| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * Device probing and sysfs code. |
| 4 | * |
| 5 | * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net> |
| 6 | */ |
| 7 | |
| 8 | #include <linux/bug.h> |
| 9 | #include <linux/ctype.h> |
| 10 | #include <linux/delay.h> |
| 11 | #include <linux/device.h> |
| 12 | #include <linux/errno.h> |
| 13 | #include <linux/firewire.h> |
| 14 | #include <linux/firewire-constants.h> |
| 15 | #include <linux/jiffies.h> |
| 16 | #include <linux/kobject.h> |
| 17 | #include <linux/list.h> |
| 18 | #include <linux/mod_devicetable.h> |
| 19 | #include <linux/module.h> |
| 20 | #include <linux/mutex.h> |
| 21 | #include <linux/random.h> |
| 22 | #include <linux/rwsem.h> |
| 23 | #include <linux/slab.h> |
| 24 | #include <linux/spinlock.h> |
| 25 | #include <linux/string.h> |
| 26 | #include <linux/workqueue.h> |
| 27 | |
| 28 | #include <linux/atomic.h> |
| 29 | #include <asm/byteorder.h> |
| 30 | |
| 31 | #include "core.h" |
| 32 | |
| 33 | #define ROOT_DIR_OFFSET 5 |
| 34 | |
| 35 | void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p) |
| 36 | { |
| 37 | ci->p = p + 1; |
| 38 | ci->end = ci->p + (p[0] >> 16); |
| 39 | } |
| 40 | EXPORT_SYMBOL(fw_csr_iterator_init); |
| 41 | |
| 42 | int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value) |
| 43 | { |
| 44 | *key = *ci->p >> 24; |
| 45 | *value = *ci->p & 0xffffff; |
| 46 | |
| 47 | return ci->p++ < ci->end; |
| 48 | } |
| 49 | EXPORT_SYMBOL(fw_csr_iterator_next); |
| 50 | |
| 51 | static const u32 *search_directory(const u32 *directory, int search_key) |
| 52 | { |
| 53 | struct fw_csr_iterator ci; |
| 54 | int key, value; |
| 55 | |
| 56 | search_key |= CSR_DIRECTORY; |
| 57 | |
| 58 | fw_csr_iterator_init(&ci, directory); |
| 59 | while (fw_csr_iterator_next(&ci, &key, &value)) { |
| 60 | if (key == search_key) |
| 61 | return ci.p - 1 + value; |
| 62 | } |
| 63 | |
| 64 | return NULL; |
| 65 | } |
| 66 | |
| 67 | static const u32 *search_leaf(const u32 *directory, int search_key) |
| 68 | { |
| 69 | struct fw_csr_iterator ci; |
| 70 | int last_key = 0, key, value; |
| 71 | |
| 72 | fw_csr_iterator_init(&ci, directory); |
| 73 | while (fw_csr_iterator_next(&ci, &key, &value)) { |
| 74 | if (last_key == search_key && |
| 75 | key == (CSR_DESCRIPTOR | CSR_LEAF)) |
| 76 | return ci.p - 1 + value; |
| 77 | |
| 78 | last_key = key; |
| 79 | } |
| 80 | |
| 81 | return NULL; |
| 82 | } |
| 83 | |
| 84 | static int textual_leaf_to_string(const u32 *block, char *buf, size_t size) |
| 85 | { |
| 86 | unsigned int quadlets, i; |
| 87 | char c; |
| 88 | |
| 89 | if (!size || !buf) |
| 90 | return -EINVAL; |
| 91 | |
| 92 | quadlets = min(block[0] >> 16, 256U); |
| 93 | if (quadlets < 2) |
| 94 | return -ENODATA; |
| 95 | |
| 96 | if (block[1] != 0 || block[2] != 0) |
| 97 | /* unknown language/character set */ |
| 98 | return -ENODATA; |
| 99 | |
| 100 | block += 3; |
| 101 | quadlets -= 2; |
| 102 | for (i = 0; i < quadlets * 4 && i < size - 1; i++) { |
| 103 | c = block[i / 4] >> (24 - 8 * (i % 4)); |
| 104 | if (c == '\0') |
| 105 | break; |
| 106 | buf[i] = c; |
| 107 | } |
| 108 | buf[i] = '\0'; |
| 109 | |
| 110 | return i; |
| 111 | } |
| 112 | |
| 113 | /** |
| 114 | * fw_csr_string() - reads a string from the configuration ROM |
| 115 | * @directory: e.g. root directory or unit directory |
| 116 | * @key: the key of the preceding directory entry |
| 117 | * @buf: where to put the string |
| 118 | * @size: size of @buf, in bytes |
| 119 | * |
| 120 | * The string is taken from a minimal ASCII text descriptor leaf just after the entry with the |
| 121 | * @key. The string is zero-terminated. An overlong string is silently truncated such that it |
| 122 | * and the zero byte fit into @size. |
| 123 | * |
| 124 | * Returns strlen(buf) or a negative error code. |
| 125 | */ |
| 126 | int fw_csr_string(const u32 *directory, int key, char *buf, size_t size) |
| 127 | { |
| 128 | const u32 *leaf = search_leaf(directory, key); |
| 129 | if (!leaf) |
| 130 | return -ENOENT; |
| 131 | |
| 132 | return textual_leaf_to_string(leaf, buf, size); |
| 133 | } |
| 134 | EXPORT_SYMBOL(fw_csr_string); |
| 135 | |
| 136 | static void get_ids(const u32 *directory, int *id) |
| 137 | { |
| 138 | struct fw_csr_iterator ci; |
| 139 | int key, value; |
| 140 | |
| 141 | fw_csr_iterator_init(&ci, directory); |
| 142 | while (fw_csr_iterator_next(&ci, &key, &value)) { |
| 143 | switch (key) { |
| 144 | case CSR_VENDOR: id[0] = value; break; |
| 145 | case CSR_MODEL: id[1] = value; break; |
| 146 | case CSR_SPECIFIER_ID: id[2] = value; break; |
| 147 | case CSR_VERSION: id[3] = value; break; |
| 148 | } |
| 149 | } |
| 150 | } |
| 151 | |
| 152 | static void get_modalias_ids(const struct fw_unit *unit, int *id) |
| 153 | { |
| 154 | const u32 *root_directory = &fw_parent_device(unit)->config_rom[ROOT_DIR_OFFSET]; |
| 155 | const u32 *directories[] = {NULL, NULL, NULL}; |
| 156 | const u32 *vendor_directory; |
| 157 | int i; |
| 158 | |
| 159 | directories[0] = root_directory; |
| 160 | |
| 161 | // Legacy layout of configuration ROM described in Annex 1 of 'Configuration ROM for AV/C |
| 162 | // Devices 1.0 (December 12, 2000, 1394 Trading Association, TA Document 1999027)'. |
| 163 | vendor_directory = search_directory(root_directory, CSR_VENDOR); |
| 164 | if (!vendor_directory) { |
| 165 | directories[1] = unit->directory; |
| 166 | } else { |
| 167 | directories[1] = vendor_directory; |
| 168 | directories[2] = unit->directory; |
| 169 | } |
| 170 | |
| 171 | for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) |
| 172 | get_ids(directories[i], id); |
| 173 | } |
| 174 | |
| 175 | static bool match_ids(const struct ieee1394_device_id *id_table, int *id) |
| 176 | { |
| 177 | int match = 0; |
| 178 | |
| 179 | if (id[0] == id_table->vendor_id) |
| 180 | match |= IEEE1394_MATCH_VENDOR_ID; |
| 181 | if (id[1] == id_table->model_id) |
| 182 | match |= IEEE1394_MATCH_MODEL_ID; |
| 183 | if (id[2] == id_table->specifier_id) |
| 184 | match |= IEEE1394_MATCH_SPECIFIER_ID; |
| 185 | if (id[3] == id_table->version) |
