| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * AMD Cryptographic Coprocessor (CCP) driver |
| 4 | * |
| 5 | * Copyright (C) 2013-2019 Advanced Micro Devices, Inc. |
| 6 | * |
| 7 | * Author: Tom Lendacky <thomas.lendacky@amd.com> |
| 8 | * Author: Gary R Hook <gary.hook@amd.com> |
| 9 | */ |
| 10 | |
| 11 | #include <crypto/des.h> |
| 12 | #include <crypto/scatterwalk.h> |
| 13 | #include <crypto/utils.h> |
| 14 | #include <linux/ccp.h> |
| 15 | #include <linux/dma-mapping.h> |
| 16 | #include <linux/errno.h> |
| 17 | #include <linux/kernel.h> |
| 18 | #include <linux/module.h> |
| 19 | |
| 20 | #include "ccp-dev.h" |
| 21 | |
| 22 | /* SHA initial context values */ |
| 23 | static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = { |
| 24 | cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1), |
| 25 | cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3), |
| 26 | cpu_to_be32(SHA1_H4), |
| 27 | }; |
| 28 | |
| 29 | static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = { |
| 30 | cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1), |
| 31 | cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3), |
| 32 | cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5), |
| 33 | cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7), |
| 34 | }; |
| 35 | |
| 36 | static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = { |
| 37 | cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1), |
| 38 | cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3), |
| 39 | cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5), |
| 40 | cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7), |
| 41 | }; |
| 42 | |
| 43 | static const __be64 ccp_sha384_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = { |
| 44 | cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1), |
| 45 | cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3), |
| 46 | cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5), |
| 47 | cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7), |
| 48 | }; |
| 49 | |
| 50 | static const __be64 ccp_sha512_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = { |
| 51 | cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1), |
| 52 | cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3), |
| 53 | cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5), |
| 54 | cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7), |
| 55 | }; |
| 56 | |
| 57 | #define CCP_NEW_JOBID(ccp) ((ccp->vdata->version == CCP_VERSION(3, 0)) ? \ |
| 58 | ccp_gen_jobid(ccp) : 0) |
| 59 | |
| 60 | static u32 ccp_gen_jobid(struct ccp_device *ccp) |
| 61 | { |
| 62 | return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK; |
| 63 | } |
| 64 | |
| 65 | static void ccp_sg_free(struct ccp_sg_workarea *wa) |
| 66 | { |
| 67 | if (wa->dma_count) |
| 68 | dma_unmap_sg(wa->dma_dev, wa->dma_sg_head, wa->nents, wa->dma_dir); |
| 69 | |
| 70 | wa->dma_count = 0; |
| 71 | } |
| 72 | |
| 73 | static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev, |
| 74 | struct scatterlist *sg, u64 len, |
| 75 | enum dma_data_direction dma_dir) |
| 76 | { |
| 77 | memset(wa, 0, sizeof(*wa)); |
| 78 | |
| 79 | wa->sg = sg; |
| 80 | if (!sg) |
| 81 | return 0; |
| 82 | |
| 83 | wa->nents = sg_nents_for_len(sg, len); |
| 84 | if (wa->nents < 0) |
| 85 | return wa->nents; |
| 86 | |
| 87 | wa->bytes_left = len; |
| 88 | wa->sg_used = 0; |
| 89 | |
| 90 | if (len == 0) |
| 91 | return 0; |
| 92 | |
| 93 | if (dma_dir == DMA_NONE) |
| 94 | return 0; |
| 95 | |
| 96 | wa->dma_sg = sg; |
| 97 | wa->dma_sg_head = sg; |
| 98 | wa->dma_dev = dev; |
| 99 | wa->dma_dir = dma_dir; |
| 100 | wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir); |
| 101 | if (!wa->dma_count) |
| 102 | return -ENOMEM; |
| 103 | |
| 104 | return 0; |
| 105 | } |
| 106 | |
| 107 | static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len) |
| 108 | { |
| 109 | unsigned int nbytes = min_t(u64, len, wa->bytes_left); |
| 110 | unsigned int sg_combined_len = 0; |
| 111 | |
| 112 | if (!wa->sg) |
| 113 | return; |
| 114 | |
| 115 | wa->sg_used += nbytes; |
| 116 | wa->bytes_left -= nbytes; |
| 117 | if (wa->sg_used == sg_dma_len(wa->dma_sg)) { |
| 118 | /* Advance to the next DMA scatterlist entry */ |
| 119 | wa->dma_sg = sg_next(wa->dma_sg); |
| 120 | |
| 121 | /* In the case that the DMA mapped scatterlist has entries |
| 122 | * that have been merged, the non-DMA mapped scatterlist |
| 123 | * must be advanced multiple times for each merged entry. |
| 124 | * This ensures that the current non-DMA mapped entry |
| 125 | * corresponds to the current DMA mapped entry. |
| 126 | */ |
| 127 | do { |
| 128 | sg_combined_len += wa->sg->length; |
| 129 | wa->sg = sg_next(wa->sg); |
| 130 | } while (wa->sg_used > sg_combined_len); |
| 131 | |
| 132 | wa->sg_used = 0; |
| 133 | } |
| 134 | } |
| 135 | |
| 136 | static void ccp_dm_free(struct ccp_dm_workarea *wa) |
| 137 | { |
| 138 | if (wa->length <= CCP_DMAPOOL_MAX_SIZE) { |
| 139 | if (wa->address) |
| 140 | dma_pool_free(wa->dma_pool, wa->address, |
| 141 | wa->dma.address); |
| 142 | } else { |
| 143 | if (wa->dma.address) |
| 144 | dma_unmap_single(wa->dev, wa->dma.address, wa->length, |
| 145 | wa->dma.dir); |
| 146 | kfree(wa->address); |
| 147 | } |
| 148 | |
| 149 | wa->address = NULL; |
| 150 | wa->dma.address = 0; |
| 151 | } |
| 152 | |
| 153 | static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa, |
| 154 | struct ccp_cmd_queue *cmd_q, |
| 155 | unsigned int len, |
| 156 | enum dma_data_direction dir) |
| 157 | { |
| 158 | memset(wa, 0, sizeof(*wa)); |
| 159 | |
| 160 | if (!len) |
| 161 | return 0; |
| 162 | |
| 163 | wa->dev = cmd_q->ccp->dev; |
| 164 | wa->length = len; |
| 165 | |
| 166 | if (len <= CCP_DMAPOOL_MAX_SIZE) { |
| 167 | wa->dma_pool = cmd_q->dma_pool; |
| 168 | |
| 169 | wa->address = dma_pool_zalloc(wa->dma_pool, GFP_KERNEL, |
| 170 | &wa->dma.address); |
| 171 | if (!wa->address) |
| 172 | return -ENOMEM; |
| 173 | |
| 174 | wa->dma.length = CCP_DMAPOOL_MAX_SIZE; |
| 175 | |
| 176 | } else { |
| 177 | wa->address = kzalloc(len, GFP_KERNEL); |
| 178 | if (!wa->address) |
| 179 | return -ENOMEM; |
| 180 | |
| 181 | wa->dma.address = dma_map_single(wa->dev, wa->address, len, |
| 182 | dir); |
| 183 | if (dma_mapping_error(wa->dev, wa->dma.address)) { |
| 184 | kfree(wa->address); |
| 185 | wa->address = NULL; |
| 186 | return -ENOMEM; |
| 187 | } |
| 188 | |
| 189 | wa->dma.length = len; |
| 190 | } |
| 191 | wa->dma.dir = dir; |
| 192 | |
| 193 | return 0; |
| 194 | } |
| 195 | |
| 196 | static int ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset, |
| 197 | struct scatterlist *sg, unsigned int sg_offset, |
| 198 | unsigned int len) |
| 199 | { |
| 200 | WARN_ON(!wa->address); |
| 201 | |
| 202 | if (len > (wa->length - wa_offset)) |
| 203 | return -EINVAL; |
| 204 | |
| 205 | scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len, |
| 206 | 0); |
| 207 | return 0; |
| 208 | } |
| 209 | |
| 210 | static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset, |
| 211 | struct scatterlist *sg, unsigned int sg_offset, |
| 212 | unsigned int len) |
| 213 | { |
| 214 | WARN_ON(!wa->address); |
| 215 | |
| 216 | scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len, |
| 217 | 1); |
| 218 | } |
| 219 | |
| 220 | static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa, |
| 221 | unsigned int wa_offset, |
| 222 | struct scatterlist *sg, |
| 223 | unsigned int sg_offset, |
| 224 | unsigned int len) |
| 225 | { |
| 226 | u8 *p, *q; |
| 227 | int rc; |
| 228 | |
| 229 | rc = ccp_set_dm_area(wa, wa_offset, sg, sg_offset, len); |
| 230 | if (rc) |
| 231 | return rc; |
| 232 | |
| 233 | p = wa->address + wa_offset; |
| 234 | q = p + len - 1; |
| 235 | while (p < q) { |
| 236 | *p = *p ^ *q; |
| 237 | *q = *p ^ *q; |
| 238 | *p = *p ^ *q; |
| 239 | p++; |
| 240 | q--; |
| 241 | } |
| 242 | return 0; |
| 243 | } |
| 244 | |
| 245 | static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa, |
| 246 | unsigned int wa_offset, |
| 247 | struct scatterlist *sg, |
| 248 | unsigned int sg_offset, |
| 249 | unsigned int len) |
| 250 | { |
| 251 | u8 *p, *q; |
| 252 | |
| 253 | p = wa->address + wa_offset; |
| 254 | q = p + len - 1; |
| 255 | while (p < q) { |
| 256 | *p = *p ^ *q; |
| 257 | *q = *p ^ *q; |
| 258 | *p = *p ^ *q; |
| 259 | p++; |
| 260 | q--; |
| 261 | } |
| 262 | |
| 263 | ccp_get_dm_area(wa, wa_offset, sg, sg_offset, len); |
| 264 | } |
| 265 | |
| 266 | static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q) |
| 267 | { |
| 268 | ccp_dm_free(&data->dm_wa); |
| 269 | ccp_sg_free(&data->sg_wa); |
| 270 | } |
| 271 | |
| 272 | static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q, |
| 273 | struct scatterlist *sg, u64 sg_len, |
| 274 | unsigned int dm_len, |
| 275 | enum dma_data_direction dir) |
| 276 | { |
| 277 | int ret; |
| 278 | |
| 279 | memset(data, 0, sizeof(*data)); |
| 280 | |
| 281 | ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len, |
| 282 | dir); |
| 283 | if (ret) |
| 284 | goto e_err; |
| 285 | |
| 286 | ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir); |
| 287 | if (ret) |
| 288 | goto e_err; |
| 289 | |
| 290 | return 0; |
| 291 | |
| 292 | e_err: |
| 293 | ccp_free_data(data, cmd_q); |
| 294 | |
| 295 | return ret; |
| 296 | } |
| 297 | |
| 298 | static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from) |
| 299 | { |
| 300 | struct ccp_sg_workarea *sg_wa = &data->sg_wa; |
| 301 | struct ccp_dm_workarea *dm_wa = &data->dm_wa; |
| 302 | unsigned int buf_count, nbytes; |
| 303 | |
| 304 | /* Clear the buffer if setting it */ |
| 305 | if (!from) |
| 306 | memset(dm_wa->address, 0, dm_wa->length); |
| 307 | |
| 308 | if (!sg_wa->sg) |
| 309 | return 0; |
| 310 | |
| 311 | /* Perform the copy operation |
| 312 | * nbytes will always be <= UINT_MAX because dm_wa->length is |
| 313 | * an unsigned int |
| 314 | */ |
| 315 | nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length); |
| 316 | scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used, |
| 317 | nbytes, from); |
| 318 | |
| 319 | /* Update the structures and generate the count */ |
| 320 | buf_count = 0; |
| 321 | while (sg_wa->bytes_left && (buf_count < dm_wa->length)) { |
| 322 | nbytes = min(sg_dma_len(sg_wa->dma_sg) - sg_wa->sg_used, |
| 323 | dm_wa->length - buf_count); |
| 324 | nbytes = min_t(u64, sg_wa->bytes_left, nbytes); |
| 325 | |
| 326 | buf_count += nbytes; |
| 327 | ccp_update_sg_workarea(sg_wa, nbytes); |
| 328 | } |
| 329 | |
| 330 | return buf_count; |
| 331 | } |
| 332 | |
| 333 | static unsigned int ccp_fill_queue_buf(struct ccp_data *data) |
| 334 | { |
