto err_request;
2601 }
2602
2603 if (exec_fence) {
2604 err = i915_request_await_execution(eb.request, exec_fence,
2605 eb.engine->bond_execute);
2606 if (err < 0)
2607 goto err_request;
2608 }
2609
2610 if (fences) {
2611 err = await_fence_array(&eb, fences);
2612 if (err)
2613 goto err_request;
2614 }
2615
2616 if (out_fence_fd != -1) {
2617 out_fence = sync_file_create(&eb.request->fence);
2618 if (!out_fence) {
2619 err = -ENOMEM;
2620 goto err_request;
2621 }
2622 }
2623
2624 /*
2625 * Whilst this request exists, batch_obj will be on the
2626 * active_list, and so will hold the active reference. Only when this
2627 * request is retired will the the batch_obj be moved onto the
2628 * inactive_list and lose its active reference. Hence we do not need
2629 * to explicitly hold another reference here.
2630 */
2631 eb.request->batch = eb.batch;
2632 if (eb.batch->private)
2633 intel_engine_pool_mark_active(eb.batch->private, eb.request);
2634
2635 trace_i915_request_queue(eb.request, eb.batch_flags);
2636 err = eb_submit(&eb);
2637err_request:
2638 add_to_client(eb.request, file);
2639 i915_request_add(eb.request);
2640
2641 if (fences)
2642 signal_fence_array(&eb, fences);
2643
2644 if (out_fence) {
2645 if (err == 0) {
2646 fd_install(out_fence_fd, out_fence->file);
2647 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2648 args->rsvd2 |= (u64)out_fence_fd << 32;
2649 out_fence_fd = -1;
2650 } else {
2651 fput(out_fence->file);
2652 }
2653 }
2654
2655err_batch_unpin:
2656 if (eb.batch_flags & I915_DISPATCH_SECURE)
2657 i915_vma_unpin(eb.batch);
2658 if (eb.batch->private)
2659 intel_engine_pool_put(eb.batch->private);
2660err_vma:
2661 if (eb.exec)
2662 eb_release_vmas(&eb);
2663 mutex_unlock(&dev->struct_mutex);
2664err_engine:
2665 eb_unpin_engine(&eb);
2666err_context:
2667 i915_gem_context_put(eb.gem_context);
2668err_destroy:
2669 eb_destroy(&eb);
2670err_out_fence:
2671 if (out_fence_fd != -1)
2672 put_unused_fd(out_fence_fd);
2673err_exec_fence:
2674 dma_fence_put(exec_fence);
2675err_in_fence:
2676 dma_fence_put(in_fence);
2677 return err;
2678}
2679
2680static size_t eb_element_size(void)
2681{
2682 return (sizeof(struct drm_i915_gem_exec_object2) +
2683 sizeof(struct i915_vma *) +
2684 sizeof(unsigned int));
2685}
2686
2687static bool check_buffer_count(size_t count)
2688{
2689 const size_t sz = eb_element_size();
2690
2691 /*
2692 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
2693 * array size (see eb_create()). Otherwise, we can accept an array as
2694 * large as can be addressed (though use large arrays at your peril)!
2695 */
2696
2697 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
2698}
2699
2700/*
2701 * Legacy execbuffer just creates an exec2 list from the original exec object
2702 * list array and passes it to the real function.
2703 */
2704int
2705i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2706 struct drm_file *file)
2707{
2708 struct drm_i915_gem_execbuffer *args = data;
2709 struct drm_i915_gem_execbuffer2 exec2;
2710 struct drm_i915_gem_exec_object *exec_list = NULL;
2711 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2712 const size_t count = args->buffer_count;
2713 unsigned int i;
2714 int err;
2715
2716 if (!check_buffer_count(count)) {
2717 DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2718 return -EINVAL;
2719 }
2720
2721 exec2.buffers_ptr = args->buffers_ptr;
2722 exec2.buffer_count = args->buffer_count;
2723 exec2.batch_start_offset = args->batch_start_offset;
2724 exec2.batch_len = args->batch_len;
2725 exec2.DR1 = args->DR1;
2726 exec2.DR4 = args->DR4;
2727 exec2.num_cliprects = args->num_cliprects;
2728 exec2.cliprects_ptr = args->cliprects_ptr;
2729 exec2.flags = I915_EXEC_RENDER;
2730 i915_execbuffer2_set_context_id(exec2, 0);
2731
2732 if (!i915_gem_check_execbuffer(&exec2))
2733 return -EINVAL;
2734
2735 /* Copy in the exec list from userland */
2736 exec_list = kvmalloc_array(count, sizeof(*exec_list),
2737 __GFP_NOWARN | GFP_KERNEL);
2738 exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2739 __GFP_NOWARN | GFP_KERNEL);
2740 if (exec_list == NULL || exec2_list == NULL) {
2741 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2742 args->buffer_count);