| 186 | match |= IEEE1394_MATCH_VERSION; |
| 187 | |
| 188 | return (match & id_table->match_flags) == id_table->match_flags; |
| 189 | } |
| 190 | |
| 191 | static const struct ieee1394_device_id *unit_match(struct device *dev, |
| 192 | const struct device_driver *drv) |
| 193 | { |
| 194 | const struct ieee1394_device_id *id_table = |
| 195 | container_of_const(drv, struct fw_driver, driver)->id_table; |
| 196 | int id[] = {0, 0, 0, 0}; |
| 197 | |
| 198 | get_modalias_ids(fw_unit(dev), id); |
| 199 | |
| 200 | for (; id_table->match_flags != 0; id_table++) |
| 201 | if (match_ids(id_table, id)) |
| 202 | return id_table; |
| 203 | |
| 204 | return NULL; |
| 205 | } |
| 206 | |
| 207 | static bool is_fw_unit(const struct device *dev); |
| 208 | |
| 209 | static int fw_unit_match(struct device *dev, const struct device_driver *drv) |
| 210 | { |
| 211 | /* We only allow binding to fw_units. */ |
| 212 | return is_fw_unit(dev) && unit_match(dev, drv) != NULL; |
| 213 | } |
| 214 | |
| 215 | static int fw_unit_probe(struct device *dev) |
| 216 | { |
| 217 | struct fw_driver *driver = |
| 218 | container_of(dev->driver, struct fw_driver, driver); |
| 219 | |
| 220 | return driver->probe(fw_unit(dev), unit_match(dev, dev->driver)); |
| 221 | } |
| 222 | |
| 223 | static void fw_unit_remove(struct device *dev) |
| 224 | { |
| 225 | struct fw_driver *driver = |
| 226 | container_of(dev->driver, struct fw_driver, driver); |
| 227 | |
| 228 | driver->remove(fw_unit(dev)); |
| 229 | } |
| 230 | |
| 231 | static int get_modalias(const struct fw_unit *unit, char *buffer, size_t buffer_size) |
| 232 | { |
| 233 | int id[] = {0, 0, 0, 0}; |
| 234 | |
| 235 | get_modalias_ids(unit, id); |
| 236 | |
| 237 | return snprintf(buffer, buffer_size, |
| 238 | "ieee1394:ven%08Xmo%08Xsp%08Xver%08X", |
| 239 | id[0], id[1], id[2], id[3]); |
| 240 | } |
| 241 | |
| 242 | static int fw_unit_uevent(const struct device *dev, struct kobj_uevent_env *env) |
| 243 | { |
| 244 | const struct fw_unit *unit = fw_unit(dev); |
| 245 | char modalias[64]; |
| 246 | |
| 247 | get_modalias(unit, modalias, sizeof(modalias)); |
| 248 | |
| 249 | if (add_uevent_var(env, "MODALIAS=%s", modalias)) |
| 250 | return -ENOMEM; |
| 251 | |
| 252 | return 0; |
| 253 | } |
| 254 | |
| 255 | const struct bus_type fw_bus_type = { |
| 256 | .name = "firewire", |
| 257 | .match = fw_unit_match, |
| 258 | .probe = fw_unit_probe, |
| 259 | .remove = fw_unit_remove, |
| 260 | }; |
| 261 | EXPORT_SYMBOL(fw_bus_type); |
| 262 | |
| 263 | int fw_device_enable_phys_dma(struct fw_device *device) |
| 264 | { |
| 265 | int generation = device->generation; |
| 266 | |
| 267 | /* device->node_id, accessed below, must not be older than generation */ |
| 268 | smp_rmb(); |
| 269 | |
| 270 | return device->card->driver->enable_phys_dma(device->card, |
| 271 | device->node_id, |
| 272 | generation); |
| 273 | } |
| 274 | EXPORT_SYMBOL(fw_device_enable_phys_dma); |
| 275 | |
| 276 | struct config_rom_attribute { |
| 277 | struct device_attribute attr; |
| 278 | u32 key; |
| 279 | }; |
| 280 | |
| 281 | static ssize_t show_immediate(struct device *dev, |
| 282 | struct device_attribute *dattr, char *buf) |
| 283 | { |
| 284 | struct config_rom_attribute *attr = |
| 285 | container_of(dattr, struct config_rom_attribute, attr); |
| 286 | struct fw_csr_iterator ci; |
| 287 | const u32 *directories[] = {NULL, NULL}; |
| 288 | int i, value = -1; |
| 289 | |
| 290 | guard(rwsem_read)(&fw_device_rwsem); |
| 291 | |
| 292 | if (is_fw_unit(dev)) { |
| 293 | directories[0] = fw_unit(dev)->directory; |
| 294 | } else { |
| 295 | const u32 *root_directory = fw_device(dev)->config_rom + ROOT_DIR_OFFSET; |
| 296 | const u32 *vendor_directory = search_directory(root_directory, CSR_VENDOR); |
| 297 | |
| 298 | if (!vendor_directory) { |
| 299 | directories[0] = root_directory; |
| 300 | } else { |
| 301 | // Legacy layout of configuration ROM described in Annex 1 of |
| 302 | // 'Configuration ROM for AV/C Devices 1.0 (December 12, 2000, 1394 Trading |
| 303 | // Association, TA Document 1999027)'. |
| 304 | directories[0] = vendor_directory; |
| 305 | directories[1] = root_directory; |
| 306 | } |
| 307 | } |
| 308 | |
| 309 | for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) { |
| 310 | int key, val; |
| 311 | |
| 312 | fw_csr_iterator_init(&ci, directories[i]); |
| 313 | while (fw_csr_iterator_next(&ci, &key, &val)) { |
| 314 | if (attr->key == key) |
| 315 | value = val; |
| 316 | } |
| 317 | } |
| 318 | |
| 319 | if (value < 0) |
| 320 | return -ENOENT; |
| 321 | |
| 322 | // Note that this function is also called by init_fw_attribute_group() with NULL pointer. |
| 323 | return buf ? sysfs_emit(buf, "0x%06x\n", value) : 0; |
| 324 | } |
| 325 | |
| 326 | #define IMMEDIATE_ATTR(name, key) \ |
| 327 | { __ATTR(name, S_IRUGO, show_immediate, NULL), key } |
| 328 | |
| 329 | static ssize_t show_text_leaf(struct device *dev, |
| 330 | struct device_attribute *dattr, char *buf) |
| 331 | { |
| 332 | struct config_rom_attribute *attr = |
| 333 | container_of(dattr, struct config_rom_attribute, attr); |
| 334 | const u32 *directories[] = {NULL, NULL}; |
| 335 | size_t bufsize; |
| 336 | char dummy_buf[2]; |
| 337 | int i, ret = -ENOENT; |
| 338 | |
| 339 | guard(rwsem_read)(&fw_device_rwsem); |
| 340 | |
| 341 | if (is_fw_unit(dev)) { |
| 342 | directories[0] = fw_unit(dev)->directory; |
| 343 | } else { |
| 344 | const u32 *root_directory = fw_device(dev)->config_rom + ROOT_DIR_OFFSET; |
| 345 | const u32 *vendor_directory = search_directory(root_directory, CSR_VENDOR); |
| 346 | |
| 347 | if (!vendor_directory) { |
| 348 | directories[0] = root_directory; |
| 349 | } else { |
| 350 | // Legacy layout of configuration ROM described in Annex 1 of |
| 351 | // 'Configuration ROM for AV/C Devices 1.0 (December 12, 2000, 1394 |
| 352 | // Trading Association, TA Document 1999027)'. |
| 353 | directories[0] = root_directory; |
| 354 | directories[1] = vendor_directory; |
| 355 | } |
| 356 | } |
| 357 | |