| 335 | return ccp_queue_buf(data, 0); |
| 336 | } |
| 337 | |
| 338 | static unsigned int ccp_empty_queue_buf(struct ccp_data *data) |
| 339 | { |
| 340 | return ccp_queue_buf(data, 1); |
| 341 | } |
| 342 | |
| 343 | static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst, |
| 344 | struct ccp_op *op, unsigned int block_size, |
| 345 | bool blocksize_op) |
| 346 | { |
| 347 | unsigned int sg_src_len, sg_dst_len, op_len; |
| 348 | |
| 349 | /* The CCP can only DMA from/to one address each per operation. This |
| 350 | * requires that we find the smallest DMA area between the source |
| 351 | * and destination. The resulting len values will always be <= UINT_MAX |
| 352 | * because the dma length is an unsigned int. |
| 353 | */ |
| 354 | sg_src_len = sg_dma_len(src->sg_wa.dma_sg) - src->sg_wa.sg_used; |
| 355 | sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len); |
| 356 | |
| 357 | if (dst) { |
| 358 | sg_dst_len = sg_dma_len(dst->sg_wa.dma_sg) - dst->sg_wa.sg_used; |
| 359 | sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len); |
| 360 | op_len = min(sg_src_len, sg_dst_len); |
| 361 | } else { |
| 362 | op_len = sg_src_len; |
| 363 | } |
| 364 | |
| 365 | /* The data operation length will be at least block_size in length |
| 366 | * or the smaller of available sg room remaining for the source or |
| 367 | * the destination |
| 368 | */ |
| 369 | op_len = max(op_len, block_size); |
| 370 | |
| 371 | /* Unless we have to buffer data, there's no reason to wait */ |
| 372 | op->soc = 0; |
| 373 | |
| 374 | if (sg_src_len < block_size) { |
| 375 | /* Not enough data in the sg element, so it |
| 376 | * needs to be buffered into a blocksize chunk |
| 377 | */ |
| 378 | int cp_len = ccp_fill_queue_buf(src); |
| 379 | |
| 380 | op->soc = 1; |
| 381 | op->src.u.dma.address = src->dm_wa.dma.address; |
| 382 | op->src.u.dma.offset = 0; |
| 383 | op->src.u.dma.length = (blocksize_op) ? block_size : cp_len; |
| 384 | } else { |
| 385 | /* Enough data in the sg element, but we need to |
| 386 | * adjust for any previously copied data |
| 387 | */ |
| 388 | op->src.u.dma.address = sg_dma_address(src->sg_wa.dma_sg); |
| 389 | op->src.u.dma.offset = src->sg_wa.sg_used; |
| 390 | op->src.u.dma.length = op_len & ~(block_size - 1); |
| 391 | |
| 392 | ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length); |
| 393 | } |
| 394 | |
| 395 | if (dst) { |
| 396 | if (sg_dst_len < block_size) { |
| 397 | /* Not enough room in the sg element or we're on the |
| 398 | * last piece of data (when using padding), so the |
| 399 | * output needs to be buffered into a blocksize chunk |
| 400 | */ |
| 401 | op->soc = 1; |
| 402 | op->dst.u.dma.address = dst->dm_wa.dma.address; |
| 403 | op->dst.u.dma.offset = 0; |
| 404 | op->dst.u.dma.length = op->src.u.dma.length; |
| 405 | } else { |
| 406 | /* Enough room in the sg element, but we need to |
| 407 | * adjust for any previously used area |
| 408 | */ |
| 409 | op->dst.u.dma.address = sg_dma_address(dst->sg_wa.dma_sg); |
| 410 | op->dst.u.dma.offset = dst->sg_wa.sg_used; |
| 411 | op->dst.u.dma.length = op->src.u.dma.length; |
| 412 | } |
| 413 | } |
| 414 | } |
| 415 | |
| 416 | static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst, |
| 417 | struct ccp_op *op) |
| 418 | { |
| 419 | op->init = 0; |
| 420 | |
| 421 | if (dst) { |
| 422 | if (op->dst.u.dma.address == dst->dm_wa.dma.address) |
| 423 | ccp_empty_queue_buf(dst); |
| 424 | else |
| 425 | ccp_update_sg_workarea(&dst->sg_wa, |
| 426 | op->dst.u.dma.length); |
| 427 | } |
| 428 | } |
| 429 | |
| 430 | static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q, |
| 431 | struct ccp_dm_workarea *wa, u32 jobid, u32 sb, |
| 432 | u32 byte_swap, bool from) |
| 433 | { |
| 434 | struct ccp_op op; |
| 435 | |
| 436 | memset(&op, 0, sizeof(op)); |
| 437 | |
| 438 | op.cmd_q = cmd_q; |
| 439 | op.jobid = jobid; |
| 440 | op.eom = 1; |
| 441 | |
| 442 | if (from) { |
| 443 | op.soc = 1; |
| 444 | op.src.type = CCP_MEMTYPE_SB; |
| 445 | op.src.u.sb = sb; |
| 446 | op.dst.type = CCP_MEMTYPE_SYSTEM; |
| 447 | op.dst.u.dma.address = wa->dma.address; |
| 448 | op.dst.u.dma.length = wa->length; |
| 449 | } else { |
| 450 | op.src.type = CCP_MEMTYPE_SYSTEM; |
| 451 | op.src.u.dma.address = wa->dma.address; |
| 452 | op.src.u.dma.length = wa->length; |
| 453 | op.dst.type = CCP_MEMTYPE_SB; |
| 454 | op.dst.u.sb = sb; |
| 455 | } |
| 456 | |
| 457 | op.u.passthru.byte_swap = byte_swap; |
| 458 | |
| 459 | return cmd_q->ccp->vdata->perform->passthru(&op); |
| 460 | } |
| 461 | |
| 462 | static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q, |
| 463 | struct ccp_dm_workarea *wa, u32 jobid, u32 sb, |
| 464 | u32 byte_swap) |
| 465 | { |
| 466 | return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false); |
| 467 | } |
| 468 | |
| 469 | static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q, |
| 470 | struct ccp_dm_workarea *wa, u32 jobid, u32 sb, |
| 471 | u32 byte_swap) |
| 472 | { |
| 473 | return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true); |
| 474 | } |
| 475 | |
| 476 | static noinline_for_stack int |
| 477 | ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| 478 | { |
| 479 | struct ccp_aes_engine *aes = &cmd->u.aes; |
| 480 | struct ccp_dm_workarea key, ctx; |
| 481 | struct ccp_data src; |
| 482 | struct ccp_op op; |
| 483 | unsigned int dm_offset; |
| 484 | int ret; |
| 485 | |
| 486 | if (!((aes->key_len == AES_KEYSIZE_128) || |
| 487 | (aes->key_len == AES_KEYSIZE_192) || |
| 488 | (aes->key_len == AES_KEYSIZE_256))) |
| 489 | return -EINVAL; |
| 490 | |
| 491 | if (aes->src_len & (AES_BLOCK_SIZE - 1)) |
| 492 | return -EINVAL; |
| 493 | |
| 494 | if (aes->iv_len != AES_BLOCK_SIZE) |
| 495 | return -EINVAL; |
| 496 | |
| 497 | if (!aes->key || !aes->iv || !aes->src) |
| 498 | return -EINVAL; |
| 499 | |
| 500 | if (aes->cmac_final) { |
| 501 | if (aes->cmac_key_len != AES_BLOCK_SIZE) |
| 502 | return -EINVAL; |
| 503 | |
| 504 | if (!aes->cmac_key) |
| 505 | return -EINVAL; |
| 506 | } |
| 507 | |
| 508 | BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1); |
| 509 | BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1); |
| 510 | |
| 511 | ret = -EIO; |
| 512 | memset(&op, 0, sizeof(op)); |
| 513 | op.cmd_q = cmd_q; |
| 514 | op.jobid = CCP_NEW_JOBID(cmd_q->ccp); |
| 515 | op.sb_key = cmd_q->sb_key; |
| 516 | op.sb_ctx = cmd_q->sb_ctx; |
| 517 | op.init = 1; |
| 518 | op.u.aes.type = aes->type; |
| 519 | op.u.aes.mode = aes->mode; |
| 520 | op.u.aes.action = aes->action; |
| 521 | |
| 522 | /* All supported key sizes fit in a single (32-byte) SB entry |
| 523 | * and must be in little endian format. Use the 256-bit byte |
| 524 | * swap passthru option to convert from big endian to little |
| 525 | * endian. |
| 526 | */ |
| 527 | ret = ccp_init_dm_workarea(&key, cmd_q, |
| 528 | CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES, |
| 529 | DMA_TO_DEVICE); |
| 530 | if (ret) |
| 531 | return ret; |
| 532 | |
| 533 | dm_offset = CCP_SB_BYTES - aes->key_len; |
| 534 | ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len); |
| 535 | if (ret) |
| 536 | goto e_key; |
| 537 | ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, |
| 538 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 539 | if (ret) { |
| 540 | cmd->engine_error = cmd_q->cmd_error; |
| 541 | goto e_key; |
| 542 | } |
| 543 | |
| 544 | /* The AES context fits in a single (32-byte) SB entry and |
| 545 | * must be in little endian format. Use the 256-bit byte swap |
| 546 | * passthru option to convert from big endian to little endian. |
| 547 | */ |
| 548 | ret = ccp_init_dm_workarea(&ctx, cmd_q, |
| 549 | CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES, |
| 550 | DMA_BIDIRECTIONAL); |
| 551 | if (ret) |
| 552 | goto e_key; |
| 553 | |
| 554 | dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; |
| 555 | ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); |
| 556 | if (ret) |
| 557 | goto e_ctx; |
| 558 | ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| 559 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 560 | if (ret) { |
| 561 | cmd->engine_error = cmd_q->cmd_error; |
| 562 | goto e_ctx; |
| 563 | } |
| 564 | |
| 565 | /* Send data to the CCP AES engine */ |
| 566 | ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len, |
| 567 | AES_BLOCK_SIZE, DMA_TO_DEVICE); |
| 568 | if (ret) |
| 569 | goto e_ctx; |
| 570 | |
| 571 | while (src.sg_wa.bytes_left) { |
| 572 | ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true); |
| 573 | if (aes->cmac_final && !src.sg_wa.bytes_left) { |
| 574 | op.eom = 1; |
| 575 | |
| 576 | /* Push the K1/K2 key to the CCP now */ |
| 577 | ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, |
| 578 | op.sb_ctx, |
| 579 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 580 | if (ret) { |
| 581 | cmd->engine_error = cmd_q->cmd_error; |
| 582 | goto e_src; |
| 583 | } |
| 584 | |
| 585 | ret = ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0, |
| 586 | aes->cmac_key_len); |
| 587 | if (ret) |
| 588 | goto e_src; |
| 589 | ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| 590 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 591 | if (ret) { |
| 592 | cmd->engine_error = cmd_q->cmd_error; |
| 593 | goto e_src; |
| 594 | } |
| 595 | } |
| 596 | |
| 597 | ret = cmd_q->ccp->vdata->perform->aes(&op); |
| 598 | if (ret) { |
| 599 | cmd->engine_error = cmd_q->cmd_error; |
| 600 | goto e_src; |
| 601 | } |
| 602 | |
| 603 | ccp_process_data(&src, NULL, &op); |
| 604 | } |
| 605 | |
| 606 | /* Retrieve the AES context - convert from LE to BE using |
| 607 | * 32-byte (256-bit) byteswapping |
| 608 | */ |
| 609 | ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| 610 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 611 | if (ret) { |
| 612 | cmd->engine_error = cmd_q->cmd_error; |
| 613 | goto e_src; |
| 614 | } |
| 615 | |
| 616 | /* ...but we only need AES_BLOCK_SIZE bytes */ |
| 617 | dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; |
| 618 | ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); |
| 619 | |
| 620 | e_src: |
| 621 | ccp_free_data(&src, cmd_q); |
| 622 | |
| 623 | e_ctx: |
| 624 | ccp_dm_free(&ctx); |
| 625 | |
| 626 | e_key: |
| 627 | ccp_dm_free(&key); |
| 628 | |
| 629 | return ret; |
| 630 | } |
| 631 | |
| 632 | static noinline_for_stack int |
| 633 | ccp_run_aes_gcm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| 634 | { |
| 635 | struct ccp_aes_engine *aes = &cmd->u.aes; |
| 636 | struct ccp_dm_workarea key, ctx, final_wa, tag; |
| 637 | struct ccp_data src, dst; |
| 638 | struct ccp_data aad; |
| 639 | struct ccp_op op; |
| 640 | unsigned int dm_offset; |