2743 kvfree(exec_list);
2744 kvfree(exec2_list);
2745 return -ENOMEM;
2746 }
2747 err = copy_from_user(exec_list,
2748 u64_to_user_ptr(args->buffers_ptr),
2749 sizeof(*exec_list) * count);
2750 if (err) {
2751 DRM_DEBUG("copy %d exec entries failed %d\n",
2752 args->buffer_count, err);
2753 kvfree(exec_list);
2754 kvfree(exec2_list);
2755 return -EFAULT;
2756 }
2757
2758 for (i = 0; i < args->buffer_count; i++) {
2759 exec2_list[i].handle = exec_list[i].handle;
2760 exec2_list[i].relocation_count = exec_list[i].relocation_count;
2761 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
2762 exec2_list[i].alignment = exec_list[i].alignment;
2763 exec2_list[i].offset = exec_list[i].offset;
2764 if (INTEL_GEN(to_i915(dev)) < 4)
2765 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
2766 else
2767 exec2_list[i].flags = 0;
2768 }
2769
2770 err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2771 if (exec2.flags & __EXEC_HAS_RELOC) {
2772 struct drm_i915_gem_exec_object __user *user_exec_list =
2773 u64_to_user_ptr(args->buffers_ptr);
2774
2775 /* Copy the new buffer offsets back to the user's exec list. */
2776 for (i = 0; i < args->buffer_count; i++) {
2777 if (!(exec2_list[i].offset & UPDATE))
2778 continue;
2779
2780 exec2_list[i].offset =
2781 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2782 exec2_list[i].offset &= PIN_OFFSET_MASK;
2783 if (__copy_to_user(&user_exec_list[i].offset,
2784 &exec2_list[i].offset,
2785 sizeof(user_exec_list[i].offset)))
2786 break;
2787 }
2788 }
2789
2790 kvfree(exec_list);
2791 kvfree(exec2_list);
2792 return err;
2793}
2794
2795int
2796i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2797 struct drm_file *file)
2798{
2799 struct drm_i915_gem_execbuffer2 *args = data;
2800 struct drm_i915_gem_exec_object2 *exec2_list;
2801 struct drm_syncobj **fences = NULL;
2802 const size_t count = args->buffer_count;
2803 int err;
2804
2805 if (!check_buffer_count(count)) {
2806 DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2807 return -EINVAL;
2808 }
2809
2810 if (!i915_gem_check_execbuffer(args))
2811 return -EINVAL;
2812
2813 /* Allocate an extra slot for use by the command parser */
2814 exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2815 __GFP_NOWARN | GFP_KERNEL);
2816 if (exec2_list == NULL) {
2817 DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
2818 count);
2819 return -ENOMEM;
2820 }
2821 if (copy_from_user(exec2_list,
2822 u64_to_user_ptr(args->buffers_ptr),
2823 sizeof(*exec2_list) * count)) {
2824 DRM_DEBUG("copy %zd exec entries failed\n", count);
2825 kvfree(exec2_list);
2826 return -EFAULT;
2827 }
2828
2829 if (args->flags & I915_EXEC_FENCE_ARRAY) {
2830 fences = get_fence_array(args, file);
2831 if (IS_ERR(fences)) {
2832 kvfree(exec2_list);
2833 return PTR_ERR(fences);
2834 }
2835 }
2836
2837 err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2838
2839 /*
2840 * Now that we have begun execution of the batchbuffer, we ignore
2841 * any new error after this point. Also given that we have already
2842 * updated the associated relocations, we try to write out the current
2843 * object locations irrespective of any error.
2844 */
2845 if (args->flags & __EXEC_HAS_RELOC) {
2846 struct drm_i915_gem_exec_object2 __user *user_exec_list =
2847 u64_to_user_ptr(args->buffers_ptr);
2848 unsigned int i;
2849
2850 /* Copy the new buffer offsets back to the user's exec list. */
2851 /*
2852 * Note: count * sizeof(*user_exec_list) does not overflow,
2853 * because we checked 'count' in check_buffer_count().
2854 *
2855 * And this range already got effectively checked earlier
2856 * when we did the "copy_from_user()" above.
2857 */
2858 if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
2859 goto end;
2860
2861 for (i = 0; i < args->buffer_count; i++) {
2862 if (!(exec2_list[i].offset & UPDATE))
2863 continue;
2864
2865 exec2_list[i].offset =
2866 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2867 unsafe_put_user(exec2_list[i].offset,
2868 &user_exec_list[i].offset,
2869 end_user);
2870 }
2871end_user:
2872 user_access_end();
2873end:;
2874 }
2875
2876 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2877 put_fence_array(args, fences);
2878 kvfree(exec2_list);
2879 return err;
2880}