| 358 | // Note that this function is also called by init_fw_attribute_group() with NULL pointer. |
| 359 | if (buf) { |
| 360 | bufsize = PAGE_SIZE - 1; |
| 361 | } else { |
| 362 | buf = dummy_buf; |
| 363 | bufsize = 1; |
| 364 | } |
| 365 | |
| 366 | for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) { |
| 367 | int result = fw_csr_string(directories[i], attr->key, buf, bufsize); |
| 368 | // Detected. |
| 369 | if (result >= 0) { |
| 370 | ret = result; |
| 371 | } else if (i == 0 && attr->key == CSR_VENDOR) { |
| 372 | // Sony DVMC-DA1 has configuration ROM such that the descriptor leaf entry |
| 373 | // in the root directory follows to the directory entry for vendor ID |
| 374 | // instead of the immediate value for vendor ID. |
| 375 | result = fw_csr_string(directories[i], CSR_DIRECTORY | attr->key, buf, |
| 376 | bufsize); |
| 377 | if (result >= 0) |
| 378 | ret = result; |
| 379 | } |
| 380 | } |
| 381 | |
| 382 | if (ret < 0) |
| 383 | return ret; |
| 384 | |
| 385 | // Strip trailing whitespace and add newline. |
| 386 | while (ret > 0 && isspace(buf[ret - 1])) |
| 387 | ret--; |
| 388 | strcpy(buf + ret, "\n"); |
| 389 | ret++; |
| 390 | |
| 391 | return ret; |
| 392 | } |
| 393 | |
| 394 | #define TEXT_LEAF_ATTR(name, key) \ |
| 395 | { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key } |
| 396 | |
| 397 | static struct config_rom_attribute config_rom_attributes[] = { |
| 398 | IMMEDIATE_ATTR(vendor, CSR_VENDOR), |
| 399 | IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION), |
| 400 | IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID), |
| 401 | IMMEDIATE_ATTR(version, CSR_VERSION), |
| 402 | IMMEDIATE_ATTR(model, CSR_MODEL), |
| 403 | TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR), |
| 404 | TEXT_LEAF_ATTR(model_name, CSR_MODEL), |
| 405 | TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION), |
| 406 | }; |
| 407 | |
| 408 | static void init_fw_attribute_group(struct device *dev, |
| 409 | struct device_attribute *attrs, |
| 410 | struct fw_attribute_group *group) |
| 411 | { |
| 412 | struct device_attribute *attr; |
| 413 | int i, j; |
| 414 | |
| 415 | for (j = 0; attrs[j].attr.name != NULL; j++) |
| 416 | group->attrs[j] = &attrs[j].attr; |
| 417 | |
| 418 | for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) { |
| 419 | attr = &config_rom_attributes[i].attr; |
| 420 | if (attr->show(dev, attr, NULL) < 0) |
| 421 | continue; |
| 422 | group->attrs[j++] = &attr->attr; |
| 423 | } |
| 424 | |
| 425 | group->attrs[j] = NULL; |
| 426 | group->groups[0] = &group->group; |
| 427 | group->groups[1] = NULL; |
| 428 | group->group.attrs = group->attrs; |
| 429 | dev->groups = (const struct attribute_group **) group->groups; |
| 430 | } |
| 431 | |
| 432 | static ssize_t modalias_show(struct device *dev, |
| 433 | struct device_attribute *attr, char *buf) |
| 434 | { |
| 435 | struct fw_unit *unit = fw_unit(dev); |
| 436 | int length; |
| 437 | |
| 438 | length = get_modalias(unit, buf, PAGE_SIZE); |
| 439 | strcpy(buf + length, "\n"); |
| 440 | |
| 441 | return length + 1; |
| 442 | } |
| 443 | |
| 444 | static ssize_t rom_index_show(struct device *dev, |
| 445 | struct device_attribute *attr, char *buf) |
| 446 | { |
| 447 | struct fw_device *device = fw_device(dev->parent); |
| 448 | struct fw_unit *unit = fw_unit(dev); |
| 449 | |
| 450 | return sysfs_emit(buf, "%td\n", unit->directory - device->config_rom); |
| 451 | } |
| 452 | |
| 453 | static struct device_attribute fw_unit_attributes[] = { |
| 454 | __ATTR_RO(modalias), |
| 455 | __ATTR_RO(rom_index), |
| 456 | __ATTR_NULL, |
| 457 | }; |
| 458 | |
| 459 | static ssize_t config_rom_show(struct device *dev, |
| 460 | struct device_attribute *attr, char *buf) |
| 461 | { |
| 462 | struct fw_device *device = fw_device(dev); |
| 463 | size_t length; |
| 464 | |
| 465 | guard(rwsem_read)(&fw_device_rwsem); |
| 466 | |
| 467 | length = device->config_rom_length * 4; |
| 468 | memcpy(buf, device->config_rom, length); |
| 469 | |
| 470 | return length; |
| 471 | } |
| 472 | |
| 473 | static ssize_t guid_show(struct device *dev, |
| 474 | struct device_attribute *attr, char *buf) |
| 475 | { |
| 476 | struct fw_device *device = fw_device(dev); |
| 477 | |
| 478 | guard(rwsem_read)(&fw_device_rwsem); |
| 479 | |
| 480 | return sysfs_emit(buf, "0x%08x%08x\n", device->config_rom[3], device->config_rom[4]); |
| 481 | } |
| 482 | |
| 483 | static ssize_t is_local_show(struct device *dev, |
| 484 | struct device_attribute *attr, char *buf) |
| 485 | { |
| 486 | struct fw_device *device = fw_device(dev); |
| 487 | |
| 488 | return sysfs_emit(buf, "%u\n", device->is_local); |
| 489 | } |
| 490 | |
| 491 | static int units_sprintf(char *buf, const u32 *directory) |
| 492 | { |
| 493 | struct fw_csr_iterator ci; |
| 494 | int key, value; |
| 495 | int specifier_id = 0; |
| 496 | int version = 0; |
| 497 | |
| 498 | fw_csr_iterator_init(&ci, directory); |
| 499 | while (fw_csr_iterator_next(&ci, &key, &value)) { |
| 500 | switch (key) { |
| 501 | case CSR_SPECIFIER_ID: |
| 502 | specifier_id = value; |
| 503 | break; |
| 504 | case CSR_VERSION: |
| 505 | version = value; |
| 506 | break; |
| 507 | } |
| 508 | } |
| 509 | |
| 510 | return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version); |
| 511 | } |
| 512 | |
| 513 | static ssize_t units_show(struct device *dev, |
| 514 | struct device_attribute *attr, char *buf) |
| 515 | { |
| 516 | struct fw_device *device = fw_device(dev); |
| 517 | struct fw_csr_iterator ci; |
| 518 | int key, value, i = 0; |
| 519 | |
| 520 | guard(rwsem_read)(&fw_device_rwsem); |
| 521 | |
| 522 | fw_csr_iterator_init(&ci, &device->config_rom[ROOT_DIR_OFFSET]); |
| 523 | while (fw_csr_iterator_next(&ci, &key, &value)) { |
| 524 | if (key != (CSR_UNIT | CSR_DIRECTORY)) |
| 525 | continue; |
| 526 | i += units_sprintf(&buf[i], ci.p + value - 1); |
| 527 | if (i >= PAGE_SIZE - (8 + 1 + 8 + 1)) |
| 528 | break; |
| 529 | } |
| 530 | |
| 531 | if (i) |
| 532 | buf[i - 1] = '\n'; |
| 533 | |
| 534 | return i; |
| 535 | } |
| 536 | |
| 537 | static struct device_attribute fw_device_attributes[] = { |