| 641 | unsigned int authsize; |
| 642 | unsigned int jobid; |
| 643 | unsigned int ilen; |
| 644 | bool in_place = true; /* Default value */ |
| 645 | __be64 *final; |
| 646 | int ret; |
| 647 | |
| 648 | struct scatterlist *p_inp, sg_inp[2]; |
| 649 | struct scatterlist *p_tag, sg_tag[2]; |
| 650 | struct scatterlist *p_outp, sg_outp[2]; |
| 651 | struct scatterlist *p_aad; |
| 652 | |
| 653 | if (!aes->iv) |
| 654 | return -EINVAL; |
| 655 | |
| 656 | if (!((aes->key_len == AES_KEYSIZE_128) || |
| 657 | (aes->key_len == AES_KEYSIZE_192) || |
| 658 | (aes->key_len == AES_KEYSIZE_256))) |
| 659 | return -EINVAL; |
| 660 | |
| 661 | if (!aes->key) /* Gotta have a key SGL */ |
| 662 | return -EINVAL; |
| 663 | |
| 664 | /* Zero defaults to 16 bytes, the maximum size */ |
| 665 | authsize = aes->authsize ? aes->authsize : AES_BLOCK_SIZE; |
| 666 | switch (authsize) { |
| 667 | case 16: |
| 668 | case 15: |
| 669 | case 14: |
| 670 | case 13: |
| 671 | case 12: |
| 672 | case 8: |
| 673 | case 4: |
| 674 | break; |
| 675 | default: |
| 676 | return -EINVAL; |
| 677 | } |
| 678 | |
| 679 | /* First, decompose the source buffer into AAD & PT, |
| 680 | * and the destination buffer into AAD, CT & tag, or |
| 681 | * the input into CT & tag. |
| 682 | * It is expected that the input and output SGs will |
| 683 | * be valid, even if the AAD and input lengths are 0. |
| 684 | */ |
| 685 | p_aad = aes->src; |
| 686 | p_inp = scatterwalk_ffwd(sg_inp, aes->src, aes->aad_len); |
| 687 | p_outp = scatterwalk_ffwd(sg_outp, aes->dst, aes->aad_len); |
| 688 | if (aes->action == CCP_AES_ACTION_ENCRYPT) { |
| 689 | ilen = aes->src_len; |
| 690 | p_tag = scatterwalk_ffwd(sg_tag, p_outp, ilen); |
| 691 | } else { |
| 692 | /* Input length for decryption includes tag */ |
| 693 | ilen = aes->src_len - authsize; |
| 694 | p_tag = scatterwalk_ffwd(sg_tag, p_inp, ilen); |
| 695 | } |
| 696 | |
| 697 | jobid = CCP_NEW_JOBID(cmd_q->ccp); |
| 698 | |
| 699 | memset(&op, 0, sizeof(op)); |
| 700 | op.cmd_q = cmd_q; |
| 701 | op.jobid = jobid; |
| 702 | op.sb_key = cmd_q->sb_key; /* Pre-allocated */ |
| 703 | op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */ |
| 704 | op.init = 1; |
| 705 | op.u.aes.type = aes->type; |
| 706 | |
| 707 | /* Copy the key to the LSB */ |
| 708 | ret = ccp_init_dm_workarea(&key, cmd_q, |
| 709 | CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES, |
| 710 | DMA_TO_DEVICE); |
| 711 | if (ret) |
| 712 | return ret; |
| 713 | |
| 714 | dm_offset = CCP_SB_BYTES - aes->key_len; |
| 715 | ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len); |
| 716 | if (ret) |
| 717 | goto e_key; |
| 718 | ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, |
| 719 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 720 | if (ret) { |
| 721 | cmd->engine_error = cmd_q->cmd_error; |
| 722 | goto e_key; |
| 723 | } |
| 724 | |
| 725 | /* Copy the context (IV) to the LSB. |
| 726 | * There is an assumption here that the IV is 96 bits in length, plus |
| 727 | * a nonce of 32 bits. If no IV is present, use a zeroed buffer. |
| 728 | */ |
| 729 | ret = ccp_init_dm_workarea(&ctx, cmd_q, |
| 730 | CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES, |
| 731 | DMA_BIDIRECTIONAL); |
| 732 | if (ret) |
| 733 | goto e_key; |
| 734 | |
| 735 | dm_offset = CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES - aes->iv_len; |
| 736 | ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); |
| 737 | if (ret) |
| 738 | goto e_ctx; |
| 739 | |
| 740 | ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| 741 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 742 | if (ret) { |
| 743 | cmd->engine_error = cmd_q->cmd_error; |
| 744 | goto e_ctx; |
| 745 | } |
| 746 | |
| 747 | op.init = 1; |
| 748 | if (aes->aad_len > 0) { |
| 749 | /* Step 1: Run a GHASH over the Additional Authenticated Data */ |
| 750 | ret = ccp_init_data(&aad, cmd_q, p_aad, aes->aad_len, |
| 751 | AES_BLOCK_SIZE, |
| 752 | DMA_TO_DEVICE); |
| 753 | if (ret) |
| 754 | goto e_ctx; |
| 755 | |
| 756 | op.u.aes.mode = CCP_AES_MODE_GHASH; |
| 757 | op.u.aes.action = CCP_AES_GHASHAAD; |
| 758 | |
| 759 | while (aad.sg_wa.bytes_left) { |
| 760 | ccp_prepare_data(&aad, NULL, &op, AES_BLOCK_SIZE, true); |
| 761 | |
| 762 | ret = cmd_q->ccp->vdata->perform->aes(&op); |
| 763 | if (ret) { |
| 764 | cmd->engine_error = cmd_q->cmd_error; |
| 765 | goto e_aad; |
| 766 | } |
| 767 | |
| 768 | ccp_process_data(&aad, NULL, &op); |
| 769 | op.init = 0; |
| 770 | } |
| 771 | } |
| 772 | |
| 773 | op.u.aes.mode = CCP_AES_MODE_GCTR; |
| 774 | op.u.aes.action = aes->action; |
| 775 | |
| 776 | if (ilen > 0) { |
| 777 | /* Step 2: Run a GCTR over the plaintext */ |
| 778 | in_place = (sg_virt(p_inp) == sg_virt(p_outp)) ? true : false; |
| 779 | |
| 780 | ret = ccp_init_data(&src, cmd_q, p_inp, ilen, |
| 781 | AES_BLOCK_SIZE, |
| 782 | in_place ? DMA_BIDIRECTIONAL |
| 783 | : DMA_TO_DEVICE); |
| 784 | if (ret) |
| 785 | goto e_aad; |
| 786 | |
| 787 | if (in_place) { |
| 788 | dst = src; |
| 789 | } else { |
| 790 | ret = ccp_init_data(&dst, cmd_q, p_outp, ilen, |
| 791 | AES_BLOCK_SIZE, DMA_FROM_DEVICE); |
| 792 | if (ret) |
| 793 | goto e_src; |
| 794 | } |
| 795 | |
| 796 | op.soc = 0; |
| 797 | op.eom = 0; |
| 798 | op.init = 1; |
| 799 | while (src.sg_wa.bytes_left) { |
| 800 | ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true); |
| 801 | if (!src.sg_wa.bytes_left) { |
| 802 | unsigned int nbytes = ilen % AES_BLOCK_SIZE; |
| 803 | |
| 804 | if (nbytes) { |
| 805 | op.eom = 1; |
| 806 | op.u.aes.size = (nbytes * 8) - 1; |
| 807 | } |
| 808 | } |
| 809 | |
| 810 | ret = cmd_q->ccp->vdata->perform->aes(&op); |
| 811 | if (ret) { |
| 812 | cmd->engine_error = cmd_q->cmd_error; |
| 813 | goto e_dst; |
| 814 | } |
| 815 | |
| 816 | ccp_process_data(&src, &dst, &op); |
| 817 | op.init = 0; |
| 818 | } |
| 819 | } |
| 820 | |
| 821 | /* Step 3: Update the IV portion of the context with the original IV */ |
| 822 | ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| 823 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 824 | if (ret) { |
| 825 | cmd->engine_error = cmd_q->cmd_error; |
| 826 | goto e_dst; |
| 827 | } |
| 828 | |
| 829 | ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); |
| 830 | if (ret) |
| 831 | goto e_dst; |
| 832 | |
| 833 | ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| 834 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 835 | if (ret) { |
| 836 | cmd->engine_error = cmd_q->cmd_error; |
| 837 | goto e_dst; |
| 838 | } |
| 839 | |
| 840 | /* Step 4: Concatenate the lengths of the AAD and source, and |
| 841 | * hash that 16 byte buffer. |
| 842 | */ |
| 843 | ret = ccp_init_dm_workarea(&final_wa, cmd_q, AES_BLOCK_SIZE, |
| 844 | DMA_BIDIRECTIONAL); |
| 845 | if (ret) |
| 846 | goto e_dst; |
| 847 | final = (__be64 *)final_wa.address; |
| 848 | final[0] = cpu_to_be64(aes->aad_len * 8); |
| 849 | final[1] = cpu_to_be64(ilen * 8); |
| 850 | |
| 851 | memset(&op, 0, sizeof(op)); |
| 852 | op.cmd_q = cmd_q; |
| 853 | op.jobid = jobid; |
| 854 | op.sb_key = cmd_q->sb_key; /* Pre-allocated */ |
| 855 | op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */ |
| 856 | op.init = 1; |
| 857 | op.u.aes.type = aes->type; |
| 858 | op.u.aes.mode = CCP_AES_MODE_GHASH; |
| 859 | op.u.aes.action = CCP_AES_GHASHFINAL; |
| 860 | op.src.type = CCP_MEMTYPE_SYSTEM; |
| 861 | op.src.u.dma.address = final_wa.dma.address; |
| 862 | op.src.u.dma.length = AES_BLOCK_SIZE; |
| 863 | op.dst.type = CCP_MEMTYPE_SYSTEM; |
| 864 | op.dst.u.dma.address = final_wa.dma.address; |
| 865 | op.dst.u.dma.length = AES_BLOCK_SIZE; |
| 866 | op.eom = 1; |
| 867 | op.u.aes.size = 0; |
| 868 | ret = cmd_q->ccp->vdata->perform->aes(&op); |
| 869 | if (ret) |
| 870 | goto e_final_wa; |
| 871 | |
| 872 | if (aes->action == CCP_AES_ACTION_ENCRYPT) { |
| 873 | /* Put the ciphered tag after the ciphertext. */ |
| 874 | ccp_get_dm_area(&final_wa, 0, p_tag, 0, authsize); |
| 875 | } else { |
| 876 | /* Does this ciphered tag match the input? */ |
| 877 | ret = ccp_init_dm_workarea(&tag, cmd_q, authsize, |
| 878 | DMA_BIDIRECTIONAL); |
| 879 | if (ret) |
| 880 | goto e_final_wa; |
| 881 | ret = ccp_set_dm_area(&tag, 0, p_tag, 0, authsize); |
| 882 | if (ret) { |
| 883 | ccp_dm_free(&tag); |
| 884 | goto e_final_wa; |
| 885 | } |
| 886 | |
| 887 | ret = crypto_memneq(tag.address, final_wa.address, |
| 888 | authsize) ? -EBADMSG : 0; |
| 889 | ccp_dm_free(&tag); |
| 890 | } |
| 891 | |
| 892 | e_final_wa: |
| 893 | ccp_dm_free(&final_wa); |
| 894 | |
| 895 | e_dst: |
| 896 | if (ilen > 0 && !in_place) |
| 897 | ccp_free_data(&dst, cmd_q); |
| 898 | |
| 899 | e_src: |
| 900 | if (ilen > 0) |
| 901 | ccp_free_data(&src, cmd_q); |
| 902 | |
| 903 | e_aad: |
| 904 | if (aes->aad_len) |
| 905 | ccp_free_data(&aad, cmd_q); |
| 906 | |
| 907 | e_ctx: |
| 908 | ccp_dm_free(&ctx); |
| 909 | |
| 910 | e_key: |
| 911 | ccp_dm_free(&key); |
| 912 | |
| 913 | return ret; |
| 914 | } |
| 915 | |
| 916 | static noinline_for_stack int |
| 917 | ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| 918 | { |
| 919 | struct ccp_aes_engine *aes = &cmd->u.aes; |
| 920 | struct ccp_dm_workarea key, ctx; |
| 921 | struct ccp_data src, dst; |
| 922 | struct ccp_op op; |
| 923 | unsigned int dm_offset; |
| 924 | bool in_place = false; |
| 925 | int ret; |
| 926 | |
| 927 | if (!((aes->key_len == AES_KEYSIZE_128) || |
| 928 | (aes->key_len == AES_KEYSIZE_192) || |
| 929 | (aes->key_len == AES_KEYSIZE_256))) |
| 930 | return -EINVAL; |
| 931 | |
| 932 | if (((aes->mode == CCP_AES_MODE_ECB) || |
| 933 | (aes->mode == CCP_AES_MODE_CBC)) && |
| 934 | (aes->src_len & (AES_BLOCK_SIZE - 1))) |
| 935 | return -EINVAL; |
| 936 | |
| 937 | if (!aes->key || !aes->src || !aes->dst) |
| 938 | return -EINVAL; |
| 939 | |
| 940 | if (aes->mode != CCP_AES_MODE_ECB) { |
| 941 | if (aes->iv_len != AES_BLOCK_SIZE) |
| 942 | return -EINVAL; |
| 943 | |
| 944 | if (!aes->iv) |
| 945 | return -EINVAL; |
| 946 | } |
| 947 | |
| 948 | BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1); |
| 949 | BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1); |
| 950 | |
| 951 | ret = -EIO; |
| 952 | memset(&op, 0, sizeof(op)); |
| 953 | op.cmd_q = cmd_q; |
| 954 | op.jobid = CCP_NEW_JOBID(cmd_q->ccp); |
| 955 | op.sb_key = cmd_q->sb_key; |
| 956 | op.sb_ctx = cmd_q->sb_ctx; |
| 957 | op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1; |
| 958 | op.u.aes.type = aes->type; |
| 959 | op.u.aes.mode = aes->mode; |
| 960 | op.u.aes.action = aes->action; |
| 961 | |
| 962 | /* All supported key sizes fit in a single (32-byte) SB entry |
| 963 | * and must be in little endian format. Use the 256-bit byte |