| 538 | __ATTR_RO(config_rom), |
| 539 | __ATTR_RO(guid), |
| 540 | __ATTR_RO(is_local), |
| 541 | __ATTR_RO(units), |
| 542 | __ATTR_NULL, |
| 543 | }; |
| 544 | |
| 545 | static int read_rom(struct fw_device *device, |
| 546 | int generation, int index, u32 *data) |
| 547 | { |
| 548 | u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4; |
| 549 | int i, rcode; |
| 550 | |
| 551 | /* device->node_id, accessed below, must not be older than generation */ |
| 552 | smp_rmb(); |
| 553 | |
| 554 | for (i = 10; i < 100; i += 10) { |
| 555 | rcode = fw_run_transaction(device->card, |
| 556 | TCODE_READ_QUADLET_REQUEST, device->node_id, |
| 557 | generation, device->max_speed, offset, data, 4); |
| 558 | if (rcode != RCODE_BUSY) |
| 559 | break; |
| 560 | msleep(i); |
| 561 | } |
| 562 | be32_to_cpus(data); |
| 563 | |
| 564 | return rcode; |
| 565 | } |
| 566 | |
| 567 | // By quadlet unit. |
| 568 | #define MAX_CONFIG_ROM_SIZE ((CSR_CONFIG_ROM_END - CSR_CONFIG_ROM) / sizeof(u32)) |
| 569 | |
| 570 | /* |
| 571 | * Read the bus info block, perform a speed probe, and read all of the rest of |
| 572 | * the config ROM. We do all this with a cached bus generation. If the bus |
| 573 | * generation changes under us, read_config_rom will fail and get retried. |
| 574 | * It's better to start all over in this case because the node from which we |
| 575 | * are reading the ROM may have changed the ROM during the reset. |
| 576 | * Returns either a result code or a negative error code. |
| 577 | */ |
| 578 | static int read_config_rom(struct fw_device *device, int generation) |
| 579 | { |
| 580 | struct fw_card *card = device->card; |
| 581 | const u32 *old_rom, *new_rom; |
| 582 | u32 *rom, *stack; |
| 583 | u32 sp, key; |
| 584 | int i, end, length, ret; |
| 585 | |
| 586 | rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE + |
| 587 | sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL); |
| 588 | if (rom == NULL) |
| 589 | return -ENOMEM; |
| 590 | |
| 591 | stack = &rom[MAX_CONFIG_ROM_SIZE]; |
| 592 | memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE); |
| 593 | |
| 594 | device->max_speed = SCODE_100; |
| 595 | |
| 596 | /* First read the bus info block. */ |
| 597 | for (i = 0; i < 5; i++) { |
| 598 | ret = read_rom(device, generation, i, &rom[i]); |
| 599 | if (ret != RCODE_COMPLETE) |
| 600 | goto out; |
| 601 | /* |
| 602 | * As per IEEE1212 7.2, during initialization, devices can |
| 603 | * reply with a 0 for the first quadlet of the config |
| 604 | * rom to indicate that they are booting (for example, |
| 605 | * if the firmware is on the disk of a external |
| 606 | * harddisk). In that case we just fail, and the |
| 607 | * retry mechanism will try again later. |
| 608 | */ |
| 609 | if (i == 0 && rom[i] == 0) { |
| 610 | ret = RCODE_BUSY; |
| 611 | goto out; |
| 612 | } |
| 613 | } |
| 614 | |
| 615 | device->max_speed = device->node->max_speed; |
| 616 | |
| 617 | /* |
| 618 | * Determine the speed of |
| 619 | * - devices with link speed less than PHY speed, |
| 620 | * - devices with 1394b PHY (unless only connected to 1394a PHYs), |
| 621 | * - all devices if there are 1394b repeaters. |
| 622 | * Note, we cannot use the bus info block's link_spd as starting point |
| 623 | * because some buggy firmwares set it lower than necessary and because |
| 624 | * 1394-1995 nodes do not have the field. |
| 625 | */ |
| 626 | if ((rom[2] & 0x7) < device->max_speed || |
| 627 | device->max_speed == SCODE_BETA || |
| 628 | card->beta_repeaters_present) { |
| 629 | u32 dummy; |
| 630 | |
| 631 | /* for S1600 and S3200 */ |
| 632 | if (device->max_speed == SCODE_BETA) |
| 633 | device->max_speed = card->link_speed; |
| 634 | |
| 635 | while (device->max_speed > SCODE_100) { |
| 636 | if (read_rom(device, generation, 0, &dummy) == |
| 637 | RCODE_COMPLETE) |
| 638 | break; |
| 639 | device->max_speed--; |
| 640 | } |
| 641 | } |
| 642 | |
| 643 | /* |
| 644 | * Now parse the config rom. The config rom is a recursive |
| 645 | * directory structure so we parse it using a stack of |
| 646 | * references to the blocks that make up the structure. We |
| 647 | * push a reference to the root directory on the stack to |
| 648 | * start things off. |
| 649 | */ |
| 650 | length = i; |
| 651 | sp = 0; |
| 652 | stack[sp++] = 0xc0000005; |
| 653 | while (sp > 0) { |
| 654 | /* |
| 655 | * Pop the next block reference of the stack. The |
| 656 | * lower 24 bits is the offset into the config rom, |
| 657 | * the upper 8 bits are the type of the reference the |
| 658 | * block. |
| 659 | */ |
| 660 | key = stack[--sp]; |
| 661 | i = key & 0xffffff; |
| 662 | if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) { |
| 663 | ret = -ENXIO; |
| 664 | goto out; |
| 665 | } |
| 666 | |
| 667 | /* Read header quadlet for the block to get the length. */ |
| 668 | ret = read_rom(device, generation, i, &rom[i]); |
| 669 | if (ret != RCODE_COMPLETE) |
| 670 | goto out; |
| 671 | end = i + (rom[i] >> 16) + 1; |
| 672 | if (end > MAX_CONFIG_ROM_SIZE) { |
| 673 | /* |
| 674 | * This block extends outside the config ROM which is |
| 675 | * a firmware bug. Ignore this whole block, i.e. |
| 676 | * simply set a fake block length of 0. |
| 677 | */ |
| 678 | fw_err(card, "skipped invalid ROM block %x at %llx\n", |
| 679 | rom[i], |
| 680 | i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); |
| 681 | rom[i] = 0; |
| 682 | end = i; |
| 683 | } |
| 684 | i++; |
| 685 | |
| 686 | /* |
| 687 | * Now read in the block. If this is a directory |
| 688 | * block, check the entries as we read them to see if |
| 689 | * it references another block, and push it in that case. |
| 690 | */ |
| 691 | for (; i < end; i++) { |
| 692 | ret = read_rom(device, generation, i, &rom[i]); |
| 693 | if (ret != RCODE_COMPLETE) |
| 694 | goto out; |
| 695 | |
| 696 | if ((key >> 30) != 3 || (rom[i] >> 30) < 2) |
| 697 | continue; |
| 698 | /* |
| 699 | * Offset points outside the ROM. May be a firmware |
| 700 | * bug or an Extended ROM entry (IEEE 1212-2001 clause |
| 701 | * 7.7.18). Simply overwrite this pointer here by a |
| 702 | * fake immediate entry so that later iterators over |
| 703 | * the ROM don't have to check offsets all the time. |
| 704 | */ |
| 705 | if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) { |
| 706 | fw_err(card, |
| 707 | "skipped unsupported ROM entry %x at %llx\n", |
| 708 | rom[i], |
| 709 | i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); |
| 710 | rom[i] = 0; |
| 711 | continue; |
| 712 | } |
| 713 | stack[sp++] = i + rom[i]; |
| 714 | } |
| 715 | if (length < i) |
| 716 | length = i; |
| 717 | } |
| 718 | |
| 719 | old_rom = device->config_rom; |
| 720 | new_rom = kmemdup(rom, length * 4, GFP_KERNEL); |
| 721 | if (new_rom == NULL) { |
| 722 | ret = -ENOMEM; |
| 723 | goto out; |
| 724 | } |
| 725 | |
| 726 | scoped_guard(rwsem_write, &fw_device_rwsem) { |
| 727 | device->config_rom = new_rom; |
| 728 | device->config_rom_length = length; |
| 729 | } |
| 730 | |
| 731 | kfree(old_rom); |
| 732 | ret = RCODE_COMPLETE; |
| 733 | device->max_rec = rom[2] >> 12 & 0xf; |
| 734 | device->cmc = rom[2] >> 30 & 1; |
| 735 | device->irmc = rom[2] >> 31 & 1; |
| 736 | out: |
| 737 | kfree(rom); |
| 738 | |
| 739 | return ret; |
| 740 | } |
| 741 | |
| 742 | static void fw_unit_release(struct device *dev) |
| 743 | { |
| 744 | struct fw_unit *unit = fw_unit(dev); |
| 745 | |
| 746 | fw_device_put(fw_parent_device(unit)); |
| 747 | kfree(unit); |
| 748 | } |
| 749 | |
| 750 | static struct device_type fw_unit_type = { |
| 751 | .uevent = fw_unit_uevent, |
| 752 | .release = fw_unit_release, |
| 753 | }; |
| 754 | |
| 755 | static bool is_fw_unit(const struct device *dev) |
| 756 | { |
| 757 | return dev->type == &fw_unit_type; |
| 758 | } |
| 759 | |
| 760 | static void create_units(struct fw_device *device) |
| 761 | { |
| 762 | struct fw_csr_iterator ci; |
| 763 | struct fw_unit *unit; |
| 764 | int key, value, i; |
| 765 | |
| 766 | i = 0; |
| 767 | fw_csr_iterator_init(&ci, &device->config_rom[ROOT_DIR_OFFSET]); |
| 768 | while (fw_csr_iterator_next(&ci, &key, &value)) { |
| 769 | if (key != (CSR_UNIT | CSR_DIRECTORY)) |
| 770 | continue; |
| 771 | |
| 772 | /* |
| 773 | * Get the address of the unit directory and try to |
| 774 | * match the drivers id_tables against it. |
| 775 | */ |
| 776 | unit = kzalloc(sizeof(*unit), GFP_KERNEL); |
| 777 | if (unit == NULL) |
| 778 | continue; |
| 779 | |
| 780 | unit->directory = ci.p + value - 1; |
| 781 | unit->device.bus = &fw_bus_type; |
| 782 | unit->device.type = &fw_unit_type; |
| 783 | unit->device.parent = &device->device; |
| 784 | dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++); |
| 785 | |
| 786 | BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) < |
| 787 | ARRAY_SIZE(fw_unit_attributes) + |
| 788 | ARRAY_SIZE(config_rom_attributes)); |
| 789 | init_fw_attribute_group(&unit->device, |
| 790 | fw_unit_attributes, |
| 791 | &unit->attribute_group); |
| 792 | |
| 793 | fw_device_get(device); |
| 794 | if (device_register(&unit->device) < 0) { |
| 795 | put_device(&unit->device); |
| 796 | continue; |
| 797 | } |
| 798 | } |
| 799 | } |
| 800 | |
| 801 | static int shutdown_unit(struct device *device, void *data) |
| 802 | { |
| 803 | device_unregister(device); |
| 804 | |
| 805 | return 0; |
| 806 | } |
| 807 | |
| 808 | /* |
| 809 | * fw_device_rwsem acts as dual purpose mutex: |
| 810 | * - serializes accesses to fw_device.config_rom/.config_rom_length and |
| 811 | * fw_unit.directory, unless those accesses happen at safe occasions |
| 812 | */ |
| 813 | DECLARE_RWSEM(fw_device_rwsem); |
| 814 | |
| 815 | DEFINE_XARRAY_ALLOC(fw_device_xa); |
| 816 | int fw_cdev_major; |
| 817 | |
| 818 | struct fw_device *fw_device_get_by_devt(dev_t devt) |
| 819 | { |
| 820 | struct fw_device *device; |
| 821 | |
| 822 | device = xa_load(&fw_device_xa, MINOR(devt)); |
| 823 | if (device) |
| 824 | fw_device_get(device); |
| 825 | |
| 826 | return device; |
| 827 | } |
| 828 | |
| 829 | struct workqueue_struct *fw_workqueue; |
| 830 | EXPORT_SYMBOL(fw_workqueue); |
| 831 | |
| 832 | static void fw_schedule_device_work(struct fw_device *device, |
| 833 | unsigned long delay) |
| 834 | { |
| 835 | queue_delayed_work(fw_workqueue, &device->work, delay); |
| 836 | } |
| 837 | |
| 838 | /* |
| 839 | * These defines control the retry behavior for reading the config |
| 840 | * rom. It shouldn't be necessary to tweak these; if the device |
| 841 | * doesn't respond to a config rom read within 10 seconds, it's not |
| 842 | * going to respond at all. As for the initial delay, a lot of |
| 843 | * devices will be able to respond within half a second after bus |
| 844 | * reset. On the other hand, it's not really worth being more |
| 845 | * aggressive than that, since it scales pretty well; if 10 devices |
| 846 | * are plugged in, they're all getting read within one second. |
| 847 | */ |
| 848 | |
| 849 | #define MAX_RETRIES 10 |
| 850 | #define RETRY_DELAY (3 * HZ) |
| 851 | #define INITIAL_DELAY (HZ / 2) |
| 852 | #define SHUTDOWN_DELAY (2 * HZ) |
| 853 | |
| 854 | static void fw_device_shutdown(struct work_struct *work) |
| 855 | { |
| 856 | struct fw_device *device = |
| 857 | container_of(work, struct fw_device, work.work); |
| 858 | |
| 859 | if (time_before64(get_jiffies_64(), |
| 860 | device->card->reset_jiffies + SHUTDOWN_DELAY) |
| 861 | && !list_empty(&device->card->link)) { |
| 862 | fw_schedule_device_work(device, SHUTDOWN_DELAY); |
| 863 | return; |
| 864 | } |
| 865 | |
| 866 | if (atomic_cmpxchg(&device->state, |
| 867 | FW_DEVICE_GONE, |
| 868 | FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE) |
| 869 | return; |
| 870 | |
| 871 | fw_device_cdev_remove(device); |
| 872 | device_for_each_child(&device->device, NULL, shutdown_unit); |
| 873 | device_unregister(&device->device); |
| 874 | |
| 875 | xa_erase(&fw_device_xa, MINOR(device->device.devt)); |
| 876 | |
| 877 | fw_device_put(device); |
| 878 | } |
| 879 | |
| 880 | static void fw_device_release(struct device *dev) |
| 881 | { |
| 882 | struct fw_device *device = fw_device(dev); |