| 964 | * swap passthru option to convert from big endian to little |
| 965 | * endian. |
| 966 | */ |
| 967 | ret = ccp_init_dm_workarea(&key, cmd_q, |
| 968 | CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES, |
| 969 | DMA_TO_DEVICE); |
| 970 | if (ret) |
| 971 | return ret; |
| 972 | |
| 973 | dm_offset = CCP_SB_BYTES - aes->key_len; |
| 974 | ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len); |
| 975 | if (ret) |
| 976 | goto e_key; |
| 977 | ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, |
| 978 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 979 | if (ret) { |
| 980 | cmd->engine_error = cmd_q->cmd_error; |
| 981 | goto e_key; |
| 982 | } |
| 983 | |
| 984 | /* The AES context fits in a single (32-byte) SB entry and |
| 985 | * must be in little endian format. Use the 256-bit byte swap |
| 986 | * passthru option to convert from big endian to little endian. |
| 987 | */ |
| 988 | ret = ccp_init_dm_workarea(&ctx, cmd_q, |
| 989 | CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES, |
| 990 | DMA_BIDIRECTIONAL); |
| 991 | if (ret) |
| 992 | goto e_key; |
| 993 | |
| 994 | if (aes->mode != CCP_AES_MODE_ECB) { |
| 995 | /* Load the AES context - convert to LE */ |
| 996 | dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; |
| 997 | ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); |
| 998 | if (ret) |
| 999 | goto e_ctx; |
| 1000 | ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| 1001 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 1002 | if (ret) { |
| 1003 | cmd->engine_error = cmd_q->cmd_error; |
| 1004 | goto e_ctx; |
| 1005 | } |
| 1006 | } |
| 1007 | switch (aes->mode) { |
| 1008 | case CCP_AES_MODE_CFB: /* CFB128 only */ |
| 1009 | case CCP_AES_MODE_CTR: |
| 1010 | op.u.aes.size = AES_BLOCK_SIZE * BITS_PER_BYTE - 1; |
| 1011 | break; |
| 1012 | default: |
| 1013 | op.u.aes.size = 0; |
| 1014 | } |
| 1015 | |
| 1016 | /* Prepare the input and output data workareas. For in-place |
| 1017 | * operations we need to set the dma direction to BIDIRECTIONAL |
| 1018 | * and copy the src workarea to the dst workarea. |
| 1019 | */ |
| 1020 | if (sg_virt(aes->src) == sg_virt(aes->dst)) |
| 1021 | in_place = true; |
| 1022 | |
| 1023 | ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len, |
| 1024 | AES_BLOCK_SIZE, |
| 1025 | in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); |
| 1026 | if (ret) |
| 1027 | goto e_ctx; |
| 1028 | |
| 1029 | if (in_place) { |
| 1030 | dst = src; |
| 1031 | } else { |
| 1032 | ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len, |
| 1033 | AES_BLOCK_SIZE, DMA_FROM_DEVICE); |
| 1034 | if (ret) |
| 1035 | goto e_src; |
| 1036 | } |
| 1037 | |
| 1038 | /* Send data to the CCP AES engine */ |
| 1039 | while (src.sg_wa.bytes_left) { |
| 1040 | ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true); |
| 1041 | if (!src.sg_wa.bytes_left) { |
| 1042 | op.eom = 1; |
| 1043 | |
| 1044 | /* Since we don't retrieve the AES context in ECB |
| 1045 | * mode we have to wait for the operation to complete |
| 1046 | * on the last piece of data |
| 1047 | */ |
| 1048 | if (aes->mode == CCP_AES_MODE_ECB) |
| 1049 | op.soc = 1; |
| 1050 | } |
| 1051 | |
| 1052 | ret = cmd_q->ccp->vdata->perform->aes(&op); |
| 1053 | if (ret) { |
| 1054 | cmd->engine_error = cmd_q->cmd_error; |
| 1055 | goto e_dst; |
| 1056 | } |
| 1057 | |
| 1058 | ccp_process_data(&src, &dst, &op); |
| 1059 | } |
| 1060 | |
| 1061 | if (aes->mode != CCP_AES_MODE_ECB) { |
| 1062 | /* Retrieve the AES context - convert from LE to BE using |
| 1063 | * 32-byte (256-bit) byteswapping |
| 1064 | */ |
| 1065 | ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| 1066 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 1067 | if (ret) { |
| 1068 | cmd->engine_error = cmd_q->cmd_error; |
| 1069 | goto e_dst; |
| 1070 | } |
| 1071 | |
| 1072 | /* ...but we only need AES_BLOCK_SIZE bytes */ |
| 1073 | dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; |
| 1074 | ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); |
| 1075 | } |
| 1076 | |
| 1077 | e_dst: |
| 1078 | if (!in_place) |
| 1079 | ccp_free_data(&dst, cmd_q); |
| 1080 | |
| 1081 | e_src: |
| 1082 | ccp_free_data(&src, cmd_q); |
| 1083 | |
| 1084 | e_ctx: |
| 1085 | ccp_dm_free(&ctx); |
| 1086 | |
| 1087 | e_key: |
| 1088 | ccp_dm_free(&key); |
| 1089 | |
| 1090 | return ret; |
| 1091 | } |
| 1092 | |
| 1093 | static noinline_for_stack int |
| 1094 | ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| 1095 | { |
| 1096 | struct ccp_xts_aes_engine *xts = &cmd->u.xts; |
| 1097 | struct ccp_dm_workarea key, ctx; |
| 1098 | struct ccp_data src, dst; |
| 1099 | struct ccp_op op; |
| 1100 | unsigned int unit_size, dm_offset; |
| 1101 | bool in_place = false; |
| 1102 | unsigned int sb_count; |
| 1103 | enum ccp_aes_type aestype; |
| 1104 | int ret; |
| 1105 | |
| 1106 | switch (xts->unit_size) { |
| 1107 | case CCP_XTS_AES_UNIT_SIZE_16: |
| 1108 | unit_size = 16; |
| 1109 | break; |
| 1110 | case CCP_XTS_AES_UNIT_SIZE_512: |
| 1111 | unit_size = 512; |
| 1112 | break; |
| 1113 | case CCP_XTS_AES_UNIT_SIZE_1024: |
| 1114 | unit_size = 1024; |
| 1115 | break; |
| 1116 | case CCP_XTS_AES_UNIT_SIZE_2048: |
| 1117 | unit_size = 2048; |
| 1118 | break; |
| 1119 | case CCP_XTS_AES_UNIT_SIZE_4096: |
| 1120 | unit_size = 4096; |
| 1121 | break; |
| 1122 | |
| 1123 | default: |
| 1124 | return -EINVAL; |
| 1125 | } |
| 1126 | |
| 1127 | if (xts->key_len == AES_KEYSIZE_128) |
| 1128 | aestype = CCP_AES_TYPE_128; |
| 1129 | else if (xts->key_len == AES_KEYSIZE_256) |
| 1130 | aestype = CCP_AES_TYPE_256; |
| 1131 | else |
| 1132 | return -EINVAL; |
| 1133 | |
| 1134 | if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1))) |
| 1135 | return -EINVAL; |
| 1136 | |
| 1137 | if (xts->iv_len != AES_BLOCK_SIZE) |
| 1138 | return -EINVAL; |
| 1139 | |
| 1140 | if (!xts->key || !xts->iv || !xts->src || !xts->dst) |
| 1141 | return -EINVAL; |
| 1142 | |
| 1143 | BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1); |
| 1144 | BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1); |
| 1145 | |
| 1146 | ret = -EIO; |
| 1147 | memset(&op, 0, sizeof(op)); |
| 1148 | op.cmd_q = cmd_q; |
| 1149 | op.jobid = CCP_NEW_JOBID(cmd_q->ccp); |
| 1150 | op.sb_key = cmd_q->sb_key; |
| 1151 | op.sb_ctx = cmd_q->sb_ctx; |
| 1152 | op.init = 1; |
| 1153 | op.u.xts.type = aestype; |
| 1154 | op.u.xts.action = xts->action; |
| 1155 | op.u.xts.unit_size = xts->unit_size; |
| 1156 | |
| 1157 | /* A version 3 device only supports 128-bit keys, which fits into a |
| 1158 | * single SB entry. A version 5 device uses a 512-bit vector, so two |
| 1159 | * SB entries. |
| 1160 | */ |
| 1161 | if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) |
| 1162 | sb_count = CCP_XTS_AES_KEY_SB_COUNT; |
| 1163 | else |
| 1164 | sb_count = CCP5_XTS_AES_KEY_SB_COUNT; |
| 1165 | ret = ccp_init_dm_workarea(&key, cmd_q, |
| 1166 | sb_count * CCP_SB_BYTES, |
| 1167 | DMA_TO_DEVICE); |
| 1168 | if (ret) |
| 1169 | return ret; |
| 1170 | |
| 1171 | if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) { |
| 1172 | /* All supported key sizes must be in little endian format. |
| 1173 | * Use the 256-bit byte swap passthru option to convert from |
| 1174 | * big endian to little endian. |
| 1175 | */ |
| 1176 | dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128; |
| 1177 | ret = ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len); |
| 1178 | if (ret) |
| 1179 | goto e_key; |
| 1180 | ret = ccp_set_dm_area(&key, 0, xts->key, xts->key_len, xts->key_len); |
| 1181 | if (ret) |
| 1182 | goto e_key; |
| 1183 | } else { |
| 1184 | /* Version 5 CCPs use a 512-bit space for the key: each portion |
| 1185 | * occupies 256 bits, or one entire slot, and is zero-padded. |
| 1186 | */ |
| 1187 | unsigned int pad; |
| 1188 | |
| 1189 | dm_offset = CCP_SB_BYTES; |
| 1190 | pad = dm_offset - xts->key_len; |
| 1191 | ret = ccp_set_dm_area(&key, pad, xts->key, 0, xts->key_len); |
| 1192 | if (ret) |
| 1193 | goto e_key; |
| 1194 | ret = ccp_set_dm_area(&key, dm_offset + pad, xts->key, |
| 1195 | xts->key_len, xts->key_len); |
| 1196 | if (ret) |
| 1197 | goto e_key; |
| 1198 | } |
| 1199 | ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, |
| 1200 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 1201 | if (ret) { |
| 1202 | cmd->engine_error = cmd_q->cmd_error; |
| 1203 | goto e_key; |
| 1204 | } |
| 1205 | |
| 1206 | /* The AES context fits in a single (32-byte) SB entry and |
| 1207 | * for XTS is already in little endian format so no byte swapping |
| 1208 | * is needed. |
| 1209 | */ |
| 1210 | ret = ccp_init_dm_workarea(&ctx, cmd_q, |
| 1211 | CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES, |
| 1212 | DMA_BIDIRECTIONAL); |
| 1213 | if (ret) |
| 1214 | goto e_key; |
| 1215 | |
| 1216 | ret = ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len); |
| 1217 | if (ret) |
| 1218 | goto e_ctx; |
| 1219 | ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| 1220 | CCP_PASSTHRU_BYTESWAP_NOOP); |
| 1221 | if (ret) { |
| 1222 | cmd->engine_error = cmd_q->cmd_error; |
| 1223 | goto e_ctx; |
| 1224 | } |
| 1225 | |
| 1226 | /* Prepare the input and output data workareas. For in-place |
| 1227 | * operations we need to set the dma direction to BIDIRECTIONAL |
| 1228 | * and copy the src workarea to the dst workarea. |
| 1229 | */ |
| 1230 | if (sg_virt(xts->src) == sg_virt(xts->dst)) |
| 1231 | in_place = true; |
| 1232 | |
| 1233 | ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len, |
| 1234 | unit_size, |
| 1235 | in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); |
| 1236 | if (ret) |
| 1237 | goto e_ctx; |
| 1238 | |
| 1239 | if (in_place) { |
| 1240 | dst = src; |
| 1241 | } else { |
| 1242 | ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len, |
| 1243 | unit_size, DMA_FROM_DEVICE); |
| 1244 | if (ret) |
| 1245 | goto e_src; |
| 1246 | } |
| 1247 | |
| 1248 | /* Send data to the CCP AES engine */ |
| 1249 | while (src.sg_wa.bytes_left) { |
| 1250 | ccp_prepare_data(&src, &dst, &op, unit_size, true); |
| 1251 | if (!src.sg_wa.bytes_left) |
| 1252 | op.eom = 1; |
| 1253 | |
| 1254 | ret = cmd_q->ccp->vdata->perform->xts_aes(&op); |
| 1255 | if (ret) { |
| 1256 | cmd->engine_error = cmd_q->cmd_error; |
| 1257 | goto e_dst; |
| 1258 | } |
| 1259 | |
| 1260 | ccp_process_data(&src, &dst, &op); |
| 1261 | } |
| 1262 | |
| 1263 | /* Retrieve the AES context - convert from LE to BE using |
| 1264 | * 32-byte (256-bit) byteswapping |
| 1265 | */ |
| 1266 | ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| 1267 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 1268 | if (ret) { |