| 883 | struct fw_card *card = device->card; |
| 884 | |
| 885 | /* |
| 886 | * Take the card lock so we don't set this to NULL while a |
| 887 | * FW_NODE_UPDATED callback is being handled or while the |
| 888 | * bus manager work looks at this node. |
| 889 | */ |
| 890 | scoped_guard(spinlock_irqsave, &card->lock) |
| 891 | device->node->data = NULL; |
| 892 | |
| 893 | fw_node_put(device->node); |
| 894 | kfree(device->config_rom); |
| 895 | kfree(device); |
| 896 | fw_card_put(card); |
| 897 | } |
| 898 | |
| 899 | static struct device_type fw_device_type = { |
| 900 | .release = fw_device_release, |
| 901 | }; |
| 902 | |
| 903 | static bool is_fw_device(const struct device *dev) |
| 904 | { |
| 905 | return dev->type == &fw_device_type; |
| 906 | } |
| 907 | |
| 908 | static int update_unit(struct device *dev, void *data) |
| 909 | { |
| 910 | struct fw_unit *unit = fw_unit(dev); |
| 911 | struct fw_driver *driver = (struct fw_driver *)dev->driver; |
| 912 | |
| 913 | if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) { |
| 914 | device_lock(dev); |
| 915 | driver->update(unit); |
| 916 | device_unlock(dev); |
| 917 | } |
| 918 | |
| 919 | return 0; |
| 920 | } |
| 921 | |
| 922 | static void fw_device_update(struct work_struct *work) |
| 923 | { |
| 924 | struct fw_device *device = |
| 925 | container_of(work, struct fw_device, work.work); |
| 926 | |
| 927 | fw_device_cdev_update(device); |
| 928 | device_for_each_child(&device->device, NULL, update_unit); |
| 929 | } |
| 930 | |
| 931 | enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, }; |
| 932 | |
| 933 | static void set_broadcast_channel(struct fw_device *device, int generation) |
| 934 | { |
| 935 | struct fw_card *card = device->card; |
| 936 | __be32 data; |
| 937 | int rcode; |
| 938 | |
| 939 | if (!card->broadcast_channel_allocated) |
| 940 | return; |
| 941 | |
| 942 | /* |
| 943 | * The Broadcast_Channel Valid bit is required by nodes which want to |
| 944 | * transmit on this channel. Such transmissions are practically |
| 945 | * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required |
| 946 | * to be IRM capable and have a max_rec of 8 or more. We use this fact |
| 947 | * to narrow down to which nodes we send Broadcast_Channel updates. |
| 948 | */ |
| 949 | if (!device->irmc || device->max_rec < 8) |
| 950 | return; |
| 951 | |
| 952 | /* |
| 953 | * Some 1394-1995 nodes crash if this 1394a-2000 register is written. |
| 954 | * Perform a read test first. |
| 955 | */ |
| 956 | if (device->bc_implemented == BC_UNKNOWN) { |
| 957 | rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST, |
| 958 | device->node_id, generation, device->max_speed, |
| 959 | CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, |
| 960 | &data, 4); |
| 961 | switch (rcode) { |
| 962 | case RCODE_COMPLETE: |
| 963 | if (data & cpu_to_be32(1 << 31)) { |
| 964 | device->bc_implemented = BC_IMPLEMENTED; |
| 965 | break; |
| 966 | } |
| 967 | fallthrough; /* to case address error */ |
| 968 | case RCODE_ADDRESS_ERROR: |
| 969 | device->bc_implemented = BC_UNIMPLEMENTED; |
| 970 | } |
| 971 | } |
| 972 | |
| 973 | if (device->bc_implemented == BC_IMPLEMENTED) { |
| 974 | data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL | |
| 975 | BROADCAST_CHANNEL_VALID); |
| 976 | fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST, |
| 977 | device->node_id, generation, device->max_speed, |
| 978 | CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, |
| 979 | &data, 4); |
| 980 | } |
| 981 | } |
| 982 | |
| 983 | int fw_device_set_broadcast_channel(struct device *dev, void *gen) |
| 984 | { |
| 985 | if (is_fw_device(dev)) |
| 986 | set_broadcast_channel(fw_device(dev), (long)gen); |
| 987 | |
| 988 | return 0; |
| 989 | } |
| 990 | |
| 991 | static int compare_configuration_rom(struct device *dev, const void *data) |
| 992 | { |
| 993 | const struct fw_device *old = fw_device(dev); |
| 994 | const u32 *config_rom = data; |
| 995 | |
| 996 | if (!is_fw_device(dev)) |
| 997 | return 0; |
| 998 | |
| 999 | // Compare the bus information block and root_length/root_crc. |
| 1000 | return !memcmp(old->config_rom, config_rom, 6 * 4); |
| 1001 | } |
| 1002 | |
| 1003 | static void fw_device_init(struct work_struct *work) |
| 1004 | { |
| 1005 | struct fw_device *device = |
| 1006 | container_of(work, struct fw_device, work.work); |
| 1007 | struct fw_card *card = device->card; |
| 1008 | struct device *found; |
| 1009 | u32 minor; |
| 1010 | int ret; |
| 1011 | |
| 1012 | /* |
| 1013 | * All failure paths here set node->data to NULL, so that we |
| 1014 | * don't try to do device_for_each_child() on a kfree()'d |
| 1015 | * device. |
| 1016 | */ |
| 1017 | |
| 1018 | ret = read_config_rom(device, device->generation); |
| 1019 | if (ret != RCODE_COMPLETE) { |
| 1020 | if (device->config_rom_retries < MAX_RETRIES && |
| 1021 | atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { |
| 1022 | device->config_rom_retries++; |
| 1023 | fw_schedule_device_work(device, RETRY_DELAY); |
| 1024 | } else { |
| 1025 | if (device->node->link_on) |
| 1026 | fw_notice(card, "giving up on node %x: reading config rom failed: %s\n", |
| 1027 | device->node_id, |
| 1028 | fw_rcode_string(ret)); |
| 1029 | if (device->node == card->root_node) |
| 1030 | fw_schedule_bm_work(card, 0); |
| 1031 | fw_device_release(&device->device); |
| 1032 | } |
| 1033 | return; |
| 1034 | } |
| 1035 | |
| 1036 | // If a device was pending for deletion because its node went away but its bus info block |
| 1037 | // and root directory header matches that of a newly discovered device, revive the |
| 1038 | // existing fw_device. The newly allocated fw_device becomes obsolete instead. |
| 1039 | // |
| 1040 | // serialize config_rom access. |
| 1041 | scoped_guard(rwsem_read, &fw_device_rwsem) { |
| 1042 | found = device_find_child(card->device, device->config_rom, |
| 1043 | compare_configuration_rom); |
| 1044 | } |
| 1045 | if (found) { |
| 1046 | struct fw_device *reused = fw_device(found); |
| 1047 | |
| 1048 | if (atomic_cmpxchg(&reused->state, |