| 1269 | cmd->engine_error = cmd_q->cmd_error; |
| 1270 | goto e_dst; |
| 1271 | } |
| 1272 | |
| 1273 | /* ...but we only need AES_BLOCK_SIZE bytes */ |
| 1274 | dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; |
| 1275 | ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len); |
| 1276 | |
| 1277 | e_dst: |
| 1278 | if (!in_place) |
| 1279 | ccp_free_data(&dst, cmd_q); |
| 1280 | |
| 1281 | e_src: |
| 1282 | ccp_free_data(&src, cmd_q); |
| 1283 | |
| 1284 | e_ctx: |
| 1285 | ccp_dm_free(&ctx); |
| 1286 | |
| 1287 | e_key: |
| 1288 | ccp_dm_free(&key); |
| 1289 | |
| 1290 | return ret; |
| 1291 | } |
| 1292 | |
| 1293 | static noinline_for_stack int |
| 1294 | ccp_run_des3_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| 1295 | { |
| 1296 | struct ccp_des3_engine *des3 = &cmd->u.des3; |
| 1297 | |
| 1298 | struct ccp_dm_workarea key, ctx; |
| 1299 | struct ccp_data src, dst; |
| 1300 | struct ccp_op op; |
| 1301 | unsigned int dm_offset; |
| 1302 | unsigned int len_singlekey; |
| 1303 | bool in_place = false; |
| 1304 | int ret; |
| 1305 | |
| 1306 | /* Error checks */ |
| 1307 | if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) |
| 1308 | return -EINVAL; |
| 1309 | |
| 1310 | if (!cmd_q->ccp->vdata->perform->des3) |
| 1311 | return -EINVAL; |
| 1312 | |
| 1313 | if (des3->key_len != DES3_EDE_KEY_SIZE) |
| 1314 | return -EINVAL; |
| 1315 | |
| 1316 | if (((des3->mode == CCP_DES3_MODE_ECB) || |
| 1317 | (des3->mode == CCP_DES3_MODE_CBC)) && |
| 1318 | (des3->src_len & (DES3_EDE_BLOCK_SIZE - 1))) |
| 1319 | return -EINVAL; |
| 1320 | |
| 1321 | if (!des3->key || !des3->src || !des3->dst) |
| 1322 | return -EINVAL; |
| 1323 | |
| 1324 | if (des3->mode != CCP_DES3_MODE_ECB) { |
| 1325 | if (des3->iv_len != DES3_EDE_BLOCK_SIZE) |
| 1326 | return -EINVAL; |
| 1327 | |
| 1328 | if (!des3->iv) |
| 1329 | return -EINVAL; |
| 1330 | } |
| 1331 | |
| 1332 | /* Zero out all the fields of the command desc */ |
| 1333 | memset(&op, 0, sizeof(op)); |
| 1334 | |
| 1335 | /* Set up the Function field */ |
| 1336 | op.cmd_q = cmd_q; |
| 1337 | op.jobid = CCP_NEW_JOBID(cmd_q->ccp); |
| 1338 | op.sb_key = cmd_q->sb_key; |
| 1339 | |
| 1340 | op.init = (des3->mode == CCP_DES3_MODE_ECB) ? 0 : 1; |
| 1341 | op.u.des3.type = des3->type; |
| 1342 | op.u.des3.mode = des3->mode; |
| 1343 | op.u.des3.action = des3->action; |
| 1344 | |
| 1345 | /* |
| 1346 | * All supported key sizes fit in a single (32-byte) KSB entry and |
| 1347 | * (like AES) must be in little endian format. Use the 256-bit byte |
| 1348 | * swap passthru option to convert from big endian to little endian. |
| 1349 | */ |
| 1350 | ret = ccp_init_dm_workarea(&key, cmd_q, |
| 1351 | CCP_DES3_KEY_SB_COUNT * CCP_SB_BYTES, |
| 1352 | DMA_TO_DEVICE); |
| 1353 | if (ret) |
| 1354 | return ret; |
| 1355 | |
| 1356 | /* |
| 1357 | * The contents of the key triplet are in the reverse order of what |
| 1358 | * is required by the engine. Copy the 3 pieces individually to put |
| 1359 | * them where they belong. |
| 1360 | */ |
| 1361 | dm_offset = CCP_SB_BYTES - des3->key_len; /* Basic offset */ |
| 1362 | |
| 1363 | len_singlekey = des3->key_len / 3; |
| 1364 | ret = ccp_set_dm_area(&key, dm_offset + 2 * len_singlekey, |
| 1365 | des3->key, 0, len_singlekey); |
| 1366 | if (ret) |
| 1367 | goto e_key; |
| 1368 | ret = ccp_set_dm_area(&key, dm_offset + len_singlekey, |
| 1369 | des3->key, len_singlekey, len_singlekey); |
| 1370 | if (ret) |
| 1371 | goto e_key; |
| 1372 | ret = ccp_set_dm_area(&key, dm_offset, |
| 1373 | des3->key, 2 * len_singlekey, len_singlekey); |
| 1374 | if (ret) |
| 1375 | goto e_key; |
| 1376 | |
| 1377 | /* Copy the key to the SB */ |
| 1378 | ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, |
| 1379 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 1380 | if (ret) { |
| 1381 | cmd->engine_error = cmd_q->cmd_error; |
| 1382 | goto e_key; |
| 1383 | } |
| 1384 | |
| 1385 | /* |
| 1386 | * The DES3 context fits in a single (32-byte) KSB entry and |
| 1387 | * must be in little endian format. Use the 256-bit byte swap |
| 1388 | * passthru option to convert from big endian to little endian. |
| 1389 | */ |
| 1390 | if (des3->mode != CCP_DES3_MODE_ECB) { |
| 1391 | op.sb_ctx = cmd_q->sb_ctx; |
| 1392 | |
| 1393 | ret = ccp_init_dm_workarea(&ctx, cmd_q, |
| 1394 | CCP_DES3_CTX_SB_COUNT * CCP_SB_BYTES, |
| 1395 | DMA_BIDIRECTIONAL); |
| 1396 | if (ret) |
| 1397 | goto e_key; |
| 1398 | |
| 1399 | /* Load the context into the LSB */ |
| 1400 | dm_offset = CCP_SB_BYTES - des3->iv_len; |
| 1401 | ret = ccp_set_dm_area(&ctx, dm_offset, des3->iv, 0, |
| 1402 | des3->iv_len); |
| 1403 | if (ret) |
| 1404 | goto e_ctx; |
| 1405 | |
| 1406 | ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| 1407 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 1408 | if (ret) { |
| 1409 | cmd->engine_error = cmd_q->cmd_error; |
| 1410 | goto e_ctx; |
| 1411 | } |
| 1412 | } |
| 1413 | |
| 1414 | /* |
| 1415 | * Prepare the input and output data workareas. For in-place |
| 1416 | * operations we need to set the dma direction to BIDIRECTIONAL |
| 1417 | * and copy the src workarea to the dst workarea. |
| 1418 | */ |
| 1419 | if (sg_virt(des3->src) == sg_virt(des3->dst)) |
| 1420 | in_place = true; |
| 1421 | |
| 1422 | ret = ccp_init_data(&src, cmd_q, des3->src, des3->src_len, |
| 1423 | DES3_EDE_BLOCK_SIZE, |
| 1424 | in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); |
| 1425 | if (ret) |
| 1426 | goto e_ctx; |
| 1427 | |
| 1428 | if (in_place) |
| 1429 | dst = src; |
| 1430 | else { |
| 1431 | ret = ccp_init_data(&dst, cmd_q, des3->dst, des3->src_len, |
| 1432 | DES3_EDE_BLOCK_SIZE, DMA_FROM_DEVICE); |
| 1433 | if (ret) |
| 1434 | goto e_src; |
| 1435 | } |
| 1436 | |
| 1437 | /* Send data to the CCP DES3 engine */ |
| 1438 | while (src.sg_wa.bytes_left) { |
| 1439 | ccp_prepare_data(&src, &dst, &op, DES3_EDE_BLOCK_SIZE, true); |
| 1440 | if (!src.sg_wa.bytes_left) { |
| 1441 | op.eom = 1; |
| 1442 | |
| 1443 | /* Since we don't retrieve the context in ECB mode |
| 1444 | * we have to wait for the operation to complete |
| 1445 | * on the last piece of data |
| 1446 | */ |
| 1447 | op.soc = 0; |
| 1448 | } |
| 1449 | |
| 1450 | ret = cmd_q->ccp->vdata->perform->des3(&op); |
| 1451 | if (ret) { |
| 1452 | cmd->engine_error = cmd_q->cmd_error; |
| 1453 | goto e_dst; |
| 1454 | } |
| 1455 | |
| 1456 | ccp_process_data(&src, &dst, &op); |
| 1457 | } |
| 1458 | |
| 1459 | if (des3->mode != CCP_DES3_MODE_ECB) { |
| 1460 | /* Retrieve the context and make BE */ |
| 1461 | ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| 1462 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 1463 | if (ret) { |
| 1464 | cmd->engine_error = cmd_q->cmd_error; |
| 1465 | goto e_dst; |
| 1466 | } |
| 1467 | |
| 1468 | /* ...but we only need the last DES3_EDE_BLOCK_SIZE bytes */ |
| 1469 | ccp_get_dm_area(&ctx, dm_offset, des3->iv, 0, |
| 1470 | DES3_EDE_BLOCK_SIZE); |
| 1471 | } |
| 1472 | e_dst: |
| 1473 | if (!in_place) |
| 1474 | ccp_free_data(&dst, cmd_q); |
| 1475 | |
| 1476 | e_src: |
| 1477 | ccp_free_data(&src, cmd_q); |
| 1478 | |
| 1479 | e_ctx: |
| 1480 | if (des3->mode != CCP_DES3_MODE_ECB) |
| 1481 | ccp_dm_free(&ctx); |
| 1482 | |
| 1483 | e_key: |
| 1484 | ccp_dm_free(&key); |
| 1485 | |
| 1486 | return ret; |
| 1487 | } |
| 1488 | |
| 1489 | static noinline_for_stack int |
| 1490 | ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| 1491 | { |
| 1492 | struct ccp_sha_engine *sha = &cmd->u.sha; |
| 1493 | struct ccp_dm_workarea ctx; |
| 1494 | struct ccp_data src; |
| 1495 | struct ccp_op op; |
| 1496 | unsigned int ioffset, ooffset; |
| 1497 | unsigned int digest_size; |
| 1498 | int sb_count; |
| 1499 | const void *init; |
| 1500 | u64 block_size; |
| 1501 | int ctx_size; |
| 1502 | int ret; |
| 1503 | |
| 1504 | switch (sha->type) { |
| 1505 | case CCP_SHA_TYPE_1: |
| 1506 | if (sha->ctx_len < SHA1_DIGEST_SIZE) |
| 1507 | return -EINVAL; |
| 1508 | block_size = SHA1_BLOCK_SIZE; |
| 1509 | break; |
| 1510 | case CCP_SHA_TYPE_224: |
| 1511 | if (sha->ctx_len < SHA224_DIGEST_SIZE) |
| 1512 | return -EINVAL; |
| 1513 | block_size = SHA224_BLOCK_SIZE; |
| 1514 | break; |
| 1515 | case CCP_SHA_TYPE_256: |
| 1516 | if (sha->ctx_len < SHA256_DIGEST_SIZE) |
| 1517 | return -EINVAL; |
| 1518 | block_size = SHA256_BLOCK_SIZE; |
| 1519 | break; |
| 1520 | case CCP_SHA_TYPE_384: |
| 1521 | if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0) |
| 1522 | || sha->ctx_len < SHA384_DIGEST_SIZE) |
| 1523 | return -EINVAL; |
| 1524 | block_size = SHA384_BLOCK_SIZE; |
| 1525 | break; |
| 1526 | case CCP_SHA_TYPE_512: |
| 1527 | if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0) |
| 1528 | || sha->ctx_len < SHA512_DIGEST_SIZE) |
| 1529 | return -EINVAL; |
| 1530 | block_size = SHA512_BLOCK_SIZE; |
| 1531 | break; |
| 1532 | default: |
| 1533 | return -EINVAL; |
| 1534 | } |
| 1535 | |
| 1536 | if (!sha->ctx) |
| 1537 | return -EINVAL; |
| 1538 | |
| 1539 | if (!sha->final && (sha->src_len & (block_size - 1))) |
| 1540 | return -EINVAL; |
| 1541 | |
| 1542 | /* The version 3 device can't handle zero-length input */ |
| 1543 | if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) { |
| 1544 | |
| 1545 | if (!sha->src_len) { |
| 1546 | unsigned int digest_len; |
| 1547 | const u8 *sha_zero; |
| 1548 | |
| 1549 | /* Not final, just return */ |
| 1550 | if (!sha->final) |
| 1551 | return 0; |
| 1552 | |
| 1553 | /* CCP can't do a zero length sha operation so the |
| 1554 | * caller must buffer the data. |
| 1555 | */ |
| 1556 | if (sha->msg_bits) |
| 1557 | return -EINVAL; |
| 1558 | |
| 1559 | /* The CCP cannot perform zero-length sha operations |
| 1560 | * so the caller is required to buffer data for the |
| 1561 | * final operation. However, a sha operation for a |
| 1562 | * message with a total length of zero is valid so |
| 1563 | * known values are required to supply the result. |
| 1564 | */ |
| 1565 | switch (sha->type) { |
| 1566 | case CCP_SHA_TYPE_1: |
| 1567 | sha_zero = sha1_zero_message_hash; |
| 1568 | digest_len = SHA1_DIGEST_SIZE; |
| 1569 | break; |
| 1570 | case CCP_SHA_TYPE_224: |
| 1571 | sha_zero = sha224_zero_message_hash; |
| 1572 | digest_len = SHA224_DIGEST_SIZE; |
| 1573 | break; |
| 1574 | case CCP_SHA_TYPE_256: |
| 1575 | sha_zero = sha256_zero_message_hash; |
| 1576 | digest_len = SHA256_DIGEST_SIZE; |
| 1577 | break; |
| 1578 | default: |
| 1579 | return -EINVAL; |
| 1580 | } |
| 1581 | |
| 1582 | scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0, |
| 1583 | digest_len, 1); |
| 1584 | |
| 1585 | return 0; |
| 1586 | } |
| 1587 | } |
| 1588 | |
| 1589 | /* Set variables used throughout */ |
| 1590 | switch (sha->type) { |
| 1591 | case CCP_SHA_TYPE_1: |
| 1592 | digest_size = SHA1_DIGEST_SIZE; |
| 1593 | init = (void *) ccp_sha1_init; |
| 1594 | ctx_size = SHA1_DIGEST_SIZE; |
| 1595 | sb_count = 1; |
| 1596 | if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0)) |
| 1597 | ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE; |
| 1598 | else |
| 1599 | ooffset = ioffset = 0; |
| 1600 | break; |
| 1601 | case CCP_SHA_TYPE_224: |
| 1602 | digest_size = SHA224_DIGEST_SIZE; |
| 1603 | init = (void *) ccp_sha224_init; |
| 1604 | ctx_size = SHA256_DIGEST_SIZE; |
| 1605 | sb_count = 1; |
| 1606 | ioffset = 0; |
| 1607 | if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0)) |
| 1608 | ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE; |
| 1609 | else |
| 1610 | ooffset = 0; |
| 1611 | break; |
| 1612 | case CCP_SHA_TYPE_256: |
| 1613 | digest_size = SHA256_DIGEST_SIZE; |
| 1614 | init = (void *) ccp_sha256_init; |
| 1615 | ctx_size = SHA256_DIGEST_SIZE; |
| 1616 | sb_count = 1; |
| 1617 | ooffset = ioffset = 0; |
| 1618 | break; |
| 1619 | case CCP_SHA_TYPE_384: |
| 1620 | digest_size = SHA384_DIGEST_SIZE; |
| 1621 | init = (void *) ccp_sha384_init; |
| 1622 | ctx_size = SHA512_DIGEST_SIZE; |
| 1623 | sb_count = 2; |
| 1624 | ioffset = 0; |
| 1625 | ooffset = 2 * CCP_SB_BYTES - SHA384_DIGEST_SIZE; |
| 1626 | break; |
| 1627 | case CCP_SHA_TYPE_512: |
| 1628 | digest_size = SHA512_DIGEST_SIZE; |
| 1629 | init = (void *) ccp_sha512_init; |
| 1630 | ctx_size = SHA512_DIGEST_SIZE; |
| 1631 | sb_count = 2; |
| 1632 | ooffset = ioffset = 0; |
| 1633 | break; |
| 1634 | default: |
| 1635 | ret = -EINVAL; |
| 1636 | goto e_data; |
| 1637 | } |
| 1638 | |
| 1639 | /* For zero-length plaintext the src pointer is ignored; |
| 1640 | * otherwise both parts must be valid |
| 1641 | */ |
| 1642 | if (sha->src_len && !sha->src) |
| 1643 | return -EINVAL; |
| 1644 | |
| 1645 | memset(&op, 0, sizeof(op)); |
| 1646 | op.cmd_q = cmd_q; |
| 1647 | op.jobid = CCP_NEW_JOBID(cmd_q->ccp); |
| 1648 | op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */ |
| 1649 | op.u.sha.type = sha->type; |
| 1650 | op.u.sha.msg_bits = sha->msg_bits; |
| 1651 | |
| 1652 | /* For SHA1/224/256 the context fits in a single (32-byte) SB entry; |
| 1653 | * SHA384/512 require 2 adjacent SB slots, with the right half in the |
| 1654 | * first slot, and the left half in the second. Each portion must then |
| 1655 | * be in little endian format: use the 256-bit byte swap option. |
| 1656 | */ |
| 1657 | ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES, |
| 1658 | DMA_BIDIRECTIONAL); |
| 1659 | if (ret) |
| 1660 | return ret; |
| 1661 | if (sha->first) { |
| 1662 | switch (sha->type) { |
| 1663 | case CCP_SHA_TYPE_1: |
| 1664 | case CCP_SHA_TYPE_224: |
| 1665 | case CCP_SHA_TYPE_256: |
| 1666 | memcpy(ctx.address + ioffset, init, ctx_size); |
| 1667 | break; |
| 1668 | case CCP_SHA_TYPE_384: |
| 1669 | case CCP_SHA_TYPE_512: |
| 1670 | memcpy(ctx.address + ctx_size / 2, init, |
| 1671 | ctx_size / 2); |
| 1672 | memcpy(ctx.address, init + ctx_size / 2, |
| 1673 | ctx_size / 2); |
| 1674 | break; |
| 1675 | default: |
| 1676 | ret = -EINVAL; |
| 1677 | goto e_ctx; |
| 1678 | } |
| 1679 | } else { |
| 1680 | /* Restore the context */ |
| 1681 | ret = ccp_set_dm_area(&ctx, 0, sha->ctx, 0, |
| 1682 | sb_count * CCP_SB_BYTES); |
| 1683 | if (ret) |
| 1684 | goto e_ctx; |
| 1685 | } |
| 1686 | |
| 1687 | ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| 1688 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 1689 | if (ret) { |
| 1690 | cmd->engine_error = cmd_q->cmd_error; |
| 1691 | goto e_ctx; |
| 1692 | } |
| 1693 | |
| 1694 | if (sha->src) { |
| 1695 | /* Send data to the CCP SHA engine; block_size is set above */ |
| 1696 | ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len, |
| 1697 | block_size, DMA_TO_DEVICE); |
| 1698 | if (ret) |
| 1699 | goto e_ctx; |
| 1700 | |
| 1701 | while (src.sg_wa.bytes_left) { |
| 1702 | ccp_prepare_data(&src, NULL, &op, block_size, false); |
| 1703 | if (sha->final && !src.sg_wa.bytes_left) |
| 1704 | op.eom = 1; |
| 1705 | |
| 1706 | ret = cmd_q->ccp->vdata->perform->sha(&op); |
| 1707 | if (ret) { |
| 1708 | cmd->engine_error = cmd_q->cmd_error; |
| 1709 | goto e_data; |
| 1710 | } |
| 1711 | |
| 1712 | ccp_process_data(&src, NULL, &op); |
| 1713 | } |
| 1714 | } else { |
| 1715 | op.eom = 1; |
| 1716 | ret = cmd_q->ccp->vdata->perform->sha(&op); |
| 1717 | if (ret) { |
| 1718 | cmd->engine_error = cmd_q->cmd_error; |
| 1719 | goto e_data; |
| 1720 | } |
| 1721 | } |
| 1722 | |
| 1723 | /* Retrieve the SHA context - convert from LE to BE using |
| 1724 | * 32-byte (256-bit) byteswapping to BE |
| 1725 | */ |
| 1726 | ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| 1727 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 1728 | if (ret) { |
| 1729 | cmd->engine_error = cmd_q->cmd_error; |
| 1730 | goto e_data; |
| 1731 | } |
| 1732 | |
| 1733 | if (sha->final) { |
| 1734 | /* Finishing up, so get the digest */ |
| 1735 | switch (sha->type) { |
| 1736 | case CCP_SHA_TYPE_1: |
| 1737 | case CCP_SHA_TYPE_224: |
| 1738 | case CCP_SHA_TYPE_256: |
| 1739 | ccp_get_dm_area(&ctx, ooffset, |
| 1740 | sha->ctx, 0, |
| 1741 | digest_size); |
| 1742 | break; |
| 1743 | case CCP_SHA_TYPE_384: |
| 1744 | case CCP_SHA_TYPE_512: |
| 1745 | ccp_get_dm_area(&ctx, 0, |
| 1746 | sha->ctx, LSB_ITEM_SIZE - ooffset, |
| 1747 | LSB_ITEM_SIZE); |
| 1748 | ccp_get_dm_area(&ctx, LSB_ITEM_SIZE + ooffset, |
| 1749 | sha->ctx, 0, |
| 1750 | LSB_ITEM_SIZE - ooffset); |
| 1751 | break; |
| 1752 | default: |
| 1753 | ret = -EINVAL; |
| 1754 | goto e_data; |
| 1755 | } |
| 1756 | } else { |
| 1757 | /* Stash the context */ |
| 1758 | ccp_get_dm_area(&ctx, 0, sha->ctx, 0, |
| 1759 | sb_count * CCP_SB_BYTES); |
| 1760 | } |
| 1761 | |
| 1762 | if (sha->final && sha->opad) { |
| 1763 | /* HMAC operation, recursively perform final SHA */ |
| 1764 | struct ccp_cmd hmac_cmd; |
| 1765 | struct scatterlist sg; |
| 1766 | u8 *hmac_buf; |
| 1767 | |
| 1768 | if (sha->opad_len != block_size) { |
| 1769 | ret = -EINVAL; |
| 1770 | goto e_data; |
| 1771 | } |
| 1772 | |
| 1773 | hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL); |
| 1774 | if (!hmac_buf) { |
| 1775 | ret = -ENOMEM; |
| 1776 | goto e_data; |
| 1777 | } |
| 1778 | sg_init_one(&sg, hmac_buf, block_size + digest_size); |
| 1779 | |
| 1780 | scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0); |
| 1781 | switch (sha->type) { |
| 1782 | case CCP_SHA_TYPE_1: |
| 1783 | case CCP_SHA_TYPE_224: |
| 1784 | case CCP_SHA_TYPE_256: |
| 1785 | memcpy(hmac_buf + block_size, |
| 1786 | ctx.address + ooffset, |
| 1787 | digest_size); |
| 1788 | break; |
| 1789 | case CCP_SHA_TYPE_384: |
| 1790 | case CCP_SHA_TYPE_512: |
| 1791 | memcpy(hmac_buf + block_size, |
| 1792 | ctx.address + LSB_ITEM_SIZE + ooffset, |
| 1793 | LSB_ITEM_SIZE); |
| 1794 | memcpy(hmac_buf + block_size + |
| 1795 | (LSB_ITEM_SIZE - ooffset), |
| 1796 | ctx.address, |
| 1797 | LSB_ITEM_SIZE); |
| 1798 | break; |
| 1799 | default: |
| 1800 | kfree(hmac_buf); |
| 1801 | ret = -EINVAL; |
| 1802 | goto e_data; |
| 1803 | } |
| 1804 | |
| 1805 | memset(&hmac_cmd, 0, sizeof(hmac_cmd)); |
| 1806 | hmac_cmd.engine = CCP_ENGINE_SHA; |
| 1807 | hmac_cmd.u.sha.type = sha->type; |
| 1808 | hmac_cmd.u.sha.ctx = sha->ctx; |
| 1809 | hmac_cmd.u.sha.ctx_len = sha->ctx_len; |
| 1810 | hmac_cmd.u.sha.src = &sg; |
| 1811 | hmac_cmd.u.sha.src_len = block_size + digest_size; |
| 1812 | hmac_cmd.u.sha.opad = NULL; |
| 1813 | hmac_cmd.u.sha.opad_len = 0; |
| 1814 | hmac_cmd.u.sha.first = 1; |
| 1815 | hmac_cmd.u.sha.final = 1; |
| 1816 | hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3; |
| 1817 | |
| 1818 | ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd); |
| 1819 | if (ret) |
| 1820 | cmd->engine_error = hmac_cmd.engine_error; |
| 1821 | |
| 1822 | kfree(hmac_buf); |
| 1823 | } |
| 1824 | |
| 1825 | e_data: |
| 1826 | if (sha->src) |
| 1827 | ccp_free_data(&src, cmd_q); |
| 1828 | |
| 1829 | e_ctx: |
| 1830 | ccp_dm_free(&ctx); |
| 1831 | |
| 1832 | return ret; |
| 1833 | } |
| 1834 | |
| 1835 | static noinline_for_stack int |
| 1836 | ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| 1837 | { |
| 1838 | struct ccp_rsa_engine *rsa = &cmd->u.rsa; |
| 1839 | struct ccp_dm_workarea exp, src, dst; |
| 1840 | struct ccp_op op; |
| 1841 | unsigned int sb_count, i_len, o_len; |
| 1842 | int ret; |
| 1843 | |
| 1844 | /* Check against the maximum allowable size, in bits */ |
| 1845 | if (rsa->key_size > cmd_q->ccp->vdata->rsamax) |
| 1846 | return -EINVAL; |
| 1847 | |
| 1848 | if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst) |
| 1849 | return -EINVAL; |
| 1850 | |
| 1851 | memset(&op, 0, sizeof(op)); |
| 1852 | op.cmd_q = cmd_q; |
| 1853 | op.jobid = CCP_NEW_JOBID(cmd_q->ccp); |
| 1854 | |
| 1855 | /* The RSA modulus must precede the message being acted upon, so |
| 1856 | * it must be copied to a DMA area where the message and the |
| 1857 | * modulus can be concatenated. Therefore the input buffer |
| 1858 | * length required is twice the output buffer length (which |
| 1859 | * must be a multiple of 256-bits). Compute o_len, i_len in bytes. |
| 1860 | * Buffer sizes must be a multiple of 32 bytes; rounding up may be |
| 1861 | * required. |
| 1862 | */ |
| 1863 | o_len = 32 * ((rsa->key_size + 255) / 256); |
| 1864 | i_len = o_len * 2; |
| 1865 | |
| 1866 | sb_count = 0; |
| 1867 | if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) { |
| 1868 | /* sb_count is the number of storage block slots required |
| 1869 | * for the modulus. |
| 1870 | */ |
| 1871 | sb_count = o_len / CCP_SB_BYTES; |
| 1872 | op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q, |
| 1873 | sb_count); |
| 1874 | if (!op.sb_key) |
| 1875 | return -EIO; |
| 1876 | } else { |
| 1877 | /* A version 5 device allows a modulus size that will not fit |
| 1878 | * in the LSB, so the command will transfer it from memory. |
| 1879 | * Set the sb key to the default, even though it's not used. |
| 1880 | */ |
| 1881 | op.sb_key = cmd_q->sb_key; |
| 1882 | } |
| 1883 | |
| 1884 | /* The RSA exponent must be in little endian format. Reverse its |
| 1885 | * byte order. |
| 1886 | */ |
| 1887 | ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE); |
| 1888 | if (ret) |
| 1889 | goto e_sb; |
| 1890 | |
| 1891 | ret = ccp_reverse_set_dm_area(&exp, 0, rsa->exp, 0, rsa->exp_len); |
| 1892 | if (ret) |
| 1893 | goto e_exp; |
| 1894 | |
| 1895 | if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) { |