| 1049 | FW_DEVICE_GONE, |
| 1050 | FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { |
| 1051 | // serialize node access |
| 1052 | scoped_guard(spinlock_irq, &card->lock) { |
| 1053 | struct fw_node *current_node = device->node; |
| 1054 | struct fw_node *obsolete_node = reused->node; |
| 1055 | |
| 1056 | device->node = obsolete_node; |
| 1057 | device->node->data = device; |
| 1058 | reused->node = current_node; |
| 1059 | reused->node->data = reused; |
| 1060 | |
| 1061 | reused->max_speed = device->max_speed; |
| 1062 | reused->node_id = current_node->node_id; |
| 1063 | smp_wmb(); /* update node_id before generation */ |
| 1064 | reused->generation = card->generation; |
| 1065 | reused->config_rom_retries = 0; |
| 1066 | fw_notice(card, "rediscovered device %s\n", |
| 1067 | dev_name(found)); |
| 1068 | |
| 1069 | reused->workfn = fw_device_update; |
| 1070 | fw_schedule_device_work(reused, 0); |
| 1071 | |
| 1072 | if (current_node == card->root_node) |
| 1073 | fw_schedule_bm_work(card, 0); |
| 1074 | } |
| 1075 | |
| 1076 | put_device(found); |
| 1077 | fw_device_release(&device->device); |
| 1078 | |
| 1079 | return; |
| 1080 | } |
| 1081 | |
| 1082 | put_device(found); |
| 1083 | } |
| 1084 | |
| 1085 | device_initialize(&device->device); |
| 1086 | |
| 1087 | fw_device_get(device); |
| 1088 | |
| 1089 | // The index of allocated entry is used for minor identifier of device node. |
| 1090 | ret = xa_alloc(&fw_device_xa, &minor, device, XA_LIMIT(0, MINORMASK), GFP_KERNEL); |
| 1091 | if (ret < 0) |
| 1092 | goto error; |
| 1093 | |
| 1094 | device->device.bus = &fw_bus_type; |
| 1095 | device->device.type = &fw_device_type; |
| 1096 | device->device.parent = card->device; |
| 1097 | device->device.devt = MKDEV(fw_cdev_major, minor); |
| 1098 | dev_set_name(&device->device, "fw%d", minor); |
| 1099 | |
| 1100 | BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) < |
| 1101 | ARRAY_SIZE(fw_device_attributes) + |
| 1102 | ARRAY_SIZE(config_rom_attributes)); |
| 1103 | init_fw_attribute_group(&device->device, |
| 1104 | fw_device_attributes, |
| 1105 | &device->attribute_group); |
| 1106 | |
| 1107 | if (device_add(&device->device)) { |
| 1108 | fw_err(card, "failed to add device\n"); |
| 1109 | goto error_with_cdev; |
| 1110 | } |
| 1111 | |
| 1112 | create_units(device); |
| 1113 | |
| 1114 | /* |
| 1115 | * Transition the device to running state. If it got pulled |
| 1116 | * out from under us while we did the initialization work, we |
| 1117 | * have to shut down the device again here. Normally, though, |
| 1118 | * fw_node_event will be responsible for shutting it down when |
| 1119 | * necessary. We have to use the atomic cmpxchg here to avoid |
| 1120 | * racing with the FW_NODE_DESTROYED case in |
| 1121 | * fw_node_event(). |
| 1122 | */ |
| 1123 | if (atomic_cmpxchg(&device->state, |
| 1124 | FW_DEVICE_INITIALIZING, |
| 1125 | FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { |
| 1126 | device->workfn = fw_device_shutdown; |
| 1127 | fw_schedule_device_work(device, SHUTDOWN_DELAY); |
| 1128 | } else { |
| 1129 | fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n", |
| 1130 | dev_name(&device->device), |
| 1131 | device->config_rom[3], device->config_rom[4], |
| 1132 | 1 << device->max_speed); |
| 1133 | device->config_rom_retries = 0; |
| 1134 | |
| 1135 | set_broadcast_channel(device, device->generation); |
| 1136 | |
| 1137 | add_device_randomness(&device->config_rom[3], 8); |
| 1138 | } |
| 1139 | |
| 1140 | /* |
| 1141 | * Reschedule the IRM work if we just finished reading the |
| 1142 | * root node config rom. If this races with a bus reset we |
| 1143 | * just end up running the IRM work a couple of extra times - |
| 1144 | * pretty harmless. |
| 1145 | */ |
| 1146 | if (device->node == card->root_node) |
| 1147 | fw_schedule_bm_work(card, 0); |
| 1148 | |
| 1149 | return; |
| 1150 | |
| 1151 | error_with_cdev: |
| 1152 | xa_erase(&fw_device_xa, minor); |
| 1153 | error: |
| 1154 | fw_device_put(device); // fw_device_xa's reference. |
| 1155 | |
| 1156 | put_device(&device->device); /* our reference */ |
| 1157 | } |
| 1158 | |
| 1159 | /* Reread and compare bus info block and header of root directory */ |
| 1160 | static int reread_config_rom(struct fw_device *device, int generation, |
| 1161 | bool *changed) |
| 1162 | { |
| 1163 | u32 q; |
| 1164 | int i, rcode; |
| 1165 | |
| 1166 | for (i = 0; i < 6; i++) { |
| 1167 | rcode = read_rom(device, generation, i, &q); |
| 1168 | if (rcode != RCODE_COMPLETE) |
| 1169 | return rcode; |
| 1170 | |
| 1171 | if (i == 0 && q == 0) |
| 1172 | /* inaccessible (see read_config_rom); retry later */ |
| 1173 | return RCODE_BUSY; |
| 1174 | |
| 1175 | if (q != device->config_rom[i]) { |
| 1176 | *changed = true; |
| 1177 | return RCODE_COMPLETE; |
| 1178 | } |
| 1179 | } |
| 1180 | |
| 1181 | *changed = false; |
| 1182 | return RCODE_COMPLETE; |
| 1183 | } |
| 1184 | |
| 1185 | static void fw_device_refresh(struct work_struct *work) |
| 1186 | { |
| 1187 | struct fw_device *device = |
| 1188 | container_of(work, struct fw_device, work.work); |
| 1189 | struct fw_card *card = device->card; |
| 1190 | int ret, node_id = device->node_id; |
| 1191 | bool changed; |
| 1192 | |
| 1193 | ret = reread_config_rom(device, device->generation, &changed); |
| 1194 | if (ret != RCODE_COMPLETE) |
| 1195 | goto failed_config_rom; |
| 1196 | |
| 1197 | if (!changed) { |
| 1198 | if (atomic_cmpxchg(&device->state, |
| 1199 | FW_DEVICE_INITIALIZING, |
| 1200 | FW_DEVICE_RUNNING) == FW_DEVICE_GONE) |
| 1201 | goto gone; |
| 1202 | |
| 1203 | fw_device_update(work); |
| 1204 | device->config_rom_retries = 0; |
| 1205 | goto out; |
| 1206 | } |
| 1207 | |
| 1208 | /* |
| 1209 | * Something changed. We keep things simple and don't investigate |
| 1210 | * further. We just destroy all previous units and create new ones. |
| 1211 | */ |
| 1212 | device_for_each_child(&device->device, NULL, shutdown_unit); |
| 1213 | |
| 1214 | ret = read_config_rom(device, device->generation); |
| 1215 | if (ret != RCODE_COMPLETE) |