| 1896 | /* Copy the exponent to the local storage block, using |
| 1897 | * as many 32-byte blocks as were allocated above. It's |
| 1898 | * already little endian, so no further change is required. |
| 1899 | */ |
| 1900 | ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key, |
| 1901 | CCP_PASSTHRU_BYTESWAP_NOOP); |
| 1902 | if (ret) { |
| 1903 | cmd->engine_error = cmd_q->cmd_error; |
| 1904 | goto e_exp; |
| 1905 | } |
| 1906 | } else { |
| 1907 | /* The exponent can be retrieved from memory via DMA. */ |
| 1908 | op.exp.u.dma.address = exp.dma.address; |
| 1909 | op.exp.u.dma.offset = 0; |
| 1910 | } |
| 1911 | |
| 1912 | /* Concatenate the modulus and the message. Both the modulus and |
| 1913 | * the operands must be in little endian format. Since the input |
| 1914 | * is in big endian format it must be converted. |
| 1915 | */ |
| 1916 | ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE); |
| 1917 | if (ret) |
| 1918 | goto e_exp; |
| 1919 | |
| 1920 | ret = ccp_reverse_set_dm_area(&src, 0, rsa->mod, 0, rsa->mod_len); |
| 1921 | if (ret) |
| 1922 | goto e_src; |
| 1923 | ret = ccp_reverse_set_dm_area(&src, o_len, rsa->src, 0, rsa->src_len); |
| 1924 | if (ret) |
| 1925 | goto e_src; |
| 1926 | |
| 1927 | /* Prepare the output area for the operation */ |
| 1928 | ret = ccp_init_dm_workarea(&dst, cmd_q, o_len, DMA_FROM_DEVICE); |
| 1929 | if (ret) |
| 1930 | goto e_src; |
| 1931 | |
| 1932 | op.soc = 1; |
| 1933 | op.src.u.dma.address = src.dma.address; |
| 1934 | op.src.u.dma.offset = 0; |
| 1935 | op.src.u.dma.length = i_len; |
| 1936 | op.dst.u.dma.address = dst.dma.address; |
| 1937 | op.dst.u.dma.offset = 0; |
| 1938 | op.dst.u.dma.length = o_len; |
| 1939 | |
| 1940 | op.u.rsa.mod_size = rsa->key_size; |
| 1941 | op.u.rsa.input_len = i_len; |
| 1942 | |
| 1943 | ret = cmd_q->ccp->vdata->perform->rsa(&op); |
| 1944 | if (ret) { |
| 1945 | cmd->engine_error = cmd_q->cmd_error; |
| 1946 | goto e_dst; |
| 1947 | } |
| 1948 | |
| 1949 | ccp_reverse_get_dm_area(&dst, 0, rsa->dst, 0, rsa->mod_len); |
| 1950 | |
| 1951 | e_dst: |
| 1952 | ccp_dm_free(&dst); |
| 1953 | |
| 1954 | e_src: |
| 1955 | ccp_dm_free(&src); |
| 1956 | |
| 1957 | e_exp: |
| 1958 | ccp_dm_free(&exp); |
| 1959 | |
| 1960 | e_sb: |
| 1961 | if (sb_count) |
| 1962 | cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count); |
| 1963 | |
| 1964 | return ret; |
| 1965 | } |
| 1966 | |
| 1967 | static noinline_for_stack int |
| 1968 | ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| 1969 | { |
| 1970 | struct ccp_passthru_engine *pt = &cmd->u.passthru; |
| 1971 | struct ccp_dm_workarea mask; |
| 1972 | struct ccp_data src, dst; |
| 1973 | struct ccp_op op; |
| 1974 | bool in_place = false; |
| 1975 | unsigned int i; |
| 1976 | int ret = 0; |
| 1977 | |
| 1978 | if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1))) |
| 1979 | return -EINVAL; |
| 1980 | |
| 1981 | if (!pt->src || !pt->dst) |
| 1982 | return -EINVAL; |
| 1983 | |
| 1984 | if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) { |
| 1985 | if (pt->mask_len != CCP_PASSTHRU_MASKSIZE) |
| 1986 | return -EINVAL; |
| 1987 | if (!pt->mask) |
| 1988 | return -EINVAL; |
| 1989 | } |
| 1990 | |
| 1991 | BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1); |
| 1992 | |
| 1993 | memset(&op, 0, sizeof(op)); |
| 1994 | op.cmd_q = cmd_q; |
| 1995 | op.jobid = CCP_NEW_JOBID(cmd_q->ccp); |
| 1996 | |
| 1997 | if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) { |
| 1998 | /* Load the mask */ |
| 1999 | op.sb_key = cmd_q->sb_key; |
| 2000 | |
| 2001 | ret = ccp_init_dm_workarea(&mask, cmd_q, |
| 2002 | CCP_PASSTHRU_SB_COUNT * |
| 2003 | CCP_SB_BYTES, |
| 2004 | DMA_TO_DEVICE); |
| 2005 | if (ret) |
| 2006 | return ret; |
| 2007 | |
| 2008 | ret = ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len); |
| 2009 | if (ret) |
| 2010 | goto e_mask; |
| 2011 | ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key, |
| 2012 | CCP_PASSTHRU_BYTESWAP_NOOP); |
| 2013 | if (ret) { |
| 2014 | cmd->engine_error = cmd_q->cmd_error; |
| 2015 | goto e_mask; |
| 2016 | } |
| 2017 | } |
| 2018 | |
| 2019 | /* Prepare the input and output data workareas. For in-place |
| 2020 | * operations we need to set the dma direction to BIDIRECTIONAL |
| 2021 | * and copy the src workarea to the dst workarea. |
| 2022 | */ |
| 2023 | if (sg_virt(pt->src) == sg_virt(pt->dst)) |
| 2024 | in_place = true; |
| 2025 | |
| 2026 | ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len, |
| 2027 | CCP_PASSTHRU_MASKSIZE, |
| 2028 | in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); |
| 2029 | if (ret) |
| 2030 | goto e_mask; |
| 2031 | |
| 2032 | if (in_place) { |
| 2033 | dst = src; |
| 2034 | } else { |
| 2035 | ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len, |
| 2036 | CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE); |
| 2037 | if (ret) |
| 2038 | goto e_src; |
| 2039 | } |
| 2040 | |
| 2041 | /* Send data to the CCP Passthru engine |
| 2042 | * Because the CCP engine works on a single source and destination |
| 2043 | * dma address at a time, each entry in the source scatterlist |
| 2044 | * (after the dma_map_sg call) must be less than or equal to the |
| 2045 | * (remaining) length in the destination scatterlist entry and the |
| 2046 | * length must be a multiple of CCP_PASSTHRU_BLOCKSIZE |
| 2047 | */ |
| 2048 | dst.sg_wa.sg_used = 0; |
| 2049 | for (i = 1; i <= src.sg_wa.dma_count; i++) { |
| 2050 | if (!dst.sg_wa.sg || |
| 2051 | (sg_dma_len(dst.sg_wa.sg) < sg_dma_len(src.sg_wa.sg))) { |
| 2052 | ret = -EINVAL; |
| 2053 | goto e_dst; |
| 2054 | } |
| 2055 | |
| 2056 | if (i == src.sg_wa.dma_count) { |
| 2057 | op.eom = 1; |
| 2058 | op.soc = 1; |
| 2059 | } |
| 2060 | |
| 2061 | op.src.type = CCP_MEMTYPE_SYSTEM; |
| 2062 | op.src.u.dma.address = sg_dma_address(src.sg_wa.sg); |
| 2063 | op.src.u.dma.offset = 0; |
| 2064 | op.src.u.dma.length = sg_dma_len(src.sg_wa.sg); |
| 2065 | |
| 2066 | op.dst.type = CCP_MEMTYPE_SYSTEM; |
| 2067 | op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg); |
| 2068 | op.dst.u.dma.offset = dst.sg_wa.sg_used; |
| 2069 | op.dst.u.dma.length = op.src.u.dma.length; |
| 2070 | |
| 2071 | ret = cmd_q->ccp->vdata->perform->passthru(&op); |
| 2072 | if (ret) { |
| 2073 | cmd->engine_error = cmd_q->cmd_error; |
| 2074 | goto e_dst; |
| 2075 | } |
| 2076 | |
| 2077 | dst.sg_wa.sg_used += sg_dma_len(src.sg_wa.sg); |
| 2078 | if (dst.sg_wa.sg_used == sg_dma_len(dst.sg_wa.sg)) { |
| 2079 | dst.sg_wa.sg = sg_next(dst.sg_wa.sg); |
| 2080 | dst.sg_wa.sg_used = 0; |
| 2081 | } |
| 2082 | src.sg_wa.sg = sg_next(src.sg_wa.sg); |
| 2083 | } |
| 2084 | |
| 2085 | e_dst: |
| 2086 | if (!in_place) |
| 2087 | ccp_free_data(&dst, cmd_q); |
| 2088 | |
| 2089 | e_src: |
| 2090 | ccp_free_data(&src, cmd_q); |
| 2091 | |
| 2092 | e_mask: |
| 2093 | if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) |
| 2094 | ccp_dm_free(&mask); |
| 2095 | |
| 2096 | return ret; |
| 2097 | } |
| 2098 | |
| 2099 | static noinline_for_stack int |
| 2100 | ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q, |
| 2101 | struct ccp_cmd *cmd) |
| 2102 | { |
| 2103 | struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap; |
| 2104 | struct ccp_dm_workarea mask; |
| 2105 | struct ccp_op op; |
| 2106 | int ret; |
| 2107 | |
| 2108 | if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1))) |
| 2109 | return -EINVAL; |
| 2110 | |
| 2111 | if (!pt->src_dma || !pt->dst_dma) |
| 2112 | return -EINVAL; |
| 2113 | |
| 2114 | if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) { |
| 2115 | if (pt->mask_len != CCP_PASSTHRU_MASKSIZE) |
| 2116 | return -EINVAL; |
| 2117 | if (!pt->mask) |
| 2118 | return -EINVAL; |
| 2119 | } |
| 2120 | |
| 2121 | BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1); |
| 2122 | |
| 2123 | memset(&op, 0, sizeof(op)); |
| 2124 | op.cmd_q = cmd_q; |
| 2125 | op.jobid = CCP_NEW_JOBID(cmd_q->ccp); |
| 2126 | |
| 2127 | if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) { |
| 2128 | /* Load the mask */ |
| 2129 | op.sb_key = cmd_q->sb_key; |
| 2130 | |
| 2131 | mask.length = pt->mask_len; |
| 2132 | mask.dma.address = pt->mask; |
| 2133 | mask.dma.length = pt->mask_len; |
| 2134 | |
| 2135 | ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key, |
| 2136 | CCP_PASSTHRU_BYTESWAP_NOOP); |
| 2137 | if (ret) { |
| 2138 | cmd->engine_error = cmd_q->cmd_error; |
| 2139 | return ret; |
| 2140 | } |
| 2141 | } |
| 2142 | |
| 2143 | /* Send data to the CCP Passthru engine */ |
| 2144 | op.eom = 1; |
| 2145 | op.soc = 1; |
| 2146 | |
| 2147 | op.src.type = CCP_MEMTYPE_SYSTEM; |
| 2148 | op.src.u.dma.address = pt->src_dma; |
| 2149 | op.src.u.dma.offset = 0; |
| 2150 | op.src.u.dma.length = pt->src_len; |
| 2151 | |
| 2152 | op.dst.type = CCP_MEMTYPE_SYSTEM; |
| 2153 | op.dst.u.dma.address = pt->dst_dma; |
| 2154 | op.dst.u.dma.offset = 0; |
| 2155 | op.dst.u.dma.length = pt->src_len; |
| 2156 | |
| 2157 | ret = cmd_q->ccp->vdata->perform->passthru(&op); |
| 2158 | if (ret) |
| 2159 | cmd->engine_error = cmd_q->cmd_error; |
| 2160 | |
| 2161 | return ret; |
| 2162 | } |
| 2163 | |
| 2164 | static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| 2165 | { |
| 2166 | struct ccp_ecc_engine *ecc = &cmd->u.ecc; |
| 2167 | struct ccp_dm_workarea src, dst; |
| 2168 | struct ccp_op op; |
| 2169 | int ret; |
| 2170 | u8 *save; |
| 2171 | |
| 2172 | if (!ecc->u.mm.operand_1 || |
| 2173 | (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES)) |
| 2174 | return -EINVAL; |
| 2175 | |
| 2176 | if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) |
| 2177 | if (!ecc->u.mm.operand_2 || |
| 2178 | (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES)) |
| 2179 | return -EINVAL; |
| 2180 | |
| 2181 | if (!ecc->u.mm.result || |
| 2182 | (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES)) |
| 2183 | return -EINVAL; |
| 2184 | |
| 2185 | memset(&op, 0, sizeof(op)); |
| 2186 | op.cmd_q = cmd_q; |
| 2187 | op.jobid = CCP_NEW_JOBID(cmd_q->ccp); |
| 2188 | |
| 2189 | /* Concatenate the modulus and the operands. Both the modulus and |
| 2190 | * the operands must be in little endian format. Since the input |
| 2191 | * is in big endian format it must be converted and placed in a |
| 2192 | * fixed length buffer. |
| 2193 | */ |
| 2194 | ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE, |
| 2195 | DMA_TO_DEVICE); |
| 2196 | if (ret) |
| 2197 | return ret; |
| 2198 | |
| 2199 | /* Save the workarea address since it is updated in order to perform |
| 2200 | * the concatenation |
| 2201 | */ |
| 2202 | save = src.address; |
| 2203 | |
| 2204 | /* Copy the ECC modulus */ |
| 2205 | ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len); |
| 2206 | if (ret) |
| 2207 | goto e_src; |
| 2208 | src.address += CCP_ECC_OPERAND_SIZE; |
| 2209 | |
| 2210 | /* Copy the first operand */ |
| 2211 | ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_1, 0, |
| 2212 | ecc->u.mm.operand_1_len); |
| 2213 | if (ret) |
| 2214 | goto e_src; |
| 2215 | src.address += CCP_ECC_OPERAND_SIZE; |
| 2216 | |
| 2217 | if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) { |
| 2218 | /* Copy the second operand */ |
| 2219 | ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_2, 0, |
| 2220 | ecc->u.mm.operand_2_len); |
| 2221 | if (ret) |
| 2222 | goto e_src; |
| 2223 | src.address += CCP_ECC_OPERAND_SIZE; |
| 2224 | } |
| 2225 | |
| 2226 | /* Restore the workarea address */ |
| 2227 | src.address = save; |
| 2228 | |
| 2229 | /* Prepare the output area for the operation */ |
| 2230 | ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE, |
| 2231 | DMA_FROM_DEVICE); |
| 2232 | if (ret) |
| 2233 | goto e_src; |
| 2234 | |
| 2235 | op.soc = 1; |
| 2236 | op.src.u.dma.address = src.dma.address; |
| 2237 | op.src.u.dma.offset = 0; |
| 2238 | op.src.u.dma.length = src.length; |
| 2239 | op.dst.u.dma.address = dst.dma.address; |
| 2240 | op.dst.u.dma.offset = 0; |
| 2241 | op.dst.u.dma.length = dst.length; |
| 2242 | |
| 2243 | op.u.ecc.function = cmd->u.ecc.function; |
| 2244 | |
| 2245 | ret = cmd_q->ccp->vdata->perform->ecc(&op); |
| 2246 | if (ret) { |
| 2247 | cmd->engine_error = cmd_q->cmd_error; |
| 2248 | goto e_dst; |
| 2249 | } |
| 2250 | |
| 2251 | ecc->ecc_result = le16_to_cpup( |
| 2252 | (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET)); |
| 2253 | if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) { |
| 2254 | ret = -EIO; |
| 2255 | goto e_dst; |
| 2256 | } |
| 2257 | |
| 2258 | /* Save the ECC result */ |
| 2259 | ccp_reverse_get_dm_area(&dst, 0, ecc->u.mm.result, 0, |
| 2260 | CCP_ECC_MODULUS_BYTES); |
| 2261 | |
| 2262 | e_dst: |
| 2263 | ccp_dm_free(&dst); |
| 2264 | |
| 2265 | e_src: |
| 2266 | ccp_dm_free(&src); |
| 2267 | |
| 2268 | return ret; |
| 2269 | } |
| 2270 | |
| 2271 | static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| 2272 | { |
| 2273 | struct ccp_ecc_engine *ecc = &cmd->u.ecc; |
| 2274 | struct ccp_dm_workarea src, dst; |
| 2275 | struct ccp_op op; |
| 2276 | int ret; |
| 2277 | u8 *save; |
| 2278 | |
| 2279 | if (!ecc->u.pm.point_1.x || |
| 2280 | (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) || |
| 2281 | !ecc->u.pm.point_1.y || |
| 2282 | (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES)) |
| 2283 | return -EINVAL; |
| 2284 | |
| 2285 | if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) { |
| 2286 | if (!ecc->u.pm.point_2.x || |
| 2287 | (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) || |
| 2288 | !ecc->u.pm.point_2.y || |
| 2289 | (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES)) |
| 2290 | return -EINVAL; |
| 2291 | } else { |
| 2292 | if (!ecc->u.pm.domain_a || |
| 2293 | (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES)) |
| 2294 | return -EINVAL; |
| 2295 | |
| 2296 | if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) |
| 2297 | if (!ecc->u.pm.scalar || |
| 2298 | (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES)) |
| 2299 | return -EINVAL; |
| 2300 | } |
| 2301 | |
| 2302 | if (!ecc->u.pm.result.x || |
| 2303 | (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) || |
| 2304 | !ecc->u.pm.result.y || |
| 2305 | (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES)) |
| 2306 | return -EINVAL; |
| 2307 | |
| 2308 | memset(&op, 0, sizeof(op)); |
| 2309 | op.cmd_q = cmd_q; |
| 2310 | op.jobid = CCP_NEW_JOBID(cmd_q->ccp); |
| 2311 | |
| 2312 | /* Concatenate the modulus and the operands. Both the modulus and |
| 2313 | * the operands must be in little endian format. Since the input |
| 2314 | * is in big endian format it must be converted and placed in a |
| 2315 | * fixed length buffer. |
| 2316 | */ |
| 2317 | ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE, |
| 2318 | DMA_TO_DEVICE); |
| 2319 | if (ret) |
| 2320 | return ret; |
| 2321 | |
| 2322 | /* Save the workarea address since it is updated in order to perform |
| 2323 | * the concatenation |
| 2324 | */ |
| 2325 | save = src.address; |
| 2326 | |
| 2327 | /* Copy the ECC modulus */ |
| 2328 | ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len); |
| 2329 | if (ret) |
| 2330 | goto e_src; |
| 2331 | src.address += CCP_ECC_OPERAND_SIZE; |
| 2332 | |
| 2333 | /* Copy the first point X and Y coordinate */ |
| 2334 | ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.x, 0, |
| 2335 | ecc->u.pm.point_1.x_len); |
| 2336 | if (ret) |
| 2337 | goto e_src; |
| 2338 | src.address += CCP_ECC_OPERAND_SIZE; |
| 2339 | ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.y, 0, |
| 2340 | ecc->u.pm.point_1.y_len); |
| 2341 | if (ret) |
| 2342 | goto e_src; |
| 2343 | src.address += CCP_ECC_OPERAND_SIZE; |
| 2344 | |
| 2345 | /* Set the first point Z coordinate to 1 */ |
| 2346 | *src.address = 0x01; |
| 2347 | src.address += CCP_ECC_OPERAND_SIZE; |
| 2348 | |
| 2349 | if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) { |
| 2350 | /* Copy the second point X and Y coordinate */ |
| 2351 | ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.x, 0, |
| 2352 | ecc->u.pm.point_2.x_len); |
| 2353 | if (ret) |
| 2354 | goto e_src; |
| 2355 | src.address += CCP_ECC_OPERAND_SIZE; |
| 2356 | ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.y, 0, |
| 2357 | ecc->u.pm.point_2.y_len); |
| 2358 | if (ret) |
| 2359 | goto e_src; |
| 2360 | src.address += CCP_ECC_OPERAND_SIZE; |
| 2361 | |
| 2362 | /* Set the second point Z coordinate to 1 */ |
| 2363 | *src.address = 0x01; |
| 2364 | src.address += CCP_ECC_OPERAND_SIZE; |
| 2365 | } else { |
| 2366 | /* Copy the Domain "a" parameter */ |
| 2367 | ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.domain_a, 0, |
| 2368 | ecc->u.pm.domain_a_len); |
| 2369 | if (ret) |
| 2370 | goto e_src; |
| 2371 | src.address += CCP_ECC_OPERAND_SIZE; |
| 2372 | |
| 2373 | if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) { |
| 2374 | /* Copy the scalar value */ |
| 2375 | ret = ccp_reverse_set_dm_area(&src, 0, |
| 2376 | ecc->u.pm.scalar, 0, |
| 2377 | ecc->u.pm.scalar_len); |
| 2378 | if (ret) |
| 2379 | goto e_src; |
| 2380 | src.address += CCP_ECC_OPERAND_SIZE; |
| 2381 | } |
| 2382 | } |
| 2383 | |
| 2384 | /* Restore the workarea address */ |
| 2385 | src.address = save; |
| 2386 | |
| 2387 | /* Prepare the output area for the operation */ |
| 2388 | ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE, |
| 2389 | DMA_FROM_DEVICE); |
| 2390 | if (ret) |
| 2391 | goto e_src; |
| 2392 | |
| 2393 | op.soc = 1; |
| 2394 | op.src.u.dma.address = src.dma.address; |
| 2395 | op.src.u.dma.offset = 0; |
| 2396 | op.src.u.dma.length = src.length; |
| 2397 | op.dst.u.dma.address = dst.dma.address; |
| 2398 | op.dst.u.dma.offset = 0; |
| 2399 | op.dst.u.dma.length = dst.length; |
| 2400 | |
| 2401 | op.u.ecc.function = cmd->u.ecc.function; |
| 2402 | |
| 2403 | ret = cmd_q->ccp->vdata->perform->ecc(&op); |
| 2404 | if (ret) { |
| 2405 | cmd->engine_error = cmd_q->cmd_error; |
| 2406 | goto e_dst; |
| 2407 | } |
| 2408 | |
| 2409 | ecc->ecc_result = le16_to_cpup( |
| 2410 | (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET)); |
| 2411 | if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) { |
| 2412 | ret = -EIO; |
| 2413 | goto e_dst; |
| 2414 | } |
| 2415 | |
| 2416 | /* Save the workarea address since it is updated as we walk through |
| 2417 | * to copy the point math result |
| 2418 | */ |
| 2419 | save = dst.address; |
| 2420 | |
| 2421 | /* Save the ECC result X and Y coordinates */ |
| 2422 | ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.x, 0, |
| 2423 | CCP_ECC_MODULUS_BYTES); |
| 2424 | dst.address += CCP_ECC_OUTPUT_SIZE; |
| 2425 | ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.y, 0, |
| 2426 | CCP_ECC_MODULUS_BYTES); |
| 2427 | |
| 2428 | /* Restore the workarea address */ |
| 2429 | dst.address = save; |
| 2430 | |
| 2431 | e_dst: |
| 2432 | ccp_dm_free(&dst); |
| 2433 | |
| 2434 | e_src: |
| 2435 | ccp_dm_free(&src); |
| 2436 | |
| 2437 | return ret; |
| 2438 | } |
| 2439 | |
| 2440 | static noinline_for_stack int |
| 2441 | ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| 2442 | { |
| 2443 | struct ccp_ecc_engine *ecc = &cmd->u.ecc; |
| 2444 | |
| 2445 | ecc->ecc_result = 0; |
| 2446 | |
| 2447 | if (!ecc->mod || |
| 2448 | (ecc->mod_len > CCP_ECC_MODULUS_BYTES)) |
| 2449 | return -EINVAL; |
| 2450 | |
| 2451 | switch (ecc->function) { |
| 2452 | case CCP_ECC_FUNCTION_MMUL_384BIT: |
| 2453 | case CCP_ECC_FUNCTION_MADD_384BIT: |
| 2454 | case CCP_ECC_FUNCTION_MINV_384BIT: |
| 2455 | return ccp_run_ecc_mm_cmd(cmd_q, cmd); |
| 2456 | |
| 2457 | case CCP_ECC_FUNCTION_PADD_384BIT: |
| 2458 | case CCP_ECC_FUNCTION_PMUL_384BIT: |
| 2459 | case CCP_ECC_FUNCTION_PDBL_384BIT: |
| 2460 | return ccp_run_ecc_pm_cmd(cmd_q, cmd); |
| 2461 | |
| 2462 | default: |
| 2463 | return -EINVAL; |
| 2464 | } |
| 2465 | } |
| 2466 | |
| 2467 | int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| 2468 | { |
| 2469 | int ret; |
| 2470 | |
| 2471 | cmd->engine_error = 0; |
| 2472 | cmd_q->cmd_error = 0; |
| 2473 | cmd_q->int_rcvd = 0; |
| 2474 | cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q); |
| 2475 | |
| 2476 | switch (cmd->engine) { |
| 2477 | case CCP_ENGINE_AES: |
| 2478 | switch (cmd->u.aes.mode) { |
| 2479 | case CCP_AES_MODE_CMAC: |
| 2480 | ret = ccp_run_aes_cmac_cmd(cmd_q, cmd); |
| 2481 | break; |
| 2482 | case CCP_AES_MODE_GCM: |
| 2483 | ret = ccp_run_aes_gcm_cmd(cmd_q, cmd); |
| 2484 | break; |
| 2485 | default: |
| 2486 | ret = ccp_run_aes_cmd(cmd_q, cmd); |
| 2487 | break; |
| 2488 | } |
| 2489 | break; |
| 2490 | case CCP_ENGINE_XTS_AES_128: |
| 2491 | ret = ccp_run_xts_aes_cmd(cmd_q, cmd); |
| 2492 | break; |
| 2493 | case CCP_ENGINE_DES3: |
| 2494 | ret = ccp_run_des3_cmd(cmd_q, cmd); |
| 2495 | break; |
| 2496 | case CCP_ENGINE_SHA: |
| 2497 | ret = ccp_run_sha_cmd(cmd_q, cmd); |
| 2498 | break; |
| 2499 | case CCP_ENGINE_RSA: |
| 2500 | ret = ccp_run_rsa_cmd(cmd_q, cmd); |
| 2501 | break; |
| 2502 | case CCP_ENGINE_PASSTHRU: |
| 2503 | if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP) |
| 2504 | ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd); |
| 2505 | else |
| 2506 | ret = ccp_run_passthru_cmd(cmd_q, cmd); |
| 2507 | break; |
| 2508 | case CCP_ENGINE_ECC: |
| 2509 | ret = ccp_run_ecc_cmd(cmd_q, cmd); |
| 2510 | break; |
| 2511 | default: |
| 2512 | ret = -EINVAL; |
| 2513 | } |
| 2514 | |
| 2515 | return ret; |
| 2516 | } |