| 1216 | goto failed_config_rom; |
| 1217 | |
| 1218 | fw_device_cdev_update(device); |
| 1219 | create_units(device); |
| 1220 | |
| 1221 | /* Userspace may want to re-read attributes. */ |
| 1222 | kobject_uevent(&device->device.kobj, KOBJ_CHANGE); |
| 1223 | |
| 1224 | if (atomic_cmpxchg(&device->state, |
| 1225 | FW_DEVICE_INITIALIZING, |
| 1226 | FW_DEVICE_RUNNING) == FW_DEVICE_GONE) |
| 1227 | goto gone; |
| 1228 | |
| 1229 | fw_notice(card, "refreshed device %s\n", dev_name(&device->device)); |
| 1230 | device->config_rom_retries = 0; |
| 1231 | goto out; |
| 1232 | |
| 1233 | failed_config_rom: |
| 1234 | if (device->config_rom_retries < MAX_RETRIES && |
| 1235 | atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { |
| 1236 | device->config_rom_retries++; |
| 1237 | fw_schedule_device_work(device, RETRY_DELAY); |
| 1238 | return; |
| 1239 | } |
| 1240 | |
| 1241 | fw_notice(card, "giving up on refresh of device %s: %s\n", |
| 1242 | dev_name(&device->device), fw_rcode_string(ret)); |
| 1243 | gone: |
| 1244 | atomic_set(&device->state, FW_DEVICE_GONE); |
| 1245 | device->workfn = fw_device_shutdown; |
| 1246 | fw_schedule_device_work(device, SHUTDOWN_DELAY); |
| 1247 | out: |
| 1248 | if (node_id == card->root_node->node_id) |
| 1249 | fw_schedule_bm_work(card, 0); |
| 1250 | } |
| 1251 | |
| 1252 | static void fw_device_workfn(struct work_struct *work) |
| 1253 | { |
| 1254 | struct fw_device *device = container_of(to_delayed_work(work), |
| 1255 | struct fw_device, work); |
| 1256 | device->workfn(work); |
| 1257 | } |
| 1258 | |
| 1259 | void fw_node_event(struct fw_card *card, struct fw_node *node, int event) |
| 1260 | { |
| 1261 | struct fw_device *device; |
| 1262 | |
| 1263 | switch (event) { |
| 1264 | case FW_NODE_CREATED: |
| 1265 | /* |
| 1266 | * Attempt to scan the node, regardless whether its self ID has |
| 1267 | * the L (link active) flag set or not. Some broken devices |
| 1268 | * send L=0 but have an up-and-running link; others send L=1 |
| 1269 | * without actually having a link. |
| 1270 | */ |
| 1271 | create: |
| 1272 | device = kzalloc(sizeof(*device), GFP_ATOMIC); |
| 1273 | if (device == NULL) |
| 1274 | break; |
| 1275 | |
| 1276 | /* |
| 1277 | * Do minimal initialization of the device here, the |
| 1278 | * rest will happen in fw_device_init(). |
| 1279 | * |
| 1280 | * Attention: A lot of things, even fw_device_get(), |
| 1281 | * cannot be done before fw_device_init() finished! |
| 1282 | * You can basically just check device->state and |
| 1283 | * schedule work until then, but only while holding |
| 1284 | * card->lock. |
| 1285 | */ |
| 1286 | atomic_set(&device->state, FW_DEVICE_INITIALIZING); |
| 1287 | device->card = fw_card_get(card); |
| 1288 | device->node = fw_node_get(node); |
| 1289 | device->node_id = node->node_id; |
| 1290 | device->generation = card->generation; |
| 1291 | device->is_local = node == card->local_node; |
| 1292 | mutex_init(&device->client_list_mutex); |
| 1293 | INIT_LIST_HEAD(&device->client_list); |
| 1294 | |
| 1295 | /* |
| 1296 | * Set the node data to point back to this device so |
| 1297 | * FW_NODE_UPDATED callbacks can update the node_id |
| 1298 | * and generation for the device. |
| 1299 | */ |
| 1300 | node->data = device; |
| 1301 | |
| 1302 | /* |
| 1303 | * Many devices are slow to respond after bus resets, |
| 1304 | * especially if they are bus powered and go through |
| 1305 | * power-up after getting plugged in. We schedule the |
| 1306 | * first config rom scan half a second after bus reset. |
| 1307 | */ |
| 1308 | device->workfn = fw_device_init; |
| 1309 | INIT_DELAYED_WORK(&device->work, fw_device_workfn); |
| 1310 | fw_schedule_device_work(device, INITIAL_DELAY); |
| 1311 | break; |
| 1312 | |
| 1313 | case FW_NODE_INITIATED_RESET: |
| 1314 | case FW_NODE_LINK_ON: |
| 1315 | device = node->data; |
| 1316 | if (device == NULL) |
| 1317 | goto create; |
| 1318 | |
| 1319 | device->node_id = node->node_id; |
| 1320 | smp_wmb(); /* update node_id before generation */ |
| 1321 | device->generation = card->generation; |
| 1322 | if (atomic_cmpxchg(&device->state, |
| 1323 | FW_DEVICE_RUNNING, |
| 1324 | FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) { |
| 1325 | device->workfn = fw_device_refresh; |
| 1326 | fw_schedule_device_work(device, |
| 1327 | device->is_local ? 0 : INITIAL_DELAY); |
| 1328 | } |
| 1329 | break; |
| 1330 | |
| 1331 | case FW_NODE_UPDATED: |
| 1332 | device = node->data; |
| 1333 | if (device == NULL) |
| 1334 | break; |
| 1335 | |
| 1336 | device->node_id = node->node_id; |
| 1337 | smp_wmb(); /* update node_id before generation */ |
| 1338 | device->generation = card->generation; |
| 1339 | if (atomic_read(&device->state) == FW_DEVICE_RUNNING) { |
| 1340 | device->workfn = fw_device_update; |
| 1341 | fw_schedule_device_work(device, 0); |
| 1342 | } |
| 1343 | break; |
| 1344 | |
| 1345 | case FW_NODE_DESTROYED: |
| 1346 | case FW_NODE_LINK_OFF: |
| 1347 | if (!node->data) |
| 1348 | break; |
| 1349 | |
| 1350 | /* |
| 1351 | * Destroy the device associated with the node. There |
| 1352 | * are two cases here: either the device is fully |
| 1353 | * initialized (FW_DEVICE_RUNNING) or we're in the |
| 1354 | * process of reading its config rom |
| 1355 | * (FW_DEVICE_INITIALIZING). If it is fully |
| 1356 | * initialized we can reuse device->work to schedule a |
| 1357 | * full fw_device_shutdown(). If not, there's work |
| 1358 | * scheduled to read it's config rom, and we just put |
| 1359 | * the device in shutdown state to have that code fail |
| 1360 | * to create the device. |
| 1361 | */ |
| 1362 | device = node->data; |
| 1363 | if (atomic_xchg(&device->state, |
| 1364 | FW_DEVICE_GONE) == FW_DEVICE_RUNNING) { |
| 1365 | device->workfn = fw_device_shutdown; |
| 1366 | fw_schedule_device_work(device, |
| 1367 | list_empty(&card->link) ? 0 : SHUTDOWN_DELAY); |
| 1368 | } |
| 1369 | break; |
| 1370 | } |
| 1371 | } |
| 1372 | |
| 1373 | #ifdef CONFIG_FIREWIRE_KUNIT_DEVICE_ATTRIBUTE_TEST |
| 1374 | #include "device-attribute-test.c" |
| 1375 | #endif |